
Efficient and Accurate Ethernet Simulation

Jia Wang∗and Srinivasan Keshav

Cornell Network Research Group (C/NRG)

Department of Computer Science, Cornell University

Ithaca, NY 14853-7501

jiawang@cs.cornell.edu, skeshav@cs.cornell.edu

Abstract

The Internet is increasingly being called upon to provide different levels of service to different applications

and users. A practical problem in doing so is that although Ethernet is one of the hops for nearly all

communication in the Internet, it does not provide any QoS guarantees. A natural question, therefore, is

the effect of offered load on Ethernet throughput and delay. In this paper, we present several techniques

for accurately and efficiently modeling the behavior of a heavily loaded Ethernet link. We first present a

distributed approach to exact simulation of Ethernet. Then, we describe an efficient distributed simulation

model, called Fast Ethernet Simulation, that empirically models an Ethernet link to quickly and accurately

simulate it. By eliminating the implementation of CSMA/CD protocol, our approach reduces computational

complexity drastically while still maintaining desirable accuracy. Performance results show that our techniques

not only add very little overhead (less than 5% in our tests) to the basic cost of simulating an Ethernet link, but

also closely match real-world measurements. We also present efficient techniques for compressing cumulative

distributions using hyperbolic curves and for monitoring the load on a heavily loaded link. Finally, we show

applications to illustrate the potential usage of the Fast Ethernet Simulation.

Keyword Ethernet simulation, CSMA/CD, modeling, traffic monitoring, performance prediction.

1 Introduction

The Internet is increasingly being called upon to provide different levels of service to different applications and

users. A practical problem in doing so is that although Ethernet is one of the hops for nearly all communication

in the Internet, it does not provide any QoS guarantees. (New versions of Ethernet do provide guarantees, but

there is a huge embedded base of ‘legacy’ installations that do not.) One might argue that these Ethernet hops

are rarely the bottleneck, and thus their effect on communication is negligible. However, it is equally true that

the Level-2 infrastructure in a typical site is rarely managed for performance. Thus, it is possible, and even likely,

that a large fraction of Ethernet installations are overloaded from time to time. Our interest, therefore, is in

∗This material is based upon work supported under a National Science Foundation Graduate Fellowship.

1

determining the effect of this overload, and concommitent performance degradation, on application performance.

In this paper, we primarily present techniques for accurately and efficiently modeling the performance of a heavily

loaded Ethernet link. While we briefly mention the use of this technique to study the effect of Ethernet load on

application performance, we defer details to a forthcoming paper.

Despite its widespread use, there is little knowledge about the behavior of Ethernet-like CSMA/CD LANs

under heavy load. Analytical models tend to study performance based on over-simplified assumptions such as

Poisson-distributed traffic. However, this usually leads their results to be biased towards network performance

under ideal conditions. Once the complexities of CSMA/CD, as described in the IEEE 802.3 standards [14], are

introduced, such models become intractable [17] [20] [31] [33]. The inaccuracy and incompleteness of analytical

work has led researchers in the past to resort to measurement and simulation to obtain meaningful results. Even

these approaches are not without problems.

Actual measurements on a physical LAN require manual configuration of the network (e.g. cut and rewire

cables to get certain propagation delays), which is expensive and cumbersome. Simulation is a better tool to obtain

adequate information on functionality and performance of communication networks and protocols. However, to

simulate the behavior of CSMA/CD, precise collision detection, packet loss (due to collision and buffer overflow),

and packet transmission/retransmission need to be implemented in order to get accurate and valuable results.

Sophisticated computation and complicated data structure manipulation make the traditional detailed simulation

of CSMA/CD slow and complex, especially for crowded networks and/or heavy loaded link.

Fortunately, the above two approaches are not the only choices we have available to get accurate Ethernet

performance results. In this paper, we first present a distributed approach to exact simulation of Ethernet. Then,

we propose an efficient distributed simulation model, called Fast Ethernet Simulation, which models an Ethernet

link empirically to quickly and accurately simulate it. By eliminating the implementation of CSMA/CD protocol,

our approach reduces the complexity drastically while still maintaining desirable accuracy. Finally, we show

applications to illustrate the potential usage of the Fast Ethernet Simulation.

The remainder of this paper is organized as follows. Section 2 gives a brief summary of some related work

on Ethernet link performance. An overview of our approach is stated in Section 3. We describe our simulation

model of CSMA/CD in Section 4. Then, we discuss how the performance parameters are modeled based on

the CSMA/CD simulation results and propose the Fast Ethernet Simulation model in Section 5 and Section 6,

respectively. Some performance results are shown in Section 7 to demonstrate that the Fast Ethernet Simulation

achieves the efficiency as well as the accuracy. Example applications of the Fast Ethernet Simulation are given

in Section 8 to illustrate its potential usage. Finally, we summarize our work in Section 9.

2 Related Work

Ethernet refers to a family of LAN multiple access protocols that vary in details such as bandwidth, collision

detection mechanism etc. In this paper, we use Ethernet to mean an unslotted, 1-persistent, carrier-sense mul-

tiple access method with collision detection and binary exponential backoff. In the past two decades, Ethernet

performance has been carefully studied ([1] [2] [3] [5] [6] [7] [8] [9] [10] [12] [16] [17] [20] [21] [22] [25] [26] [28] [29]

[30] [31] [32] [33] [34]). Many analytical models have been formulated ([2] [3] [6] [7] [10] [16] [17] [20] [30] [31] [32]

2

[33]). Due to the complexity of the CSMA/CD retransmission algorithm and variety of LAN topologies, these

analytical approaches employ a number of simplifying assumptions, such as balanced-star configuration, finite

populations, unimodal or constant packet lengths, small packet size, and no buffering to obtain tractable results

of Ethernet performance. However, it is not clear how relevant these are to the actual performance of Ethernet.

For instance, analytical results show that the maximum achievable throughput with CSMA/CD is 60% [33]. In

fact, the CSMA/CD protocol, as implemented in practice, can achieve throughput of 90% typically for small

number of hosts (i.e. less than 5 hosts) and large packet size [5]. Smith and Hain [29] also presented results of

experiment measuring Ethernet performance using station monitoring, which show that measured performance

differs significantly from predictions made by typical analytical models. Since none of existing analytical models is

applicable and sufficient to estimate the real Ethernet performance, it is difficult to conduct accurate performance

evaluation by strictly analytical means. Simulation and/or measurement are necessary to obtain accurate and

adequate information on the Ethernet performance.

In past decades, several Ethernet performance studies have been based on detailed simulation and/or mea-

surement to avoid some of the simplifying assumptions mentioned above. Gonsalves [8] presented performance

measurements on operational 10 Mbit/s Ethernet to explore how packet size and offered load affect the link

throughput and packet delay. Boggs, Mogul and Kent [5] also presented measurement of behavior of an Ethernet

under varying combinations of packet lengths, network lengths, and number hosts to show that Ethernet is capable

of good performance for high-bandwidth applications, especially when response time is not closely constrained.

However, due to the inflexibility of measurement on physical networks, only limited performance measurements

under typical network configuration are reported in literature. Other measurement work can be found in [9] [28]

[29].

By using simulation, performance can be easily measured for various Ethernet topologies and system con-

figurations. Some detailed simulation models are presented in [12] [21] [22] [25] [26] [34], which can be used to

model Ethernet with different size, transmission rate, Ethernet length and station distribution, etc. An event

driven simulation model is the standard approach. In such a model, the movement of packets in the model is

expressed in terms of events. A global table is maintained to record each event that takes place at a specified

time. We distinguish between two types of event-driven simulation models. In a centralized approach, the medium

is simulated by an active entity that keeps track of packets sent by each station, and informs each station about

the current state of the medium. The centralized medium also detects and computes the exact time a collision

occurs and sends out jam signals. Each station need only model packet transmission and/or retransmission due to

collision and packet drop due to buffer overflow. Although these detailed simulation models may achieve accurate

performance results, they are too complex. In this paper, we present an efficient alternative approach, that we

call distributed simulation. We present this model in more detail in Section 4.

To sum up, existing analytical models tend to be over-simplified, existing measurement work is too cumbersome

to replicate, and existing simulation techniques are computationally inefficient. In this paper, we present an

efficient approach to exact Ethernet simulation, and a new technique for even faster simulation, which we call Fast

Ethernet Simulation. We validate our work by comparing our performance prediction to real-world measurements.

We also show that our techniques are computationally much more efficient than those proposed in the past.

3

3 Our Approach

Figure 1 summarizes our approach, which consists of the following steps.

1. designing and validating a detailed CSMA/CD simulator;

2. collecting and modeling performance measurements using this simulator;

3. creating a fast simulator;

4. validating the fast simulator.

Measurement
results

CSMA/CD
simulation model

Fast Ethernet
simulation

Modeling

(1)

(2)

(3)

(4)

Figure 1: Overview of our approach.

Our first step was to build a detailed simulation of CSMA/CD using the REAL network simulator [27].

This allowed us to reproduce a variety of workloads, workstation configurations, and card buffer sizes without the

practical difficulties of dealing with a real testbed. Additionally, by comparing simulator results with experimental

measurements, we made sure that the output of the simulations was valid. This first step, therefore, bought us

flexibility, even though it was computationally expensive. A detailed description of our approach is in Section 4.

With this simulator in hand, we were able to generate a large number of empirical performance measurements

corresponding to a variety of configurations. The second step was to reduced this information into a compact

model. The model, described in Section 5, reflects the dependencies of link throughput and packet delay on

offered load, packet size and buffer size of host adapter cards.

The third step was to exploit the compact performance model to develop Fast Ethernet Simulation. The

key idea here was to predict performance using a simple computation on the compact model of past empirical

measurements. We came up with two new techniques in traffic monitoring and performance prediction in the

course of this work. First, we developed an efficient technique for statistical estimation of the load on a link over

a specific time interval. Second, we used a family of hyperbolic curves to represent the cumulative distributions

of delay. Details of these techniques are presented in Section 7.

Finally, in the fourth and the last step, we validated the results obtained from Fast Ethernet Simulation with

that obtained using the detailed simulation. The results presented in Section 7 show that, by eliminating the

implementation of CSMA/CD protocol, our fast simulation model reduces the complexity drastically while the

simulation results still achieving desirable accuracy.

4

4 Distributed CSMA/CD Simulation

Our first step is to create an accurate simulation of CSMA/CD. This allows us to generate performance data for

network configurations and workloads that are hard to create in an actual testbed. We validated the accuracy

of the simulator by comparing the performance metrics obtained from our simulator with those reported in the

literature.

Before describing our simulation, we first give a brief review of the 1-persistent Carrier Sense Multiple Access

with Collision Detection (CSMA/CD) protocol. Assume that n stations attach to the Ethernet link (Figure 2). A

station senses the medium before sending a packet and sends the packet immediately after the medium is idle. If

a collision is detected while sending a packet, the station sends out a jam signal and exponential backoff scheme is

employed. Upon a collision, the station waits for a random time chosen from the interval [0, 2 × max propagation

delay] before retransmitting the collided packet. If retransmission fails, the station backs off again for a random

time chosen from the interval with double length of the previous one. Each subsequent collision doubles the

backoff interval length until the retransmission succeeds (the backoff interval is reset to its initial value upon a

successful retransmission of packet). If the backoff interval becomes too large (e.g. after 16 retransmission), the

packet is dropped and the backoff interval is reset.

Traffic
generator

1

λ1
Traffic

generator

2

λ2
Traffic

generator

n

λn

Bus

Figure 2: Model configuration for the distributed simulation

Most existing simulations of CSMA/CD model the transmission medium as a centralized active entity. This

entity determines the exact time at which each station knows that a packet has been placed on the medium, or

that a collision has occurred. Determining these times is non-trivial because multiple packets can be placed on

different parts of an Ethernet nearly simultaneously. Multiple collisions may happen at different places on the

Ethernet link simultaneously, from which multiple jam signals are sent out. Indeed, it turns out that to accurately

determine these times, the simulation has to correctly model the electromagnetic propagation of data signals on

the medium. This makes it algorithmically complex and hard to correctly implement. After several attempts at

creating an accurate CSMA/CD simulation model using this approach, we realized that an alternative approach

elegantly solves the modeling problem. In this approach, the medium is passive, not active. Instead, each station

on the Ethernet acts as a router, forwarding packets from an incoming link to an outgoing link. An idle station

that receives a packet changes its state to busy. If a packet arrives at a busy station, a collision is detected and the

station broadcasts a jam indication to the other stations. The technique used for collision detection is similar to

5

what is used in VINT ns-2 simulator for simulating wireless networks [4]. In our approach, therefore, the stations

cooperate to jointly simulate the medium. This makes the simulation both easy to program and easy to validate.

The next subsection describes this approach in greater detail.

4.1 State Diagram

We model CSMA/CD using the station state diagram shown in Figure 3. It can be seen that the medium is not

modeled as an active entity. Instead, stations exchange data, jam, and collision messages as would happen in an

actual Ethernet. Each simulated station is responsible for actions such as packet transmission/retransmission,

collision detection, signaling.

A simulated station can be in one of the seven states: idle, sending, receiving, wait-for-backoff-end-and-jam-

end, wait-for-jam-end, wait-for-backoff-end, and receiving-and-wait-for-backoff-end.

idle

sending

receiving

sen
d DATA

en
d of

 tr
an

s
DATA

wait for backoff
end and jam end

get DATA send JAM

backoff

get JAM

get DATA

IDLE

wait for
jam end

send JAM

get JAM
get DATA

end of JAMget JAM
end of

backoff

wait for
backoff end

receiving and wait
backoff end

end of JAM

get JAM

send JAM
get JAM get

DATA

get
DATA

IDLE

end of backoff

end of backoff

Figure 3: State diagram of distributed CSMA/CD simulation

Assume the simulated LAN has a topology as shown in Figure 2. Packet propagation on the Ethernet is

emulated as consecutive propagation by the intermediate stations towards the destination, i.e. when a node gets

a packet from one of its neighbors, it sends the packet to its other adjacent neighbor. Propagation delay on a link

is modeled by setting the transmission delay on the point to point link between adjacent stations to be the delay

on the medium between two adjacent stations. An IDLE signal is sent on the link to identify the end of a DATA

packet or JAM signal. Collisions can then be detected by a station if it receives a DATA packet or JAM signal

while sending or receiving DATA packets. On detecting a collision, a JAM signal is sent to all the other stations.

These stations automatically receive the JAM signal after the appropriate propagation delay. As should be clear,

with this approach, no computation is needed to determine the set of stations that involved in the collision and

the exact time they know of the collision.

6

4.2 Experimental results

We implement this simulation model on REAL Simulator [27]. The Ethernet link we simulated is 10BaseT. In

order to validate our CSMA/CD simulator, we use the same Ethernet configuration and system workload (Table

1) as that used in Gonsalves’s measurements [8]. The number of nodes in our simulation is 20.

Bus bandwidth 10 Mbit/s

Max propagation delay 30 µs

Jam time after collision 32 bits (= 3.2 µs)

Slot size 512 bits (= 51.2 µs)

Buffer size for each station 1 packet

Idle period is uniformly distributed

Packet size P is fixed for all stations

Table 1: Ethernet configuration and system workload in Gonsalves’s measurement.

Gonsalves used a closed-loop system in his performance measurement work, i.e. after completion of trans-

mission of a packet, a station waits for a random period, with mean θ, before the next packet is queued for

transmission in its buffer. He claims that the offered load of station i, Gi, is defined to be the throughput of

station i if the network had infinite capacity, i.e., Gi = Tp/θi, where Tp = P/C, P is packet length and C is

the capacity of the Ethernet link. The total offered load G of N stations is given by
∑

i=1
NGi. However, when

measuring the performance of Ethernet, we believe that the offered traffic load should be independent of the

packet transmission, i.e. the entire measurement system should be an open-loop system. In order to compare our

simulation results to the measurement results, we adopt Gonsalves’s closed-loop system model in the validation

of our simulator.

The performance results of measurement and simulation are shown in Figure 4, respectively. We consider two

performance parameters: packet delay and link throughput.

Delay: The packet delay is defined to be the time it takes to successfully send a packet, measured from the

time the host puts the packet into the sending queue. Figure 4(a) and (c) show the measurement and simulation

results of mean packet delay as a function of total cross traffic offered load, in 10Mbit/s, for various value of P .

Our simulation results match that presented in Gonsalves’s measurement reasonably well for heavy loads. For

example, when P = 1500 bytes and G = 300%, the mean packet delay reported by Gonsalves’s measurement is

19.6 ms, while our simulation results show that it would be 20.9 ms. Our simulations do not match Gonsalves’s

results for small packet sizes and light loads. However, in this range the absolute values of delays are small, and

though the relative error is significant, the absolute value is not. For example, when the offered load is 40%,

the relative error is nearly 50%, but the absolute error is less than one millisecond. Moreover, our simulations

consistently over-estimate the delay, so that our performance predictions are conservative. Thus, we claim that

for the region of interest in our study, i.e., heavy load, our simulation model is sufficiently close to measurements.

Throughput: We define the link throughput to be the link goodput, i.e. the number of bytes that are

successfully transferred during a time unit. Figure 4(b) and (d) show the variations of total throughput with

total offered load for P = 64, 512, 1500 bytes, which are obtained from measurement and simulation. Under

7

high offered load, the link throughputs are measured as 26%, 70%, 82% for P = 64, 512, 1500 bytes, respectively.

In our simulation, the corresponding throughputs are 36%, 71%, and 83%, which are close to the measurement

results of the actual system for the larger packet sizes.

Total cross traffic offered load / bandwidth

M
ea

n
de

la
y

pe
r

pa
ck

et
 (s

ec
on

d)

(a)

0

0.005

0.01

0.015

0.02

0.025

0 1 2 3 4 5

measurement 64
measurement 512
measurement 1500
simulation 64
simulation 512
simulation 1500

Total offered load / bandwidth

T
hr

ou
gh

pu
t /

 b
an

dw
id

th

(b)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

measurement: 64
measurement: 512
measurement: 1500

simulation: 64
simulation: 512
simulation: 1500

ideal

Measurement results of mean delay (second)
(c)

Si
m

ul
at

io
n

re
su

lts
 o

f m
ea

n
de

la
y

(s
ec

on
d)

0

0.005

0.01

0.015

0.02

0.025

0 0.005 0.01 0.015 0.02 0.025

64
512
1500
perfect
+10%
-10%

Measurement results of throughput/bandwidth
(d)

Si
m

ul
at

io
n

re
su

lts
 o

f
th

ro
ug

hp
ut

/b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

64
512
1500
perfect
+10%
-10%

Figure 4: 10 Mbps Ethernet measurement and simulation results (under the same choices of parameters in
Gonsalves’ work) on mean packet delay and link throughput. (a) delay versus total cross traffic offered load, (b)
throughput versus total offered load, (c) Q-Q plot of (a), (d) Q-Q plot of (b).

We believe that the differences between Gonsalves’s measurements and ours are due to both differences in the

node configurations and inaccuracies in our model. The measurement results were obtained for a single specific

configuration (i.e. spacing between stations) that is not described in the paper. Our results, instead, are the

average over an ensemble of configurations. The performance results generated by our simulator are closed to

his results in terms of both packet delay (for heavy loads) and link throughput (for heavy loads and large packet

size). Since this is the region of interest in our work, we claim that our simulator adequately models Ethernet.

After validation, we used our distributed CSMA/CD simulator to generate a large number of performance

measurements corresponding to a variety of configurations. Typical simulation parameters are set according to

the IEEE 802.3 specification [14]. However, the system configuration that we simulated is different from the one

we used in the simulator validation in three ways.

8

First, we used an open-loop system to model the Ethernet environment, i.e. the process of traffic generation

is independent of the process of packet transmission. Figure 5 compares the corresponding simulation results

obtained for the corrected configuration (i.e. open-loop system) and Gonsalves’s configuration. Although the

performance results do not differ significantly from the results of closed-loop system, we believe it better models

reality. Therefore, we adopt the open-loop system configuration in generating simulation results for the compact

model described in Section 5.

0.005

0.015

0.025

Total cross traffic offered load / bandwidth
(a)

M
ea

n
de

la
y

pe
r

pa
ck

et
 (s

ec
on

d)

0

0.01

0.02

0.03

0 1 2 3 4 5

closed-loop system: 64
closed-loop system: 512
closed-loop system: 1500
open-loop system: 64
open-loop system: 512
open-loop system: 1500

Total offered load / bandwidth
(b)

T
hr

ou
gh

pu
t /

 b
an

dw
id

th
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

closed-loop system: 64
closed-loopsystem: 512
closed-loop system: 1500

open-loop system: 64
open-loop system: 512
open-loop system: 1500

ideal

Closed-loop system results of mean delay (second)
(c)

O
pe

n-
lo

op
 sy

st
em

 o
f

m
ea

n
de

la
y

(s
ec

on
d)

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.005 0.01 0.015 0.02 0.025 0.03

64
512
1500
perfect
+10%
-10% 0.2

0.4

0.6

0.8

Closed-loop system results of throughput/bandwidth
(d)

O
pe

n-
lo

op
 sy

st
em

 r
es

ul
ts

 o
f

th
ro

ug
hp

ut
/b

an
dw

id
th

0

1

0 0.2 0.4 0.6 0.8 1

64
512
1500
perfect
+10%
-10%

Figure 5: 10 Mbps Ethernet simulation results under open-loop and closed-loop configurations. (a) delay versus
total cross traffic offered load, (b) throughput versus total offered load, (c) Q-Q plot of (a), (d) Q-Q plot of (b).

Second, Gonsalves’s measurements were done based on an assumption that the buffer size of each station is

one packet. This is not true in the real world. Each station may have a fixed number of buffers to hold packets

waiting for transmission. Packets that arrive for transmission when this buffer is full are discarded. Multiple

buffers have a non-negligible impact on the system performance. As the buffer size increases, fewer packets are

dropped due to congestion. The mean queueing delay of packets are also increased significantly. Figure 6 shows

variations of the mean packet delay and link throughput for buffer size = 1, 4, 8 packets.

The mean packet delay increases approximately proportional to the buffer size when the link offered load is

high. We can simply consider each station as a single-queue-single-server queueing system where the single queue

9

Total offered load / bandwidth
(a)

M
ea

n
de

la
y

pe
r

pa
ck

et
 (s

ec
on

d)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5

buffer size = 1 packet
buffer size = 4 packets
buffer size = 8 packets

Total offered load / bandwidth
(b)

T
hr

ou
gh

pu
t /

 b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

buffer size = 1 packet
buffer size = 4 packets
buffer size = 8 packets
ideal

Figure 6: 10 Mbps Ethernet simulation results with buffer size of 1, 4, 8 packets (packet size = 512 bytes): (a)
mean delay versus total offered load, (b) throughput versus total offered load.

is the buffer and the single server is the Ethernet. Let the average system service time s be the average time

to successfully transfer one packet, measured from the time the host first acquires the channel. Then s can be

approximated as the average packet delay when buffer size = 1 packet. Therefore, the average number of packet

in the queue is N = λ · s, where λ is the arrival rate of each station. Thus,

packet delay =







N · s if N < buffer size

buffer size · s if N ≥ buffer size

If N is greater than the buffer size, then the mean packet delay increases approximately proportional to the

increment of buffer size. However, the simulation results show that the total throughput is not affected much by

the buffer size even when the offered load is high.

Third, Gonsalves chose packet interarrival times at each station from a uniform distribution. It is not clear that

the uniform distribution correctly models Ethernet workload. Indeed, Willinger et al. [35] have shown that the

heavy-tailed Pareto distribution is probably a better model of reality. Before choosing any particular distribution,

it is necessary to determine the degree to which the packet interarrival time distribution determines Ethernet

performance in the first place. To do so, we studied Ethernet performance while choosing packet interarrivals to

be of uniform, exponential, normal distributions, and compared with that of self-similar traffic workload. Let X

be packet interarrival time and m be the mean value of X. The parameters of the above distribution models, of

which X is generated, are listed in Table 2. For self-similar traffic, the lengths of ON/OFF periods are generated

as Pareto distribution described in [35] with α = 1.7 and 1.2, respectively.

Uniform 0 ≤ X ≤ 2m

Exponential λ = 1/m

Normal (m, m/3) with 0 ≤ X ≤ 2m

Table 2: The parameters of traffic distribution models.

We also looked at two types of synchronized workloads. In the synchronized in-phase workload, packets are

generated at each station at the exactly same time. This leads to the worst case for the Ethernet performance.

10

Correspondingly, in the synchronized out-of-phase model, packets are generated at each station with the maximum

possible spacing given a particular offered load. This is the best case for Ethernet. These two cases represent

the upper and lower bounds of the performance that Ethernet can achieve under different workloads for the same

value of the offered load. Finally, we introduce the notion of a skewed synchronized workload. With a skew

factor k (0 < k < 1), packets are randomly generated at each station within the first k fraction of each randomly

selected time period. The smaller the skew factor k, the more contention the stations incur on the Ethernet link,

and the closer the workload is to the worst case.

Figure 7 shows the mean packet delay and link throughput as the function of link offered load for different

workloads. First, notice that, except for the synchronized workloads, there are only slight differences in per-

formance with different workloads. This means that one might as well choose a uniform or exponential packet

interarrival model, because the performance with either workload is more or less the same. The reason for this is

that under light load, all the workloads see few collisions and small absolute delays. So, the packet interarrival

time distribution does not change the delay distribution very much. Under heavy load, each station almost always

has a packet to send in its sending buffer. This decouples performance from the details of the packet interarrival

process. Second, although with synchronized in-phase traffic the performance is poor and significantly different

from that achieved by Poisson traffic, this workload is rare in reality. Moreover, for heavy loaded Ethernet link,

performance with this workload becomes similar to that achieved with Poisson traffic even with a small skew

factor of k = 0.1. This means that unless the workload exhibits perfect in-phase synchrony, an event with very

small likelihood, the achieved performance is close to that with Poisson traffic. Our experimental results there-

fore indicate that Poisson packet interarrivals adequately model the workload for Ethernet traffic. Given this

result and the fact that generating a specific offered load with Poisson arrivals is much easier than to do so with

heavy-tailed Pareto traffic. From now on, we will assume that the packet arrival process is Poisson.

5 Modeling

The second step in our approach is compactly to model Ethernet performance for all possible network configu-

rations. We achieve fast simulation by referring to this model to predict performance for a given configuration.

By examining the results of the detailed simulation, we found that the two important performance parameters,

packet delay and link throughput, are functions of three independent variables: the mean packet size, the total

link offered load, and the buffer size for each station. We explain this next.

5.1 Throughput

We found that link throughput is a monotonically increasing and piecewise linear function of the link load and

mean packet size (Figures 4 and 5). We measure and store the link throughput for a sequence of packet sizes

and link offered loads. In order to increase the lookup table granularity in regions where the throughput changes

rapidly as a function of the independent parameters, we choose the distance between consecutive points in the

sequence to be inversely-proportional to the slope of the throughput curve at that point. Then, for a given mean

packet size and link offered load, the link throughput is obtained by a linear 2-dimensional interpolation between

11

Total offered load / bandwidth
(a)

D
el

ay
 p

er
 p

ac
ke

t (
se

co
nd

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 3 4 5

uniform
poisson
normal
pareto
syn (in phase)
syn (out phase)

Total offered load / bandwidth
(b)

D
el

ay
 p

er
 p

ac
ke

t (
se

co
nd

)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 3 4 5

syn (in phase)
skew factor = 0.1
skew factor = 0.3
skew factor = 0.5
skew factor = 0.7
skew factor = 0.9
syn (out phase)
poisson

Total offered load / bandwidth
(c)

T
hr

ou
gh

pu
t /

 b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

uniform
poisson
normal
pareto
syn (in phase)
syn (out phase)
ideal

Total offered load / bandwidth
(d)

T
hr

ou
gh

pu
t /

 b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

syn (in phase)
skew factor = 0.1
skew factor = 0.3

syn (out phase)
poisson
ideal

skew factor = 0.5
skew factor = 0.7
skew factor = 0.9

Figure 7: 10 Mbps Ethernet simulation results (under different workload) on mean packet delay and link through-
put: packet size = 512 bytes, buffer size = 1 packet.

the adjacent stored values in the lookup table.

5.2 Delay

Instead of storing the mean delay for a given configuration, we chose to model the cumulative distribution of delays

achieved for a given setting of independent parameters. This is because even with the same workload, different

packets may experience different delays due to the randomization inherent in the Ethernet protocol and other

stations’ behavior. A pure prediction of mean packet delay is not enough to capture this variation. During fast

simulation, for a specific packet, we generate a delay as a random variable drawn from this distribution. Modeling

the cumulative instead of the density allows us to trivially generate a random variable from this distribution.

However, naively storing the cumulative delay distribution requires too much storage. Unlike link throughput,

instead of store a single value for each pair of specified average packet size and link load in the lookup table,

a cumulative distribution curve need to be stored correspondingly. We need a way compress this information,

choosing the compression scheme such that rapid decompression is possible. A family of well-known hyperbolic

curves turns out to satisfy this requirement.

12

5.2.1 Using hyperbolic curves to model cumulative delay distributions

Consider the family of hyperbolic curves represented by

y =
x + kx

1 + kx
,

where k = tan(π
2
α) − 1, and α ∈ [0, 1]. An interesting characteristic of this family is that the single variable α

controls shape of the curves. Figure 8 shows some curves for different values of control variable α.

X

Y

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α = 0.02
α = 0.26
α = 0.50
α = 0.74
α = 0.98

Figure 8: A group of hyperbolic curves.

The cumulative delay distribution curves (one of them is shown in Figure 9(a))are very similar to these

hyperbolic curves. (Similar cumulative distributions of delay are also reported in Gonsalves’s measurement

results [8]). The advantage of this approach is that a cumulative distribution curve can be “compressed” into

single variable α. This makes the lookup table extremely compact. Moreover, optimal values of α can be chosen

as the least-squares fit to the actual distribution. Because of the single control variable α, the least-squares fitting

is much more easily determined than with multiple control variables. An example of such modeling is shown in

Figure 9(a) and (c).

An alternative approach is the exponential distribution modeling proposed by Paxson in [23], which is used

to model curves of similar shapes. The exponential distribution model is represented by

y = 1 − e−αx

The fitting results of using exponential distribution model are shown in Figure 9(b) and (d). To further

quantify the discrepancies of our hyperbolic curve model and Paxon’s exponential distribution model, we use λ2

test described in [23] (the detailed information of λ2 test is provided in Appendix A). The resulting mean λ2

values of hyperbolic curve model and exponential distribution model are 0.09 and 1.32, respectively. It’s very

clear that our hyperbolic curve model fits much better than the exponential distribution model. Thus, we decided

to use hyperbolic curves to model the cumulative delay distributions.

To sum up, hyperbolic curve model fits very well to the empirical cumulative delay distributions. By using

hyperbolic curves to model the cumulative distributions, instead of storing a cumulative distribution curve, we

13

X
((delay - transmission time) / maximun delay)

Y
 (f

ra
ct

io
n

of
 g

oo
d

pa
ck

et
s)

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

hyperbolic curve: α = 0.994
cumulative delay distribution:
packet size = 512 bytes
total offered load = 40%

X
((delay - transmission time) / maximun delay)

(b)

Y
 (f

ra
ct

io
n

of
 g

oo
d

pa
ck

et
s)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

exponential distribution: α = 0.3
cumulative delay distribution:
packet size = 512 bytes
total offered oad = 40%

Cumulative delay distribution
(c)

H
yp

er
bo

lic
 c

ur
ve

:
α

=
0.

99
4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

hyperbolic curve modeling
perfect
+10%
-10%

Cumulative delay distribution
(d)

E
xp

on
en

tia
l d

is
tr

ib
ut

io
n:

α
=

0.
3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

exponential distribution modeling
perfect
+10%
-10%

Figure 9: Hyperbolic curves: (a) using hyperbolic curve to model cumulative delay distribution, (b) using expo-
nential distribution to model cumulative delay distribution, (c) Q-Q plot of (a), (d) Q-Q plot of (b).

store the value of α in the lookup table as a function of the mean packet size and offered load. We use the same

indexing and interpolation techniques to compute the cumulative delay distribution for typical packet size and

offered load as we did to compute link throughput. The value of α corresponding to each combination of mean

packet size and link offered load listed in the indexing sequences is stored in the lookup table. Before interpolation,

four cumulative delay distributions are first computed according to the α values of adjacent indexed packet sizes

and offered loads in the lookup table. Then, linear 2-dimension interpolations are applied on these cumulative

distributions to compute the cumulative delay distribution for the given mean packet size and link offered load.

6 Fast Ethernet Simulation

Fast simulation is achieved by predicting performance metrics based on the compact model described earlier.

Since there are no collisions and backoffs, this implementation of CSMA/CD protocol is much faster.

14

6.1 Approach

The simulation configuration is shown in Figure 10. Several stations attach to a shared Ethernet link. Each

simulated station has three active components: traffic generator, traffic monitor and performance predictor.

Recall that the input to the performance prediction model is the offered load and the mean packet size. The

performance monitor measures these parameters on the fly and feeds them to the performance predictor. The

performance predictor determines whether or not the packet has chance to go through the link and if so, how

much the delay it going to suffer. Finally, packet delivery is simulated according to the predicted performance

information. We describe traffic monitor and performance predictor in more detail next.

Bus

traffic
monitor

performance
predictor

traffic
generator

traffic
monitor

performance
predictor

traffic
generator

traffic
monitor

performance
predictor

traffic
generator

Figure 10: Fast Ethernet simulation configuration.

6.2 Monitoring Statistical Information

In order to predict Ethernet performance, we need to monitor the mean packet length and mean total offered

load over some time period. We use a dynamic window scheme to compute the mean values of packet length and

total offered load. The size of time window should represent a balance between sensitivity to the current system

state and stability of the measurement. If the size of time window is too large, then it will mix up two different

patterns of traffic load on the link. On the other hand, if the time window size is too small, then the control

mechanism will react to a transient burst of packet arrivals, which makes the system unstable. We choose the

time window size to be around 1 second, because it is long enough to even out busty traffic, but not so long as to

lose slow-scale changes in traffic. The reason that we didn’t choose window size to be exact 1 second is explained

next.

A naive way to monitor the traffic through a link would be to keep a list of active packets that are transmitted

within the current time window. Upon each packet arrival, we add the new packet to the head of the list and

remove from the end of the list the inactive packets (i.e., packets transmitted before the beginning of current

time window). The statistical information is also updated accordingly. However, this algorithm can be expensive

because the traffic monitor needs to update its statistical information upon each packet arrival. Moreover,

updating the active packet list can be time consuming. In the worst case, traversing the entire list is necessary to

remove the inactive packets. The work done by the algorithm increases as the offered load increases. Thus, the

computing complexity increases at least linearly with the traffic load. If simulated link is heavy loaded, traffic

monitoring will incur a big computational overhead. Therefore, a more efficient monitoring algorithm is desirable.

We have designed a ‘ring buffer’ approach to speed up the monitoring process. The structure of the ring buffer

15

is shown in Figure 11. Time is divided into equal-size slots. Each slot records the traffic statistics information

during that time slot. Let W be the size of time window, Ts be the size of the time slot and w be the number of

slots within one time window, then W = w · Ts. At end of each time slot, the window is shifted one slot forward

and the overall traffic information is updated by removing the information from the newly invalidated slot and

adding the information from the newly validated slot. We choose Ts = 1024 µs to make the computation of

the current slot index efficient. The current slot is determined purely by using integer binary operations such

as masking and shifting. For instance, if the current time is m µs, then the slot index is computed as (m &

0x000ffc00) � 10. The pseudo-code of the traffic monitoring algorithm is shown in Appendix B.

With the ring buffer monitoring technique, no active packet list is maintained, which makes the information

updating very efficient in terms of both time and space, requiring only a constant time overhead during heavy

load. Under lightly loaded conditions, the window may move several slots, increasing the overhead. However, this

overhead is incurred when the packet simulation overhead is small, so we do not consider it to be a great burden.

0
1

2

w-1

3

...

current
slot

Figure 11: The ring structure to monitor the traffic statistics of Ethernet link.

6.3 Predicting Performance

The traffic load information monitored by the traffic monitor is passed to the performance predictor. The major

inputs for the performance prediction are mean packet size, mean total offered load, and buffer size of each station.

The performance predictor determines the packet delay. The packet delay is randomly chosen according to the

link throughput and cumulative delay distribution corresponding to the current mean packet size and total offered

load. As we mentioned in Section 4, performance results show that the packet delay increases proportional to the

increase in the buffer size of each station while the link throughput remains almost same. The exact impact of

multiple buffers on the performance is very hard to model. We need balance the trade off between the efficiency

and accuracy. We model the delay simply by multiplying the buffer size with the corresponding delay predicted

for the one buffer case. Although it may incur some inaccuracy to our performance modeling, especially for low

offered load cases (i.e. it may over-estimate the delay a packet suffers when the offered load is relatively low),

the absolute error is still relatively small and acceptable. Thus, the performance predictor can be considered as

a function of mean packet delay, total offered load and station buffer size.

delay = f(mean packet size, total offered load, buffer size)

Finally, the packet delivery is simulated according to the predicted performance information. If a packet is

chosen to be dropped according to the link throughput, its delay is assigned to ∞ and the packet will be discarded.

16

7 Performance Evaluation

In this section, we compare the performance results obtained from Fast Ethernet Simulation with that obtained

from the detailed CSMA/CD simulation. We implemented the fast simulation on the REAL simulator [27] similar

to the way we implemented the detailed CSMA/CD simulation.

As mentioned earlier, we adopt an open simulation model for traffic generation, i.e., the generation of packets

is independent of the delivery of packets. For the simulation results shown here, we assume packet arrivals are

generated from a Poisson distribution. However, our results are independent of the Poisson assumption. The

number of nodes in our simulation is 20. Packet destinations are randomly chosen from a uniform distribution.

We first examine the accuracy of the fast simulation model. Figure 12 compares performance results obtained

from fast simulation with the detailed CSMA/CD simulation for P = 64, 512, 1500 bytes and buffer size = 4500

bytes. The link throughputs match with each other perfectly, whereas the mean packet delays have small error

due to our simple modeling of Ethernet performance for multiple buffers. This is particularly evident for the

case where the mean packet size is small (e.g. P = 64 bytes), where the same absolute value of the buffer size

corresponds to a relatively larger number of queued packets. When P = 512 bytes and the total offered load

is 200%, the mean packet delays observed on the detailed CSMA/CD simulation and Fast Ethernet Simulation

are 69 ms and 65 ms, while the corresponding throughput are 70.8 % and 70.9 %, respectively. Thus, this figure

indicates that fast simulation accurately models the performance of an actual Ethernet network.

The fast simulation approach imposes two overheads: traffic monitoring and performance prediction. In order

to measure these overheads, we introduce an ‘easy-fast’ Ethernet simulation model. In this model, instead of

passing monitored traffic information to the performance predictor, the user can manually set the link traffic load

and mean packet length. The performance prediction is done purely based on these pre-setup traffic information

and the predicted Ethernet performance is independent of the traffic going through the simulated link. In this

case, the simulated stations do not need to send the amount of packets specified by the offered load to the Ethernet

link to make the traffic monitor “see” the traffic load and tell the performance predictor this information. Easy-

fast simulation does not require traffic monitoring, so by comparing the simulation time for easy-fast simulation

with the simulation time for Fast Ethernet Simulation, we can determine the overhead for traffic monitoring.

Similarly, by comparing the time taken for easy-fast simulation with a base case simulation with no performance

prediction, we can estimate the overhead for performance prediction. (Note that our easy-fast simulation model

provides a back-door for defining the traffic load independent of the actual number of packets placed by a station

on a link. This is extremely useful in situations where we want to study the effect of a highly loaded link on a

particular application without actually generating the loading cross traffic.)

Thus, we examine the overhead incurred by each component of fast simulation model by comparing the time

complexities of the following four simulation models of LAN: (a) base simulation model: simulation of LAN

(e.g. traffic generation, packet delivery) without employing any Ethernet protocol, (b)easy-fast simulation model:

simulation of LAN with user-defined traffic information and performance prediction, (c) fast simulation model:

simulation of LAN using traffic monitoring and performance prediction, and (d) detailed CSMA/CD simulation

model.

We ran these four LAN simulation models under the same system configuration to simulate 10 seconds behavior

17

Total offered load / bandwidth
(a)

M
ea

n
de

la
y

pe
r

pa
ck

et
 (s

ec
on

d)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2 2.5 3 3.5 4

detailed csma/cd: 64
detailed csma/cd: 512
detailed csma/cd: 1500
fast: 64
fast: 512
fast: 1500

Total offered load / bandwidth
(b)

T
hr

ou
gh

pu
t /

 b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

detailed csma/cd: 64
detailed csma/cd: 512
detailed csma/cd: 1500
fast: 64

fast:1500
fast: 512

ideal

Detailed CSMA/CD simulation results of mean delay (second)
(c)

Fa
st

 si
m

ul
at

io
n

re
su

lts
 o

f m
ea

n
de

la
y

(s
ec

on
d)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

64
512
1500
perfect
+10%
-10%

Detaileed CSMA/CD simulation results of throughput/bandwidth
(d)

Fa
st

 si
m

ul
at

io
n

re
su

lts
 o

f
th

ro
ug

hp
ut

/b
an

dw
id

th

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

64
512
1500
perfect
+10%
-10%

Figure 12: The simulation results for Fast Ethernet Simulation and CSMA/CD simulation for packet size = 64,
512, and 1500 bytes and buffer size = 4500 bytes: (a) delay versus total offered load, (b) throughput versus total
offered load, (c) Q-Q plot of (a), (d) Q-Q plot of (b).

of Ethernet on Solaris. The machine on which we used to measure the overhead of different simulation models

is a Pentium II with 2 processors, each of which is 333 Mhz and has 512 Mbyte RAM. The CPU time measured

for these four simulation models as a function of total offered load is shown in Figure 13. Figure 14 shows the

corresponding slow down ratios as function of total offered load. For instance, when total link offered load is

100%, the four different simulation models take 18.01 seconds, 18.74 seconds, 18.90 seconds, and 296.27 seconds,

respectively, the corresponding slow down ratios are 1.0, 1.04, 1.05, and 16.45. The CPU time consumed by the

traffic monitor and the performance predictor take 1% and 4% of that consumed by the base model, respectively,

which are very small portions of the total simulation time. The major portion of simulation time is due to factors

other than the simulation of Ethernet delays, e.g. traffic generation and packet delivery, as we observed from base

model. Thus, we believe that our fast simulation model doesn’t add noticeable overhead to the simulator. The

total CPU time consumed of detailed CSMA/CD simulation would be 1645% of that of the base model. This

shows that the exactly simulation of CSMA/CD protocal (i.e. collision detection, packet retransmission, and

signaling, etc.) is very time-consuming. It’s worth noting that the CPU time consumed becomes flatten after the

offered load exceeds 100%. This is because the buffer is always full at most time such that some of new arrived

18

packets are dropped. Combining the results presented in Figure 12, 13, and 14, we claim that, by eliminating

the exact implementation of CSMA/CD protocol, our fast simulation model reduces the complexity drastically

while the simulation results still achieving desirable accuracy.

Total offered load / bandwidth
(a)

C
PU

 ti
m

e
co

ns
um

ed
 (s

ec
on

d)

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

base
easy-fast
fast
detailed csma/cd

Total offered load / bandwidth
(b)

(C
PU

 ti
m

e
co

ns
um

ed
 (s

ec
on

d)

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4

base
easy-fast
fast

Figure 13: The CPU time consumed for 10 seconds simulations of 10 Mbps Ethernet link with packet size = 512
bytes and buffer size = 8 packets ((b) is the zoomed version of the three curves in the lower portion of (a)).

Total offered load / bandwidth
(a)

Sl
ow

 d
ow

n
ra

tio

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4

base

fast
detailed csma/cd

easy-fast

Total offered load / bandwidth
(b)

Sl
ow

 d
ow

n
ra

tio

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 0.5 1 1.5 2 2.5 3 3.5 4

base
easy-fast
fast

Figure 14: The ratio of CPU time consumed for 10 seconds simulations of 10 Mbps Ethernet link with packet
size = 512 bytes and buffer size = 8 packets ((b) is the zoomed version of the three curves in the lower portion
of (a)).

8 Applications

In this section, we give examples to illustrate the usage of the Fast Ethernet Simulation. One obvious example

is to examine how heavily loaded Ethernet affects the dynamics and performance of several popular network

applications. The motivation behind is that, while providing different levels of Internet services to different

applications and users becomes one of the hottest topics in current network research, most of the research work is

19

focused on the architectures (e.g. differentiated services) and routing mechanisms (e.g. QoS routing) in the range

of WAN. Little work has been done on studying its implication to LANs, especially the legacy Ethernet which

don’t provide any QoS support, though the stub networks are the first and the final steps in the ”Internet path” to

meet the QoS requirements. The usual arguments about this is either the Ethernet are currently lightly loaded, or

we can easily over-dimension them to make them so. However, with proliferation of stations connected to a single

LAN and various user level applications running on the network, the Ethernet LAN might be overloaded from

time to time. No actual measurement has been done to examine the effect of heavy-loaded LAN on performance

of user applications. One reason is that people hold an incorrect assumption that the LAN is only lightly loaded.

Furthermore, there is a lack of an effective tool to measure and study the negative impact of heavy loaded Ethernet

on applications’ performance. In this section, we present a testbed based on the Fast Ethernet simulation model,

which provides us such a powerful tool to investigate how the Ethernet workload affects the performance of user

level applications.

8.1 Testbed setting

We decompose the testbed into two components: the real participants (e.g. Web clients and servers, participants

in Internet telephony) and the simulated LAN to which all the participants are connected. We choose Entrapid

simulator [13] to simulate the LAN topology. The reason we choose Entrapid over other simulators such as REAL,

ns-2, etc., is that, from a developer’s perspective, Entrapid provides the abstraction of a network in a box. It

supports multiple Virtualized Networking Kernels (VNKs). Each VNK corresponds to a machine on the Internet,

and each virtualized process corresponds to a process running on that machine. A developer can instantiate new

protocols either directly on a VNK, or as an external process then test its behavior when interacting with other

network protocols already implemented within Entrapid. Moreover, using RealNet technology, we can seamlessly

connect real world devices, such as, routers and switches to the emulated network.

The testbed is shown in Figure 15. Two physical machines, p1 and p2, are set up with user application running

on one and Entrapid simulator running on the other. We implement the Fast Ethernet Simulation (and easy-fast

Ethernet simulation) in Entrapid simulator. Two virtual machines, m0 and m1, are created to simulate the LAN

using the Fast Ethernet Simulation model. By using the RealNet technology provided by Entrapid, one of virtual

machine is connected to the clients and the other is connected to the server running on the other physical machine

through Ethernet cards. The gateway is set up such that all packets sent by clients to the server are directed

to m0, and then m1, finally to the server. Similarly, packets from server to clients are delivered through m1,

and then m0, to the clients. Thus, packets exchanged between clients and sever experience the same delay and

throughput as they would traverse on the actual LAN.

We use both simulation and emulation techniques in setting up the testbed. The advantage of this testbed

is that people can easily tune the parameters of the LAN such as packet size, link offered load, and packet loss

rate. This provides us a powerful and convenient tool to study the impact of Ethernet load on user application

performance.

20

1 2 n
Clients

Server Entrapid

m0

m1
LAN

de1xl2

xl1 de
0

xl0 tx0

192.168.5.2 192.168.5.1

192.168.4.2
19

2.
16

8.
4.

1

192.168.3.110 192.168.3.123

Outside
World

p1 p2

Figure 15: The testbed setting.

8.2 The Impact of Ethernet load on user applications

One of our on-going research work is to examine how the Ethernet load affects the dynamics and performance

of several popular network applications. In particular, the two applications which we are interested in are World

Wide Web and Internet telephony. The former is a very popular network application which greatly contributes

to the current internet traffic. Its traffic pattern is characterized by small client requests one way and bulk data

transfer as server responses the other. The latter has been proposed as a highly desirable application in lieu of the

traditional telephone infrastructure and now is only at its experimental stage. Its traffic is featured by a series of

evenly spaced, small size audio packets. Due to the different traffic characteristic of and transportation protocols

used by these two applications, the impacts of the increasing Ethernet load on them are quite different. We are

interested in studying what these impacts are, especially, when the degraded performance fails to meet the basic

application requirements. The results of this study will be reported in our future work.

9 Conclusion

In this paper, we describe a distributed approach to exact simulation of Ethernet and propose an efficient dis-

tributed simulation model, called Fast Ethernet Simulation, which empirically models an Ethernet link to quickly

and accurately simulate it. Our work shows that by eliminating the exact implementation of precise collision

detection, signaling, and packet retransmission, the time complexity of Ethernet simulation can be significantly

improved while still maintaining simulation accuracy. Our detailed performance results demonstrate the accuracy

and efficiency of our approach.

We came up with three new techniques as part of this work. First, we use a family of hyperbolic curves to

represent the cumulative distributions of delay as a function of the offered load and mean packet size. Second,

21

we present a near-constant time algorithm for monitoring the load on a link over a specific time interval. Third,

we studied the impact of different link workloads on Ethernet performance and show that, although the Pareto

distribution is the most realistic model of Ethernet traffic, Poisson is good enough to achieve accurate performance

results besides being much easier than Pareto to be used in performance measurements. We believe that these

techniques can be used in a variety of other situations, and represent new additions to the network protocol

designer’s toolbox.

The top level goal of our work is to study the effect of Ethernet load on application performance. We also

built a testbed based on the Fast Ethernet Simulaiton model for this purpose. Using the easy-fast simulation

approach, we can subject traffic from an application to a desired Ethernet load with practically no additional

performance overhead. This will allow us to study this interaction with unprecedented ease. We plan to present

the results of this study in future work.

References

[1] R. Ayani, Y. Ismailov, M. Liljenstam, A. Popescu, H. Rajaei, and R. Ronngren, Modeling and simulation

of a high speed LAN, Simulation, pp. 7-14, January 1995.

[2] G. T. Almes and E. D. Lazowska, The behavior of Ethernet-like computer communications networks,

Proceedings of the 7th Symposium on Operating Systems Principles, pp. 66-81, December 1979.

[3] W. Bux, Local-area subnetworks: a performance comparison, IEEE Trans. on Communications, Vol. COM-

29, No. 10, pp. 1465-1473, October 1981.

[4] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, A performance comparison of multi-hop

wireless ad hoc network routing protocols, Proceedigs of Mobicom’98.

[5] D. R. Boggs, J. C. Mogul, and C. A. Kent, Measured capacity of an Ethernet: myths and reality, Proceedings

of the SIGCOMM’88 Symposium on Communications Architectures and Protocols.

[6] E. Coyle and B. Liu, Finite population CSMA/CD networks, IEEE Trans. on Communications, Vol. COM-

31, No. 10, pp. 1247-1251, November 1983.

[7] E. Coyle and B. Liu, A matrix representation of CSMA/CD networks, IEEE Trans. on Communications,

Vol. COM33, No. 1, pp. 53-64, January 1985.

[8] T. A. Gonsalves, Measured performance of the Ethernet, Advances in Local Area Networks, Edited by K.

Kummerle, F. A. Tobagi, and J. O. Limb, pp. 383-410, IEEE Press: New York, 1987.

[9] R. Gusella, A measurement study of diskless workstation traffic on an Ethernet, IEEE Trans. on Commu-

nications, Vol. 38, No. 9, pp. 1557-1568, September 1990.

[10] T. A. Gonsalves and F. A. Tobagi, On the performance effects of station locations and access protocol

parameters in Ethernet networks, IEEE Trans. on Communications, Vol. 36, No. 4, pp. 441-449, April 1988.

22

[11] F. Halsall, Data Communications, Computer Networks and Open Systems (4th edition), Addison-Wesley,

1995.

[12] H. D. Hughes and L. Li, Simulation model of an Ethernet, Computer Performance, Vol. 3, No. 4, pp.

210-217, December 1982.

[13] X. W. Huang, R. Sharma, and S. Keshav, The ENTRAPID protocol development environment, Proceedings

of Infocom’99, March 1999.

[14] IEEE Standard 802.3 - Carrier Sense Multiple Access with Collision Detection (CSMA/CD), 1985.

[15] S. Keshav, An Engineering Approach to Computer Networking, Addison-Wesley, 1997.

[16] L. Kleinrock, and F. Tobagi, Packet switching in radio channels: part I - carrier sense multiple-access

modes and their throughput-delay characteristics, IEEE Trans. on Communications, Vol. COM-23, No. 12,

pp. 1400-1416, December 1975.

[17] S. S. Lam, A carrier sense multiple access protocol for local networks, Comput. Networks, Vol. 4, pp. 21-32,

Feb. 1980.

[18] W. E. Leland, M. S. Taqqu, W. Willinger, D. Wilson, On the self-similar nature of Ethernet traffic (extended

version), IEEE/ACM Trans. on Networking, Vol. 2, No. 1, pp. 1-15, February 1994.

[19] D. Moore, Measures of lack of fit from tests of chi-squared type, J. Statist. Planning and Inference, Vol. 10,

No. 2, pp. 151-166, 1984.

[20] R. M. Metcalfe and D. R. Boggs, Ethernet: distributed packet switching for local computer networks,

Commun. Ass. Comput. Mach., Vol 19, pp. 395-404, July 1976.

[21] P. Marino and A. del Rio, An accurate and fast CSMA/CD simulator, Microprocessing and Microprogram-

ming, Vol. 39, No. 2-5, pp. 187-190, Dec. 1993.

[22] P. J. P. O’Reilly, and J. L. Hammond Jr., An efficient simulation technique for performance studies of

CSMA/CD local networks, IEEE Journal on Selected Areas in Communications, Vol. SAC-2, No. 1, pp.

238-249, Jan. 1984.

[23] V. Paxson, Empirically derived analytic models of wide area TCP connections, IEEE/ACM Trans. on

Networking, Vol. 2, No. 4, August 1994.

[24] S. Pederson and M. Johnson, Estimating model discrepancy, Technometrics, Vol. 32, No. 3, pp. 305-314,

Aug. 1990.

[25] K. Prasad and R. Patel, Performance analysis of Ethernet based on an event driven simulation algorithm,

Proceedings Conference on Local Computer Networks, 1988.

[26] K. Prasad and A. Singhal, Simulation of Ethernet performance based on single server and single queue

model, Proceedings of the 12th Conference on Local Computer Networks, Oct. 1987.

23

[27] RealEdit v1.0, URL: http://www.cs.cornell.edu/skeshav/real/overview.html.

[28] J. F. Shoch and J. A. Hupp, Measured performance of an Ethernet local network, Communications of ACM,

Vol. 23, No. 12, pp. 711-721, December 1980.

[29] W. R. Smith and R. Y. Kain, Ethernet performance under actual and simulated loads, Proceedings of 16th

Conference on Local Computer Networks, pp. 569-581, 1991.

[30] S. Tasaka, Dynamic behavior of a CSMA-CD system with a finite population of buffered users, IEEE Trans.

on Communications, Vol. COM-34, No. 6, pp. 576-586, June 1986.

[31] F. A. Tobagi and V. B. Hunt, Performance analysis of Carrier Sense Multiple Access With Collision Detec-

tion, Comput. Networks, Vol. 4, pp. 245-259, Oct./Nov. 1980.

[32] X. Tan, S. C. Jue, E. Lo, and R. H. S. Hardy, Transient performance of a CSMA system under temporary

overload conditions, Proceedings of 15th Conference of Local Computer Networks, 1990.

[33] H. Takagi, and L. Kleinrock, Throughput analysis for persistent CSMA System, IEEE Trans. on Commu-

nications, Vol. COM-33, No. 7, pp. 627-638, July 1985.

[34] L. Y. Tsui and O. M. Ulgen, On modeling local area networks, 1988 Winter Simulation Conference Pro-

ceedings, pp. 842-849.

[35] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, Self-similarity through high-variability: statis-

tical analysis of Ethernet LAN traffic at the source level, Proceedings of Sigcomm’95, pp. 100-113.

Appendix

A Techniques to measure discrepancy

One widely used technique for measuring discrepancy of a model is based on a modified χ2 test [19]. Let n be the

number of instances of a random variable Y which we want to model using another model distribution Z. We

partition the distribution Z into N bins. Each bin has a probability pi associated with it, which is the proportion

of the distribution Z falling into the ith bin. Let Yi be the number of observations of Y that actually fall into

the ith bin. Then, we have

X2 =
N

∑

i=1

(Yi − npi)
2

npi

The χ2 discrepany measure is then simply X2/n. However, the X2/n discrepancy measure cannot be used to

compare discrepancies for different values of N [24]. Pederson and Johnson [24] presented a related discrepancy

measure, λ2, which can be used to compare discrepancies for different values of N . The λ2 discrepancy measure

between a random variable Y and a model distribution Z is computed as following. Let Ei = npi be expected

count for the ith bin and Di = Yi − Ei be the discrepancy in the ith bin. Then, we define

24

K =

N
∑

i=1

Di

Ei

,

λ̂2 =
X2 − K − df

n − 1
,

where df is the number of degree-of-freedom in computing X2 and K. For our purposes, we choose df = N −1.

B Pseudo-code of traffic monitoring algorithm

now = runtime();

index = (m & 0x000ffc00) >> 10;

if (idle more than W) {

total_bit_sent = packet_length;

total_count = 1;

ring[index].bit_sent = packet_length;

for (i = 0; i < w; i ++) {

if (i != index) {

ring[i].bit_sent = 0;

ring[i].count = 0;

}

}

}

else {

if (ring.index == index) {

ring[index].bit_sent += packet_length;

ring[index].count ++;

total_bit_sent += packet_length;

total_count ++;

}

else {

i = ring.index;

while ((i % Ts) != (index + 1) % Ts) {

total_bit_sent -= ring[i].bit_sent;

total_count -= ring[i].count;

ring[i].bit_sent = 0;

ring[i].count = 0;

}

ring[index].bit_sent += packet_length;

25

ring[index].count ++;

total_bit_sent += packet_length;

total_count ++;

}

}

throughput = total_bit_sent / W;

avg_packet_size = total_bit_sent / total_count;

26

