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Abstract

We provide two new, simple proofs of Afriat’s celebrated theorem stating that a finite
set of price-quantity observations is consistent with utility maximization if, and only if,
the observations satisfy a variation of the Strong Axiom of Revealed Preference known as
the Generalized Axiom of Revealed Preference.

1 Introduction

The neoclassical theory of demand supposes that a consumer, facing a price vector p ∈ <l
++

and with income I > 0, chooses his demand bundle x ∈ <l
+ to maximize some utility function

u : <l
+ → < over his budget set B(p, I) := {x ∈ <l

+ : p · x ≤ I}. We assume we have
been presented with a finite data set D := {(pi, xi) : i ∈ N}, where N := {1, 2, . . . , n},
of price vectors pi ∈ <l

++ and corresponding demand vectors xi ∈ <l
+. The basic question

raised by Afriat is whether this data set is consistent with the maximization of a locally non-
satiated utility function u in the sense that for each i ∈ N , xi maximizes u over B(pi, pi ·xi). A
locally non-satiated utility function is one for which every neighborhood of a commodity bundle
contains another bundle with a higher utility. With such a utility function the consumer will
have spent all his income, so that we can use pi · xi as the income for situation i.

If the set of price and quantity observations is derived from utility maximization it will surely
satisfy the variation of the Strong Axiom of Revealed Preference, known as the Generalized
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Axiom of Revealed Preference, which states that, for any list (q1, y1), . . . , (qm, ym) of observed
prices and associated demand vectors with the property that

qj · yj+1 ≤ qj · yj, for all j ≤ m − 1,

we must have qm · y1 ≥ qm · ym.1

The argument for the Generalized Axiom is straightforward. If qj · yj+1 ≤ qj · yj then yj+1

could have been purchased at prices qj. Since yj+1 was not purchased it cannot be strictly
preferred to yj so that yj % yj+1. Thus yj is “revealed preferred” to yj+1. The entire sequence
of inequalities therefore implies that y1 % ym. If, on the other hand, qm · y1 < qm · ym and the
utility function is locally non-satiated, we could find a commodity bundle ξ close to y1 with
qm · ξ < qm · ym and ξ � ym, violating the assumption that ym maximizes utility at prices qm

and income qm · ym.
The Generalized Axiom may be stated in a slightly different fashion which is more appro-

priate for our needs. If the inequalities

qj · yj+1 ≤ qj · yj hold for all j ≤ m − 1, and if

qm · y1 ≤ qm · ym as well,

then we must have qm · y1 = qm · ym. But in this form there is no distinction between the last
observation and any of the other observations, so that

qj · yj+1 = qj · yj

holds for all j. This is the variation of the Strong Axiom which we shall adopt, not only for
the full set of n observations but for any ordered subset as well.

Definition 1 We say that the observations satisfy the Generalized Axiom of Revealed Prefer-
ence (GARP) if for every ordered subset {i, j, k, . . . , r} ⊂ N with

pi · xj ≤ pi · xi,
pj · xk ≤ pj · xj,

...
pr · xi ≤ pr · xr,

it must be true that each inequality is, in fact, an equality.

1There is a great variety of terminology associated with the concept of revealed preference. The original
definition offered by Samuelson [4], now known as the Weak Axiom of Revealed Preference (WARP), was
thought by the author to be sufficient to recover a utility function generating the data. Houthakker’s definition
of the Strong Axiom (SARP) [3] provided the additional conditions necessary for recovery. But Houthakker’s
statement of the Strong Axiom is motivated by a single valued demand function rather than a finite list of
observations and is, as a consequence, somewhat awkward. Afriat [1] used the terminology Cyclical Consistency
(CC) for the simpler concept of the current paper. Cyclical Consistency is identical with the Generalized
Axiom of Revealed Preference (GARP) introduced by Varian [5]. This does not exhaust the list of variations
in terminology.

We have chosen to use the term GARP rather than Cyclical Consistency. Our purpose is to use a definition
in which the phrase “Revealed Preference” actually appears rather than the earlier, equivalent terminology used
by Afriat.
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From the data set we can compute the square matrix A = A(D) of order n defined by

aij := pi · (xj − xi) for all i, j ∈ N.

Hence, aij negative means that xi is revealed preferred to xi. In this more condensed notation,
the observations satisfy the Generalized Axiom if for every chain {i, j, k, . . . , r} ⊂ N , aij ≤
0, ajk ≤ 0, . . . , ari ≤ 0 implies that all the terms are zero. It is clear that this condition is
necessary for observations arising from utility maximization. What is less clear, and indeed
surprising, is that it is also sufficient.

We state the result as the equivalence between several conditions on the data. We say that a
utility function u rationalizes the data set D if, for each i ∈ N , xi maximizes u over B(pi, pi ·xi).

Theorem 1 (Afriat) The following are equivalent:
(a) The data set D can be rationalized by a locally non-satiated utility function u.
(b) The matrix A := A(D) has zero diagonal entries and satisfies the Generalized Axiom

above.
(c) The matrix A := A(D) has zero diagonal entries and there are φi’s and positive λi’s for

i ∈ N such that the Afriat inequalities hold:

(AI) φj ≤ φi + λiaij, for all i, j ∈ N.

(d) The data set D can be rationalized by a continuous, concave, piecewise-linear, strictly
monotonic utility function u.

This is a remarkable result because it gives succinct, testable conditions that a finite data
set must satisfy in order to be consistent with utility maximization. Moreover, from the result,
it follows that the assumptions of continuity, monotonicity and concavity are not refutable by
a finite data set.

We have argued above that (a) implies (b). Clearly, (d) implies (a). Afriat gives a short
simple argument that (c) implies (d), by explicitly constructing the desired utility function —
we will provide the reasoning momentarily. The crux of the theorem is thus the implication
from (b) to (c): for this, we establish a simple case in Section 2 and give two new proofs in
Sections 3 and 4, based on induction and linear programming respectively. Section 5 contains
some concluding remarks on a graph-theoretic interpretation of the hard implication and on
the complexity of finding the φi’s and positive λi’s (and hence a suitable utility function) given
the data D.

Suppose the Afriat Inequalities (AI) hold. Then consider the utility function

u(x) = min{φ1 + λ1p1 · (x − x1), . . . , φn + λnpn · (x − xn)}.

We notice that each term in this expression is linear (and hence continuous and concave) and
strictly monotone. Therefore, u, as their pointwise minimum, is continuous, concave, and
strictly monotone as well. Finally, as is shown in the next two steps, u indeed generates the
observations in the data set D.
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1. u(xj) = φj, for all j ∈ N.

By definition u(xj) = mini{φi + λipi · (xj − xi)} = φj + λjpj · (xj − xj) = φj, where
the minimum is taken by the index j from the Afriat inequalities.

2. pj · x ≤ pj · xj ⇒ u(x) ≤ u(xj).

u(x) ≤ φj + λjpj · (x − xj) ≤ φj = u(xj), where the first inequality follows from the
definition of u, the second from the fact that x is feasible at prices pj and the last equal-
ity from Step 1. �

The reader should be cautioned against imputing too much meaning to the utility function
u constructed as above. Indeed, as an example, if all aij’s, i different from j, are positive, then
for any permutation (i1, i2, ..., in) of (1, 2, ..., n), it is possible to choose φi’s and positive λi’s
satisfying the Afriat inequalities above and with φi1 > φi2 > . . . > φin, and hence, by Step 1
above, with a similar ordering of the utilities. We show this at the end of Section 2.

2 A Simple Case.

We have shown that the Afriat inequalities imply the existence of a nice utility function that
generates the data. What is less straightforward is to show that if the observations satisfy
the Generalized Axiom then the Afriat inequalities have a solution, i.e., that (b) implies (c) in
Theorem 1. Afriat’s original proof is an inductive one, which is correct in the case in which
aij 6= 0, i 6= j. Indeed in this case the proof is quite simple.2

Claim 1. There is an index i ∈ N with aij ≥ 0 for all j ∈ N .

Proof of Claim 1: If this were not so, then every row would have a strictly negative
entry. Start with row i, say, and suppose that aij < 0. Now consider row j, and identify a
negative entry, say ajk < 0. Continue to generate the sequence i, j, k, ..., until an index is
repeated. Then a subsequence of this sequence yields a contradiction to the Generalized
Axiom. �

The existence of λj and φj is trivially true for n = 1; we can choose λ1 = 1 and φ1 arbitrarily.
For the induction let us begin by renumbering the observations (and hence the rows and columns
of A) so that anj > 0 for j = 1, ...n− 1 (using Claim 1). Now suppose, by induction, that there
exist φ1, ..., φn−1; λ1, ..., λn−1 > 0 such that

φj ≤ φi + λiaij, i 6= j, i, j = 1, ..., n − 1.

2A similar version was presented in an informal communication by M. Weitzman.
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Let us select φn such that
φn ≤ min

i=1,...,n−1
{φi + λiain},

and then choose λn > 0 so that

φj ≤ φn + λnanj, for j = 1, ..., n − 1.

Since all the off-diagonal elements of the nth row are strictly positive, λn can be chosen large
enough so that these n − 1 inequalities hold. Note the difficulty that arises if any anj is zero:
increasing λn will not help to fix the inequality for this n and j. This completes the proof that
the Afriat inequalities have a solution in this simple case.

Note that we can choose φn smaller than all the other φi’s. But if also an−1,j > 0 for
j = 1, 2, . . . , n − 2, then we could choose φn−1 smaller than all previous φi’s. Indeed, if all
aij’s for i different from j are positive, then we can choose by induction the φi’s in strictly
decreasing order. But since any permutation of the indices maintains the positivity of the
off-diagonal aij’s, it follows that with a suitable choice of the order of indices, we can obtain
φi’s and positive λi’s satisfying the Afriat inequalities and with any prescribed ordering of the
φi’s, as claimed at the end of the previous section.

The general case, in which off-diagonal elements are allowed to be zero, is related to the issue
of indifference classes in the revealed preference ordering. Two authors, Varian [5] and Diewert
[2], have given correct proofs in this general case. They prove the result using an inductive
argument which manages to handle the subtle issue of indifference classes. Unfortunately, the
induction in each of these presentations is complex and may involve the introduction of more
than one price-quantity observation at each step.

3 A General Inductive Proof.

We now provide a straightforward proof for the statement that (b) implies (c) in Afriat’s
theorem in the general case where anj ≥ 0 for j = 1, ...n − 1, but with some of these entries
possibly zero. The argument is inductive, but as in the simple case the inductive step introduces
a single observation at a time.

The key is to apply the inductive hypothesis to a different (n − 1) × (n − 1) matrix A′.
Specifically, for j = 1, ...n − 1, we define

a′

ij :=

{

aij if anj > 0,
min{aij, ain} if anj = 0.

(1)

Claim 2. A′ satisfies the Generalized Axiom.

Proof of Claim 2: First note that, if anj = 0, then ajn ≥ 0 by the Generalized Axiom,
so that a′

jj = ajj = 0 for j = 1, . . . , n−1. Now suppose that A′ has a cycle (i, j, k, . . . , r, i)
with

a′

ij ≤ 0,
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a′

jk ≤ 0,

...

a′

ri ≤ 0,

and at least one term strictly negative. Since A does satisfy the Generalized Axiom by
hypothesis, there must be a term, say that corresponding to the pair (p, q), with

a′

pq 6= apq.

But if a′

pq = apn and anq = 0, then we can replace the cycle (. . . , p, q, . . .) by (. . . , p, n, q, . . .)
with two new terms

apn ≤ 0,

anq = 0,

and, as before, at least one of the terms in the new sequence is strictly negative. Con-
tinuing in this way we can construct a cycle in A that violates the Generalized Axiom,
contrary to our assumption. Hence A′ must satisfy the Generalized Axiom. �

We can therefore apply our inductive assumption to A′ to guarantee the existence of φi and
positive λi for i ∈ N− := {1, 2, ..., n − 1} so that

φj ≤ φi + λia
′

ij (2)

for i, j ∈ N−. Since a′

ij ≤ aij from (1), this ensures that the Afriat inequalities hold also for A
for i, j ∈ N−. Next, set

φn = min
i∈N

−

{φi + λiain}

(note that we choose equality, not less than or equal to), to achieve the inequalities for i < n,
j = n. Finally, set

λn := max{1, max
j∈N

−
,anj>0

[(φj − φn)/anj]}.

As in the simple case, this choice makes sure that the inequalities hold for i = n and j < n in
the case that anj > 0. To complete the proof, suppose that anj = 0. Then we have

φj ≤ mini∈N
−

{φi + λia
′

ij} (by (2))
≤ mini∈N

−

{φi + λiain} (by (1))
= φn by definition of φn

= φn + λnanj since anj = 0.

Clearly the inequality holds for i = j = n, and so the inductive step is complete. This finishes
the proof. �
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4 A Proof using Linear Programming.

Diewert’s proof [2] relates the Afriat inequalities to a particular linear programming problem.
However the programming problem is not directly used in his proof. The argument presented
here makes use of a linear program which is essentially identical with Diewert’s, but uses the
Duality Theorem of Linear Programming to show that the Generalized Axiom implies that the
Afriat inequalities have a solution.3

Consider the following linear programming problem:

minλ,φ 0 · λ + 0 · φ
λi ≥ 1, for all i ∈ N,

aijλi + φi − φj ≥ 0, for all i, j ∈ N with i 6= j

in which the objective function is zero and the constraints are the Afriat inequalities. We shall
show that the dual linear program is feasible and has a maximum of zero. The Duality Theorem
then implies that the original problem is also feasible, and therefore the Afriat inequalities have
a solution. Although the argument may seem a bit eccentric, the procedure is a standard trick
to verify that a system of linear inequalities is consistent.

The matrix associated with the linear program is

objective

...

...

...

...

variables



















































0 0 · · · 0 0 0 · · · 0 0 RHS
1 0 · · · 0 0 0 · · · 0 0 1
0 1 · · · 0 0 0 · · · 0 0 1
...

...
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0 1

a12 0 · · · 0 1 −1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
a1n 0 · · · 0 1 0 · · · 0 −1 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · an1 −1 0 · · · 0 1 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · an,n−1 0 0 · · · −1 1 0
λ1 λ2 · · · λn φ1 φ2 · · · φn−1 φn



















































y1

y2
...

yn

x12
...

x1n

...
xn1

...
xn,n−1

In this matrix the top row describes the coefficients of the objective function, the bottom
row the variables associated with the columns and the last column the right hand side of the
inequalities. The slack variables have been omitted.

If the dual variable associated with the inequality λi ≥ 1 is yi(≥ 0) and the dual variable
associated with the inequality aijλi + φi − φj ≥ 0, for i 6= j, is xij(≥ 0), the dual problem can

3Our colleague, John Geanakoplos, has shown us an elegant proof that the Afriat inequalities have a solution
using the Min-Max theorem for two-person zero-sum games.
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be stated as

maxy,x

∑

i∈N yi
∑

h∈N xhi −
∑

j∈N xij = 0, for all i ∈ N,

yi +
∑

j∈N aijxij = 0, for all i ∈ N,

with yi, xij ≥ 0 for all i, j.

The dual variables xij can be viewed as the entries in an n × n matrix X, whose diagonal
entries are zero and whose off-diagonal elements are nonnegative. The first set of constraints
in the dual problem state that for each i the sum of the entries in row i of X equals the sum
of the entries in column i.

In order to use the Duality Theorem to prove that the Afriat inequalities have a solution,
we need to show that x = 0, y = 0 is the optimal solution to the dual problem. Clearly
x = 0, y = 0 is feasible for the dual and 0 is an lower bound for the optimal value of the dual
objective function.

Claim 3. Let (x, y) be a feasible solution to the dual linear program. Then there is a
feasible solution, possibly different, with the same objective function value and with no cycle
(i, j), (j, k) . . . , (r, i) on which all xpq’s are positive and all apq’s zero.

Proof of Claim 3: If there is such a cycle in a feasible solution, we can decrease each xpq

on the cycle by the minimum value of these xpq’s, so that at least one such value becomes
zero. In this procedure, the perturbed matrix X will still satisfy the constraints of the
dual problem, and the variables yp and hence the objective function value are unchanged
since we are only modifying those xpq’s whose corresponding apq coefficient is zero. �

Now let us show that an optimal solution to the dual problem is x = 0, y = 0. Suppose, to
the contrary, that yi > 0 in some feasible solution (x, y), which without loss of generality we
can assume satisfies the property of Claim 3. Then the sum

∑

q∈N

aiqxiq < 0

and at least one term is negative, say aijxij. Therefore aij is negative and xij positive. By the
first set of constraints,

∑

q∈N

xjq > 0,

while
∑

q∈N :xjq>0

ajqxjq ≤ 0

by the second set of constraints. We can therefore choose k 6= j with xjk positive and ajk

nonpositive. Continuing in this way, we must eventually repeat an index, and therefore we
construct a cycle (l, m, . . . , r, l) on which all xpq’s are positive and all apq’s nonpositive.
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If the index we repeat is the first one with which we started, we immediately get a contra-
diction since the Generalized Axiom implies that all the terms apq in the cycle must be zero,
but the first one is strictly negative by construction.

In the case that the cycle we construct does not include the first term, again, the Generalized
Axiom implies that all terms must be zero, but this was already ruled out by our assumption
that (x, y) satisfies the property of Claim 3.

We have demonstrated that the dual linear program is feasible and its maximum value is 0.
By the Duality Theorem of Linear Programming the original problem is feasible, which means
that the Afriat inequalities have a solution.

5 Graph-Theoretic Interpretation and Complexity

Here we describe the conclusion of Afriat’s theorem in graph-theoretic terms and discuss the
complexity of determining whether the data D is consistent with utility maximization and, if so,
computing a possible utility function u. From a mathematical viewpoint, the hard part of the
theorem claims that if a matrix A with zero diagonal entries satisfies the GARP condition, then
there are φ’s and positive λ’s so that the Afriat inequalities hold. It is hard to comprehend these
conditions intuitively: the graph-theoretic interpretation may make them more understandable.

Let us consider a graph with nodes N , with a directed edge from each i ∈ N to each j ∈ N
with cost cij. We call a sequence of nodes (i, j, k, . . . , r, i) (with possible repeats) a circuit;
if all nodes (except the first and last) are distinct, we call it a cycle. The circuit or cycle is
negative if cij + cjk + · · · + cri is negative, and obviously negative if all these summands are
nonpositive, with at least one negative. Thus the Generalized Axiom asserts that, with costs
given by cij = aij for all i, j ∈ N , there is no obviously negative cycle; it is not hard to see
that this is equivalent to there being no obviously negative circuit. However, the Generalized
Axiom does not preclude the existence of a negative cycle in A.

The Afriat inequalities also have a graph-theoretic interpretation. It is not hard to see that,
for given positive λ’s, these inequalities hold for some φ’s if and only if there is no negative
circuit when the costs are given by cij = λiaij. Indeed, adding the inequalities φj − φi ≤ λiaij

around any circuit shows that there are no negative circuits with these costs. On the other
hand, the φ’s correspond in some sense to distances: if we maximize φj−φi over all φ’s satisfying
the inequalities, we get the least cost of a path from i to j using these edge costs, which exists
if there is no negative circuit. We can obtain a solution to the inequalities by setting φj, for
each j, to be the least cost of a path from some fixed node to j.

Thus Afriat’s theorem states that, if the original costs {aij} yield no obviously negative
circuit, then the costs can be scaled using a positive weight for each tail node to give costs
{λiaij} for which there is no negative circuit at all. The converse is easy to see: if there is no
negative circuit when the costs are {λiaij}, then there are no obviously negative circuits with
these costs; but then there are no obviously negative circuits with the costs {aij}, since the
sign of aij is the same as that of λiaij.

Finally, we can give a graph-theoretical interpretation to the other “cost” matrices that
arise, such as A′ defined in (1). After k steps of the procedure we obtain an (n − k) × (n − k)

9



matrix A(k) (A(0) = A and A(1) = A′). It is easy to see, by induction on k, that a
(k)
ij is the least

cost of a path (i, p, q, . . . , s, j) from i to j where p, . . . , s lie in {n − k + 1, . . . , n} and all costs
apq, . . . , asj are zero.

We remarked in the introduction that the Generalized Axiom gives testable conditions for
the data D to be consistent with utility maximization. But how hard is it to check whether the
axiom holds, and if so, to find a possible utility function? At first sight, we need to check every
possible cycle, and while this is a finite procedure, there are exponentially many possible cycles
(but see the discussion of Varian’s approach below). If we knew the 2n numbers φ1, . . . , φn and
λ1, . . . , λn > 0, potentially satisfying the Afriat inequalities, then we would merely have to check
these n2 relations, and from these a suitable utility function is at hand. Diewert [2] proposed
to find these numbers by solving a linear programming problem, but this is computationally
burdensome. Varian’s proof [5] gives an O(n3) algorithm to find the φ’s and λ’s. Indeed, Varian
first defines xi to be directly revealed preferred to xj if pi · xj ≤ pi · xi. He then computes the
transitive closure R of this relation by a graph-theoretic algorithm in O(n3) time. Then the
Generalized Axiom can be checked simply: for each i and j, see if xiRxj and pj · xi < pj · xj; if
so the Generalized Axiom is violated. If this does not occur for any such pair, the Generalized
Axiom is satisfied. Armed with the transitive closure, Varian finds the φ’s and λ’s by an
algorithm that must consider together every subset of observations with each pair related by R.
Our inductive proof in Section 3 provides a simple alternative O(n3) method that determines
these parameters one by one. (Of course, we also need O(n2l) work to compute the entries of
A from D.)

At each step of the inductive process, we search the current matrix A to find a nonnegative
row, say the ith, which takes O(n2) time. (If there is no such row, then we can find an
obviously negative cycle by the argument in the proof of Claim 1, also in O(n2) time.) We then
interchange the ith and nth rows and columns of A, in O(n) time, and calculate the reduced
matrix A′, in O(n2) time. When we receive information back from the smaller problem, we can
find φn and λn each in O(n) time. (If the smaller problem returns an obviously negative cycle
in A′, we can expand this to an obviously negative cycle in A using the argument in the proof
of Claim 2, also in O(n) time.) This gives a total amount of work at each stage of O(n2), for a
total complexity of O(n3).

However, if at each stage we can find a positive row (except for its diagonal entry), then
we can avoid the per stage O(n2) work and complete all the computation in a total of O(n2)
time. Clearly we do not require the O(n2) work to calculate A′ so we only need to show how
the search for a positive row can be performed in only O(n) time at each stage. Initially, let
us compute the number of negative and zero entries in each row, at a one-time cost of O(n2).
Then at each stage we can scan these counts to find a positive row, and then after permuting
that row and the associated column to the end, we can update the counts for the submatrix
containing all but the last row and column in just O(n) work. Hence there is only O(n) work
per stage for a total of O(n2). (This complexity also holds if there are only a fixed number of
times that a positive row cannot be found.)

When can we use this simplified algorithm? Clearly, if A contains no zero elements outside
its diagonal, then the Generalized Axiom implies the existence of a positive row. More generally,
note that, if the Generalized Axiom holds vacuously, i.e., there are no obviously negative nor
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all-zero-cost cycles, then the argument of the proof of Claim 1 shows that a positive row exists.
This condition (assuming that all demand vectors xi are distinct) is usually called the Strong
Axiom of Revealed Preference (see, e.g., Varian [5]). Thus either the simple case considered in
Section 3 or the Strong Axiom leads to the reduced complexity of O(n2) time to compute the
φ’s and λ’s satisfying the Afriat inequalities and hence a possible utility function.

References

[1] Afriat, S. N.,“The Construction of a Utility Function from Expenditure Data,” International
Economic Review 8, (1967), 67− 77.

[2] Diewert, E.,“Afriat and Revealed Preference Theory,” Review of Economic Studies
40, (1973), 419− 426.

[3] Houthakker, H., “Revealed Preference and the Utility Function,” Economica
17, (1950), 159− 174.

[4] Samuelson, P. A., “Consumption Theory in Terms of Revealed Preference,” Economica
15, (1948), 243− 253.

[5] Varian, H. R., “The Non-Parametric Approach to Demand Analysis,” Econometrica,
50, (1982), 945− 974.

11


