
Logical Attestation: An Authorization Architecture
for Trustworthy Computing

Emin Gün Sirer Willem de Bruijn† Patrick Reynolds‡

Alan Shieh Kevin Walsh Dan Williams Fred B. Schneider

Computer Science Department, Cornell University †Google, Inc ‡BlueStripe Software

{egs,wdb,reynolds,ashieh,kwalsh,djwill,fbs}@cs.cornell.edu

ABSTRACT
This paper describes the design and implementation of a new oper-
ating system authorization architecture to support trustworthy com-
puting. Called logical attestation, this architecture provides a sound
framework for reasoning about run time behavior of applications.
Logical attestation is based on attributable, unforgeable statements
about program properties, expressed in a logic. These statements
are suitable for mechanical processing, proof construction, and ver-
ification; they can serve as credentials, support authorization based
on expressive authorization policies, and enable remote principals
to trust software components without restricting the local user’s
choice of binary implementations.
We have implemented logical attestation in a new operating sys-

tem called the Nexus. The Nexus executes natively on x86 plat-
forms equipped with secure coprocessors. It supports both na-
tive Linux applications and uses logical attestation to support new
trustworthy-computing applications. When deployed on a trustwor-
thy cloud-computing stack, logical attestation is efficient, achieves
high-performance, and can run applications that provide qualitative
guarantees not possible with existing modes of attestation.

Categories and Subject Descriptors
D.4 [Operating Systems]: Security and Protection

General Terms
Trusted Platform Module, Logic, Credentials-Based Authorization

1. Introduction
Secure coprocessors, such as industry standard Trusted Platform

Modules (TPMs), are becoming ubiquitous. This hardware can
provide a foundation for software systems that offer strong guar-
antees about run time behavior. Yet, there is a big semantic gap be-
tween the primitives provided by TPMs and what assurance secure
applications actually require. The key primitive provided by secure
coprocessors is hash-based attestation, whereby the platform gen-
erates a certificate that captures the binary launch-time hash of all
components comprising the software stack. To identify trustworthy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

software configurations through their hashes necessitates software
whitelisting, and that can restrict users to a limited set of applica-
tions due to platform lock-down [52]. Further, software certificates
that divulge hashes compromise privacy [40]. Finally, launch-time
program hashes do not adequately characterize programs whose be-
havior depends on inputs or external data. Much of the public back-
lash against trusted computing can, in fact, be traced to limitations
of hash-based attestation.

Hash-based attestation forces all trust decisions to be axiomatic,
because principals are trusted by fiat. Access control lists that enu-
merate principals by name, digital signatures to certify that a par-
ticular piece of code was vetted by a particular vendor, and autho-
rization based on program hashes are all instances of the axiomatic
basis for trust.

An alternative method of establishing trust is to employ an anal-
ysis that predicts whether certain behaviors by a program are possi-
ble. Proof carrying code [35], in which a program is accompanied
by a proof that its execution satisfies certain properties, instanti-
ates this analytical basis for trust. Similarly, systems that employ
typecheckers and domain-specific languages, in which code snip-
pets are loaded and executed only if the code is deemed safe, are
employing analysis for establishing trust.

Finally, a synthetic basis for trust is involved when a program
is transformed prior to execution and the transformation produces
an artifact that can be trusted in ways that the original could not.
Sandboxing [16], SFI [54], inlined reference monitors [11, 50], and
other program rewriting techniques employ a synthetic basis for
trust.

Today’s operating systems provide disparate, ad hoc mechanisms
to implement these three bases of trust. A unifying authorization ar-
chitecture that can support all under the same rubric has not been
undertaken. Moreover, establishing trust in practical settings of-
ten relies on a combination of these bases. For instance, a JVM
enforces type correctness through both a static typechecker (an an-
alytic basis) and code generation that adds run-time checks (a syn-
thetic basis). The challenge, then, is to build an authorization in-

frastructure, by which we mean a system for generating, managing,
and checking the credentials of principals in a computer system,
that incorporates all three bases for trust. Our experience in de-
signing such a unifying authorization architecture, implementing it
in an operating system, and building system services to enable its
use is the subject of this paper.

We propose a new authorization architecture, called logical at-

testation, that supports all three bases for trust. In logical attes-
tation, a labeling function is used to generate an attributed state-
ment called a label and expressed in a constructive logic of beliefs.
Labels are unforgeable, machine-parseable statements of the form
“LF says S” that capture information relevant to trust decisions. A

bitstring that encodes a label is known as a credential. Since label-
ing functions can be provided by third parties and labels are logical
statements, a rich set of properties can be available for logical at-
testation. These properties can incorporate references to dynamic
system state, including the current time, current resource availabil-
ity, and even history. Labels used in proofs demonstrate, through
logical inference, reasons why a principal should be trusted; they
are consumed by guards that verify proofs to make authorization
decisions.
We have implemented a new operating system, called Nexus, de-

signed around logical attestation. Nexus executes on x86 platforms
equipped with a TPM, supports much of the Posix API, and na-
tively executes many Linux applications. To our knowledge, Nexus
is the first operating system to implement logic-based authorization
with dynamic system state, the first to implement operating system
capabilities [7] based on statements issued by a TPM, and first to
support all three bases for trust in a single unified framework. Log-
ical attestation enables novel authorization functionality, as we il-
lustrate, and provides strong and useful guarantees today’s systems
cannot provide.
We illustrate the power of our new authorization architecture

by implementing a cloud computing application, called Fauxbook,
that implements guarantees about safety, confidentiality, and re-
source control. Fauxbook provides a familiar social networking
experience, where users publicly post and exchange status mes-
sages. Even Fauxbook developers are blocked, by our authoriza-
tion architecture, from examining or data-mining the information
Fauxbook handles. Moreover, logical attestation enables the cloud-
infrastructure operator to guarantees certain forms of resource avail-
ability to Fauxbook developers. Experiments show that the cost of
authentication with logical attestation in Fauxbook is on the order
of 1ms, and it can be reduced to 20 cycles with proof caching, an
optimization we describe later.
The rest of this paper is structured as follows. The next section

describes the elements of logical attestation. Section 3 discusses
operating system services required to support expressive, flexible
logical attestation. Section 4 describes Fauxbook. Section 5 eval-
uates Nexus in terms of authorization efficiency, Section 6 reviews
related work, and Section 7 summarizes and concludes.

2. Logical Attestation
Logical attestation is based on the generation, communication

and use of attributable property descriptions represented as logi-
cal formulas. It builds on much past work that uses logical infer-
ence for authorization, known as credentials-based authorization
(CBA) [57, 2, 26, 1].
The key idea in credentials-based authorization is that each re-

quest is accompanied by credentials, which are statements that can
be attributed to principals. Accesses to resources are protected by a
guard, a reference monitor that enforces a resource-specific autho-
rization policy. The guard allows a request to proceed if credentials
are available that imply a goal statement embodying the requisite
authorization policy.
Credentials-based authorization provides for better expressive-

ness than traditional access control mechanisms. For instance, where-
as Unix file systems perform access control based only on owner/-
group/other permissions, a CBA systemmight enable a file contain-
ing an expense report to be restricted to, say, “users who have suc-

cessfully completed accounting training,” where a user can acquire
such a credential by successfully completing an online course. Users
of such a system need not contact an administrator in order to be
placed in a special user-group. So, CBA enables decision-making
authority to be removed from the guard (which now consists solely

of a general-purpose proof-checker), and relocated to (potentially
remote) unprivileged credential-granting entities, better suited for
the task. CBA’s flexibility provides clients with the ability to se-
lect a convenient way of discharging an access control policy. For
instance, a CBA policy that limits access to “a user whose iden-

tity is vetted by any two of: a stored password service, a retinal

scan service, and an identity certificate stored on a USB dongle”
provides the client with the freedom to pick the most convenient
method for gaining access [23]. Note that CBA credentials are
self-documenting—they include all of the evidence used to reach
a conclusion, a feature well-suited for logging and auditing.

Yet implementing credentials-based authorization in a real sys-
tem poses significant challenges. First, there is the semantic gap
between credentials and the actual state an operating system em-
bodies. For instance, the seemingly innocuous credential “Filesys-
tem says User A is consuming less than 80% of her quota” illus-
trates two fundamental problems: (1) the statement may become
invalid even as the credential continues to be used in authoriza-
tion decisions, and (2) a badly-implemented filesystem could issue
credentials attesting to conflicting statements (e.g., in the case of
statements issued before and after the the user exceeds 80% of her
quota) that together imply false. Past work in CBA has tried to
bridge this semantic gap between logic and OS state, either by lim-
iting credentials to conveying irrevocable truths, or by replicating
real world facts in logic variables (which creates inconsistencies
stemming from the duplication of state).

The second set of challenges relates to the generation, manipula-
tion, and management of credentials. To reap the benefits of CBA,
an operating system must provide mechanisms for capturing rele-
vant credentials. Specifically, the OS must support general-purpose
mechanisms for performing analysis as well as synthesis. It must
enable an application that possesses a particular property to acquire
relevant credentials that can be forwarded and trusted by remote
parties.

The final set of challenges relate to performance. The perfor-
mance overhead of the mechanisms required for checking creden-
tials and validating proofs of goals from credentials must not be
prohibitive. And the performance impact of supporting the analy-
sis and synthesis mechanisms must be small.

The rest of this section describes the mechanisms and abstrac-
tions supported by the Nexus operating system to address these
challenges.

2.1 Logic Labels and NAL
Logical attestation bases all authorization decisions on labels. A

label is a logical formula P says S that attributes some statement S
to a principal P. Labels are expressed in Nexus Authorization Logic
(NAL). The design of the logic is discussed in detail elsewhere [45];
here, we summarize why NAL is suitable for use in an OS setting.

First, to preserve justification in all authorization decisions, NAL
is a constructive logic—a logic that restricts deduction to formulas
that are derived solely from facts observed by a witness. In such
a logic, tautologies such as double negation elimination (¬¬p ⇒

p) are not axioms. Where classical logics preserve only the truth
of statements, proofs in constructive logics leave an audit trail for
their inferences, making them well suited to reasoning about autho-
rization.

Second, NAL is a logic of belief. Its formulas attribute facts
and deductions to individual principals. Each NAL principal has a
worldview, a set of formulas that principal believes to hold. The
NAL formula P says S is interpreted to mean: S is in the world-
view of P. All deduction in NAL is local. So we can derive from A

says false the statement A says G for any G, but A says false

cannot be used to derive B saysG in NAL if B and A are unrelated

principals. This local inference property limits the damage an un-
trustworthy principal can cause. It also enables each Nexus appli-
cation independently to specify which entities it trusts; the system
does not require a superuser, a shared set of privileged principals,
or an absolute universal frame of reference.
Finally, NAL supports group principals and subprincipals, as

well as a speaksfor operator for characterizing delegation be-
tween principals. If A speaksfor B holds and A says S, then
B says S for all statements S. Semantically, if A speaksfor

B holds, then the worldview of A is a subset of the worldview of
B. A subprincipal A.τ of A, by definition, satisfies A speaksfor

A.τ . This allows NAL to characterize dependencies between OS
abstractions. For example, processes implemented by a kernel are
all subprincipals of the kernel, which itself is a subprincipal of the
hardware platform it executes on. So, strictly speaking, we should
be writing HW.kernel.process23 as the principal to which a state-
ment by process 23 would be attributed. For clarity, we elide the
the prefix of dependencies in a principal’s name whenever that pre-
fix would be clear from the context. The NAL speaksfor opera-
tor optionally supports an “on” modifier that can restrict the scope
of the delegation. For example, Server says NTP speaksfor

Server on TimeNow delegates to NTP authority on statements for
Server involving the time, but does not attribute to Server any other
utterances by NTP.
The rest of this section traces label creation and usage for a time-

sensitive content scenario. Here, a file on local disk is assumed
to contain sensitive information that should be accessed before a
fixed date. The contents of this file must not be overtly leaked over
channels to the disk or network.

2.2 Label Creation
Labels are created in Nexus by invoking the say system call. This

system call takes a string argument that encodes a NAL statement.
Nexus imposes no semantic restrictions on the terms and predicates
appearing in a statement. For instance, in the label TypeChecker
says isTypeSafe(PGM), isTypeSafe is a predicate introduced by
the TypeChecker, whose meaning is presumed to be understood by
a principal that imports this statement into its worldview. This flex-
ibility enables third parties to define types of credentials that may
not have been envisioned by the OS designers. Moreover, because
all reasoning is local to a principal, separate applications need not
subscribe to a common nomenclature or semantics for labels; for
instance, the predicate isTypeSafe might be used by both a JVM
and CLR, but denote different properties.
In our time-sensitive file example, the process that wants to read

the file must acquire some credential certifying that its execution
will not leak the sensitive information to the disk or network. One
potential approach may use labels like:

Company says isTrustworthy(Client)

∧ Nexus says /proc/ipd/12 speaksfor Client

Here, Client is the well-known SHA1 hash of a program that some
third party Company has certified to exhibit the properties sought.
The second label, provided by the Nexus, indicates that the named
process speaksfor its launch-time hash.
An alternative set of labels to accomplish the same task but with-

out the disadvantages of axiomatic trust is:

Nexus says /proc/ipd/30 speaksfor IPCAnalyzer

∧ /proc/ipd/30 says ¬hasPath(/proc/ipd/12, Filesystem

∧ /proc/ipd/30 says ¬hasPath(/proc/ipd/12, Nameserver

Here, a separate program IPCAnalyzer, running as process 30, used
an analytic basis to enumerate the transitive IPC connection graph

using the Nexus introspection interface (for simplicity, we have re-
placed process identifiers with the strings Filesystem and Name-

server—hashes, signatures, or other labels may be used to relate
these process identifiers to known principals). Since the disk and
network drivers in Nexus operate in user space and rely on IPC for
communication, a transitive IPC connection graph that has no links
to these drivers demonstrates that there is no existing channel to the
disk or network.

2.3 Labelstores
A simple way to implement labels is to use digital signatures. A

process that controls a key stored in the TPM can direct the TPM to
create such a signed credential. Alternatively, a process that stores
a key in its address space can digitally sign statements; this is sensi-
ble only when the key resides in an address space (called an isolated
protection domain (IPD) in Nexus terminology) that is not shared.
Such credentials are sometimes used in Nexus, but because crypto-
graphic operations are expensive, whether performed by TPM hard-
ware or in software, the kernel provides a new abstraction that helps
eliminate their overhead.

The labelstore is implemented by the Nexus for storing labels
generated by user programs. A user process can issue labels by
invoking the say system call, passing in a NAL statement S, and
naming the labelstore into which the statement should be placed.
The returned handle can be used to request manipulation of the
label. The speaker P associated with the label is, by default, the
name of the process that invoked the say system call. Once in a la-
belstore, labels can be transferred between labelstores, externalized
into a standard cryptographically-signed certificate format (X.509),
imported from that format into a labelstore, and deleted.

Since labels are generated directly by invoking the say system
call, there exists a secure channel from the user program to the
operating system during label creation. The presence of this chan-
nel obviates the need for cryptographic operations. In our time-
sensitive file example, the labels mentioned above are emitted di-
rectly into the labelstore and stored as strings, without any costly
cryptographic signatures.

2.4 Label Communication
A label P says S that is cryptographically signed is not vulnera-

ble to misattribution and misquotation, but is computationally ex-
pensive to generate and verify. So the Nexus allows principals to
exchange labels efficiently over secure system channels. Specifi-
cally, the kernel exposes IPC channels, and it authoritatively binds
IPC ports to owning processes by producing a label Nexus says
IPC.x speaksfor /proc/ipd/process.y.

Externalized labels must convey context about principals named
in labels. All Nexus principals are subprincipals of the TPM’s se-
cret key EK, associated permanently with that TPM at the time of
manufacture. On first boot, the Nexus kernel uses the TPM to gen-
erate a Nexus key NK that is bound to the current contents of the
TPM’s platform configuration registers (PCRs) at boot time. NK
serves as a principal associated with that version of the Nexus. And
an attacker that boots a modified version of the kernel in order to
access this NK will be unable to gain access to the private key due
to the PCR mismatch. The kernel also generates a Nexus boot key
(NBK) that identifies the unique boot instantiation of that Nexus
installation. All processes are sub-principals of NK concatenated
with the hash of the public component of the NBK, are named in
full in X.509, signed with the NK, and are accompanied by an-
other X.509 certificate attesting to NK using the TPM. So, when
a label is externalized into X.509 format, the exported statements
are, informally, of the form “TPM says kernel says labelstore says

processid says S.” In cases where TPMs are accompanied by cer-

tificates from the TPM manufacturer attesting to the chip and the
PC hardware manufacturer attesting to the chip’s integration on the
motherboard, Nexus can furnish these to establish trust in the com-
plete hardware platform; support for such certificates is currently
vendor-dependent.

2.5 Goal Formulas
Nexus enables a goal formula to be associated with any opera-

tion on any system resource. The goal formula specifies what must
be discharged for a client to be authorized to perform the given
operation. A setgoal system call specifies the resource (e.g. pro-
cess, thread, memory map, page, IPC port, files and directories),
the operation on that resource, a goal formula and, optionally, the
IPC channel to a designated guard. Following a successful setgoal
call, all subsequent operations on that resource are vectored to the
designated guard, which checks client-supplied labels against the
specified goal formula.
Goal formulas, like labels, are expressed in NAL. A goal formula

documents its trust assumptions by specifying speaksfor rela-
tionships in a preamble. For instance, a goal formula of the form
“Owner says TimeNow < Mar19” requires the client to obtain a
credential from a time server trusted by the file owner that attests
that the deadline has not yet passed.1 Specifically, this goal formula
can be discharged by acquiring credentials:

Filesystem says NTP speaksfor Filesystem on TimeNow

∧ NTP says TimeNow < Mar19

Setting a goal formula is itself an operation that must be autho-
rized. A goal formula that is separate (and often, distinct) from the
one used for object access is involved. Typically, a goal formula for
a shared object (e.g. a nameserver or a mail spool directory) will
permit a wide range of principals to perform regular operations on
the object, while restricting the setgoal call to an entity privileged
enough to own or maintain that resource.2

For our time-sensitive file example, a suitable goal formula that
embodies the desired policy is:

Owner says TimeNow < Mar19

∧ X says openFile(filename)

∧ SafetyCertifier says safe(X)

Here, calligraphic font is used for a class of identifiers that are in-
stantiated for guard evaluation.
Typically, Nexus goal formulas involve the owner of a resource

explicitly permitting an operation. Labels issued to the entity seek-
ing access are used in conjunction with auxiliary labels issued by
the resource owner to demonstrate that the conditions for access are
satisfied. For instance, the SafetyCertifier above might examine the
labelstore and issue additional labels of the form:

SafetyCertifier says safe(X)

for each IPD X when the following labels are also found in the
labelstore:

Nexus says Z speaksfor IPCAnalyzer

∧ Z says ¬hasPath(X , Filesystem)

∧ Z says ¬hasPath(X , Nameserver)

1We discuss the details of handling credentials that refer to mutable
state in Section 2.7.
2It is technically possible, in our current implementation, for a bad
applicaton to set goal formulas on a resource that prohibit every en-
tity, including itself, from ever interacting with that resource. This
feature is the inevitable consequence of the lack of a superuser. If
desired, one can modify the kernel to always permit operations by
a designated superuser process or one of its delegates.

label

store
authority

Kernel

Decision Cache

Proofchecker

calling

process

Interpositioning
1 call(sbj, op, obj,

 proof, labels)

guard

Proofcache Goalstore

IPC

2 check(sbj, op, obj,

 proof, labels)

3 label("A says S")?

allow=Y/N

cache=Y/N

 agree=Y/N

 cache=Y/N

Labelcache

4 call(op, obj)

object

Figure 1: Logical Attestation in Nexus: To perform an opera-

tion on an object, an access control subject (1) passes a proof

and set of labels that satisfy the associated goal formula. The

kernel calls a guard process (2), that evaluates the proof and

verifies authenticity of labels, referring (3) to external label-

stores and authorities for unknown labels. The call is permitted

to proceed (4) if the proof discharges the goal.

This is equivalent to the definition:

safe(X) , ¬hasPath(X , Filesystem) ∧

¬hasPath(X , Nameserver)

and an alternative would have been simply to include this definition
in the guard.

2.6 Guards
Authorization decisions are determined by performing a logical

inference that derives a goal formula from a set of credentials.
Since proof derivation in logics like NAL is undecidable, the

Nexus places the onus on the client to construct a proof and present
it when invoking an operation on an object. The guard need only
check the proof and authenticity of credentials, both of which are
tractable problems and, as we will demonstrate later, cheap. Fig-
ure 1 depicts all of the steps in the authorization process.

Kernel resources implemented by the Nexus, including threads,
IPDs, IPC channels, network sockets, files and directories, are man-
aged by a kernel-designated guard. The choice of default policy
for such resources is tricky, since one has to ensure that a nascent
object for which a goal policy has not yet been established is pro-
tected from access by unauthorized parties. The kernel-designated
guard implements a simple default policy to solve this bootstrap-
ping problem: it interprets the absence of a goal formula as the
policy resource-manager.object says operation, which is only sat-
isfiable by the object or its superprincipal, the resource manager
that created the object. To pass object ownership to a third party,
the resource manager issues a label resource-manager says third-

party speaksfor object. For instance, when /proc/ipd/6 creates
a file called /dir/file, the fileserver FS creates the file on behalf of
/proc/ipd/6 and deposits the label FS says /proc/ipd/6 speaksfor

FS./dir/file in the labelstore for that process.

2.7 State and Authorities
A trustworthy principal should refrain from producing statements

in transferable form if these statements might subsequently become
invalid. For instance, a statement by NTP that assures the bearer
of the current time would quickly expire, causing others to con-
clude that NTP is an untrustworthy principal. Nevertheless, real-
istic authorization policies often refer to non-monotonic dynamic
state, such as user input and resource utilization. Therefore, logical
attestation supports an authority abstraction for querying dynamic
state without incurring the problems of invalidated credentials.

Nexus authorities attest to the veracity of a label only when asked,
and they never issue credentials that are both transferable and can

become invalidated. Specifically, an authority is implemented by a
process listening on an attested IPC port i. That process authorita-
tively answers whether it currently believes statement IPC.i says
S holds; its answer can only be observed by the principal posing the
query. The default labels Nexus provides for IPC channels thus en-
able such a statement to be attributed to the authority process. So,
over an attested IPC channel, the Nexus implements the following
protocol: a guard that wants to validate a label sends the label to
the port. The process listening on the port returns a binary answer
that is authoritative (by virtue of the IPC channel), thus conveying
the validity but not in a way that can be stored or further commu-
nicated. For example, in our time-sensitive file application, a trust-
worthy system clock service would refuse to sign labels, but would
subscribe to a small set of arithmetic statements related to time,
such as NTP says TimeNow ≤ March 19. The guard process can
establish the veracity of such a claim by querying the system clock
service on each time-dependent check.
By partitioning trusted statements into indefinitely cacheable la-

bels and untransferable yes/no responses from authorities, we obvi-
ate the need in Nexus for an additional, system-provided revocation
infrastructure. For instance, a software developer A wishing to im-
plement her own revocation check for a statement S can, instead
of issuing the label A says S, issue A says Valid(S) ⇒ S. This
design enables third-parties to implement the revocation service as
an authority to the statement A says Valid(S).

2.8 The Decision Cache
Since guard invocations are expensive, the overhead entailed by

credential checks needs to be reduced whenever possible. To this
end, the Nexus implements a cache in the kernel that stores previ-
ously observed guard decisions, called the decision cache.
The goal of the decision cache is to avoid expensive proof check-

ing and validation operations when they are unnecessary. To sup-
port the decision cache, the guard-kernel interface is amended with
a bit to signify whether a validation is cacheable. NAL’s structure
makes it easy to mechanically and conservatively determine those
proofs that do not have references to dynamic system state and,
thus, are safe to cache.
The decision cache is implemented as a hashtable indexed by the

access control tuple of subject, operation, and object. Because the
cache is a performance optimization, its contents can be marked
invalid and the cache can be resized at runtime.
Authorization decisions are invalidated as a system executes.

When a process updates a goal or proof, the kernel must invali-
date corresponding entries in its decision cache. The kernel there-
fore interposes on the guard control IPC to monitor updates. On a
proof update, the kernel clears a single entry in the decision cache.
A setgoal operation, on the other hand, might affect many entries
that, due to hashing, may spread across the memory implementing
the decision cache. To avoid clearing the whole decision cache on
each such update, the hash function we use was designed to hash
all entries with the same operation and object into the same sub-
region. Subregion size is a configurable parameter that trades-off
invalidation cost to collision rate. Only when the kernel has no
cached decision, does it consult an IPC port lookup table and make
an upcall to a guard process.
The decision cache has a significant impact on performance. As

we discuss later, the decision cache can reduce proof checking la-
tency on a minimal system call from 2100% of unguarded invoca-
tion latency down to 3%.

2.9 Guard Cache
To amortize proof-checking cost across principals and invoca-

tions, guards internally cache as much proof-checking as possible.

Caching valid credentials cannot cause a vulnerability, because la-
bels are valid indefinitely. Even when proofs depend partially on
dynamic state, they often have pieces that can be replaced by lem-
mas whose outcome may be cached safely. So, a cache in the guard
can enable some parts of a proof to be checked quickly, reducing
authorization to a few checks and subsequent consultation with des-
ignated authorities.

Since all information in the guard cache constitutes soft state and
can be re-checked when needed, evictions from the guard cache
cannot impact the correctness of access control decisions. To pro-
vide some measure of performance isolation between principals,
the default Nexus guard, in response to a new request from a given
principal, preferentially evicts cache entries from that same princi-
pal. To limit exhaustion attacks due to incessant spawning of new
processes and thus principals, quotas are attached to the principal
that is the root of an entire process tree.

3. Operating System Services
To effectively build secure applications using logical attestation,

additional OS mechanisms are necessary.

3.1 Introspection
For supporting an analytic basis for trust, Nexus implements an

extensible namespace through which principals can query the state
of the kernel. Similar to Plan 9’s /proc filesystem [38], this grey-
box information service allows components to publish application-
defined key=value bindings. Logically, each node in the introspec-
tion service is the same as a label process.i says key = value.
These key-value pairs indicate kernel state information. Each pro-
cess and the kernel are linked against an in-memory fileserver. The
fileserver has default mechanisms for rendering data contained in
hashtables, queues, and other kernel datastructures. Using these
tools, the Nexus kernel exposes a live view of its mutable state,
including lookup tables for processes, IPC ports, and guard ports.
Applications, such as the Python interpreter, similarly publish their
state information, such as the list of currently loaded modules and
executing files.

Introspection of metadata offers a portable alternative to prop-
erty attestation by unique hash. For instance, a labeling function
can verify, by analyzing information exported through introspec-
tion, that a language runtime is not executing unsafe code, that a
device driver has its I/O mediated by a reference monitor, or that a
keyboard driver detected physical keypresses. All of these, in fact,
are used by the example applications in Section 4.

Two properties of NAL’s term language are essential to mean-
ingful label generation. First, the uniform naming scheme provided
by the introspection service enables labeling functions to identify
entities in the system in a portable manner. Second, the filesys-
tem interface presents standard, well known, mechanisms for term
access control and change notification. Associating goal formulas
to information exported through the /proc filesystem enables the
kernel to impose access control on sensitive kernel data.

3.2 Interpositioning
Not all properties are fully analyzable prior to execution. But

even if it might be a priori undecidable to determine whether an
application will open a particular file or execute a particular code
path, it could still be trivial to monitor and detect such behavior
dynamically. In this case, a synthetic basis for trust is achieved by
actively interposing on all I/O of an untrusted process and trans-
forming that I/O into safe actions, in effect rendering the untrusted
process trustworthy.

Nexus provides an interpositioning service by which a reference
monitor can be configured to intercept IPC operations originated
by a particular process. Specifically, the interpose system call pro-
vides a way for a particular process to bind itself to a given IPC
channel. As with every Nexus system call, an interpose call only
succeeds if the reference monitor can satisfy some goal formula,
typically by presenting a credential obtained from the process to
be monitored. Thus, interposition is subject to consent, but a ref-
erence monitor, once installed, has access to each monitored IPC
call. The reference monitor can inspect and modify IPC arguments
and results, and at its discretion, block the IPC. Since all system
calls in Nexus go through the IPC interface, a reference monitor
can inspect, modify and block all interaction of a process with its
surrounding environment, to the extent it is permitted to do so.
Interposition is implemented by using an redirector table in the

kernel. Upon an IPC invocation, the kernel consults the redirector
and reroutes the call to the interceptor, passing the subject, opera-
tion, and object. The interceptor can access the arguments passed
to the intercepted call by issuing further system calls, and it may
also modify them if it has credentials to do so. On completion, the
monitor notifies the kernel about whether the call should be permit-
ted to continue. If the call does continue as normal, then the kernel
will later make an upcall when the return for that IPC occurs, so
that the interceptor can modify response parameters.
Interpositioning is a composable operation. Multiple processes

can be interpositioned on a given IPC channel, and the interposition
system call itself can be monitored by an interposition agent.

3.3 Attested Storage
Data confidentiality and integrity can be important in many high-

integrity applications. Password authenticators, capability man-
agers, and file systems often need to retain confidential data in a
manner that prohibits unauthorized access, avoids replay attacks,
and detects tampering. Although hardware attacks against the TPM
is beyond the capabilities of most attackers, attacking the storage
system while a given machine is powered down can be as trivial as
duplicating and replaying a disk image. Yet it is infeasible to store
all sensitive information on a TPM, because the TPM provides only
a small amount of secure on-chip storage. To guard against attacks
on the storage system, a trustworthy operating system needs to offer
integrity and confidentiality protection, even across reboots. Nexus
does this by providing an abstraction called Secure Storage Re-

gions (SSRs) that enable the limited TPM storage resources to be
multiplexed in a way that provides integrity- and confidentiality-
protected, replay-proof, persistent storage.
SSRs create the illusion of an unlimited amount of secure storage

that is backed by the TPM. This can be achieved with TPM v1.1,
which provides only two 20-byte registers (called Data Integrity
Registers, or DIRs) for storage, or with TPM v1.2, which provides
only a finite amount of secure NVRAM. Each SSR is an integrity-
protected and optionally encrypted data store on a secondary stor-
age device. Applications can create, read, write and destroy their
SSRs. SSRs can be used by applications to store arbitrary data that
demands integrity, and optionally, confidentiality guarantees, such
as authentication tokens, keys, cookies, and other persistent and
sensitive information. And guards can use SSRs to store the state
of security automata [44], which may include counters, expiration
dates, and summary of past behaviors.
The integrity of an SSR is protected by a hash. When the num-

ber of SSRs is small relative to the amount of storage on the TPM,
their hashes can be stored by the TPM. Thereafter, attempts to re-
play old values of SSRs, for instance, by re-imaging a disk, would
fail, because the hash of the (replayed) SSR would not match the
(modified, current) hash stored in the TPM.

...

...

...

...

VDIRs

Secure Memory Region 1 Secure Memory Region 2

...

Secure Coprocessor

...

...

DIRs

Nexus Kernel

Application

Figure 2: The SSR interface enables applications to provide

integrity- and confidentiality-protection for data at rest.

In order to provide these same guarantees for an arbitrary number
of SSRs, the Nexus utilizes a kernel-managed Merkle hash tree [33,
34] to store hashes of all SSRs. A Merkle hash tree divides a file
into small blocks whose hashes form the leaves of a binary tree
and, thus, somewhat decouples the hashing cost from the size of
the file. Inner nodes in the tree store hashes computed by concate-
nating and hashing the values of their child nodes, resulting in a
single root hash that protects the entire file. SSRs are implemented
at user-level; they use a Nexus kernel abstraction, called Virtual
Data Integrity Registers (VDIRs), to hold hashes. The Nexus ker-
nel stores VDIR contents in a hash tree kept in memory and stored
on secondary storage (between boots), with the root hash of the
hash tree stored in the TPM. Any attempt to change or replay the
contents of this tree by modifying the contents while it is dormant
on a secondary storage device will be caught during boot through a
mismatch of the root hash. Similarly, replay or modification attacks
to an application’s SSRs produces a mismatch against the hashes
stored in the kernel-managed Merkle hash tree.

Writes to the storage system and to the TPM are not atomic,
and a power failure may interrupt the system between or during
these operations, so care must be taken when updating the kernel-
managed Merkle hash tree. The Nexus uses an update protocol that
can withstand asynchronous system shutdown and that requires no
more than the two 160-bit hardware registers as provided by the
TPM v1.1 standard. These TPM data integrity registers (DIRs),
which we will callDIRcur andDIRnew for clarity, are set up such
that they cannot be accessed unless the state of certain platform
configuration registers (PCRs) match a sequence that corresponds
to the Nexus. The protocol additionally employs two state files
/proc/state/current and /proc/state/new on disk to store
the contents of the kernel hash tree.

When an application performs a write to a VDIR, the Nexus ef-
fectively creates an in-memory copy of the kernel hash tree and
updates it to reflect the modification to that VDIR. It then follows a
four step process to flush the contents to disk; namely: (1) write the
new kernel hash tree to disk under /proc/state/new, (2) write
the new root hash into DIRnew, (3) write the new root hash into
DIRcur , (4) write the kernel hash tree to /proc/state/current.
A success indication is returned to the user application only after
all four steps complete without failure.

On boot, the Nexus reads both state files, computes their hashes,
and checks them against the contents of the two DIR registers. If
only one of the DIR entries matches the corresponding file con-
tents, the contents of the corresponding file are read and used to
initialize all VDIRs; if both match, then /proc/state/new con-
tains the latest state; and if neither matches, indicating that the on-
disk storage was modified while the kernel was dormant, the Nexus
boot is aborted. This sequence ensures that the current copy of the
VDIR contents always resides on disk and can be located even in

the presence of machine failures that may leave the files or the DIR
registers in an undefined state. If it is desirable to protect against
failures of the secondary storage device that may affect the files at
rest, then more copies could be made at steps (2) and (3).
Nexus provides confidentiality guarantees for SSRs using kernel

abstractions called Virtual Keys (VKEYs). Whereas VDIRs pro-
vide a mechanism to virtualize the limited data integrity storage
on the TPM, VKEYs virtualize the limited encryption key storage.
The VKEY interface provides methods for creating, destroying,
externalizing, and internalizing key material, in addition to stan-
dard cryptographic operations suited for the type of key. VKEYs
are stored in protected memory in the kernel. During externaliza-
tion, a VKEY can optionally be encrypted with another VKEY to
which a program has access; the Nexus uses the TPM to generate
a default Nexus key, and sets it up to be accessible only to a ker-
nel whose platform configuration registers (PCRs) match those for
the Nexus. Specifically, SSRs use a symmetric counter-mode AES
block cipher on the data blocks that comprise an SSR. Counter-
mode encryption allows regions of files to be encrypted indepen-
dently, decoupling operation time from the size of the file. Unlike
most block-chaining modes, a counter-mode ciphertext block does
not depend on the its predecessor, obviating the need to recalculate
all successor ciphertexts after an update to some plaintext block.
This mechanism allows Nexus to retrieve and verify only the rele-
vant blocks from the filesystem, and it enables demand paging for
reading data blocks in an SSR.
Since all operations on VKEYs and VDIRs can be protected us-

ing logical attestation, complex policies about the uses of crypto-
graphic keys and stored data are easy to express. Group signatures,
for instance, can be implemented by creating a VKEY and setting
an appropriate goal formula on the sign operation that can be dis-
charged by members of the group. Further, by associating a dif-
ferent goal formula with the externalize operation, an application
can separate the group of programs that can sign for the group from
those that perform key management and transfer keys for the group.
Similarly, goal formulas can be used to limit access to VDIRs and
the corresponding SSRs. For instance, an SSR that holds sensitive
data subject to policy controls such as Sorbanes-Oxley, HIPAA, and
the like, can be restricted for access solely to those applications that
have been certified, analyzed, or synthesized by appropriate author-
ities to uphold that policy.

3.4 Nexus Boot
Integrating the additional kernel abstractions and mechanisms

described above with the TPM requires only modest modifications
to the boot sequence. On power-up, the TPM initializes its plat-
form configuration registers (PCR) to known values, and the sys-
tem BIOS extends PCRs with a firmware hash and the firmware
extends PCRs with the boot loader hash. A trusted boot loader
extends PCRs with a hash over the Nexus kernel image. This pro-
vides a measurement over the entire kernel image; it forms a static
root of trust for the Nexus kernel. We adopted this simple approach
for establishing the root of trust because it makes minimal assump-
tions about the processor hardware; recent hardware extensions to
support a dynamic root of trust, which can reduce TCB size even
further by dynamically providing a safe execution environment for
snippets of code, could also have been employed.
After the kernel is loaded, the Nexus boot sequence attempts to

initialize the TPM to a known good state and to recover the kernel’s
internal state. If this is the first Nexus boot, then the Nexus forces
the TPM to generate a new Storage Root Key (SRK) associated
with the current PCR state by taking ownership of the coprocessor.
If this is not the first boot, then it uses the protocol described in
the preceding section to decrypt the VDIR and VKEY contents.

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

switch
nexus

wwwnet.drv python FS

application

safe
modules

mon
ref

cbuf

lock
box

guard

Figure 3: The Fauxbook multi-tier webserver. Cross-hatched

boxes denote enforcement mechanisms, shaded boxes identify

decision caches and thick borders indicate hash attestation.

This is performed through a TPM unseal operation that depends
on the SRK and the PCR values. Consequently, the Nexus state
can only be restored by the kernel that initially took ownership;
attempts to boot a modified kernel to acquire access to the SRK and,
consequently, decrypt the VDIR and VKEY contents, are prevents
because a modified kernel that permits such unsafe operations will
lead to different PCR values.

An early version of the Nexus kernel investigated mechanisms
for acquiring a privacy-preserving kernel key from a Nexus Pri-
vacy Authority that can be used in lieu of TPM-based keys, and
therefore mask the precise identity of the TPM. Techniques for im-
plementing such privacy authorities (also known as trust brokers)
are well-established and could be employed in settings where the
identity of the TPM cannot be revealed.

4. Applications
The combination of operating system level interpositioning, in-

trospection, and logical attestation enables the Nexus to support
applications that enforce guarantees about state and history, and
prove these guarantees to third parties.

4.1 Fauxbook
To illustrate these capabilities, we implemented a privacy-preser-

ving social network application called Fauxbook. Unlike many,
Fauxbook enforces user-defined policies on data dissemination. Faux-
book is a three-tier web service built from a standard Lighttpd web-
server, Python application server with SQLite, and Posix filesys-
tem. Figure 3 depicts how a web request flows through the system.

Logical attestation enables Fauxbook to provide novel guaran-
tees. There are three kinds of entities in cloud computing envi-
ronments, each demanding different guarantees: cloud providers
who operate the cloud infrastructure and house tenants; develop-
ers who deploy applications on the cloud infrastructure and act as
tenants to cloud providers; and users of the deployed applications.
To the cloud provider, it guarantees that developers remain con-
fined to a sandbox, obviating the need to use virtual machines or
other mechanisms for isolation. To developers, Fauxbook guaran-
tees that the underlying cloud provider actually provides levels of
resources contracted. And to ordinary users, Fauxbook ensures that
data shared with friends in the Fauxbook social network is pro-
tected from inspection, datamining, and display to unauthorized
third-parties, including to Fauxbook developers themselves. Faux-

book implements these guarantees by combining axiomatic, ana-
lytical, and synthetic bases for trust.

Resource Attestation. Fauxbook employs logical attestation on ker-
nel resources in order to guarantee that cloud providers deliver
agreed-upon levels of service to the Fauxbook application. Over-
subscription is a long-standing problem in shared environments,
like the cloud. Clients might contract for some desired level of ser-
vice from the underlying platform, but conventional systems pro-
vide few mechanisms for enforcing such service-level agreements
(SLAs). Where SLAs involve externally-observable performance
metrics, such as latency or throughput, enforcement typically re-
quires continuous end-to-end measurement. And there is a class
of SLAs, pertaining to the availability of reserved resources, such
as backup links in the network, that are difficult or impossible to
measure from an application’s vantage point; such service must be
evaluated using exogenous, ad hoc mechanisms, such as reputation
and feedback measures on web forums. All of these approaches are
costly, difficult, and incomplete.
If the cloud provider executes the cloud platform on top of the

Nexus, a labeling function can examine the internal state of re-
source allocators in the kernel. Labels can then vouch for reserva-
tions of service. For instance, we implemented a proportional-share
CPU scheduler that maintains a list of all active clients, which it
exports through the introspection interface. A file in each tenant’s
directory stores the weight assigned to that tenant, while goal state-
ments ensure that file is not readable by other tenants. Therefore, a
labeling function that measures the resource reservations from each
of the hosts on which the tenant code is deployed ensures that the
tenant receives an agreed-upon fraction of the CPU.

Safety Guarantees. Fauxbook uses logical attestation to guaran-
tee that tenant code will remain confined to a sandbox, thus ob-
viating the need for other, potentially expensive, isolation mecha-
nisms. A labeling function uses analysis and synthesis to ensure
that mutually distrusting tenant applications can be executed safely
within the same address space. Specifically, the labeling function
performs static analysis to ensure that tenant applications are le-
gal Python and that tenants import only a limited set of Python
libraries. This restriction, by itself, is not sufficient to achieve the
desired level of isolation, because Python provides rich reflection
mechanisms that could be used to access the import function pro-
vided by the language. That import function could in turn allow a
rogue application to invoke arbitrary (and potentially unsafe) code.
To defend against this attack, a second labeling function rewrites
every reflection-related call such that it will not invoke the import
function. The two labeling functions in combination ensure that
the resulting tenant application can only invoke a constrained set of
legal Python instructions and libraries.

Confidentiality Guarantees. Fauxbook employs logical attestation
to guarantee users that their data is shared only with people they
have authorized through the social networking service. Even Faux-
book developers are blocked from accessing users’ shared content;
developers are not able to examine, data-mine, or misappropriate
user data, even though, as developers, they are intimately involved
in manipulating and servicing such data. These guarantees were
motivated by well-publicized incidents where developers of social
networking systems abused their power [12].
The observation we leverage to protect users from developers is

that, in this particular application, actions are, in a sense, data in-
dependent. Collecting personal information comprising status up-
dates, photos and videos from users, storing this information for
later use, and collating it for display to other users, does not re-
quire the ability to examine that data—it just requires copying and

displaying it. Thus, Fauxbook treats user information as indistin-
guishable from opaque blobs, and the Fauxbook code is restricted
to store, manipulate, and merge such blobs without seeing their
content.

The central data structure in any social networking application
is a social network graph. Nodes represent users, and edges corre-
spond to friend relationships. Fauxbook guarantees that this graph
(1) only contains edges explicitly authorized by the user, and (2)
data flows from one node to another only if there is an edge be-
tween the two nodes. More complex authorization policies, perhaps
involving friends-of-friends or various subsets of nodes belonging
to different circles of friends, are also possible, but they do not raise
substantially new security or implementation issues, so we concen-
trate on this simpler authorization policy for clarity.

Fauxbook attests to these two guarantees about the social net-
work graph by presenting to its users a set of labels concerning
properties of the software components that comprise the applica-
tion. These properties are gleaned through analysis based on intro-
spection and through synthesis based on interpositioning. Coupled
with axiomatic trust in the Nexus kernel, the labels together demon-
strate to Fauxbook users that their data will be handled in a way that
achieves the properties discussed above.

Credentials conveying externalized forms of these labels cur-
rently reside at a public url in X.509 form (e.g. similar to where the
privacy policy for a web application would be located) and can be
queried by a user prior to signing-up with Fauxbook. An alternative
implementation would involve transferring these certificates to the
client during SSL connection setup; in addition to the traditional
SSL certificate which binds a name to an IP address, these certifi-
cates would provide the groundwork for the client to be convinced
that the software connected to the socket has certain properties that
together uphold the desired privacy policy. In both cases, the guar-
antees about the behavior of tenant applications stem from trust
in the infrastructure operated by the cloud provider, which in turn
proscribes the behavior of the applications deployed in the cloud.

The operation of Fauxbook depends on several software com-
ponents. A user-level device driver manages a network interface
card. A lighttpd web server receives HTTP requests from users
and dispatches them to URL handlers supported by a web frame-
work, in addition to extracting the HTTP stream into TCP/IP pack-
ets (since networking is done in user level in the Nexus). The web
framework provides the execution environment for web applica-
tions deployed in the cloud by developers. It provides libraries
for user management and authenticating sessions, as well as the
dispatch loop for generic applications. Finally, the Fauxbook ap-
plication provides the logic required to implement a simple social
network.

The cloud environment precludes certain simplifying assump-
tions. First, we cannot assume that application code is monolithic,
public, or unchanging. If it were, then certifying its behavior would
be a simple task of certifying its binary hash and making its code
public. We instead expect that applications deployed in the cloud
cannot have their source code made public and will change too fre-
quently for their behavior to be manually certified. Second, we can-
not assume a web framework having functionality that is specific
to Fauxbook or any other particular application. A web framework
typically is operated by the cloud provider and designed to support
any generic application. Therefore, it cannot be tightly coupled
with application code provided by third-party developers. Finally,
we cannot assume that users possess unique cryptographic keys,
because they don’t.

The privacy guarantees of Fauxbook derive from the properties
of each of the components involved in managing user data. Be-

low, we describe each of these components and how they guarantee
these properties.
The network device driver needs to ensure that user data is de-

livered solely to its intended recipient. A driver that copies infor-
mation from packets could potentially also exfiltrate authentication
information, such as submitted passwords and returned authenticat-
ing cookies, to third parties who then could impersonate the user,
as well as directly copying personal information from the user for
use by others. Our device driver can demonstrate that it is unable
to perform these actions. Like most user-level drivers, the Nexus
NIC device drivers operate by allocating memory pages, granting
these to the NIC, setting up DMA registers to point to these pages,
and handling device interrupts. Unlike other device drivers, Nexus
device drivers operate under control of a device driver reference
monitor (DDRM) [56] that can constrain access to the device and
to memory. So the driver provides the aforementioned assurance
by demonstrating that it is operating in a DDRM with no read or
write privileges for any of the pages the driver manages. In fact,
the driver can perform the DMA setup and other device function-
ality without access to page contents, so it does not actually need
that access. In addition, it operates under a second reference mon-
itor that blocks all but a small set of systems calls governing I/O
ports, memory, and IPC. In particular, the reference monitor only
allows sending and receiving packets to and from a particular IPC
channel connected to the web server process. In sum, the network
driver provides labels, based on synthesis and provided by the ref-
erence monitor, certifying that the reference monitor only forwards
unmodified data between network device and the web server, and
that it cannot modify message contents, either by copying between
sessions or by forcing transmission to untrustworthy hosts.
The trustworthiness of the web server rests on both axiomatic

and synthetic bases for trust. The web server forwards packets
from the device driver to the web framework, and vice versa. Un-
like the device driver, the web server requires read/write access to
data, because it must translate IP packets into HTTP requests and,
subsequently, into FastCGI messages. This task requires only IPC-
related system calls in addition to polling, synchronization, and
memory allocation. To prove that it will not leak information to
other entities, the web server relinquishes the right to execute all
other system calls after initialization. And it provides labels that
demonstrate that it lacks the ability to communicate with other pro-
cesses besides the device driver and the web framework, and that
it is bound by hash to a well known binary version of analyzable
open source software.
The web framework provides guarantees (1) that it will provide

libraries for creating, deleting, and authenticating users, (2) that
user authentication information is stored in a file to which the web
framework has exclusive access, (3) that it will dispatch the cor-
rect handler for each web application, and, most importantly, (4)
it will constrain each such application to not leak user information
except as authorized by the users. Since the web framework code is
relatively static, the first three guarantees can be obtained through
hash-based attestation. The fourth guarantee forms the critical link
to the overall security properties of Fauxbook, since it means that,
even though the application code is provided by Fauxbook devel-
opers and is tasked with storing and assembling the web pages a
user sees when visiting the Fauxbook social networking site, the
very same code is unable to parse and examine the contents of the
data, such as status updates and images, submitted by users.
The web framework enforces guarantees by constraining Faux-

book application code to access user data through a restricted in-
terface called cobuf, for constrained buffers. Cobufs enable un-
trusted applications to manipulate user-supplied data without al-

lowing that data to be examined. A cobuf comprises a byte array
that stores data and an identifier that identifies the principal own-
ing that information; the result is an attributed buffer that may be
used only for content-oblivious string manipulations. Applications
running on the web framework can store, retrieve, concatenate, and
slice cobufs but lack the ability to act on cobuf contents. Akin
in functionality to homomorphic encryption, cobufs permit oper-
ations on data without revealing that data, but the functionality is
achieved using low-overhead language-based access control tech-
niques rather than by expensive crytography.

By design, cobufs are useful only for data-independent appli-
cations, yet much of the functionality of a social networking ap-
plication is data-independent. Because the cobuf interface does
not support data dependent branches, it is not Turing-complete—
certain functionality, such as vote tallying, which is inherently de-
pendent on the data values submitted by clients cannot be imple-
mented using cobufs. But, in some cases, it may be possible to
create new cobuf-like objects that perform the requisite computa-
tion while bounding the amount of information that may leak in the
worst case. The design of such extensions to the cobuf interface is
beyond the scope of this paper.

A modification of the Python loader analyzes code during load-
ing and ensures that Fauxbook code cannot use Python reflection
mechanisms for peeking at object fields. Every cobuf is tagged
with an owner identifier that is assigned on a session basis follow-
ing a successful user authentication, and cobuf contents may only
be collated if the recipient cobuf’s owner speaks for the owner of
the cobuf from which the data is copied.

Cobufs are used to protect the integrity of the underlying social
network graph. Because the owner identifier is attached in the web
server layer, Fauxbook application code cannot forge cobufs on be-
half of a user. This prohibits the application from adding impostors
that leak sensitive data. A legitimate, user-initiated friend addition
into the Fauxbook social network invokes a method in the user au-
thentication library that generates the requisite link in the social
graph corresponding to that speaksfor relationship.

Fauxbook stores user data in the Nexus filesystem. Goal formu-
las associated with each file constrain user access in accordance
with the social graph. Moreover, Fauxbook files reside in a direc-
tory that can be accessed only by a process with the expected web
framework process and Python code hashes. Additionally, each op-
eration on each file in this directory has a policy: private, public, or
friends. Private data of user a Alice is only accessible if an authority
embedded in the web server attests to label name.webserver says
user=alice. Alice can only read the files of her friend Bob if an
embedded authority attests to the label name.python says alice in

bob.friends. To verify whether this holds, the authority introspects
on the contents of a publically readable friend file. This operation is
trustworthy, because only the web framework can update the value
of the current user and only the web framework acting on behalf of
Bob can modify his friend file.

Taken together, the statements embedded in the labels described
above attest to an environment in which the Fauxbook code cannot
directly inspect personal information provided by its users. And
even though the Nexus has no built-in notion of social networks or
web users, the flexibility of the logical attestation framework was
able to provide such privacy guarantees, demonstrating the gener-
ality and power of the logical attestation framework.

Other Applications

We have built other applications based on logical attestation. We
outline their operation to provide a broader view on how labels can
be used to prove desired characteristics to remote parties.

Movie Player. Platform lock-down is a long-standing and widely
reviled problem with binary hash-based attestation. Yet, without
any form of attestation, content owners are justifiably wary of dis-
tributing high-value digital content, such as movies, that can easily
be copied and redistributed widely. With conventional approaches
to attestation, a content owner wanting to ensure that her movies
are not illegally copied would create a whitelist of known-to-be-
trustworthy media players, demand a binary hash attestation, and
stream content only if the player is on a list of trusted players. As a
result, the user either needs to use a precertified player and operat-
ing system or forgo watching the movie.
Logical attestation makes it possible to offer much greater choice

to users yet still satisfy the content owner’s needs. Specifically, the
user, instead of furnishing a binary attestation certificate, exports
a label that says an IPC channel-connectivity analyzer has deter-
mined that user’s program (whose hash need not be divulged in the
certificate or elsewhere) lacks the ability to write to the disk or the
network. We have built and implemented such a general-purpose
IPC connectivity analyzer, though one could also imagine the con-
tent owner furnishing that labeling function to the user. In either
case, the label provides a basis for a content provider to decide
whether the user can be trusted with the data, but the user now has
the flexibility to pick any player that can be analyzed and shown to
satisfy the desired security policy.

Java Object Store. Unlike filesystem access control lists, logical
attestation makes it possible to restrict access to a class of pro-
grams that possess an intrinsically-described capability. This can
have far-reaching impact, including for performance optimization.
For instance, Java virtual machines have long suffered object de-
serialization overhead. Because the Java runtime is typesafe and
because data coming from the external world cannot be trusted, a
number of type invariants needs to be checked dynamically during
deserialization.
Logical attestation can be used to obviate such checking in cases

where the object to be deserialized was generated by another type-
safe Java virtual machine. Take, for instance, a Java object store,
where the objects are stored on disk and later downloaded onto a
separate computer. If the downloader can be assured that the entity
producing that database was another Java virtual machine satisfy-
ing the same typesafety invariants, then the slow parts of sanity
checking every byte of data can be skipped when reinstating an ob-
ject. This is an instance of a class of applications based on transitive
integrity verification [49].

Not-A-Bot. A recent proposal aims to combat email spam with cer-
tificates attached to each message that indicate whether that mes-
sage originated from a human or from an automated script [17].
Using logical attestation, we have prototyped this approach. An
email program was modified to obtain a certificate from the key-
board driver, where that certificate attests to the number of key-
presses it received. Such a TPM-backed certificate then serves as
an input to a SPAM classification algorithm.

TruDocs and CertiPics. Recent public scandals, such as those in-
volving published pictures that were altered in significant ways and
intelligence reports quoted in a manner that distorted their meaning,
demonstrate the need to ensure important data is handled in accor-
dance with appropriate guidelines. And there are many settings
where such guidelines not only exist but, also, have been speci-
fied in a manner amenable to mechanistic enforcement [45]. To
demonstrate that the logical attestation machinery is sufficient to
implement such applications, we built TruDocs and CertiPics, two
document handling systems that ensure that modifications comply
with desired policies. There are many different ways in which the

different bases for trust can be used to implement these applica-
tions. We describe some implementation choices, which cover the
spectrum.

CertiPics is an image editing suite whose goal is to ensure that
images to be used in publications conform to standards. CertiPics
consists of a user interface that executes without privilege and a set
of image processing elements, such as crop, color transform, resize,
clone, and other manipulations supported by the portable bitmap
suite of tools, that execute on the Nexus. In addition to generating
a desired image from a given source, CertiPics concurrently gener-
ates a certified, unforgeable log of the transformations performed.
This log, coupled with the source and final images, make it possi-
ble for analyzers to determine if a disallowed modification, such as
cloning, was applied to the image.

TruDocs is a document display system whose goal is to ensure
that a given excerpt conveys the beliefs intended in the original doc-
ument. Implemented as a set of extensions to the OpenOffice suite,
this application issues a certificate attesting that an excerpt speaks
for the original document if the excerpt satisfies a given use policy.
Supported use policies can admit changing typecase, replacing cer-
tain text fragments with ellipses, and inserting editorial comments
in square brackets, while limiting the length and total number of
excerpts.

Protocol Verifiers. The BGP protocol is widely deployed, critical to
Internet routing, and suffers from vulnerability to misbehaving par-
ticipants. A naive approach to ensuring that a given BGP speaker is
trustworthy would involve equipping all BGP speakers with TPMs
and attesting to their launch-time hashes; an instance of axiomatic
trust. Such an effort would not only incur tremendous hardware
costs to replace legacy hardware but would also entail a tremen-
dous software certification effort to determine which, if any, of the
many different versions of BGP software is correct.

Applying the logical attestation approach to this problem, using
synthetic trust, yields a far simpler approach. We have designed a
BGP protocol verifier by coupling a BGP parser with a set of mini-
mal BGP safety rules that identify route fabrication and false orig-
ination attacks [39]. The verifier straddles a legacy BGP speaker
whose inputs and outputs it monitors by acting as a proxy between
the legacy speaker and other speakers. It ensures that every outgo-
ing BGP advertisement or withdrawal conforms to the BGP safety
rules; for instance, by ensuring that a host cannot advertise an n

hop route to a destination for which the shortest advertisement that
it itself received ism, for n < m. While the details of this applica-
tion, such as how such verifiers can be connected into an overlay,
how they react to non-conforming BGP messages, and how they
admit local policy preferences, is beyond the scope of this paper,
this application is an exemplar for the use of synthetic trust in a
network setting.

5. Evaluation
This section reports measurements of costs for logical attesta-

tion. We first quantify costs imposed by the base Nexus microker-
nel, by logical attestation operations, and by system services. Next,
we measure the cumulative cost this architecture imposes on our
Fauxbook application.

Benchmarks presented in this section represent the median of at
least 100 measurements when we observed a maximal deviation
of upper and lower quartiles below 2.5% each, unless otherwise
stated. Application benchmarks have the same bound, showing the
median of at least 10 runs, each of at least 1000 requests. All per-
formance data was obtained on a Dell Optiplex 745 containing a
2.13 GHz Intel E6400 CPU with 2MB of L2 cache and 2 GB of

Nexus Bare Nexus Linux

null 352 808 n/a

null (block) n/a 624 n/a

getppid 360 824 688
gettimeofday 640 1112 978
yield 736 1128 1328

open 8752 3240
close 4672 1816
read 3600 1808
write 11792 3900

Table 1: System call overhead, in cycles, comparing Nexus with

Linux. System calls are cheaper in Nexus when interpositioning

is disabled; when enabled, low-level operations have compa-

rable performance, while high-level filesystem operations have

higher overheads because their implementation employs multi-

ple user-level servers.

main memory running in 32bit uniprocessor mode. This system
has an Intel 82540EM network adapter and Atmel v1.2 compatible
TPM. Linux results were obtained with a Ubuntu 10.10 installation
with the default 2.6.35-23 kernel.

5.1 Microbenchmarks
The Nexus system architecture implements services in user-space

whenever possible, in order to reduce the size of the trusted com-
puting base (TCB). Such a microkernel design inevitably adds over-
head due to longer communication paths. System call interposi-
tioning imposes further overhead for parameter marshaling at every
kernel-mode switch.
To establish the cost of these design decisions, we compare in-

vocation cost of common operations both with and without inter-
positioning directly to Linux. To establish size of the TCB, we
calculate the number of lines of code contributing to each essential
Nexus component.

Kernel Operations. Table 1 shows system call costs for a mod-
ified Nexus without interpositioning, standard Nexus, and Linux.
Invocation of an empty null call gives an upper bound of inter-
positioning overhead, at 808 − 352 = 456 extra cycles. An inter-
posed call that is blocked returns earlier than a completed call, after
only 624 cycles in total. Nexus executes the Posix calls getppid,
gettimeofday and yield faster than Linux (1.5-2x) when inter-
positioning is disabled. When enabled, performance is comparable
(0.8-1.2x). We conclude that parameter marshaling required for
interpositioning does not significantly impact basic call overhead.
File operations are between 2 and 3x more expensive, on the other
hand, at least in part due to the communication imposed by the
client-server microkernel architecture.

TCB Size. Table 2 reports the size of the TCB, using DavidWheeler’s
sloc counter.
At less than 25 thousand lines, the kernel is larger than some

microkernels but smaller than many device drivers. Device driver
reference monitors (DDRMs) [56] enable the Nexus device drivers,
comprising keyboard, mouse, pci, network (e1000, pcnet32, and
tg3), sound (i810 and es1370), storage (ide) and tpm (atmel 1.1,
nsc 1.1, and emulator 1.2) drivers, to execute in user space. Shown
in the table as user drivers, they operate without privilege and
are constrained throughout execution by a device driver safety pol-
icy designed to protect the isolation guarantees provided by Nexus
IPDs, even in the presence of misbehaving and malicious drivers.
We maintain implementations of a VESA video driver, a TG3 net-

component lines component lines

kernel core 9904 headers 5020
IPC 1217 label mgmt 621
interpositioning 67 introspection 981
VDIR/VKEY 1165 networking 1357
generic guard† 4157 malloc 158 / 3322

filesystem† 1810 debug† 356
Xen† 9678 kernel drivers† 27238
posix library† 3953 user drivers† 24830

TCB 20490

Table 2: Lines of Code. Items marked † are optional. Nexus

has a small TCB, enabled by factoring device drivers out of the

kernel.

work driver, and a PCI driver in the kernel (kernel drivers) for
debugging and for performance comparison purposes.

The filesystem functionality in Nexus is spread over three com-
ponents. Basic namespace services are provided by the kernel core,
while a RAM-based store (filesystem) provides transient data
storage. In addition, the networking module provides TFTP and
NFS-based file and directory access. Even though these network-
ing protocols do not provide security guarantees and the data re-
sides on physically remote disks, the SSR implementation ensures
that application data as well as the Nexus kernel’s private VDIRs
and VKEYs contents are tamper- and replay-proof.

The generic guard used by default for kernel resources is less
than 5000 lines of code. For comparison, the Broadcom network
driver alone measures 16920 lines (version tg3-3.110g). Note that
the generic guard implementation is optional; applications can use
alternative guards for their resources.

We have biult a few additional components to support legacy
applications. A Posix library provides a familiar API for Nexus ap-
plications operating directly on the Nexus. Similar to past work on
VM-based secure systems [9, 14], Xen support enables the Nexus
to execute monolithic legacy systems in isolated virtual machines.
A compact malloc library provides in-kernel memory management.
Auxiliary libraries that are used by Nexus applications but are not
specific to the Nexus kernel, such as µClibc and OpenSSL, are not
shown.

5.2 Logical Attestation
Logical attestation can be prohibitively expensive without caching

and system-backed credentials. We quantify the run-time cost of
guard invocation and the effects of caching, measure scalability
with proof complexity, and compare control operations overhead
of system-backed and cryptographically implemented labels.

Invocation. Authorization cost depends on how many checks have
to be performed. Figure 4 compares these costs for a bare system
call invocation. To establish a baseline, we give the cost of eval-
uating a trivial proof consisting of a single assumption. From left
to right, the figure presents runtime for the case where (a) autho-
rization is disabled (system call), (b) a default ALLOW goal is
set (no goal), (c) a real goal is set, but no proof was supplied
by the subject (no proof), (d) the supplied proof is not sound
(not sound), (e) the proof is sound and all premises are supported
(pass), (f) the proof lacks a credential (no cred), (g) the proof de-
pends on an embedded authority (embed auth), and (h) the proof
depends on an external authority (auth). Solid bars depict execu-
tion time with the kernel decision cache enabled; dashed bars with
it disabled. The upcall into the guard increases cost of authorizing

 0

 5

 10

 15

 20

 25

system
call

no
goal

no
proof

not
sound

pass no
cred

embed
auth

auth

µ
s
/c

a
ll

kernel cache
no kernel cache

Figure 4: Authorization Cost. Cached decisions add around

456 cycles, keeping total runtime well below one µsecond. Up-

calls into the guard are 16-20x as expensive.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18 20

µ
s
/c

a
ll

#rules

delegate E
delegate F

negate E
negate F

boolean E
boolean F

Figure 5: Proof Evaluation Cost. With caching, access control

cost is reduced to tens of cycles.

an operation from 624 to 12424 cycles. In general, guard oper-
ations are between 16 and 20x as expensive as kernel decisions.
Cases (a)–(e) indicate the effectiveness of decision caching. The
jump between (e) and (f) clearly delineates the set of cacheable
proofs. Operations that cannot be cached are credential matching
(20% overhead over pass) and invocation of an embedded (31%)
or external authority (106%). The last case is exceptionally expen-
sive with caching disabled, due to the cumulative effect of interpos-
ing on all system calls made by the authority process.

Proof Evaluation. When decisions cannot be cached, time spent
in proof evaluation depends on proof size. Figure 5 shows proof
checking time for proofs of increasing length, measured as the
number of inference rules applied. It presents execution time for
application of the simplest NAL rule, double negation introduction,
together with two common NAL deduction rules: speaksfor

delegation and disjunction elimination. The solid lines show the
isolated cost of proof checking, while the dashed lines show to-
tal execution time, which also incorporates the time to check la-
bels and look up authorities. Both curves show the same trend,
with a different constant cost that reflects the overhead of IPCs and
scheduling the processes that implement the label store and author-
ity. Overall, the proof checker executes all proofs shorter than 15
steps in less than 1ms. All practical proofs that we have written in
our applications involve less than 15 steps.

 10

 100

 1000

 10000

 100000

cred
pid

cred
key

µ
s
/c

a
ll

 14

 16

 18

 20

 22

 24

 26

 28

auth
add

goal
clr

goal
set

proof
clr

proof
set

cred
add

Figure 6: Authorization Control Overhead. Avoidance of cryp-

tography reduces cost by 3 orders of magnitude.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

kern
int

user
int

kern
drv

user
drv

kref
min

kref
max

uref
min

uref
max

p
p

s

100 B
1500 B

Figure 7: Overhead of interpositioning. Caching decisions de-

crease packet processing rate by less than 6%.

Control Operations. Logical attestation requires management of
goals, proofs, and labels. Nexus is optimized for efficient invoca-
tion, even if it meant increased cost for these less-frequently exe-
cuted operations. Figure 6 summarizes control-operation execution
times. System-backed and cryptographic operations are displayed
at difference scales, because of the huge gap in execution times.
The left-hand figure shows cost of operations without cryptogra-
phy at linear scale: authority registration (auth add), goal dele-
tion and insertion (goal clr/set), proof deletion and insertion
(proof clr/set), and credential insertion (cred add). The cre-
dential insertion operation is twice as expensive as the next slow-
est, because each label has to be parsed to verify that the caller is
allowed to make the statement. The right-hand figure compares this
same system-backed credential insertion call (cred pid) to inser-
tion of a cryptographically signed label, using a logarithmic scale.
Verification of the signed label is three orders of magnitude more
expensive than the same operation for its system-backed equiva-
lent, substantiating our view that cryptographic operations should
be avoided if possible.

5.3 Operating System Services
Introspection and interpositioning are essential to using our logi-

cal attestation framework. Since introspection, whose performance
is comparable to the file I/O numbers shown in Table 1, typically
does not lie on the critical path, its performance overhead is un-
likely to affect benchmarks. Interpositioning, on the other hand,
introduces dynamic checks that could prove prohibitive, especially

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

s
ta

ti
c
 f
ile

s
 (

re
q
/s

)
access control

none
static

dynamic

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

w
w

w
 (

re
q
/s

)

none
static

dynamic

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

introspection

none
kernel -
kernel +

user -
user +

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

none
kernel -
kernel +

user -
user +

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

attested storage

none
hash

decrypt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 1000 10000 100000 1e+06

none
hash

decrypt

Figure 8: Application evaluation: impact of access control (col. 1), reference monitors (col. 2) and attested storage (col. 3) on a

webserver serving static files (row 1) and dynamic Python content (row 2). Filesize varies from 100B to 1MB, the x-axis is plotted in

logarithmic scale.

on highly active communication paths.

Interpositioning. To calculate an upper bound on overhead from
dynamic checks, we install progressively more demanding refer-
ence monitors and measure maximally obtained throughput for a
trivial application: a UDP echo server written in 27 lines of C. Fig-
ure 7 plots throughput in packets per second for increasing levels of
protection, for both small and large size packets. For this test, quar-
tiles lie within 5% of the median, except for the first measurement,
which lies within 18%.
Figure 7 illustrates the causes of interpositioning overhead by

progressively enabling more of the interpositioning machinery. The
first two cases (kern-int and user-int) show throughput when
the driver directly responds to requests from within the interrupt
handler, bypassing all interpositioning. While a kernel driver achieves
17% higher rate than its user-level equivalent, executing untrusted
application code within the device driver interrupt handler is not
practical without substantial additional measures. Cases kern-drv
and user-drv show the more realistic scenario of an independent
server application that communicates with the driver through kernel
IPC. The 2x drop in throughput is due to IPC, scheduling, routing,
and the user-level TCP/IP stack. In cases kref and uref, reference
monitors, located in the kernel and at user-level, respectively, are
installed on the userspace driver to ensure compliance with a de-
vice driver safety policy. The measurements for min and max show
the throughput with and without caching, respectively. While cache
misses during reference monitoring can reduce throughput by 50%,
caching can reduce monitoring overhead to as little as 4% for small
packets. When user-space reference monitors are employed, the
impact on throughput is as high as 77%, but the decision cache can
reduce the overhead to less than 5%.

5.4 Application
In the worst case, overhead of logical attestation can be three

orders of magnitude over functional cost if credentials are imple-

mented by using cryptographic labels. The Nexus architecture is
based on the assumption that caching can reduce such overhead to
negligible levels. To test this hypothesis, we measure the effects of
the Nexus mechanisms on a demanding workload: throughput of
the Fauxbook web application. We measure the impact of access
control, interpositioning, and attested storage on throughput—both
in the case of static file serving and dynamic Python execution.
Figure 8 shows these three sources of cost, from left to right. Each
figure plots HTTP requests per second versus filesize at logarith-
mic scale. The top row of graphs presents throughput for a static
fileserver, the bottom row displays the same numbers for a dynamic
server running Python.

The curves in graphs compare throughput under three types of
access control: none performs no authorization checks, static
evaluates a cacheable proof, and dynamic invokes an external au-
thority. Figure 4 showed considerable cost at the micro level. At
the application level, worst-case overhead is 6% for a minimal page
with guard invocation. Comparing the two rows shows that over-
head is consistently less pronounced for the multi-tier server with
Python than for the simpler fileserver. Interpositioning cost, dis-
played in the middle column, significantly decreases throughput
without caching. Worst case throughput is roughly 50% with the
user-space reference monitor. With caching, this overhead is only
6%.

Hashing and encryption are expensive. Encryption decreases
throughput by up to 85%; hashing up to 38%. Small file hash-
ing suffers from a large 1 kB blocksize, requiring padding for the
smallest files. Eventually, efficiency consistently decreases with
larger file sizes as the per byte cost of hashing increases, while per
request costs stay constant: the worst case occurs at the largest size.
When files are accessed through Python, the overheads remain sim-
ilar, with a worst case of 85% at the largest filesize.

6. Related Work
Hash-based attestation was initially proposed in security archi-

tectures for secure bootstrapping [15, 22, 3]. Logical attestation
differs from this work in that credentials can capture properties
that are not derived from the launch-time hash of a program. Like
logical attestation, semantic remote attestation [18] and property-
based attestation [40] suggest encoding meaningful application-
level properties. Unlike logical attestation, their protocol formats
are application-specific or unspecified, and they do not provide a
corresponding implementation in an operating system. Nexus is
the first OS to offer semantically rich attestation as a system ser-
vice and demonstrate an efficient implementation.
TCGLinux [42] proposes to add attestation capabilities to a con-

ventional Linux system. This approach is problematic due to Linux’s
large TCB and lack of strong isolation. Software-based attesta-
tion [47, 46] derives its correctness from assumptions about execu-
tion time, requiring intricate knowledge of target hardware. Hardware-
based approaches do not have this constraint. BIND [49] offers
fine-grained attestation on an untrusted OS through monitoring and
sandboxing by a trusted software module. Flicker [32] extends the
approach to legacy systems. Logical attestation is not inconsis-
tent with such isolation, independent of the OS. The system-level
implementation in Nexus avoids costly repeated state serialization,
however, rendering per-call interpositioning feasible and offering
assurance to all system objects.
To secure legacy systems, trusted hardware has been combined

with virtualization, in the form of trusted hypervisors [41, 14], me-
diated TPM access [10], and full TPM virtualization [4]. Mul-
tiplexing the TPM hardware interface in software does not solve
the problems stemming from limitations of the binary hash-based
attestation interface provided by the hardware. Some approaches
refine or replace the hardware interface: property-based virtualiza-
tion [40] supports variations on the TPM Quote function, Not-a-
Bot [17] presents human presence attestations, and TrustVisor ex-
poses the isolated process interface of Flicker [31]. Even higher-
level VMMs protection is inherently limited by the system inter-
face, whereas operating system protection extends to all primitives,
including files and users.
Microkernels offer another path to TCB minimization. seL4

demonstrated formal verification of correctness of microkernels [24].
L4 [21] has been proposed as a a small TCB [37, 20, 19]. Nizza [20]
extends it with trusted wrappers, similar to how TrustVisor adapts
VMMs. Nexus is a similarly small OS, but Nexus integrates a
comprehensive authorization architecture. EROS [48] is another
capability-based microkernel OS for mutually distrusting users. Like
Nexus, it caches state in the kernel. EROS uses kernel-protected
numerical capabilities that are not suitable for remote attestation
and policies are not as flexible as arbitrary proofs. Flask [51] intro-
duced an authorization architecture that supports these features and
caches security decisions in the kernel. In this model, Nexus im-
plements and evaluates a complete, expressive, policy mechanism.
The NGSCB [9] splits the system software into a large untrusted

and smaller trusted compartment. XOMOS [29] treats the OS as an
untrusted compartment from which trusted processes are shielded
using hypothesized CPU extensions. Logical attestation replaces
this duality with a delegated trust model that extends to multiparty
environments. Wedge [5] splits applications into least-privilege
compartments to isolate internal secrets, similar to the authenti-
cated interpreter in the Nexus cloud stack, though this does not
extend to multiple processes and system objects, such as files. HiS-
tar [58] assures systemwide data confidentiality and integrity by
enforcing information flow constraints on Asbestos [8] labels.
TPMs also support implementation of trustworthy abstractions

that are independent of the operating system. Monotonic coun-
ters [43, 27] and append-only logs [6] are examples of trustwor-
thy computing abstractions rooted in specialized hardware. Storage
services on untrusted servers use TPMs [28, 55], possibly through
virtual counters [53] and other cryptographic operations [30, 13].
An operating system such as the Nexus can offer the collective
primitives and assurances in a single system, but requires more per-
vasive software changes than any individual system.

A recent survey reviews the state of the art in trusted computing
in more depth than we can here [36]. Proof based authorization is
not limited to trusted computing. Lampson argued for combining
logics, reference monitors, and chains of trust to construct secure
systems [25]. NAL borrows ideas and notation from Taos [57] and
CDD [1] (among others [45]). Proof carrying authorization [2] in-
troduces distributed decision based on logic proof evaluation. Al-
paca [26] generalizes the approach to include common credential
formats and cryptographic primitives.

For any credential issued by an operating system to be trustwor-
thy, the system implementation must be free of bugs. The con-
struction of a verifiable OS kernel is an area of active research [24],
while efforts to reduce the kernel footprint [56] are synergistic.

7. Conclusions
Logical attestation offers strong operating system authorization

by deriving trustworthiness from unforgeable system properties. It
incorporates software analysis and containment as sources for trust
decisions and captures the results in what we call labels: meaning-
ful, unforgeable, and attributable statements written in a high-level
logic. Labels serve as facts in proof-based authorization to offer
rational decision making and incontestable audit trails. A compre-
hensive operating system architecture combines efficient and se-
cure means for label generation, communication, and consumption
with system services for introspection, interpositioning, and secure
persistent storage.

We have implemented logical attestation in Nexus, a trustwor-
thy operating system that combines a small TCB with a strong
root of trust in the form of a TPM secure coprocessor. Evalua-
tion shows that strong isolation and trust are compatible with high
performance: multilevel caching amortizes authorization cost to of-
fer system operations on level footing with Linux; cryptography
avoidance reduces distributed decision making cost by three orders
of magnitude. Even with full isolation, Nexus mechanisms impose
modest overhead on policy-rich cloud computing applications.

Acknowledgments
The authors would like to thank the anonymous reviewers and our
shepherd, Adrian Perrig, for their insightful feedback. This work
was supported in part by ONR grant N00014-09-1-0652, AFOSR
grant F9550-06-0019, NSF grants 0430161, 0964409, CNS-1111698
and CCF-0424422 (TRUST), and a gift from Microsoft Corpora-
tion.

8. References

[1] Martín Abadi. Variations in Access Control Logic. In Proc.
of the Conference on Deontic Logic in Computer Science,
Luxembourg, July 2008.

[2] Andrew W. Appel and Edward W. Felten. Proof-carrying
authentication. In Proc. of the Conference on Computer and
Communications Security, Singapore, November 1999.

[3] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A Secure and Reliable Bootstrap Architecture. In

Proc. of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1997.

[4] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman,
Ronald Perez, Reiner Sailer, and Leendert van Doorn.
vTPM: Virtualizing the Trusted Platform Module. In Proc. of

the USENIX Security Symposium, Vancouver, Canada,
August 2006.

[5] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad
Karp. Wedge: Splitting Applications into Reduced-privilege
Compartments. In Proc. of the Symposium on Networked

System Design and Implementation, San Francisco, CA,
April 2008.

[6] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John
Kubiatowicz. Attested append-only memory: Making
adversaries stick to their word. In Proc. of the Symposium on

Operating System Principles, Stevenson, WA, October 2007.
[7] Jack B. Dennis and Earl C. Van Horn. Programming

semantics for multiprogrammed computations. Comm. of the
ACM, 9:143–155, March 1966.

[8] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazières,
M. Frans Kaashoek, and Robert T. Morris. Labels and Event
Processes in the Asbestos Operating System. In Proc. of the

Symposium on Operating Systems Principles, Brighton, UK,
October 2005.

[9] Paul England, Butler Lampson, John Manferdelli, Marcus
Peinado, and Bryan Willman. A Trusted Open Platform.
Computer, 36(7):55–62, July 2003.

[10] Paul England and Jork Loeser. Para-Virtualized TPM
Sharing. In Proc. of the International Conference on Trusted
Computing and Trust in Information Technologies, Villach,
Austria, 2008.

[11] Ùlfar Erlingsson and Fred B. Schneider. IRM Enforcement
of Java Stack Inspection. In Proc. of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 2000.
[12] Electronic Frontier Foundation. Facebook’s New Privacy

Changes: The Good, The Bad, and The Ugly.
http://www.eff.org/deeplinks/2009/12/facebooks-new-
privacy-changes-good-bad-and-ugly.

[13] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and
Secure Distributed Read-Only File System. In Proc. of the

Symposium on Operating Systems Design and

Implementation, San Diego, CA, October 2000.
[14] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and

Dan Boneh. Terra: A Virtual Machine-Based Platform for
Trusted Computing. In Proc. of the Symposium on Operating

Systems Principles, Bolton Landing, NY, October 2003.
[15] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and

Butler Lampson. The Digital Distributed System Security
Architecture. In Proc. of the National Computer Security
Conference, Baltimore, MD, October 1989.

[16] Li Gong. Java Security: Present and Near Future. IEEE
Micro, 17(3):14–19, May/June 1997.

[17] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis,
and Sylvia Ratnasamy. Not-a-Bot: Improving Service
Availability in the Face of Botnet Attacks. In Proc. of the

Symposium on Networked System Design and

Implementation, Boston, MA, April 2009.
[18] Vivek Haldar, Deepak Chandra, and Michael Franz.

Semantic Remote attestation: A Virtual Machine Directed
Approach to Trusted Computing. In Proc. of the USENIX
Virtual Machine Research and Technology Symposium, San

Jose, CA, May 2004.
[19] Hermann Härtig. Security Architectures Revisited. In Proc.

of the SIGOPS European Workshop, Saint-Emilion, France,
September 2002.

[20] Hermann Härtig, Michael Hohmuth, Norman Feske,
Christian Helmuth, Adam Lackorzynski, Frank Mehnert, and
Michael Peter. The Nizza Secure-System Architecture. In
Proc. of the International Conference on Collaborative

Computing, San Jose, CA, December 2005.
[21] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, and

Sebastian Schönberg. The Performance of µ-Kernel-Based
Systems. In Proc. of the Symposium on Operating Systems

Principles, Saint Malo, France, October 1997.
[22] Hermann Härtig and Oliver Kowalski and Winfried

Kühnhauser. The BirliX Security Architecture. Journal of
Computer Security, 2(1):5–21, 1993.

[23] William K. Josephson, Emin Gün Sirer, and Fred B.
Schneider. Peer-to-Peer Authentication With a Distributed
Single Sign-On Service. In Proc. of the Workshop on
Peer-to-Peer Systems, San Diego, CA, February 2004.

[24] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Michael Norrish, Rafal Kolanski,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
Formal Verification of an OS Kernel. In Proc. of the

Symposium on Operating Systems Principles, Big Sky, MT,
October 2009.

[25] Butler Lampson. Computer Security in the Real World. IEEE
Computer, 37(6), 2004.

[26] Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert
Morris, and Frans M. Kaashoek. Alpaca: Extensible
Authorization for Distributed Services. In Proc. of the

Conference on Computer and Communications Security,
Alexandria, VA, October 2007.

[27] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas
Moscibroda. TrInc: Small Trusted Hardware for Large
Distributed Systems. In Proc. of the Symposium on

Networked System Design and Implementation, Boston, MA,
April 2009.

[28] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis
Shasha. Secure Untrusted Data Repository. In Proc. of the
Symposium on Operating Systems Design and

Implementation, San Francisco, CA, December 2004.
[29] David Lie, Chandramohan A. Thekkath, and Mark Horowitz.

Implementing an Untrusted Operating System on Trusted
Hardware. In Proc. of the Symposium on Operating Systems

Principles, Bolton Landing, NY, October 2003.
[30] Umesh Maheshwari, Radek Vingralek, and William Shapiro.

How to Build a Trusted Database System on Untrusted
Storage. In Proc. of the Symposium on Operating Systems

Design and Implementation, San Diego, CA, October 2000.
[31] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou,

Anupam Datta, Virgil Gligor, and Adrian Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In Proc. of the

IEEE Symposium on Security and Privacy, Oakland, CA,
May 2010.

[32] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In Proc. of

the European Conference on Computer Systems, Glasgow,
Scotland, April 2008.

[33] Ralph C. Merkle. Protocols for Public Key Cryptosystems.

In Proc. of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1980.

[34] Ralph C. Merkle. A Certified Digital Signature. In Proc. of

the International Cryptology Conference, Santa Barbara,
CA, August 1989.

[35] George C. Necula. Proof-Carrying Code. In Proc. of the
Symposium on Principles of Programming Languages, pages
106–119, Paris, France, 1997.

[36] Bryan Parno, Jonathan M. McCune, and Adrian Perrig.
Bootstrapping Trust in Commodity Computers. In Proc. of

the IEEE Symposium on Security and Privacy, Oakland, CA,
May 2010.

[37] Birgit Pfitzmann, James Riordan, Christian Stüble, Michael
Waidner, and Arnd Weber. The PERSEUS System
Architecture. Technical Report RZ3335 (93381), IBM
Research Division, Zurich, April 2001.

[38] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena,
Ken Thompson, Howard Trickey, and Phil Winterbottom.
Plan 9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[39] Patrick Reynolds, Oliver Kennedy, Emin Gün Sirer, and
Fred B. Schneider. Securing Bgp Using External Security
Monitors. Technical Report TR2006-2065, Cornell
University, Computing and Information Science, Ithaca, New
York, December 2006.

[40] Ahmad-Reza Sadeghi, Christian Stüble, and Marcel
Winandy. Property-Based TPM Virtualization. In Proc. of the
International Conference on Information Security,
Hyderabad, India, December 2008.

[41] Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez,
Leendert van Doorn, John Linwood Griffin, and Stefan
Berger. sHype: Secure Hypervisor Approach to Trusted
Virtualized Systems. Technical Report RC23511
(W0502-006), IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY, February 2005.

[42] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van
Doorn. Design and Implementation of a TCG-based Integrity
Measurement Architecture. In Proc. of the USENIX Security

Symposium, San Diego, CA, August 2004.
[43] Luis F. G. Sarmenta, Marten van Dijk, Charles W.

O’Donnell, Jonathan Rhodes, and Srinivas Devadas. Virtual
Monotonic Counters and Count-limited Objects Using a
TPM without a Trusted OS. In Proc. of the Workshop on
Scalable Trusted Computing, Fairfax, VA, November 2006.

[44] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer.
Enforceable Security Policies. ACM Transactions on

Information and System Security, 1(3), February 2000.
[45] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus

Authorization Logic: Design Rationale and Applications.
ACM Transactions on Information and System Security,
14(1), May 2011.

[46] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep Khosla. Pioneer: Verifying
Integrity and Guaranteeing Execution of Code on Legacy
Platforms. In Proc. of the Symposium on Operating Systems

Principles, Brighton, UK, October 2005.
[47] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and

Pradeep Khosla. SWATT: Software-based Attestation for
Embedded Devices. In Proc. of the IEEE Symposium on

Security and Privacy, Oakland, CA, May 2004.
[48] Jonathan S. Shapiro, Jonathan M. Smith, and David J.

Farber. EROS: A Fast Capability System. In Proc. of the

Symposium on Operating Systems Principles, Kiawah Island,
SC, December 1999.

[49] Elaine Shi, Adrian Perrig, and Leendert van Doorn. BIND: A
Fine-Grained Attestation Service for Secure Distributed
Systems. In Proc. of the Symposium on Security and Privacy,
2005.

[50] Emin Gün Sirer, Robert Grimm, Arthur J. Gregory, and
Brian N. Bershad. Design and Implementation of a
Distributed Virtual Machine for Networked Computers. In
Proc. of the Symposium on Operating Systems Principles,
Kiawah Island, SC, December 1999.

[51] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler,
David Andersen, and Jay Lepreau. The Flask Security
Architecture: System Support for Diverse Security Policies.
In Proc. of the USENIX Security Symposium, Washington,
DC, August 1999.

[52] Richard Stallman. Can You Trust Your Computer? Available
at http://www.gnu.org/philosophy/
can-you-trust.html.

[53] Marten van Dijk, Jonathan Rhodes, Luis F. G. Sarmenta, and
Srinivas Devadas. Offline Untrusted Storage with Immediate
Detection of Forking and Replay Attacks. In Proc. of the
Workshop on Scalable Trusted Computing, Alexandria, VA,
November 2007.

[54] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Isolation.
ACM SIGOPS Operating Systems Review, 27(5):203–216,
December 1993.

[55] Carsten Weinhold and Hermann Härtig. VPFS: Building a
Virtual Private File System with a Small Trusted Computing
Base. In Proc. of the European Conference on Computer
Systems, Glasgow, Scotland, April 2008.

[56] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün
Sirer, and Fred B. Schneider. Device driver safety through a
reference validation mechanism. In Proc. of the Symposium

on Operating System Design and Implementation, San
Diego, CA, December 2008.

[57] Edward Wobber, Martín Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating system.
Transactions on Computer Systems, 12(1), 1994.

[58] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and
David Mazières. Making Information Flow Explicit in
HiStar. In Proc. of the Symposium on Operating Systems

Design and Implementation, Seattle, WA, November 2006.

