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A paradigm for robust geometric algorithms

1. Introduction

Geometrical algorithms in use in computer aided design systems today often fail for numerical reasons.
The cause of these failures usually can be traced to logical decisions such as "branch on zero" that depend on
the results of numerical calculations. Numerical inaccuracies, introduced either in the initial data or in the
finite-precision arithmetic that is used, may result in a set of logical decisions that are inconsistent. This loss

of logical consistency usually proves fatal to the algorithm.

Our interest is in geometric algorithms that are robust in the sense that they are provably immune to such
potential problems. This paper explores a paradigm that should have wide applicability for producing robust
algorithms, and it applies the paradigm to the task of intersecting two convex polyhedral objects. The para-
digm was previously used (HHK1] in an implementation of an algorithm for intersecting polyhedral objects
that was substantially more robust than algorithms implemented earlier. This paper is a first step in developing
a mathematical framework that justifies the underlying ideas in this implementation. In particular, an impor-

tant tool in this work is a method of manipulating embedded polyhedra in ways consistent with their topology.

1.1 Correctness paradigm

The computer representation of a geometrical object consists of two types of data: symbolic and numeri-
cal. In the case of a polyhedron, the symbolic data consists of names of vertices, edges and faces along with
edge-vertex and face-edge incidence relations. Since symbolic data does not degrade with computation, a pro-

gram involving only symbolic data should not fail unless there is a flaw in the program itself.

The numerical data usually consist of approximations to the real values of various entities. In the case of
a polyhedron, it consists of the coefficients of the face equations represented to some precision. For a program
that performs only numerical computations, an argument based on continuity can be used to establish that the
result is an approximation to the correct answer. Of course, such a program may fail for a variety of obvious
reasons such as division by zero or an attempt to find the square root of a negative number. These errors can
usually be handled in a straightforward manner. A more subtle type of crror occurs when there are conver-
sions of numerical data to symbolic data. Typically such a conversion takes place when the result of a numeri-

cal computation is used in a branch on zero operation. If the numerical value is very close 10 zero, one must



decide if the quantity is actually zero with the difference due to round-off error. If only one such conversion
from numerical data to symbolic data occurs, a slight perturbation of the numerical input data should force the
result of the numerical computation to agree with the conversion. Thus, no inconsistency is likely to arise
from either decision. However, a program may contain a sequence of such conversions that are logically
dependent. Thus, inaccuracies in initial data or in numerical computations may result in inconsistent conver-
sions, and once the symbolic data is inconsistent, some property which is essential for the correctness of the
algorithm may fail to hold. Indeed, this is the difficulty that causes many implementations of geometrical
algorithms to fail. The solution to this problem is to structure the algorithm, so that all conversions are logi-
cally independent. A major contribution of this paper is that an algorithm for an important problem such as the

intersection of convex polyhedra can be structured in such a manner.

1.2 A simple example

Consider the following algorithm for intersecting two polygons P, and P,. Intersect each edge of P
with each edge of P,. Use the intersection points to partition edges into segments. Discard each edge seg-
ment of P that does not lie in P, and each edge segment of P, that does not lie in P;. Assemble the

remaining segments into polygons.

If the above algorithm is applied to the two polygons of Figure 1, numerical round-off may result in
determining that edge (a,b) intersects edge (d,e) in some point & but that edge (b,c) fails to intersect edge
(d,e). In assembling edges into polygons, it is likely that both segments (d,4) and (h,e) have been discarded
as lying outside P . In this case there is no second edge at vertex 4 to associate with (a,h). If by chance
(h,e) is classified as inside P, then the above difficulty will surely cause problems at vertex e. In either case,

the algorithm is likely to return a structure that is not a polygon.

In this simple example, it is clear that the decision as to whether (a,b) intersects (d,e) and the decision
as to whether (b,c) intersects (d,e) are logically dependent. The solution to the difficulty is to modify the
computation so that all conversions from numerical data to logical data are logically independent. In the above
example, this can be done by determining on which side of (d,e) b lies, and then using symbolic reasoning to

determine whether (a,b) and (d, e) intersect and whether (b,c¢) and (d, e) intersect.



The range of problems for which algorithms can be written so that all conversions from numerical data
to symbolic data are independent is quite broad and as we shall see includes the intersection of convex polyhe-
dra. It is important to determine the extent of the class of problems for which this can be done. Problems out-
side the class can be classified by the power of a theorem prover needed to establish that a given set of conver-

sions is or is not independent.

Figure 1: Intersecting two polygons.

1.3 Definition of correctness

A definition of correctness for geometric algorithms must take into account the fact that numerical input
data only approximates the real data and thus may be inconsistent with the logical input data. The following
definition of correctness, adopted in [HHK1], allows for this possible input inconsistency. It depends on suit-
able notions of approximation, computer representation, and geometric entity or object, which we discuss in

§1.4.

We say that an algorithm for an operation ~ is correct if, for any representations R, R, - - it pro-

duces a representation R such that there exist entities M |, M, - -+ and M such that
(1) the numerical data given in R and R; are approximations to the numerical data given in M and M;,
(2) the logical data in R and R; agree with those in M and M;,
3) M M,, - )=M.

Note that correctness of an algorithm in the above sense is not sufficient when the algorithm is used as a
subroutine in a more general algorithm. Consider an algorithm for intersecting line segments that reports an
intersection only when the line segments themselves or a slight perturbation intersect, and reports a noninter-
section only when the line segments themselves or a slight perturbation do not intersect. Such an algorithm is
sufficient for a single instance of testing whether two line segments intersect. However, the same algorithm
may not be satisfactory in a more general setting. For example, the edge intersection algorithm in the earlier
polygon intersection algorithm may be correct by the above definition but fail to work satisfactorily in the

polygon intersection setting.



1.4 Computer representations

A geometrical object such as a polyhedron is regarded as a mathematical structure consisting of vertex-
edge and edge-face incidences along with equations for the faces. The equations for the faces have coeffi-
cients that are real numbers. The geometric incidences determined by these equations match the listed vertex-
edge and edge-face incidences. A computer representation or simply a representation of the object is a data
structure presenting the incidence relations and face equations. However, in the computer representation coef-
ficients of the face equations are approximated by finite precision numbers. The vertex-edge and edge-face
incidences implied by the given face equations need not agree completely with the incidence information in
the representation. In particular, where the incidence information requires four or more planes to meet at a
vertex, the actual geometrical data may imply that the planes meet in a more complex structure consisting of
seyeral vertices connected by a tree of short edges (cf. §4.1). The incidence information requires this structure
to collapse to a single vertex, thus imposing a condition on the faces that is not stable under small perturbation

of the face equations. Representations are discussed further in §4.1.

1.5 Conceptual overview

In this paper the paradigm for robust computation is applied to the problem of intersecting two convex
polyhedra. The intersection is carried out by intersecting one of the polyhedra with each half space defining
the other. A plane defining a half space may cut the first polyhedron so that certain vertices are on the plane or
are so close to the plane that we cannot numerically decide whether they are or are not on the plane. In this
case we will declare each such vertex to lie on the plane. We need to prove that we can slightly perturb the
face equations of the polyhedron so that the vertices claimed to be on the plane indeed are on the plane. The
difficulty here is that faces incident to a high-degree vertex may no longer meet in a point after the perturba-
tion. Thus, we need to develop tools that will allow us to perturb face equations of polyhedra without creating
small features. One of these tools is an isomorphism between certain stressed planar graphs and convex
polyhedra.

Consider a planar graph whose exterior vertices are fixed to form a convex polygon and whose interior
edges behave like springs. The interior vertices will come to rest at an equilibrium position where the forces at

each interior vertex sum to zero. Suppose that we can then apply stresses to the edges of the exterior polygon



so that the forces at the exterior vertices also sum to zero. The graph is then said to be in equilibrium. There is
a correspondence between such graphs in equilibrium and convex polyhedra. It is easier to perturb the vertices
of the graph by adjusting the spring constants and thereby perturbing the location of the vertices of the associ-
ated polyhedron than it is to perturb the vertices of the polyhedron directly. In Section 3 we develop the

correspondence.

Certain algorithms that deal with polyhedra require that the polyhedron have no small features; e.g., two
vertices extremely close together. Such is the case with our algorithm for intersecting a polyhedron with a half
space. However, intersecting a polyhedron with a half space may produce a polyhedron with small features.
Thus, to iterate the intersection algorithm we need a method to remove small features after each intersection

operation. Two options for removing small features are discussed in §4.5.

In Section 4 we apply the isomorphism of Section 3 to the problem of intersecting a convex polyhedron
with a half space. For technical reasons, the construction and proof are simpler in the special case where the
polyhedron has a triangular face and the plane defining the half space cuts this triangular face into two reason-

able size pieces. The general case is briefly described in Appendix B.

1.6 Statements of results

There are four major contributions in this paper.

oA paradigm for constructing robust geometrical algorithms.

oA demonstration that decisions based on numerical calculations can be made in a consistent
manner for a nontrivial problem: namely the intersection of a convex polyhedron and a half-space.
eAn isomorphism between weighted graphs and polyhedra that can be used to manipulate the
geometrical embedding of polyhedra in ways consistent with their topology.

oA robust algorithm for intersecting a convex polyhedron and a half space that should never fail
for numerical reasons. Under suitable assumptions on precision, the algorithm is correct in the

sense of §1.3.



2 Background on convex stressed graphs

In this section we introduce the concept of an equilibrium stress on a planar graph following definitions
in [C] and [W]. Given an abstract planar graph with a set of positive stresses, together with a peripheral cycle
of the graph embedded as a convex planar polygon, there is a unique extension to a convex embedding of the
entire graph satisfying a given equilibrium condition at each interior vertex (cf. Theorem 2.1.3 and Theorem
2.1.4). The importance of this result is that there is a one to one correspondence between sets of positive

stresses and planar, convex embeddings of the given graph with fixed periphery.

2.1 Equilibium stresses on planar graphs

Let I" denote an abstract planar, 3-connected graph. The set of such graphs coincides with the set of 1-
skeleta of convex polyhedra [G, p.235]. A mapping of the n vertices of I' to points in the plane
H= {((x,y,2)|z=1) < R 3 determines a realization of T. Let us denote the n-tuple of these points
p=@1,p2, '+ ,Pn) and the realization I'(p). If the points are distinct and the open edges disjoint, then we
say that I'(p) is embedded. An embedded graph I'(p) is convex if its faces are convex and its periphery is a
convex k-gon. Edges not on the periphery are called interior edges. It will be useful to select a fixed, abstract,
peripheral k-gon in I" ( cf. [ T] ) and to denote it by I1. In realizations I'(p) of ', we may denote the
corresponding realization of IT by II(p). We assume, unless stated otherwise, that vertices are numbered so

thatpy,pa, * -, px correspond to the vertices of I1(p).

A stress on I is a collection {®;;} of real numbers, i,j=1,2, ---,n, i# j, satisfying a symmetry

and a vanishing condition:

(a) 0;=0j;, forall i,j, i#]
(1)
b) o;=0, unless p; is connected to p; by an edge.

If each ;; corresponding to an edge of I" is strictly greater than zero or less than zero according as the edge is

interior or peripheral, we say that {®;;} is convex.

For a given choice of p = (p,p2, * * * , Pn), the so-called equilibrium condition at p;
n
Zw;j(p;—pj) =0 (2)
j=1

may be satisfied for all p;, in which case we call {W;;} an equilibrium stress and ({w;;}, ['(p)) a stressed



graph. 1f (2) is satisfied only when p; is an ‘‘internal” vertex, we call (0} a restricted equilibrium stress
and ({w;;}, T'(p)) a restricted stressed graph. For convenience, we also define a restricted convex stress on
I' to be a stress {®;;} on T such that each internal ®;; is strictly greater than zero with no condition on the

peripheral stresses.

Recall that the vertices p; belong to H, so that in standard coordinates they are of the form
pi = (x;,yi, 1). Sometimes it will be convenient to use instead the coordinates (x;,y;). This clearly results in

no essential change of information.

Following Connelly [C], we start with a fixed restricted convex stress {@;;} for T, and we define an

associated energy function.
1 2
Ep)=75 X ojlpi-p;l”, 3)
1Si<jsn

where p =(p1,p2, - - - ,pa) ranges over H". Clearly, E is a homogeneous quadratic function of the coordi-

nates X1,y1, * ' v Xn, Yn-

We now wantto hold x,y;, ***, X, Y, (i. €., py, - -+, pi) fixed. Thus, E becomes a nonhomogene-
ous quadratic function of the remaining variables: E(p) = F(xg41, ***,Yn). Set z=(Xg41, * " *,Y,). Then
we may write

F@)=Q@)+L()+F0),
where Q(z) (resp., L(z), F(0)) is the sum of the quadratic (resp., linear, constant) terms of F.
Define a bilinear form B(z',z ) by the equation
B(',2)=0@E +2)-0E)-0G").

Set m = n — k and define the 2mx2m matrix B by the rule

B(z,w)=w'-B -z
Similarly, define the (column) 2m - tuple L by

Lw)=w'-L.

Then the gradient of F is given by

VF(z)=B -z +L.



From equation (3) above, we can immediately compute that the (2i — 1)* and 2i" coordinates of

VF (41, - ,pa) are given together by

;i —pj) fori=k+1, -, n
Jj=1

Thus, we may immediately conclude the following:
2.1.1 Lemma: The following are equivalent:

(@) {w;;} is arestricted equilibrium stress for I'(p).
(b) z=(Px+1, - ,pn)isacritical pointof F (i.e., VF(pr41, ** -, pn) =0).
©B-z=-L.0O

We note here that after a suitable permutation of rows and columns, the 2mx2m matrix B actually has

the simpler form

c o
o cC

for a certain mXm matrix C (see Lemma 2.2.1(b)).
2.1.2 Lemma: F has a unique critical point, at which it achieves its minimum.

Proof: The proof is modeled on a proof in Connelly [C]. Suppose that z = (px41, * - -, p,) is large. Thenp j is
large for some j>k. This implies that in the shortest edge-path connecting p; to some p;, i < k , some edge is
large. But the coefficient in (3) corresponding to this edge is strictly greater than zero, and so E(p) = F(z) is
large. Thus, for sufficiently large &t > 0, |z | > implies that F(z) > F(0). It follows that F must achieve
its minimumon {z | |z |<a).

To prove uniqueness, suppose F achieves its minimum at z” and that z” is a critical point of F. For real
t , define f(¢t) = F(tz” + (1 — t)z””). This function is at most quadratic in z. Hence, its derivative f(¢) is at
most linear. By assumption, f”(z) satisfies f’(0) = f/(1) =0. Thus, f is constant. But then tz’ + (1 — 1)z”’

must be constant since F (z) is large for large z. Therefore z”’=z’. O

2.1.3 Theorem: Choose a convex k-gon in / with consecutive vertices ¢ 1,92, - - -, g¢. Suppose {®;;} is any



restricted convex stress on I'. Then there exists a unique realization I'(p) of T satisfying:

Mpi=qi,i=12, - k
(2) {wy;} is a restricted equilibrium stress for I'(p), and

(3) the points py41, Pi+2, *° * -Pn depend smoothly on the ;;, i2k+1 or j2k+1.

Proof: Define the energy function E as in (3). Set p;=gq;,i=1,2, --- ,k, and define F as above. By
Lemma 2.1.2, F has a unique critical point z = (D41, " ,Pn), Which implies, by Lemma 2.1.1, that {;}

is a restricted equilibrium stress for I'(p), as desired.
Uniqueness of the realization follows from the uniqueness portion of Lemma 2.1.2.

Finally, to see that z = (pg41, " * * ,p,) depends smoothly on {w;j|i 2k + 1 or j 2k + 1}, we consult
equation (c) of Lemma 2.1.1: éz =-L. As we shall see in Lemma 2.2.1 below, B and L depend smoothly on
the above stress constants. To complete the proof, then, it remains to show that the matrix Bis invertible, for
then,

~ _l -~
z=—B )L,
and smooth dependence of z follows.
But the invertibility of 5‘ follows immediately from the equivalence 2.1.1(b) < 2.1.1(c), together with

the uniqueness part of Lemma 2.1.2. (J

Tutte [T] obtains a special case of Theorem 2.1.3, making use of an inductive computation in an earlier
paper [BSST]. The proof of the general case presented here is based on some ideas of Connelly [C] and leads

nicely to subsequent calculations.

2.1.4 Theorem ( Tutte [T] ): Suppose that I'(p) is a realization of I" such that I1(p) is a convex k-gon. Sup-
pose that there exists a restricted convex stress on I" which is a restricted equilibrium stress for I'(p). Then
I'(p) is convex. O

In particular, the existence of a convex, restricted equilibrium stress for I'(p) (with T 3-connected)

implies that T'(p) is embedded, with all nonperipheral vertices py.1, * - -, P, actually interior to I1(p). Tutte

(T] proves this result in the case that all the interior ®;; equal one, but the proof extends virtually verbatim to
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our more general case.

Theorem 2.1.3 tells us that if we pin the peripheral vertices at p1,p;, * - ,px S0 as to form a convex
k-gon in H, then any assignment of positive stress constants to internal edges of I" will uniquely and smoothly
produce internal vertices, at each of which the equilibrium conditions are satisfied. Theorem 2.1.4 asserts that
the resulting I'(p) is convex (hence embedded). Unfortunately, Theorem 2.1.3 (2) above gives us only a res-
tricted equilibrium stress, whereas our later applications require, in addition, equilibrium at each peripheral
vertex p1,p2, Dk Theorem 2.3.1 below shows that we can obtain these additional equilibrium condi-

tions when k = 3.

2.2 Some computations

Given a stress {;;} on I', we follow [C ] and define an associated stress matrix C as follows:

_(Dlj' l¢_]
QU= n i,j=1,2,".,n. (4)
Zmik, i=j
k=1
The equilibrium equations
n .
20;pi—-p)=0, i=12,--",n (5)
j=1
may now be rewritten as the pair of matrix equations
Q-X=0
)
Q-Y=0
where X (resp., Y ) is the column n-tuple (x1,x3, - - - ,x,)" (tesp., (¥1,Y2, - = ,yn)") consisting of the x-

coordinates (resp., y-coordinates) of the p; = (x;, y;, 1).

Recall that vertices have been numbered so that the vertices of the peripheral k-gon [I(p) are

P1,P2, * Dk Then, we write Q in block form as follows
A B

where A is kxk and C is mxm, m =n—k. It is easy to see that the equilibrium equations (5) hold for

Q=

i=k+1,k+2, - ,n,if and only if
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B'X +Ccx" =0
, . ®)
B'Y +CY =0
where X/ =(xy, -, x)', X "= (Xk+1> " »X,)" and similarly for Y “and Y. Thus, (8) expresses the fact

that {@;;} is a restricted equilibrium stress on I'(p).

Comparing (8) with Lemma 2.1.1, we can easily conclude the following:

Lemma 2.2.1: (a) Up to a permutation of coordinates,

B'X’

L= gty

(b) Up to a permutation of rows and columns

. [co
B= 1o ¢

Corollary 2.2.2: Assume that py, - - - ,px (hence X l,Y ') are fixed, and that {®;;} is a restricted convex
equilibrium stress on I". Then C is invertible, and the vertices py.1, * * -, p, produced by Theorem 2.1.3 ( i.

e, XY ) may be computed by

X" =—CB'X’

. . ©
Y =—C'B'Y’

Proof: The proof of Theorem 2.1.3 shows that é is invertible. Hence C is, by Lemma 2.2.1(b) above. Then

(9) follows immediately from (8). O

2.3 Finding stress constants for graphs with triangular periphery

2.3.1 Theorem: Suppose that I'(p) is a realization of I" with I1(p) a nondegenerate triangle
(i. e., k=3). Suppose also that {®;;} is a restricted equilibrium stress for I'(p). Then, there exists a unique
equilibrium stress {@;;”} for ['(p) satisfying:

(1) o’ =y if iorj>3.

(2) {w;’|1<1i,j < 3) depends smoothly on {a;;|iorj > 3}.

(3) If {0} is restricted convex, then {(o,j’ } is convex.

Proof: We use the notation and computations in 2.2. Thus, {®;;} corresponds to a stress matrix
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A B
Q= B! C
as in (7), and the x- and y-coordinates of p yield column n-tuples
X’ Y’
X=[IIJ and Y=[Y//J
where X’ and Y’ are column triples, etc. Let 1 denote the column n-tuple (1,1,...,1), with 1” and 1’ the

corresponding triple and (n—3)-tuple.

Let Q’ denote the stress matrix corresponding to the sought after equilibrium stress [co,j’}. Condition

A" B
B' C

where A’ is a 3X3 matrix to be determined. The equilibrium condition is equivalent to the equations

(1) of the theorem requires that Q’ has the form

Q=

QX=0
QY=0

whereas the fact that Q” has row-sums equal to zero is equivalent to

These yield the following equation involving A”:
A"[X,, Y,,-l_,] + B'[X”, YII'TII] - O.
Since the triangular periphery of I'(p) is nondegenerate, the 3x3 matrix [X’,Y’, 1is nonsingular. Thus, the
last equation determines A’ uniquely:
A’=-B '[X”, Y”, T"]'[X’, Y’, T/]—l )
This demonstrates the existence and uniqueness of an equilibrium stress {(1),-/} on I'(p) satisfying (1)
and (2). It remains to demonstrate (3), which we do by a geometric argument.

Note that if equilibrium is satisfied at a vertex, there cannot exist a line through that vertex separating
the positively stressed edges from the negatively stressed ones. It follows immediately that, under conditions

of equilibrium, if the internal edges meeting a given peripheral vertex are all positively stressed, then the peri-
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pheral edges meeting that vertex must be negatively stressed. O

3. Polyhedra and stressed planar graphs

In this section we describe a basic correspondence between certain planar graphs and certain polyhedral
surfaces. This correspondence allows us, in some cases of interest, to reduce problems of manipulating
polyhedra to problems of manipulating graphs. Our view is that this gives us a modeling tool with potentially
wide applicability. We back up this claim in Section 4 with an application to intersecting polyhedra with half

spaces.

The families of polyhedral surfaces and of stressed planar graphs that we consider have natural struc-
tures as vector spaces, with one mapped to the other by a linear isomorphism. The mapping was first noted by
Maxwell [M] and the bijectivity property by Crapo and Whiteley [W]. Our description of the mapping differs
somewhat from earlier descriptions and has several advantages. It is given by an explicit formula, it is visibly
linear, and it uses only well-known, elementary linear algebra. The proof of bijectivity, however, requires a
homological argument. This follows easily from our formulation and is given in Appendix B. In fact, this

argument is a special case of a quite general homological construction that will appear elsewhere [K].

The authors wish to thank Robert Connelly for a number of helpful conversations and suggestions con-

cerning the material in this section.

3.1 Stressed graphs

Let T'(p) be a 3-connected, planar graph embedded in the plane H = ((x,y,z)|z=1}, with boundary -
gon II(p). Let S(T', p) denote the set of equilibrium stresses {w;;} on I'(p). We may define addition and
scalar multiplication of equilibrium stresses by the rules

(0} +{;) = {w;+0;)
¢ {0y} = {cwy;).

With these operations, S (I, p) becomes a vector space.

3.2 Polyhedral surfaces

Let f1,f2, - -+ denote the interior faces of I'(p), and let f be the closed region bounded by I(p),

which we also call a face. We now describe polyhedral surfaces that "sit over" the graph I'(p). Intuitively,
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such a surface may be constructed from planar polygonal faces in R3, one for each face in I'(p). Each face in
R3 projects orthogonally down to its counterpart in I'(p) and matches up on edges with neighboring faces. In
order to deal with these surfaces algebraically, we recognize that if f, is a face of I'(p), then any polygonal
face in R3 that projects to f, may be envisioned as the graph of an affine function defined on f,. Thus, a

polyhedral surface may be represented as a certain family of affine functions. We now make this precise.

Recall that I'(p) sits in the plane H. Let A (H) denote the set of all affine functions H—R. A typical
such function a is given by a formula a (x,y, 1)=cx+dy +e, for certain constants c¢,d,e. Addition and scalar
multiplication of functions make A (H) into a vector space of dimension three. Let {a,} be a sequence of
affine functions in A (H), one for each face f, of I'(p) (including f). We say that the sequence {a,]} is
piecewise-affine (P.A.) if the a, satisfy a suitable compatibility property. Namely, for each edge e;; and

incident faces f;,f;, we must have

ar| €;j=ds | €ij (10)

3 "over" the

where a | e is the restriction of a to e. If we imagine the graphs of a, | f, and a; | f; as sitting in R
plane H, then (10) simply announces that these graphs match up over the edge e; ;- Thus, the sequence {a,} is

a representation of a surface sitting over I'(p).

Figure 2: Polyhedron sitting over plane and the graph of its projection.

We now collect all the piecewise-affine sequences {a,} into a set, denoted PA (T, p), and note that the
usual operations of termwise addition and scalar multiplication of sequences make PA (I",p) into a vector
space. By our remarks above, this vector space may be identified with the space of polyhedral surfaces over
I'(p).

Now suppose that {b,} is a P.A. sequence and by=0. This means that in the corresponding polyhedral
surface, the face represented by the graph of bg | fo actually coincides with f. In effect, the polyhedral sur-
face "sits on" fg (in H). If {a,} is any P.A. sequence, we can simply subtract a, from each a, to obtain a
P.A. sequence sitting on f. This translates into the following simple assertion about the vector space

PA (T, p) of all P.A. sequences. Let PA (I, p)g consist of all P.A. sequences {a,} sitting on fq (i.e., a(=0).
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This is a vector subspace of PA (T, p), as is the set of all constant sequences (i.e., sequences {a, } with a,=ay,

for all r). Together, these subspaces give a direct sum decomposition of PA (T, p):
PAT,p)=PA(T,p)o + {constant sequences}.

Since a constant sequence is specified by any one term, it may be identified with that term, which is an affine
function (an element of A (H)). Thus, {constant sequences} may be identified with the vector space A (H),
and we have the direct sum decomposition:

PA(,p)=PA(T’,p)o+A(H).

One caution should be given here. What we have called a polyhedral surface may have self-
intersections. It may even flatten out into a plane, as in the case of a constant sequence. Under some fairly
obvious conditions, however, a P.A. sequence will give a polyhedral surface which is a topological image of
the standard 2-sphere. For such a "nonsingular” surface, we may refer to its interior, and we call the closure of
this interior the corresponding polyhedron. In our applications, we shall be dealing with convex surfaces, and

these are always non-singular.
3.3 Themap A: PA(T',p)-S(T,p)

We now define a map A from piecewise affine sequences on I'(p) to equilibrium stresses on I'(p).
The map A: PA(T',p)—S(I',p) will be seen to be a linear transformation. We set Afa, } = { ®;; }, where
the a, and ;; are related by a formula that we now describe. Recall that " and p,, - -, p, are fixed.
Thus, it suffices for each e;; to express ;; in terms of the a, and the vertices py, - --,p,. Choose an

arbitrary reference point p« € H = (z = 1} that is not collinear with any edge of I'(p). Then

;;=€(r, s )(as(p+)-a,(p+))! (pi,pj, P+] , (11)
where [p;, pj,p+] is the usual triple product in R3. If Pi,pj, and p» are regarded as column vectors, then
(pi.pj,p+]1=det (p;,p;,ps).

The factor €(r,s) equals +1 or —1 according to certain orientation conventions. Assume R3 is oriented
by the "right-hand rule,” so that when viewed from above, a positive rotation in H is counterclockwise. This
counterclockwise orientation in H imparts an orientation to each interior face f, of I'(p), hence an orientation

to each edge in the boundary of f,. We give fy a clockwise orientation.
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Now consider the given edge ¢;;, i<j. It is incident to precisely two faces, say f, and f;. This defines
the r and s in (11). We set €(r,s) equal to +1 if, in the orientation imparted by f;, ejj points from p; to p;.

Otherwise, we set &(r,s) equal to —1.

Note that the value of (11) is not affected by an exchange of r and s, since this changes the sign of both
factors in the numerator. Thus, the right-hand side of (11) depends only on i and j, so that w;; is well-

defined.
This concludes our description of (11).

Now (11) defines ®;; when p; is adjacent to p;, and i<j. By using equations (1) (a),(b) in §1, we

extend this to a definition of ;; for 1 <, j < n, i#j, obtaining a stress {@;j} on I.
3.3.1 Theorem: {(;;} is an equilibrium stress on I'(p).

We prove this in Appendix A.

Formula (11) shows clearly that {®;;} = A {a,} depends linearly on {a,}, i.e., that A is a linear transfor-

mation PA (T', p) - S (T, p). Its nullspace is easy to describe.

3.3.2 Theorem: The nullspace of A consists of the constant sequences in PA(T, p); i.e., using our comments

in 3.2, nullspace A = A(H).

Proof: Formula (11) implies that {a,} is the constant sequence if and only if the corresponding ;s are all

zero. O

Now using the direct sum decomposition in 3.2,

PA(T,p)=PA(T, p)o+A(H),

we get the following.
3.3.3 Corollary: A|PA(T',p)o - S, p)is 1-1.0
Finally, we state the key result of this section:

3.3.4 Theorem: A: PA(I',p) - S(I',p) (or A|PA(T',p)o : PA(T',p)g — S(T', p)) is onto.
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The proof of this theorem uses some elementary homology theory; it is presented in Appendix A.

Combining Corollary 3.3.3 and Theorem 3.3.4, we have:
3.3.5 Corollary: A|PA(T,p)o is an isomorphism PA(T, p)g — S(T, p).

Corollary 3.3.5 gives the 1-1 correspondence between polyhedral surfaces and stressed graphs

announced in our introductory paragraph. Thus, schematically, we have

A
{Surfaces S over I“(p)} {PA.Sequences} 0{Equilibrium stresses} 12)
_)

sitting on f {a,} s.t. ap=0 - {w;;} on T(p)
PA(T,p)o ST, p)
where Ag =A | PA(T,p)o.

3.4 Varying I'(p)

For our purposes we will need to vary the location of py, pj, * * *, p, (the "geometry" of I'(p)), while
fixing I" (the "topology” of I'(p)). We allow py, p3, * - *,p, to vary in H, subject to the following restric-
tions:.

(a) P1,P2, "', pn are distinct;
(13)
(b) T'(p) is a planar embedding of T".
We modify the spaces in diagram (12) to make explicit the dependence on I and p:

g 3

Pairs (S, T (p)) [ Pairs(fa,}, T(p)) | [Pairs(¢ ), T )

where S is a s.t.{a,}isaP. A. Ao where {w;;} is an
*swface over I'(p) 1 sequence relative to (= equilibrium stress (
sitting on fo I'(p), withay=0 onT (p)
\ J \ J \ J

Each of these sets has a natural topology. For example, suppose I has e edges. Then, each pair ({®; i1, L))
corresponds to an (e+3n)-tuple ( ..., ®jj, ... , P1, ... , P), s0 that S(I', p) may be considered a subset of
R ****_ Similarly for the other sets. The left-hand set and PA (T, D)o are essentially two versions of the same
thing, as described in §3.2. The left-hand arrow simply denotes the transition from one version to another and
is thus clearly a homeomorphism. The right-hand arrow Ay is also a homeomorphism, but this requires some

explanation.
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We would like to define Ay by the formula
Ao(a,, T(p))=(wy;, T(p)), (14)
where {a,} and {w;;} are related by equation (11) of §3. However, that equation requires the choice of a
fixed reference point p«, and this choice restricts us to p’s such that no edge of I'(p) is collinear with p«.
Assume this restriction for the moment. It is then easy to argue, using 3.3.5, that Ay gives a 1-1 correspon-
dence. Formula (11) shows that this correspondence and its inverse are continuous. That is, subject to the

above restriction on p, Ay is a homeomorphism.

We now argue that the restriction on p may be eliminated. First note that the restriction on p is an "open
condition”; that is, a specific choice of reference point p« restricts us to homeomorphic open sets in
PA(T',p)o and S(T', p), say U(p+) and V(p«), respectively. Next note that by varying p« in H, the resulting
families {U(p»)} and (V(p+)} cover PA(T', p)o and S(T, p), respectively. Finally, note that the value of the
right-hand side of (11), is independent of the choice of p« (see Appendix A, Corollary A.5). This means that
the homeomorphisms Ag:U (px) — V(p«) fit together compatibly to give a map Ag:PA(T,p)g — S(T, p),
which is, thus, a local homeomorphism. But, using Corollary 3.3.5 and equation (14) above, it is easy to see

that Ag is a 1-1 correspondence. Thus,
Ag:PA(T',p)o »S (I',p)
is a homeomorphism with no restriction needed on p other than that I'(p) be a planar embedding of T".

Sometimes a voluntary restriction on p is desirable. For example, we may wish to hold some subset of
the vertices fixed, while allowing the rest to vary. One special case of this is important enough to deserve
some special mention. This is the case when the fixed vertices comprise the peripheral k-gon IT of T. Let
PA([,p)n and S(I',p); denote the closed subsets of PA (I',p)g and S (T,p), respectively, in which the
peripheral vertices are restricted to certain fixed values. Then, Ag in (14) restricts to a homeomorphism (still

denoted Ag)

PA(T,p)n 2 S(T.p)n.

For simplicity, we usually omit the subscript I'T from the notation.

3.5 Remarks on stressed graphs

3.5.1 It is important for the reader to be aware that not every graph I'(p) admits an equilibrium stress. For
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example, the (solid-line) graph in Figure 3(a) does admit such a stress; the (solid-line) graph in Figure 3(b)

does not.

Figure 3. Examples of embedded graphs with and without equilibrium stresses.

Thus, whereas it is relatively easy to deform I'(p) (say, from configuration (a) to (b) above), it may not
be possible to deform an associated equilibrium stress compatibly. It is precisely this phenomenon that we
encounter when we attempt to deform polyhedra, only now it is expressed in terms of stressed graphs. In Sec-
tion 4 we show that certain deformations of convex stressed graphs are possible, and this will be sufficient for

our applications.

3.5.2 Consider an arbitrary compact, convex polyhedron K with face f;. By applying a suitable affine
transformation A, we may arrange things so that A (fo) lies in the hyperplane H = {(x,y,z)|z=1}. We then
choose a point p in R 3 outside the polyhedron A (K) but near one of the interior points of A(f;)). By perform-
ing a central projection from p, the entire boundary of A(K) can be mapped into A(fy), provided p is close
enough to A(fo) (see Figure 4). This is known as a Schlegel projection, and the projected 1-skeleton of A (K)
is known as a Schlegel diagram. (This proves that such 1-skeleta are planar.) Now, by applying a projective
transformation T that fixes H and sends p to the point at infinity corresponding to the direction of the z-axis,
we may arrange things so that TA (K) sits over its face TA (fp) in H. Moreover the Schlegel projection is
then replaced by the usual orthogonal projection onto H. Thus, by applying a suitable projective map, in this
case TA, we can transform any compact, convex polyhedron K and face f into the context analyzed in this
section. We shall call such a transformation (or change of coordinates) a normalization of the situation. In our
applications, we usually deal only with the normalized objects and leave it to the reader to perform the normal-

ization or its inverse.
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Figure 4. Schlegel projection

3.6 Convex polyhedra and convex stressed graphs

The following result is well known to experts, but a proof does not seem to be readily accessible in the

literature. We present a proof at the end of Appendix A (Lemma A.9).

3.6.1 Theorem: Suppose ( {®;;}, I (p)) is a stressed graph in H and X is the corresponding polyhedral sur-
face sitting over I'(p). Then Z is the boundary of a convex polyhedron if and only if I'(p) and {w;;} are con-
vex.

§ 4. Intersecting a convex polyhedron with a half space

In this section we present an algorithm for intersecting a convex polyhedron with a half space. The
algorithm has the property that all conversions of numerical data to logical data are independent and con-
sistent. Moreover, assuming a suitable degree of precision in the input data and in the arithmetic that is used, it
satisfies the definition of correctness of §1.3. The algorithm is described in §4.2 and a proof of correctness is

givenin §4.4.

§4.1 Representations and Accuracy

A representation R of a convex polyhedron X is a data structure containing incidence information about
K as well as face equations approximating those of K. We may call K a model of R. The incidence informa-
tion, given as logical data, lists the incidences among the vertices, edges, and faces of K, what we call the
face-topology of K. The face equations, given as algebraic and numerical data, correspond bijectively to the
listed faces, with no a priori assumptions about their degree of accuracy. Thus, a given R may have many

models with nothing in common but their face-topology.

Topological criteria due to Tutte [T] can be used to determine whether a candidate for a representation
actually is a representation of some convex polyhedron. Specifically Tutte describes when a given graph
admits a convex embedding into the plane with a given sub-k-gon as periphery and possessing a restricted,
convex equilibrium stress. Choose the periphery to be triangular, if possible. Then the stress may be modified
to become a convex equilibrium stress (cf. §2.3), and the Maxwell correspondence of §3 implies that the graph

is the 1-skeleton of a convex polyhedron. If the periphery cannot be chosen to be triangular, the graph must
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have a degree-three vertex. Introduce a triangle in place of this vertex, apply the foregoing argument to the

modified graph, and then restore the original vertex.

Of course, without some further assumptions on the relationship between the incidence information in R
and the face equations of R, the notion of representation is not very useful. For example, if K denotes the
polyhedron actually determined by the face equations, Ky may be the empty set, or it may be some unbounded

cone in R3, both totally unrelated to K. Minimally, we are entitled to require that K satisfy the following:

(1) K is a (bounded) convex polyhedron with exactly one face for each face equation in R. Two such

faces meet only if they are listed as incident in R.

(2) Each edge listed in R actually appears in K as the intersection of the appropriate faces. Moreover,

the cyclic order of such edges around a given face occurs in K as indicated in R.

It is easy to see that if the face equations of R are sufficiently close to those of K, then K o does satisfy
(1) and (2).

Note that generally K will have edges other than those described in (2). In fact, each vertex v of R (or,
equivalently, of K) determines a subgraph T (v) of the 1-skeleton of K. Each edge of T (v) is the intersec-
tion of two faces whose counterparts in R are not listed as adjacent to each other but are listed as incident to v.
It is not hard to deduce from (1) and (2) that the graphs T (v) are nonempty, connected, and contain no cycles.
Thus, each T'(v) is either a single vertex or a tree. We call it a vertex-tree. By (1), every edge of K belongs

to a vertex-tree or arises as in (2).

The features described in (1) and (2) are stable under small perturbation of face equations. However, in
general the vertex information of K, carried by R, is not preserved in K because vertices of degree greater
than three are unstable with respect to such perturbation. It is precisely this instability phenomenon that has

led to most of the considerations of this paper.

Henceforth we consider only representations satisfying the two assumptions above. If we wish to

emphasize that they are in force, we may call the representation in question a good representation.

The algorithm that we present in §4.2 will require some additional considerations which are more quan-
titative in nature. In general, the vertex trees T (v) of Ky can be determined exactly from R only if infinite-

precision arithmetic is used. In the event that finite-precision arithmetic is used, the location of each vertex of
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T (v) may be determined only up to some small radius. Let N (v) denote the set of all points in R3 whose dis-
tance from T (v) is less than or equal to this radius. To include the infinite-precision case, we allow the radius

to be zero.

Now choose a positive real number .. Then we call R an o-representation of X if R is a good represen-

tation and if the following three conditions are satisfied:

(3) For each v in K, N(v) is contained in the open ball B (v, &) of radius o around v. We shall call

B (v, o) a vertex ball belonging to v.
(4) No two such balls meet, nor is any vertex ball within & of the convex hull of any two others.

(5) If a plane meets three or more vertex balls belonging to vertices of a face, then the only vertex balls

it meets belong to vertices of that face.

Condition (3) gives a measure of the accuracy of the representation with respect to the model K. It
asserts that the total imprecision coming from both the face-equation data of R and the finite-precision compu-
tations that may be used is less than o. Condition (4) asserts that the edges and faces of K are large relative to
a (or inversely, that o is small relative to these features). It also implies that the angles between consecutive
edges in a face are bounded away from 7 or O and that the dihedral angle between a face and a plane passing
near three of its vertices is bounded away from 7/2. Condition (5) relates & to the dihedral angles of K. It will

be violated if and only if these angles are too close to 0 or &t relative to O.

Given K, conditions (4) and (5) may be formulated as upper bounds on «. Thus, for each convex
polyhedron K, there exists a positive number [ such that K has a-representations for all ot < B. If R is a
representation of K and the total imprecision is known a priori, then the upper bounds of (4) and (5) may be
estimated from R. When both estimates are greater than the total imprecision, then, for any choice of ¢ in
between, R is an o-representation. If one of the estimates is less than the total imprecision, then we must

reject the representation as being insufficiently precise.

§4.2 The algorithm

Let o be a small positive number. The algorithm takes as input an (-representation R of a convex
polyhedron K and a linear inequality A = O defining a half space. Its output is a representation R* of a convex

polyhedron K*. We may call R* the intersection-representation.
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The algorithm proceeds as follows. Let P be the plane A =0. For each vertex v of K, the algorithm
attempts to determine by means of a numerical computation the side of P on which v lies. Such a determina-
tion will succeed exactly when the computed location of v has distance from P greater than or equal to ¢. In
this case, the algorithm reports the side containing the computed location. If the attempted determination fails,

that is, if the computed location is strictly within a of P, then v is reported to be on P.

If none of the vertices of K are reported on the side A > 0, then the algorithm returns the null representa-

tion. Similarly if none are on A < 0, then the algorithm returns R.

Suppose that three or more vertices of a face F are reported on P, and some vertices of K are reported
on each side of P. By property (5) of an Q--representation, this can occur for at most one face F of K. In this
case, the algorithm computes the inward pointing normals of F and P (i.e., for F this means pointing inward
into K, for P this means pointing inward into A > 0), and then it computes the dot product of these normals. It
returns the null representation if the dot product is negative and R if it is positive. Note that, by property (4) of
an o.-representation, the absolute value of this dot product is bounded below. Therefore, with only a modest

assumption on total precision, that is, on the input Q., the algorithm is able to make the decision in this case.

So let us now assume that each face has at most two vertices reported on P and that some vertices of K
are reported on each side of P. To construct the incidence data for the intersection-representation in this case,
partition each edge of K that intersects P. This is done solely as a logical computation based on the location of
endpoints of the edge relative to P. Discard segments on the "wrong" side of P, and to the remaining set of
new edges, adjoin all the edges of K both of whose endpoints are reported to be on P or on the correct side of
P. Finally, determine new edges by joining appropriate partition points constructed above, or a partition point
with a vertex reported on P, as the case may be. This gives all the edges and vertices for the intersection-
representation. The faces are of three kinds: the face determined by P itself, portions of faces of K which are
divided by P, and faces of K lying on the "correct” side of P. Again, these are all determined by logical com-
putation, as are the required incidences. For the face determined by P, we have the face equation A = 0. For

the remaining faces, the face equations come directly from R.

This concludes our description of the algorithm and of the output representation R*. We need to show,

however, that R* actually is a representation.
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4.2.1 Theorem: R* is a good representation.

Proof: The null representation and R itself are both good representations. Therefore, we may restrict atten-
tion to the cases in which R* is neither of these: i.e., the cases in which the algorithm reports vertices on both

sides of the plane P, at most two of which are on any give face.

Let G* denote the edge-graph determined by R*, and let K* ; denote the convex polyhedron determined
by the face inequalities listed in R*. We must show that G* is 3-connected and planar and that R* satisfies

conditions (1) and (2) listed in §4.1. It will be convenient to verify properties (1) and (2) first.

Let Ko denote the convex, bounded polyhedron determined by the face inequalities of R, and let M
denote the set of all points of Ky on which the function A assumes its maximal value. By the convexity of K 0s
M is a vertex, edge, or face of K. In any case, M, P and the planes of the faces of K incident to M enclose

a bounded region that contains K* o. This shows that K*  is bounded.

Every face equation of R* clearly corresponds to a face of K*, because such an equation either
corresponds to a face or portion of a face of K¢ (since R is a good representation), or it corresponds to the face
determined by P. By construction, K*( has no additional faces. If two faces of K*y meet in an edge, this
edge is an edge of K or part of one, or it is one of the edges of the face determined by P. By the definition of

R* and the fact that R is good, each such edge is listed in R*. Thus, R* satisfies property (1).

For property (2), consider the edges listed in R* that correspond to edges of K, or portions of edges of
K, but do not have both endpoints reported on P. Such edges occur in K as intersections of appropriate faces
(because R is good) and hence occur in K* by construction. The remaining edges of R* are portions of inter-
sections of face planes of Ky with P. That these edges all occur in the appropriate order in the boundaries of

faces follows from the corresponding fact for K and the construction of R*. Thus R* satisfies (2).

We now show that G* is planar. Let G*( denote the edge-graph of K*3. G*q is planar and 3-
connected (see §2.1). From the fact the R* satisfies (1) and (2) we may deduce that G* can be obtained from
G* by collapsing each vertex-tree of G* to a point. This process does not destroy planarity. (For example,
use the planarity criterion of no Kuratowski subgraphs, and show that the reverse process cannot eliminate

Kuratowski subgraphs.) Thus G* is planar.
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It remains to prove that G* is 3-connected. Consider any vertex-tree T of G*, and collapse it to a
point p. This yields a planar graph G’. Let ¢’; and ¢", be two vertices of G, both distinct from p, and let g ;
and g, be the corresponding vertices of G*. Since this last is 3-connected, the deletion of ¢ and g, will
not disconnect it. Hence the deletion of ¢’y and ¢’ will not disconnect G’. If one of the selected vertices, say
4’1, equals p, the same conclusion holds, but the argument is slightly more complicated. We consider the link
L of T, i.e., the union of all edges of G* that are disjoint from T but belong to faces meeting T. L is a sim-
ple, closed curve and remains such when G* is collapsed to G’. Let L’ be the image of L in G’. Let q; be
any vertex of T. Since every vertex g3 of G*o\{q; ,q2 } can be connected to L\{g, } by path o in G*,
\{q1 ,q2 }, every component of G'\{p,q’, } meets L’\{q, }. But L’ is a simple, closed curve, and so L’

\{q2 } is connected. It follows that G’\{p,q"; } has only one component. This shows that G’ is 3-connected.
The remaining vertex-trees of G* project isomorphically to G’. Select any one of these and repeat the argu-
ment with G’ in place of G* and the projected tree in place of T. After a finite number of such steps, each

involving the collapse of a vertex-tree, we will have shown that the resulting graph G* is 3-connected. (J

By Theorem 4.2.1, the algorithm produces a valid, consistent geometric object. It remains to demon-
strate that our algorithm is correct for the operation of intersection, as per the definition of §1.3. In §4.4, we
show that this is the case, provided that O is sufficiently small. It is also desirable to improve Theorem 4.2.1 so
that we know that R* is not merely a good represemation but also that it is a B-representation, where B is suit-
ably felated to .. We also do this in §4.4 again under the assumption that  is sufficiently small. In §4.3 we

prove some of the technical results necessary for these demonstrations.

4.3 The main technical results

In this section, we present a technical result, Theorem 4.3.3, which we need for our demonstration that
the algorithm of §4.2 is correct. Actually, the demonstration requires a similar but more general result, which,

because its proof is substantially more complicated, we present in Appendix C.

We continue to use the terminology and notation of §4.2. Thus, in particular, K denotes the convex
polyhedron of the algorithm, and A denotes the given linear form. We cannot move vertices of K arbitrarily,
even by small amounts, and expect to find another polyhedron with those vertex locations and the same face-

topology as K. However, Theorem 4.3.3 tells us that we can make a small arbitrary vertex change in the "A-
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direction" without disturbing the face-topology of K, provided we allow an accompanying change in other

directions.

The proof of Theorem 4.3.3 deals entirely with a stressed equilibrium graph for K. Thus, we suppose
that we have normalized the situation as discussed in §3.5.2. In particular, K sits over a convex 3-connected
graph I'(p) in the plane H = {(x,y,z)|z = 1}, and P is the plane X =0. We suppose, as usual, that the ver-
tices p; of the graph have been numbered so that py,p,, * -, p, are peripheral and the rest interior. Call an
edge of I'(p) vertical if its endpoints have the same x-coordinate. The proof of Theorem 4.3.3 makes use of
the fact that every such graph contains a spanning tree with no vertical edges. We prove a slightly stronger

result in Lemma 4.3.2, but first we show how such a spanning tree is used.

4.3.1 Lemma: Let I'(p) be as above and suppose that it has a spanning tree T with no vertical edges. For
each edge e;; not in T, let ®;; be an arbitrary stress constant. Then there exists a unique assignment of stress
constants to the edges of T, hence a stress {;;} on I', such that the x-equilibrium equation

n

El(oij(xi—xj) =0

is satisfied for each i = 1,2, ..., n. Here, x; denotes the x-coordinate of p;.

Proof: Suppose that p | isa leaf of T and e, is an edge of T. All the stress constants ©;;, j > 2, are already
determined, and x| — x5 # 0. Thus, the above equation, for i = 1, can be used to solve for ;,. The remain-
ing stress constants are found similarly starting at the leaves of T and working towards the root. Then, x-
equilibrium is guaranteed by construction at every vertex except possibly at the root of 7. But, in fact, x-
equilibrium holds there as well, because the sum of all the expressions
n

2 0 (x—x;)

j=1
i=1,2,..,n,is formally equal to zero. O

Next we show that not only does I" (p) contain a spanning tree with no vertical edges but it also contains

one with no edges that are near-vertical. We say that an edge is near—vertical if its endpoints have x-

coordinates that differ by less than some prescribed, small, positive quantity v. The precise choice of V is not
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important. We require only that no face of I' (p) have consecutive edges that are near-vertical. Note that, by
the convexity of K and the fact that it ‘sits over’ I" (), there exist sufficiently small v such that this property

is satisfied.

4.3.2 Lemma: Let I" (p) be as above, and assume that at most one of its peripheral edges is near-vertical.

Then I" (p) has a spanning tree with no near-vertical edges.

Proof: We need only show that the deletion of all near-vertical edges leaves I'(p) connected. Since at most
one peripheral edge is near-vertical, the modified periphery remains connected. Since no vertex is incident to
a pair of consecutive near-vertical edges and I'" (p) is convex and 3-connected, each interior vertex is incident
to some non-near-vertical edge going to the left. Thus, each interior vertex may be connected to the modified

periphery by a leftward moving path consisting of non-near-vertical edges. (]

Note that when the periphery of I" (p) is triangular, then it automatically satisfies the hypothesis of

Lemma 4.3.2.

4.3.3 Theorem: Let K be as above, and let Xy denote the n-tuple of x-coordinates of the vertices of K. There

exists an & > O such that if X ; is any n-tuple satisfying
IX 0~ X 1 | < 5,

then there is a convex polyhedron K| with the same face-topology as K and having X | as the n-tuple of x-
coordinates of its vertices. Furthermore, K| may be chosen so that its vertices vary smoothly as a function of

X;.

Proof: Let ({@;; }, T' (p)) be the convex stressed graph in H corresponding to K. For simplicity, we deal
here only with the case in which the periphery of I" (p) is a triangle. A more general situation is considered in
Appendix B.

Set Xo=(x;,x2, ...X,) and X, =(x"y , X5, ..,.X,). Since the periphery of T (p) is non-
degenerate, the same will be true when x; ,x, ,x3 are replaced by x’; ,x, , X3, respectively, provided
|Xo —X | is suitably small. Our first restriction on Xy, then, is that it satisfy |Xo—X; | < 8, for such a

suitably small ;.
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Next, choose a spanning tree T with no near-vertical edges, and let 8, = min {|x; — x; |: e is an edge
of T }. Our second restriction on X j isthat |[Xo— X | < 8, " 2@. This coordinates of X ;.

We then define a new stress {@';; } for I as follows. For every edge e;j notin T, set ®';; = w;;. For
the remaining edges, proceed as in Lemma 4.3.1, using T and the coordinates of X ;. Clearly the resulting
stress is a smooth function of X ;. Since {m';j} = {oy;; } when X| =X, and {®;; } is a convex stress (i.c.,
;; is negative for e;; peripheral and positive otherwise), there exists a positive 83 such that { (n’,-j } is a con-
vex stress for all X satisfying |Xo —X; | < 83. Our final restriction on X 1, then, is that it satisfy this last
inequality.

In summary, then, the positive quantity d of the theorem may be defined as min{$, , 8, , 83 .

Now set p’, =(x', ,y, ,1) € H, r = 1,2,3, where y, is the y-coordinate of p,. By the choice of 3,
these are the vertices of a non-degenerate triangle in H. Since { a)’,-j } is a convex stress on I', we may apply
Theorem 2.1.3 to obtain unique points p’, ,r > 3, satisfying: (1) {@’;; } is a restricted convex equilibrium
stress for I' (p); (2) the p’, depend smoothly on the @’ , i >3 or j >3 (hence, smoothly on X ;). We
claim that X, is precisely the n-tuple of x-coordinates of p’. For, by construction, the coordinates of X,
satisfy x-equilibrium with respect to { 0)’,-,- }. In matrix form, this is just the first of the two equations (8) of §2,
or, equivalently, the first of the two equations (9). But, by Corollary 2.2.2, this same equation gives the x-
coordinates of p’q ,p’s,...,p’n in terms of the x-coordinates of p’y ,p’y ,p’3, which coincide with
X1 ,xX, X3, respectively, by definition. Thus the claim is verified. Now modify the stress constants
®';j ,i,j <4, as described in Theorem 2.3.1, so as to obtain a convex equilibrium stress, still denoted { o'},
on I" (p’). By (2) above, and by assertion (2) of Theorem 2.3.1, the stressed graph ({ o’;; }, T(p)) depends

smoothly on X ;.

The results of §3 then produce a convex polyhedron K| corresponding to ({ o’ },T(p")). The last
assertion of the previous paragraph, together with the results of §3, shows that the vertices of K depend

smoothly on X ;. Moreover, they have the correct x-coordinates, by construction. (J

4.3.4 Remark: Since the vertices of K; depend smoothly on Xy, it is clear that we may choose K| to be
close to K by choosing X ; suitably close to Xy. More precisely, for every € > 0, there is a & > 0 such that if

|Xo—X; | <3, then vertices of K| are within €, of the corresponding vertices of K. To compute such a &
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in terms of €, one must factor the smooth map X, ——K; into its three component parts,
X1 —> {0 }, {&'ij }—>p’, and ({0;; },T(p"))——> K, and then estimate moduli of continuity for
these. For our purposes here, it is sufficient to note that, given K and €, these steps can be carried out. In
addition, one can factor in the effect of normalization and its inverse. A similar but more complicated analysis
applies to the more general method used in Appendix B. In §4.4 we discuss how & may be estimated when

only R is known.
4.4 Correctness and Accuracy

To establish the correctness of our intersection algorithm according to the definition of §1.3, it is suffi-
cient to show that a model for the input O.-representation R exists whose actual intersection with the half-space
A20 is a model for the output representation R*. Note that we are not imposing any a priori standard of
accuracy on R*. Of course, we could do so by requiring that R* be a B—representation of the actual inter-
section, for a prescribed 3 > 0. We touch on this below. In any case, we are left with the problem of produc-
ing a suitable model for the input representation. In those cases in which the algorithm produces the null
representation or R itself, this problem is easily solved. For in those cases, either a small translation will per-
turb K so that it no longer meets the plane P or small rotation followed by translation has this effect. In either

case, this perturbation of K is then the desired model of R.

For the generic case when vertices are reported on both sides of P and no face has more than two ver-
tices reported on P, we again start with the given polyhedron K and attempt to perturb it slightly so as to meet
our requirements. That is, we attempt to perturb K, without changing its face-topology, so that precisely those
vertices that are reported on P are actually moved on to P and no vertex moves from one side of P to the

other. If we can do this, then the perturbed image of X is again clearly the desired input model.

Let us say that a face is reported to meet P if it has vertices reported on both sides of P. Suppose first
that a triangular face F is reported to meet P. We then normalize the situation as in §4.3, projecting K onto F,
moving F to the plane H and P to the plane x = 0. The projected image of P in H is a line L that divides the
graph I" (p). Vertices within o of P are projected to vertices in I'(p) within o of L. We attempt to move
these vertices onto L ; that is, to change their x-coordinates to 0. By Theorem 4.3.3, this will be possible if o

is less than a certain quantity .
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A similar argument may be used if P fails to meet a triangular face as above but is suitably close to an
order-three vertex. For then we need only slice off this vertex in a direction transversal to P, then apply the

preceding argument, and finally restore the order-three vertex.

We next consider the remaining possibilities. It is possible, for example, that there are faces reported to
meet P none of which is triangular and P is not close to an order-three vertex. In this case, the same discus-
sion applies as in the previous paragraph, only we use the more general result of Appendix B instead of
Theorem 4.3.3. The same conclusion holds. Finally, if no face is reported to meet P and no order-three vertex
is close P, but there are vertices reported on both sides of P, then K must be divided onto two pieces by a sim-
ple closed curve consisting of edges that lie on P or nearly lie on P (i.e., each endpoint of such an edge is
reported to be on P). In this case, we choose such an edge and perturb K slightly so that the edge is moved
onto P. Then we choose either of the two faces f and f> containing the edge and project K onto the plane of
this face, say f1, using a central projection from a point close to f1, not in K but on the plane P (as usual).
Normalize as before so that the plane of f| becomes H, P becomes x = 0, and the projection is orthogonal.
We get a stressed graph I (p) as before, only its periphery now encloses the image of both f; and f, which
are exterior to one another. The faces are all convex, the interior stress constants are positive, and the peri-
pheral ones are negative, just as before. This case can be handled just as the previous one and is discussed in

more detail in Appendix B.

Thus, in all cases, we can obtain the desired deformation provided o is small enough. We now formu-

late this as a theorem.

4.4.1 Theorem: Given any convex polyhedron K and linear form A, there is a 8 > O such that the intersection
algorithm of §4.2 is correct for all O-representations R of K satisfying & < 8. Moreover, § may be chosen to

be independent of A.

Proof: Only the second assertion still requires verification. Without loss of generality, we restrict attention to
forms A =ax + by + cz +d, such that a® + b%> + c%2 + d* = 1. Those A for which the output of the algo-
rithm is the null representation or R require no &: that is, no restriction on o is needed for those branches of
the algorithm. The remaining A satisfy the condition that vertices are reported on both sides of A = 0 but at

most two from each face are reported on A = 0. This is a closed, bounded condition on the coefficients of A,
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and so this set of A comprise a compact set C.

Choose a particular A in C, and let 8; be the value of 8 given by the discussion above, i.e., by Theorem
4.3.3 after normalizing the situation. Let us say that a value of 8 is suitable for A if, whenever o < 8, K may
be perturbed so that precisely the vertices within 0. of A =0 are moved onto that plane and no vertex changes
sides. We claim that 8;/2 is a suitable value of 3 for all A in some neighborhood of A, in C. To verify this
claim, choose an @ < &/2 and select those vertices of K within & of A =0. Let T(A) denote the projective
transformation that we use to normalize K. For A close to A , T(A) may be chosen to be a smooth function
of A, and hence T'(A) is close to T(A;). Because the x-coordinates of the selected vertices of T(A)(K) are less
than @, by the construction of T(A), it then follows that the x-coordinates of the corresponding vertices of
T (A )(K) are less than 8. Therefore, as in Theorem 4.3.3, there exists a perturbation 4 of T(A;)(K) sending
the selected vertices onto x = 0, etc. Now when A is close to A1, there is an affine transformation A of R > that
preserves orientation and transforms A; 0 A: A=A; A. Define a mapping of g of R3 by
g =A"1T(\; )! hT(),), and consider any of the selected vertices pi of K. Since T(A)(p;) is taken onto
x=0 by h, and T(A,) takes the plane A; =0 to x =0, Ag(p;) =0, as desired. Similarly g preserves the
half-spaces determined by A = 0. Thus, g(K) is a perturbation of K with desired properties, which verifies the
claim.

Since finitely many such neighborhoods cover C, each with a suitable value of 0, the smallest of these

values is suitable for all A in C, and therefore, for all A. (J

We now turn to the question of the accuracy of the representation produced by the algorithm. There are
(at least) two senses in which the term accuracy can be used here. First, we can ask how closely the output
representation R* represents some model. Secondly, we can ask how closely such a model approximates the

true intersection of K and A 2 0.

The first question has a relatively straightforward mathematical answer.

4.4.2 Theorem: There exists a positive constant K depending only on K, such that if R is an -representation
of K and a is less than the constant § of Theorem 4.4.1, then each vertex of the model K* of R* constructed

as in the correctness proof above is within K of its location computed using R*.
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Proof: The proof consists of looking closely at the construction of the modified input model in our demonstra-
tion of the correctness of the algorithm. Suppose first that the algorithm reports all vertices on one side of P or
on P. If this side corresponds to A 2 0, then K* equals a small translate of K into this side of P. The length of
the translation need be at most @,, so that R* = R is a 20.-representation of K* in this case. If the side reported

corresponds to A < 0, then K* equals the empty polyhedron.

The case in which the algorithm reports at least three vertices of a face F on P and some vertices on
both sides of P is more complicated. Let P (F) be the plane of the face F. In this case, we rotate K through a
small angle around the intersection line P N P(F) until F lies on P, and then we perform a small translation,
say of length @, making the polyhedron disjoint from P. If the result lies in A>0, then K* equals this resulting
polyhedron. Otherwise K* is empty. It remains to show that there is a constant M depending only on K such
that each vertex of K* is less than Mo from the corresponding vertex of K. For then the distance between

each such vertex and that computed via R* (= R) is less than kot = (M+1)q, as desired.

Consider any fixed choice of three or more vertices on F and any plane P passing within ¢ of these ver-
tices in such a way that some vertices of K are reported on both sides of P. Such a P cannot be parallel to
P(F), and so it meets the latter in a line L. The acute dihedral angle y between P and P(F) at L is precisely
the angle of rotation that we must consider. For any fixed L, the maximal value that can be assumed by 7 for
variable P is of the form arctan (¢t/r), where r is the distance from L of the farthest of the chosen vertices of
F,say w. If v is any vertex of K, having, say, distance s from L, then the distance moved by v under the rota-
tion through 7 is bounded by s -arctan (t/r). We now analyze this quantity. Let us first hold w fixed and res-

trict attention to those L for which w is the farthest of the chosen vertices of F.

The distance s is easily seen to be bounded above by a quantity of the form
(ar* +br +c)V'?,

where a, b, and c are constants depending only on the vertices v and w. Furthermore, since we are interested
only in L for which w is the farthest of the chosen vertices of F, property (4) of § 4.1 shows that the distance r
is bounded away from 0. In particular, since no vertex ball (of radius o) is within o of the convex hull of the
others, vertices are all at least 3t units apart, and so 7 can never be less than, say, o It follows that s/r is

bounded: say s/r < m, where m depends only on v and w. Therefore, Y is bounded by m-r-arctan(a/r).
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Now, as r—eo, (r/ar)-arctan(o/r) —1. It follows that outside some compact interval I of r—values,
r-arctan(o/r) <20, whereas on I, the smoothness of the arctan function shows that 7 -arctan (o/r) < m'a
for some m’ depending only on v and w. Combining these computations, we see that v moves less than m’’a.
under rotation through 7y, m” depending only on v and w. Now repeat the argument for each of the other
values of v and w, and choose M’ to be the largest of all the m” so obtained. Finally, set M = M’+1 to take

care of the translation step. Note that in this case, the construction shows that K =M + 1 is independent of A.

Next we turn to the case in which the algorithm reports vertices on both sides of P, and at most two on P
for each face. Chose A in the compact set C described in the proof of the previous theorem. Let T be the pro-
jective transformation that maps K into its normalized position over the graph I' (p) in H. For any polyhedron
K’ with n vertices, let v(K”) denote the n-tuple of vertices, and let x(K’) be the n-tuple of x-coordinates of
these vertices. Now apply the construction of Theorem 4.3.3 (or Appendix B, as the case may be) to the
polyhedron T'(K) and some n-tuple of x-coordinates u = (&) ,u43 , ... ,U, ). The result is a polyhedron K ;
satisfying x(K'; ) = u and depending smoothly on u. Thus, for u ranging in a compact ball around x(T (K)),
there is a constant M such that |v(T(K))-v(K; )| <M |x(T(K)) —u|. In our perturbation of K to con-
struct a model of R*, the vertices that are moved onto P move no more than ¢ units in the direction orthogonal
to P. Since T is just a rigid motion followed by a central projection from a point close to K but outside of K,
the coordinates in x(7T'(K)) of vertices that we want to perturb are all bounded by @. For our construction of
the desired model, we set 4 =0. Thus, we get |v(T(K))—v(K; )| <M o~n. Next, we apply the inverse
transformation T~! to T(K) and K; and conclude that |v(K) — v(T'1 K1)l < M1 o, where T is a
modulus of continuity for T on some large bounded region. Since R is an O.-representation of K, we see that a
vertex computed using R is within (M1~} + 1)a of the corresponding vertex in T~ (K ). Finally, recall that
to construct the model for the output R*, we may also have to introduce new vertices where edges of
T 1) cut the plane P. Such an edge is bounded and has endpoints at least po. units from P, for some p
that depends only on T, and so the angle it forms with P is bounded below. It follows that the indeterminacy
for such vertices is bounded by N o for some constant N. Thus, setting K* equal to the actual intersection of
A =0 with T™! (K ) and x = max{N,MT! + 1}, we see that the vertices of K* are within k. of those com-

puted using R*.
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We can now combine the foregoing argument with a compactness argument similar to that of Theorem

4.1.1 to conclude that k may be chosen independently of A. We shall omit these details. (]

In general, xo could be too large to allow us to conclude that R* is a K(t-representation of K*. How-
ever, for small o this will be the case. In fact, it is again possible to find a 8; independent of A such that R* is

a Ko-representation of K* whenever o < 8.

The question of how closely the model K* approximates the actual intersection of K with A = 0 is not so
straightforward as the first question because we have not established a standard for comparing polyhedra with

different face-topologies.

One final question concerning accuracy remains to be addressed. Namely, given an O.-representation of
R of a convex polyhedron K and linear form A, how do we estimate suitable constants 8 and x (relative to the
given A) as in Theorems 4.4.1 and 4.4.2? The answer is to mimic the constructions in these theorems (and in
Theorem 4.3.3 and Appendix B) using the data of R. The constructions are all smooth functions of the numer-
ical data so that, in the end, the quantities 8" and K obtained will deviate from & and x by amounts not greater
than M o, where M is a constant depending only on the face-topology and, perhaps, some gross boundedness
assumptions. As long as & >(M +1)c, we may use &’ — M a to estimate 8. Similarly, we may use ¥ + M o

to estimate x. If & < (M + 1)c, then we must reject R as being insufficiently precise.

4.5 Iteration

The intersection algorithm of §4.2 may be applied to the output representation R* and some new half-
space A* 20 provided that R* is an o*-representation of K* for suitably small o*. We have seen that this
will be the case provided we have been able to choose our initial & small enough. If ¢ is not suitably small,
R* will still satisfy conditions (1) - (3) of §4.1, but conditions (4) and (5) may fail. This means, essentially,
that K* has certain features that are too small. One option, then, is to return to the original input representation
R and improve its accuracy. Another option might be to single out the undesirable small features of K* and
attempt to collapse or "shrink" them to points, much as we collapsed vertex trees in the proof of Theorem
4.2.1. Such a shrinking process can, in fact, be carried out, but it has the effect of moving all the vertices of
the polyhedron. Thus, once some features are collapsed, others may have been made undesirably small. More-

over, the accuracy of the modified representation may not be as good as that of R*.
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5. Conclusions

This paper explores the paradigm of structuring code so that all conversions from numerical data to sym-
bolic data are explicit and logically independent. The paradigm is applied successfully to the problem of inter-
secting convex polyhedral objects, and this leads to an algorithm which is correct in the sense of §1.3. Since
correct algorithms are clearly robust with respect to numerical-to-logical conversions, the paper produces a

robust algorithm for intersecting convex polyhedra.

The key tool used in the paper is a correspondence between stressed planar graphs and convex polyhe-
dra, which allows manipulation of convex polyhedra by elementary graph-theoretic and algebraic means. This
tool is used to deform a convex polyhedron so that certain of its vertices may be placed on a prescribed plane.

It may also used to remove certain small features from a convex polyhedron.

Prior to the work of this paper, the notion of attempting to make conversions to symbolic data indepen-
dent was explored in the implementation of an algorithm for intersecting nonconvex polyhedral objects
[HHK2]. Although the algorithm did fail on certain inputs, its numerical robustness even in the nonconvex
case was significantly better than existing algorithms. The proof techniques of this paper while limited to con-
vex polyhedra do point out certain places where problems are likely to arise in intersecting nonconvex polyhé-
dra. For example, the underlying graph of a convex polyhedron is always 3-connected, and essential use was
made of this property in various proofs. A polyhedron in which a face has a hole (see Fig. 5) may give rise to
a disconnected graph. Similarly if two faces intersect in a disconnected set (see Fig. 6) the underlying graph
will not be 3-connected. This suggests that when either of these situations occur a face be subdivided so that

the graph will be 3-connected.

The topology of a convex polyhedron places only minimal geometrical constraints on its vertices, such
as the obvious constraint that all vertices on a face lie on a plane. In the case of nonconvex polyhedra, how-
ever, there is a deep interaction between geometry and topology. In this case, for example, the topology can
force three vertices to lie on a straight line. This allows the construction of a topology to force complex
geometrical relations between vertices on widely separate faces. These constraints can make questions con-

cerning the incidence of vertices on faces logically dependent, and thus the above paradigm fails. However,
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these constraints seem to arise only when the intersection of two faces is not a connected region. Thus check-

ing for this situation and partitioning a face when it occurs may improve robustness substantially.

Consider the polyhedron of Fig. 7. There is a tendency to think of ABCD as a straight line that is the

intersection of F; and F,. However, the incidence data does not require F, and F, ’ to lie on the same

plane. Thus ABCD may be three line segments. In fact F',” and F, may not lie on the same plane. In Figure

8, the incidence data implies that both F'; and F; * have edges on F| N F3. By making use of this construc-

tion we can force vertices on widely separate faces to lie on a straight line and hence can force relations

between vertices by means of theorems such as Pascal’s Theorem.
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Figure 1: Intersecting two polygons




Figure 2: Polyhedron sitting over plane and the graph

of its projection
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Figure 3: Examples of embedded graphs, with and

without equilibrium stresses




Figure 4: Cross-section of a Schlegel projection
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Figure 6: Two faces that meetin a nonconnected set
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Appendix A: Stressed graphs and polyhedra

This appendix provides proofs for Theorems 3.3.1, 3.3.4, and 3.6.1 (Corollary A.7, Proposition A.8, and

Corollary A.10, respectively). We begin with a few elementary observations from linear algebra.

Every v € R? determines a linear function v*:R®> — R by the rule v¥(w) = v-w, for every w € R>.
The triple product [u,v,w] = det (4,v,w) may then be expressed in terms of the cross product as [u,v,w] =

(v X w)*(u). The following lemma is immediate:

A1 Lemma: (u,,u;,u3) isabasis of R? if and only if
{(uz X uz)*, (us ¥ uy)*, (g Xuz )*j

is a basis of (R3)‘; where (R3)‘ denotes the dual of R, i.e., the vector space of all linear functions R® — R.

a

Let {uy,u3,u3) be abasis of R3. If A e (R?)", then there are unique constants ¢, ¢y, and c3 such

A=ci(uz Xuz) +cous Xup) +c3(uy Xuz)" (D
In fact, it is easy to see that ¢; must be given by
ci=Mu)/d, i=l1,2,and3 )

where 5 = [ul,uz,u3].

Consider the vector space A (H) of all affine functions H — R, where H is the hyperplane of R*

givenby z = 1.

A2 Lemma: (R%) is isomorphic to A (H) via the rule A — A | H (the restriction of A to H).
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Proof: The mapping A — A|H is clearly linear. Since A| H = 0 implies that A = 0 the maping is 1-1. It is

onto because both (R*)" and A (H) are 3-dimensional. [J

Choose three noncollinear points p,p,, and p3 in H. As vectors in R3, they are linearly indepen-

dent. Thus, Lemmas A.1 and A.2 yield the following two facts:

A.3 Corollary: Forany a € A (H), there are unique constants 1, C,,and c¢3 such that

a=ci(paxp3)” +cap3xp1)” +c3(pixpr)” | H. 3)
In fact, setting & = [p1,p2,p3], itis easy to see that ¢; must be given by
c;i=a@p)/d , i=1,2,and3. O )

A.4 Corollary: Suppose aand a’ arein A (H), and a(p;)=a’(p;), for i =1, 2. Then there is a unique

constant ¢ such that

a-a’=cpixpy)’ |H. O ®)
It is instructive to evaluate ¢ in this case. Choose any p« € H not collinear with p;p,. Then,

1 xpz)'(p.) =[p1,p2.p+] # 0. Therefore, after evaluating both sides of (5) at p«, we may solve for c:

c=a(+)—a’(ps)/[p1,p2.ps). (6)
It follows that the expression on the right-hand side of (6) is independent of p«.

Now recall that in §3 we defined A:PA (G)—S (G) by setting A{a,} = {®;;}, where, for each edge €ij»
W;; is given by

o;; =€&(r, s)(as(p+) — a,(p+))/ [pi,pj. p+]. @)

Here f, and f; are the faces incident to e;j, and &(r,s) =1 according to our orientation convention, as

described in §3. The preceding paragraph now implies the following result:

A.5 Corollary: ;; is independent of the choice of reference point p«. O

n
A.6 Lemma: Forany i, ¥ w;j(pixp;)=0.
j=1
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Proof: Let fy,f7, -, f denote the faces of I'(p) incident to p;, in counterclockwise order around p;. It
will be convenient to write r—s if f; is an immediate successor of f, in this ordering. Choose any
r=1,2, ---,,and s such that r—s. Then, choose j € (1,2, - - -, n} such that f, nf; is the edge connecting

pi to p;. Our orientation conventions are such that, if r—s, then
_ ]-1, forj>i,
e(r.s)= { 1, forj<i
If j>i, then, combining (5), (6), and (7), we see that

w;(pixp;)” | H = ~a;—a,) = a,—a;. ®)
If j<i, then j and i in formula (7) get interchanged, and the right-hand denominator changes sign, as does

&(r,s). Thus, we get equation (8) in this case too.

Now sum both sides of (8) as r=1,2, - - - ,. The right-hand side telescopes to zero. Thus

Zlﬁ);j(PzXPj)‘ |H =0, ©)
j=

from which the desired equation follows immediately via Lemma A.2. O
A.7 Corollary: {;;} is an equilibrium stress on I'(p).

Proof: Forany i and j, p; X p; = (p; — p;) X p;. Therefore, by Lemma A.6,

(X 0iji—p))xpi = Y, 0;j(pixp;j) =0,
j=l j=l

n
from which it follows that Y ®;;(p;—p,) and p; are linearly dependent. But, the former belongs to R? =
j=1

{(x,y,0) ¢ R3} whereas the latter belongs to H = {(x,y, 1) € R3). So they can be linearly dependent if and

only if

> w;j(pi-p;) =0,
j=1
asrequired. O

Theorem 3.3.4 asserts that, for every equilibrium stress {w;;}, there is a P.A. sequence {a,} such that
{w;;} = A { a,}. We now give a proof of this fact. The proof makes use of some elementary concepts from

homology theory. For a cell complex K and real vector space V, we shall assume that the reader is familiar
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with the concept of an n-chain on K with coefficients in V and the corresponding notions of boundary, cycle,

and homology. We suggest [GH ] or [HY ] as a reference.

For our cell complex K, we use the 2-dimensional abstract complex given by I'(p). This consists of ver-
tices p;, edges ¢;;, and faces f,, with the incidence relations used throughout the paper. For our vector space

V, we use A (H), the vector space of all affine functions on H.

Typical O-chains, 1-chains, and 2-chains will be denoted by
2 ailpil, X bijle;], and ¥ c [f],
where we sum over all vertices, edges, and faces, respectively, and g;, b;;, and c, are elements of A (H).

Given any equilibrium stress {;;} on I'(p), we now define a specific 1-chain Y, bijleij] by setting

bij =—w;(pixp;)” | H.
Note that b;; =bj;, for all i, j.
A.8 Lemma: Y b;;[e;;]isa l-cycle.
Proof: For Y b;j[e;;] to be a 1cycle its boundary must be zero. Formally, the boundary o3 bijle;j]) isa
0O-chain Y a;[p;]. Thus we must show that each a;=0. Assuming that each edge ¢; j is oriented from p; to p;,

the usual boundary formula yields, fori = 1,2, ..., n,

n -1 n
a;=- ZbiﬁZlbﬁ:—Zlbu (10)
= ]=

Jj=i+l
n *
=Y w;i(pixp;) |H.
j=

Now we use the fact that (@;;} is an equilibrium stress:

2 0;(pi-pj)=0,
j=1

foreachi=1,2, - - -, n. Therefore, by reversing the argument of Corollary A.7, we get
n
2. 0;;(pixp;) =0,
j=1
which implies, using (10) above, that each a;=0, as desired. O

So far, all our results have been independent of the specific topology of K. We now make use of the fact

that X is a cellular decomposition of the 2-sphere. It is well known that every 1-cycle on K is the boundary of
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a 2-chain. Thus, by Lemma A.9,
Y. bijleij] =0} a,[f;]), (11)

for some 2-chain }a,(f,], a,€A (H). Here, d is the usual boundary operator.
A9 Proposition: For every equilibrium stress {;;}, there is a P.A. sequence {a,} such that {w; i} =A4A{a}).
Proof: Let an equilibrium stress {(;;} be given, and form the 1-chain Y b;;[e;;], as above. This is a 1-cycle,
so as in (11), it is the boundary of a 2-chain Y a,[f,]. We show that {a,} is a P.A. sequence and that A{a, } =
{1}

Let e;; be any edge. Formally, the coefficient of [e;;] in d(3 a,[f;]) is &(r, s)(a,—a;), where f, and f;
are the faces incident to ¢;;.

Thus,

e(r,s)(a,—a,) = b;j =—w;(pixp))" | H. (12)
Since the right-hand side vanishes at p; and p;, a, and a; coincide on e;; Therefore, (a, } is a P.A. sequence.

Furthermore, if both sides of (12) are evaluated at p» (which is noncollinear with p; and p;), we get

;; =€(r, s)(as(p«)—a,(p+))/ [pi,pj, p+],
which is precisely the formula used to define A. Therefore, A{a,} = {®;;}, as desired. O

We conclude this appendix with a proof of the convexity criterion (Proposition 3.6.1). We begin with a
surface S sitting on the plane H and corresponding P.A. sequence {a,}, with a¢=0. Set {0} = Afa, ).
Clearly a necessary condition for the convexity of S is that the plane z = 1 be a supporting hyperplane. Thus,
necessarily, S is contained either in the half-space z 2 1 orin z £ 1. By symmetry, we need deal only with the

former case. Recall that, here, we always assume that the graph I'(p) is convex.

A.10 Lemma: Suppose S is contained in the half-space z 2 1. Then the following are equivalent:

(a) S is strictly convex.

(b) For any pair of adjacent faces f, and f;, r and s > 1, and for any g, € interior (f,), we have
a,(q,) < as(qy).

Proof: Let f, and f; be adjacent faces. Select ¢, and ¢, in the interiors of f,andf; respectively. Let
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(r,5) < H be the line segment connecting g, to g,: thatis, (r,s) = {1q, + (1-t)q, | 0<t<1}.
(@) = (b). Note that a,(q,) # as(q,), otherwise a, = a;, contradicting strict convexity. Thus, if (b)
fails somewhere, we must have

a,(q,) > as(qy), (13)
for some r and s as in (b). Now note that (13) implies

a,(q;) < as(qs). (14)

To see this, restrict both a, and a; to (7, 5), and consider the function values of a,(¢) and a,(g) as q ranges

along (r,s) from g, to g;.
It follows from (13) and (14) that every value of
ta,(q,) + (1-t)as(qs), 0<tr<1,

is strictly greater than either ta,(q,) + (1-t)a,(q;) = a,(1q, + (1-1)q;) or
tas(qy) + (1-t)as(qs) = as(tq, + (1-t)q;). Therefore, the line segment in R connecting (¢,,a,(¢,))e S 10

(g5, as(gs))ES fails to lie in the region enclosed by S, contradicting convexity. Thus, (b) must hold.

(b) = (a). The idea here is to show that if strict convexity is violated, there exist adjacent f, and f; etc.,
for which (b) fails. To find such f, and f;, we suppose that strict convexity is violated and find a line segment
connecting points on S, interior to distinct faces, such that contains a third point on or above S. If all points éf
are on S, then S has coplanar adjacent faces which can serve as our f, and f;. Otherwise, choose g€ whose
vertical distance above S is maximal and which projects vertically to an interior edge in G. The faces incident

to this edge are the desired f, and f;. O

A.11 Corollary: S is strictly convex if and only if
;; <0, for peripheral edges ¢;;,
and

®;; >0, for interior edges ¢;;.

Proof: This follows immediately from Lemma A.9, together with formula (7) and the orientation conventions

described in §3. O
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Remark: A similar result is obtained if strict convexity is replaced by convexity and strict inequalities by

weak inequalities.



Appendix B: A Generalization of Theorem 4.3.3

The theorem whose proof we sketch in this appendix generalizes Theorem 4.3.3 in that it applies to a
more general convex polyhedron K. In Theorem 4.3.3, the convex polyhedron K is assumed to "sit over a tri-
angular face" in the plane H, as described in §3. In the more general setting of this appendix, we allow K to sit
over a face with any number of sides. In fact, even more generally, we consider any convex polyhedron K
with no faces perpendicular to H, and we project it orthogonally to H. Although some faces of K may have
overlapping images under this projection, each individual face is mapped in a 1-1 manner to H. As before, the
1-skeleton of K is isomorphic to an abstract graph I, and the projection of this 1-skeleton into H is a realiza-
tion of I" denoted I'(p). The periphery of I'(p) is a convex curve in H, and K sits over this graph as before.
All of the results of §3 relating polyhedra to stressed graphs apply without change to this situation, which
greatly generalizes that considered in Theorem 4.3.3. For example, the notion of a p.a. sequence {a,} is
defined just as before, as is the notion of an equilibrium stress {®;;} for I'(p). And the correspondence {a,}
<--> {;;} is defined just as in the more restricted setting in §3. With this understood, the theorem proved in

this appendix now is a verbatim restatement of Theorem 4.3.3.

It is perhaps worth reminding the reader at this point why such a generalization is needed. First of all,
we start with a plane P slicing a convex polyhedron K. If a triangular face of K has vertices a reasonable dis-
tance from P on each side of P, then there is no need for this generalization. However, this may not be the
case. It may be that there are faces with vertices satisfying the condition just stated but none that is triangular.
In that case, we normalize just as before. That is, we choose a central projection from a point on P near the
said face (and outside of K), and project onto the plane of this face. We also apply a projective transformation
so that this plane becomes H, P becomes the plane x = 0, and central projection becomes orthogonal projec-
tion onto H. The normalized K now sits over this non-triangular face, and the theorem of this appendix may
be applied to it. But there remains a further possibility. Namely, each face of K may be effectively on one
side or the other of P. In this situation, we choose an edge both of whose endpoints are very close to P, and
we perturb K slightly so that this edge is moved onto P. We then select one of the faces containing this edge
and normalize as before. In this case, the projection point should be chosen on P and close enough to the face
so that the resulting peripheral curve consists entirely of edges of the selected face and those of its neighbor.

Again, the theorem of this appendix may now be applied to the normalized K.
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We now start with K normalized as just described. Let p denote the n-tuple of vertices of the projection
of K in H, and let X and Y denote the corresponding n-tuples of x- and y-coordinates, respectively. The stress
constants F);j corresponding to K determine a stress matrix Q as in §2, i.e., a symmetric n X n matrix with
row-sums 0. Let e and f denote the number of edges and faces of K| respectively. Thus, n —e + f=2. The
spanning tree of I'(p) has n - 1 edges. Let us call the remaining f - 1 edges of ['(p) free. If we assign arbi-
trary stress constants to these edges, and we choose any n-tuple X suitably close to the n-tuple }?, then, as in
Lemma 4.3.1, we may solve uniquely for the remaining stress constants so that x-equilibrium is satisfied. That

is, we produce an 7 X n symmetric matrix €2 satisfying

QX =0. (15)
Indeed, since Q is a stress matrix, we also have

Q1=0, (16)

where 1= (1,1,...,1) (cf. the proof of Lemma 2.3.1). For example, if X = X and the "free" stress constants
are chosen to be the E;j corresponding to free edges, then we obtain the matrix Q. Let 5 denote the (f-1)-tuple

of these free stress constants.

Our goal is to find an n-tuple Y, depending on X and an (f-1)-tuple of free stress constants s, such that,

writing Y = Y(X,s5),
(@) Y(X,s) is a continuous function of (X,s), with Y ()—( ,8) = Y,and
(b)
QY=0. a7
For then, by restricting (X, s) close enough to ()2 ,5), we can force Y to be so close to Y that the corresponding
graph I'(p) is convex. Furthermore, the matrix 2 can be forced to be close enough to Qo correspond to a

convex stress on I'(p), which by (15)-(17) is an equilibrium stress. This produces the desired convex, stressed

graph. The proof now concludes exactly as does that of Theorem 4.3.3.

To find a Y satisfying condition (1) above, we rely on the following result:



B.1 Proposition: rank Q=n-3.

Proof : In the case of triangular periphery, this fact is an easy consequence of the results in §2. In any case,
since € satisfies (15)<(17) for X = X, Y = Y, it is clear that rank Q < n—3. The proof of equality in general is
similar to the proof of Theorem 5 of [C] and proceeds by contradiction. If rank Q < -3, then there exists a
realization I'(g) of I in R3 projecting orthogonally onto I'(p), having 3-dimensional convex hull Q, and hav-
ing {@;;} as an equilibrium stress. In fact, Q is the convex hull of the vertices q1.92,....q; that project onto
the peripheral vertices p1,p2, ..., px of [(p). It is possible to find two such vertices that are connected by an
edge e lying in the boundary of Q. The plane through e perpendicular to H divides Q into two halves. An
infinitesimal rotation of one of these halves around e and towards the other half results in an infinitesimal shor-
tening of some of the "interior" edges of I'(¢) without affecting the other "interior" edges. This shows that the

energy function corresponding to I (cf. §2) does not have a critical point at ¢, contradicting Lemma 2.1.1. O

Now we relabel vertices if necessary so that the n—3xn—3 upper left corner A of Q is invertible. Then
the same will hold for the upper left comer A of 2, provided (X, s) is suitably close to (X,5). Henceforth, let
Wo and W denote suitably small neighborhoods of Xand5in R” and R - respectively, and restrict (X,s)

to WoxW . Then we may write

_|A B _ a2y .
Q—[ B! C}' A (n-3)x(n-3), invertible.

A simple computation shows that

A~}
nullspace Q c columnspace ,
I

where / is the 3 x 3 identity matrix. Note that this column space is a 3-dimensional subspace of R” which
varies smoothly with (X,s) and coincides with nullspace Q when (7( ,$) = (X,s). In fact, the columnspace =
nullspace QQ if and only if rankQ=n-3.

Define Y =Y (X,s) to be the orthogonal projection of Y into the columnspace. Clearly this satisfies

condition (1). Since condition (2) is equivalent to Y€ nullspace €2, the foregoing paragraph shows that we

obtain condition (2) whenever rank2 = n—3. Thus, our proof will be complete as soon as we can insure this
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equality.
To formulate this more precisely, it is convenient to recognize that the spanning-tree procedure of

Lemma 4.3.1 defines a smooth mapping

F
WOXW1 - S(n),
where S (n) is the vector space of all nxn stress matrices. The dimension of S (n) is %n (n-1). Let S(n,r)
denote the set of stress matrices of rank r. It is easy to show that S (n,r) is a smooth submanifold of S (n) of

codimension %(n—r)(n—r—l). We are interested in the codimension-three submanifold S (n,n—3). By con-
struction and Proposition B.1,
F(X,5)=QeS(n,n-3).

Let M denote the subset F~1(S(n,n=3)) C WoxWy, and let T:WoxW;—>W, be the projection map:

n(X,s) =X . The following is our main technical result.

B.2 Proposition: Assume that the graph I'(p) has a triangle (i.e., a simple, closed edge path consisting of

three edges). Then

(a) There exists a neighborhood V ¢ WoxW of 5( ,5), such that M ~ V is a smooth manifold of
dimension n+f-2.

(b) There exist open-ball neighborhoods B around Xin Wy and B around 0 in R/ 2, together with a
diffeomorphism A:BgxB;—M n V satisfying

TA(Xy, * " Xe, 21, Zp ) = (X, X))
forall (x1, ***,Xa,21, """ ,2f2) in BoxB].

Let 8 be the radius of By, and suppose [X—X| < 8. Define s by the equation (X,s) = 4 (X, 0). Then s
depends smoothly on X, and F (X,s) has rank n-3 by construction. Thus, assuming Proposition B.2 and the
triangle hypothesis, we are done.

We now indicate the proof of Proposition B.2 and then how to get rid of the triangle hypothesis. Basi-

cally, it’s a simple application of the Inverse (or Implicit) Function Theorem. The hard part is computing that
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a certain derivative is non-zero. We shall give a few details.

Rewrite Q as

A By By | A (n-3)x(n-3),invertible
By Ci1 Cio| By (n-3)x2
B} Ciy Cx By (n=3)X1

B.3 Lemma: rankQ = (n-3) + rank(C ;-B{A"!B,).0

Thus, (X,s) € M provided rank(C“—B'lA'lBl) = 0. Now Cn—B’lA'lBl is a 2 X 2 symmetric matrix of
rank <1 (because land X belong to nullspace €2). Such a matrix is zero <> it has zero trace. So define

g (X,s) = trace(C;;-B4A™'B)).
This gives a real-valued function, g:W oxW; >R, such that

F'(S(n,n=3))=M =g7'(0).
The advantage of g over F is that g is real-valued, and the kind of regularity result that we want is easier to
obtain for g.

Now for any XeW , define gy to be g restricted to the "slice” {X} XW: more precisely gx:W;—R is
given by gx(s)=g(X,s). We then have the following result:

B.4 Proposition: Assume that the graph ['(p) has a triangle. Then 5 is a regular point of gx. That is,
d(gx)s # 0. Consequently, X,5)isa regular point of T|M : M—>W,.

Proposition B.2 follows easily from this.

The second assertion of Proposition B.4 follows from the first by standard arguments of differential
topology. Therefore, it remains to prove d(gx ); #0. To show this, we need only compute this derivative in
one judiciously chosen tangent direction. Such a tangent direction is an appropriate (f —1)-tuple of free stress
constants. Now, with our triangle hypothesis, we are able to choose such constants so that the corresponding
(infinitesimal) stress matrix has at most three non-zero rows and three non-zero columns. This greatly simpli-

fies the computation and is the only reason for the hypothesis. The computation proceeds by cases according

to the distribution of the selected rows and columns in the matrix. There are seven cases. We shall go through
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one case here for illustration.

We make a preliminary observation. A stress on I' satisfying x-equilibrium with respect to X is
uniquely determined by the stress assignments to the free edges. Thus, instead of selecting an assignment to
the free edges, we select an entire stress. This is notationally convenient, since then we do not have to distin-

guish between stress constants that are free and those that are not free.

In the case that we consider here, the triangle of the hypothesis has no vertical edges and has vertices
DPn-2,Pn-1,Dn. We choose a stress satisfying x-equilibrium as follows. To all edges not in the triangle, assign
stress constant 0. The edges Pp—2Pp—1,DPn—1Dn,Pn-2Dn et the stress constants 1, a, b, respectively, where a
and b are determined by the x-equilibrium requirement. It is not hard to check that (1+a)(1+b) = 1, again

because of x-equilibrium. In this stress-direction, one calculates that the differential d (gx)s has the value

1+6 -1

-1 1+a}=a+b+2,

trace [

which, by the preceding relation on a and b, has absolute value greater than two. Thus, Proposition B 4 is ver-

ified in this case. Complete details will appear in [K2].
This completes our discussion when I'(p) has a triangle.

In case I'(p) does not have a triangle, it must have an order-three vertex (in fact, at least eight of these).
Perform a "slice” at this vertex, replacing it by a small triangle. Carry out the argument for the modified

graph. Then restore the vertex by reversing the slice procedure.
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