CLASSES AND OBJECTS

A DYNAMIC APPROACH

by

J. Steensgaard-Madsen?*

TR78-356

DIKU, University of Copenhagen
Sigurdsgade 41

DK-2200 Copenhagen N

DENMARK

Department of Computer Science
Cornell University
Ithaca, New York 14853

*On leave until July 1979 with support from the University of
Copenhagen and the Danish Natural Research Council.

Classes and Objects - a dynamic approach.

J. Steensgaard-Madsen ¥

DIKU, University of Copenhagen,
Sigurdsgade 41,
DK-2200 Copenhagen N
Denmark

Department of Computer Science
Cornell University
Ithaca, New York 14853

ABSTRACT

Data encapsulation, abstract data types and
classes are terms asscciated with a concept not
fully clarified or accepted. This paper presents a
class concept that differs slightly from previous
definitions by the associated dyunamics. This al-
lows us to interpret nested and recursive classes
as well as’class parameters.

We will distinguish between types and classes
and permit types as parameters in a way that al-
lows simple implementation.

A number of examples will be given to illus-
trate the class concept itself and its application
to access control problems for concurrent pro-
grams. Synchronization primitives will be viewed
as classes and the need for explicit high-level
constructs like monitors is questioned.

Keywords: Programming language, encapsulation,
abstract data type, class, object, synchroniza-
tion, monitor.

* On

Teave until July 1979 with support from the University

of Copenhagen and the Danish Natural Kescarch Council.

Classes and Objects - a dynamic approsch.

J. Steensgaard-Madsen

DIKU, University of Copenhagen,
Sigurdsgade 41,
DK-2200 Copenhagen N
Denmark

1. Introduction.

In this paper we address the problem of defining a
class concept using only Algol 60 like scope rules. Intui-
tively, a class is a description of a set of objects, each
implementing a structure of associated variables, operations
and types. We will solve our problem by defining classes in
terms of more primitive concepts, in particular procedures.

The scope rules of Algcl 60 do suffice for hiding 1in-
formation. An Algol 60 programming technique for this has
been described by Krutar (1973). It relies heavily on the
use of procedures and functions as parameters. Proper use
of procedures and functions as parameters in a language that
supports such use would substantially reduce the need for an
explicit lgnguage construct for classes.

However, classes are useful as a high-level structuring
concept. Their relation to procedures is similar to the re-
lation of iterative statements to jumps. The class and asso-
ciated concepts are proposed as facilities for use in a
Pascal-like programming language to compete with languages
like Concurrent Pascal, Modula, FEuclid, CLU and Alphard.
Nested class definitions, recursively defined classes and
class parameters will cause no problems.

Although the term "abstract type" 1is often used
synonymously with "class", the latter term is preferred be-
cause we will distinguish between classes and types. Unifi-
cation of the two concepts may be useful for certain kinds
of research, but this does not mean they should be unified
in a programming language. Keepinz the concepts apart cer-
tainly increases the number of .concepts, but it provides
nice control over representation of classes and reflects ex-
ecution costs in a better way. Types describe variables and
representations of values that may be compared for equality
and assigned to variables. Classes describe objects and en-
force structured access to and operations upon data.

Files will serve to illustrate certain aspects of

classes. The logical properties of files may easily be
described: by a class, if we cun specify element types.
Thus, we will conceive the analogy of a variable of type
file of T in Pascal as an object of class "file", with T
provided as parameter to the class. Rather than use the com-
mon notation file (T) we will use file of T, but this
is just "syntactic sugar". -

Type parameters need only describe the representation
of values: in terms of implementation, the number of bits
required. A type parameter may only be used as an actual
parameter or to describe parameter 1lists and variables
(static and dynamic in the sense of Pascal). This is a cru-
cial decision for the intended efficiency of a possible im-
plementation.

An intended use of the class concept may be illustrated
if we again take files as an example of a class. Classes may
be built on top of other, eventually machine dependent,
ones. Thus, portability of programs will rely on a common
set of specifications of classes, e.g. files, the implemen-
tation of which will be machine dependent. Everything above

the operating system interface, which itself can be
described by classes, should be describable in a high-level
language supporting this class concept. As comnceptual

building blocks, classes provide powerful description of in-
terfaces between hardware and software. Even the transition
from a state of program execution to a state of manipulating
the program as data can be conceived of as temporary use of
a somewhat protected class giving access to system vari-
ables. A few examples with relation to operating systems
will be presented, but further research in this area is
needed to settle on appropriately defined common classes.

Automatic indivisibility of access to classes is not to
be associated with this proposal. However, a class "sema-
phore" will be assumed and facilities 1like monitors as
described by Hoare (1974) can be built on top of these.

No modification to the scope rules of Algol 60 will be
introduced for the purpose of designing a class concept
i.e., free access to non-local identifiers in surrounding
blocks is permitted. However, other considerations may
result in a desire to change this aspect of the scope rules.
This topic will not be discussed further in this paper.

The remaining part of the paper is organized as fol-
lows. Section 2 presents the terminology and gives an infor-
mal introduction to the concepts and the syntax used in the
examples. Section 3 describes the syntax for classes, ob-

jects and type parameters. Pascal is used as a basis, but
the proposal should not be seen as a proposed extension to
that particular language. Familiarity with Pascal is thus

presumed. The semantics are also described imore formally

than in section 2, but only for a language somewhat simpler
than the one used later in examples. Generalization from the
simple to the more involved case should, however, cause no
serious problems. Section 4 contains examples with various
levels of detail, and section 5 briefly compares this to re-
lated work in the area. Finally, section 5 also contains a
few comments on implementation.

2. Classes and objects.

A class is a description of objects. Each object imple-
ments one or more facilities - variables, arrays of vari-

ables, procedures, functions, objects, arrays of objects,
types or classes. An attribute is a description of a facili-
ty and it provides an access identifier for the facility. A

class exhaustively states the attributes of objects i.e.,
details of implementation are accessible only by means of
access identifiers. An object may be denoted by an identif-
ier, or an identifier and an appropriate number of index ex-
pressions. A facility of an object is accessed like the
fields of a record, using an object denotation followed by a
dot and an access identifier. »

Drawing heavily on Pascal syatax we will use the fol-
lowing notation for a class definition

class
{class identifier> of <import type identifiers>
(<import parameter list>) :
<export identifier> of <attribute type identifiers>
(<non-type attribufe list>);
<{block>

where block is like a Pascal block, augmented with class de-
finitions and object declarations. Some obvious abbrevia-
tions apply when import or attribute parts are irrelevant.

An object declaration introduces a new object (or an
array of objects) of a given class and provides a denotation
for it, e.g. an identifier. OCbjects are declared in much
the same way as variables. However, in an object declaration

the analogy to a type is a class call i.e., a class identif-
ier followed by the actual import types and parameters
corresponding to the definition of the class. Individually

identified objects or arrays of objects can be declared us-
ing one of the schemes

<identifier list> : <class call>
Cidentifier> (<index bounds>) : <class call>

An object denctation must be wused only within its
scope, which is a statement of the form

object <object declaration>;
<block>

and, however innocently this may look, we thus depart essen-
tially from similar proposals. A block is, as in Pascal, a
set of definitions and declarations followed by a statement
part. We will allow the above statement as the statement
part of a block i.e., it is a compound statement in Pascal
terminology. This allows object declarations to appear like
other declarations. Further we will allow nested object
statements i.e.,

object <object declaration>;
{object <object declaration>;}
<bTock>

to be abbreviated:

object
{object declaration>; {<object declaration>;}
<block>

A declaration
<identifier-1>, <identifier-2> : <class call>
is an abbreviation for

<{identifier-1> : <class call>;
<identifier-2> : <class call>

This generalizes to longer identifier lists and to arrays of
objects i.e.,

a (1..10) : <class call>

is short for

a (1) <class call>;
a (2) : <class call>;
a (10) : <class call>

Multidimensional arrays of objects are expanded similarly in
row-major order. Thus we ncote that parameters in apparently
one class call may be evaluated repeatedly.

The use of a class is described by its «class heading,
e.g.

class queue of element (bound : integer)
define (procedure append (x : element);
procedure remove (var x : element));

The attributes appear as parameters following the ex-
port identifier, here: "define". In the example above, the
access identifiers are "append" and "remove", denoting two
procedures with their parameters completely described. The
identifier "element" denotes a type parameter for the defin-
ition of the class. Class "queue" also takes an integer
parameter, "bound".

A declaration of a queue object may be
Q : queue of char (50)

whereby Q will denote an object implementing two procedures
denoted Q.append and Q.remove. Further details of implemen-
tation of Q are inaccessible to a user of Q and are said to
be hidden.

The semantics of class definitions and object declara-
tions can be given in terms of rewriting rules. These will
transform a program in which the constructs appear 1into
another program in which they do not. The latter program
will be taken as the meaning of the former.

3. Syntax and semantics.

We will not give the syntax of a complete language. In-
stead we will depend on our readers intuitive understanding
of a language almost identical to Pascal (Wirth, 1975) with
extensions (Steensgaard-Madsen, 1978). However, the proposal
is not intended for inclusion in Pascal.

We will extend the concepts of statement, parameter
list and blocks as shown in figure 1 ¥, which uses the nota-
tion of the Pascal report. The notation <...> denotes expli-
citly that a number of Pascal syntax-rules still apply for a
particular production. Procedures and functions are allowed
to take type parameters, but the syntax is obviocus from fig-
ure 1 and hence is not described.

A facility is denoted by an object denotation followed
by a dot and an access identifier defined in the heading of
the class to which the object belongs. An attribute type
identifier may only be wused for variable declarations,
specification of parameters, definition of pointer types, or
as an actual parameter.

¥ Numbered figures will be found in the last pages of this
printing.

The basic idea behind the translation of class and ob-
ject constructs into more primitive constructs is based on
the technique described in Krutar (1973). Let us cconsider a
particular scheme and rewrite 1it:

{ 1) class A of B (<parameter list-1>)
' C of D (<parameter list-2>);
<block-137

{ 2} object P : A of X (<actual parameters>);
<{block-2> -

is translated into
{ 1} procedure A of B
(<parameter list-1>;

procedure C of D (<parameter list-2>));
<block=T17;

{ 2} Qrocedufe P of D (<parameter 1list-2(BiX)>);

taking parameter list-2 from the }
{ definition of A and replacing B by X }
<block=-2>;
begin
A of X (<actual parameters>, P)
end

Rewriting class headings in this way applies to their
appearance in a parameter list also. Note especially that
rewriting this way defines the export identifier as a pro-
cedure identifier. Consequently, it must be used as such in
block-1. With this we have arrived at another essential
difference from similar proposals. Further, the correctness
and meaning of block-1 will not depend on implicit relations
between identifiers in the class heading i.e., relations es-
tablished by an object declaration.

We can apply the scheme for a complete (nonsentical)
example:

class A of B (q B) :
Cof D (varu : B; var v : D);
var U T B; V i integer; Z : char;
{ U :=V is always illegal }

begin C of integer (U, V) end;

object P : A of integer (17);
var r : integer; { r := P.v is always illegal }

begin r = P.u end

is translated into:

rocedure A of B
*"(q : B; procedure C of 2(var u : B; var v : D))

(
var U : B} V : iInteger; Z : char;
begin C of integer (U, V) end;
procedure P of D (var u : integer; var v : D)j
var r @ integer;
beginr := P.u { i.e. r := u } end;

begin A of integer (17, P) end

Note tLhat the variable Z in A is hidden, wheras U and V be-
come available in the body of P through the parameters u and
v. The activation of P from within A is the tricky part that
we hide by the syntax of classes and objects.

As is the case with many generalizations, the class and
object concepts gain a life of their own as soon as they are
used in non-trivial ways. Therefore we will restrict the
applicability of our planned rewriting rules to the trivial
cases to avoid pushing the complexity into the basic
language that we are going to augment. However, this will
not keep us from giving rather complex examples.

We will only describe the basic language informally. It
is simpler than the language used in the examples since type
parameters, classes and objects are not allowed. However, we
need to provide a means for describing recursively defined
parameter lists, or else we must forbid recursively defined
classes in the augmented language. Such a means has been de-
fined in Steensgaard-Madsen (1978); however, its 1inclusion
here will only complicate our rewriting rules and conse-
quently we will not allow recursively defined classes in the
augmented langueage.

Our augmented language will also be simpler than the
language used in the examples. We will not allow arrays of
objects and no more than one identifier may appear in an ob-
ject identifier list or a formal object identifier list. of
course type parameters are not allowed. With-statements will
not be allowed to abbreviate access to object facilities and
object statements may only be used as statement parts of
blocks. Again, these restrictions serve only to simplify the
rewriting rules or the facilities required of the Dbasic
language.

A program written in the augmented language may be
transformed into a program in the basic language, which will
be taken as the meaning of the former. Proceed as follows:

1. Make every identifier unique within the entire program
text and remove all occurrences of $-character. Replace
all dot-characters used to sclect a component of an ob-
ject by a $-character.

2. Replace every object parametcer with the (export) attri-
butes of the heading of the class that is referenced in
the class call, adding as prefix to every access iden-
tifier the formal object 1identifier followed by the
$-character.

3. Replace the ":" or "):" of -every class heading with
"(procedure " or "; procedure " respectively, and add
a "YT following the last attribute. Then replace all
occurrences of cless with procedure.

4, Repeatedly rewrite object statements, not containing
other object statemeuts, from the form

object OB : CL (<actual parameters>); <block>
into

procedure OB (<parameters>); <block>;
begin CL (<actual parameters>, OB) end

where <parameters> is the list of (export) attributes
from the heading of CL, with prefixes "OB3%" inserted
before all access identifiers.

A more complete set of rewriting rules providing for
both type parameters, recursion and free use of object
statements can easily be described if we modify our Dbasic
language in the following way:

a. allow type parameters to appear more like any other
kind of parameters within a parameter list.

b. provide a mechanism by which an entire parameter 1list
may be associated with a name and permit recursive de-
finition of parameter lists.

c. define a concept of a block statement (as in Algocl 060).

For complete generality we would need a construct to
match array of objects. This would nct be too hard, if we
were restricted to static bounds. For dynamically computed
bounds we would have to rely on an intuitive understanding
of a generalization from static to dynamic bounds of some
construct of the basic language, and thus we would gain
nothing by rewriting.

We conclude that the semantics of classes and individu-
ally identified objects can be described by rewriting rules.
The generalization from individual identification to 1iden-
tification by indexing is a familiar one, which we will ac-
cept without having it described by rewriting rules.

4. Examples.

This section presents a number of examples. If the
reader is familiar with other proposals of similar kind, it
should not be difficult to follow the examples without de-
tailed knowledge of syntax. See figure 1 and section 3 for
details on syntax and semantics.

Only the first example is fully elaborated. Subsequent
examples have been chosen merely to point out special
features and are given in detail only if required to make a
point. It is in the spirit of these concepts to study com-
plete class definitions and class usage separately.

4.1. Topological sort.

Finding a total ordering which contains a given partial
ordering is called topological sorting. A well known algo-
rithm to do this can be found in Knuth (1968) and Wwirth
(1976). Below is a solution based on the use of a structure
called bag (here implemented like a stack), made available
as a class.

class bag of element (size : integer)
export (procedure include (x : element)

procedure remove (var v : element);
functiocn empty : boolean);

var .
{1Y store (1 .. size) : element;
{ store is the name of an array of individual }

{ variables, not a variable of array type }
top : integer;

rocedure INCLUDE (x : element);
gegln

if top >= size then error {definition omitted};
top := top + 1; store (top) = X
end { INCLUDE };

procedure REMOVE (var v : element);
begin

if top <= 0 then error;

v := store (top); top := top - 1
end { REMOVE };

begin { dynamics of class definition }
top := 0;
{ binding of access identifiers }
{t} export (INCLUDE, REMOVE, top = 0)
{ the expression "top = O" is accepted }
{ as a function without parameters
end { definition of bag };

const
-low = 'A'; high = 'Z'; stacklimit = 10;

procedure readelement (var ch : char); external;

[furtner definition omitted }

object
{'T Suc (low..high) : bag of char (stacklimit);

out : bag of char
(ord(high) - ord(low) + 1
yar
first, second,
this : char;
prec (low..high) : integer;

begin { main program }

for this := low to high do prec (this) := 0;
{ read neighbours and record for every element:

{ 1) the number of preceding neighbours

{ 2) the identity of all succeeding neighbours

while nct input.eot do begin
readelement (first); readelement (second)
prec (second) := prec (second) + 1;
{ include second in the bag }
{ of successcrs to first }
{1} Suc (first).include (second)
end;

{ find elements with no preceding neighbours }

for this := low to high do

}
}
}

if prec (this) = 0 then out.include (this)

generate the elements in sequence of a total
ordering by writing and removing all elements
with no preceding neighbours left

- p—

while not out.empty do begin
cut.remove (first); write (first);
{1} with Suc (first) do
while not empty do begin
remove (second);

prec (second) := prec (second) - 1;
if prec(second) = O then
out.include (second)
end

s

end
end { program }

}

}
}

\.
7

ﬂ.g. Nested class definitions.

You may object that storage is not used in an economi-
cal way in the topological sort example, because all bags
require a predetermined number of hidden variables. A more
flexible solution can be obtained by nesting the bag defini-
tion in a class that provides for common storage administra-
tion. Thus, we get an exampl:z of a nested class definition
and a class facility.

class pool of element (size : integer)

define
(class bag
def (procedure include (e : element);
procedure remove (var v : element);
function empty : boolean));

{ block omitted]}

Here, pool provides bag as an attribute that may be im-
plemented wusing a common storage administrator hidden in a
pool object. The topological sort example woulc require the
following changes in the object declarations:

object charpool : pool of char (200);
out : charpool.bag; :
Suc (low .. high) : charpool.bag;

and of course a replacement of the definition of class bag
with a definition of class pool.

4.3. Dynamic binding.

The following rather artificial example serves only to
enhance the difference between this approach to classes and
others, characterized by their static ©binding of access
identifiers. We restrict the example to its bare minimum and
leave ocut trivial detatils. The Pascal concept of a set type
is used unmocdified. The example shows the first steps for
defining a concept similar to the set concept, but without
the restrictions put on base types in most Pascal implemen-
tations and accepted here also.

_)‘in

that

EQ

class bitmap ({ set of 0 .. } n : integer) : define
“(procedure insert { 1 : integer);
function member (i : integer) : boolean);

const N = 35 { machine dependent };

procedure simple_ case;
var representation : set of 0 .. Nj
procedure IKSERT (i : integer); begin ... end;
function MEMBER (i : integer) : boolean;
begin ... end;
begin
;epresentation := [J]; define(INSERT, MEMBER)
end;

procedure involved case;
var

—

representation (0 .. n div N) : se

(g
1S
o
=

o o o

begin ... define (...) end;

begin
if n > N then involved case else simple_case
end

Useful class specifications.

This subsection lists a number of class specifications

may be wuseful 1in defining specifications for use in

portable programs.

&=

4.4.1.

Iro

Sequential files.

class file of T
define (procedure rewrite;
procedure reset;
procedure write (e : T);
procedurc read (var v : T);

function eof : boolean);

Direct access files.

class direct access file of T
define(procedure reopen(id(integer) : cher
procedurc create(id(integer) : char
procecdure put (n : integer);
rocecure get (n : integer);
length: integer;
var buf : T),

s

- e

4.5, Sorting.

Type parameters may also be wused 1in ordinary pro-
cedures. A general sorting routine may be defined with a

heading 1like

rocedure sorting of T
(function sequence (a, b : T) : boolean;

procedure input (procedure release (e :T));
procedurc cutput(prccedure retrieve(var v : T)))s

The procedure sorting requires three parameters. The
first defines the ordering upon which the sort is to be per-
formed (e.g. sequence(a, b) = a < b). The second pro-
cedure, input, will be called by sorting with a procedure
parameter, release, that allows a sequence of records to be
transferred to sorting one by one in successive calls of
release. Similarly, the third procedure, output, will be
called from sorting when the sorted sequence of records may
be obtained one by one in successive calls of retrieve.

Another procedure may be built from this, taking ob-
jects of class file as parameters:

procedure filesorting of T

(function sequence (a, b : T) : boolean;
object inf, outf : file of T);
var count : integer;

procedure INPUT (procedure transfer (e : T D),

var u : T;
begin
inf.reset; count := O;
while not inf.eof do begin
inf.read(u); transfer(u); count := count + 1
end -
end;

procedure OUTPUT (procedure transfer(var v : T));
var w : T;

begin
with outf do begin
rewrite;
while count > 0 do begin
T Transfer(w); write(w); count := count - 1
end
end
end;

begin sorting of T (sequence, INPUT, OUTPUT) end

- 14 -

4.6. Recursively defined classes.

The example below illustrates recursive definition of a
class. It implies that the class definition contains a pro-
cedure call (cf. delimit) with a 1list object as actual
parameter. Thus a declaration of such an object must appear
in the class definition.

class list of item : define
_procecure atom(e : item);
procedure sublist

(procedure delimit
(" cbject v : list of item)));
{ block omitted }

An object of class list provides facilities to build a
list. An atom may be appended to the right end of a current
list by means of the atom procedure. A sublist may similar-
ly be appended as a single component by use of the sublist
procedure. The number of components in a list (or & sublist)
is determined by the dynamic behaviour of a procedure that
takes a list object as parameter: whenever the procedure
terminates the last component has been included in the list
build by use of that object.

As an example consider the following procedure for
building a 1list from an externazal text-representation, e.g.
(ab(c())d):

rocedure build(object u : list of char);
begin { nextch = " (' J —-
input.read (nextch);

while nextch <> ')' do begin
if nextch in letters then u.atom(nextch)
else if nextch = '{' Then u.sublist(build);
input.read (nextch)

end

e

end

4.7. Triangular structure.

Consider the example below a scheme for definition and
use of a triangular structure. First we declare an object,
rowlength, of class incr. This provides access to a func-

tion, rowlength.i, that in successive calls returas the
values 1, 2, 3, «.. . Then we declare an array of objects,
row, cach of which provides an array of variables,
col (1..up). The value of up is determined by computing
rowlength.i, and according to the mecaning of declaration of
array of objeccts this implies repcated computation of the
function. Thus, row (i) provides access to the variables

row (1).col (1..1i).

class incr : define (function 1 : integer);

"7 var k @ integer;

function f : integer;

begin k := k + 1; £ := k end;
begin k :z 0; define (f) end;
object

rowlength ¢ iner;

{rowlength.i = number of calls of rowlength.i}

class vector of T (length : integer) : export
("var col (integer) : T; up : integer);
var x (l..length) : T;
lgth ¢ integer; :
begin lgth := length; export (x, lgth) end;

object
row(1..10) : vector of integer(rowlength.i);
{ row(i) : (var col(T..i) : T; up : integer) !
begin
... q := row(p).up; row(p).col(q) := 0; ...
end;

4.8. Operating syslem applications.

One advantage of our approach to encapsulation is that
access patterns can be enforced by proper class definition.
The literature treats numerous problems on access patterns
required to handle shared data. Common problems are known by
names like "readers and writers", "dining philosophers", and
"bounded buffer". This class concept provides a tool for
solving these access pattern problems. We will assume a
predefined class, semaphore (cf. Dijkstra, 1968), to provide
synchronization primitives and apply the class concept to
build more advanced tools like the conditional critical re-
gion statement proposed by Hoare (1972) and primitives for
simple and correct construction of monitors as proposed by
Brinch Hansen (1973).

The examples below should not be taken as final propo-
sals of suitable classes for the purpose of writing programs
for concurrent processes, but they are a first attempt in
this area.

4.8.1. Kernel interface.

Class headings are well suited to describe interfaces
to hardware and basic software. In the following sections we
will assume the existence of a kernel that implements sema-
phores as described by the heading

class semaphore (initial : binary):
~define (procedure P; procedure V);

Further, we will assume that the kernel provides a fa-
cility for dynamic creation of processes. The actions of a
process will be described by a procedure, hence no explicit
process construct will ©be introduced. The kernel facility
might be described by the class heading:

class
“control
(procedure activity; store_size : integer)
define -
(procedure start (maxtime : integer);

procedure kill; status : state);
{ block omitted; it is implementation dependent }
{ and may or may not be based on simpler classes }

The parameter activity represents the action of the

process. The process will start running as a consequence of
a start-instruction. Activity requires no parameters. Howev-
er, the body of the actual parameter may contain a

parameterized call. For convenience we may even allow a pro-
cedure call as the actual parameter and thus obtain the
flexibility of parameterized processes. A discussion of
whether this is an appropriate way to introduce processes 1is
outside the scope of this paper

4.8.2. Synchronization structures.

We may accept variocus low-level synchronization primi-
tives as predefined if we can construct desired and easily

available structures on top of these. Semaphores will be
chosen as primitives and conditions as proposed by Hoare
(1974) will be built on top of these. Closely following

Hoare's paper we get the definition in figure 2.

The class conditions ensures that wait and signal
operations can only be accessed within an object statement
of «class entry (an entry-statement for short). Entry-
statements provided for by one condition object are mutually
exclusive. Wait and signal operate on condition-variables,
which we 1identify by integers in the range 1 to "number".
Use of the class is of course completely described by the
class heading:

class conditions (number : integer)
provide
(class entry
define (procedure wait (i : integer);
procedure signal (i : integer)));

In the 1implementation a condition variable i is
represented by semaphore cond (i)} and a count of waiting
activities condcount (1).

A key variable is urgentcount, which states the number
of activities hung up due to their performing a signal
operation. It is used to assure that no activity will be al-
lowed to enter an entry-statement until all signal opera-
tions have been completed, i.e. urgentcount = 0 if the sema-
phore mutex is "open".

Hoare illustrates the monitor concept by an administra-

tion of a bounded buffer. Closely following his design, we
build a class similar to his monitor using a condition ob-
ject, s, which contains two condition variables. Using

entry-statements as statement parts for the procedures AP-
PEND and REMOVE we know that these will be mutually ex-
clusive like entries in Hoare's monitor.

class buffer of portion (n : integer)
define(procedure append (x : portion);
procedure remove (var x : portion));

object s : conditions (2)3
{“object s prepares for mutual exclusion }
{ and synchronization }

var buffer (0..n-1) : portion;
last, count, N : integer;

const nonempty = 1; nonfull = 2;

procedure APPEND (e : portion);
object u : s.entry;
object u ensures mutual exclusion and }
{ enables access to wait and signal
begin
if count = N then u.wait(nonfull);
buffer(last) := e;
last := (last + 1) mod Nj

count := count + 1;
u.signal (nonempty)
end;

procedure REMOVE (var v : portion);
object u : s.entry;
{ Temainder of definition of REMOVE is omitted }

begin N := n; define (APPEND, REMOVE) end;

object channel : buffer (100);

o o o

- 18 -

The definition of class buffer, and declaration of the
object channel belong in an environment in which a number of

activities are created. According to the section on kernel
interface one activity, a producer, may have
“"channel .append" as a parameter but not ‘"channel.remove',

which may be reserved for another group of activities, con-
sumers. Consequently, this approach to class definiticns
seems to offer a solution to the problem of different access
rights to one object from different users.

Use of the class condition is straightforward for con-
struction of monitors: every shared procedure is defined by
an entry-statement, provided for by an object of class con-
dition.

An even finer degree of mutual exclusion 1is possible
because it 1is stated explicitly. The problem known as
"readers and writers" illustrates a case which may call for
a particular primitive, similar to conditions, to handle a
particular kind of access pattern. An implementation in
terms of semaphores is straightforward.

4.8.3. Conditional critical region.

Remember we consider the construct

object
(object declaration>; { <object declaration>; }
<{block>

to be a statement. This may be associated with a previous
object declaration which provides class facilities. If an
object only provides a class facility, further use of the
object is enforced to be within object-statements. Thus we
may obtain a strong connection Dbetween a declaration and
statements using the declaration.

We will define a class to match declaration of shared
variables and the associated conditional critical region

statement proposed by Hoare (1971):
region <shared variable> when <expression> do {statement>.

class sharing of T : define
T class when{ functicn B (x : T) : boolean)
access(var shared : T));

to be used in a block as follows:

type resource = record p : char; ... end;

object v : sharing of resource;

begin

object critical : v.when(...);

begin critical.shared.p := 'A'; ... end
end

Let us not be concerned with problems of efficiency and
define the class shared by the use of conditions. Our previ-
ous example shows how conditions can be implemented in terms
of semaphores.

Class when requires a function parameter B by which the
statement guard can be computed. If the guard is false, the
calling activity will wait for a signal on condition 1.
Whenever a signal is received in this state, it is immedi-
ately propagated to other activities waiting similarly. The
guard 1is then tested again and when it becomes true, access
to the shared variable is granted. Finally, as some guard
may have become true as an effect of the access a signal on
condition is sent.

class sharing of T : define
(class when (function B (x : T) : boolean)
access (var shared : T));

object r : conditions (1);
var SHARED : T;

class WHEN (function B (x : T) : boolean)
access (var shared : T);
object now : r.entry;
begin
while not f (SHARED) do begin
now.wait (1); now.signal (1)
end;
access (SHARED); now.signal (1)
end;

begin define (WHEN) end;

- 20 -

2. Discussion.

This section will relate the proposed class concept to
other similar ones. Further, a few comments on implemente-

tion will be given.

The terminolcgy is taken from SIMULA 67 (Dahl, 1972),
the first language to provide a similar concept. However,
SIMULA 67 did not associate information hiding with the con-
cept, probably because the need for hiding was not clearly
recognized by the computer science community when the
language was designed. A facility for hiding has been added
lately.

The inner statement of SIMULA 67 matches the wuse of
the export identifier, but the latter is more powerful due
to the provision for parameters and its not being restricted
in use as a statement. Further, SIMULA 67 defines the con-
cept of virtual, which is replaced by formal <class parame-
ters in this proposal.

A SIMULA 67 class is associated with a coroutine ratner
than a subroutine linkage mechanism, but nevertheless SIMULA
67 is the language providing a concept which comes closest
to this proposal. Information hiding is better integrated 1in
our proposal and it seems an advantage not to have an expli-
git initialization operation like the new-function in SIMULA

T.

Two problems are clearly separated by our approach: in-
formation hiding and synchronization of concurrent activi-
ties. This opposes the common trend to integrate solutions
to these problems and make a fair comparison to more recent
languages difficult. Integration has advantages with
respect to program verification. However, separate solu-
tions has the advantage that a variety of tools for syn-
chronization and access to shared data may be implemented.
Each toocl must be described by theorems, rather than axioms,
and the proof of the theorems may be very hard. But so will
a proof of correct implementation of a specialized language
construct, e.g. conditional critical regions.

Other proposals of class-like concepts, e.g. in Con-
current Pascal by Brinch Hansen (1977), rely on a rather
complex and ad hoc set of scope rules, justified however, by
a desire to prevent certain programming errors. This kind
of complexity seems lo be expected in a languagc providing a
class concept judged by the DoD language requirements (DoD,
1978). We have seen that we can do with a simple set of
rules, which may be compared to the rules governing access
to fields of a record.

A unique feature of this approach is the dynamic bind-
ing of access identifiers. This is of importance when 1t 1S

possible to determine from class parameters or the dynamic
program behavicur wnich one of a number of possible imple-
mentations of an attribute will be appropriate in the situa-
tion, e.g. polar or cartesian implementation of a type com-
plex. -

Provision for class and object parameters, nested and
even recursive class definitions seems also unique in its
generality but Concurrent Pascal and Modula (Wirth, 1977) do
have some similar previsions in a simpler form.

In addition to the proposal of the class concept, types
has been introduced as parameters. This has been done in a
very simple way and it should be mentioned explicitly that
parameterized type definitions are not implied by the propo-
sal. Compared with languages like Euclid (Lampson, 1677,
CLU (Liskov, 1977), and Alphard (Wulf, 1976) our approach is
extremely simple. Of course we have to pay for the simplici-
ty with more cumberscme progrems in certain cases, e.g. ac-
cess to components of structured formal types as allowed 1in
those languages. However, we have not restricted ourselves
seriously, because we can always provide attributes for
corresponding operations.

Implementation of type parameters 1is straightforward,
because the only operaticns needed to be parameterized are
assignment, test for equality, storage allocation, and
parameter passing. The latter operation will be at its sim-
plest if parameter passing is always by reference, which
favor a read-only rather than a call-by-value scheme. This
has tacitly been assumed in some of the examples.

Our rewriting rules give us guidelines for correct im-
plementation of classes and objects. In relation to this, at
least one "optimization" is plausible, namely the represen-
tation of facilities in the activation record of the block
containing the object statement in which the decleration be-
longs. Experience gained by Pascal programs structured
directly as if transformed by the rewriting rules indicates
that efficient implementation is possible and straightfor-
ward.

6. Conclusion.

We have in this paper shown how a Pascal-like program-
ming language can be augmented with the following concepts:
types as parameters, class definitions, classes as parame-
ters, object declarations and object parameters. Application
of these concepts has been illustrated by a number of exam-
ples. The semantics for the class and object concepts have
been defined by rewriting rules. Efficient implementation
is claimed to be straightforward primarily based on experi-
ence with programs executionally equivalent to ones wusing
classes and objects.

- 22 -

Our definition of the class and object concepts allows
us to assign meaning to nested and recursive class defini-
tions. Examples show this provides a tocl to enforce struc-
tures that previously has been considered unique in them-
selves, e.g. conditional critical regions. Use of the class
concept should be an aid to programming by stepwise refine-
ment and in the construction of reliable programs.

We have been able to view the synchronization primitive
semaphores as a class and have combined this with methods of
controlling behaviour to form high-level structures 1like
conditional critical regions and medium-level primitives for
construction of monitors.

In general, the <class concept provides a tool for
describing interfaces between modules, which may range from
hardware, through operating systems to objects described by
(other) classes. This implies there exists a similar broad
application area for the concept.

7. Acknowledgements.

I want to thank E. Reeh Nielsen and A.P. Ravn, both of
University of Copenhagen, for their many hours spent in dis-
cussions during a preliminary design phase. Further, I am
greatly indebted to F. Schneider, J. Donahue, G. Andrews and
most of all David Gries, all of Cornell University, who pa-
tiently helped me clarify the presentation. However, none of
these may be blamed for any inconsistency or error which may
be found herein.

g.

References.

Brinch Hansen, P. : "Operating system principles",
Prentice-Hall, 1973.

- : "The Architecture of Concurrent Programs",
Prentice-Hall, 1977.

Dahl, O0.-J. : "Hierarchical program structures", in :
"Structured Programming", Academic Press, 1972.

Di jkstra, E.W. : "Cooperating Seqguential Processes",
in : "Programming Languages", F. Genuys (Ed),
Academic Press, 1968.

(DoD) Department of Defence Requirements for High Order

Computer Programming Languages : "Steelman", 1978.
Hoare, C.A.R. : "Towards a theory of parallel programming",
in : "Operating Systems Technique", Hoare and Perott

(Eds), Academic Press, 1972.
- : "Monitors: An Operating System Structuring Concept",
Communications of the ACM, Vol. 17, No. 10, Oct. 1G674.
Knuth, D.E. : "The Art of Computer Programming", Vol. 1,

Addison-Wesley Publishing Company, 1968.

Krutar, R.A. : "Restricted Global Variables in Algol 60",
SIGPLAN Notices, Vol. &, No. 12, Dec. 1973.

Lampson, B.W. et. al. : "Report On The Programming Language
Euclid", SIGPLAN Notices, Vol. 12, No. 2, Feb. 1977.

Liskov, B.H. et.al. : "Abstraction Mechanism in cLu",
Communication of the ACM, Vol. 20, No. 8, Aug. 1977.

Steensgaard-Madsen, J. : "Pascal - clarifications and
recommended extensions", DIKU, Sigurdsgade 41,
DK-2200, Copenhagen N, Dernmark.

Wirth, N. : "PASCAL Report", in : "PASCAL User Manual and
Report", K. Jensen and N. Wirth, Springer Verlag, 1975.

- : "Algorithm + Data Structures = Programs",

Prentice-Hall, 1976

- : "Modula: a Language for Modular Multiprogramming',
Software - Practice and Experience, Vol. 7, No. 1, 1977.

Wwulf, W.A. et.al. : "An introduction to the coustruction
and verification of Alphard programs", IFEE Transactions
on Software Engineering, SE-4, 4, Dec. 1976.

- 24 -

<object statementd> ::=
object <object declaration>; {<object declaration>; }
<block>

<object declaration> ::=
<object identifier>{,<cbject identifier>} : <class call> |
<array of object id> (<limits>{,<limits>}): <class call>

<{object identifier> ::= <identifier>

<array of object identifier> ::= <identifier>

<{class call> ::= <class identification> |

<class identification> (<actual parameter list>)

<{limits> ::= <expression>..<{expression>

<class identification> ::= <class identifier> |
{class identifier> of <actual type identifier 1list>

Cactual type identifier list> ::= <identifier list>

<identifier list> ::= <identifier> {,<identifier>}

<class definitiond> ::= <class heading>; <block>

<class heading> ::=

class <class identifier> <import attributes>

<export identifier> <attributes>

<import attributes> ::= <attributes>

Cattributes> ::= <empty> | (<parameter list>) |

of <formal type identifier list>
of <formal type identifier list> (<parameter listd>)

{formal type identifier list> ::= <identifier list>

(formal section> {;<formal section> }

{parameter list>

(formal sectiond> ::= <...> | <class heading>
object <formal object identifier 1list> <bound types>
{class identification>

<bound_types>‘:::‘<empty> i
(<type identifier> {,<type identifier>})

{formal object identifier list> ::= <identifier list>
]

Ccompound statement> ::=z <...> | <object statementi>

Figure 1.

- 25 -

class conditions (number : integer)
provide’
(class entry
define (procedure wait (i : integer);
procedure signal (1 : integer)));

object
urgent : semaphore (0);
mutex : semaphore (1);
cond (1..number) : semaphore (0);

var
condcount (1..number) : integer;
"max, urgentcount : integer;

{ meemme nested class definition ~-=---- }

class entry
define (procedure W (i : integer);
procedure S (i : integer));

procedure wait (i : integer);

begin
condcount(i) := condcount(i) + 1;
if urgentcount > 0 then urgent.V
else mutex.V;
cond(1).P;

condcount(i) := condcount(i) -1
end;
procedure signal (i : integer);
begin
if condcount(i) > O then begin
urgentcount := urgentcount + 1;
cond(i).V; urgent.P;
urgentcount := urgentcount - 1
end
end;
begin
mutex.P; { urgentcount = 0 }

define (wait, signal); :
if urgentcount > O then urgent.V else mutex.V

end;
{ —==--- end of definition of "entry" ------ }
begin
for max := 1 to number do condcount (max) := 0j
max := number; urgentcount := 0; provide (entry)
end

Figure 2

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif

