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1 Introduction

In this paper, we derive the joint distribution of the sequence of estimates of the parameter vector 8
in a normal general linear model when data accumulate over a series of analyses. This sequence
of estimates has a remarkably simple covariance structure, even when observations are correlated,
allowing standard group sequential tests to be applied in very general settings. If variances and
covariances of the observations depend on an unknown scale factor o2, the joint distribution of the
sequence of estimates of § and o? is required in order to construct sequential t-tests. We show
that this joint distribution has a simple form, again even in the case of correlated observations,
and a general treatment of group sequential {-tests can be obtained. Our results also provide a
basis for group sequential x? and F-tests appropriate to the cases of known and unknown variance,
respectively.

We consider the situation where univariate observations Y3, Y3, ... are normally distributed with
means depending on a parameter vector § = (0,.. .,0,)T. In a group sequential study with a
maximum of K groups of observations, we denote the total number of observations in the first
k groups by ng, k = 1,...,K, thus ny < ... < nk, and we denote by Y® = (Vi,...,Y,)7T
the vector of observations available at the kth analysis. We assume that the full vector of nk



observations, Y(¥), has a multivariate normal distribution with design matrix X (K) and variance
matrix X5 g2 where X&) and £ are known. At each analysis, k = 1,..., K, we observe
Y® ~ N(X®9,£*)g?) where X® and £® can be deduced from X and () by extracting
the elements relating to the first ny components of Yy &),

If 0 is estimable from Y®, the maximum likelihood estimate based on Y(* is the generalised
least squares estimate

60 = (xOTEE ™ x W1 xOTe® Ty B f =1, K. (1)

If, in addition, o2 is unknown and nj > p, the standard estimate of o based on the residuals at
analysis k is

k
520 _ (k)
ng—p
where
S® = (v — X(k)()(k))Tg(k)"l(y(k) - X(k)é(k)) (2)
~ azxik,_p, k=1,...,K.
In Section 2 we derive the joint distribution of the sequence of estimates W k=1,...,K. In

Section 3 we consider the case of unknown variance and obtain the joint distribution of the sequence
of pairs (é(k),?f?(k)), k = 1,...,K. Construction of a group sequential t-test of the hypothesis
¢T9 = 0, for a p x 1 vector ¢, requires the joint distribution of the sequence of pairs (7w 52R)),
k=1,...,K, and we derive this joint distribution in Section 4. In order to test the hypothesis
CTh = 0 for a p X m matrix C, a group sequential x? test is required if 0? is known and a group
sequential F-test if o2 is unknown. We provide the theory underlying such tests in Sections 5 and 6.
Note that all the joint distributions we consider are for full sequences of K statistics. In the context
of a group sequential test, our results are not conditional on the experiment continuing to each
analysis, rather, they concern the values that statistics would have taken had the stopping rule not
been applied. Nevertheless, these results provide the necessary basis for calculating properties of
group sequential tests. .

Our general result on the joint distribution of the sequence of estimates {69k =1,...,K}
provides a theoretical base for the sequential analysis of general linear models. It includes, as special
cases, results for specific longitudinal data models obtained by Armitage, Stratton and Worthington
(1985), Lee and DeMets (1991) and Reboussin, Lan and DeMets (1992). This result also enables
us to extend the theory developed by Jennison and Turnbull (1991) for group sequential x? tests of
Hy: 0 = 0 when observations are independent, multivariate N(8, I,) to tests of hypotheses of the
form CT@ = 0 when observations follow a general linear model with parameter vector 4.



Our results for the case of unknown o generalise the theory developed by Jennison and Turnbull
(1991) for group sequential t-tests when observations are independent, univariate N (8, 0?) and for
group sequential F-tests when observations are independent, multivariate N(0,I,0%). We show
that their results extend, in very much the same form, to general linear models with correlated
observations. We also explain the modifications that are needed when some elements of the
parameter vector § are unestimable at early analyses and when the variance matrix of the difference
between successive estimates, GU+1) _ é(k), is not of full rank.

These results are of fundamental importance to practical applications of sequential analysis.
They provide a formal basis for sequential treatment comparisons adjusted for the effects of baseline
covariates and of stratification factors; they allow the sequential analysis of a coeflicient in a multiple
linear regression model; they underlie the sequential analysis of general linear mixed models for
longitudinal data, dealing automatically with staggered entry and the resulting variation between
subjects in lengths of follow-up. Our theory for the case of unknown ¢? provides the basis for a
more accurate approach to the sequential analysis of normally distributed measurements than that
based on methods derived for the case of known variance.

2 The joint distribution of {é(k); k=1,...,K}

Since each 8% is a linear function of Y¥) the elements of the sequence of vectors 60, .. .,é(K )
have a multivariate normal joint distribution. Marginally, for each k =1,..., K,

E@(®) =49
and

Var(§®) = Vio?,

where

Vi = (X(k)Tg(k)‘lX(k))—l' (3)
The covariance structure of the estimates 0® &k = 1,...,K, is established by the following
Theorem.

Theorem 1 Suppose Y = (Yi,..., Yo, )T ~ N(X®)g 2K)g?) with non-singular variance
matriz S a? and the first ny, elements of YK) are available at analyses k=1,..., K. Denote the
generalised least squares estimate of 0 at analysis k by ok = (X(k)TE(k)_1X(k))“1X(k)TE(k)“1Y(k)9
Then, for 1 <k, <k, <K,

Cov(*),§%)) = Var(§*)). (4)



Proof
Since the data available at analysis k; are a subset of the data available at analysis ky, we can write

Atk — pTy (k)
for some ng, X p matrix M. As 6% is an unbiased estimate of 0,
EMTY®)y = MTX*)9 =0  for all 0

and we can deduce

MTX®) = ],

where I, denotes the p x p identity matrix. Hence,

Cov(é(kz)’é(kz)) = COU(MTY(’%), (X(kz)TE(kz)“1X(k2))—1X(k2)T§_j(k2)“1Y(k2))
— MT Var(Y () 5ka) ™! x (k) X (k) T53(k2) 71 X (k2)) 1
= (X(kz)Tg(kz)‘lx(kz))—laz = Var(§®),

as required. O

Note that Equation (4) can be rewritten as
Cov(§%2) §k2) — i)y = ¢, (5)

showing that §(k2) and §(k2) —§(*1) are independent. We shall see the importance of this independence
in deriving later results. It also follows from (4) that the sequence (VoW k = 1,...,K} has
independent increments and, hence, that {#®);k = 1,..., K} is a Markov sequence.

3 The joint distribution of {(é(k),S(k));k =1,...,K}

We start by developing theory for the case of independent observations Yi, : = 1,...,nk, with
common variance o2. We shall show later, in proving our Theorem 2, that the theory generalises to
the case of correlated Y;s. We consider analyses 1 and 2 of a group sequential test as an example of
a general pair of successive analyses, k and k+1, assuming for now that 0 is estimable at analysis 1.
This can be replaced by a weaker requirement that certain linear components of 6 are estimable
when considering specific sequential { and F-tests.

The least squares estimate of § at analysis 1 is

A1) = (X(l)Tx(l))—lx(l)Ty(l) = ATY®,
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where

W) xMT x ()1
Ao (X (XT X (1) )
0(n2~n1)><1>

in the usual notation for a partitioned matrix and with 0, denoting an n x m matrix of zeroes.
At analysis 2,
) — (X(2)Tx(2))-1x(2)Ty(2) = BTy®

where B = X@(X@Tx@)-1,

We shall decompose Y and Y into sums of projections onto subspaces associated with
the estimates 8V and 8@ and various components of error sums of squares. We first define the
projection which takes Y@ onto the space spanned by the columns of A,

P, = A(ATA) AT,

Although this is a projection of Y2, it gives zero weight to the observations Yy, 41,..., Y., which
only become available at analysis 2, thus the top left n; x ny submatrix of P, is the projection matrix
for Y onto the model space at analysis 1. Note that P; satisfies the determining properties of
a projection matrix in that it is symmetric, PT = Py, and idempotent, Pt = Pi. It is easily
checked that P,Y = Y if Y is in the column space of A, and ;Y = 0 if ¥ is orthogonal to this
space. Recall that a general n x n projection matrix P of rank v has v eigen-values equal to 1 and
n — v eigen-values equal to zero. If Y is multivariate normal with Var(Y) = 0?1y, then \|PY||*/o?
has a non-central x2 distribution or, if E(PY) = 0, a central x2 distribution. (See Seber, 1980,

Chs 1-3 for a detailed discussion of linear models, projection matrices and the multivariate normal
distribution.) We define the projection associated with 6 in the same way,

P, = B(BTB)'B”.

The following Lemma is useful in establishing independence between projections. Since the
proof is no harder, we prove this for the case of general Var(Y).

Lemma 1 Suppose Y ~ N(X0,%0?) and 0 is the minimum variance linear unbiased estimate of 0

based on Y. If Q is an r x n matriz such that E(QY) =0 for all 9, then
Cov(§,QY) = 0.

Proof
The Gauss-Markov theorem (see, for example, Seber, 1980, p. 18) establishes the existence of a
minimum variance linear unbiased estimate of 8, i.e., an estimate which minimises Var(c'§) within



this class for all p-vectors ¢. Suppose 6 is this minimum variance estimate and Cov(éi,qTY) #* 0
for some 1 < i < p and row ¢7 of Q. Let 8; = 0; for j # ¢ and

0, = éz +e€ qTY.
Then E(6) = 6 and
Var(6;) = Var(éi) +2¢ Cov(0;,¢"Y) + €¢"Var(Y)q.

For e sufficiently close to zero and of opposite sign to Cov (0;,47Y) this gives Var(;) < Var(6,),
contradicting the minimum variance property of 9. O

This Lemma offers an alternative proof of the result in Section 2 that Cov(fk2) §t) — 01y =0
since 002) is the minimum variance unbiased estimate of # based on Y (%2), fk2) — §(k1) i5 of the form
QY *) and E(§*2) — §(1)) = 0 for all 6.

If Y is a vector random variable with Var(Y) = ¢%I, and o > 0, two n X n projection matrices
P; and P; satisfy P;P; = 0 if and only if Cov(PY,P;Y) = 0. We then say that F; and P; are
orthogonal projections and write F; L P;.

The residual sum of squares at analysis 1 is the squared norm of the projection of Y™ onto the
space orthogonal to the column space of XM, i.e., | P3Y@||? where

M
&wﬂz( Y )—HYm=(hW” Ons x(na =) )W”~HWA (6)

0(712—714))(1 (n2—ni1)xXny O(ng—nl)x(n2~n1)

Since the last ny — n; columns of A7 and of P; contain only zeroes, 61 and P,Y® can be
expressed as matrix multiples of Y1) Also, E(P;Y®) = 0 for all . Hence, applying Lemma 1
at analysis 1 with Y = Y gives Cov(§®), PsY®) = 0. Since ,Y® = A(ATA)~'0"), we have
Cov(PY® PY®) = 0 and P; L P;. This is, of course, the standard result concerning the
independence of parameter estimates and residuals in a linear model.

We now show that the residual sum of squares at analysis 2 can be decomposed into the residual
sum of squares at analysis 1, a component associated with 6@ — é(l), and further “pure error” in

the additional observations at analysis 2. The difference between parameter estimates at analyses
1 and 2 is
6@ — g0 = (B - A)TY®,

In general, B — A may have less than full column rank, p. If B — A has column rank p, we remove
p — p columns from B — A which are linearly dependent on the remaining columns to create an
ny X p matrix D of full column rank and with the same column space as B — A. Thus,

D= (B - A)E,
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where E is a p x p matrix with a single one and p — 1 zeroes in each column, and
DTY® = ET(§® — gy,

Let F' be the p x p matrix such that
6 — §) = FTPTY @,

Note that if B — A has full column rank, E = F = I, and D is simply B — A. We define the
projection associated with () — 0™ to be

P, = D(DTD)7'D".
The following orthogonalities can now be deduced.
P, L Py : Apply Lemma 1 to 6@ with Y =Y® and Q = Ps.

Py L P, : Note that P,Y® = B(BTB)®, PY® = D(DTD)'ET(6® — 0 and, by
Theorem 1, Cov(§®,4® — §1)) = 0. Hence, Cov(PY?, P,Y®) =0,

P; L P, : Note that P, = D(DT D) 'ET(BT - AT) = D(DT D) *ET(BTP,— AT P,) and we already
have P; L P, and P; L P;.

Since P, P; and P; are mutually orthogonal, it is easily checked that
P5:I—P2-P3—P4

is a projection orthogonal to P, P» and Ps. This projection represents the “pure error” in

observations recorded between analysis 1 and analysis 2. Now, §0) = §(® — (0™ — §y =
BTp,Y® — FTDTP,Y®. Hence,

P1Y(2) — A(ATA)~1é(1) - A(ATA)—I(BTPZ _ FTDTP4)Y(2)
and
PiPs = A(ATA)/(B"P, — FTD"P)Ps = 0,

since P,Ps = PyPs = 0. Thus, we have the further orthogonality P; L Ps. The projection matrices
P,, Py and P, have ranks p, n; — p and p respectively, hence P; has rank ny — (p +n1 —p+p) =
ng —ny — p.



The projections P, Ps, Py and Ps decompose Y ) into four independent components,
Y® = pY® 4+ py® 4+ P,Y® 4 PRY®.

The first component, P,Y?), is associated with the fitted model at analysis 2, 6@ = BTP,Y®, and
the latter three with the residual sum of squares about this fitted model,

SO = | BY P 4+ || PY | + | PY PP, (7)

The conditional distribution of 6®|§() can be obtained from Theorem 1. In (7), | PsY P2 = 5O

and ||PsY®)||? is distributed as o times a x},_,, 5 random variable, independently of everything

else. The remaining term in (7) is determined by 61 and 6®, and can be written as

Hp4y(2)”2 — Y(2)TD(DTD)—-1DTy(2)
{ET(é(Q) —_ é(l))}T[U—2VaT{ET(é(2) . é(l))}]—-lET(é(Z) _ é(l)),

since ET(0@® — M) = DTY® and Var(DTY®) = 02DTD. An alternative expression is possible in
terms of the generalised inverse of Var(é(z) - é(l)). A generalised inverse of a matrix A is a matrix
A~ satisfying AA~A = A (see Seber, 1980, p17). Since 0@ — §0) = FTPTY @), where F has full
row rank p,

(é(Z) - é(l))T{0~2var(é(2) _ é(l))}—(é@) )

= (FTDTY) {52 Var(FTDTY®)}~(FTDTY?)

= YOTpF(FTDTDF)"FTDTY®

= Y(2)TD(DTD)“1(FFT)‘lFFTDTDF(FTDTDF)“FTDTDFFT(FFT)“l(DTD)"lDTYm
— YOTp(DT D)y (FFO) ' FFT DT DFFT(FFY) (D" D) DTY®

= yor D( DT D)™ DTy ®

= ||PY®)P.

The preceding results will allow us to deduce the conditional distributions of successive pairs
of sufficient statistics, (é(k), S(k)), given their predecessors. To establish the Markov nature of this
sequence, we examine pairs of successive analyses. Consider first the conditional distribution of
(0@, 5@y (M. Now, 0@ = BTY® = BTP,Y® and P, L Ps, so §® is independent of PY®
and, therefore, of SM). Since Y is determined by P;Y® and PY®, §® depends on the whole
of YO only through P,Y®, i.e., through () since P,Y® = A(ATA)~1M). Note that in the
decomposition of S@)

S@ = s 4 (4™ — (j(l))T{(,-?Var(é(?) — 9(1))}—(9‘(2) — My + | PY )2, (8)

8



6 and OO are independent of P3Y® and so the second term depends on Y*) only through 6m.
Also, Ps L P; and P; L P3 implies that PsY® is completely independent of Y®, Thus, S®
depends on Y only through 0 and SU and, therefore, the pair (9(2) 5®)) depends on Y(l) only
through (0, SM)Y. Similarly, examining analyses k and k + 1 for general k, we can deduce that
(fk+1) | Gk+1)) depends on all of Y®) only through 8%) and S®), in particular, there is no additional
dependenceon (61, ..., 8¢ and (S, ..., S* 1) and so the sequence {(§®), S®)): bk =1,..., K}
is Markov. It is also seen that 6+ is 1ndependent of S® and, thus, transition probablhtles for
the sequence (0(’“) S are conveniently described by the condltlona,l distributions of §(*+1) given
0®) and of S*+1 given *-+1) () and S®),
We are now in a position to prove the general Theorem.

Theorem 2 Suppose YE) = (v;,...,Y,. )T ~ N(XH)9,£E)o?) with non-singular variance
matriz L) o? and the first ny elements of YK are available at analyses. k=1,...,K. Suppose 0
is estimable from Y = (Yq,...,Yn,)T and let 0B SF gnd Vi, = Var(O(k))/02 k =1,...,K, be
as defined by (1), (2) and (3).

Then, the sequence {(§®,SW):k = 1,... K} is Markov, ) ~ N(8,V;0?), SO ~ o2, _,
and, fork=1,..., K —1,

é(’v“)té(’“), S®) o N(0 + Vi1 Vi (B8P = 0), Vigr0? — Vi Vi Vigr0%) (9)
and
U1 k+1) o gk gt 4 (é(kﬂ) — 6N (V, — Vkﬂ)—(é(kﬂ) — 6%y 4 02X3»k+1—nk—ﬁk+1 (10)
where pryy is the rank of (Vi — Vig1).

Proof

For the case of uncorrelated observations with L) = [ we have established the Markov
property of the sequence of pairs (A(k) S%)) and the independence of 6¢:+1) and S®. The
conditional distribution of 0(’““)]0("‘) follows from Theorem 1. The conditional distribution of
SE+|gE+D) G G() is derived in the same way that (8) was obtained for the case k& = 1 but
we have simplified the second term using the relation

o 2Var(B*+D) — ) = 6~ Var(§®) — Var(§*)} = Vi — Vi,

which follows from (4). Note that px4; = p if 8 is estimable from the observations recorded between
analyses k and k+ 1. If not, P41 is the rank of the projection matrix associated with (0(’“+1) — 4R,
i.e., the number of linearly independent components of # estimable from the data accrued between
analyses k and k+ 1.



Suppose now that observations Yi,...,Yn, are correlated and Var(Y®)) = »E)g2, (The
Theorem assumes that $5)o? is non-singular but note that if Var(Y¥)) were singular, one could
simply remove those Y; expressible as linear combinations of previous elements of Y to achieve this.)
Define the sequence of transformed observations Z, ..., Z,, by

i—1
- Zl XiiZj),

i=

Z; = v(Y;
where \;; = 072Cov(Y;, Z;) and

i-1

v ={o"War(Y;) = SN2 i=1,. 0 k.
7=1

It is easily verified that the Z;, i = 1,...,nk, are independent and each has variance o?. Moreover,

Z® = (Z,...,Z,,) is anon-singular linear transformation of Y® = (Y3,...,Y,,) so either provides

a complete representation of the data available at analysis k.
Let Q™) be the transformation matrix such that

Z® = Wy k) N(Q(’“)X(k)ﬂ,lnka‘?).
Let X® = QW X®) and define
o) — (‘)Z'(’C)Tj((k))—1)”((’€)Tz(k)7
G0 — (Z) — XBGONT(Z®) _ F0GR)

and 3 3
Vi = Var(@®)/o?, k=1,...,K.

Using the relation QWTQ® = E(’“)-l, it is seen that 6% = §*) §*) = §() and Vi = Vi where 6®
and S® are obtained from Y according to the usual formulae, (1) and (2), and Vi = Var(§®)/o?.
This is in keeping with the fact that linear transformation of an observation vector does not affect
generalised least squares parameter estimates. The results for the case of uncorrelated observations
hold for the sequence of estimates, {(é(k), S®);k =1,..., K}, obtained from the transformed vector,
ZK)  thus, the identical sequence {(é(k),S(k)); k=1,...,K} is also Markov with the transition
probabilities specified by (9) and (10). This establishes the Theorem for the case of correlated
observations.

We would stress that the transformation to uncorrelated observations is only introduced as a
device to prove this result. There is no need to transform data in practice: é(k), S*) and V; can,
and should, be obtained directly from the original data, Y3,...,Y,

[ L (g

10



4 Group sequential ¢-tests

The results of Section 3 concern the joint distribution of the sequence of pairs {(é(k>,5<k>);k =
1,..., K}, where the 0®) are p-dimensional. Sequential t-tests involve only a one-dimensional
component of 6(%) at each analysis. For example, in testing the hypothesis Ho : o = v, the
t-statistic at analysis k is

0 —
= ATVieS® (ni —p)}’

and a typical two-sided group sequential test stops to reject Ho at analysis k if |T®)| > ay, for some
sequence of critical values ay,...,ak. Since the sequence of t-statistics, {T(’“); k=1,...,K} is not
Markov, it is useful in sequential calculations to consider a sequence of bivariate statistics which is
Markov and the sequence of pairs {(cTé(k), S®)); k =1,...,K} is the natural choice.

To see that the sequence of t-statistics is not Markov, compare the conditional distributions of
TEIT@ = 0 and of TO|TW = 0,T7® = 0 when Var(Y®)) = [, 0% as in the development of
Section 3. In the first case we can deduce that ¢78? = v, so 62 follows the appropriate multivariate
normal distribution conditional on ¢7§(® = ~, and S@) ~ azxfn_p. In the second case we can

deduce that cTAé(l) — ~ and ¢T8® = v, so we have the additional information T (O - 6 = 0.
The estimate § follows the same multivariate normal distribution conditional on T6? = ~ as
in the first case since, by (5), its distribution is independent of (@ — §M)). However, since
(8@ — §() is known to be zero, one component of the second term in the right hand side of (8)
will be smaller than average, with the implication that the denominator of T® will tend to be
smaller too. In fact, it follows from equation (12), which we derive later in this Section, that
conditionally, S® ~ ¢?x2 _,_;. Thus, the numerator of T®) has the same conditional distribution
in both situations but the denominator conditional on T? = 0 is stochastically larger than that
conditional on TW = 0 and T® = 0. More generally, we shall see that fluctuations in cTH®
contribute to the residual sum of squares and thus, if the same value T' (k) occurs in two sequences
of t-statistics, it is likely that a larger residual sums of squares will be associated with the sequence
which has shown greater variation in reaching its current value.

In order to show that the sequence of pairs {(cTé(k), SEN: &k =1,..., K} is Markov and to obtain
its joint distribution we must refine our results concerning the sequence {(é(k), SEY)k=1,...,K}.
To do this, we decompose observation vectors further into yet more orthogonal components. As
in Section 3, we first consider the case of uncorrelated observations, each of variance o?, and
then generalise the results to correlated observations. Thus, we suppose observation vectors
Y® ~ N(X®9, I, 0?) are available at analyses k = 1,..., K and 0% S® and Vi = Va,r(@(’“))/a2
are as defined by (1), (2) and (3) with £® = I, . Although we assume here that 6 is estimable

T

k=1,...,K,

11



at analysis 1, we shall explain at the end of this Section how this assumption can be relaxed. As
in Section 3, we describe results for analyses 1 and 2 as an example of a general pair of analyses,
retaining the same definitions of projection matrices P, to Ps. R

We decompose P;, the projection associated with 9 into projections associated with ¢76(")
and with its orthogonal complement. Let d = Ac, so

TV = FATYD = Ty @)

and define Ps and Pr by
Ps = d(dTd)7'd"
and
P 7 = P 1 P 6.
Note that we can write Ps = d(d”d)"'¢T AT = d(d¥d)~'c" AT P, which shows that Ps projects onto
a subspace of the range space of P,. Hence, PsP = Fs, Pr = (I — Ps)Py and P, L P; implies
Ps L P; and P; L P; for any projection P;. Thus, Py L P implies Fs L FPs.
We decompose P, similarly. Setting e = Be, so

TP = TBTY® = Ty®,
we define Pg and Py by
P = e(eTe)‘leT
and
Pg = P2 - Pg.

Since Ps = e(ee) ' BT = e(eTe)'lcTBTPz, PsPy = Py, Py = (I — P3)P; and P, 1 P; implies
Py L P; and Py L P; for any projection P;.

Finally we decompose Pj into projections associated with ¢7 (6 70(1)) and with the components
of 8 — §1) orthogonal to this, assuming for the moment that (0@ — 0()) is non-degenerate, a

necessary and sufficient condition for which is that ¢7@ be estimable from the observations recorded
between analyses k and k£ + 1. Let f = DF¢, so

cT(é(z) _ (;(1)) = SFTPTY® = Ty

and define Pyg and Py; by
P = f(fT )"
and
Py = Py — Pyo.

12



Since Py = f(fTf)'TFIDT = F(fTF)~ 1" FT DT Py, we see that Pyp projects onto a subspace of
the range space of Py, PioPy = Pyp and Py = (I — Pio)Py. 1t follows immediately that Py L Pio
and that P, L P; implies Pyo L P; and Py; L P; for any projection P;.

The elements of Y2 observable at analysis 1 have now been decomposed into orthogonal
projections PgY (), P,Y® and P3Y® associated with cTé(l), elements of (V) uncorrelated with
T and residual error, respectively. At analysis 2, we have

Y® = RY® + pY® 4+ PY® 4 PoY® 4+ pY® 4 PY®,

where P + Py = P, and Pio + Py = P;. The t-statistic at analysis 1 involves PsY® and
P,Y® but not PY® and the t-statistic at analysis 2 involves BY® PY® P Y®, Pu):'(z)
and PsY® but not PoY?, the projection associated with elements of 0@ uncorrelated with 76,
Thus, in computations for group sequential ¢-tests, we need to know the conditional distribution of
(PgY(z), PgY(z), P10Y(2), P11Y(2), P5Y(2)) given (P@Y(2), PgY(z))

Note first that P, L Ps implies P3 L Ps; and so T2 g independent of SM. Also, Py L P3
implies Py L P; and P;; L Ps;, we have already established Ps L P;, and the conditional
distribution of P3Y® given PsY® is, of course, deterministic. Thus, all projections of interest
at analysis 2 are independent of P;Y(®) and it remains to find the conditional distribution of
(PY®, PoY® P, Y3 PY®) given PsY®. We do this by noting the conditional distribution
of BY® given PsY'?, showing that PioY? is determined by PY® and PsY®, and establishing
that P;;Y® and P;Y® are independent of each other and of PioY®, P.Y® and PGY(Z).A

The conditional distribution of P.Y® given PsY® follows from that of cTO® given 700, since
PY® = ¢(eTe)"1cT6® and 79D = dT PY®. From Theorem 1, we have

I ~ N (cTB + -cc—;vigcT(é(l) —0), T Vyeo? — ——-———-(CT%C)Qaz) .
1

Vie cTVie

Now,

PoY® = f(fT )T (0@ - 6D) = f(f7 ) (" PY® — dTPeY®)
is determined by PsY® and PsY(?). Alternatively,

IPY @2 = |If(FTF)71T (0P —6M))?
(6@ — )T (T )T (O — M)
{76 — 02 {o~Var{cT (0@ — 6M)}~, (11)

since Var{cT(§® — §M)} = Var(fTY?) = 02T f.
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We have already noted that Py L Pio. Also, Py L P, implies Py 1 Ps and, hence, P;; L Ps.
Since

PY® = d(dTd) TP — (TD — ThW)}
= d(dTd)"H{eTBY® — TP Y},

we see Pi; L Ps. Finally, Ps L P, implies Ps L Ps, Ps L P, implies P5 1 Fs and P5 L P, implies
Ps_LPlo and P5_LP11. .

_ We can now draw conclusions concerning the conditional distribution of S® given SM), () and
6. We have

5@ = Y@ 4 PioY® + PY® 4 pY®)?
= [[BYP|P + [|PoY P + | Pu Y O* + | YD)
SW 4+ {7 (B9 — 9P o™?Var{" (0P — 87 + [ PuY D" + | BYPIP (12)

where ||P Y2 4 ||PsY@|2 ~ o?x2 _, _; as long as the projection matrix Pyo has rank 1.
If, however, ¢T0 is not estimable from the observations recorded between analyses 1 and 2, so
T6® = T automatically, there is no need to introduce Pyo, we set Py = Py and

S® n SW Loy

_ In establishing the Markov nature of {(é(k), SEN:k =1,...,K} in Section 3, we showed that
(§¢+1) S(+1)y depends on all of Y® only through 0® and S®) and, hence, there could be no
additional dependence on (41, ... 0¢=D)and (SO, ..., S*"1) which are determined by Y ), We
shall use a similar approach to prove that the sequence {(cTé(k), SEN:k=1,...,K} is Markov but
here we consider the dependence of (cTé(k+1), S +1)) only on the projection of Y ® which contributes
to %) and S®*). This is because components of f(k) orthogonal to R affect S*+Y) | for example,
for k = 1, these appear in the term ||P1 Y ?|? in the decomposition of S®) in Equation (12).

Let f’k be the n; x n; projection matrix for Y (®) associated with those components of o)
orthogonal to cT0® . Thus, for k = 2, Py is the projection matrix Ps and, for k = 1, P, is the top
left n; x n; submatrix of Py. In general P,Y™ represents components of Y that are orthogonal
both to ¢T® and to the residuals Y® — X®J*) that determine S®).

Consider first the conditional distribution of (¢76®,S®) given (I, — P)Y® or, equivalently,
given (I, — P)Y®) which is also equal to (Ps + P)Y @, Since T2 = TPY® and Py L P,
T depends on (I,, — P,)Y™® only through PsY®, i.e., through T, The dependence
of S® on (I,, — P)Y® can be determined from (12): we have already shown that o
depends on (I, — PI)Y(I) only through cTOW and, since P;; L Ps and Ps L Ps, S depends
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on (I,, — P,)YW only through ( THM,5M).  Similar examination of analyses k and k + 1 for
general k, shows that (c7§(*+1, S*+1) depends on (I,, — Py)Y® only through (¢'0®, S®) and,
since (cTé(l),. .., cF0%=1) and (SO, ..., 8* 1)) are determined by (I, — P)Y®W | the sequence
{(cT6®),5®)); k =1,...,K}) is Markov. We are now in a position to prove the following Theorem.

Theorem 3 Suppose YE) = (1;,...,Y,)T ~ N(XE9,£E)6?) with non- singular variance
matriz ) a? and the first ny, elements of Y are available at analyses k = 1,..., K. Suppose 0
is estimable from Y® = (Yi,...,Y,,)T and let %), S® and Vi, = Var(9(k))/a =1,...,K, be

as defined by (1), (2) and (3). )
Then, the sequence {( To®) S®Y, k= 1,...,K} is Markov, <T0M ~ N(cT0,cTVico?), S ~
o*x: _, and, fork=1,..., K -1,

) T 2
c"Vipie 1 TG0 _ ), TVyyyco? — (¢ Viyac)

T T gH)  N(To
¢ le ’ N(e'0+ Ve I'Vie

o?) (13)
and
S(k+1)|cTé(k+1),cTé(k),S(k) ~ SF) + {CT(g‘(kH) _ é(k))}z{CT(Vk . ‘/k_H)C}—l + Uinkﬂ-n,,—l (14)

as long as {cT(é(k“) —é(’“))} is non-degenerate but, if cT0 is not estimable from observations recorded
between analyses k and k + 1,
TR+ — TR

and
Sk+1) o glk) 4 U2X72’¢k+]"‘nk'

Proof
We have established the Markov property of {(é(k), S8k =1,...,K} for the case of uncorrelated
observations with ) = I, . The above discussion of analyses 1 and 2 generalises to analyses k

and k£ + 1 in a straightforward manner, hence Th+1) g independent of S (%) and (13) follows from
Theorem 1. The conditional distribution of S*+1D|g(k+1), 9 S*) is the generalisation of (12) with
a simplification of the second term following from the relatlon

o™V ar{cT(§¢+) — I} = o2 {Var(§®)) — Var(0* N}e = (Vi — Vipa)e

If observations Yi,...,Y,, are correlated and Var(Y¥)) = £®)o?, the same argument can be
used as in Theorem 2. Uncorrelated observations of variance 0% can be constructed from the Y;s

and the sequence {(cT8®), 5®); k= 1,..., K} based on these observations will have the properties
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stated in the Theorem. However, the sequence {(cTé(k), S®));k =1,...,K} based on the original
observations, Yi,..., Y, is exactly the same as the sequence based on the transformed variables
and, therefore, has the same properties. 0O

Note that o2 appears as a scale factor in the variance of each cT0® and in the distribution of
each S® k=1,..., K. Thus, the distribution of the sequence {T®;k =1,...,K} is independent
of 0® under Hy: ¢7'6 = ~ and any convenient value of o2 can be used in calculating properties of a
group sequential ¢-test under the null hypothesis.

It remains to discuss the case where ¢78 is estimable but the whole of  cannot be estimated at
the earliest analyses. This is likely to occur in longitudinal studies in which initial analyses take
place before accrual is complete and subject effects are not estimable for those individuals who are
yet to enter the study. To review the standard theory for this situation, consider the general linear
model Y ~ N(X0,%0?) where Y is a vector of length n and 8 a parameter vector of length p, and
suppose # can be decomposed as

0 =Go+ Hip

where ¢ and 1 are vectors of length r and p—r, G and H are p X r and p x (p — r) matrices, XG
is of rank » and X H = 0. Then
E(Y)=X0=XG¢

and ¢ is estimable but ¢ is not. The generalised least squares estimate of ¢ is
$=(GTXTS'XG)'GTXTEY ~ N(4,(GTXTET'XG) 1 o?)
and o? can be estimated from
S=(Y-XGTE Y - XG§) ~ o’
Since ¢70 = TG¢ + T Hip, cT0 is estimated by
TG ~ N(T0,TGGTXTE1XG) ' G  eo?)
for any c satisfying ¢TH = 0, i.e., for any cT in the row space of X. We shall write T to denote
the above estimate of ¢T8, even though @ itself is not properly defined.
In a group sequential study where  is not completely estimable at the early analyses but T is
estimable, we can define estimates ¢76) in the above manner. To determine the joint distribution
of {(F0®, SH®));k = 1,...,K}, we redefine the projections introduced in Section 3 and earlier

in this Section. Let r, denote the number of linearly independent components of ¢ estimable at
analysis k, k = 1,..., K. In studying the first two analyses, we decompose 0 as

0=Gé+ Hip+ JE
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where ¢, 1 and ¢ are vectors of length ry, r;—r; and p—r2 respectively, such that only ¢ is estimable
at analysis 1 and ¢ and %, but not ¢, are estimable at analysis 2. We denote the corresponding
estimates by ¢, ¢ and ®. Since ¢78 is estimable at analysis 1, 0 =cTGo, TOW = QTGqﬁ(l)
and T0® = TG3?. We define P, to be the rank ry projection of Y associated with ¢, P,
to be the rank r, projection associated with ((;AS(Z)T,LE(?)T)T and P, to be the rank r; projection
associated with ((%(2) — $(1)). Other projections are as defined previously, although the ranks of
some are now changed. The projection Ps defined by (6) has rank ny — 7y and Py =1—P,— P;— P4
has ra,nkA ng —ry — (nq — 1) — 11 = ng —ny — 2. We retain Ps and Ps as the projections associated
with T80 = TG3M and T6® = LGP and set P, = P, — Ps and Py = P, — Ps. Likewise, Pio
is the projection associated with ¢ (9(2) — é(l)) == cTG(<;’>(2) — q%(l)) and P;; = Py — Pijo now has rank
r — 1. Tt is easily checked that the arguments used to prove orthogonalities between projections in
the case where 6 is estimable at analysis 1 still hold and, hence, TH@ is independent of S and
we can decompose S(?) into independent terms as

5O = 5O 4 {T (0P — 0O PloVar (T (09 = BN + Py O+ YO,

where the sum of the ranks of Py; and Ps is ng — nqy — (rz — r1) — 1. Arguments analogous to those
used in proving Theorem 3 give the following Corollary.
Corollary 1 Suppose YE) = (Vi,..., Y, )7 ~ N(XE)g, 2 ) g?) with non-singular variance
matriz 2 o2 and the first ny, elements of YK} are available at analyses k= 1,..., K. Suppose ry
linearly independent components of § are estimable at analysisk, k =1,.. ., K, and E(Y®) = Xk g
can be represented as X®RE®)  where R® is a p x vy matriz and n® an rp x 1 vector. If cr
is in the row space of X, T8 is estimable from Y®) and, therefore, at all analyses k=1,..., K.
Denote the generalised least squares estimate of 'O at analysis k by LW = T RFHF) and define
Ty = Var(cT0®)/o? and S® = (Y®) — X *) gE) 3Ty =1 (YR — XBREZEN k=1,... K.
Then, the sequence {(cTé(k),S(k));k = 1,...,K} is Markov, OV ~ N(T6,T40?), SO~
o*x% _, and, fork=1,...,K -1,

2
cTé(Ic-H)'cTé(k)’S(k) ~ N(cT9 + _I;Ff_-lcT(é(k) _ 9),Fk+102 _ Eliij—_l_d2)
k k

and
S(k+1)|CT9(k+l),CT9(k), Sk ~ gk) + {CT(Q(k+1) . G(k))}Z(I‘k _ Fk+1)"1 + 02X§k+1_nk"("'k+1“‘rk)”1
as long as {cT(é(kH)——é(’“))} is non-degenerate but, if cT 0 is not estimable from observations recorded

between analyses k and k + 1,
TR+ — T h)
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and

Sk+1) o gk 4 o

2.2
Xngyp1=ng=(res1="k)"

The results of this Section generalise those of Jennison and Turnbull (1991), which were obtained
for the case of independent univariate N (6, o?) observations with a scalar parameter 0; their results
for the sequential ¢-test can be obtained from Theorem 3, by substituting 6 for ¢T9 and 0U) for 7OV
and nj! for ¢T'Vje, for j = k and k + 1, in Equations (13) and (14). Jennison and Turnbull (1991)
used their results in calculating boundaries for group sequential t-tests. The same computational
methods can be used in the general case. However, if the sequence {(cVic) ™5k =1,..., K } has
unequal increments, and especially if this sequence is unpredictable, it would be better to define
tests using an “error spending” approach, as described by Lan and DeMets (1983) or Slud and Wei
(1982).

5 Group sequential x? tests

We now consider group sequential tests of the hypothesis CTH = 0 where C is a ¢ X p matrix of
full row rank, q. As before, we assume the full data vector YE) ~ N(XE)9, 2K 5?) and the first
n; elements of Y are available at analyses k = 1,..., K. We restrict attention in this Section to
the case of known o? and where 6 is fully estimable at each analysis. Our results can be extended
to situations where only certain components of 8 are estimable at early analyses as long as these
include C78, the treatment following that presented at the end of Section 4.

Since each CTH®) is a linear function of Y, the elements of the sequence of vectors
cTo0, ..., CTHE) have a multivariate normal joint distribution. Marginally, for each k = 1,..., K,

CTo® ~ N(CT9,CTVCo?)

where, as before,
Vi = (XBTE® ™ X0O)=1 = Var(§®) /o2,

It follows from Theorem 1 that C’ovﬁCTé(kl), CTé(k2)) = Var(CTé(k2)) for 1 < kg <k < K
and, since the process {(CTViC)*CT®); k= 1,..., K} has independent increments, the sequence
{CT§®); k =1,..., K} is Markov. Further, the conditional distribution of CTH*+1) given CTO®) is

N(CTO + TVt C(CTVC) I CT(O® = 0),CTViy1 C0? = C Vi C(CTViC) I CT Vi Co®). (15)
The x? test of Ho: CT6 = 0 at analysis k is based on the statistic
Q®) = (CTHNT(CTV,Ca?) " CT® (16)

18



which has a x2 distribution if Hp is true. Jennison and Turnbull (1991) showed that, for the case
of mdependent multlvarlate N(8,X0?) observations, the sequence of x? statistics for testing 0 = 0
is Markov and successive x? statistics have a simple form of conditional distribution. We shall see
that similar properties hold more generally if certain conditions are satisfied.

Suppose the variances Var(CT§®) = CTV,Co? are related by

CTV.C =vA, k=1,...,K, (17)
where A is a g x ¢ positive definite symmetric matrix and 71, ...,7x a decreasing sequence of scalars
and let

pp=T k=1 K- L

Yk
Define

W® = /T PAT2CTHE o N(3VPATV2CT0, L%, k=1, K,
where A=/ is a symmetric matrix satisfying A=Y/2AA~"/? = I,. Thus, Q¥ = HW(’“)H [o?.
The W® are invertible linear transforms of the CT® and it follows that they are jointly
multivariate normal and the sequence {W®); k = 1,..., K} is Markov. The conditional distribution
under Ho: CT6 = 0 of W+ given W® follows from that of CT§*+1)|CTH*), given by (15), and

is
WEDIWE ~ N(p,*W® (1 - pp)Lo?), k=1,...,K—1. (18)
Hence, under Hp, the conditional distribution of ||(1 — pg)~"/20 " W*+1)||2 given W) is non-central

X2 distribution with non-centralit e/ (1 — pi W2 /a2, We state the implications for the
Y P p
sequence of X2 statistics, Q(k); k=1,...,K}, in the following Theorem.
g

Theorem 4 Suppose YE) = (Yi,..., Y. )" ~ N(XE)g, 2K g?) with non-singular variance
matriz ) o? and the first ny, elements on(K) are available at analyses k = 1,..., K. Suppose 0 is
estimable from Y and let ), S®) and Vi, = Var(§®)/o?, k=1,..., K, be as deﬁned by (1), (2)
and (3). Let C be a g x r matriz such that the variances Var(CT9 k)) = C'TVkC'U are related by

CTVC = mA, k=1,...,K,

where A is a g X q positive definite symmetric matriz and 11, ...,k @ decreasing sequence of scalars
and define pr = Y41/, k = 1,...,K — 1. Denote the sequence of x? statistics for testing Ho:
CTo =0 by

O® = (CTIMT(CTV,Co?)1CTE®), k=1,...,K.

Then, under Ho, {Q0®);k =1,...,K} is a Markov sequence, Q) ~ x2 and, fork =1,...,K—1,

Q(’“)) : (19)

Q(k+1)‘ﬂ(k) ~(1- pk)xg (1
— Pk
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The spherical symmetry of the conditional variance of W*+1) ig crucial to this result as it
ensures that ||W*+|2 depends on W®*) only through ||[W®||? and, thus, the sequence of x*
statistics, {||[W®|2/o%k = 1,...,K}, is Markov. The sufficient condition for this, (17), will hold
in “balanced” experiments where new data arrive as additional replicates of a certain experimental
design. For example, (17) would apply in a two-way Analysis of Variance with equal numbers of
observations in each cell of the two-way table at each analysis k = 1,..., K. Slight imbalances
should cause only minor departures from (17) but highly differential rates of accrual of information
on some components of CT at different times during the study could have more serious effects.

Theorem 4 generalises the results obtained by Jennison and Turnbull (1991) for independent
N(6,X0?) observations, the factors 4, replacing the cumulative sample sizes ny in the extension to
the more general case. Equation (19) can be used in computing boundaries of group sequential
y? tests following exactly the approach adopted by Jennison and Turnbull (1991) for the case of
identically distributed observations.

Jennison and Turnbull (1991) also derive the joint distribution of the Qs in the non-null case
for use in power calculations. Suppose CT8 = ¢, so A"1/2CT = A='/2¢ and

W® ~ N(yPAY2¢ 10, kE=1,...,K.

Let R be a rotation matrix such that RA~1/24 lies in the direction of (1,0,...,0)7. Since ||[W®)||? =
|IRW®)||?, the joint distribution of {|W®W|%k = 1,...,K} is equal to that of {|JRW®|%: k =
1,...,K} and, thus, there is no loss of generality in supposing A2 = 4(1,0,...,0)T where
P = ||A~Y2¢||. For k =1,..., K, we define the bivariate statistic (U®), V) where UK) = Wl(k) is
a scalar random variable and V® = (W39, ..., WW)T is a (q — 1)-vector. Thus

ymz 4 ||vk))2
oW = :

o2

The sequences {U®;k = 1,...,K} and {V®;k = 1,...,K} are independent of each other,
UD ~ N7, 02), |[VO|2 ~ 0?x2_, and, for k=1,..., K — 1,

UEOU® ~ N (L = o)+ o0, (1~ pr)o?)

and

(k)12
k+1))(2 N2 o 42(1 — 2 pe IV
VIR | IVOLR ~ 020 - i (210 ).

Writing A®) = o=1U® and B®) = ||[V||2/62 k =1,..., K, we obtain the following Theorem.
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Theorem 5 With the definitions and assumptions of Theorem 4, the joint distribution of the
sequence of x? statistics for testing Ho: CTO = 0 depends on the parameter ¢ = |A-1/2CT0)|.
The x* statistic at analysis k can be erpressed as

OF = AR2 4 BBk =1,... K,

where {A®);k = 1,...,K} and {B®;k = 1,...,K} are independent Markov sequences, AN ~
N(o™ty; 4,1), BO ~ X2y and, fork=1,...,K —1,

AEDAB o N(o g 21— pr)g + piPAW 1 — py)

and

B(k+1)|B(’°) ~ (1~ Pk)Xg_l (__Ef__B(k)> .
1= pr

6 Group sequential F'-tests

We consider the problem described in Section 5 of testing the hypothesis CT§ =0 where Cisagxp

matrix but now we do not assume o? to be known and so a group sequential F-test is required.

Again we restrict attention to cases where # is fully estimable at each analysis, noting that our

results can be extended to other situations using the methods presented at the end of Section 4.
At analysis k, the F-statistic for testing Ho: CT =0 is

) _ (CTé(k))T(CTV}CO)——IcTHA(k)/q
S®/(nk —p) ’

where S® is as defined by (2). The joint distribution of the sequence of F-statistics is determined
by that of {(CTé(k),S(k));k = 1,...,K}. This can be derived in the same way that the
joint distribution of the sequence {(cTé(k),S(k));k = 1,...,K} was derived in Section 4, the
projefctionsA Ps, Ps and Pjp being modified so that they are a,ssociatefl with C'Té(l), CTH® and
CT(0® — §M)) respectively. It is then seen that the sequence {(CToW SE) k= 1,...,K} is
Markov, CTOM ~ N(CT9,CTViCo?) and SO ~ o2 _,. Further, for k = 1,..., K — 1, the

conditional distribution of C’ﬁfﬂ(kﬁ) given CT® and S®) is independent of S*) and follows (15),
and

SEH)|OTHk+1) CTHR) gk
S® 4 {CT (@ — IONTLCT (W = V)Y HOTOHD — 0N} + X0, iy (20)
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where §j41 is the rank of CT(Vk — Vit1)C.
As for the sequential x? test, the joint distribution of the sequence of F-statistics, F(), ..., FK),
simplifies when the variances Var(C TG('“)) = CTV,Co? are related by

CTViC = wA, k=1,...,K,

where A is a ¢ X ¢ positive definite symmetric matrix and 71, . .., 7k a decreasing sequence of scalars.
As before, we set

pp= T 1K1
Yk

With W® = 4 12A-1/20T)(k) | a5 before,
Fk) :w7 k=1,..., K.
S® /(e — p)
Under H, the conditional distribution of W¥+1) given W¥ is as stated in (18) and we can write
Wkt — p,lg/ZW(k) +(1- pk)1/20_6
where € ~ N(0, I,). Note that the second term in the expansion (20) of SG+1) can be written as
(MAAPW D — P T (A — o A) T (R AW D — PN )
= (= ) WO — P
Let 1y = WHE /|W®)|| denote the unit vector in the direction of W) and write € = Mo + v

where the scalar variable A ~ N(0,1) and the g-vector v is the projection of ¢ orthogonal to 1.
Then

(1 = 1) s WED — P )2

= (7 — 7o) ok = D W® 422 (1= pi) 2o (Al + )P
= (1= p) A = ) 20N — (1= p) P IW P My + w3 (1= o) ov]?
= {0 — (1= p) WP} + pro?||v]|2.
Still under Hy, and with the same definitions of A and v,
WL = (WO + (1 = p) 2o N g + (1= pi)Pov

1/2

and, hence,

W2 = {2 WS + (1= pr) 20X + (1 = pi)o? I
These results lead to the following Theorem.
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Theorem 6 Suppose YE) = (v;,...,Y,,.)T ~ N(X¥®)9,£E)s?) with non-singular variance
matriz XK o? and the first ny elements of YE) qre available at analyses k = 1,...,K. Suppose 0 is
estimable from YW and let 6®), S®) and Vi, = Var(§®)) /o2, k=1,..., K, be as defined by (1), (2)
and (8). Let C be a q x r matriz such that the variances Var(CTG(k)) CTV,.Ca? are related by

OTViC = wA, k=1,...,K,

where A is a q X q positive definite symmetric matriz and v1,...,v7x a decreasing sequence of
scalars and define pr = Yre1/Vk, k= 1,..., K — 1. Denote the sequence of F-statistics for testing
Hy: CTO =0 by

) — (CTé(k))T(CTVkC)—lcTé(k)/q _ Hw(k)HZ/q
S(k)/(nk —-—-p) S(k)/(nk _p)>

where W) = 7,:1/2A‘1/2C’Té(k).

Then, under Ho, {(JJW®|2,SWY);k = 1,...,K} is a Markov sequence, |W®M||2 and SO are
independent with |[WM||2 ~ 62x? and SO ~ o?x2 _ and, fork =1,..., K—1, the joint distribution
of (|W&+1)|12 S*:+1)) given (J|WF)|2, SK)) is determined by the relations

k=1,...,K,

WD = (oW Ol + (1= ) 20N} + (1= pu)os?

and
S = 504 {520 — (1 p) WO 4+ puo™s? + X, e

where A ~ N(0,1) and v* ~ x2_, are random variables, independent of each other and of || W (R)||2
and S®).

Note that o? appears as a scale factor in the distributions of each |[W®||2 and S®), k = 1,..., K.
Thus, the distribution of the sequence {F(!); k = 1,..., K} is independent of a? under Ho: CT6 =0
and any convenient value of o? can be used in calculating properties of a group sequential F'-test
under the null hypothesis.

Once more, our Theorem generalises the results obtained by Jennison and Turnbull (1991) for
independent N (6, X0?) observations, the factors  replacing the cumulative sample sizes ny, in the
extension to the more general case. In order for the joint distribution of the sequence of F-statistics
to simplify in the way described in Theorem 6, the variances Var(CTH(k)) must satisfy the same
condition as was required for sequential x? tests and, again, this condition will hold in balanced
experiments where new data arrive as additional replicates of a certain experimental design.
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