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The study of atomically-thin, truly two-dimensional (2D) materials has 

morphed into its own field since the experimental isolation of graphene and 

similar 2D materials in 2005. Graphene, as a single layer of carbon atoms 

with a unique band structure, and monolayer molybdenum disulfide (MoS2), 

a three-atom-thick semiconductor, have been of particular interest both for 

the physics accessible in 2D crystals and the applications achievable with 

highly flexible materials. This dissertation presents a variety of experiments 

exploring the optoelectronic and mechanical properties of both monolayer 

MoS2 and graphene. In particular, we present three studies: (1) the 

experimental realization of the valley Hall effect, an effect based on the 

Berry curvature of a material’s energy bands, in monolayer MoS2; (2) 

methods for directly measuring the bending stiffness of graphene (and 

related 2D materials); and (3) an investigation of the wrapping of micro-

spherical droplets by monolayer MoS2. We conclude by discussing the future 

outlook of both “valleytronics” and microencapsulation by 2D materials. 
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“At some point, everything's going to go south on you...everything's going 
to go south and you're going to say, this is it. This is how I end. Now you 
can either accept that, or you can get to work. That's all it is. You just begin. 
You do the math. You solve one problem...and you solve the next one...and 
then the next. And If you solve enough problems, you get to come home.” 

 

- The Martian (2015) 
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CHAPTER 1 
 

THE WORLD OF TWO-DIMENSIONAL MATERIALS 

 

 

1.1  Introduction 

This dissertation covers a wide range of the physics of two-

dimensional (2D) materials, a young field kickstarted in 2005 by the isolation 

of atomically thin materials, such as the one-atom-thick graphene and the 

three-atom-thick molybdenum disulfide (MoS2)1. Since this time, scientists 

have conducted experiments ranging from the optoelectronics2,3 to the 

mechanics4 of these materials. 

In this dissertation we examine both graphene and MoS2 across 

several areas of interest: (1) “valleytronics”, a sub-field exploring the 

properties and controllability of the so-called “valley” designation of the 

band electrons in a crystal (in analogy and addition to the charge and spin of 

the electrons); (2) direct measurement of the bending stiffness of 2D 

materials; and (3) wrapping at the microscale. Due to the breadth of this 

dissertation, detailed introductions to these subjects are left to the individual 

chapters exploring them. 

 

 



 

13 

1.2  Outline of this dissertation 

This dissertation presents experiments conducted on both monolayer 

MoS2 and graphene, covering “curvature” of all sorts: from the Berry 

curvature to the wrapping of microspheres. 

To begin, in Ch. 2 we discuss in-depth the origins of the valley Hall 

effect (VHE) as a specific case of the more general anomalous Hall effect 

(AHE) arising from the Berry curvature found in certain crystalline energy 

bands. From here, in Ch. 3, we present our measurement5 of the VHE as a 

photoinduced AHE in monolayer MoS2. 

In Ch. 4 we switch gears into the world of mechanics to consider the 

measurement of bending stiffness in 2D materials by specifically measuring 

the bending stiffness of graphene6. In Ch. 5 we extend our exploration of 

bending by considering the case of a microdroplet wrapped by a 2D 

material, namely, in our experiment, monolayer MoS2. 

Finally, in Ch. 6, we close with some remarks on the outlook for 

research in 2D materials. 
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CHAPTER 2 
 

ORIGINS OF THE VALLEY HALL EFFECT 

 

 

2.1  Introduction 

In this chapter we will review the physical origins of the valley Hall 

effect (VHE), which can arise due to both intrinsic and extrinsic mechanisms 

in a crystal. The intrinsic contribution to the VHE in a material is the result 

of broken inversion symmetry in its crystal structure; the extrinsic 

contributions result from the presence of defects. We will explore both types 

of contribution, and we’ll close with a brief overview of why monolayer 

molybdenum disulfide (MoS2) is our material of choice for the VHE 

experiment. 

 

2.2  The valley index 

In examining the origins of the VHE, we must first understand what 

is known as the “valley index” of an electron (or hole, as the case may be). 

To begin, we zoom out and consider our modern technological society. We 

are overwhelmingly familiar with the charge degree of freedom (DOF): it is 

the foundation on which our myriad electronic devices are based. The spin 

DOF is likewise reasonably well-known as it is at the heart of magnetic 
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devices, such as memory drives. The “valley” index is yet a third possible 

DOF for charge carriers in certain materials (specifically, as we will see, in 

crystals with broken inversion symmetry). The name “valley” refers to the 

shape of the bands at the material’s conduction band structure minima. 

Figure 2.1 shows an example of these valleys in the band structure of MoS2 

calculated from density functional theory (DFT)1. These systems are 

predicted to exhibit a measurable voltage in the charge DOF whose sign 

depends on the valley index of the accumulated Hall carriers2. 

 

2.3  The anomalous Hall effect 

The VHE is a specific case of the phenomenon known as the 

anomalous Hall effect (AHE). In 1879, Edwin Hall observed that a 

transverse current develops when a current-carrying (non-ferromagnetic) 

conductor is placed in a perpendicular magnetic field3. This “Hall effect” is 

straightforwardly explained by the action of the Lorentz force on the 

electrons in the conductor, and it has an associated Hall conductivity 𝜎𝐻. 

However, upon performing the same experiment with ferromagnetic 

conductors, Hall reported that the transverse current was an order of 

magnitude larger4,5. The origins of this extra, “anomalous” current puzzled 

scientists for the better part of the last century6. The anomalous current can  
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Figure 2.1: Band structure of MoS2 
DFT calculations for the band structure of (a) bulk, (b) four-layer, (c) bilayer, and (d) 
monolayer MoS2. The solid arrows indicate the lowest energy transitions between the 
valence and conduction bands. The lowest-energy transition in bulk MoS2 (a) is an 
indirect transition at the Γ point, whereas the lowest-energy transition in monolayer MoS2 
(d) is a direct transition of ~1.9 eV at the K point. The shape of the conduction band at 
this point looks like a valley, leading to the name “valley index”. Figure after Splendiani et 
al. (2010)1. 
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be framed as having its own associated conductivity 𝜎𝐻
𝑎. As we will see, it is 

generally viewed as being composed of three components: an intrinsic term 

and two extrinsic terms.  

A succinct understanding of the intrinsic (i.e. based on a perfect 

crystal) contribution to the AHE was finally achieved after Sir Michael Berry 

published a paper in 1984 on a quantum phase factor now known as the 

Berry phase7, a detailed derivation of which is provided in App. A. The Berry 

phase 𝛾𝑛 is written as the path integral in 𝝀 space 

 
𝛾𝑛 = ∫𝑑𝝀 ∙ 𝑨𝑛(𝝀)

𝐶

 (2.1) 

where 

 𝑨𝑛(𝝀) = 𝑖〈𝑛(𝝀)|𝛁𝛌|𝑛(𝝀)〉 (2.2) 

is the called the Berry connection, 𝝀 is the parameter space through which 

the system adiabatically moves in time, and the |𝑛(𝝀)⟩ are the eigenkets of 

the system. The Berry connection functions as a vector potential, allowing us 

to write the magnetic-like Berry curvature 𝛀𝑛 as 

 𝛀𝑛(𝝀) = 𝛁𝛌 × 𝑨𝑛(𝝀) (2.3) 

In general the Berry curvature is considered the fundamental 

quantity8, and it is viewed as the source of the intrinsic contribution to the 

AHE, so-named because it is inherently present in a pristine crystal. 
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However, defects in a crystal can also alter the velocities of the electrons in 

the same manner as does the Berry curvature; such contributions are dubbed 

the extrinsic contributions to the AHE6. In general these contributions can 

be split into two categories: the skew contribution and the side-jump 

contribution, both of which are detailed in Sec. 2.6. Thus, the entire 

anomalous Hall conductivity 𝜎𝐻
𝑎 can be written as 

 𝜎𝐻
𝑎 = 𝜎𝐻

𝑖𝑛 + 𝜎𝐻
𝑠𝑘 + 𝜎𝐻

𝑠𝑗
 (2.4) 

where 𝜎𝐻
𝑖𝑛 is the intrinsic contribution, 𝜎𝐻

𝑠𝑘 the extrinsic skew contribution, 

and 𝜎𝐻
𝑠𝑗

 the extrinsic side-jump contribution (see visualizations in Fig. 2.2). 

 

2.4  The Berry curvature in crystalline solids 

The Berry curvature appears readily in crystalline solids. In these 

systems the parameter space is reciprocal space, or 𝒌-space, and the basis 

kets are the periodic parts of the Bloch wavefunctions, |𝑢𝑛(𝒌)〉. Using Eqs. 

2.2 and 2.3, the Berry curvature is thus 

 𝛀𝑛(𝒌) = 𝛁𝐤 × 𝑖〈𝑢𝑛(𝒌)|𝛁𝐤|𝑢𝑛(𝒌)〉 (2.5) 

From Eq. 2.5 it is clear that the Berry curvature is an intrinsic property of 

the band structure of crystalline solids.  In particular, crystals with broken 

time-reversal or inversion symmetry have nonzero Berry curvatures (see Sec. 

2.6 below). 
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Figure 2.2: Contributions to the AHE 
Cartoons demonstrating the (a) intrinsic, (b) side-jump, and (c) skew-scattering 
contributions to the AHE. Figure from Nagaosa, Sinova, Onoda, MacDonald, and Ong 
(2010)6. 
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2.5  The intrinsic contribution to the anomalous Hall effect 

Several methods have been developed to explore the intrinsic 

contribution to the AHE (see Nagaosa, Sinova, Onoda, MacDonald, and 

Ong (2010)6 for a complete overview); the semiclassical derivation based on 

wave packet dynamics is presented in App. B. Briefly, we subject our Bloch 

electrons to a Hamiltonian that includes the perturbative electric potential 

𝜑(𝒓): 

 
𝐻̂ =

𝒑̂2

2𝑚
+ 𝑉(𝒓) − 𝑒𝜑(𝒓) (2.6) 

The velocity of our Bloch electrons is then 

 
𝒗𝑛(𝒌) =

𝜕𝜀𝑛(𝒌)

ℏ𝜕𝒌
−

𝑒

ℏ
𝑬 × 𝛀𝑛(𝒌) (2.7) 

The second term in Eq. 2.6, dependent on the Berry curvature 𝛀𝑛(𝒌) 

(defined in Eq. 2.5), is always transverse to the applied electric field 𝑬 and 

will give rise to a Hall current in materials for which 𝛀𝑛(𝒌) is non-zero. 

𝛀𝑛(𝒌) can thus be viewed as a magnetic-like driver of electron motion, 

resulting from the hopping of the electrons about the host atoms (see, for 

example, Fig. 3.1). This term does not appear in the foundational solid state 

physics textbooks by Ashcroft and Mermin (1976)9 or Kittel (2005)10, 

emphasizing the truly unexpected – or “anomalous” – nature of this term. 

For materials in which we can ignore spin-orbit coupling (as we do in 
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our monolayer MoS2 experiment in Ch. 3), we can learn about the general 

form of 𝛀𝑛(𝒌) by performing a symmetry analysis11 of Eq. 2.7. First, let us 

consider the requirements of time reversal symmetry. Under time reversal 𝑬 

is invariant, and 𝒗𝑛 and 𝒌 change sign. Time-reversal symmetry thus requires 

that 

  𝛀𝑛(−𝒌) = −𝛀𝑛(𝒌) (2.8) 

However, under spatial inversion 𝒗𝑛, 𝒌, and 𝑬 all change sign, so spatial 

inversion symmetry requires that 

 𝛀𝑛(−𝒌) = 𝛀𝑛(𝒌) (2.9) 

It is clear that Eqs. 2.8 and 2.9 cannot both be true within a single system.  

Thus, for crystals with simultaneous spatial and time inversion symmetry, the 

Berry curvature vanishes and there is no anomalous Hall current.  The AHE 

will only make an appearance in crystals with either broken time reversal or 

broken spatial inversion symmetry. Broken time-reversal symmetry, which 

occurs spontaneously in ferromagnets, results in the typical (charge) AHE11, 

while broken spatial inversion symmetry allows for a “valley” AHE, based 

on the valley DOF of charge carriers (arising in materials such as monolayer 

MoS2)12. 
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2.6  Extrinsic contributions to the anomalous Hall effect 

In addition to the intrinsic origins of the AHE discussed above, it is 

important to consider two extrinsic mechanisms that can also give rise to 

anomalous Hall currents (see Fig. 2.2).  These are known as the skew-

scattering and side-jump contributions to the AHE. (Note that the side-jump 

term actually encompasses several related mechanisms6, but for the purposes 

of this dissertation, we will only discuss the original side-jump mechanism, 

illustrated in Fig. 2.2(b).) 

The side-jump mechanism proposed by Berger (1970)13 and depicted 

in Fig. 2.2(b) arises from the interaction of the incident electron with the 

local electric fields of an impurity in the material.  The side-jump 

conductivity (𝜎𝐻
𝑠𝑗

) is independent of 𝜏, the Bloch electron transport lifetime. 

In contrast the skew-scattering mechanism proposed by Smit (1958)14 arises 

from the effective spin-orbit coupling between the incident electron and an 

impurity, as illustrated in Fig. 2.2(c)  Smit (1958) showed that for skew 

scattering, 𝜎𝐻
𝑠𝑘 ∝ 𝜏 ∝ 𝜎𝑥𝑥, where 𝜎𝑥𝑥 is the longitudinal conductivity. 

 

2.7  Distinguishing contributions to the anomalous Hall effect 

Given that both 𝜎𝐻
𝑖𝑛 and 𝜎𝐻

𝑠𝑗
are independent of 𝜏 (and by extension, 

of 𝜎𝑥𝑥), experimentally distinguishing the relative magnitudes of the AHE 
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components defined in Eq. 2.4 remains challenging6.  Although 𝜎𝐻
𝑠𝑘 is 

expected to dominate for clean samples at low temperatures, in which the 

relaxation times can be extremely large, dirty samples at high temperatures 

have very short 𝜏 and should be dominated by some mixture of 𝜎𝐻
𝑖𝑛 and 𝜎𝐻

𝑠𝑗
.  

Empirically, we can thus only separate 𝜎𝐻 into contributions that vary 

linearly with 𝜎𝑥𝑥 (i.e. 𝜎𝐻
𝑠𝑘) and contributions that are independent of 𝜎𝑥𝑥 (i.e. 

𝜎𝐻
𝑖𝑛 and 𝜎𝐻

𝑠𝑗
). Generally, 𝜎𝐻

𝑠𝑘 is only important in high-mobility materials. 

According to Nagaosa, et al. (2010)6, and based on the work of Sinitsyn, et al., 

(2007)15, 𝜎𝐻
𝑠𝑗

= −2𝜎𝐻
𝑖𝑛 in band structures where the Berry curvature is 

constant (which, as we will see in Sec. 2.8, is the case in our experiment).  

 

2.8  On the suitability of MoS2 to demonstrate the valley Hall effect 

The AHE experiments presented in this dissertation make use of 

monolayer MoS2 as the material of interest for demonstrating the particular 

case of the VHE. The two-dimensional (2D) crystal monolayer MoS2 is a 

suitable choice of material for this demonstration for a number of 

reasons12,16: 
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Figure 2.3: Crystal structure of MoS2 
The crystal structures of (left) monolayer and (right) bilayer MoS2, shown a side view. The 
side view makes the inversion symmetry of bilayer MoS2 clear, in contrast to the broken 
inversion symmetry of monolayer MoS2. 
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1. It is a crystal with broken inversion symmetry (and simultaneously not 

a material with broken time reversal symmetry), thus meeting the 

symmetry requirements of the VHE (see Fig. 2.3(a)). 

2. Its bilayer form is symmetric under inversion, providing a 

straightforward control experiment (see Fig. 2.3(b)). 

3. It is a direct band gap semiconductor with a band gap of 1.9 eV at 

the K and K’ valleys in the Brillouin zone, allowing for the use of 

optically-driven transitions of the valley carriers (see Fig. 2.1). 

4. It has a relatively low mobility, thus excluding 𝜎𝐻
𝑠𝑘 from 

consideration in the generated effect. 

5. We expect to measure a change in conductivity due to the 

photoexcited valley Hall effect, with magnitude equal to 

 
𝛿𝜎𝐻

𝑣 = −
𝑒2

ℎ

2𝜋ℏ2

𝑚𝑏𝐸𝑔
𝛿𝑛𝑐 (2.10) 

where 𝑚𝑏 is the electron band mass, 𝐸𝑔 is the band gap, and 𝛿𝑛𝑐 is the 

carrier imbalance between the K and K’ valleys. A full derivation of Eq. 2.10 

is presented in App. C. 

With this we conclude our exploration of the origins of the VHE, 

and, with these last several points in mind, we turn our attention in Ch. 3 to 

the experimental realization of the VHE in monolayer MoS2.  
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CHAPTER 3 
 

THE VALLEY HALL EFFECT IN MOLYBDENUM 
DISULFIDE TRANSISTORS 

 
 

3.1  Introduction 

In the previous chapter, we explored the origins of the valley Hall 

effect (VHE) as a particular manifestation of the anomalous Hall effect 

(AHE). Specifically, the VHE appears in crystals, such as monolayer 

molybdenum disulfide (MoS2), with broken inversion symmetry. In this 

chapter we present an expansion of our work experimentally demonstrating 

the VHE: Mak, McGill, Park, and McEuen (2014)1. We begin by 

overviewing anticipated observations, given the criteria presented in Sec. 2.8. 

 

3.2  Experimental approach to measuring the valley Hall effect 

As summarized in Sec. 2.8, monolayer MoS2 is an excellent candidate 

for the detection of the VHE – or more precisely, the photoinduced AHE. 

It has broken inversion symmetry2 (Fig. 2.3), and its optical pumping rules 

(Fig. 3.1) are such that electrons are excited in the K and K’ valleys by right-

handed and left-handed circularly polarized light at 1.9 eV, respectively3,4. 

Thus, we expect to generate a population imbalance in photoexcited carriers 

between the K and K’ valleys (depending on the handedness of the incident  
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Figure 3.1: Optical selection rules in monolayer MoS2 
The valley-dependent optical selection rules are such that right-handed light at 1.9 eV 
excites electrons in the K valley and 1.9 left-handed light excites K’ electrons in 
monolayer MoS2. In the depiction of the MoS2 lattice to the left and right of the K and K’ 
valleys, respectively, the orange arrows represent the clockwise and counterclockwise 
hopping motion (respectively) of the electrons around the Mo atoms. Note that the 

electrons at the two valleys possess opposite Berry curvatures Ω⃑⃑ . Figure from Mak, 
McGill, Park, and McEuen (2014)1. 
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light) and to measure that imbalance as an AHE. Likewise, linearly polarized 

light should not generate such a population imbalance. Moreover, bilayer 

MoS2 is inversion symmetric (as shown in Fig. 2.3), so we do not expect to 

observe a Hall separation of valley carriers in bilayer devices. It is important 

to note that the tools we are using to measure the VHE are all based on the 

charge degree of freedom (DOF) – that is, we are able to directly detect 

(charge) voltages but cannot directly measure “valley voltages”. Fortunately, 

by selectively photoexciting electrons in MoS2 using its optical selection 

rules3,4, we expect to measure a (charge) Hall voltage that can only be present 

as a result of the separation of charge carriers based on their valley index. 

Furthermore, as shown in Fig.3.2, we expect the Hall conductivity to be 

comprised of both the intrinsic and the side-jump contributions. We thus 

expect to measure a valley Hall conductivity proportional to the carrier 

imbalance between the K and K’ valleys, as introduced in Eq. 2.10. 

 

3.3  MoS2 device fabrication 

To study the VHE, we designed MoS2 transistors to have a 4-contact 

Hall bar geometry, as shown in Fig. 3.2. We have two reasons for designing 

our Hall bar devices with the long Hall probes and short photoconduction  
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Figure 3.2: Monolayer MoS2 device design 
(left) Schematic of a photoinduced AHE driven by a net valley polarization. The dotted 
lines show the path of the electrons from the intrinsic effect alone; the solid lines show 
the result of the intrinsic and side-jump effects together, as explained in Sec. 2.7 (right) 
An image of a typical monolayer MoS2 Hall bar device and the wiring scheme used for 
the measurement, more fully depicted in Fig. 3.5. In our catalog of devices, this is device 
M1. Figure from Mak et al. (2014)1. 
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channels shown in the picture: 

1. We want the photocurrent to be produced near the center of 

the device so that we can reasonably attribute any voltage 

detected by the Hall probe to the motion of the Hall carriers, 

rather than to photoexcited carriers from the photoconduction 

channel. 

2. By focusing our laser on the center of the device and moving 

the Hall probes away from the device center, we reduce the 

background photovoltage generated at the metal-

semiconductor probe contacts. 

To begin fabrication, we mechanically exfoliated MoS2 monolayers 

from bulk MoS2 crystals (SPI Supplies) onto silicon (Si) substrates coated by 

300 nm of silicon dioxide (SiO2). Monolayer samples were identified using a 

combination of optical contrast and photoluminescence spectroscopy5. We 

used standard electron beam lithography techniques to define metal contact 

areas on our exfoliated samples. Electron beam evaporation was then used 

to deposit 0.5 nm titanium (Ti)/50 nm gold (Au) as contacts, followed by a 

standard methylene chloride/acetone lift-off procedure. Using electron beam 

lithography to create an etch mask, we defined the Hall bar geometry using a 

ten-second low-pressure sulfur hexafluoride (SF6) plasma etch. Finally, the 
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device was laser annealed in high vacuum6,7 (~ 10-6 torr) at 120 °C for ~10 hr 

before measurement. We investigated multiple devices in this study: six 

monolayer MoS2 devices, labeled as M1-M6, and two bilayer MoS2 devices, 

labeled as B1 and B2. 

 

3.4  Characterization of MoS2 transistors 

We begin our experiments by optoelectrically characterizing our 

devices. Device M1 is shown in the schematic presented in Fig. 3.2. The gate 

voltage (𝑉𝑔)-dependence of its conductivity (𝜎𝑥𝑥), extracted from both two- 

and four-point measurements, is shown in Fig. 3.3. We observe the usual n-

type field effect transistor behavior8. To measure the two-point conductivity, 

we apply a bias of  𝑉𝑥 = 0.5 V to the short channel of the device and 

monitor the source-drain current 𝐼𝑥 . We measure the four-point conductivity 

by swapping the drain and B contacts on the device, as shown in Fig. 3.5 and 

taking into account a geometric factor9 of  ln 2 /𝜋. The two- and four-point 

conductivities are similar in magnitude, indicating near-ohmic contacts in the 

device6. (Although the 𝐼𝑥-𝑉𝑥 curves show the presence of Schottky barriers at 

small bias (Fig. 3.3, inset), this has little influence on our measurements at 

high bias: we typically take measurements at 𝑉𝑥=0.5 V.) A four-point carrier 

mobility of 100 cm2 V−1 s−1 and a two-point carrier mobility of                 
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Figure 3.3: Typical conductivity of monolayer MoS2 devices 
(main) Two-point (dashed) and four-point (solid) conductivities as a function of gate 

voltage 𝑉𝑔 at source-drain voltage 𝑉𝑥 = 0.5 V for the device M1 pictured in Fig. 3.2. 

(inset) Source-drain current 𝐼𝑥 as a function of 𝑉𝑥 at a variety of 𝑉𝑔 values. Close to 𝑉𝑥 = 0 

V the 𝐼𝑥-𝑉𝑥 curves are nonlinear due to the presence of Schottky barriers; however, we 

conduct our experiments far from 𝑉𝑥 = 0 V, in the linear regions of the 𝐼𝑥-𝑉𝑥 curves. 

(Typically, we take measurements at 𝑉𝑥 = 0.5 V.) Figure from Mak et al. (2014)1. 
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60 cm2 V−1 s−1 are extracted at high 𝑉𝑔, where the 𝜎𝑥𝑥-𝑉𝑔 dependence 

becomes linear. 

In Fig. 3.4, we examine the photoresponse of our device in order to 

confirm the appropriate photon energy (𝐸) for efficient excitation of valley-

polarized carriers3,10. The change in conductivity with and without laser 

illumination ∆𝜎𝑥𝑥 = 𝜎𝑥𝑥,𝑙𝑖𝑔ℎ𝑡 − 𝜎𝑥𝑥,𝑑𝑎𝑟𝑘  plotted as a function of 𝐸 clearly 

shows the A (at 𝐸 ≈ 1.9 eV) and B (at 𝐸 ≈ 2.1 eV) resonances of monolayer 

MoS2
5.  The A peak of ~1.9 eV is the (direct) band gap of monolayer MoS2, 

and it is located at the K and K’ valleys in the band structure (see both Figs. 

2.1 and 3.1). Shown in the inset is the photocurrent ∆𝐼𝑥 as a function of 𝑉𝑥 

(at 𝑉𝑔 = 0 V) under various laser excitation intensities 𝑃. The inset data were 

taken with a laser centered at the A peak (1.9 eV) and focused at the center 

of the device. Similar to the effect of electrical gating (Fig. 3.3, inset), the 

effect of incident photons (Fig. 3.4, inset) is to increase the channel 

conductivity 𝜎𝑥𝑥 , which indicates that photoconduction is the main 

mechanism driving the photoresponse in our device11. Photocurrent 

generation under zero bias is negligible. 

We note that with this geometry and fabrication recipe, the Hall probe 

typically picks up a background voltage of about 1 per 100 of 𝑉𝑥 due to  
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Figure 3.4: Typical photoconductivity of monolayer MoS2 devices 

(main) Energy 𝐸 spectrum of the change in conductivity ∆𝜎𝑥𝑥 due to the photoexcitation 
of carriers. The peak indicated by the red arrow at 1.9 eV is the band gap of monolayer 
MoS2; the green arrow indicates the off-resonance excitation of 2.3 eV used as a control 

for the photoexcitation of valley-specific carriers. (inset) Change in current ∆𝐼𝑥 as a 

function of bias voltage 𝑉𝑥 for a variety of incident powers at 1.9 eV excitation. Similar to 
the inset of Fig. 3.3, the device is effectively gated by the incident light. Figure from Mak 
et al. (2014)1. 
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remnant longitudinal-transverse coupling. This finite longitudinal-transverse 

coupling does not affect our AHE measurement, which is performed under 

modulations of the handedness of incident light (see Sec. 0).  

 

3.5  Experiment setup  

With our devices fabricated and characterized, we now describe our 

experimental setup, a schematic of which is shown in Fig. 3.5. All 

experiments were performed in a Janis cryostat cooled with liquid nitrogen, 

and, unless otherwise noted, all experiments were performed at 77 K. 

To begin, we linearly polarize the light from a 1.9 eV diode laser, on 

resonance with the K and K’ direct band gaps found in MoS2. The light then 

passes through a photoelastic modulator (PEM), which is effectively a 

waveplate with adjustable phase delay ∆𝜆, that can be synched to a lock-in 

amplifier for the detection of small voltage signals resulting from the 

photoexcited carriers. The angle θ between the initial linear polarizer and the 

PEM is set appropriately to produce circularly polarized light (𝜃 = ±45°) in 

the quarter-wave (∆𝜆 = 1/4) condition, while the half-wave (∆𝜆 = 1/2) 

condition produces linearly polarized light. The PEM switches the circular 

polarization back and forth between right-handed (𝜃 = 45°) and left-handed 

(𝜃 = −45°) light at 50 kHz, and it switches the linear polarization back and 
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forth between 𝜃and 𝜃 − 90° at 100 kHz. We designate the case in which the 

circular polarization starts with 𝜃 = 45° as “R-L” excitation, and the case in 

which it starts with 𝜃 = −45° as “L-R” excitation. We denote linearly 

polarized light as “s-p” excitation. 

As can be seen in Fig. 3.5, the laser reflects off of a scanning mirror 

and onto the device via a 40x microscope objective in an inverted 

microscope. The scanning mirror allows us to precisely position the laser on 

the center of the device; additionally, we can use it to produce raster-scan 

maps of the excitation information (for example, as shown Fig. 3.7). The 

spot diameter of the laser on the device is ~1-3 µm, depending on the 

specific measurement, and the incident intensity is ~100-150 µW µm-2. We 

minimized effects from possible modulation of the beam position by control 

experiments using expanded illumination with a beam diameter of ~5 μm. 

We were able to reduce undesirable power modulation to a level less than  

10-4 at the sample, a level small enough to be negligible in our Hall voltage 

measurement. 

In order to collect photo- and Hall conductivity spectra, we used a 

Fianium supercontinuum laser source immediately followed by a 

monochromator, selecting a line width of ~5 nm for each color. Device 

images were taken by collecting reflected (white) light on a silicon  
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Figure 3.5: Schematic of the VHE experiment setup 

We linearly polarize 1.9 eV light from a diode laser and pass it through a photoelastic 

modulator (PEM). The PEM allows us to alternatively generate right- and left-handed 

circularly polarized light at 50 kHz. We use a lock-in amplifier set to 50 kHz for 

detection of the Hall voltage signal. 
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photodiode. We collected electrical measurements by wiring our devices as 

shown in Fig. 3.5. We bias the device by a voltage 𝑉𝑥 across the short 

channel, across which we also measure the current 𝐼𝑥 . We measure the Hall 

voltage 𝑉𝐻 across contacts A and B. This signal is pre-amplified before 

passing to the lock-in amplifier, which is synched to the frequency of the 

PEM. The final signal is recorded by a computer through a National 

Instruments data acquisition device (DAQ). The computer sets 𝑉𝑥 and the 

gate voltage 𝑉𝑔 and measures 𝐼𝑥 . 

 

3.6  The valley Hall voltage response of MoS2 transistors 

By parking the laser spot at the center of the device, we studied the 

Hall response under on-resonance excitation (centered at 𝐸 ≈ 1.9 eV). In 

Fig. 3.6(a), we show the 𝑉𝑥-dependence of the anomalous Hall voltage (𝑉𝐻) 

at 𝑉𝑔 = 0 V. We observe a small 𝑉𝐻 that scales linearly with 𝑉𝑥  under R-L 

modulation (Fig. 3.6(a), solid red line). This is the signature of a 

photoinduced AHE driven by a net valley polarization. Given the geometry 

of the electrical connections shown in Fig. 3.5, a positive Hall voltage under 

R-L modulation for a positive bias is observed. This is consistent with the 

prediction of a side-jump–dominated VHE (Eq. 2.10)2,12. The sign of the 

signal is reversed when the excitation is changed to L-R modulation (Fig.  
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Figure 3.6: The VHE in monolayer MoS2 

(a) Valley Hall voltage 𝑉𝐻 as a function of bias voltage 𝑉𝑥 under 1.9 eV excitation at 130 
µW µm-2. Red data from monolayer device M1; blue data from bilayer device B1. 
Solid/dashed line shows right-left handed (R-L)/left-right handed (L-R) modulation. 
Dotted line shows linear (s-p) modulation. Please refer to the text in Sec. 3.5 for a full 

explanation of modulation notation. (b) Hall resistance 𝑅𝐻 as a function of incident angle 

𝜃 for: (red filled dots) quarter-waveplate (∆𝜆=1/4), and (red open dots) half-waveplate 

(∆𝜆 =1/2) modulation incident on monolayer device M1; (red line) sine fit of quarter-
waveplate modulation data; (blue closed dots) quarter-waveplate modulation incident on 
bilayer device B1. Figure from Mak et al. (2014)1. 
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3.6(a), dashed red line). In contrast, no net Hall voltage is seen when we 

switch to linear (s-p) modulation (Fig. 3.6(a), dotted red line). We observe 

identical patterns of behavior across all of our monolayer devices. 

To study the polarization dependence carefully, the anomalous Hall 

resistance 𝑅𝐻 = 𝑉𝐻/𝐼𝑥 as a function of the angle 𝜃 is shown in Fig. 3.6(b) 

for both the quarter- and half-wave modulations. We see that the Hall 

resistance RH exhibits a sinusoidal dependence on 𝜃 under quarter-wave 

modulation. A maximum Hall resistance of ~2 Ω is measured under an 

excitation intensity of ~150 mW mm−2. For comparison, zero Hall resistance 

is observed under half-wave modulation. Our results are consistent with 

recent experimental observations of a net valley polarization under the 

optical excitation of the A resonance with circularly polarized light3,4,13–15.  

 

3.7  Scanning Hall voltage microscopy  

We spatially mapped the photocurrent and Hall voltage responses of 

our devices under illumination. All of the maps were recorded at 𝑉𝑔 = 0 V 

and 𝑉𝑥 = 0.5 V, using a continuous-wave diode laser centered at 1.9 eV, with 

spot diameter ~1 μm, and incident power ~50 μW. Figure 3.7 shows 

scanning photocurrent images of several monolayer devices. The 

photocurrent is mainly generated at the center of the device when a source- 
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Figure 3.7: Scanning voltage microscopy of the VHE in monolayer MoS2 

(left) Scanning photocurrent (Δ𝐼𝑥) images for three monolayer devices, M1, M4, and M5. 
Contacts are outlined in black; measurement scheme depicted in upper left map. 
Photocurrent generation mainly occurs in the center of the device. (right) Scanning Hall 

voltage (𝑉𝐻) images of the same devices under R-L and L-R modulation, as labeled. 

Contacts are outlined in thin white lines. Note that 𝑉𝐻 changes sign from one modulation 
to the next. Please refer to Fig. 3.6 and Sec. 0 for a full explanation of modulation 

notation. All maps taken with ~50 µW incident light at an energy 𝐸=1.9 eV, bias voltage 

𝑉𝑥=0.5 V, and gate voltage  𝑉𝑔=0 V. Figure from Mak et al. (2014)1. 
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-drain bias voltage 𝑉𝑥 is applied across the short channel. The corresponding 

scanning Hall voltage (𝑉𝐻) images are shown to the right of the photocurrent 

maps for R-L and L-R modulations. We see that a finite Hall voltage is 

produced at the center of the monolayer devices, coinciding with the 

location of photocurrent production. Furthermore, in all devices, the sign of 

𝑉𝐻 reverses when the helicity of the modulation changes from R-L to L-R.  

 

3.8  Control Experiments 

As our first control experiment, we examine the Hall response of 

bilayer devices, beginning with their optoelectronic characterization. Figure 

3.8(a) shows the 4-point conductivity as a function of back gate voltage for 

bilayer device B2. Similar to the monolayer devices, we only observe n-type 

behavior. This particular device has a 4-point mobility of ~440 cm2 V-1 s-1. In 

general, bilayer devices have slightly higher electron mobilities (typically 

between 100 and 500 cm2 V-1 s-1) compared to their monolayer counterparts 

(typically between 50 and 300 cm2 V-1 s-1). Figure 3.8(b) shows the spectra of 

the change in photoconduction for monolayer device M2 (black) and bilayer 

device B2 (blue). The similar photoconduction spectra reflect their similar 

absorption spectra originating from direct optical transitions. This result is  
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Figure 3.8: Characterization of bilayer MoS2 devices 

(a) Four-point conductivity 𝜎𝑥𝑥 as a function of gate voltage 𝑉𝑔 at a bias 𝑉𝑥=1 V. The 

mobility 𝜇 is about 440 cm2 V-1 s-1. (b) Change in conductivity Δ𝜎𝑥𝑥 due to 

photoexcitation as a function of incident light energy 𝐸 for 𝑉𝑔=0 V and 𝑉𝑥=0.5 V. The 

spectrum from a monolayer device is shown in black; the spectrum from a bilayer device 
is in blue. Figure from Mak et al. (2014)1. 
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consistent with recent optical studies of the absorption spectra of MoS2 

samples of varying thickness5. 

In Fig. 3.9, we see that the bilayer device has a similar photocurrent 

map to those of the monolayer devices. However, the Hall voltage is much 

smaller – by about a factor of 10 – than that of the monolayer devices. We 

note that significant photovoltages (particularly in the bilayer device) are also 

observed at the metal-semiconductor contacts of the Hall probe (both at 

zero and finite bias along the short channel). These photovoltages probably 

arise from the modification of the polarization state by the metal contacts, 

leading to a corresponding power modulation. The absence of a Hall voltage 

response in the center of the bilayer device, in contrast to the significant 

response in the monolayer device, supports our expectation that the 

inversion-symmetric bilayer device does not exhibit a VHE while the broken 

inversion symmetry of the monolayer device does exhibit a VHE. 

As a second straightforward control experiment, we compare the Hall 

voltage maps of monolayer devices excited both on-resonance at the A 

exciton (1.9 eV) with those of an off-resonance excitation of 2.3 eV in Fig. 

3.10. While the device displays a similar photocurrent response under both 

the 1.9 eV and 2.3 eV excitation energies, we only observe a significant Hall 

voltage under R-L modulation when the device is excited at its band gap, 1.9  
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Figure 3.9: Response of monolayer vs. bilayer MoS2 devices 

(left) Scanning photocurrent (Δ𝐼𝑥) map of monolayer device M2 and bilayer device B1. 
Contact pads indicated by black lines; measurement scheme depicted in upper left map. 

(right) Scanning Hall voltage (𝑉𝐻) map under R-L and L-R modulation for a monolayer 
and bilayer devices, as labeled. Note that a Hall voltage is measured in the center of 
monolayer device M2 but not observed in bilayer device B1. All maps were taken on-

resonance at incident light energy 𝐸=1.9 eV, bias voltage 𝑉𝑥=0.5 V, and gate voltage 

𝑉𝑔=0 V. Figure from Mak et al. (2014)1.  
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Figure 3.10: On- vs. off-resonance excitation in monolayer MoS2 devices 

(left) Scanning photocurrent (Δ𝐼𝑥) map of monolayer device M1 under 1.9 and 2.3 eV 

excitation, as labeled. (right) Scanning Hall voltage (𝑉𝐻) map under R-L modulation at 1.9 
and 2.3 eV excitation, as labeled. Note that under off-resonance excitation (2.3 eV), the 

Hall voltage 𝑉𝐻 vanishes. All maps taken at bias voltage 𝑉𝑥=0.5 V and gate voltage 𝑉𝑔=0 

V. Figure from Mak et al. (2014)1. 
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eV. This supports our understanding that there is a carrier population 

imbalance generated by exciting monolayer devices with properly polarized 

light at the band gap, thereby selecting for one valley over the other, but that 

light (even with the same polarization) at higher energy does not significantly 

selectively populate one valley over the other. 

 

3.9  Measurement of the Valley Hall Conductivity 

In order to compare our results against the theoretical linear 

dependence of the valley Hall conductivity 𝜎𝐻
𝑣 on the K and K’ carrier 

imbalance 𝛿𝑛𝑐 (derived in App. C), we measure 𝜎𝐻
𝑣 as a function of the change 

in photoexcited carrier density ∆𝑛𝑝ℎ. We note that theoretically, if the change in 

conductivity is solely driven by the valley-polarized carriers excited by 

resonant, circularly polarized light, 𝛿𝑛𝑐 = ∆𝑛𝑝ℎ; however, in a real system 

∆𝑛𝑝ℎ serves an upper bound on 𝛿𝑛𝑐 as it  may include contributions from 

both valley-polarized and -unpolarized carriers. For reference, then, we are 

comparing our data to the slightly modified Eq. 2.10 

 
𝜎𝐻

𝑣 = −
𝑒2

ℎ

2𝜋ℏ2

𝑚𝑏𝐸𝑔
∆𝑛𝑝ℎ (3.1) 

 In order to estimate ∆𝑛𝑝ℎ, we studied the laser intensity (𝑃) 

dependence of the photoinduced AHE, as shown in Fig. 3.11. We first  
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Figure 3.11: Photodoping dependence of monolayer MoS2 devices 

(a) (main) Photoexcited carrier density ∆𝑛𝑝ℎ as a function of gate voltage 𝑉𝑔 for various 

laser intensities 𝑃 at a bias 𝑉𝑥=0.5 V and incident R-L illumination of energy 𝐸=1.9 eV. 

(inset) The change in conductivity ∆𝜎𝑥𝑥 plotted against 𝑉𝑔 at various intensities 𝑃. (b) 

∆𝑛𝑝ℎ as a function of 𝑃 at various 𝑉𝑔, with the same excitation conditions as in (a). Figure 

from Mak et al. (2014) 
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measured the 𝑉𝑔 dependence of the lateral conductivity ∆𝜎𝑥𝑥 under 1.9 eV 

R-L illumination of various intensities (inset, Fig. 3.11(a)). We then estimate 

the effective change in the photoexcited carrier density ∆𝑛𝑝ℎ from the 

relation ∆𝜎𝑥𝑥 = 𝑒𝜇∆𝑛𝑝ℎ, where 𝜇 =
1

𝐶𝑔

𝑑𝜎𝑥𝑥

𝑑𝑉𝑔
 is extracted from the dark 

electrical measurements presented in Fig. 3.3. The back-gate capacitance 𝐶𝑔 

is ~1.2 × 10–8
 F cm−2. With these calculations, we are able to plot ∆𝑛𝑝ℎ 

against 𝑉𝑔 (main, Fig. 3.11(a)) at various illumination intensities. Likewise, we 

examine ∆𝑛𝑝ℎ as a function of 𝑃 at various 𝑉𝑔 (Fig. 3.11(b)). 

This analysis allows us to finally plot 𝜎𝐻
𝑣 against ∆𝑛𝑝ℎ at different 

values of 𝑉𝑔 in Fig. 3.12 and to compare our results to the theory presented 

in Eq. 3.1, plotted in gray (in the limit 𝛿𝑛𝑐 = ∆𝑛𝑝ℎ). For all gate voltages, 

𝜎𝐻
𝑣 increases linearly with ∆𝑛𝑝ℎ, which is consistent with the theoretical 

prediction. The photoinduced anomalous Hall conductivity 𝜎𝐻
𝑣 also has the 

right order of magnitude and approaches the theoretical value at high 𝑉𝑔. 

However, we do not currently understand the delayed onset discrepancy 

between our data and the theory. We also note that in the simplest case of 

𝛿𝑛𝑐 = ∆𝑛𝑝ℎ, we do not expect to observe a gate dependence as part of the 

relation (see Eq. 3.1), which is quite different from our experimental 

observations. One possible explanation of this discrepancy is the presence of 



 

53 

photoconduction mechanisms that are not due to the AHE, such as the 

relaxation of valley polarization in some of the carriers. Additionally, the 

slope of the 𝜎𝐻
𝑣 versus ∆𝑛𝑝ℎ curves keeps increasing with higher 𝑉𝑔 and may 

go beyond the theoretical prediction. Unfortunately, the range of 𝑉𝑔 applied 

in our experiment was limited by the breakdown of the back gate, so we 

were unable to explore this regime. A second possibility is a finite 

contribution from skew-scattering processes10,16, which we neglected in Eq. 

3.1 as negligible due to the non-pristine nature of our samples (see App. C). 

The relative importance of each of the intrinsic and extrinsic contributions 

depends on the sample quality (which in turn effects doping), so studies of 

the dependence on temperature and on disorder are therefore required to 

better understand the doping density dependence of the VHE. 

  

3.10 Conclusions and research outlook 

Our experimental results robustly support our interpretation of the 

measured Hall voltage as arising from the VHE. Briefly, the results are: (1) 

the sign of the Hall voltage corresponding to the handedness of the incident 

light; (2) the Hall resistance varying sinusoidally with the incident angle θ; (3) 

the absence of a Hall voltage in inversion-symmetric bilayer devices; (4) the 

observation of a Hall voltage only for the on-resonance excitation energy of  
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Figure 3.12: Comparison of experimental and theoretical Hall conductivity 

Valley Hall conductivity 𝜎𝐻
𝑣 as a function of the photoexcited carrier density ∆𝑛𝑝ℎ in 

device M1 at a variety of gate voltages 𝑉𝑔. The theoretical prediction presented in Eq. 

2.10 is graphed in gray. We note that at all gate voltages, 𝜎𝐻
𝑣 ∝ ∆𝑛𝑝ℎ, with the slope for 

highly gated devices approaching that of the theoretical prediction. Unfortunately, due to 

dielectric breakdown, we were unable to push 𝑉𝑔 higher than 40 V. Figure from Mak et al. 

(2014)3. 
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1.9 eV, which is the direct band-gap at the K and K’ valleys of monolayer 

MoS2; (5) the measurement of a valley Hall conductivity proportional to the 

density of excited carriers. The demonstration of a valley-sensitive 

photodetector represents an important advance for both fundamental 

condensed matter physics and the emerging area of valley-dependent 

electronics, which, since the 2014 publication of this work, includes the non-

local detection of valley currents in graphene/hexagonal boron nitride (hBN) 

devices17, electrical control of the VHE in bilayer MoS2
18, and the 

engineering of ultralong lifetimes of valley-polarized carriers in tungsten 

diselenide (WSe2)/MoS2 heterostructures19. With these advances, 

“valleytronics” is a growing field that spans both the use of a new 

information carrier, the valley index, and the increasingly varied world of 2D 

materials as flexible optoelectronic devices. 
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CHAPTER 4 
 

MEASURING THE BENDING STIFFNESS OF GRAPHENE 
 

 

4.1  Introduction 

In Ch. 3 we explored the experimental demonstration of the 

photoinduced anomalous Hall effect in the two-dimensional (2D) material 

monolayer molybdenum disulfide (MoS2). In this chapter we are shifting our 

focus in both the physics and 2D material of interest from the AHE in MoS2 

to the mechanics of graphene. Specifically, we will be exploring two distinct 

approaches for directly measuring the bending stiffness of graphene 

fabricated into cantilevers: one taking advantage of the Brownian motion of 

the cantilever, and one using radiation pressure to obtain a force-distance 

curve. The methods here presented are refinements of those presented in 

Melina Blees’ Ph.D. dissertation (2015)1, and they were ultimately published 

as part of Blees et al. (2015)2. As part of our analysis, we compare our 

measurements to measurements based on the force of gravity acting on the 

cantilever, which were initially presented in Blees (2015)1 and published in 

Blees et al. (2015)2. Note that the text of this chapter is an expansion the 

bending stiffness section of Blees et al. (2015)2. 
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4.2  Experimental approach to measuring the bending stiffness 

In this section we describe our general approach to measuring the 

bending stiffness of graphene, leaving fabrication, setup, and measurement 

method details for Secs. 4.3-4.5. The graphene device release procedure 

detailed below makes it possible to freely manipulate graphene beyond its 

two-dimensional plane and into the third dimension, much as you can bend 

a piece of paper in three dimensions. By attaching gold (Au) pads to the ends 

of graphene strips to facilitate the movement of graphene in the third 

dimension, we can use several distinct techniques to measure the bending 

stiffness of graphene. Fig. 4.1(a) shows a labeled white light transmission 

image of graphene cantilevers resting on a fused silica substrate. The black 

rectangles are the Au pads, while the gray rectangles are the graphene.  

To conduct our measurements, we push a microprobe into one of the 

gold pads on the graphene cantilever and peel or lift the device off the 

surface (Fig. 4.1(b)). (Even though the graphene crumples significantly 

during this process, it is almost entirely reversible in the presence of 

surfactants2.) The device then hangs from the microprobe, primarily shaped 

by the force of gravity acting on the free gold pad (see Fig. 4.6(a)). From this 

initial position, we can obtain the spring constant 𝑘 of a device by measuring 

the deflection caused by gravity, the radiation pressure needed to counteract  
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Figure 4.1: Release of graphene cantilevers from substrate 
(a) An image of graphene cantilever devices resting on the fused silica surface after 
release, but before any attempt at pick-up. (b) We push on one of the gold pads with a 
microprobe (orange arrow) and scrunch up the device to further release it before picking 
it up off the surface. In the presence of surfactants, the effects of this motion are almost 
entirely reversible. Scale bar 10 µm. Figure from Blees et al. (2015)2. 
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the force of gravity, or the Brownian motion of the free gold pad in the 

water. 

Once we extract the spring constant 𝑘 of the cantilever, we infer the 

bending stiffness 𝜅 by using the relation 

 
𝜅 =

𝑘𝐿3

3𝑊
 

 
(4.1) 

where 𝐿 is the length of the cantilever and W is its width. Equation 4.1 is 

derived from the classical beam mechanics3 for a massless beam (the 

graphene) with a mass fixed on one end (the free gold pad) and the 

relationship 

 
𝜅 =

𝑌𝑡3

12(1 − 𝜎2)
 

 

(4.2) 

derived in Landau and Lifshitz (1986)4 by minimizing the free energy of a 

thin bent plate, and in which 𝑌 is the Young’s modulus, 𝑡 is the thickness of 

the cantilever, and 𝜎 is the Poisson’s ratio of the cantilever material. (In the 

case of graphene, 𝜎 = 0.17 and is thus negligible5.) 

 

4.3  Fabrication and characterization of graphene devices 

We fabricate graphene cantilevers with lengths ranging from 8-80 µm 

and widths from 2-15 µm. We begin fabrication by growing polycrystalline 

monolayer graphene on copper foil via chemical vapor deposition (CVD)6. 
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We purchased the copper foil from Alpha Aesar, stock number 13382. After 

annealing the copper at 980 °C for 36 minutes in hydrogen gas (H2) flowing 

at 60 sccm, graphene was grown at 980 °C for 20 min in a flow environment 

of 60 sccm H2 and 36 sccm methane (CH4). The foil was then cooled in the 

same environment as quickly as possible. 

We use a variety of microscopies to characterize the graphene, and we 

present a typical scanning electron microscope (SEM) image, Raman 

spectrum, and bright- and dark-field transmission electron microscope 

(TEM) images in Fig. 4.2. The Raman spectrum was taken on CVD 

graphene that we transferred to a 285-nm-silicon-dioxide/silicon (SiO2/Si) 

substrate. The spectrum shows graphene’s characteristic G peak at 1,580  

cm-1 and two-dimensional (2D) peak at 2,700 cm-1; the ratio between the 

two7 confirms that we used primarily monolayer graphene in the fabrication 

of our devices. Additionally, a small D peak at 1,350 cm-1 indicates low 

disorder. (The small peak at 2,450 cm-1 is background.) The high-contrast 

bright-field TEM image of graphene transferred over 10-nm-thick silicon 

nitride (Si3N4) windows confirms that we are working with continuous 

monolayer graphene. Dark-field TEM on a variety of growths revealed that 

typical grain sizes were on the order of hundreds of nanometers to microns 

(as seen Fig. 4.2(d)). (Larger-scale variations in contrast in the SEM image,  
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Figure 4.2: Graphene characterization 
(a) SEM of CVD graphene on copper foil. Scale bar 10 µm. (b) Raman spectrum of CVD 
graphene transferred onto an SiO2/Si substrate. We see graphene’s characteristic G peak 
at 1,580 cm-1 and 2D peak at 2,700 cm-1, with their ratio indicating it is monolayer. (c) 
High-contrast bright-field TEM of graphene on a Si3N4 window showing continuous 
monolayer graphene. Scale bar 1 µm. (d) False-color composite dark-field TEM version 
of (c), showing graphene grain size and shape. Scale bar 1 µm. (e) TEM diffraction 
pattern for the region shown in (c) and (d). Figure from Blees et al. (2015)2. 
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Fig. 4.2(a), are the copper grains present in the foil used for CVD growth.) 

All graphene used in the following experiments consisted of monolayer 

graphene with some small bilayer patches, similar to that shown in Fig. 4.2. 

We used standard graphene processing methods on top of fused silica chips 

that had a 40 nm-aluminum release layer evaporated onto them. We spin 2% 

poly(methyl methacrylate) onto the graphene to both protect and support it 

during transfer. After etching the copper away from the graphene in ferric 

chloride (Transene CE-200), we rinse the graphene in five consecutive 

deionized water baths before finally transferring it onto the aluminum-

coated chips. We soak the chips in acetone overnight to remove the PMMA, 

leaving us with chips ready for cleanroom processing. We use 

photolithography to pattern the device pads and evaporate 50 nm of gold to 

form them. We then pattern the graphene strips and etch away the unwanted 

graphene in oxygen plasma for 25 seconds. Before conducting experiments, 

we soak the chip in a 10:1 deionized water:hydrochloric acid (HCl) solution 

until the aluminum release layer has completely disappeared. The graphene 

devices are now resting on the surface of the fused silica; after transferring 

the chips directly into deionized water, we are ready to conduct our 

experiments. 

As shown by the atomic force microscope (AFM) images presented in  
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Figure 4.3: AFM of graphene samples 
(a) AFM of a pristine exfoliated graphene sample. (b) and (c) Representative CVD 
graphene samples that have been through the entire device fabrication procedure (prior 

to release). AFM height in 𝑧 for all images indicated to the left of (a). All scale bars 1 µm. 
Figure from Blees et al. (2015)2. 
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Fig. 4.3, it is impossible to completely avoid polymer residues from these 

standard transfer and fabrication methods. We measure a ~2-nm-thick layer 

of PMMA on top of our graphene after processing. The stiffest PMMA8 has 

a Young’s modulus 𝑌 = 3.1 GPa and a Poisson ratio 𝜎 = 0.4, adding only 

~30 eV to the measured stiffness (since 𝜅 = 𝑌𝑡3/[12(1 − 𝜎2)]), which is 

negligible compared to the measured values we present below. 

 

4.4  Radiation pressure measurement method 

The first method by which we measure the bending stiffness of 

graphene is by using the radiation pressure from a 1,064-nm infrared laser to 

counteract the buoyant force and the force of gravity acting on the free end 

of a suspended graphene cantilever. This schema is visualized in Fig. 4.4(a), 

in which the grey triangle represents the probe tip that holds the device 

above the substrate and the red triangle represents the focused laser beam. 

We calibrated the force produced by our laser by balancing the applied 

radiation pressure against the known weight and buoyancy of the cantilever’s 

free gold pad. For our measurements, we focused the laser on the center of 

the free gold pad and adjusted its power with an acousto-optic modulator.  
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Figure 4.4: Measuring the bending stiffness of graphene 
(a) Schematic demonstrating the laser pressure method for measuring the bending 
stiffness of graphene. (b) Image of a cantilever device turned on its side so that the 
camera can record its Brownian motion, from which we extract the bending stiffness of 
graphene. (c) Histogram of bending stiffness measurements from the laser (red) and 
thermal (grey) measurements. The theoretical bending stiffness for (flat) graphene is 
indicated at 1 eV. (inset) An interferometric image of graphene lying on a fused silica 
substrate after the Al release layer has been etched away, showing the static ripples 
present in the graphene. All scale bars are 10 µm. Figure from Blees et al. (2015)2. 
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We were then able to record force-displacement curves for the cantilevers 

and determine 𝑘 from the linear fits of the collected data.  The 𝑧-

displacement of the cantilevers was measured using a piezo attached to the 

objective of the optical microscope. 

 

4.5  Thermal motion measurement method 

We made an independent measurement of cantilever spring constants 

by capitalizing on the Brownian motion of the free gold pad. For these 

measurements, we rotated the microprobe until we could see the attached 

cantilever edge-on; this allowed us to record the thermal fluctuations of the 

free pad in the 𝑥-𝑦 plane, as shown in Fig. 4.4(b). (We note that, although 

the aqueous environment slows down the fluctuations, based on preliminary 

experiments, it does not change the spring constant of the cantilever.) We 

recorded the motion at 90 fps for ~20 min to ensure that we sampled the 

entire phase space of the cantilever’s motion. The first 20 seconds from the 

trace of the free gold pad on a 40 µm × 10 µm cantilever are shown in the 

Fig. 4.5(a). We tracked the motion of the pad centroid in a frame-by-frame 

image analysis to extract the 𝑥 position of the pad over time, with the 𝑥 

direction taken as perpendicular to the profile of the free gold pad (see inset 

of Fig. 4.5(a)).  
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To extract the time-averaged square of the cantilever’s thermal 

motion, 〈𝑥𝑡ℎ
2 〉, we calculated the power spectral density (PSD) (the Fourier 

transform of the autocorrelation of the data) for each cantilever; a 

representative example is shown in Fig. 4.5(b). In all devices we observed 

low-frequency 1/𝑓 noise from the long-timescale motion of the supporting 

probe (shown in red). This low-frequency noise was excluded from further 

analysis. We fit the data plotted in blue, which resulted from the thermal 

motion of the free gold pad, with the theoretical one-sided PSD for 

Brownian thermal motion9,10 (dashed line): 

 
𝑆𝑥𝑥(𝑓) =

𝑆𝑜

1 + (
𝑓
𝑓𝑐

)
2 

 

(4.3) 

where 𝑆𝑜 is the low-frequency value of the Brownian motion PSD, and 𝑓𝑐 is 

the corner frequency. The integral of this fitting function gives us 〈𝑥𝑡ℎ
2 〉: 

 
∫ 𝑆𝑥𝑥(𝑓) 𝑑𝑓 =

∞

0

〈𝑥𝑡ℎ
2 〉 

 

(4.4) 

Finally, using the equipartition theorem (noting that we only have one degree 

of freedom for the cantilever motion), we calculate 𝑘 = 𝑘𝐵𝑇/〈𝑥𝑡ℎ
2 〉 where 𝑇 

is temperature and 𝑘𝐵 is Boltzmann’s constant. 
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Figure 4.5: Thermal motion bending stiffness measurement 
(a) A time trace from a typical device. The low-frequency fluctuations are due to the 
movement of the support probe; the high-frequency fluctuations are the Brownian 
motion of the pad. (inset) Image of the device recorded in the time trace. We extracted 
the fluctuations in the x direction (perpendicular to the plane of the pad) from the videos. 
(b) PSD of the data presented in (a). We exclude the low-frequency data plotted in red 

and fit the data in blue with Eq. 4.3. Figure from Blees et al. (2015)2. 
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4.6 Comparison with gravitational measurement method 

We compare our data with the gravitational measurements detailed in  

Blees (2015)2, which consisted of rough measurements of 𝑘 using the 

observed deflection of the cantilever from the forces acting on the gold pads 

(namely, gravity and the buoyant force; see Fig. 4.6(a)). These measurements 

were repeated for a variety of devices of varying length 𝐿 and width 𝑊 = 10 

µm, as shown in Fig. 4.6(b). One important observation impacting the 

gravitational measurements was that the cantilevers would sometimes have a 

built-in curvature downwards, likely due to residual fabrication materials or 

strains in the graphene. As can be seen in the histogram (inset, Fig. 4.6(b)) 

comparing laser (red), thermal (black), and gravitational (blue) 

measurements, the extracted gravitational 𝜅 are systematically shifted below 

those of the laser and thermal 𝜅. These results are consistent with our 

observations of pre-existing downward curvature in many of our devices, 

and are again highlighted by the starred data points in Fig. 4.6(b), which 

show the spring constant measured by each method on the same device. 

 

4.7  Comparison with theoretical predictions  

Measurements of the phonon modes in graphite11 and simulations of 

bending graphene12 predict the microscopic bending stiffness 𝜅𝑜 ≈ 1.2 eV.  
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Figure 4.6: Comparison of bending stiffness measurement methods 
(a) An image of a device hanging freely from the support probe under the force of 
gravity. The out-of-focus pad is below the in-focus support pad, as shown in the 

schematic version to the left. (b) Plot of spring constant 𝑘 as a function of devices of 

various lengths 𝐿 and width 𝑊=10 µm. Black dots: thermal measurements; Red dots: 
radiation pressure measurements; Blue dots: gravitational measurements; Stars: each 
measurement method used on the same device. (inset) Histogram of bending stiffness 
measurements from Fig. 4.4(c), including the gravitational measurements in blue. Note 
the displacement of the gravitational measurements relative to both the thermal and 
radiation pressure measurements. Figure from Blees et al. (2015)2. 
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As can be seen in Fig. 4.6(b), our measurements of 𝜅 are a full three orders 

of magnitude higher than this prediction. Looking to the literature, we note 

that both thermal fluctuations and static ripples are predicted to notably 

stiffen ultrathin crystalline membranes13–19 by effectively thickening the 

membrane. (This is similar to how a crumpled sheet of paper is more rigid 

than an uncrumpled sheet.) 

For static ripples, the effective bending stiffness is predicted to be13  

 
𝜅𝑒𝑓𝑓

𝜅𝑜
= √

𝑌2𝐷〈𝑧𝑒𝑓𝑓
2 〉

𝜅𝑜
 (4.5) 

where 〈𝑧𝑒𝑓𝑓
2 〉 is the space-averaged square of the effective amplitude of the 

static ripples and 𝑌2𝐷 = 340 N m-1 is the two-dimensional Young’s 

modulus20. We look for static ripples in graphene cantilevers using 

interference microscopy21, as shown in the inset of Fig. 4.4(c). The black 

bands are regions of constant elevation, with the spacing between black and 

white bands corresponding to changes in 𝑧 of 𝜆/4 = 82 nm (where 𝜆 = 436 

nm/1.33 = 327 nm is the wavelength, corrected for the refractive index of 

water). We used a 10-nm full-width-at-half-maximum (FWHM) bandpass 

filter with a center wavelength of 430 nm on the 436-nm line of a mercury 

arc lamp for our interferometric measurements. Based on the thin-film 

equations, the reflectivity of the glass–water–graphene–water cavity changes 
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from 0.0026 to 0.0067 between dark and light bands. A single sheet of 

graphene in water has a reflectivity of 0.0002, so our geometry greatly 

enhances the visibility of graphene in this imaging mode. With 〈𝑧𝑒𝑓𝑓
2 〉 ≈

(100 nm)2 a typical value from these measurements, we obtain an effective 

bending stiffness of 𝜅𝑒𝑓𝑓/𝜅𝑜 ≈ 4,000. We note that static ripples are 

present only after releasing graphene from the surface (inset of Fig. 4.4(c)), 

and likely to be sample-specific and influenced by growth, fabrication details, 

and release procedures. Other groups have observed ripples in suspended 

(strained) graphene membranes22,23. However, they occur at a much smaller 

scale, and their origin remains a subject of debate. 

For an initially flat membrane with thermal fluctuations, the stiffness 

is predicted to be 

 𝜅𝑒𝑓𝑓

𝜅𝑜
≈ (

𝑊

𝑙𝑐
)
𝜂

 (4.6) 

where 

 

𝑙𝑐 = √
32𝜋2𝜅𝑜

2

3𝑌2𝐷𝑘𝐵𝑇
 (4.7) 

is the Ginzburg length18, and 𝜂 is a scaling exponent. This thermal theory 

predicts a bending stiffness at room temperature due to thermal fluctuations 

of 𝜅𝑒𝑓𝑓/𝜅𝑜 ≈ 1,000 for an initially flat membrane. Taken with the possible 

influence of static wrinkles on graphene membrane stiffness, we cannot at 
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this time establish the relative contributions of each mechanism24; we note 

that, however, both of these mechanisms result in contributions of order 103 

times greater than 𝜅𝑜, which agrees with our experimental findings.  

 

4.8  Applications and future directions 

Measuring the bending stiffness of graphene allows us to compare 

graphene as a microscopic membrane to macroscopic membranes such 

pieces of paper by making use of the Föppl-von Kármán number25,26 𝛾, a 

ratio relating the 2D Young’s modulus 𝑌2𝐷 of a square membrane to its out-

of-plane bending stiffness 𝜅 and scaled by its length 𝐿. Materials with similar 

Föppl-von Kármán numbers are expected to behave in mechanically similar 

ways. For graphene, based on our measurements and the proper scaling13,15 

of 𝑌2𝐷 → 𝑌𝑒𝑓𝑓, the effective Föppl-von Kármán number  𝛾𝑒𝑓𝑓 =

𝑌𝑒𝑓𝑓𝐿
2/𝜅𝑒𝑓𝑓 is of order 105-107 for a 10 µm × 10 µm graphene sheet. This is 

close to 𝛾 for a standard piece of printer paper, which means that we can get 

mechanical intuition for how various micropatterned forms will respond to 

manipulation by playing with identically shaped (macroscopic) pieces of 

paper. 

Graphene is only one of several 2D materials of mechanical, electrical, 

and optical interest – along with, for example, molybdenum disulfide (MoS2) 
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or boron nitride (BN), a semiconductor and insulator, respectively. Since the 

publication of Blees et al. (2015)2, researchers have even created releasable 

ultrathin materials via atomic layer deposition (ALD)27. The approach and 

techniques developed in measuring the bending stiffness of graphene apply 

to all such 2D materials and allow for the development of creative 

applications, such as environment-responsive bimorphs28 or chemically-

tagged devices29. With actuation possibilities including the use of magnetic 

fields and light, 2D devices can be used for in, for example, sensing 

applications, and as the basis of micro- and/or nanorobotics. 
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CHAPTER 5 
 

ENCAPSULATION OF MICRODROPLETS WITH 
TWO-DIMENSIONAL MATERIALS 

 
 

5.1  Introduction 

In Ch. 4 we examined the bending stiffness of graphene by using a 

novel technique to pick up graphene sheets in water so that we could 

manipulate them in three dimensions, much like bending a sheet of paper1,2. 

This technique allows us to start viewing graphene and other two-

dimensional (2D) materials as not simply planar, but as potentially offering 

form and function in our fully three-dimensional (3D) world. In realizing 

this transition from 2D to 3D, the action of bending comes to mind as a 

typical 2D-to-3D manipulation. In considering other ways in which we 

interact with macroscopic planar sheets, the actions of folding and wrapping 

present themselves as further-refined versions of bending – i.e. to initiate 

either folding or wrapping, you must first bend your planar sheet. 

In this chapter, we will examine the wrapping of microdroplets by 

atomically thin materials. For this endeavor we draw on the rich literature 

that explores wrapping3–7 and capillary origami8–12 at the macroscale.  Here, 

“macroscopic” droplets areon the order of millimeters, with the wrapping 

materials as thin as tens of nanometers. In contrast, as we will see, our 
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experiment wraps droplets tens of microns in scale, with materials that are 

atomically thin. 

At only a few atoms thick, these materials exist in the limit of high 

bendability: they will bend without stretching to minimize their surface 

energy3,6. As we mentioned in Ch. 4, the bending energy 𝜅 is defined as13 

 
𝜅 =

𝑌𝑡3

12(1 − 𝜎2)
 (4.2) 

 

where 𝑌 is the Young’s modulus, 𝑡 is the thickness of the sheet, and 𝜎 is the 

Poisson’s ratio of the material. Paulsen et al. (2015)3 establish the high-

bendability regime as  

 𝜅

𝑊2
≪ 𝛾 ≪ 𝐸 (5.1) 

where 𝑊 is the radius of the sheet, 𝛾 is the interfacial tension between the 

sheet and the wrapped material, and 𝐸 = 𝑌𝑡 is the stretching modulus of the 

sheet. Combining the results of our graphene bending stiffness 

measurement2 with theoretical work on the bending stiffness of monolayer 

molybdenum disulfide (MoS2) indicating that the individual Mo and S layers 

have a similar bending stiffness to that of graphene14, we approximate the 

bending stiffness of atomically thin materials as ~1 keV≈10-16 J. For 

interfacial tensions 𝛾~ℴ(10-2) N/m and theoretical stretching moduli15  
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𝐸~ℴ(102) N/m, atomically thin materials with sheet radii 𝑊~ℴ(101-102) µm 

are well within this high-bendability limit. 

Given that we are operating in the same limit as macroscopic 

wrapping experiments3,4, we can investigate whether or not similar wrapping 

states exist at the microscale as at the macroscale. An example of these 

macroscopic wrapped states is presented in Fig. 5.1, from Paulsen et al. 

(2015)3. One of the findings of this work, which placed highly-bendable 

polymer sheets on shrinking drops of water in a silicone oil environment, 

was that progressively-wrapped droplets morphed from spherical into 

prismatic shapes at complete wrapping.  

With these experiments in mind, we proceed to describe the 

fabrication of our atomically thin sheets and our setup for observing 

microdroplet wrapping dynamics. 

 

5.2  MoS2 sheet fabrication 

All microdroplets were wrapped with monolayer molybdenum 

disulfide (MoS2) grown directly onto fused silica coverslips by collaborators 

using metal-organic chemical vapor deposition (MOCVD)16. For each 

photolithography step, a layer of poly(methyl methacrylate) (PMMA) was 

spun onto the MoS2 in order to help it adhere to the chip during processing.  



 

83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Macroscopic wrapping of liquid drop by highly-bendable sheet 
Side (above) and top (below) views of a 29-nm-thick polystyrene sheet as it wraps a 
shrinking drop of water from beginning state (a) to ending state (d) in an environment of 
silicone oil. The initial shape of the droplet in (a) is mostly spherical, while the final, fully-
wrapped drop is prismatic in shape. Scale bar 1 mm. Figure from Paulsen et al. (2015)3. 
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(In water, MoS2 will delaminate from the fused silica if this extra layer is not 

used.) Standard photolithography techniques were used to pattern the MoS2 

into a variety of simple shapes on the scale of tens of microns (dark gray 

shapes in Fig. 5.2), and they were ultimately defined by a sulfur hexafluoride 

(SF6) etch. (In the case of paneled devices, pictured in Fig. 5.2 as black 

shapes, we first pattern and deposit 100 nm of copper (Cu) onto the MoS2, 

and then perform a second round of photolithography to etch the MoS2 into 

the desired shapes.) In the final step, we soak the chips in acetone to remove 

the PMMA. 

Right before experiments are conducted, we release the MoS2 sheets 

from the chip by etching them for 20-90 s in hydrofluoric acid (HF, Sigma-

Aldrich, 48% by weight in water) that has been diluted by a factor of 10:1. 

The HF etches the fused silica supporting the MoS2, thereby releasing 

devices from the chip surface. The chip is then placed directly into a home-

built cuvette (see Fig. 5.3), which is filled with deionized (DI) water. We 

exchange the liquid in the cuvette with DI water three times, at which point 

the HF concentration is low enough to safely use away from a chemical 

hood, as well as low enough that no significant etching of the cuvette glass 

occurs. 
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Figure 5.2: Image of initial wrapping sheet shapes 
White-light transmission mode image of MoS2 sheets prior to their release from the fused 
silica substrate. Dark gray shapes are bare MoS2 while black shapes are the 100 nm of Cu 
deposited onto MoS2 bases. In these paneled devices, the MoS2 serves as a highly-
bendable connecting hinge. 
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Figure 5.3: Cuvette for side and bottom co-viewing of wrapping events  
Photographic views of our home-built cuvette allowing us to simultaneously view 
wrapping events from the side and from below. The indicated light port directs the side 
transmission light source; the transmission light source for the bottom view is that of the 
inverted microscope on which the cuvette rests. See Fig. 5.4 for a schematic of the setup. 
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5.3  Experiment setup 

Our general approach to observing microdroplet dynamics is to work 

with MoS2 sheets and oil droplets in a water bath. Any deviations from this 

setup are noted accordingly. 

The experimental setup is shown schematically in Fig. 5.4. After 

conducting the liquid exchange with DI water as described in Sec. 5.3, we 

position the cuvette in an inverted microscope. Polydimethylsiloxane 

(PDMS) spacers lift the device chip up to the appropriate height for co-

focusing the side and bottom view objectives. Unless otherwise noted, the 

chip remained in DI water throughout all experiments. 

All imaging was conducted in transmission mode with white light. For 

the bottom view, this was accomplished with an inverted microscope lit 

from above. For the side view, we drilled a light port into the wall of our 

cuvette (see Fig. 5.3) to support a second, side-on light source, also operating 

in tandem with a side-on objective in transmission mode (see schematic in 

Fig. 5.4). For all co-focused observations, we used a 40x objective for the 

side view and a 10x objective for the bottom view. Both objectives had 

correction collars which were adjusted to account for the glass and water 

between the objective and the sample. We also collected data with the sole 

use of the inverted microscope, recording experiments from the bottom   
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Figure 5.4: Setup for manipulating wrapped microdroplets  
When viewing wrappings from both the side and bottom views, we use a 40x and a 10x 
objective, respectively. When only viewing wrappings from below the sample, we use a 
variety of objectives, depending on our specific imaging needs. Two separate white light 
sources illuminate the sample horizontally and vertically, as indicated by the white light 
bulb cartoons. As detailed in Sec. 5.4, a micropipette hooked up to a precision pump 
supports our droplets while we interact with the 2D materials. 
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view only. For these recordings, we used a variety of magnifications 

depending on our needs. Occasionally we did not use the cuvette, opting to 

place the chip in a glass-bottom petri dish filled with water on the inverted 

microscope platform. The captions for all white-light images state from 

which view they were taken. 

Using an electronic micromanipulator (Sensapex), we positioned a 

glass micropipette (0.4-5 µm inner diameter, World Precision Instruments) 

under the water and over the MoS2 devices, as shown in the exploded view 

in Fig. 5.4. Unless otherwise noted, the micropipette was filled with 

Fluorinert FC-70 (3M), an oil that is both denser than and index-matched to 

water. (This index-matching quality is helpful in obtaining minimally-

distorted images of our wrapped microdroplets.) The interfacial energies are 

such that the lowest energy state involves the (released) MoS2 sheets 

wrapping the surfaces of the Fluorinert mircrodroplets, which remain 

attached to the micropipette tip. (The exploded view in Fig. 5.4 shows a 

cartoon of this situation.) 

We formed microdroplets tens of microns in diameter by applying 

pressure spikes (PicoPump, World Precision Instruments) to the 

micropipette. For appropriate ejection pressures and hold times (typically 20-

45 psi and ~100 ms, respectively), droplets would remain attached to the 
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micropipette tip. This allowed us to precisely position the microdroplets 

above the patterned MoS2 sheets and lower them down onto the sheets for 

pick-up. By using a combination of adjustments to the background holding 

pressure and the use of a vacuum pump, we could controllably shrink the 

droplets while recording the ensuing wrapping process. 

 

5.4  Wrapping microdroplets with monolayer MoS2 

In Fig. 5.5 we present a time lapse of the wrapping of a Fluorinert 

microdroplet by a circular MoS2 sheet showing both side and bottom views 

of the process. To accomplish this, we bring the droplet into contact with a 

given shape and then drag and lift it off of the surface. At this point the 

shape is wrapping the Fluorinert droplet surface, as can be most clearly seen 

in lower-left (bottom-view) panel of Fig. 5.5. By decreasing the size of the 

droplet, we can image the dynamics of the wrapping process as the sheet-

radius-to-droplet-radius (W/R) ratio increases. 

We first notice that as with the initial macroscopic wrapping depicted 

in Fig. 5.1(a), there is an initial flattening of the surface of our spherical 

droplet in contact with the MoS2 sheet. This is most clearly seen in the 

upper-left (side-view) panel presented in Fig. 5.5. Likewise, as with the 

macroscopic end state presented in Fig. 5.1(d), we observe that our  
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Figure 5.5: Time lapse of a wrapping event 
Left-to-right time lapse of a wrapping event from both simultaneous side and bottom 
views. The initial MoS2 sheet is circular in shape, and can be most clearly seen as the dark 
gray shape in the leftmost bottom view. In the leftmost side view, we know the location 
of the MoS2 sheet both from the orientation of our setup and the slight deformation of 
the droplet from a perfect sphere most easily seen in the side view. There are artifacts in 
the side view images due to imperfect background subtraction, but the droplet is clearly 
seen in focus in all images. 
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microdroplet deforms into a fully-wrapped prismatic shape. 

We further extend our experiments by picking up square and 

triangular sheets with the Fluorinert microdroplets. (The experiments of 

Paulsen et al. (2015)3 from which Fig. 5.1 is taken used only circular sheets.) 

After picking up tens of sheets spanning the range of circles, squares, and 

triangles, we have noticed that the final wrapped states tend towards specific 

prismatic shapes, as shown in Fig. 5.6. Both circular and triangular sheets 

wrap droplets into shapes resembling triangular prisms. (In addition to Fig. 

5.6, see the final wrapped state of the circular sheet in Fig. 5.5.) In contrast, 

square sheets tend to wrap droplets into square packets with a corners-to-

center fold. The non-spherical, defined-edge nature of these shapes agrees 

with the findings of Paulsen et al. (2015)3. 

In order to better characterize the wrapping process, we calculate the 

Hausdorff distance, a measure of the degree to which two superimposed 

objects resemble one another17, for several droplet transformations. In the 

case of this experiment, the two objects are the perimeter of the projected 

area of the wrapping and a perfect circle of the same (effective) radius (a 

circle being the projected area of a sphere). This means that the Hausdorff 

distance increases as the wrapping becomes less and less spherical – or, in 

the context of our calculation, circular – in nature. 
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Figure 5.6: A variety of microdroplet wrappings 
A catalog of the microdroplet wrappings resulting from (a) circular, (b) square, and (c) 
triangular planar sheets of monolayer MoS2. In general the circular and triangular sheets 
result in roughly triangular prismatic wrappings, while square sheets tend to wrap into 
rectangular prisms. 
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The average Hausdorff distance 𝑑𝐻 between two sets of points 𝐴 and 

𝐵 is defined as 

 
𝑑𝐻(𝐴, 𝐵) =

1

2
(ℎ(𝐴, 𝐵) + ℎ(𝐵, 𝐴)) (5.2) 

where the function ℎ is defined as 

 ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

{min
𝑏∈𝐵

{𝑑(𝑎, 𝑏)}} (5.3) 

in which 𝑎 and 𝑏 are points in the set 𝐴 s and 𝐵, respectively, and the 

function 𝑑 gives the distance between points 𝑎 and 𝑏. More intuitively 

stated: for each point in set 𝐴, find the distance to the nearest point in set 𝐵 

(or vice versa); the Hausdorff distance ℎ is then the maximum out of all of 

those distances.  

In Fig. 5.7 we present a graph of 𝑑𝐻 plotted against 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓, the 

ratio of the effective radius of the wrapping sheet to the effective radius of 

the fitted circle. Note that we have normalized 𝑑𝐻 by the effective radius of 

the sheet, 𝑊𝑒𝑓𝑓 , and that the ratio 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓 increases in time. The plot 

thus additionally represents the time evolution of 𝑑𝐻. Note also that we 

specify the effective radii for two reasons: (1) the true perimeter of the 

wrapping becomes less and less circular as the wrapping progresses; (2) the 

initial sheet shapes can be non-circular. In practice, we use an ImageJ script  
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Figure 5.7: Hausdorff distance as a function of radius ratio 

Hausdorff distanc𝑑𝐻e  normalized by the wrapping sheet effective radius 𝑊𝑒𝑓𝑓 plotted as 

a function of the ratio 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓, where 𝑅𝑒𝑓𝑓 is the effective radius of the shrinking 

droplet, for a variety of shapes and sizes of MoS2 sheets. The legend records the diameter 
of the circular sheets and the edge length of the square and triangular sheets. All data on 
this graph is for MoS2 sheets wrapping Fluorinert microdroplets in DI water. Time 

increases with 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓.   
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to find 𝑊𝑒𝑓𝑓 by calculating 𝑊𝑒𝑓𝑓 = √𝐴 𝜋⁄ , where 𝐴 is the area of the 

wrapping shape. We fit the projected droplet area to recover 𝑅𝑒𝑓𝑓 and 

conduct the calculation of 𝑑𝐻 in MATLAB. 

Paulsen et al. (2015)3 also calculate 𝑑𝐻 for their macroscopic 

wrappings, and they find that a folding pattern is clearly established by the 

time 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓 = 1.3. From our data we agree that the onset of a folding 

pattern exists for 𝑊𝑒𝑓𝑓/𝑅𝑒𝑓𝑓 ≤ 1.3, as some curves begin to increase in 

slope well before the ratio value of 1.3. Two curves in particular, one for a 

square sheet, and one for a circular sheet, noticeably vary from the rest of 

the data. We find that the backtracking of the data for the square sheet (Fig. 

5.7, orange), upon examining the corresponding video, is due to a change in 

shape orientation. In examining the video for the 25 µm circle graphed in 

medium blue in Fig. 5.7, we find that the viewing angle captures a roughly 

circular projected droplet area until quite late in the wrapping process. In 

general, further work exploring a greater number of sheet shapes and sizes is 

required to refine our understanding of the onset of folding in the wrapping 

of a shrinking microdroplet. 

 

5.5  Conclusions and research outlook 

The procedures developed above are not restricted to the use of 
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Fluorinert as the microdroplet, DI water as the surrounding medium, and 

MoS2 as the wrapping material of interest. Any fluid immiscible in water 

could be used (though we note that many oils, unlike Fluorinert, are less 

dense than water, and their use may pose additional experimental 

challenges), and it would be interesting to use other 2D materials, such as 

graphene, as the wrapping sheet. The droplet and medium could also be 

exchanged such that water microdroplets are formed in an oil bath. This 

configuration would allow us to use extremely thin atomic layer deposition 

(ALD) oxides18 as the wrapping sheets, materials that would preferentially 

wrap the water microdroplets, in contrast to our MoS2 sheets preferentially 

wrapping oil. Another interesting possibility is to use phase change materials 

(PCMs) for the microdroplets19. In this case we imagine forming a liquid 

droplet of PCM, wrapping it with a 2D material, and pushing it through its 

phase change into its solid state. This would allow for the exploration of 

“freezing” the microencapsulated drop, a potentially useful 

microencapsulation application. Similarly, it would be fun to experiment with 

the magnetic control of microencapsulated ferrofluids20. 

This demonstration indicates a new route for making 3D micro-

geometries out of 2D materials by drawing on an existing literature of 

droplet wrapping. Moreover, future work can take advantage of the rich 
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Figure 5.8: Folding via wrapping 
Time sequence of (above) cubic and (below) triangular Cu-paneled devices with MoS2 
hinges folding into 3D shapes as they wrap a shrinking microdroplet.   
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literature exploring capillary origami, which could suggest new patterns with 

which to shape droplets. We have already begun exploring this world by 

using paneled shapes, as described in Sec. 5.3. As a closing visual, Fig. 5.8 

showcases prisms folded via wrapping the surface of a shrinking droplet 

with panels of Cu linked by hinges of MoS2.   
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CHAPTER 6 
 

OUTLOOK FOR TWO-DIMENSIONAL MATERIALS RESEARCH 
 

In this dissertation we have explored a wide-ranging set of two-

dimensional (2D) materials physics. While each chapter closes with an 

outlook of the field related to the content of that chapter, we will conclude 

here with a brief statement of the prospects of 2D materials research that the 

author finds most interesting and exciting.  

First, in the world of “valleytronics”, valley-based detection of the 

valley index would be fascinating. To clarify, as stated in Ch. 3, we used the 

charge degree of freedom to infer the presence of the valley Hall effect. 

Modern electronics are highly developed for detecting and manipulating 

charges by using devices based on the charge degree of freedom. Likewise 

we have magnetic means of detecting electron spin. To fully realize 

“valleytronics” as a field, valley-based devices for detecting and manipulating 

the valley index should exist. One level above this goal is the combination of 

electronics, spintronics, and valleytronics into a grand system for studying 

materials in which all three degrees of freedom are active as long-lived 

information carriers.  

Second, in the world of wrapping, the possibilities presented by 

microencapsulation for applications such as targeted drug delivery, oil spill 
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cleanup, and foldable devices with bistable physical states are particularly 

exciting. As micro-robotics makes research headway, the ability to encase 

materials without added bulk from the wrapper will be especially useful. 

Likewise, rigid microdevices, formed, for example, from panels such as those 

presented at the end of Ch. 5, that could selectively morph between two 

physical states may prove useful in micro-robotic actuation. 

Much exciting progress has been made in 2D materials research since 

the isolation of atomic crystals in 20051. While this dissertation covers a very 

small segment of the 2D materials field, the author hopes that it leaves you 

with a sense of the breadth of the physics and applications accessible with 

atomically thin crystals. 
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 APPENDIX A 
 

DERIVATION OF THE BERRY CURVATURE 
 

 

A succinct understanding of the intrinsic contribution to the 

anomalous Hall effect (AHE) was presented by Sir Michael Barry in his 1984 

paper on a quantum phase factor now known as the Berry phase. We will 

examine this Berry phase along with its associated quantity the Berry 

curvature in this appendix by following the presentation of Marder (2010)1. 

The Berry phase is a geometric phase that arises naturally in the 

wavefunctions of a quantum mechanical system that has been projected 

adiabatically forward in time. We begin by considering a Hamiltonian 

dependent on time through some parameters 𝝀(𝑡). Thus, 𝐻̂ = 𝐻̂(𝝀(𝑡)), 

and we have an eigenvalue problem of 

𝐻̂(𝝀(𝑡))|𝑛(𝝀(𝑡))〉 = 𝜀𝑛(𝝀(𝑡))|𝑛(𝝀(𝑡))〉 

where eigenkets |𝑛〉 have eigenenergies 𝜀𝑛. We therefore expect general 

solutions |𝜓𝑛(𝑡)〉 of the time-dependent Schrödinger equation (TDSE) to 

have the form 

 |𝜓𝑛(𝑡)〉 = 𝑒𝑖𝜃𝑛(𝑡)𝑒𝑖𝛾𝑛(𝑡)|𝑛(𝝀(𝑡))〉 (A.1) 

where 
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𝜃𝑛(𝑡) = −
1

ℏ
∫ 𝜀𝑛(𝝀(𝑡′))

𝑡

0

𝑑𝑡′ 

is known as the dynamical phase (in the case of a time-independent 

eigenenergy, 𝜃𝑛 is the usual −𝜀𝑛𝑡/ℏ), and  𝛾𝑛(𝑡) is the geometric, or Berry, 

phase. If we plug the general wavefunctions of Eq. A.1 into the TDSE, we 

find 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓𝑛(𝑡)〉 = 𝐻̂(𝝀(𝑡))|𝜓𝑛(𝑡)〉 

(𝜀𝑛(𝝀(𝑡)) − ℏ
𝜕𝛾𝑛

𝜕𝑡
+ 𝑖ℏ

𝜕

𝜕𝑡
) |𝑛(𝝀(𝑡))〉 = 𝜀𝑛(𝝀(𝑡))|𝑛(𝝀(𝑡))〉 

〈𝑛(𝝀(𝑡)) |
𝜕𝛾𝑛

𝜕𝑡
| 𝑛(𝝀(𝑡))〉 = 〈𝑛(𝝀(𝑡)) |𝑖

𝜕

𝜕𝑡
| 𝑛(𝝀(𝑡))〉 

𝜕𝛾𝑛

𝜕𝑡
= 𝑖 〈𝑛(𝝀(𝑡)) |

𝜕

𝜕𝑡
| 𝑛(𝝀(𝑡))〉 

Finally, using the chain rule, we write 

𝜕𝛾𝑛

𝜕𝑡
= 𝑖〈𝑛(𝝀(𝑡))|𝛁𝛌|𝑛(𝝀(𝑡))〉 ∙

𝜕𝝀

𝜕𝑡
 

or 

 
𝛾𝑛 = 𝑖 ∫ 𝑑𝝀 ∙

𝝀(𝑡𝑓)

𝝀(0)

〈𝑛(𝝀)|𝛁𝛌|𝑛(𝝀)〉 (A.2) 

In Eq. A.2 we now have a general definition of the Berry phase 𝛾𝑛. 

Notice that it is evaluated as a path integral in the 𝝀 parameter space; as long 

as the path is traced adiabatically in this parameter-space, 𝛾𝑛 only depends 
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on the starting and ending points. Furthermore, 𝛾𝑛 is a function of the 

eigenkets |𝑛(𝝀)⟩ of the system. Since 𝛾𝑛 arises from the underlying 𝝀-

geometry of the system, it was historically referred to as the geometric phase. 

Typically, 𝛾𝑛 is expressed as  

 
𝛾𝑛 = ∫𝑑𝝀 ∙

𝐶

𝑨𝑛(𝝀) (A.3) 

where 

 𝑨𝑛(𝝀) = 𝑖〈𝑛(𝝀)|𝛁𝛌|𝑛(𝝀)〉 (A.4) 

is referred to as the Berry connection and functions as a vector potential. As 

in classical electrodynamics, this vector potential is gauge-dependent: taking 

|𝑛(𝝀)〉 → 𝑒𝑖𝜁(𝝀)|𝑛(𝝀)〉  results in 𝑨𝑛(𝝀) → 𝑨𝑛(𝝀) − 𝛁𝝀𝜁(𝝀). For this gauge 

𝛾𝑛 will accumulate an additional quantity 𝜁(𝝀(0)) − 𝜁 (𝝀(𝑡𝑓)) while 

traveling the path 𝐶, but this quantity can generally be removed with a 

suitable gauge choice. Historically, then, this geometric phase was considered 

unimportant. 

In 1984, Berry realized that 𝛾𝑛 cannot be ignored if the path 𝐶 is a 

closed path in parameter space such that 𝝀(𝑡𝑓) = 𝝀(0). In this case 𝛾𝑛 will 

change under the above gauge transformation by 2𝜋𝑗, where 𝑗 is an integer. 

That is, effects based on 𝛾𝑛 cannot be ignored for systems traveling 
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adiabatically in closed loops around the 𝝀 parameter space. 

Taking the analogy with electrodynamics a step further, we can define 

an effective magnetic field within the 𝝀 parameter space, called the Berry 

curvature 𝛀𝑛(𝝀): 

𝛀𝑛(𝝀) = 𝛁𝛌 × 𝑨𝑛(𝝀) 

Using Stokes’ Theorem we can thus define the Berry phase as 

𝛾𝑛 = ∫𝑑𝑺 ∙ 𝛀𝑛(𝝀)
𝑆

 

where 𝑆 is an arbitrary surface in 𝝀-space enclosed by the loop 𝐶. 

Viewed in this formulation, the Berry curvature can be taken as the 

more fundamental quantity. This concept was explored more broadly by 

Kuratsuji and Iida in 1985, who showed that the Berry curvature directly 

participates in the dynamics of the 𝝀 parameters2. 
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APPENDIX B 
 

DERIVATION OF THE INTRINSIC ANOMALOUS HALL EFFECT 
IN CRYSTALLINE SOLIDS 

 
 

Here we outline the semiclassical approach to deriving the intrinsic 

contribution to the AHE. This method is based on wave packet dynamics 

and follows the presentation of Nagaosa et al., (2010)1.  

First, we note that in a perfect crystal, wave packets maintain their 

integrity over long time periods and behave in many respects like classical 

particles. We thus substitute the study of Bloch electron dynamics with that 

of wave packet dynamics, defining our wave packet |Ψ𝑛,𝒌𝑐,𝒓𝑐
(𝒓, 𝑡)〉, centered 

at position 𝒓𝑐 and with average momentum ℏ𝒌𝑐, as 

 
|Ψ𝑛,𝒌𝑐,𝒓𝑐

(𝒓, 𝑡)〉 =
1

√𝑉
∑𝑤𝒌𝑐,𝒓𝑐

(𝒌)𝑒𝑖𝒌∙(𝒓−𝒓𝑐)|𝑢𝑛,𝒌(𝒓)〉

𝒌

 (B.1)  

where Sundaram and Niu (1999)2,3 have shown that 

 𝑤𝒌𝑐,𝒓𝑐
(𝒌) = |𝑤𝒌𝑐,𝒓𝑐

(𝒌)|𝑒𝑖(𝒌−𝒌𝑐)∙𝑨𝑛(𝒌) (B.2)  

with 𝑨𝑛(𝒌) the Berry connection defined in Eq. 2.2 of Sec. 2.3.  Note that 

the time-dependence of |Ψ𝑛,𝒌𝑐,𝒓𝑐
(𝒓, 𝑡)〉 is implicitly contained in 𝒌𝑐 and 𝒓𝑐.  

Perturbing our system with a weak electric field defined by the potential 

𝜑(𝒓), we can generate the wave packet dynamics by constructing a 
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semiclassical Lagrangian from the wavefunctions defined in Eq. B.1: 

 
ℒ = ⟨Ψ𝑛,𝒌𝑐,𝒓𝑐

(𝒓, 𝑡)|𝑖ℏ
𝑑
𝑑𝑡

− 𝐻̂|Ψ𝑛,𝒌𝑐,𝒓𝑐
(𝒓, 𝑡)⟩ (B.3)  

where 

 
𝐻̂ =

𝒑̂2

2𝑚
+ 𝑉(𝒓) − 𝑒𝜑(𝒓) (B.4)  

Keeping in mind the implicit time dependence found in 𝒌𝑐 and 𝒓𝑐, Eq. B.3  

can be written as 

 ℒ = ℏ𝒌𝑐𝒓̇𝑐 + ℏ𝒌̇𝑐 ∙ 𝑨𝑛(𝒌𝑐) − 𝜀𝑛(𝒌𝑐, 𝒓𝑐) + 𝑒𝜑(𝒓𝑐) (B.5)  

The first two terms in Eq. B.5 arise from the time-dependent term in Eq. 

B.3, while the last two terms arise from the Hamiltonian.  In particular, note 

that the Berry connection arises naturally in this semiclassical approach.  

Applying the Euler-Lagrange equations to Eq. B.5, we find that 

 
𝒓̇𝑐 =

𝜕𝜀𝑛(𝒌𝑐)

ℏ𝜕𝒌𝑐
− ℏ𝒌̇𝑐 × 𝛀𝑛(𝒌) 

𝒌̇𝑐 = −
𝑒

ℏ
𝑬 

(B.6)  

Taking the velocity of the wave packet defined in Eq. B.6 as the velocity of 

our Bloch electrons, we find that 

 
𝒗𝑛(𝒌) =

𝜕𝜀𝑛(𝒌)

ℏ𝜕𝒌
+

𝑒

ℏ
𝑬 × 𝛀𝑛(𝒌) (B.7)  

The second term in Eq. B.7, dependent on the Berry curvature 𝛀𝑛(𝒌) 
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(defined in Eq. 2.3), is always transverse to the applied electric field 𝑬 and 

will give rise to a Hall current in materials for which 𝛀𝑛(𝒌) is nonzero. 
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APPENDIX C 
 

DERIVATION OF THE VALLEY HALL CONDUCTIVITY IN 
MONOLAYER MOLYBDENUM DISULFIDE 

 
 

As described in Sec. 2.3, the valley Hall conductivity 𝜎𝐻
𝑣 in monolayer 

MoS2 is composed of three components: 

 𝜎𝐻
𝑣 = 𝜎𝐻

𝑖𝑛 + 𝜎𝐻
𝑠𝑘 + 𝜎𝐻

𝑠𝑗
 (2.4) 

where 𝜎𝐻
𝑖𝑛 is the intrinsic contribution, 𝜎𝐻

𝑠𝑘 the skew scattering contribution, 

and 𝜎𝐻
𝑠𝑗

 the side-jump contribution. The skew scattering contribution is 

inversely proportional to the impurity concentration in the sample1. After 

device fabrication, our MoS2 is far from pristine, and we assume 𝜎𝐻
𝑠𝑘 is thus 

negligible. It is experimentally challenging to separate the side jump 

contribution from the intrinsic contribution as the side jump contribution 

only diminishes at very low carrier densities2. In our experiment, which will 

involve relatively high carrier densities, we expect both 𝜎𝐻
𝑖𝑛 and 𝜎𝐻

𝑠𝑗
 to be 

important components of 𝜎𝐻
𝑣 . According to Nagaosa et al. (2010)1, and based 

on the work of Sinitsyn et al. (2007)3, 𝜎𝐻
𝑠𝑗

= −2𝜎𝐻
𝑖𝑛 in band structures where 

the Berry curvature is constant, as is the case in our experiment. This means 

that 𝜎𝐻
𝑣 = −𝜎𝐻

𝑖𝑛, and we that we can proceed with only the derivation of the 

intrinsic contribution to 𝜎𝐻
𝑣 . 
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We begin our derivation by inspecting the Hamiltonian for monolayer 

MoS2, ignoring spin-orbit coupling4: 

𝐻̂ = 𝑎𝑡(𝜏𝑧𝑘𝑥𝜎̂𝑥 + 𝑘𝑦𝜎̂𝑦) +
𝐸𝑔

2
𝜎̂𝑧 

Here, 𝑎 is the lattice constant of MoS2, 𝑡 is the hopping integral for electrons 

hopping between nearest molybdenum neighbors (see Fig. 3.1 in Sec. 3.2), 

and 𝐸𝑔 is the (direct) band gap. The wavevector 𝒌 is measured from the 

conduction band minimum of the K(K’) valley, and 𝜏𝑧 is the valley index, 

with 𝜏𝑧 = 1(−1) for the K(K’) valley. The energy eigenvalues are 

 

𝜀±(𝒌) = ±√(
𝐸𝑔

2
)
2

+ 𝑎2𝑡2𝑘2 (C.1) 

for both the K and the K’ valleys. The Berry curvature in the conduction 

band is4 

𝛀𝑐(𝒌) = −𝜏𝑧

2𝑎2𝑡2𝐸𝑔

(𝐸𝑔
2 + 4𝑎2𝑡2𝑘2)

3/2
𝒛̂ 

 
𝛀𝑐(𝜀(𝒌)) = −𝜏𝑧

𝑎2𝑡2𝐸𝑔

4𝜀(𝒌)3
𝒛̂ (C.2) 

For the valence band,  𝛀𝑣(𝒌) = −𝛀𝑐(𝒌).  

We calculate the intrinsic part of the valley Hall conductivity in the 

conduction band of the K valley as2 
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𝜎𝑐,𝐾
𝑖𝑛 (𝜀𝐹) = −

𝑒2

ℎ
∫

𝑑𝒌

2𝜋𝐾

𝑓(𝜀(𝒌))Ω𝑐,𝐾(𝒌) 

where 𝑓(𝜀(𝒌)) is the Fermi-Dirac distribution function, and the integral is 

over the first Brillouin zone. Recalling that 𝑑𝒌 = 𝑘𝑑𝑘𝑑𝜑, we integrate over 

𝜑 space to find: 

 
𝜎𝑐,𝐾

𝑖𝑛 (𝜀𝐹) = −
𝑒2

ℎ
∫ 𝑘𝑑𝑘

𝑘𝐹

0

𝑓(𝜀(𝑘))Ω𝑐,𝐾(𝑘) (C.3) 

(Note that because the conduction band is symmetric in k-space about the 

K-point, we can take 𝒌 → 𝑘 without loss of generality.) In order to write our 

valley Hall conductivity as an integral over energies, we examine our 

dispersion relation from Eq. C.1: 

𝜀2(𝑘) = (
𝐸𝑔

2
)
2

+ 𝑎2𝑡2𝑘2 

2𝜀𝑑𝜀 = 2𝑎2𝑡2𝑘𝑑𝑘 

𝑘𝑑𝑘 =
𝜀𝑑𝜀

𝑎2𝑡2
 

Noting that we are only filling states up to the Fermi level 𝜀𝐹 , we plug our 

result back into Eq. C.3 to convert our 𝑘-space integral into an 𝜀-space 

integral. We also plug in Eq. 2.5 for the Berry curvature so that we can write 

our conductivity as 



 

114 

𝜎𝑐,𝐾
𝑖𝑛 (𝜀𝐹) =

𝑒2

ℎ

𝐸𝑔

4
∫

𝑓(𝜀)𝑑𝜀

𝜀2

𝜀𝐹

𝐸𝑔/2

 

where 𝜀𝐹 = 𝐸𝑔/2 + 𝛿𝜀 because we are just barely photoexciting carriers 

across the band gap. At the Fermi energy, 𝑓(𝜀𝐹) = 1/2, and since we are 

integrating within the vicinity of 𝜀𝐹 , we can safely pull the Fermi-Dirac 

distribution function out of the integral as a constant. Thus, we have 

 
𝜎𝑐,𝐾

𝑖𝑛 (𝜀𝐹) ≈
𝑒2

ℎ

𝐸𝑔

4
(−

1

𝜀
]
𝐸𝑔/2

𝜀𝐹

) 

=
𝑒2

4ℎ
(2 −

𝐸𝑔

𝜀𝐹
) 

 

 

(C.4) 

Since we are photoexciting our carriers, 𝜎𝑐,𝐾
𝑖𝑛 (𝜀𝐹) is, most precisely, 

the photoinduced anomalous Hall conductivity. We treat the valley-selective 

photoexcitation as a small Fermi-level shift 𝛿𝜀 in that valley (because we are 

only just barely exciting carriers into the conduction band in our 

experiment), noting that valley carrier lifetimes are much greater than their 

recombination time5. We write the resulting change in the intrinsic 

conductivity as 

 𝛿𝜎𝑐
𝑖𝑛 = 𝜎𝑐

𝐾(𝜀𝐹 + 𝛿𝜀) + 𝜎𝑐
𝐾′

(𝜀𝐹) (C.5) 

Noting that 𝜎𝑐
𝐾′

= −𝜎𝑐
𝐾, we see that 𝛿𝜎𝑐

𝑖𝑛 vanishes when 𝛿𝜀 = 0, and is 

non-zero when 𝛿𝜀 ≠ 0. Plugging Eq. C.4 into Eq. C.5, we find 
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𝛿𝜎𝑐
𝑖𝑛 =

𝑒2

4ℎ
(2 −

𝐸𝑔

𝜀𝐹 + 𝛿𝜀
) −

𝑒2

4ℎ
(2 −

𝐸𝑔

𝜀𝐹
) 

=
𝑒2𝐸𝑔

4ℎ
(
1

𝜀𝐹
−

1

𝜀𝐹 + 𝛿𝜀
) 

=
𝑒2𝐸𝑔

4ℎ𝜀𝐹
2 𝛿𝜀 

where the denominator 𝜀𝐹(𝜀𝐹 + 𝛿𝜀) ≈ 𝜀𝐹
2. Recalling that the carrier density 

in the conduction band 𝑛𝑐(𝜀𝐹) = 𝑘𝐹
2/4𝜋, and using Eq. C.1, we find that 

𝑛𝑐(𝜀𝐹) =
𝜀𝐹
2 − (

𝐸𝑔

2 )
2

4𝜋𝑎2𝑡2
 

The difference in carrier densities between the K and K’ valleys           

𝛿𝑛𝑐 = 𝛿𝑛𝑐(𝜀𝐹 + 𝛿𝜀) − 𝛿𝑛𝑐(𝜀𝐹), so 

𝛿𝑛𝑐 =
2𝜀𝐹𝛿𝜀 + 𝛿𝜀2

4𝜋𝑎2𝑡2
𝛿𝜀 

For 𝛿𝜀 ≪ 𝜀𝐹 , we find 

𝛿𝜀 =
2𝜋𝑎2𝑡2

𝜀𝐹
𝛿𝑛𝑐 

allowing us to write 𝛿𝜎𝑐
𝑖𝑛 in terms of the carrier density imbalance: 

𝛿𝜎𝑐
𝑖𝑛 =

𝑒2

ℎ

𝐸𝑔𝜋𝑎2𝑡2

2𝜀𝐹
3 𝛿𝑛𝑐 

Recalling that 𝑎𝑡 = ℏ𝑣𝐹 and that 
1

2
𝑚𝑏𝑣𝐹

2 = 𝜀𝐹 , we have 
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𝛿𝜎𝑐
𝑖𝑛 =

𝑒2

ℎ

𝐸𝑔𝜋ℏ2

2𝑚𝑏𝜀𝐹
2 𝛿𝑛𝑐 

However, 𝜀𝐹 ≈ 𝐸𝑔 2⁄ , so 

𝛿𝜎𝑐
𝑖𝑛 =

𝑒2

ℎ

2𝜋ℏ2

𝑚𝑏𝐸𝑔
𝛿𝑛𝑐 

Returning to the issue of the total anomalous Hall conductivity, and 

recalling that, according to Nagaosa et al. (2010)1, 𝛿𝜎𝑠𝑗 = −2𝛿𝜎𝑐
𝑖𝑛, we find  

 𝛿𝜎𝐻
𝑣 = 𝛿𝜎𝑐

𝑖𝑛 + 𝛿𝜎𝑠𝑗 

𝛿𝜎𝐻
𝑣 = −

𝑒2

ℎ

2𝜋ℏ2

𝑚𝑏𝐸𝑔
𝛿𝑛𝑐 

 

(C.6) 

Equation C.6, then, is Eq. 2.10 presented in Sec. 2.8 and which is compared 

to experimental data in Fig. 3.12. 
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