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A generalized inverse of the matrix X'X can be defined as any matrix G for 

which X'XGX'X = X'X. One such matrix can be developed from reducing X'X to 

diagonal form; in so doing, G is symmetric and satisfies GX'XG = G. 

Solutions to normal equations X'Xb = X'y derived for the linear model 

E(y) = Xb can then be expressed as £ = GX'y. If H = GX'X the hypothesis 

Q'b = m can be tested provided Q'H = Q'. On the basis of normality assumptions 

the F-value for testing the hypothesis is F = (Q'£- m)'(Q'GQ)-l (Q'B- m)/saF, 

where s is the rank and order of Q' and OF = (y'y- Bx'y)/(n- r), n being the 

number of observations and r the rank of X. 
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"Generalized inverse" and allied expressions are defined in various places 

(e.g. Penrose, 1955, Greville, 1957, Rao, 1962 and Goldman and Zelen, 1964). 
The definition chosen here is that G is a generalized inverse of A if 

AGA = A -(1) 

Utilizing this definition, the first part of this paper summarizes results give·n· 

in Rao (1962). 

A generalized inverse of a symmetric matrix 

If A is symmetric at least one method of obtaining a matrix G that satisfies 

(1) also leads to having 

GAG=G. - -(2) 

Such a matrix can be derived from first reducing A to diagonal form. Suppose 

this red.uctiori is·· 

- - - - - - - - -(3) 

where D is a diagonal matrix of r non-zero elements,r being the rank of A 
r 

(of order k). Then, in defining 

- - - - - - - - -(4) 

and G = P' ttP 1 • - - - - - - - -(5) 

Biometrics Unit, Cornell University, Ithaca, New York. 
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it is clear that G is symmetric and has rank r. Because G satisfies (1) it is, 

in the context of this paper, a generalized inverse of A. It also satisfies 

(2); and clearly, by its definition, it is not unique. 

·· The product 

denoted by H: 

GA is of interest in subsequent developments. Let it be 

H :::GA. - - - - - - - - - - - -(6) 

Then, because G and A have rank r, so does H, and because of (1) 

i.e. H is idempotent witb rank r. 

Solutions to linear equations 

If the equations 

are consistent, then 

Ax == u 

x = Gu + (H - I)z 

- - - - - - - - - - - -(7) 

- - - - - - - - - - - - -(8) 

is a solution of (8) for z being any arbitrary vector of order k. In particular, 

when z is taken as a null vector 

x = Gu - - - - - - - - - - - - (9) 

is a solution. Furthermore, if 

q' H = q' - -(10) 

then q'x is unique, no ma~ what solution x given by (9) is used. 

The linear model 

The general linear model can be written as 

y=Xb+e - - - - - -(11) 

where y is a vector of n observations, b is a vector of the k parameters of the 

model, X is the '.'design" matrix and e is a vector of random error terms 

having variance-covariance matrix c?I •1 The normal equations resulting from 

l 

Note: b is a vector of parameters, and o an estimate of it. 
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the least squares procedure are 

X'xb = X'y - - -(12) 

T~1here b is the solution corresponding to the parameter vector b. 

C· Equations ( 12) are exactly analogous to ( 8) . Let G now be a generalized 

inverse of X'X, defined in the manner of ( 5). Then, corresponding to (9), q, 

solution of (12) is 
A 

b = GX'y - - - - - - - - - - -(13) 

Estimable functions 

As in (6), define H as H = GX'X. Then if, as in (10), q'H = q', the 

function q'B of the solution (13) is unique. Furthermore, the expected value of 

this function is 

E(q'b) = q'GX'E(y) 

= q'Hb 

= q'b - - - - - - - - - - -(14) 
A A 

Hence q'b is an unbiased estimator of q'b: and because q'b is unique it is 

the unbiased estimator of the estimable function q'b. 

A 

The variance of b is 

var(b) = GX'E(ee')XG 

= Gcf 
A 

and the variance of q'b is 

var(q'b) = q'Gqcf. - - - - - - - - - -(15) 

As shown by Rao (1962), this variance is less than that of any other linear 

unbiased estimator of q'b. 
A 

Hence q'b is the unique, minimum variance, linear, 

unbiased estimator of the estimable function q'b. 

The above results are equivalent to those given in Rao (1962). vle now turn 

to additional topics. 
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ir1hat functions are estimable? 

Results (14) and (15) are true for any q' for which (10) is true; i.e. for . . 
which q'H =-qt.· The question· of whether or not a particular function q'b is 

estimable can therefore be answered by ascertaining if q' satisfies q'H = q' • 

If it does, the function is estimable, otherwise it is not estimable. By this 

means the estimability of any linear function of the parameters can be 

investigated. 

There is however, a second question of interest, namely "what functions 

are estimable?", i.e. what values of q' do satisfy q'H = q'? Utilizing (7) 

the answer is simple. For any arbitrary vector w' (of order k, the number of 

parameters in b) the vector 

q' = w'H - - - - - - - -(16) 

satisfies q'H = q'. Furthermore, because the rank of His the same as the rank 

of X'X, r say, the number of linearly independent vectors q' given by (16) is 

r; i.e. there are only r linearly independent estimable functions. 

Use of (16) leads to an explicit expression for the estimable function 

q'b in terms of the elements of the arbitrary vector w': 

q'b = (w'H)b 

k k k 
= (i~l'\hil)bl + (i~lwihi2)b2 + .. • + (i~lwihik)bk- -(l7) 

The coefficient of each parameter b. in this expression is a linear function of 
~ 

the elements w. of w', namely the i'th element of w'H. 
~ 

The estimator of the estimable function (17) is, for q' satisfying (16), 
A 

q'b = q'GX'y = w'HGX'y. 

In using a generalized inverse that satisfies (2), which is equivalent to 
A 

HG = G, the form of q'b therefore reduces to 

"' q'b = vl'GX'y 

- - - - - - - -(18) 
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Equations (17) and (18) now provide opportunity for developing a whole series 

.of· estimable functions and the estimator of each. For any arbitrary set of ... 
values used for the w.'s in (17), q'b as there defined will be an estimable 

~ ' 

function, and using the same values of the wi's in (18) gives the estimate~. 
"' of the estimable fUnction. The b.'s in (l8) are, of course, the numerical 
A~ 

values obtained in the solution b = GX'y given in (l3). 

As in (15) 

var(q'b) = q'Gqd2 

= w'HGH'wd2 

= w' GX'XGX 'XG'wd2 , 

and because of results like (1) and (2) this reduces to 

var(q'b) = w'Gwd2. - (l9) 
A A 

Similarly the covariance between two estimators qib and ~b for which qi = wiH 

and .. ~ = w2H is 

cov(qib, ~b) = qiG~o-2 

= w10w2cr2 • - - - - - - - - - -(20) 

Residual variance 
A 

For the solution b = GX'y, the vector of predicted y-values is 
A A 

y = Xb = XGX'y 

and hence the residual sum of squares is 

SSR = (y- 9)'(y -,9) 

= (y- Xb)'(y- xb) 

= y'(I- XGX')y -(2l) 

,.. 
= y'y- b'X'y • - - - - - - -(22) 

Since it can be shown that XGX' is unique no matter what generalized inverse of 

X'X is used for G, SSR is, as one would expect, unique. The form given in (22) 



'1•' 
j, \. ~~ 

• J ' '1· t' I 

-6- r,.t", ·•· 

is the most suitable computationally, n~ely the total uncorrected sum of squares 
A 

y'y after subtracting from it the sum of products of the. elements in b each 
A 

multiplied by the corresponding right-hand side of the equation X'Xb = X'y. On 

the other hand, the form given in (21) is suitable for finding the expected 

value of SSR. Thus, substituting (11) in (21) gives 

SSR = e'(I- XGX')e • 

Then, because E(e) = 0, var(e) = a2I and I - XGX' is idempotent with rank n - r, 

a theorem from Graybill (1961) may be invoked to give 

E(SSR) = (n - r)d2 

Hence, .an unbiased estimator of oF is 

Q2 = SSR/(n - r). - - - - - - - - - - -(23) 

Tests of hypotheses 

Consider the general linear hypothesis Q'b = m, where Q'b consists of s 

linearly independent estimable functions q!b fori= 1, 2, ••• , s. The vector 
~ 

m is a vector of s arbitrary constants. We consider cases in which s ~ k - r, 

k being the order of b and r the rank of X. 

It has just been shown that after fitting the model (11) the residual sum 

of squares is as given in (21), and the corresponding estimator of the residual 

variance is Q2 shown in (23). Now consider the residual sum of squares after 

fitting the reduced model, namely y = Xb + e restricted by the hypothesis Q'b = m. 

Were this model to be written as y = X1b + e, the normal equations would be 

Xixb = Xiy and, corresponding to (21), the residual sum of squares after fitting 

the model would be SSR1 = y'(I- X1G1Xi)y, where G1 is a generalized inverse of 

XiX· Then, based on normality assumptions, the F-test of the hypothesis would 

depend on 

F = (SSR1 - SSR)/s~ - - - -(24) 

which has the F-distribution with s and n - r degrees of freedom. 

To avoid the necessity of deriving the normal equations XiX1b = Xiy, their 
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solution GlXly' and thence ssR1 for every hypothesis that one wants to test, we 

develop an expression for SSR1 in terms of X and the hypothesis Q'b = m. It is 

contained in the following theorem. 

Theorem. When fitting the linear model y = Xb + e, the numerator sum of squares 
~ 

of the F-value used for testing the (testable) general linear hypothesis 

Q'b = m, for Q' consisting of s linearly independent rows, is 

(Q'£- m)'(Q'GQ)-1 (Q'b- m) where b = GX'y is a solution to the no~al equations 
A 

X'Xb = X'y and G is a symmetric generalized inverse of X'X. 

The following lemma is used in proving the theorem. 

Lemma. Q'GQ is non-singular. 
~ 

Proof of lemma. Because Q'b = m is a testable hypothesis the rows of Q'b are 
~,......._,~ 

estimable functions and therefore Q'H = Q' where H = GX'X. Hence 

Q'GQ = Q'HGQ = Q'GX 1XGQ = Q'GX'(Q'GX')' , 

so that r(Q'GQ) = r(Q'GX'). But Q' = Q'H = Q'GX'X; therefore, by the rule for 

the rank of a product, r(Q') = s ~ r(Q'GX'), and also r(Q'GX') ~ r(Q') = s. 

Hence r(Q'GX') = s, and so therefore does the rank of Q'GQ. Buts is the order 

of Q'GQ. Therefore Q'G~ is non-singular. 

Proof of theorem. Fitting the reduced model is equivalent to fitting the full 
~~,...~ 

model y = Xb + e subject to the condition Q'b = m. The appropriate normal 

equations are derived by minimizing (y- Xb)'(y- Xb) + 2A'(Q'b- m) where A' 

is a vector of Lagrange multipliers. The resulting equations are 

and 

X'xb + QA = X'y 

Q'b = m • 

Using G and GX'y = b, equation (25) can be solved as 

- A b=b-GQA. 

- - (25) 

- - - - -(26) 

- - - - - - - -(27) 

Pre-multiplying (27) by Q', substituting from (26) and using the lemma gives 

A = ( Q' GQ) -l ( Q' b - m) , - - - - - - - - ( 28) 

and substitution back into (27) yields 

b = b - GQ(Q'GQ)-1(Q'b - m) • - - - - - - -(29) 
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For y = Xb the residual sum of squares after fitting the reduced model is 

SSR1 = (y - Xb) 1 (y - Xb) • 

Substituting for b from (27) this leads, after a little reduction to 

SSR1 = (y- Xb) 1 (y- xB) + X'Q 1 GQ~ 

= SSR + A. 1 Q1 GQA. 

so that expression (24) for F becomes 

T -. 

F = "'I Q I GQt../ s Q2 

and from (28) this is 

'· ' ... ~,.-, ... · 

- - - - - .:.(30) 

F == (Q'b- m) 1 (Q 1 GQr 1(Q'b- m)/sef-.--- -· ... (31)· 
A 

Hence the theorem is proved. With Q1 b being the estimator of the estimable 
' functions Q'b in the full model it is apparent that once b = GX'y has been·· 

calculated, F is readily obtainable. 

A by-product of the theorem is the solution of the normal equat·ions in the 

reduced model, given in (30), for which the variance-covariance matrix is 

var(b) = [G - GQ(Q 1 GQ)- 1Q1 G]a2 • - - - -(32) 

In situations where m is a null vector the expressions for F and b reduce 

to the simpler forms 

and 

F = b'Q(Q1 GQ)- 1Q1b/sef 

b = b- GQ(Q 1 GQ)- 1Q1 b 

This is the theorem given in Searle (1965a). 

Example 

- -(33) 

- (34) 

The above expressions can be demonstrated by considering the simple, no­

interaction, two-way, model 

for which one might have the following unbalanced data. 
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/ .... A sample of 6 observations 
---

Row Column Total ·------
1 2 

1 4, 7 3 14 

2 5 2 7 

3 1 no 1 
observation 

Total 17 5 22 

The normal equations (12), namely 

X'X'B = X'y 

are 

r 6 3 2 1 4 2 !J. = 22 

I 3 3 0 0 2 1 al 14 

2 0 2 0 1 1 a2 7 - - - - - - - -(35) 
1 0 0 1 1 0 a3 1 

4 2 1 1 4 0 131 l~ J l 2 1 1 0 0 2 132 

"There b is the vector of parameters b' = (!J. a 1 a 2 a 3 ~l ~2 ) and X'y is the 

vector on the right-haqd side of equation (35). By following the procedures 

suggested in (3), (4) and ( 5) it is found that a generalized inverse of X'X is 

G = (1/7) 0 0 0 0 0 0 

0 5 2 4 -4 0 

0 2 5 3 -3 0 

0 4 3 13 -6 0 

0 -4 -3 -6 6 0 

0 0 0 0 0 0 

and corresponding to (13) a solution of the normal equations is 
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A 

(1/7) - - - - - - - - - - -(36) b = GK'y = 0 

20 

15 

-12 

l 
19 

0 

The matrix H is 

H = GK'X = 0 0 0 0 0 0 

1 1 0 0 0 1 

1 0 1 0 0 1 

1 0 0 1 0 1 

0 0 0 0 1 -1 

0 0 0 0 0 0 

and, using 

-(37) 

as the arbitrary vector in equation (17), the estimable functions are 

From (18), (36) and (37) their estimators are 

Frcm (38) it is seen at once that a 1 - a 2 , for example, is estimable because, 

with w2 = 1, w3 = -1, w4 = 0 and w5 = 0, q'b reduces to a 1 - a 2; and with the 

same values of thew's in (39) the estimate of a 1 - a 2 is 
/ ............. 

a 1 - a 2 "" (1/7) (20 - 15) = 5/7 • 
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Likewise, with w2 = w3 = w4 = 0 and w5 = l it is clear from (38) that ~l - ~2 
is estima,ble and from (39) its estimate is 

:.!.: ::.. . 

/\ 
~ - ~ = 19/7 • 1 2 

Equation (19) gives the varianc~ of an estimator as w'Gwrf?- and from (37) 
~ : 

and the computed value of G this is 

· ·w' Gwrf?- = (J./7) (5~ + 5'1 + 13wf + 6~ + 4w2w3 + 8w2w4 

- 8w2w5 + 6w3w4 - 6w3w5 - 12w4w5)r?-. 

Hence the variances 
,/', /'... 

of a 1 - a 2 and ~1 - 132 are 
....... , 

var(a1 - a 2 ) = (1/7)(5 + 5 - 4) = 6rf?-/7 

and = 6rf?-/7 ' 

coincidentally the same. 

The estimate of aF is obtained through using (22) and (23): 

SSR = y'y - b'X'y 

= 104 - (1/7)[20(14) + 15(7) - 12(1) + 19(17)] 

= lo4 - 696/7 

= 32/7 • 

The rank of X'X is clearly 4 and there are 6 observations, so the estimated 

variance is 

fP = 32/7 ( 6 - 4 ) = 32/14 . - - - - - - - - - ( 4 0) 

The hypothesis a 1 = a 2 can be written as a 1 - a 2 = 0 and we have seen that 

a 1 - a2 is estimable. Therefore the hypothesis can be tested. Writing it in 

the form Q'b = 0 with 

Q' = (0 1 -1 0 0 0) 

we have 

and Q'GQ = (1/7)(5 + 5 - 4) = 6/7 • 
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Ther~fore, from ( 33) and (40), the F-value for testing the hypothesis is 

F = (5/7)(7/6)(5/7)/1(32/14) 

= 25/96 . 

_~, ' ~ ("., '. 

And from ( 34) and ( 36) the solution for b when the hypothesis is true is · · 

b = (1/7) 0 - (1/7) 0 (7/6) (5/7) 

20 3 
15 -3 

-12 1 

l 1~ J I -1 J . ' ~--i 

L 1 

which reduces to 

- (l/6)f b = 0 
; : 

i 15 
I 15 

1-11 
I 
' 17 

l 0 

The hypothesis that the rows are all equal can also be tested; it can be 

written as 

with 

For this 

and 

with 

Q'b = 0 

Q'b = [ 5/7 ] 
32/7 

Q'OO = (1/7)[ : 1~ ] 

(Q'00)-1 = (1/8)[ ~~ -~ ] . 
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Hencel.'t'h~~']i.l~a1u~J for testing this hypothesis is 
}. : 

(5/7 32/7)(1/Sl ~~ -2][ 5/7 ] 
6 32/7 

F = 
2(32/14) 

(1/56) (5 32)[ ;: ] 
= 

32/7 

= 411/28 

32/7 

= 411/128 

The solution for b under the null hypothesis of equality of the rows is, fram 

(34) and (36) 

which reduces to 

b = (1/7) .. 0 - (1/7)--
20 

15 

-12 

19 1 

o I 
.J 

b = (1/4 )r 0 
10 

I 10 
l 10 

! 7 J I o .. 

0 0 (1/8 )r ~~ -: n ~~ J 3 1 J. 

-3 -1 

1 -9 

-1 2 

0 0 



A check can be made on these calculations by noting that the hypothesis of 

equality of the rows is equivalent to the model 

Y · 'k = 1..1. + 13 • + e · "k • 1J . . J 1J 

The normal equations for this are 

6 4 2 .1-L = 22 

4 4 0 !31 17 

2 0 2 !32 5 

for which one solution is 

= 0 

~1 17/4 

~2 5/2 

The corresponding residual sum of squares is 

SSR1 = lo4 - 172 /4 ·- 52 /2 

= (416 - 289 - 50)/4 

= 77/4 . 

Hence the F-value for testing the hypothesis is 

( SSR1 - SSR)/202 

- 77/4 - 3~7 
- 2( 32/14 

- (539 - 128)/28 
- 32/7 

= 411/128 

as before. Further examples are to be found in Searle (1965b). 
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