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Abstract

This paper presents a new technique for compiled zero delay logic simulation, and
includes extensive experiments that demonstrate its performance on standard bench-
marks. Our compiler partitions the circuit into fanout-free regions (FF'Rs), transforms
each FFR into a linear sized BDD, and converts each BDD into executable code. In
our approach, the computation is sublinear in the number of variables within each
partition because only one path, from root to leaf, of the BDD is executed; therefore in
many cases, substantial computation is avoided. In this way, our approach gets some of
the advantages of oblivious as well as demand-driven evaluation. We investigated the
impact of various heuristics on performance, and based on this data, we recommend
good values for design parameters. A performance improvement of up to 67% over
oblivious simulation is observed for our benchmarks.

1 Introduction

The rapid growth of size and complexity of digital circuits has made logic simulation a
bottleneck in circuit design. There are two major simulation strategies: compiled sim-
ulation and interpreted simulation. In compiled simulation, the circuit is transformed
into executable code, and this code is executed directly; in interpreted simulation,
the circuit netlist is read into a data structure, and simulation is performed by an
interpreter which traverses this data structure. The execution of compiled code is usu-
ally faster than interpretation, so recent research has focused on compiled simulation.
Compiled simulation is the focus of this paper as well.

The key issue in compiled simulation is the timing model — should the simulator
assume that circuit elements have delays, or should it work with an idealized zero de-
lay model? Recently, researchers have developed sophisticated algorithms for finding
critical paths in the combinatorial sections of circuits[7, 12], which makes timing sim-
ulation within a clock cycle less important. Consequently, there is renewed demand
for fast simulation with zero delay models. The choice of zero delay models permits
flexible scheduling of circuit element evaluation; therefore, the circuit elements can be
scheduled as needed to achieve faster simulation. There are three popular paradigms:
oblivious simulation, event-driven simulation and demand-driven simulation. In obliv-
ious simulation, each circuit element is evaluated at every time step. In event driven
simulation, a circuit element is evaluated only if one of its inputs changes. In demand-
driven simulation, a circuit element is evaluated only when its output is needed to
produce the output of the whole circuit (for example, if one of the inputs to an AND
gate is 0, the subcircuit computing the other inputs need not be evaluated)[1, 17].

For any simulation method, the time required for simulation is determined by the
number of circuit evaluations, and the overhead of scheduling. Oblivious simulation



performs much more evaluations than either demand-driven or event-driven simula-
tion. However, demand-driven evaluation is usually implemented using procedure calls
at every step of the evaluation, and this makes the scheduling overhead very high.
Therefore, most of the work in simulation has focused on oblivious and event-driven
simulation. Oblivious simulation has lower scheduling overhead, so it is clearly prefer-
able if the level of circuit activity is high. However, there seems to some difference of
opinion about the level of circuit activity above which oblivious simulation is preferable
[19, 2, 15, 11]. To some extent, this is because event-driven simulation strategies have
been improved continuously. For example, the overhead of scheduling has been reduced
in COSMOS[5] and HSS [2] through the use of a central scheduler, while Tortle_c uses
threaded code to avoid scheduling[11]. A specialized threaded stack based technique
called Gateways has also been used[13]. The number of circuit evaluations has also
been reduced through the use of levelization based techniques to avoid multiple evalu-
ations of some elements[19, 14], and through the use of Maurer’s Inversion and Shadow
algorithms [15]. In spite of these improvements, most simulators used in the indus-
try are based on oblivious simulation. Oblivious simulation permits prescheduling of
circuit elements for evaluation, and this not only eliminates the overhead of dynamic
scheduling of circuit elements, but it also makes it possible to use registers effectively
in simulation. In the event-driven model, the values of all nets must be preserved for
the next iteration of simulation; hence they have to be kept in memory. In contrast, in
oblivious simulation, these values are needed only for that particular iteration; hence
they can be stored temporarily in registers, avoiding load and store instructions. This
appears to be very important for achieving good performance (note that comparing
event-driven simulation with C code for oblivious simulation can be misleading because
most C compilers do not do a good job of register allocation on global variables). In
this paper, we use oblivious simulation as the base line for measuring performance
improvements. However, our techniques are general and can be applied to improve
performance in event-driven approaches as well.

In this paper, we describe a novel technique for circuit simulation which uses binary
decision diagrams (BDDs) to represent portions of circuits. As we explain below, we
use BDDs to eliminate the overhead of dynamic scheduling of circuit elements (an
advantage shared by oblivious simulators), while retaining the ability to avoid some
unnecessary computation (an advantage shared by event-driven and demand-driven
simulators). The use of BDDs is not new, but previous efforts at using BDDs for
simulation have converted the entire circuit to a BDD and this can be very expensive.
In contrast, we build BDDs only for fanout free regionsof the circuit, which ensures that
all BDDs have linear size. These regions themselves are treated as complex elements
that are nodes in a Graph of Regions (GoRe), and we use a flavor of oblivious simulation
to evaluate a GoRe. An overview of our approach is shown in Figure 1.

The main issues addressed in this paper are the following.

e How are fanout free regions determined?
¢ How do we compile code for each region?
¢ What code is generated to evaluate the graph of regions?

To evaluate the performance of our approach, we use ten benchmarks. These circuits
have been obtained from the ACM/SIGDA benchmarks suite archived at mene.org.
Table 1 describes these benchmarks in details. In circuit Diffeq, all 36 bidirectional
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Figure 1: An overview of our approach

Platform: SPARCsystem 600MP series with Sun0S 5.3 (Solaris)

Circuit | Circuit type Number Number Number

of gates | of Inputs | of outputs
Cordic | Combinatorial 2056 23 2
Dsip Sequential 3227 229 197
Misex3 | Combinatorial 3624 14 14
Diffeq Sequential 4346 28 + 36 3+ 36
Alu Combinatorial 2381 14 8
Seq Combinatorial 2875 41 35
Apex2 Combinatorial 3149 39 3
C6288 Combinatorial 4768 32 32
C7552 Combinatorial 4094 207 107
Bigkey Segential 2741 263 197

Table 1: The benchmarks

ports are counted as both input and output ports.
The rest of the paper is organized as follows. Section 2 describes BDDs. Section

3 describes how we determine fanout free regions. In general, there are many BDDs
that correspond to a given combinatorial circuit. Therefore, Section 4 describes our
heuristics for constructing a good BDD for a fanout free region. Section 5 describes
how partitions are scheduled. Section 6 shows how C code is generated for the entire
circuit. Section 7 compares the performance of our approach with that of oblivious
simulation. Finally, Section 8 presents some conclusions and discusses future work.

2 Binary Decision Diagrams(BDDs)

A binary decision diagram is a representation of a boolean expression [3, 18]. A BDD b
represents the boolean expression f if f is written as f = Zfy+z f1 (called the Shannon




Figure 2: BDD for f = Zx 4 zy with order of expansion (a) x, y, z and (b) z, x, y

expansion), where z is one of the variables in f and fy and f; do not contain z. The
root of b is & and the left and right children are the BDDs of fy and f; respectively.
Leaf nodes represent the constants TRUE and FALSE.

Any combinatorial circuit can be transformed into a BDD whose variables are the
inputs to the circuit. Given the input values, the circuit can be simulated by traversing
the BDD. BDDs are attractive for simulation for 2 reasons: (i) the complexity of
evaluating a boolean expression is proportional to the length of the path of traversal in
the BDD (which is bounded by the number of inputs in the circuit), and (ii) it is not
necessary to evaluate circuit elements which produce values that are not on the path
traversed during BDD computation, which gives a BDD-based approach the efficiencies
of the demand-driven approach.

Unfortunately, the size of the BDD is highly sensitive to the order in which the
variables are expanded. For example, the size of the BDD of f = Zz + zy is much
larger if the order of expansion is z,y, z (Figure 2(a)) than if the order of expansion
is z,z,y (Figure 2(b)). Furthermore, finding an optimal ordering is NP-complete[4].
Even with optimal ordering, some circuits have very large BDDs. However, it can be
shown that for some circuits, a linear sized BDD can always be obtained. In particular,
circuits without fanout always have a linear BDDI[6, 8, 12]. Our approach to circuit
simulation involves determining such fanout free regions and using BDDs for simulating
those regions. For future reference, we define these regions formally.

Definition 1
o Any region without a fanout node is called a fanout-free region (FFR).
o An FFR which is not contained in another FFR is called a mazimal FFR (MFFR).

3 Partitioning

We now describe how we partition circuits into regions which we convert into BDD’s.
First, we focus on combinatorial circuits. Note that a naive partitioning can introduce
cycles between partitions as shown in Figure 4. If A and C' are kept in partition P4¢
and B is kept in Ppg then, a cycle is introduced between P4c and Pg because of the



Procedure MFFR _Partition (Curcurt)
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for each output o of circuit do
current_partition = create_new_partition();
let 0 be output of node n;
Traverse_inputs_and_partition(n);

endfor

rocedure Traverse_inputs_and_partition (Node n)

if ((ALREADY_VISITED(n)) or (n==Circuit Input)) then
return ;

endif

MARK_VISITED(n);

if (fanout(n) > 1) then
push(current_partition, traversal_stack);
current_partition = create_new_partition();

endif

Add n to current partition;

for all_inputs of n do
Traverse_inputs_and_partition(input_node);

endfor

if (fanout(n) > 1) then
current_partition = pop(traversal_stack);

endif

Figure 3: Algorithm for MFFR partitioning

edges F4p and Fpc in the GoRe. The introduction of cycles complicates scheduling,
and should be avoided.

Figure 3 shows our partitioning algorithm for finding Maxzimal Fanout Free Regions
(MFFR’s). Intuitively, MFFR’s are found by cutting all fan-out points in the circuit,
and making each connected component of the resulting graph into a partition. The
identification of fan-out points and the determination of partitions can be done by a
depth-first traversal of the graph which starts at the outputs of the circuit and builds
partitions on the fly, as shown in Figure 3.

Theorem 1 If the circuit does not have cycles, then the graph of regions produced by
the partitioning of Figure 3 does not have cycles, i.e., the GoRe is cycle free.

Proof: Omitted.

Figure 5 shows partition size statistics for all benchmark circuits. The biggest
partition had 2500 gates, but most partitions have less than 50 gates. Although we
have described the partitioning for combinatorial circuits, it can be extended to more
general circuits as follows.
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Figure 4: Naive partitioning can introduce cycles

Sequential circuits: Without loss of generality, it can be assumed that D flip-flops
(DFFs) are the only sequential elements in the circuit. Since asynchronous sequential
circuits are not considered, removal of all DFFs from the sequential circuit must leave
a combinatorial circuit. This is illustrated in Figure 6 where the dotted node denotes
a “removed” node. The simulation is done on the broken circuit with output D, and
input D;. D; is assigned the value D, in a separate latching phase.

Fanin nodes: These nodes are introduced by wired and tristate logic. Fanin nodes
can be treated as separate partitions with multiple inputs. Such partitions are con-
verted into multi-terminal BDDs since values at such nodes can be ‘X’ or ‘Z’. This
approach illustrates how we deal with the problem of multi-valued logic. If the simu-
lator finds a value other than 0/1 on a fanin net, it switches to code which performs
vanilla interpretive simulation and comes back to the BDD based compiled code when
the value becomes 0 or 1. Since the value on a net is different from 0 or 1 only in the be-
ginning of the simulation in most circuits, the interpretive code is rarely needed. Thus,
we can achieve efficient simulation without sacrificing the ability to handle multivalued
logic.

Higher level abstractions: Like fanin nodes, these can be treated as separate parti-
tions for which simulation code is provided by the circuit designer or from a library.

Therefore, we can accommodate higher level abstractions with sacrificing efficient sim-
ulation.

4 BDD Construction

We now address the problem of generating a BDD from an FFR. The main problem
is the design of heuristics for determining the order of selection of input variables for
BDD construction. Each FFR is a tree, and a simple algorithm for building a BDD



6500

6000

5500

5000

Number of partitions
N I
o o
o o
o o

w
a
o
=]

3000

2500

2000 1

L L L L L L L
10 20 30 40 50 60 70 80
Partition size

Figure 5: Number of partitions less than the partition size

Figure 6: A sequential circuit

is to traverse the FFR recursively starting at its output, converting each sub-trees
below a node into a BDD, and then combining these BDD’s using the functionality
of the node. It can be shown that the resulting BDD is always linear in the size of
the circuit (the key property is ‘contiguous’ conversion — that is, at any node, the
subtrees below the node are converted to BDDs separately, without any interleaving of
variables from different subtrees). In general, a node has many subtrees below it, and
the order in which these subtrees are chosen for conversion makes a difference in the
efficiency of simulation. The goal in this section is to choose an order for subtrees so
that we minimize the path in the BDD that is traversed during simulation, since this
reduces execution time.

We have investigated a number of heuristics for the problem of ordering subtrees of
a node for conversion to BDD form. These heuristics use the fanout and level of input
variables. Intuitively, variables with high fanout are used in more places in a circuit
than variables with low fanout, so it may be possible to examine these variables quickly
and determine the output, without looking at other input variables. Expanding such
variables earlier in the conversion process also creates opportunities for an optimization
called variable merging that is described below. The level of a variable (how many
gates away it is from the output of the FIF'R) can also be exploited — intuitively, a
variable whose level is small is close to the output of the FFR, and may affect it more
significantly than a variable whose level is large. Therefore, it is plausible that such



variables should be examined first. We studied the following figures of merit for each
input variable of an FIF'R.

¢ Fanout: The fanout of the FFR producing the variable.

¢ Fanout_ocal: The number of fanout edges of the FFR producing the variable,
which are incident on the current partition.

o Level: The smallest number of gates on a path from the variable to the output

of the FFR

In general, a subtree below a node has many input variables, so the numbers for
each input variable of the subtree must be combined to generate one ‘figure of merit’
for the entire subtree. Some natural choices for combining functions are minimum,
maximum, sum and average. We found that sum and average gave almost the same
results, so we dropped average from consideration. If a heuristic gives equal priority
to two variables, the ordering among them was chosen arbitrarily. This arbitrariness
can affect performance, so we studied the effect of using three random orderings by
specifying different seed values to a pseudo-random number generator. There was little
change in performance, so in the rest of our experiments, variables with equal priority
were chosen arbitrarily.

Figure 7 shows experimental results. It can be seen that the heuristics Fanout_maz
(fmax), Fanout_sum (fsum), Fanout_local_maz (lmax), Fanout_local_avg (flsum) and
Level_min (Imin) perform better than the other heuristics. For the later part of the
study, we used only the Fanout_maz and Fanout_local_maz heuristics. There was a mi-
nor gain achieved by combining the heuristics, although, aditional research is required
to study the effects of combining heuristics.

A key optimization in BDD construction is variable merging. If an FFR has multiple
inputs being driven by the same net, there is no need in principle to consider these
inputs separately. For example, in Figures 8(a), the partition obtained by clipping the
fanout point will have both A and C as inputs, but since these are driven by the same
net, these variables can be merged in the BDD. Figures 8(c) and (d) show the BDD for
this example before and after merging of these variables (the variable Y in Figure 8(d)
stands for A and C combined). Note that variables merging does not always give a
smaller BDD. For example, if B and D came from the same net, they can be merged,
but the BDD becomes larger, as shown in Figure 8(e).

We now describe our variable merging algorithm. The BDD’s for the two inputs
to the OR gate are shown in Figure 8(b) as I1 and I2. A simple-minded approach to
building a BDD for the entire circuit is to identify all edges in 11 that point to 0, and
redirect them to the root of 12. This results in the BDD shown in Figure 8(c). To
obtain the advantages of variable merging, we first compute the value of each variable
at every edge in I1 that points to 0 or to 1. Note that this value can be 0, 1, L
(undefined) or T (either 0 or 1 depending on the path). For example, for the edge from
A to 0in I1, the value of A is 0, but the value of all other variables is 1. An example
of the need for T is provided by the BDD of Figure 8(c) — if this BDD is itself used to
build a larger BDD, the value of A on the edge from C to 0 will be T because the value
of A is either 0 or 1 depending on the path from A to this edge. Figure 8(f) shows the
lattice of values. Procedure Propagate_Values in Figure 9 propagates values of input
variables along the edges of a BDD by visiting the edges in topological order. In the
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Figure 7: Simulation time vs. heuristics

actual implementation, value propagation is done together with BDD construction, but
we have described these computations separately for clarity.

The values computed by the first phase are used in merging BDD 12 into BDD
I1. Each edge in I1 that points to a 0 or to 1 is examined, and the vector of values
computed for that edge is used to traverse the BDD of 12 till we reach a node whose
value in the vector is either T or L. The edge in I1 is redirected to this node. This
process can obviously be viewed as partial evaluation of the BDD of 12, using the
vectors of values computed in the first step. Procedure Partial Evaluate in Figure 9
shows the pseudocode. In the running example, for edge (B,0) in I, the value of A
(hence C) is known to be 1. So we traverse Iy to D. Since the value of D in the vector
is L, partial evaluation stops, node D is returned, and the outgoing edge from B is
redirected to D. The BDD in Figure 8(d) shows the final result.



Figure 8: Merging variables

5 Scheduling of Partitions

We now describe how partitions are scheduled for execution. Figure 10 shows four
FFRs (C,D,E and F'), and their BDDs. The output of partition D is used in two
different inputs of partition I'; the output of partition C is also an input to partition
F. One approach to scheduling partitions is to associate a function with each partition,
and call that function when the output of the partition is desired. For example, if the
output of partition F is the output of the circuit in Figure 10, we can traverse the
BDD for F, and call the function associated with partition D if its output is needed.
Since the output of a partition may be used in multiple places, we can avoid making
repeated calls to the same function by storing values required across partitions in a data
structure, and calling a function only if the corresponding value has not already been
computed. However, in our experiments, we found that the overhead of function calls
was substantial; moreover, inter-procedural register allocation is difficult for compilers.

A different approach is to use oblivious simulation across partitions. That is, all
partitions are scheduled for execution, even if the outputs of some of them are not
needed. However, in Figure 10, if the value of a is 0, partitions C, D and E do not
need to be evaluated. To get some of the benefits of demand-driven evaluation, we
can back away from oblivious simulation across partitions, and instead, schedule the
execution of partition D just before the value of b is tested in the code for region F.
This ensures that D is not evaluated if the value of a is 0. However, if ais 1, b is 0 and
cis 1, the value of D is not required, but we would compute it anyway. In other words,
this scheduling scheme has some but not necessarily all the computational savings of
demand-driven evaluation.

We now describe our algorithm for determining where partitions must be scheduled.

10



Procedure Propagate_Values ()

{

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

}

Initialize each element of each vector to L

for each node N in topological order do
% Let variable at node N be V, and input edges of N be Eq,Es,...
% Let Fo and Fy be the output edges of node N with labels 0 and 1 respectively
% Propagate vectors from input edges to output edges
ValueVector(Fg) := ValueVector(E; ) U ValueVector(E;) ....
ValueVector(F;) := ValueVector(Fy)
% Update values for variable V in output vectors
ValueVector(Fo)[V] := 0
ValueVector(F)[V] := 1

endfor

Procedure Partial Evaluate(ValueArray,BDD)

{

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

}

R = Root(BDD)
T = ValueArray[R]
while (T =1o0or T =0) do
Let (R,Ng),(R,Ny) be the outgoing edges of R,
labeled 0 and 1 respectively;
if (T =1) then
R = Ny;
else R = Ny;
endif;
T = ValueArray[R];
endwhile
return R

Figure 9: Algorithm for variable merging

First, the graph for the BDD for each partition is built. Next, if the output of partition
Y is an input of partition X, an edge is inserted from the nodes in the BDD for X
which use the output of Y to the root of partition Y, as shown in Figure 10. Finally,
we introduce a node named START, and connect this node to the root of each BDD
that computes an output of the program. In this graph, the problem of scheduling
partitions is reduced to the problem of computing the immediate dominator of a node.

Definition 2 A node w is said to dominate a node v if every path from START to
v contains w.

It can be shown that dominance is a transitive relation, and that its transitive
reduction is a tree-structured relation called the dominator tree, rooted at START. In
this tree, the dominators of a node v are all the nodes on the path from » to START.
The immediate dominator of a node v (other than START) is its parent in this tree.
The dominator tree of a program can be constructed in O(|E|a(]|E])) time using an

11



Figure 10: Part of a GoRe with BDDs and the corresponding dominator tree

algorithm due to Tarjan and Lengauer [10], or in O(|F|) time by using a rather more
complicated algorithm due to Harel [9].

Figure 10(b) shows the dominator tree for the running example. To find where D
should be scheduled, we find the immediate dominator of the root of the BDD for D,
which is seen to be the node labeled b in the BDD for partition F. For partition C, the
immediate dominator of the root of its BDD is START, so it is always executed, just
as in oblivious simulation.

6 Compiling into C Code

The BDD of each partition can be compiled into C code by creating an if-then-else
statement for each node in the BDD. However, if-then-else statements introduce con-
ditional branches in the compiled code, which is an undesirable feature for optimum
utilization of modern pipelined processors. If the MFFR is small, the overhead of
conditional branches can overwhelm the performance advantages of using the BDD to
evaluate only a portion of the circuit. On the other hand, code for oblivious simulation
is free of branches, but it has the disadvantage that it performs more circuit evaluations
than the BDD based approach.

This suggests that rather than compile every BDD into code with conditionals, we
should examine tradeoffs between oblivious and BDD based approaches. We examined
two such tradeoffs.

In the first set of experiments, we compiled a partition using either if-then-else code
or oblivious simulation code, using a parameter called Threshold Size (T'S for short) to
decide which compilation strategy should be used — partitions whose size was above
TS were compiled using conditional branches, with oblivious simulation code being
used for smaller partitions. By studying simulation performance for different values of
TS, we determined a good value for T'S.

12
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Figure 11: Simulation time vs. T'S

Figure 11 shows how simulation time varies with 7°S. Intuitively, we would expect
this graph to be U-shaped — for small values of T'S, even small partitions are compiled
using the BDD-based technology, which is inefficient, while for large values of T'S, even
large partitions cannot exploit our compilation technology. From these experiments, it
appears that T'S = 5 is a reasonable choice.

The idea of using threshold sizes is an ‘all-or-nothing’ approach to combining obliv-
ious and BDD based approaches — that is, a BDD is either compiled entirely using
conditionals, or it is compiled entirely into oblivious code. A more fine-grained trade-
off is to compile some parts of a BDD into oblivious code, and use conditionals to
evaluate the rest of it. We call this locally oblivious simulation. Figure 12(a) shows
this symbolically by illustrating the result of using oblivious code to simulate the AND
gate with inputs A and B in Figure 8(a). In effect, the nodes for A and B in the BDD
of Figure 8(c) are collapsed together to form a compound node that is evaluated using
boolean operations. In our compiler, we collapse parent-child pairs which have at least
one child in common (in this case, C is a child of both A and B). The algorithm for
collapsing nodes is shown in Figure 13, and is based upon pattern matching on one
of the standard patterns of Figure 12(b). In these patterns, each node itself can be
a collapsed node. To limit the number of nodes that are collapsed together, we set

13



Figure 12: Collapsing nodes and standard patterns

Procedure Collapse (b: BDD)

{

44:
45:
46:
47:
48:

}

for each node n in topological order do
while ((number of Nodes in n < C'P) A (n matches root in one standard pattern))
Merge corresponding child into n;
endwhile
endfor

Figure 13: The collapsing algorithm

a limit called the Collapsing Parameter (C' P), and explored performance for different
values of this parameter.

As shown in Figure 14, the simulation time decreases initially upto a C'P value of
3-4, after which it becomes nearly constant or increases. It appears that a value of 3
to 4 is a good choice for C'P.

7 Comparison with oblivious simulation

Based on the experiments described so far, we recommend the following BDD-based
compilation strategy:

¢ The circuit is partitioned into MFFRs, using Algorithm 3.

o The heuristics Fanout_maz or Fanout_local_max should be used for ordering
subtrees at a node during BDD construction. Subtrees ranked equally by these
heuristics can be ordered arbitrarily.

o The threshold size T'S should be set to 5. Partitions smaller than this should be
compiled using oblivious simulation, while partitions larger than this should be
compiled using conditional branches.

e The collapsing parameter C'P should be set to 3 or 4. At most 3 or 4 variables
should be aggregated in a BDD for locally oblivious simulation.

This simulation strategy is compared with oblivious simulation in Table 2. Our
approach never does worse than oblivious simulation, and outperforms it in most cir-

14
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cuits. The improvement in three of the circuits is more than 50%. Not surprisingly,
the advantages of our approach are most evident in circuits in which average partition
size is large, since large partitions expose more opportunities for avoiding computation
in our approach. For example, Cordic has two partitions of 1194 nodes and 397 nodes,
and shows good improvement in performance. In contrast, all partitions in Diffeq are
smaller than 22 nodes.

& Conclusions and future work

The BDD based approach presented in this paper was shown to be useful for gen-
erating efficient compiled simulation code. Extensive experiments were performed to
determine suitable values of parameters for the compiler. On the benchmark circuits,
our approach never did worse than oblivious simulation, and gave substantial perfor-
mance improvements on others. Since an important issue for industrial simulators is
that they must perform well for all circuits, we feel that our approach is particularly
relevant in this context.
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Timings are presented for simulation per test vector in pusec.

Circuits | Obl. Simulation | 7S =5 | Improvement

Time | CP =14 b
Cordic 47.62 16.99 64.32 %
Dsip 293.08 | 279.69 4.57 %
Misex3 374.31 | 224.84 39.93 %
Diffeq 237.56 | 234.49 1.29 %
Alu 195.30 | 127.35 34.79 %
Seq 323.16 | 224.78 30.44 7,
Apex2 364.64 | 156.85 56.99 %
C6558 111.21 | 111.21 0.00 %
C7552 266.67 89.58 66.41 %
Bigkey 758.14 | 221.22 70.82 %

Table 2: Comparison between oblivious and our approach

In future work, we will examine the consequences of relaxing the FFR constraint to
make partitions bigger. Since larger partition size gives better performance, this may
result in better performance. Since we are generating C code, a number of issues in
code optimization such as register allocation could not be studied. We plan to generate
assembly code directly to study this issue. We will also study the incorporation of our
compiling strategy into event-driven and demand-driven simulators. Compilation of
simulation code from high level circuit specifications is another promising research
area.
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Appendix

A Are MFFRs the best partition?

We conducted experiments to ensure that MFFRs are the best choice for partitions
rather than smaller FF'Rs.

Definition 3 In a partition of depth n (PD = n), all circuit elements are at distance
of n or less from the output of the partition.

Partitions of varying sizes were created by changing PD. The performance effect is
described in Figure 15. With increasing PD the simulation time decreases significantly
at first, increases after that, and then decreases again, remaining almost flat afterwards.
Initial decrease is obtained due to bigger partitions. After that, even though partitions
continue to become bigger, the number of partitions increase. To explain this counter-
intuitive phenomenon, let us consider an MFFR which is a perfectly balanced tree of
height 6. If PD = 4, then each subtree at PD = 4 forms a separate partition requiring
2% + 1 = 33 partitions. On the other hand, if PD = 5, then all the leaves form separate
partitions, forming 2641 = 65 partitions. The increased number of partitions increases
simulation time. However, eventually, increasing P D results in the MFF'R and the best
performance is obtained.
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