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Abstract 

Customers are assumed to arrive singly and randomly during 

the work shift of a single server and are either provided a ser-

vice of fixed duration (d) if the server is free upon arrival or, 

otherwise, immediately depart without service. Conditional upon 

the number (n) of arrivals during a work shift of unit length the 

probability distribution of the number (X ) served (assuming 
n 

overtime is allowed to complete the last service) is 

P{X ~ xfN = n} • P{U(n) ~ 1 - (x-l)d} 
n (x) 

(n) 
where U(x) denotes the x'th smallest order statistic in a sample 

of n random numbers from the unit interval. The conditional mean 

value of X is approximately 
n 

E(X IN = n) 
n 

• n • 1 + (n-l)d 

the approximation being exact when (n-l)d"" 0,1, or (n-1). 

The problem 

As an idealized model of an interviewer stationed in a shopping mall 

stopping passersby to complete a short questionnaire, we consider the case 

of a single server working a shift of fixed length W during which randomly 

arriving customers either receive the service, of fixed duration w, or pass 
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on by if the server is already occupied with a customer. Similar models 

arise in animal behavior studies where W is the observer's work shift dura-

tion and w is the fixed duration of an observation; an example might be 

monitoring the behavior of foraging honeybees after returning to the 

(experimental) hive. 

This represents a simplified special case of "systems with balking" 

(see Taylor and Karlin, 1984) in which long queues discourage customers. To 

further simplify the system we permit overtime; if a service is in progress 

when the server's work shift ends then the server works overtime to com-

plete that service. Assuming that a (possibly hidden) counter records the 

number (N) of arrivals during a work shift [O,W], our objective is to 

calculate the conditional (given N) and unconditional probability distri-

bution of the number (XN) of services or, equivalently, of the number 

YN ~ N - XN of missed customers during the work shift. 

The solution 

The conditional probability distribution of the number (XN) of ser­

vices per work shift is expressible in terms of the distribution of order 

(n) (N) 
statistics U(l) < ••• < U(n) of a sample of N independent and identically 

distributed uniform random numbers in the interval 0 SUi ~ 1: 

Theorem: P X ~ xiN = n} c P{U ~ 1 - (x-1) -{ (n) w } 
N (x) W 

An immediate corollary is that if the rate parameter of the Poisson 

arrival process is A then 

Corollary: P{XN ~ x} = P{x2x < 2A[W- (x-l)w]} 
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The theorem is easily proved by considering an equivalent queueing 

process in which service is instantaneous but earns the server a duty break 

of fixed duration w. Since arrivals are random then no generality is lost 

if the server in such a system is allowed the option of accumulating off-

time during the current work shift and curtailing the work shift, accord-

ingly. Under this latter strategy it becomes clear that if at least x 

services are performed then the x'th arrival must have occurred prior to 

time t • W - (x-1)w and, conversely, if the x'th arrival did occur prior to 

this time then at least x services must have been accomplished in that 

shift. The conditional probability of at least x services among the n 

random arrivals in (O,W] is thus calculable as the probability that the 

time (T(n) say) of the x'th arrival does not exceed W - (x-1)w: 
(x)' 

1 - (x-1) ; } . 
n-x 

n! 
(x-1)!1!(n-x)! 

1-(x-1)~ 

f ux-1 (1-u) n-xdu 

0 

! (~] [<x-1) ~ ]r[1 - (x-1) ~ ]n-r if 0 ~ (x-1) ; < 1 
r=O 

0 otherwise 

Multiplying this incomplete Beta probability by the Poisson probability 

and summing over n, n ~ x, then yields the cumulative chi square 

probability specified in the corollary; P(XN ~ 0) • 1 and for x ~ 1 

W-(x-1)w 

P {XN ~ x} = J Xxtx-le-~tdt/(x-1)! 
0 

which is understood to vanish when (x-1)w ~ W. 
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Statistical considerations 

From a statistical viewpoint the above theorem has somewhat greater 

utility than its corollary, since the latter specifies a distribution 

depending on an unknown arrival rate parameter A. which may vary from one 

work shift to another. If data (ni, x ) are available from k independent 
ni 

work shifts, i = 1,· ··,k, then various statistical analyses become avail-

able, including goodness-of-fit tests. If service time w is specified and 

shift duration W is, likewise, a known constant then the probability dis-

tribution (incomplete Beta probability) of the theorem is completely speci-

fied and a test statistic such as R. A. Fisher's 

-2 
k 
L ln P{XN ~ xiiN = ni} ~ 

i=l 

is available for testing the model. Likelihood ratio tests are also avail-

able, for example, for testing whether a specified w is compatible with the 

ML estimate, wML' or for testing homogeneity of w over the k shifts in­

volving possibly different servers. 

The maximum likelihood procedure is cumbersome in this context and so 

might be replaced by the less efficient method of moments. To this end we 

note the approximation 

n 

E(X IN • n) = 
N 

L P{XN ~ xiN = n} ~ 
x:zl 

n 

1 + (n-1) w w 

which is exact at 

of X is seen to 
n 

approximation is 

customers (1 - 7rl) 

w - 0, w = W/(n-1) and w 

be symmetric around n/2, 

a finite -

serviced; 

1 - 'IT 
l 

w analogue of 

for example, 

1 

1 + A. 
l1 

= w. (At w • W/(n-1) 

with zero mass at X 
n 

the long run (W ~ m) 

the p.m.f. 

= n.) This 

fraction of 



-5-

when service time is exponentially distributed with mean 1/~. Perhaps, 

more generally, if interarrival times are exchangeable and service time is 

uncorrelated with arrival time then 

E(X IN = n) ~ N 
n 

1 + (n-1) ~ 

If balking is unobservable so that n is unknown then n may become the 

target of statistical inference. Point and interval estimators of n may be 

constructed using the conditional P(X ~ xiN • n) as the basis for 
n 

inference when w and W are known constants. When w • .2W, for example, the 

integer-valued ML estimator and the upper (one-tailed) 95 percent con-

fidence limits are given by 

X nML upper confidence limit on n X~1 - .2~ 
1 - .2X 

1 1 4 1 

2 3 8 2 2/3 

3 6 17 6 

4 14 44 16 

5 00 00 00 

At X • 2, for example, 

P(X2 = 2IN = 2) = .64 

P(X3 u 2IN • 3) • .848 

P(X4 = 2IN • 4) • .4976 

showing that the likelihood of X • 2 is largest when N a 3. When N • 8 the 

lower tail probability at X c 2 is 

5 
~ 21N a 8) z 1- P(X8 ~ 31N. 8)- 1- I (:) (.4)r(.6)S-r 

r=O 

= 1 - .95019264 

showing that 8 is the 95 percent upper confidence limit when X = 2. 
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Note that this stands in agreement with the result obtained from 

Snedecor's F-table. The incomplete beta integral on page 3 gives the upper 

(one-tailed) 95 percent confidence limit on n as that value n* satisfying 

the equation 

n* - x 
X + 1 

* F 2(x+l), 2(n*-x) 

* where Ff f denotes the tabulated 5 percent 
1' 2 

f 2 degrees of freedom. At x • 2 and n* • 8 

while at the neighboring integers 

7-2( 1 ) m 2(.2) - 1 • 2.5 and 

critical value of F on f 1 

* we find F6 , 12 • 3.00, and 

~ ~ i (2(~2) - 1) = 3.5 

* F6 , 14 • 2.85 

and 

so that n* • 8 is the closest integer solution to the equation. At x • 3 

the l.h.s. becomes (n*-3)/6, giving 

n* • 16 17 18 

(n*-3)/6 .. 2 1/6 2 1/3 2 1/2 

* F • 8,2n*-6 2. 32 2.29 2.27 

showing that n* c 17 is the closest integer solution. 

The last column in the above table is a point estimator of n based on 

the earlier approximation to E(XNIN = n), 

i'i .. 
1 -

xw 
w 

These inference procedures neglect any information that might be available 

in the recorded amount of overtime. 


