
SUPERVISED CLUSTERING WITH STRUCTURAL

SVMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Thomas W. Finley

January 2009

c© 2009 Thomas W. Finley

ALL RIGHTS RESERVED

SUPERVISED CLUSTERING WITH STRUCTURAL SVMS

Thomas W. Finley, Ph.D.

Cornell University 2009

Supervised clustering is the problem of training clustering methods to produce

desirable clusterings. Given sets of items and complete clusterings over these sets,

a supervised clustering algorithm learns how to cluster future sets of items in a

similar fashion, typically by changing the underlying similarity measure between

item pairs. This work presents a general approach for training clustering methods

such as correlation clustering and k-means/spectral clustering able to optimize to

task-specific performance criteria using structural SVMs. We empirically and the-

oretically analyze our supervised clustering approach on a variety of datasets and

clustering methods. This analysis also leads to general insights about structural

SVMs beyond supervised clustering. Specifically, since clustering is a NP-hard

task and the corresponding training problem likewise must make use of approxi-

mate inference during training of the parameters, we present a detailed theoretical

and empirical analysis of the general use of approximations in structural SVM

training.

BIOGRAPHICAL SKETCH

Thomas Finley graduated from Duke University (Durham, NC) in 2002 with Bach-

elor’s of Science degrees in both Computer Science and Mathematics, graduating

with High Distinction in both, with thesis work overseen by Dr. Susan Rodger and

Dr. William Allard in both fields, respectively. He also minored in Economics. In

the fall of 2003, Thomas began graduate studies at Cornell University (Ithaca,

NY), with a major field in Computer Science and a minor field of Information Sci-

ence. Dr. Thorsten Joachims advised his doctoral research in Computer Science in

the general field of machine learning and the more specific field of discriminative

structural learning. Thomas is completing requirements for Doctor of Philosophy

in the fall of 2008. In the fall of 2008, he will begin a position as Research Software

Development Engineer for Microsoft (Redmond, WA).

iii

To Meg, Mom, and Dad!

iv

ACKNOWLEDGEMENTS

The research presented in this dissertation is supported by the Nation Science

Foundation under Award IIS-0412894 and IIS-0713483, gifts from Yahoo! Inc.,

and the KD-D grant.

I’d like to extend thanks and acknowledgements to my thesis advisor, Dr.

Thorsten Joachims, for direction, collaboration, and encouragement during the

past five years, and further to my collaborators and advisormates Filip Radlinski,

Yisong Yue, and Chun-Nam Yu, with whom I have collaborated with on works

not appearing in this thesis. I’d also like to extend my thanks to my officemates

and near-officemates over the years, and the members of the Machine Learning

Discussion Group for many fun conversations. On a far more general level, I’d like

to thank Cornell, Ithaca, and central New York State for being a great home these

past five years. Finally, I am quite grateful for the more personal encouragement

I receive from my wife Megan, and my parents, John and Sue. Thanks for all the

love and proofreading!

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . ix
List of Figures . xi

1 Introduction to Supervised Clustering 1
1.1 Different Types of Clustering . 4
1.2 Supervised Clustering . 6
1.3 Supervised Clustering as Pairwise Classification 9

1.3.1 Canopies Heuristic . 13
1.3.2 Noun-Phrase Chain Heuristic 14

1.4 Previous Supervised Clustering Methods 16
1.5 Supervised Clustering Is Not Multiclass Classification 20

1.5.1 Dynamic Clusters versus Static Classes 21
1.5.2 Large Numbers of Unknown Groups 23
1.5.3 Different Appropriate Choices of Features 24

1.6 Relation to Semi-Supervised Clustering 25
1.7 Relation to Metric and Kernel Learning 29
1.8 Summary . 34

2 Structured Learning 36
2.1 Structural Support Vector Machines 38

2.1.1 Structural SVM Optimization Problem 39
2.1.2 Cutting Plane Algorithm . 42
2.1.3 Theoretical Properties . 44
2.1.4 1-Slack Structural SVM . 47
2.1.5 Approximations in Structural SVMs 51

2.2 Maximum Margin Markov Networks 51
2.3 Search and Learn (SEARN) . 56
2.4 Conditional Random Fields . 58
2.5 Local Learning, Global Inference 62
2.6 Summary . 64

3 Supervised Correlation Clustering 66
3.1 Correlation Clustering . 68
3.2 Supervised Correlation Clustering with SVMs 70
3.3 Loss Functions . 73

3.3.1 Pairwise Loss ∆P . 74
3.3.2 MITRE Loss ∆M . 74

3.4 Approximate Inference for the Separation Oracle 76

vi

3.4.1 Greedy Approximation to Clustering, CG 77
3.4.2 Relaxation Approximation to Clustering, CR 79
3.4.3 Discretized Relaxation to Clustering, C∗R 82

3.5 Training Algorithm . 83
3.6 Empirical Analysis . 84

3.6.1 Datasets . 84
3.6.2 Experimental Setup . 86
3.6.3 Supervised Correlation Clustering vs. the Pairwise Learner . 87
3.6.4 Effects of Optimizing to the Correct Loss 89
3.6.5 Importance of Loss in the Separation Oracle 89
3.6.6 Greedy vs. Relaxed Clustering in Training 91
3.6.7 Discussion of the Model’s Learned Weights 91
3.6.8 Efficiency of Supervised Correlation Clustering 95

3.7 Conclusions and Discussion . 96

4 Supervised k-Means and Spectral Clustering 97
4.1 Introduction . 97
4.2 Parameterized k-Means . 98

4.2.1 Parameterization as Kernel Learning 99
4.2.2 Parameterization as Similarity Learning 101

4.3 Supervised k-means with Structural SVMs 102
4.3.1 Combined Feature Function Ψ 103
4.3.2 Loss Function ∆ . 105
4.3.3 Separation Oracle and Prediction 106

4.4 Training Algorithm . 110
4.5 Empirical Analysis . 111

4.5.1 Datasets . 112
4.5.2 Experimental Setup . 115
4.5.3 Clustering Accuracy . 116
4.5.4 Supervised Clustering vs. Pairwise/Untrained 117
4.5.5 Discrete Iterative vs. Relaxed Spectral Clustering in Training 118
4.5.6 The Importance of Link Features in WebKB 118
4.5.7 Efficiency of Supervised k-Means/Spectral Clustering 121

4.6 Conclusions and Discussion . 125

5 Approximation Algorithms and Structural SVMs 127
5.1 Approximations in Structured Output Prediction 129
5.2 Markov Random Fields in Structural SVMs 130
5.3 Approximate Inference Theory . 132

5.3.1 Undergenerating Approximations 132
5.3.2 Overgenerating Approximations 138
5.3.3 Related Work . 140

5.4 Experiments: Approximate Inference 141
5.5 Experiments: Approximate Learning 142

vii

5.5.1 Datasets and Model Training Details 143
5.5.2 Results and Analysis . 145

5.6 Conclusion . 153

6 Conclusions and Future Research Directions 154
6.1 Conclusions . 154
6.2 Agglomerative Clustering with Structural SVMs 156
6.3 Non-smooth Loss and Margin-Scaled Structural SVMs 159
6.4 Nonlinear Parameterization for Clustering 162

A SVMpython: Writing Structural SVMs in Pure Python 166
A.1 The Underlying SVMstruct Framework 167
A.2 Introduction to SVMpython . 170
A.3 Default Behavior, and Model Persistence 175
A.4 Flow of Control in SVMpython . 178
A.5 Using SVMpython to Make a Binary Classifier 178

A.5.1 An Initial Bare Bones Binary Classifier 178
A.5.2 Writing the Output Hook Functions 182
A.5.3 Custom Constraints . 185
A.5.4 Kernels . 189

A.6 Summary . 191

B PyGLPK : The Python GNU Linear Programming Kit 195
B.1 Principles of the PyGLPK . 196
B.2 Simple Two Dimensional Example 198
B.3 Satisfiability Solver Example . 202

B.3.1 Line by Line Explanation 205
B.3.2 Example Run . 209

B.4 Conclusions . 210

Bibliography 212

viii

LIST OF TABLES

3.1 Results for NP Coreference, with columns corresponding to differ-
ent constraint inference methods used in training, and rows corre-
sponding to different loss functions used in testing. 87

3.2 Results for News Articles, with columns corresponding to different
constraint inference methods used in training, and rows correspond-
ing to different loss functions used in testing. 88

3.3 Training and testing on separate losses on the noun-phrase co-
reference task. Columns represent the particular ∆ function that
was optimized during training of the model in question, while rows
represent the ∆ used in evaluation. 90

3.4 Comparison of performance when loss was not used in the argmaxyH(y),
versus when it was included. NP-coreference experiments used CG
clustering. News experiments used ∆P loss. 90

3.5 Comparison of performance on the news dataset when different
clustering methods were used to approximate argmaxyH(y). . . . 91

4.1 Dataset statistics, including number of example clusterings n, num-
ber of clusters k in each example clustering, average number of
points m in the clusterings, node features Nn, and pairwise fea-
tures Np. (The SSVM learns N = Nn +Np weights in w.) 112

4.2 Range of C values tested during the leave-one-out search for train-
ing hyperparameters. All powers of ten between and including these
endpoints were considered. A separate C value was chosen for each
different test set within that dataset through evaluating leave-one-
out error on the resulting training set. 115

4.3 Loss ∆ on the test sets of the two WebKB datasets and the Synth
dataset (lower is better). The left columns identify the dataset and
the particular clustering used as the test dataset in the correspond-
ing row. 119

4.4 Loss ∆ on the test sets of the three News datasets (lower is better).
The left columns identify the dataset and the particular clustering
used as the test dataset in the corresponding row. 120

4.5 Counts of the times within Table 4.3 and Table 4.4 the Iterative
trained model won, tied, or lost versus the Spectral trained model
respectively. For the purpose of this count, the results from the
three news datasets are aggregated. The W , ns/r, P1-tail columns
are quantities relevant to the Wilcoxon test, where W is the sum
of signed ranks, ns/r the number of non-tied trials, and P1-tail the
level of significance. 121

ix

5.1 Basic statistics for the datasets, including number of labels, training
and test set sizes, number of features, and parameter vector w size,
and performance on baseline trained methods and a default model
parameterization. 144

5.2 Multi-labeling loss on the first group of three of the six datasets.
Results are grouped by dataset. Rows indicate separation oracle
method. Columns indicate classification inference method. 146

5.3 Multi-labeling loss on the second group of three of the six datasets.
Results are grouped by dataset. Rows indicate separation oracle
method. Columns indicate classification inference method. 147

5.4 Percentage of “ambiguous” labels in relaxed inference. Columns
represent different data sets. Rows represent different methods used
as separation oracles in training. 149

5.5 Known ρ-approximations table, showing performance change as we
use increasingly inferior separation oracles. 152

x

LIST OF FIGURES

1.1 An example of a similarity matrix between eight items (denoted
here a through h). For example, the item pairs (a, b) and (a, c)
have similarity 4 and −1, respectively. 10

1.2 An example of three passages from The Lord of the Rings, with
four noun-phrases highlighted. (Note that there are, in reality, very
many more than four noun-phrases in these examples.) 12

1.3 This illustration serves as an example of the difference between
clustering marbles, and classifying marbles. 22

3.1 Correlation clustering on a matrix of similarities for items xa through
xi, where shaded boxes indicate that a pair is considered to be in
the same cluster. This represents the “optimal” clustering, e.g., xa
through xd are joined, xe through xg are joined, and xh and xi are
joined. 68

3.2 Correlation clustering on a matrix of similarities for the item set
xi = {xa, xb, xc, xd, xe} with clustering yi = {{xa, xb, xc}, {xd, xe}}.
The left matrix holds the raw similarities as would be used in com-
puting argmaxy 〈w,Ψ(xi,y)〉, whereas the right matrix holds the
adjusted simiarities that would be used in computing the y corre-
sponding to the most violated constraint, argmaxy 〈w,Ψ(xi,y)〉+
∆P (yi,y). 81

3.3 For the final models selected through cross validation trained through
either CG, CR, or PCC, this presents a plot of the learned weights. . 92

4.1 Results of a timing experiment on a synthetic dataset where we
varied the number of example clusterings n in the training set. . . 122

4.2 Results of a timing experiment on a synthetic dataset where we
varied the number of example clusters k in each example. 123

4.3 Results of a timing experiment on a synthetic dataset where we
varied the number of features N in every pairwise feature vector. . 123

4.4 Results of a timing experiment on a synthetic dataset where we
varied the number of points within each cluster m/k in the training
set examples. 124

5.1 Runtime comparison. Average inference time for different methods
on random problems of different sizes. 141

5.2 Quality comparison. Inference on 1000 random 18 label problems.
Lower curves are better. 141

5.3 Known ρ-approximations chart, showing the information of Ta-
ble 5.5 graphically. 151

xi

6.1 A set of six items with its partitioning, including the optimal sin-
gle link partitioning in one dimensional distortion versus another
distortion. 158

A.1 Flowchart showing the flow of execution within the SVMstruct learner,
with the flow of execution starting from the upper left. Steps as-
sociated with a particular call to a developer’s extension function
have the box lead with the function name in svm struct api.c. . . 171

A.2 Flowchart showing the flow of execution within the SVMstruct clas-
sifier, with the flow of execution starting from the upper left. Steps
associated with a particular call to a developer’s extension function
have the box lead with the function name in svm struct api.c. . . 172

A.3 Flowchart showing the flow of execution within the SVMpython learner,
with the flow of execution starting from the upper left. Steps asso-
ciated with a particular call to a developer’s module function have
the box lead with the function name. 192

A.4 Flowchart showing the flow of execution within the SVMpython clas-
sifier, with the flow of execution starting from the upper left. Steps
associated with a particular call to a developer’s module function
have the box lead with the function name. 193

A.5 The code for binary1.py, an extension module that implements
linear binary classification for SVMpython. 194

B.1 Graphical representation of the two linear constraints of the prob-
lem of Section B.2. 198

xii

CHAPTER 1

INTRODUCTION TO SUPERVISED CLUSTERING

Clustering is an important data mining task employed in dataset exploration

and other settings where one wishes to partition a set of items into clusters of

related items. However, there may be many possible ways of breaking up a set of

items since there are many different ways one can define “related items” for a given

task. For example, if one were clustering news articles, there are many possible

ways one could group the articles. One could group them as being relevant to

the same location, or being written by the same author, or being about the same

news story. However, in many applications of clustering, one may be interested

in one particular way of splitting up a set of items; if one wishes to group news

articles by their story, then a clustering function that favors grouping news articles

by authorship would be less useful than a clustering function that favors splitting

news articles apart by those that refer to the same news story. There are many

applications where one wishes to partition input item sets in a particular fashion.

For instance:

• Noun-phrase coreference, where, given the noun phrases in a text, a clustering

algorithm predicts sets of noun-phrases that co-refer, i.e., noun-phrases that

refer to the same entity [76, 78, 100]. For example, consider the text “the

doga put the ballb in hisc mouthd.” Items a and c would be grouped together

since they both refer to the dog. However, item b would be in its own group,

as would d, as there are no other noun phrases in this text referring to the

ball, or the dog’s mouth.

• Image segmentation or perceptual grouping, where, given an image (consid-

ered a collection of pixels), a procedure finds groups of pixels corresponding

1

to regions in the image where one object or another is present [47, 73, 86, 98].

• News story clustering, where, given a set of news articles for a day, cluster

those that cover the same story [40]. Automated news aggregators like Google

News use clustering procedures to group news articles into stories.

• Speech segmentation, where, given a sound file from a single microphone

recording of multiple speakers, the voice of each individual speaker is recov-

ered [6].

In situations where a particular type of grouping of a set of items is desired, it

may be necessary to adjust a clustering algorithm so that the clustering algorithm

outputs the desired partitioning. Further, with the understanding that it may not

be possible to get an algorithm always to return with exactly the desired clustering,

we would like the clusterings returned by the clustering algorithm to be as close

to a desirable clustering as possible.

The natural question is, how can one adjust a clustering algorithm so that it

produces desirable clusterings? If we suppose that items are described by multiple

attributes, finding the right combination or even weighting of attributes that lead

to a desirable clustering may be difficult and time consuming to do manually, even

when there are only a dozen attributes. In situations where one could exploit

thousands of item attributes to produce a clustering, the infeasibility of doing

manual adjustment, and the attraction of automatic adjustment of a clustering

function, becomes obvious. In many situations it may be easier or ultimately more

effective to provide a procedure with examples of good clusterings of data, and let

this procedure automatically infer a parameterization of a clustering function so

as to change what clusterings it will produce for given input item sets.

Also, in practice one cannot expect to learn a parameterization such that a clus-

2

tering algorithm will return the “right clustering” every time under every possible

input. Furthermore, different tasks may have widely differing measures of what is

considered a “close enough” answer. Therefore, it follows that a parameterization

must be chosen taking into account some penalty or loss, so the risk incurred by

using a given parameterization of a clustering algorithm is low relative to other

possible parameterizations.

This thesis describes tasks and methods for supervised clustering. A supervised

clustering method is a means of automatic adjustment of a clustering function. The

clustering algorithm is adapted by a supervised machine learning procedure, which

makes use of a training set of example input sets and output partitionings of those

sets. This chapter discusses the problem of supervised clustering, explains what

it is, clarifies what it is not, and relates it to other closely related fields of ma-

chine learning. Chapter 2 presents the structural SVM learning framework, which

we use in Chapter 3 and Chapter 4 to derive a supervised correlation clustering

algorithm and supervised k-means/spectral clustering algorithms, respectively. In

contrast to existing approaches to supervised clustering and other closely related

methods, the principles of the proposed framework (a) are very general and can pa-

rameterize a variety of clustering procedures, (b) optimize clustering performance

directly rather than relying on heuristics and assumptions about the distribution

of the data, (c) optimize parameterizations to problem specific loss functions, and

(d) are demonstrably efficient, both theoretically and empirically. We derive these

methods, theoretically characterize them, and empirically analyze them on a vari-

ety of supervised clustering datasets covering a range of applications. Since these

learning frameworks require the use of approximations in training, we theoretically

and empirically analyze the use of approximations in structural SVMs in Chap-

ter 5. We also present various software tools written to support this work in the

3

appendices.

1.1 Different Types of Clustering

Let us first start our discussion by defining what we consider to be a clustering

algorithm: a clustering algorithm is a procedure that outputs a partitioning of

a given input set. In the larger sense, though, cluster analysis is an extremely

broad term referring to many variants on this general theme. While all concern

taking sets of items and finding groupings of these items, many go beyond simply

producing a partitioning.

One of the most popular clustering algorithms that does not produce a simple

partition of items is hierarchical clustering. Hierarchical clustering schemes pro-

duce a recursive partitioning of the items called a dendrogram. In a dendrogram,

the root partition contains all data, but is itself partitioned into subgroups, with

each subgroup partitioned recursively into subgroups, until a cluster has one item

and is therefore indivisible [55]. The well known single-link, complete-link, and

average-link agglomerative clustering methods fall into this category.

Soft clustering assigns items to clusters with a certain confidence (where this

confidence is often but not necessarily stated as a probability), so for a single

item, its score of belonging to any given cluster may be nonzero for multiple clus-

ters [9, 37]. Closely related to soft clustering is the field of clustering with mixture

models, where the input set x is assumed to be generated from a type of distribu-

tion. This generating distribution is characterized by a series of mixture models,

where each component of the mixture corresponds to a different cluster [34, 42, 68];

i.e., all elements from one cluster come from one component of a mixture, where

4

all elements from another cluster come from a different component of the mixture.

The task of the clustering algorithm in such a setting may be to find the param-

eterizations of the components of the mixture model that lead to the generation

of the data x. For example, if the generating distribution of the input set x were

a mixture of Gaussian distributions, then the mixture model clusterer’s task is

to find the mean of the mixture distributions (typically algorithms assume fixed

variance [34]). While inferring the components of the mixture model does not give

us a partition, the probability of each point being generated by each mixture is

known, so assigning points to the group corresponding to their most likely gener-

ating component is trivial. Furthermore, the probabilities of each item belonging

to each component’s group are often used as a soft clustering scheme.

While in principle supervised learning procedures could be used to parameterize

any such method, and future supervised clustering work could very well expand its

view of clustering to include these other definitions, this thesis concerns learning

parameterizations for clustering procedures that produce simple partitions of input

sets. The clusters are therefore flat (i.e., non-hierarchical insofar as the clusters

have no identified sub-clusters) and hard (i.e., an item’s cluster membership is

unambiguous). Correspondingly, this work often treats the terms clustering and

partitioning interchangeably, and cluster and partition interchangeably.

For clarity, let us phrase this more precisely. In this setting our inputs are x,

where x is a set of m items

x = {x1, x2, . . . , xm}. (1.1)

The m is not fixed across sets x, that is, two different sets x,x′ ∈ X may have

different numbers of items so |x| 6= |x′|. We suppose the size m we are talking

about will be obvious in context, or simply use |x|. Furthermore, suppose all pairs

5

of items xi, xj ∈ x have some pairwise similarity φij ∈ R. A clustering algorithm

produces a clustering or partitioning

y = {y1, y2, . . . , yk} (1.2)

of k clusters or partitions (this k may be fixed a priori or determined dynamically,

depending on the clustering algorithm, and as with m for x, may vary across

different y,y′ ∈ Y). This y is a partition of x, such that

∪y∈yy = x (1.3)

and ∑
y∈y

|y| = |x|. (1.4)

We view this clustering procedure as a function

h : X → Y , (1.5)

where X is the set of all possible item sets, and Y the set of all possible parti-

tionings of the item sets of X . Put somewhat inexactly, the goal of the clustering

procedure is to produce a clustering y of an item set x so that some function

of item pair similarity φij for pairs of items xi, xj ∈ y` for y` ∈ y is maximized.

The precise function that the clustering procedure attempts to maximize will differ

from algorithm to algorithm.

1.2 Supervised Clustering

Now that we have defined clustering more precisely, let us clarify our definition

of supervised clustering. Supervised clustering describes the parameterization of a

clustering algorithm so that the clustering algorithm will tend to produce desirable

6

clusterings. The user informs the clustering algorithm of what is desirable by

providing training examples, where each example consists of both a set of items

and a completely specified partition of that set.

In a supervised clustering setting, we take the above view of the clustering

function

hw : X → Y , (1.6)

where X is the set of all possible item sets, and Y is the set of all possible par-

titionings of the item sets of X . Note the use of the w subscript for h in (1.6)

versus (1.5). This indicates that the clustering procedure is parameterized through

some model parameterization w. By changing w, we may change the clustering

y = hw(x) this function hw will produce for some input item set x.

This parameterization w is set through a learning procedure that makes use of

a training set

S = {(x1,y1), (x2,y2), . . . , (xn,yn)} ∈ (X × Y)n , (1.7)

that we assume is drawn i.i.d. from some unknown distribution P (x,y). This

training set S consists of n examples of input item sets xi ∈ X and partitionings

of those sets yi ∈ Y . It is important to note that these item sets yi are complete

partitionings of their input sets xi; consequently, supervised clustering is concerned

with applications where one could provide complete example partitionings, such as

those listed earlier (e.g., noun-phrase coreference, image segmentation, news story

clustering, speech segmentation).

A supervised clustering method will have some notion of a loss function

∆ : Y × Y → R, (1.8)

7

a function measuring to what extent two clusterings differ. A goal common to

nearly all machine learning methods, including supervised clustering, is to minimize

risk,

RP (hw) =

∫
X×Y

∆(y, hw(x)) dP (x,y) (1.9)

which is, intuitively, the expected loss incurred by a hypothetical future random

example (x,y) drawn from the unknown distribution P (x,y) when the input x

is run through the parameterized clustering algorithm hw. In reality, the goal

of directly minimizing risk is impossible since P (x,y) is unknown, so different

machine learning methods minimize different criteria, as explained more fully in

Chapter 2.

The exact form of the clustering function hw, parameterization w, loss function

∆, and whatever other miscellaneous criteria the supervised clustering algorithm

takes into account when choosing w depend upon the supervised clustering algo-

rithm.

How precisely should w parameterize a clustering algorithm? Many types of

clustering algorithms can be phrased as an attempt to find a clustering y that

maximizes some joint function fw : X × Y → R over similarities between pairs

of items of an input set x. More formally, for item set x and any pair of items

xi, xj ∈ x in the item set, we suppose a similarity measure φxi,xj
∈ R is defined,

and the clustering procedure hw(x) finds a clustering y to maximize some function

fw(x,y) of these φxi,xj
pairwise similarities. Typically, pairs of items with high

similarity scores would tend to be placed in the same cluster, while pairs with low

similarity scores would tend to be placed in a different cluster. Correspondingly, w

parameterizes a similarity measure between item pairs. By changing the similarity

measure, we can change what clustering maximizes the objective function fw

8

The use of the phrase similarity measure is important: we use this to indicate

that this function is not necessarily a kernel, nor is any distance measure induced

by this similarity measure necessarily a metric. However, both metrics and kernels

could be considered similarity measures, and methods of supervised clustering that

are restricted to learning metrics and kernels are perfectly valid.

1.3 Supervised Clustering as Pairwise Classification

If the goal of supervised clustering is to form items into groups, and clustering

algorithms form groups according to which items are most similar, logically it seems

plausible that one may learn a classifier over pairs of points to learn an “in the

same group” versus “not in the same group” classification. During classification,

there could be inconsistencies in such a scheme (i.e., for three points A, B, C,

the classifier could think A−B and A− C are grouped, but B − C are not), but

one could subsequently run some clustering algorithm over these outputs from the

classifier to enforce a consistent partitioning.

More particularly, one may take all pairs of items in all training sets, describe

each pair in terms of a feature vector, and let positive examples be those pairs

in the same cluster and negative examples be those pairs in different clusters.

Then, one trains a classifier on this training set. When one wants to cluster a

new set of items x, they could run all pairwise similarity vectors φij for items

xi, xj ∈ x through this learned classifier. The output values from the classifier are

the pairwise similarity values; positive and negative outputs indicate a pair should

or should not be in the same cluster, respectively. Then, one could cluster based

on this matrix of output similarities to find the final clustering y.

9

h

g 2

–1f 2

–1e 2 –1

–14 –1–1d

–1–1 –14 –1c

b –1–14 –1 –1–1

a 4 –1–1–1 –1 –1–1

Figure 1.1: An example of a similarity matrix between eight items (denoted
here a through h). For example, the item pairs (a, b) and (a, c)
have similarity 4 and −1, respectively.

One might view this as a supervised clustering algorithm, though of a different

and less direct type than the subjects in this work and those summarized in Sec-

tion 1.4. If one could learn the pairwise decision function perfectly, the resulting

judgments would correspondingly partition object sets perfectly. However, in the

likely event that such a perfect scheme will not be learned, there are significant

shortcomings to this approach.

First, the pairwise classifier, which is usually optimized for accuracy of judg-

ments on the training set, is optimizing the wrong thing. Optimizing for pairwise

performance accuracy is not ideal for supervised clustering. As an example, sup-

pose that we have eight items a, b, . . . , h that form a training example with a true

partitioning into two clusters, (a, b, c, d, e), and (f, g, h). Suppose, further, that our

clustering scheme finds the partitioning such that the sum of similarities between

all item pairs in the same partition over all partitions is maximized. (This objec-

tive happens to be identical to correlation clustering [33], treated in more depth

in Chapter 3.)

10

Now suppose that we have some parameterization w that leads to the pairwise

similarity scores shown in the similarity matrix of Figure 1.1. How can we evaluate

the quality of this parameterization? From the point of view of our hypothetical

pairwise classification learner, this parameterization would seem poor: only 18 of

28 possible pairwise relationships have the correct pairwise classification, so for

a pairwise learner this represents 35.7% training error. From the point of view

of a supervised clustering learner, however, this scheme is perfect: the optimal

partition under the clustering scheme and the training partition are identical, so

this would have zero training error.

Second, in clustering applications, often the number of pairs in a cluster is

relatively small, e.g., only 3.6% of pairs in the MUC-6 test set represent items in

the same cluster [77]. The training imbalance could lead to an understatement of

pairwise similarity if we are optimizing for accuracy.

Third, some supervised clustering tasks are associated with a performance mea-

sure, e.g., the model-theoretic MITRE score for MUC noun-phrase coreference [108]

described in Section 3.3.2. A pairwise classifier that optimizes for accuracy may

yield inferior performance, since the tradeoffs it makes may not accurately reflect

tradeoffs appropriate for clustering performance. For example, in MUC-6, since

only 3.6% of pairs are coreferent in the test set, a model that simply identifies all

pairs as being non-coreferent would have a 96.4% accuracy across all documents,

which looks attractive to a pairwise learner trained for accuracy. However, for any

practical purpose that rule would be totally useless, and would actually have loss

of 100, i.e., the worst one could possibly do, under the MITRE loss.

Fourth, and most important, a pairwise classifier that assumes pairs are i.i.d.

cannot take advantage of dependencies between item pairs. Consider this small

11

“A Balrog,” muttered Gandalfa. “Now I understand.” He faltered
and leaned heavily on his staff. “What an evil fortune! And I am
already weary.”

...

“Mithrandir we called him in elf-fashion,” said Faramir, “and he
was content. Many are my names in many countries, he said.
Mithrandirb among the Elves, Tharkûn to the Dwarves; Olórin
I was in my youth in the West that is forgotten, in the South
Incánus, in the North Gandalfc; to the East I go not.”

...

“Mithrandird!” he cried. “Mithrandir!” “Well met, I say to you
again, Legolas!” said the old man.

Figure 1.2: An example of three passages from The Lord of the Rings, with
four noun-phrases highlighted. (Note that there are, in reality,
very many more than four noun-phrases in these examples.)

document: “Busha ate some tacos. ... President Bushb likes tacos. ... Hec said

tacos are good food for himselfd, the presidente.” We want a, b, c, d, e to be in

the same cluster. With pairwise features as in [100] or [78], it is probably easy

to learn that (a, b), (b, c), (c, d), and (d, e) are coreferent and should have positive

similarity, but difficult to learn that pairs (a, c), (a, e), and (c, e) are coreferent.

However, a clustering algorithm would still come up with the correct clustering

even if the hard pairs were kept as unknowns (perhaps with similarity kept slightly

less than 0) and only the easy pairs were learned. A learner could exploit these

transitive dependencies to learn more effectively, since we do not actually need to

learn all the difficult relationships. Insisting that we do may diminish the overall

effectiveness of the hypothesis.

To illustrate this point, consider the example of Figure 1.2. In this example,

we have highlighted four noun-phrases. Learning a model that a and c and b and d

12

are coreferent is trivial assuming there are features regarding string matches, and

b and c quite possible with pairwise features that capture sentence level syntactic

relations or other proper choices of linguistic features [100], but it is highly unlikely

that one could reasonably directly link a to b or d, nor c to d. However, a learning

algorithm that incorporates clustering could take advantage of the fact that getting

every single pairwise relationship right is unnecessary (as seen in the example of

Figure 1.1).

Another more practical consideration of using a pairwise trainer for classifica-

tion is that the sheer number of training examples entailed by such a scheme may

be unwieldy, though recent years have seen advances in learning with large training

set sizes [52, 97].

Nonetheless, with the aid of heuristics and domain specific knowledge about

the problem, pairwise classification has been employed to learn distance functions.

Some methods employ heuristics to train the classifier only on selected item pairs.

The hope is that a properly chosen heuristic will compensate for some of these

weaknesses.

1.3.1 Canopies Heuristic

In terms of computation time, work in [21] adapted the canopy technique, originally

intended for unsupervised clustering [75], to methods for selecting training pairs

for supervised clustering. Given an a priori similarity measure, that is, one known

prior to any training at all taking place, the canopy method will select only those

item pairs whose a priori similarity is within a certain interval. The pairwise

classifier is then trained on the selected pairs. This a priori measure is not the

13

similarity we are hoping to learn, but something that is “close enough” to the

truth to be useful to select training sample pairs. The idea is that the training set

will be composed of those pairs that are close enough to the point where learning

a distance metric over them is considered useful, but far enough away to the point

where they are an “interesting” training example. So, for a set x of size m = |x|,

instead of having a training sample composed of all
(
m
2

)
possible pairs, one may

have a training sample composed of roughly αm
2

possible pairs, where the constant

α is the average number of points in the interesting region across all points.

1.3.2 Noun-Phrase Chain Heuristic

An heuristic for leveraging pairwise training specific to noun-phrase coreference ap-

pears in [78]. In short, each noun-phrase xb and its closest preceding non-anaphoric

coreferent noun-phrase xa form a positive training pair, while all non-coreferent

noun-phrases in between xa and xb are paired with xb as a negative training exam-

ple. This approach yields excellent performance for the NP coreference task, but

was built with expert domain knowledge and is not applicable to other tasks.

In the noun phrase coreference problem, there is a document with a series of

noun phrases. Each noun-phrase refers to a particular object. The idea is to

partition the noun phrases so that any two partitions refer to different entities,

and all noun phrases within a partition refer to the same entity. Of course, a way

to partition a set is by clustering over that set. Soon and Ng [100] describe an

approach to use supervised clustering for noun-phrase coreference. This approach

is refined and extended in [78]. Both papers have algorithms built to accept the

type of input that is provided in the MUC-6 and MUC-7 coreference tasks.

14

In both approaches, they do not view the set of noun phrases as a set exactly,

but rather as an ordered linearized list, so that each document has its noun phrases

enumerated as an ordered list x = (x1, x2, . . . , xn), not as an unordered set. In

both papers, each noun phrase xi is considered by a series of attributes including

gender, whether it is a pronoun, whether it appeared after the word “the,” and

many other features. A pair of noun phrases xi, xj has an associated vector φij

containing features describing how compatible they are. The idea is to train a

classifier over these φij vectors to see if a pair (xi, xj) is coreferent.

Soon and Ng [100] do not merely take all pairs of NPs and train on them. First

of all, this is not suitable to the domain, as partially illustrated in Figure 1.2.

Attempts to use clustering to solve noun-phrase coreference has mainly centered

around using something resembling single link clustering. The clustering algorithm

they use is specially adapted to the task, given that this is an ordered collection of

NPs. For each xj, the clusterer works its way backwards, checking xj−1, xj−2, and

so forth until it discovers an xi (where i < j) that the learned classifier considers

as coreferent. The two are then linked in the output cluster. At this point the

clusterer, moves on to xj+1, and performs the same backwards search. Once all

the noun phrases xj have been checked in this fashion, whatever two noun phrases

are connected through a chain of links are considered coreferent.

The method they use for choosing the similar and dissimilar sets S and D is

made to reflect how this clustering is performed. For each noun phrase xj, its

closest previous non-pronoun coreferent noun phrases xi is found. (If there is no

such xi, the selector moves on to noun phrase xj+1.) When xi is found, the pair

(xi, xj) is added to S, and for all intervening x′ ∈ {xi+1, · · · , xj−1} that are not

coreferent with xj, the pair (x′, xj) is added to D.

15

A weakness of this approach is that some important training examples are

overlooked. Consider noun phrases with no coreferent noun-phrases, and noun

phrases that are the first mention of an entity. Neither appear as the second

element of a pair in either S or D. This could be problematic because both of

these classes of noun phrase are likely to be constructed in different ways than

noun phrases that refer to something that has already been referenced. When it

comes time to do the backward search, the classifier could get confused if it is

searching backwards from a unique noun-phrase or a first mention, as this is a case

the model was never prepared for in training.

1.4 Previous Supervised Clustering Methods

As seen in our list of applications of supervised clustering, the field of supervised

clustering exists in many forms under many names depending upon the application

of interest. However, some work treats the problem of supervised clustering and

learning partitioning functions as a general problem of interest, rather than be-

ing application-driven work specific to image segmentation, or noun-phrase coref-

erence, or speech segmentation, and so on. This includes work by this thesis’

author—specifically, the work on supervised clustering for correlation clustering

based methods [40] and k-means and spectral type methods [41], which are more

fully described in Chapter 3 and Chapter 4, respectively. While we save a full

discussion for the appropriate chapter, these methods both use a structural SVM

based approach to learn a parameterized similarity function, directly optimizing

to a loss function ∆ of interest to the particular application. In work by Haider et

al., the correlation clustering method has proven effective as an online algorithm

in the clustering of incoming e-mails [45].

16

In addition, McCallum and Welner solve the noun-phrase coreference problem

with a clustering method phrased as a graphical model [76]. In an input set of

noun-phrases x, the partitioning y of x is stated as a collection of
(|x|

2

)
variables

yij, where yij = 0 or 1 depending upon whether xi, xj ∈ x are non-coreferent or

coreferent, respectively. The likelihood function of a partitioning y given the input

set x is

P (y|x) =
1

Zx

exp

(∑
i,j,`

λ`f`(xi, xj, yij) +
∑
i,j,k,`′

λ`′f`′(yij, yjk, yik)

)
. (1.10)

The first term is effectively the `-th feature function for the item pair xi, xj, where

the λ` parameter is the weight for that given feature. The second term is a nota-

tional trick for stating consistency of a partition probabilistically (e.g., the proba-

bility of yjk = 0 should be very low given yij = 1 and yik = 1); in actual implemen-

tation, the inference algorithm simply ignores inconsistent partitions. It is easy to

see that the most likely partitioning P (y|x) is that which maximizes the sum of the

pairwise similarities among all item pairs, which is the objective function of corre-

lation clustering. This work makes it very close to the correlation clustering work

defined by Chapter 3, except that the parameters λ are learned through maximum

likelihood instead of minimization of empirical risk. However, actually computing

the maximum likelihood parameterization is intractable since the gradient over

parameters involves computing a sum over all possible clusterings. Consequently,

they elect instead to use a structural perceptron [23].

Bach and Jordan [5, 6] present a means of learning parameterization of spectral

clustering. It is difficult to summarize this work without understanding spectral

clustering, and a treatment of spectral clustering will not appear until Chapter 4.

However, suffice to say, for a given item set x, if we phrase the similarity matrix A ∈

R|x|×|x| where Aij = φxi,xj
for xi, xj ∈ x where φxi,xj

∈ R is the real valued item pair

17

similarity, spectral clustering methods perform an eigenanalysis on A to determine

a partition of x. The learning scheme in [5, 6] searches for a parameterization w

leading to a similarity matrix A as close to an “ideal” similarity matrix as possible.

The ideal similarity matrix is one which would lead to the correct partitioning. In

searching for the parameter w, they minimize a function that they prove upper

bounds the loss ∆ (for a special form of ∆) that would be incurred were one

to run spectral clustering on the parameterized matrix A. In other words, they

find w to directly minimize an upper bound on the empirical risk for a certain

∆. A limitation of the method as provided is that it is applicable to only one ∆

loss function. A second limitation is the restriction of finding w through spectral

clustering. While spectral clustering and k-means are closely related insofar as

they are two different algorithms to solve the same problem [6, 36], an algorithm

that directly optimizes for k-means could be more useful in situations where the

upper bound implied by this spectral relaxation is too loose.

Daumé and Marcu [30] provide a generative view of clustering based on Dirich-

let processes. The set of items and its clustering are assumed to come from a

Dirichlet process. The advantage that they have in using a Dirichlet process is

that it can be used to define an infinite mixture model, which is an advantage in

the case of supervised clustering since in many applications there may be an un-

known and potentially unlimited number of clusters, which a Dirichlet process can

model gracefully. Their primary motivating application is paper citation matching,

where a set of items is a set of citations, and a cluster would correspond to mul-

tiple citations of the same paper. Informally, when encountering a new citation,

a Dirichlet based clusterer would either assign the citation to an existing cluster

(i.e., this is a paper whose citations have been seen before), or assign the citation

to a new cluster (i.e., this is a paper whose citations we have not seen before). In

18

such a setting, the exact number of papers would hardly be known a priori. The

proposed supervised clustering algorithm sets parameters on the Dirichlet in order

to control how willing the clusterer is to assign a given item to some other existing

cluster, versus to its own cluster. The weakness of this approach is its generative

nature; they suppose that the process generating the data is known. While they

offer arguments as to why Dirichlet distributions may model some of the data they

are interested in, modeling assumptions remain a weakness in this sort of model,

especially if one were interested in including many possibly dependent features

in the learned similarity measure. Also, while the clustering procedure resulting

from this model is evaluated on a number of different clustering loss functions ∆,

the training algorithm is not able to choose a parameterization to minimize the

training loss for these evaluation losses. The learning procedure also suffers from

being computationally inefficient.

Kamishima et al. [56] derive another generative scheme for supervised cluster-

ing. The paper characterizes clustering as finding some partition that maximizes

some probability, which depends upon features of the items, item pairs, and parti-

tions. The supervised clustering learning procedure correspondingly learns param-

eters of these probabilistic functions to make the correct clusterings encountered

in the training data most likely. As with the previous generative work, to gain

tractability, this relies on independence assumptions about the points, and the

features. While the paper briefly argues that one can choose features that are “as

independent as possible” to overcome this weakness, in practice this ensuring in-

dependence of features is not easy to do. Furthermore, the clustering function and

method of training, while interesting, are somewhat peculiar to the paper, and it

is not at all obvious that application to a more familiar proven clustering scheme

would be feasible under this framework.

19

1.5 Supervised Clustering Is Not Multiclass Classification

Repeatly, there has been confusion on the distinction between supervised clustering

and simple multiclass classification. Though we were surprised the first few times

this confusion arose, it is understandable: clustering and classification appear quite

similar. In both cases, when they are predicting the outputs for a set, they produce

a partition of an input set.

Indeed, in many types of machine learning algorithms, the line between clus-

tering and classification is very thin. Utilizing clustering in classification is the

basis for the majority of the semi-supervised and transductive classification re-

search. In these settings, the target hypothesis is either a multiclass or binary

classification rule, and the training data consists both of labeled and unlabeled

points. Informally, the goal of these algorithms is that the learned classification

hypothesis should be consistent with the labeled data, but the learned hypothesis

should also obey the cluster assumption. If we interpret examples as existing in

a vector space, then the decision boundary for the learned hypothesis should pass

through regions of the space that have low density (or, depending on the type of

hypothesis that is being learned, that class centers should be in regions of high

density) considering both labeled and unlabeled points [19, 18, 88, 96]. In intu-

itive motivation, mathematical formulation, and algorithmic interpretation, these

methods use clustering-like techniques to guide the learning and application of

semi-supervised classification schemes [43].

It is worth noting that this technique is applicable to situations other than

multiclass and binary classification. Similar techniques have also been applied to

cases where the learned hypothesis function produces outputs that are more com-

plex and structured [2, 14, 20, 49]. However, in these settings, the intuitive notion

20

of the cluster assumption of points lying in space becomes less compelling since

there is no longer an easily visualizable “vector space” model for these complex

objects, so these efforts often adopt different terminology.

Despite intersecting in some applications, there are important differences in the

types of problems the two are appropriate for and what concepts they are capable

of representing, which we discuss in detail here.

1.5.1 Dynamic Clusters versus Static Classes

One major difference between classification versus clustering is supervised clus-

tering schemes learn to partition sets of items, whereas multiclass classification

schemes learn to partition sets of items into static, defined partitions.

A simple example might help illustrate this difference: Consider the problem

of clustering marbles, and suppose that we have as training data a set consisting

of red marbles, green marbles, and blue marbles, as pictured in Figure 1.3(a). The

training data consists of the partition of these marbles into those three colors.

The features for each marble include the “color angle” of this marble’s hue on

a color wheel (red is at 0◦, green is at 120◦, blue is at 240◦), as well as various

other features such as size, weight, clarity, and other features that turn out to be

irrelevant to this task.

Were we to consider this a multiclass classification problem, then such an al-

gorithm would learn how to classify future items fed into the algorithm as being

in a red, green, or blue class, which was learned during the training phase. For

example, for a given input marble, the classifier would view red, green, or blue

as the most likely classification depending on how close the input marble’s hue is

21

hue
angle

0°

120°

240°

(a)

hue
angle

0°

120°

240°

(b)

hue
angle

0°

120°

240°

(c)

hue
angle

0°

120°

240°

(d)

hue
angle

0°

120°

240°

(e)

Figure 1.3: This illustration serves as an example of the difference between
clustering marbles, and classifying marbles.

to 0◦, 120◦, or 240◦, respectively. Were we to consider this as a supervised clas-

sification problem, then the learned model would learn how to partition a set of

items, perhaps learning that difference in hue angle and likelihood of being in the

same cluster are inversely related. The classification learner wants to learn how to

partition future items into the groups indicated by the training data, e.g., learn

what areas in the space will correspond to membership in what class, as indicated

in Figure 1.3(b).

Suppose that we train either a supervised clustering or multiclass classification

algorithm on the red-green-blue marbles, but in prediction (either for supervised

clustering or multiclass classification) we are fed marbles that are roughly in groups

of yellow, cyan, and magenta marbles, as shown in Figure 1.3(c). The multiclass

22

classification, having learned regions corresponding to the red, green, and blue mar-

bles, will have a tendency to “split” the natural yellow, cyan, and magenta groups

since the classification regions have a decision boundary through each of these

groups, a Figure 1.3(d). Alternately, however, the supervised clustering method,

having learned to partition items according to color, but not to put them into any

predefined bins, can identify the natural color regions as shown in Figure 1.3(e).

This is not to say that the partitioning according to Figure 1.3(d) is wrong; in

many applications this is precisely what one wants. It is also not to say that the

application of any given supervised clustering algorithm scheme would result in

the scenario leading up to Figure 1.3(e). This merely illustrates a basic difference

between the two types of tasks for which these methods are appropriate.

1.5.2 Large Numbers of Unknown Groups

Another difference between clustering and classification becomes obvious when one

considers that classification assumes one knows a priori what classes a set of objects

could be partitioned into, which is not always the case.

For instance, consider a task like noun-phrase coreference. Recall that in noun-

phrase coreference one takes all of the noun phrases in a document, and partitions

them according to what noun-phrases refer to the same entity. If we were to apply

multiclass classification to this scheme, we would have to have a separate class for

each entity. This would be impossible because the sheer number of classes implied

by having to produce a class description of every entity that has been encountered

and ever could be encountered is prohibitive, and these entities are also unknown.

Also consider the problem of clustering news articles as being about the same news

23

story or not: it would be impossible to anticipate what “classes” corresponding to

stories that the news articles are going to fall into in future days, or else it would

not be news.

Furthermore, in common noun-phrase tasks, few of the entities referred to

in the evaluation set actually occurred in the training set [77], and it is unclear

how one can generalize knowledge about how to “group” items in the context of

pure classification of individual noun-phrases. If one’s training data talks about

Anne, Bob, and Clarence, what is the algorithm to think when it encounters, in

application, noun-phrases referring to a previously unknown entity Doug?

1.5.3 Different Appropriate Choices of Features

In addition to these fundamental differences in purpose, there are practical differ-

ences that separate what types of parameterizations are acceptable for supervised

classification versus supervised clustering. At issue is that classification learns over

individual features, whereas supervised clustering, in parameterizing a pairwise

similarity score, has features describing two points jointly, that is, pairwise fea-

tures. To take an example, in a vector space model, consider two points xi, xj ∈ x

that are also real valued vectors xi, xj ∈ RN . As a classification task, the natural

instinct would be to take the vectors as is. In contrast, a pairwise feature vector as

used in clustering would involve some synthesis of the two, perhaps their difference

|xi − xj| or a componentwise product xi ◦ xj. As an example, if we were trying

to learn a concept like the marble clustering example of Section 1.5.1, a classifier

woudl find the hue angle as a useful feature, but a clusterer would get more use

from a pairwise feature of the difference in hue angle.

24

A more subtle difference between the two feature representations becomes clear

when one considers what types of features are helpful versus harmful in both

settings. Suppose a hypothetical individual is working with noun-phrases, and a

training set of documents that talk about the entities Anne, Bob, and Clarence. If

this individual wishes to use a multiclassification scheme, i.e., classify new noun-

phrases as referring to either Anne, Bob, or Clarence, then many binary features

indicating that the noun-phrase in question is the character sequence Anne, or Bob,

or Clarence become extraordinarily helpful. In the case of supervised clustering,

though, features that are this specific can become harmful, since the goal is to be

able to group noun-phrases no matter what entity they refer to, whether they refer

to these three individuals or someone completely different; a model that depends

heavily on these simple features would be unable to transfer to a new, unseen

entity. Features specific to a token that appears in text would be difficult to help

learn a general model [15]. They would allow easily fitting the training data while

being nearly useless for data on unseen entities. This is not to suggest such features

could not be useful—as a practical matter it seems humans must do something like

this to connect names and titles to entities—but such features with very limited

training data would be harmful for generalization performance.

1.6 Relation to Semi-Supervised Clustering

As one might guess from the name, semi-supervised clustering is related to su-

pervised clustering, but is typically applied to very different settings. In semi-

supervised clustering, a clustering algorithm is likewise parameterized, but usually

for application to a single large set of items (rather than multiple smaller sets of

items) where information on the clustering structure of the input items is incom-

25

plete. As such, there is often no interest in learning a model parameterization that

could be applied to new sets of items, whether it be in the form of a learned metric

or other transferable learned knowledge. This is a key component of supervised

clustering.

Semi-supervised clustering methods augment an unsupervised clustering algo-

rithm with information about how some of the items being clustered should relate

to each other. In this setting one does not get the complete clustering of the set as

described in the purely supervised case. Rather, information is incomplete, usu-

ally in the form of pairwise constraints, e.g., “items a and b should be in the same

cluster” or “should not be in the same cluster.” When clustering the data, the

semi-supervised clusterer attempts to fulfill the constraints as best it can. This is

distinct from supervised clustering, since in supervised clustering one has sets of

items and complete partition information on these training sets, rather than in-

complete information covering only a certain subset of pairs within a single input

set.

Some of these semi-supervised clustering methods modify a clustering algo-

rithm so it incorporates this supervision information, but does not parameterize a

distance or similarity measure. For example, Aggarwal et al. [1] describe a minimal

approach based on cluster seeds. The k-means algorithm is implemented by start-

ing with seed cluster centroids that are iteratively refined in a greedy fashion to

minimize intracluster distance (or alternatively maximize intracluster similarity),

and has a strong tendency to find local minima for its objective function. Ag-

garwal et al. take advantage of this tendency to fall into local minima by having

the initial cluster seeds be the same as those centroids seen in the training data,

thus leaving the clustering algorithm predisposed to finding clusters close to the

26

initial starting points [1]. (Interestingly, were the k-means algorithm not so prone

to fall into local optima, this algorithm would be ineffective.) Wagstaff et al. [110]

propose an algorithm that likewise does not modify the distance metric at all, but

directly constrains the k-means clustering algorithm so as to respect constraints

about what sets of points should or should not be together; in the event the clus-

terer comes up with a cluster that violates the constraints in the k-means iteration,

the items are reassigned to satisfy constraints and the algorithm continues until

convergence.

De Bie and Cristianini present a method on learning a metric, with the stated

purpose of clustering [32]. It works through defining a metric parameterized

through a matrix W , where the metric between two points xi and xj is

(xi − xj)TWW T (xi − xj) (1.11)

where the W is derived through an eigenanalysis of the vectors and their cluster

constraints. This is remarkably similar to metric learning techniques described in

Section 1.7 both in formulation and in algorithmic process, but the eigenanaly-

sis would capture information about the global structure of how the data would

cluster, despite clustering not being used directly in the optimization procedure.

Cohn et al. incorporate user feedback of clusterings of documents the form

“these two documents should (not) be in the same cluster,” and use these con-

straints to improve the distance metric between pairs of elements [22]. The clus-

tering procedure used is a mixture of distributions, where each cluster corresponds

to a different distribution, and each document has a probability of being generated

according to that distribution. A document’s probability is modeled as a weighted

product of the probabilities of the words. By changing weights corresponding to

each word, one modifies the distribution generating the document. The approach

27

taken in this paper is to, through iterative hillclimbing, choose a weighting so that

the KL divergence of the distribution for two documents is small or large depending

upon whether these documents should or should not be clustered.

Some methods do directly include the clustering procedure in the metric opti-

mization procedure for semi-supervised clustering. Bilenko et al. [10] and Basu et

al. [8] produce algorithms called, respectively, MPCK-Means and Hidden Markov

Random Field k-Means (HMRF K-Means), which both incorporate must-link and

cannot-link constraints through an EM procedure. These procedures first cluster

data, and second modify the distance measure to “fix” any mistakes that occurred

during the clustering. The algorithms then iterate over these two steps until con-

vergence. The first works through application of a matrix update procedure and

the second works through MAP inference on a graphical model, but the two meth-

ods appear almost identical in intent. An additional paper by Kulis et al. [60]

refines Basu et al. [8] for the case of kernel clustering, where points do not nec-

essarily exist as individual points in an explicit vector space in which they are

clustered. This would be the case in, for example, typical representations of noun-

phrase coreference [100]. These methods all modify both the clustering procedure

to respect constraints, and also parameterize the distance metric as they perform

clustering.

To summarize, semi-supervised clustering methods may seem closely related to

supervised clustering methods, but the natural consequence of the typical target

application, the clustering of a single dataset for which there is incomplete informa-

tion and the lack of concern for transfer to new clustering, leads to very different

problem formulations that are often inappropriate for the supervised clustering

setting.

28

1.7 Relation to Metric and Kernel Learning

The preceeding material on learning distance and similarity measures for clustering

may bring to mind the field of metric and kernel learning. This work could be and

has been used to learn distance metrics for the purpose of clustering, but there is a

substantial difference between “learning a metric” and “learning a metric so that

a clustering algorithm will perform well,” as argued in Section 1.3. Also, the pri-

mary application of these metric learning papers is to improve kNN classifiers [24].

Despite these differences, however, it is nonetheless a closely related field. As we

shall see, these metric learning algorithms almost uniformly learn a similar type

of distance metric.

Davis et al. [31] describe learning Mahalanobis distances, which generalize Eu-

clidean distances through admission of linear scaling and rotations of the feature

space. The algorithm is phrased in terms of learning a metric parameterized by

a matrix A so as to minimize the distance between similar and dissimilar points.

For example, two points xi, xj in a vector space would have distance

(xi − xj)TA(xi − xj). (1.12)

For example, if A = I, then this is standard squared Euclidean distance between

xi and xj. If A is diagonal, this is Euclidean distance with corresponding feature

weights. If A is not diagonal, the measure allows for correlation between features.

The matrix A is parameterized so that pairs of points that are similar and

dissimilar have this distance less than a certain threshold and greater than a dif-

ferent threshold, respectively. Furthermore, this is subject to regularization of the

form that the KL divergence between A and a certain prior parameterization A0

is minimized, so the algorithm works to satisfy the constraints while keeping the

29

transformation as close to a priori notions of what the “right” parameterization

should look like.

Weinberger et al. [111] propose learning a distance metric through a linear

weighting of terms. The linear weights are learned through an optimization prob-

lem that simultaneously punishes long distances between points in the same group

and short distances between points in different groups. The optimization proce-

dure minimizes the sum of the distances (or inverses of the distances) for dissimilar

(or similar) points, where the contribution of the distances is weighted according

to some learning meta-parameters that the user of this learning procedure must

set.

Lanckriet et al. [65, 66] present a procedure to employ semi-definite program-

ming to maximize the alignment between a learned kernel matrix (really a weighted

sum of provided kernel functions, where a weighting is the learned parameteriza-

tion) and the labels assigned to points. Though phrased for transductive classifi-

cation, nothing prevents this method from being used for other applications where

learning a kernel function would be appropriate.

Xing et al. [112] describe an elegant approach. The data consists of a set of

points we want to cluster {xi : i ∈ 1..n} with xi ∈ RN . As in the typical semi-

supervised learning setting, there are two constraint sets S andD, where S contains

pairs that should be similar and D contains pairs that should be different in the

learned metric. The paper considers a distance metric dA(x, y) parameterized by

a positive semidefinite matrix A, identical to that shown in [31] up to a squaring.

dA(x, y) = ‖x− y‖A =
√

(x− y)TA(x− y) (1.13)

We can then produce the following optimization problem:

30

Optimization Problem 1. (Xing et al.’s Distance Learning)

argminA
∑

(xi,xj)∈S

‖xi − xj‖2A (1.14)

s.t.
∑

(xi,xj)∈D

‖xi − xj‖A ≥ 1. (1.15)

The remainder of the algorithmic description focuses on establishing ways to

make this learning problem tractable for the case where A is not diagonal.

In a similar vein, Tsang and Kwak introduce a kernel learning algorithm [105].

They suppose that for two patterns xi, xj in the input space Rp, there is an inner

matrix product 〈xi, xj〉 = sij = xTi Mxj, where M ∈ Rp×p is a positive semi-

definite matrix. Since M is s.p.d. it can be factored as a product of a matrix and

its transpose, so they rewrite sij as sij = xTi AA
Txi where A is a p× p matrix. In

their learning framework, A is some learned matrix for a learned metric d̃, whereas

M corresponds to an original metric d:

d2
ij = (φ(xi)− φ(xj))

TM(φ(xi)− φ(xj)) (1.16)

d̃2
ij = (φ(xi)− φ(xj))

TAAT (φ(xi)− φ(xj)) (1.17)

The algorithm tries to learn an A with the following optimization problem, for S

and D as sets of pairs of elements that are supposed to be similar or different,

respectively:

31

Optimization Problem 2. (Tsang and Kwak Distance Learning)

argminA,γ,ξij
1

2
‖AAT‖2+CS

1

|S|
∑

(xi,xj)∈S

d̃2
ij

+CD

−νγ +
1

|D|
∑

(xi,xj)∈D

ξij

(1.18)

s.t. ∀(xi, xj) ∈ D d̃2
ij − d2

ij ≥ γ − ξij (1.19)

ξij ≥ 0. (1.20)

Here, CS , CD, and ν are tunable positive valued parameters. The ‖AAT‖2 term

is used to encourage the rank of A to be low for sparsity. The larger CS is, the more

the algorithm attempts to make the learned distance measure for (xi, xj) ∈ S low.

The ξij serve a similar function to slack variables in a generic SVM in that their

minimization punishes pairs in D from being closer than the threshold γ, and the

larger CD is, the less the program tolerates large slack. Finally, the larger ν is, the

larger the optimization program tries to make the margin γ between distances of

pairs in S and distances of pairs in D. For a more intuitive explanation, it chooses

an A such that close pairs are close, while distant pairs are far apart.

Schultz and Joachims describe a different way to think about learning a dis-

tance metric [95]. Instead of the S and D sets that say, “these elements are

similar/different,” constraints in [95] are of the form “a is closer to b than a is

to c.” In this way, the desired closeness is scaled in terms of relative preferences.

Relative constraints have been unnecessary for the hard clusterings we have so far

considered, but this type of distance learning measure may be useful in situations

where one needs to tune a distance metric with more finesse than is allowed by

absolute binary relationships of “similar” and “different.”

Similar to other formulations, we have a metric dA,W parameterized by matrices

32

A and W :

dA,W (x, y) =
√

(x− y)TAWAT (x− y). (1.21)

W is a positive diagonal matrix whose diagonal entries are learned by this algo-

rithm. A is a real matrix provided a priori. The paper discusses two possible

choices for A. One is A = I, of course. The other is A = Φ with the ith column

equal to φ(xi), that is, training vector xi projected into the feature space; this A

allows one to use kernel functions representing products within this feature space

provided by φ.

An optimization problem to learn this metric is given in OP 3.

Optimization Problem 3. (Schultz and Joachims Distance Learning)

min
1

2
‖AWAT‖2F + C

∑
i,j,k

ξijk (1.22)

s.t. ∀(i, j, k) ∈ Ptrain. (xi − xk)TAWAT (xi − xk)− (xi − xj)TAWAT (xi − xj)

≥ 1− ξijk (1.23)

ξijk ≥ 0 (1.24)

Wii ≥ 0 (1.25)

In conclusion, methods in this field learn a metric so that points which are

similar and different are kept close and far in a learned metric, respectively. They

all learn some sort of matrix inner product 〈x, y〉 = xTBy, where the form of B

and how it is learned differs from paper to paper. Even in this cursory survey,

we have seen a tremendous variety of methods in this area, all with different

opinions about the proper optimization criteria. In this way, supervised clustering

work could be viewed as another metric learning problem, except the criteria for

33

optimization for a supervised clusterer is that the metric or measure learned is

such that a clusterer will perform well in partitioning the data when run on the

similarity matrix. However, the converse does not hold, as metric learning does not

by itself constitute a supervised clustering method since the optimization criteria

are typically much different.

1.8 Summary

To summarize this chapter, we introduced the problem of supervised clustering. In

supervised clustering, one wishes to learn a clustering function to produce desirable

partitions of input sets, with applications in noun-phrase coreference, image seg-

mentation, news clustering, speech segmentation, and others. We can phrase the

learning problem more technically as learning a parameterization w for a clustering

function hw : X → Y through a training set S = {(x1,y1), (x2,y2), . . . , (xn,yn)} ∈

(X × Y)n, drawn from the set of all possible item sets X and partitions of that

item set Y . The training example (xi,yi) consists of an item set, and a complete

partitioning of this set. The goal in choosing w is to choose one such that, infor-

mally, the clustering algorithm will perform well over future training examples, or

more formally, such that the risk RP (hw) =
∫
X×Y ∆(y, hw(x)) dP (x,y) is min-

imized for the unknown generating distribution P (x,y). The advocated form of

the parameterization w is to parameterize pairwise similarity measures for items

xi, xj ∈ x so that, when clustering x on this similarity measure, the desired par-

tition y = hw(x) is produced. Section 1.4 discussed existing prior work in this

field.

While there are existing methods of learning similarity measures, the goal of

34

supervised clustering is to learn this parameterization with an aim of producing

desirable clustering, which is distinct from learning local pairwise similarities, or a

general similarity measure as argued in Section 1.3 and Section 1.7. They are not

optimizing to the right criteria.

Furthermore, existing approaches in semi-supervised learning are insufficient

for this task. Semi-supervised clustering concerns learning how to cluster a single

data set with incomplete information on that data set, and is unconcerned with

transferring this knowledge to clustering new sets of items, the primary concern of

supervised clustering.

The next chapter, Chapter 2, will introduce the basic machine learning frame-

work that forms the basis of our implementation of supervised clustering methods.

These methods will parameterize similarity measures directly optimized to cluster

performance as measured by our loss.

35

CHAPTER 2

STRUCTURED LEARNING

Before we leap into the discussion of supervised clustering methods of Chap-

ter 3 and Chapter 4, we must introduce the machine learning frameworks which

will form the basis of that work. This chapter will discuss discriminative methods

for learning functions for structured outputs. Rather than discussing structured

learning for clustering specifically, which is a particular type of structured output,

the algorithms for learning structured outputs shall be presented generally. Pre-

sentation of the techniques for utilizing these methods for supervised clustering

specifically will be presented and analyzed in Chapter 3 and Chapter 4. Ab-

solutely critical to understanding is Section 2.1’s material on structural support

vector machines, with material on other learning methods being important for a

deep appreciation.

Speaking generally, no matter the application, nearly all machine learning

methods learn a function. A learned function can output a binary label for an

input document as in binary classification, or produce of a parse tree for an input

sentence, or provide a protein alignment, or even output a partitioning of an input

set as in clustering. Machine learning is rife with examples of functions (trained

in the case of supervised machine learning) to produce certain outputs for inputs.

Functions h : X → Y produce an output y ∈ Y from a range of possible outputs

Y given an input x ∈ X from a domain of possible inputs X .

Structured learning concerns learning functions where the X and Y are po-

tentially complex structured outputs. In applications like binary or multiclass

classification, Y is a very small collection of scalar labels (e.g., “yes” or “no” in

binary classification). In structured learning, we may potentially be trying to learn

36

functions with much more complicated functions, including functions which out-

put sequence labels or parse trees for sentences, translations for sentences, or even

clusterings for a given set of items.

Quite generally, in many machine learning applications these functions take the

form of finding an output to achieve a maximization of a discriminant function f .

The function h : X → Y maps the input x ∈ X to some output y ∈ Y such that

some joint discriminant function f : X × Y → R is maximized.

h(x) = argmax
y∈Y

f(x,y) (2.1)

To be clear, functions that are usually phrased as minimizations can be phrased

as maximizations through an inversion of the discriminant function. For example,

the minimum spanning tree problem is to find the sub-tree containing all nodes

of a connected graph such that the sum of the included edges’ weights are mini-

mized, or, alternately, such that the negated sum of the included edges’ weights

are maximized.

In machine learning applications, many of the most popular methods, including

those summarized in this chapter, parameterize the discriminant function by some

model parameterization w, and can phrase the discriminant function in this form

hw(x) = argmax
y∈Y

fw(x,y) = argmax
y∈Y

〈w,Ψ(x,y)〉 (2.2)

Despite the use of the inner product 〈·, ·〉, it is worth noting that this inner prod-

uct 〈w,Ψ(x,y)〉 is by no means necessarily a linear inner product, but could

potentially be kernelized, so that w is a collection of Ψ vectors and associated α

37

coefficients such that w =
∑

(i) α(i)Ψ(x(i),y(i)), so that

〈w,Ψ(x,y)〉 =

〈∑
(i)

α(i)Ψ(x(i),y(i)),Ψ(x,y)

〉
(2.3)

=
∑
(i)

α(i)

〈
Ψ(x(i),y(i)),Ψ(x,y)

〉
(2.4)

=
∑
(i)

α(i)K
(
(x(i),y(i)), (x,y)

)
(2.5)

However, in typical applications and in most practice this 〈w,Ψ(x,y)〉 inner prod-

uct does wind up being a perfectly straightforward linear product, with both Ψ(·, ·)

and w literally interpretable as real vectors in some vector space RN .

In supervised machine learning, this parameterization w is learned with the

help of a training set S = {(x1,y1), (x2,y2), . . . , (xn,yn)} ∈ (X × Y)n.

2.1 Structural Support Vector Machines

Suppose that for a given supervised learning task we are attempting to learn some

function hw : X → Y as described above. Suppose further that for our task we

have some loss function ∆ : Y ×Y → R which in principle measures the extent to

which two outputs differ. The intended use of ∆ is to gauge how far any output

differs from some known correct output. Though the exact specification of a loss

is strongly task dependent, a loss ∆ typically has the following characteristics:

1. ∀y ∈ Y , it is the case that ∆(y,y) = 0, that is, an output compared against

itself incurs no loss.

2. ∀y ∈ Y ,∀ŷ ∈ Y \ y, then ∆(y, ŷ) > 0, that is, for unequal outputs, some

loss is incurred.

3. Informally, it is generally desirable that ∆(y, ŷ) ≤ ∆(y, ȳ) for ȳ which would

38

be a worse output than ŷ if y were the correct output. For example, in a

typical sequence tagging task, an output that has a greater proportion of the

sequence labels differing should be greater.

None of these characteristics is, strictly speaking, a requirement, though it is dif-

ficult to imagine many scenarios where violating them would be attractive.

Finally, suppose that in our task, input-output pairs are generated according

to some fixed distribution P (x,y). Then, a possible goal for selecting a hypothesis

hw is one such that risk

RP (hw) =

∫
X×Y

∆(y, hw(x)) dP (x,y) (2.6)

is minimized, e.g., the expected value of the loss ∆ for future inputs is minimized

with the chosen hw. Since P is an unknown distribution and minimizing (2.6) is

consequently impossible, the approach instead is to take a training sample S =

{(xi,yi) ∈ X × Y : i = 1, . . . , n} which we assume is generated i.i.d. according to

P , and approximate RP (hw) with the empirical risk

RS(hw) =
1

n

n∑
i=1

∆(yi, hw(xi)). (2.7)

As we shall see, the structural SVM will optimize a bound on empirical risk subject

to regularization criteria.

2.1.1 Structural SVM Optimization Problem

The structural SVM is a method which attempts to minimize RS(hw). Given a

discriminant function of the form fw(x,y) = 〈w,Ψ(x,y)〉, with hypotheses of the

form hw(x) = argmaxy f(x,y), where hw is a hypothesis parameterized by w (we

39

often just use h for simplicity when which parameterization w is being used is

obvious in context) with training pairs in the form S = {(xi,yi) ∈ X × Y : i =

1, . . . , n}, a hypothesis hw may be learned with this quadratic program:

Optimization Problem 4. (Margin-Scaled Structural SVM QP)

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (2.8)

s.t. ∀i : ξi ≥ 0, (2.9)

∀i,∀y ∈ Y : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+ ∆(yi,y)− ξi (2.10)

Note that the loss ∆(yi,y) of the constraint’s associated output y is incor-

porated as the margin between the discriminant function for the correct output

〈w,Ψ(xi,yi)〉 and the incorrect output y’s discriminant function 〈w,Ψ(xi,y)〉.

There is also an alternate formulation proposed that scales the slack by the loss

instead of the margin, to wit:

Optimization Problem 5. (Slack-Scaled Structural SVM QP)

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi (2.11)

s.t. ∀i : ξi ≥ 0, (2.12)

∀i,∀y ∈ Y : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+ 1− ξi
∆(yi,y)

(2.13)

These optimization problems learn a model which upper bounds empirical risk

RS(hw) as seen in the following theorem.

Theorem 1. (Structural SVM Empirical Risk Bound)

Under either OP 4 or OP 5, let ξ(w) = {ξi : i = 1, . . . , n} be any set of slack

40

variables feasible for any given w. Then

1

n

n∑
i=1

ξi ≥ RS(hw). (2.14)

In other words, the slack term of the optimization problem is C times an

upper bound on empirical risk of the hypotheses parameterized by w. The proof

can be understood by reviewing the constraints in either program: given that

the hypotheses function is of the form hw(x) = argmaxy fw(x,y), any loss in

the empirical risk for a training example (xi,yi) incurred through ∆(yi, hw(xi))

must be the result of fw(xi, hw(xi)) ≥ fw(xi,yi). By working from (2.10) or

(2.13), depending on whether we are using the margin or slack scaled structural

SVM, since there must be a constraint associated with any hw(xi), assuming all

constraints are respected, this means ξi ≥ ∆(y, hw(x)) which, if plugged into (2.7),

results in the desired bound.

For the sake of completeness, it is worth noting that there are two other forms

of the structural SVM optimization problem which instead has a squared slack in

the slack penalty term of the objective function, e.g., an L2 norm instead of the

L1 norm:

Optimization Problem 6. (Margin-Scaled Quadratic Slack Struc-

tural SVM QP)

min
w,ξ

1

2
‖w‖2 +

C

2n

n∑
i=1

ξ2
i (2.15)

s.t. ∀i : ξi ≥ 0, (2.16)

∀i,∀y ∈ Y : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+
√

∆(yi,y)− ξi (2.17)

41

Optimization Problem 7. (Slack-Scaled Quadratic Slack Structural

SVM QP)

min
w,ξ

1

2
‖w‖2 +

C

2n

n∑
i=1

ξ2
i (2.18)

s.t. ∀i : ξi ≥ 0, (2.19)

∀i,∀y ∈ Y : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+ 1− ξi√
∆(yi,y)

(2.20)

Though these L2-slack variants of structural SVMs are an important part of

the work on structural SVMs, they are rarely used in practice, and this work does

not make use of the squared-slack variants.

2.1.2 Cutting Plane Algorithm

The obvious problem with OP 4 and OP 5 is that there are as many constraints

as there are possible labels. In most structural learning problems, the number of

possible labelings of each example, and consequently the number of constraints

required in OP 4 or OP 5, is typically at least exponential in the size of an input

x. For example, in sequence tagging, for a sequence of size m where there are

` possible labels for each sequence item, there would be `m possible labelings for

that sequence.

To take the example more germane to this work, let us consider the case of

clustering for an item set x of size |x| = m. If the number of clusters of our input

is fixed at |y| = k then the number of possible clusterings is km. If the number

of clusters is not fixed then the number of possible clusterings would be given by

the m-th Bell number (without going into details, Bell numbers grow faster than

42

exponential but slower than factorial) [89]. Consequently, we cannot solve either

of these optimization problems directly, despite their desirable properties. The

approach taken by the structural SVM is to employ a cutting plane algorithm to

dynamically generate and introduce violated constraints.

(Structural SVM Cutting Plane Algorithm)

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+〈w,Ψ(xi,y)〉−〈w,Ψ(xi,yi)〉 for margin scaling (OP 4)
6: H(y) ≡ (〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ 1) ∆(yi,y) for slack scaling

(OP 5)
7: compute ŷ = argmaxy∈Y H(y)
8: compute ξi = max{0,maxy∈Si

H(y)}
9: if H(ŷ) > ξi + ε then

10: Si ← Si ∪ {ŷ}
11: w← optimize primal over

⋃
i Si

12: end if
13: end for
14: until no Si has changed during iteration

Algorithm 1: Cutting plane algorithm to solve OP 4 or OP 5.

The cutting plane optimization algorithm is shown in Algorithm 1. To summa-

rize, one would start with an empty set of constraints for each example, iteratively

find the most violated constraint, introduce this constraint into a “working set,”

and reoptimize the quadratic program with this additional constraint [106, 107].

By most violated constraint for training example (xi,yi), we mean the constraint

in the full QP that requires the highest slack ξi. In order to find the example

associated with the most violated constraint, since each individual constraint by

itself requires a slack defined by a cost function H where

H(y) ≡ 〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ ∆(yi,y) (2.21)

43

or, for slack scaling as in OP 5,

H(y) ≡ (〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ 1) ∆(yi,y), (2.22)

it suffices to solve ŷ = argmaxy∈Y H(y). Note that these cost functions H(y) in

(2.21) and (2.22) are derived from solving for the slack ξi in the constraints (2.10)

and (2.13), respectively. Thus, this procedure finds the output associated with

the constraint in the full quadratic program requiring the greatest slack, i.e., the

most violated constraint. If the resulting constraint requires a slack that violates

the current ξi by more than a predefined tolerance ε, then the constraint is added,

and otherwise it is ignored. Upon an iteration where no valid constraint is added,

the algorithm terminates, and of course as the constraint derived was the most

violated constraint, no constraints in the full QP are violated more than ε in this

iterative QP.

2.1.3 Theoretical Properties

This algorithm has several interesting theoretical properties which we present here.

Not only are the properties themselves interesting insofar as they concern the

correctness and practical application of Algorithm 1, but understanding why these

properties are true is also important for understanding the algorithms of Chapter 3

and Chapter 4. In particular, a general understanding of the proofs will be critical

to even a basic understanding of Chapter 5.

One property is that the resulting problem is correct with respect to the full

quadratic problem, and respects the empirical risk bound of Theorem 1 up to

tolerance ε.

44

Theorem 2. (Algorithm 1 Correctness)

By applying Algorithm 1 to solve either OP 4 or OP 5, the final solution w, ξ

from Algorithm 1 will respect all constraints in the corresponding optimization

problem within ε, and have an objective function value that does not exceed that

from the original full problem.

This is easy to see, since if any constraint were violated by more than ε, i.e.,

there is some constraint for example (xi,yi) which requires slack ξ̂i > ξi+ε, then it

must be found and introduced by the algorithm. Further, since Algorithm 1 works

over a subset of constraints relative to the original problems of OP 4 or OP 5, its

objective function value cannot be greater than these original problems since the

optimal solution to OP 4 or OP 5 is at least feasible in Algorithm 1.

Theorem 3. (Algorithm 1 Empirical Risk Bound)

By applying Algorithm 1 to solve either OP 4 or OP 5, let the resulting final

solution’s slack vector be ξ = [ξ1, . . . , ξn]
T . Then

ε+
1

n

n∑
i=1

ξi ≥ RS(hw).

In other words, the slack bound on empirical risk is respected within ε under

Algorithm 1. This is also easy to see. From Theorem 2 we know constraints are

satisfied within ε, so for any slack variable ξi found by Algorithm 1, ξi + ε must be

a feasible slack in the original OP 4 or OP 5, and by working from Theorem 1 we

see the truth of Theorem 3.

Consequently, the solution found by Algorithm 1 must respect the empirical risk

bound within ε. Though this is within a tolerance of ε, as a purely practical matter

45

this tolerance is meaningless since solvers for constrained quadratic problems find

a solution within a certain tolerance anyway.

One of the most important and practically essential properties of this algorithm

is that, despite arising from a quadratic program with typically, in its full form, an

exponential or even infinite number of constraints, this algorithm converges within

a polynomial number of iterations. Put more formally in the language of [107],

Theorem 4. (Algorithm 1 Iteration Complexity)

With R̄ = maxyi,y ‖Ψ(xi,y) −Ψ(xi,yi)‖2, and ∆̄ = maxyi,y ∆(yi,y), and for

a given ε > 0, Algorithm 1 terminates after incrementally adding at most

max

{
2n∆̄

ε
,
8C∆̄R̄2

ε2

}
(2.23)

constraints in the margin scaling case and

max

{
2n∆̄

ε
,
8C∆̄3R̄2

ε2

}
(2.24)

constraints in the slack scaling case.

The proof of this is not as evident as the previous theoretical properties. Ignor-

ing the mathematics, the idea of the proof is based on a few simple observations:

(1) when we start our dual objective is 0 as we have no primal constraints initially,

(2) by adding a constraint only when it is violated by more than ε, we guarantee

that this dual objective must increase by a certain minimum amount, and (3) the

dual objective value is upper bounded by the primal objective value which in turn

is upper bounded by the objective value, corresponding to the trivial feasible point

with w = 0 and the slack variables for each example each set to the maximum

possible loss function value.

46

Some existing applications of structural SVMs of this variety include label

sequence learning, natural language parsing with weighted context free gram-

mars [107], learning alignment models in computational biology [50, 114], collective

classification of a test set allowing for optimization for multivariate performance

measures [51], and learning ranking functions for search engines [115, 116].

2.1.4 1-Slack Structural SVM

A relatively recent advance in structural support vector machines is the 1-slack

structural support vector machine [53]. This is a substantial improvement over the

original structural SVM insofar as the training procedure runs in time linear in the

number of training examples and desired precision. It follows from a reformulation

of the structural SVM quadratic problem which, in effect, “combines” examples in

a training set S = {(x1,y1), . . . , (xn,yn)} into a single training example. In such

a case, there is not a slack vector ξ = ξ1, . . . , ξn for every training example, but

rather a single scalar slack variable ξ, hence it being termed the 1-slack variant.

Optimization Problem 8. (1-Slack Margin-Scaled Structural SVM

QP)

min
w,ξ

1

2
‖w‖2 + Cξ (2.25)

s.t. ∀i : ξi ≥ 0, (2.26)

∀(ȳ1, . . . , ȳn) ∈ Yn :

〈
w,

1

n

n∑
i=1

Ψ(xi,yi)

〉

≥

〈
w,

1

n

n∑
i=1

Ψ(xi, ȳi)

〉
+

1

n

n∑
i=1

∆(yi, ȳi)− ξ (2.27)

47

Optimization Problem 9. (1-Slack Slack-Scaled Structural SVM QP)

min
w,ξ

1

2
‖w‖2 + Cξ (2.28)

s.t. ∀i : ξi ≥ 0, (2.29)

∀(ȳ1, . . . , ȳn) ∈ Yn :

〈
w,

1

n

n∑
i=1

∆(yi, ȳi)Ψ(xi,yi)

〉

≥

〈
w,

1

n

n∑
i=1

∆(yi, ȳi)Ψ(xi, ȳi)

〉
+

1

n

n∑
i=1

∆(yi, ȳi)− ξ (2.30)

The general idea of OP 8 and OP 9 is that there is a constraint for every single

combination of outputs across all training examples. This is in contrast to OP 4

and OP 5, which has a family of constraints for each training example, with one

constraint per example per output. We can make similar theoretical statements

about this formulation.

Theorem 5. (Equivalence of OP 4 with OP 8, and OP 5 with OP 9)

Any solution (w∗, ξ∗) of OP 8 or OP 9 has an analogous solution (w∗, ξ0) of

OP 4 or OP 5, respectively, with the ξ∗ = 1
n
‖ξ0‖1 (and vice versa).

The general idea of the proof in [53] works by arguing through straightforward

algebraic manipulation that for any given w, the required slack scalar variable ξ

in OP 8 or OP 9 and the required slack vector variable ξ in OP 4 or OP 5 related

through ξ = 1
n
‖ξ‖1 lead to the same objective function value in all optimization

problems, and consequently the two have the same optima.

In Algorithm 2, we present a cutting plane algorithm, analogous to Algorithm 1,

to solve either OP 8 or OP 9. As with Algorithm 1, this cutting plane algorithm

correctly solves OP 8 or OP 9 up to a tolereance ε.

48

(1-Slack Structural SVM Cutting Plane Algorithm)

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: S ← ∅
3: for i = 1, . . . , n do
4: {set up cost functions}
5: Hi(y) ≡ ∆(yi,y) + 〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉 for margin scaling (OP 8)
6: Hi(y) ≡ (〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ 1) ∆(yi,y) for slack scaling

(OP 9)
7: end for
8: repeat
9: for i = 1, . . . , n do

10: compute ŷi = argmaxy∈Y Hi(y)
11: end for
12: compute ξ = 1

n
max(ȳ1,...,ȳn)∈S

∑n
i=1 max(0, Hi(ȳi))

13: if 1
n

∑n
i=1Hi(ŷi) > ξ + ε then

14: S ← S ∪ {(ŷ1, . . . , ŷn)}
15: w← optimize primal over S
16: end if
17: until S has not changed during iteration

Algorithm 2: Cutting plane algorithm to solve the 1-slack structural SVM
OP 8 or OP 9.

Theorem 6. (Algorithm 2 Correctness)

For any training set S = {(x1,y1), . . . , (xn,yn)} and ε > 0, Algorithm 2 returns

a solution (w, ξ) with a better objective function value than the optimal (w∗, ξ∗)

for OP 8 (or OP 9), and for which (w, ξ + ε) is feasible in OP 8 (or OP 9).

Theorem 7. (Algorithm 2 Iteration Complexity)

With R̄ = maxyi,y ‖Ψ(xi,y) − Ψ(xi,yi)‖2, and ∆̄ = maxyi,y ∆(yi,y),

and for any 0 < C, tolerance 0 < ε < 4R̄2C, and training sample S =

{(x1,y1), . . . , (xn,yn)}, Algorithm 2 terminates after at most⌈
log2

(
∆̄

4R̄2C

)⌉
+

⌈
16R̄2C

ε

⌉
(2.31)

49

iterations for the margin-scaled variant of Algorithm 2, or⌈
log2

(
1

4R̄2∆̄C

)⌉
+

⌈
16R̄2∆̄2C

ε

⌉
(2.32)

iterations for the slack-scaled variant of Algorithm 2.

At first glance, this may seem like little more than an interesting but undesirable

transformation, as OP 8 or OP 9 requires a great many more constraints, roughly

|Y|n instead of n|Y|. However, theoretical results of [53] show this formulation is

relatively sparse in the dual SVM problem, dual solution density being independent

of training sample size. Importantly, note Theorem 7’s independence on training

set size n, versus the analogous Theorem 4 for Algorithm 1. In the case of learning

linear parameterizations w, which covers much of the work in structured prediction,

including the work in this thesis, the resulting training procedure is linear in the

number of training examples. When learning a linear model parameterization w,

the training procedure is extraordinarily faster. Detailed theoretical and empirical

analyses appear in [52, 53].

This one-slack formulation has substantial theoretical and practical advantages,

and is closer to the actual implementation of the structural SVM as used in much

of this thesis. However, owing to the greater intuitive appeal of the original for-

mulation, we still use the original structural SVM formulation as it appears in

OP 4, OP 5, and Algorithm 1 in our discussions. Due to the equivalence of the

two programs, identical requirements for practitioners to exploit either structural

learning algorithm, and the similarity of the theoretical results, we can hold such

discussions without too many compromises. When appropriate or relevant, we will

clarify which variant is being used in actual practice.

50

2.1.5 Approximations in Structural SVMs

The theoretical results of Section 2.1.3 and Section 2.1.4 give us confidence in

applying structural support vector machines to structured prediction problems, but

they rely upon the separation oracle argmaxyH(y) being tractable, i.e., we can find

the most violated constraint. However, in some structured prediction problems,

particularly those where the prediction problem is intractable, we can no longer

guarantee a tractable argmaxyH(y). Without this guarantee, many of the existing

proofs of the theoretical properties no longer hold. However, as we shall see in the

proposed frameworks of Chapter 3 and Chapter 4, these methods still produce

desirable results empirically, and we shall treat the problem of approximations

and structural SVMs in great detail in Chapter 5.

2.2 Maximum Margin Markov Networks

Maximum margin Markov networks (M3N) represent a different approach to solve

the structural SVM quadratic program in OP 4 [104]. In order to achieve tractabil-

ity, it restricts its attention to a significant subcase of structural learning: super-

vised learning over Markov networks. In a Markov network, we have an undirected

graph G = (V,E) with each node in V corresponding to one in a set of random

variables X, and an edge {u, v} ∈ E representing a dependency between the vari-

ables u and v, and a collection of non-negative potential functions φk for each

clique k in G. The joint distribution of the network is given as

P (X = x) =
1

Z

∏
k∈cliques(G)

φk(x{k}) (2.33)

51

where Z is the normalizing partition function so that the sum of the probabilities

of all different assignments to X sums to 1, specifically:

Z =
∑
x̂

 ∏
k∈cliques(G)

φk(x̂{k})

 (2.34)

where x̂ is enumerated over all possible assignments to x̂. Let us further suppose

that all potential functions φk in log space take the form of

log φk(x{k}) =
〈
w, ψ(k, x{k})

〉
(2.35)

where w is some weight vector shared amongst all the potential functions, and

ψ is a function taking two inputs: the clique k, and values for the variables in

the clique x{k}. Naturally, when one does induction over this structure to assign

values to variables given a network with potentials, one is interested in finding

argmaxx P (X = x).

To give the common canonical example, for the problem of part-of-speech tag-

ging with a standard sequence tagger, the nodes V would represent words in a

sentence, edges would exist between adjacent words in the sentence, the variable

assignments to X would represent the part of speech assigned to each word, and

the ψ(k, x{k}) would, in the typical implementation, select out the weights in w rel-

evant to the likelihood that the words in k would have the parts of speech indicated

by x{k} and that these two parts of speech would be adjacent.

In this formulation, the familiar x,y input-output pairs are of the form where

x represents some structure from which one may induce a Markov network (e.g.,

the sequence of words in a sentence x inducing a chain Markov network of the

same length), and the y represents the variable assignments in that network. Let

us restrict our attention to pairwise Markov networks for now (i.e., all cliques are

edges). Then, for an input pattern x inducing a graph structure Gx = (Vx, Ex),

52

recall that the potential for the edge {i, j} ∈ Ex with corresponding variable

assignments yi, yj is φ{i,j} = exp [〈w, ψ(i, j, yi, yj)〉], with the overall distribution

P (y|x) =
1

Z
exp

 ∑
{i,j}∈Ex

〈w, ψ(i, j, yi, yj)〉

 =
1

Z
exp [〈w,Ψ(x,y)〉] . (2.36)

In the language of the structural SVM, the Ψ(x,y) =
∑

{i,j}∈Ex
ψ(i, j, yi, yj), with

the log probability given as

logP (y|x) = − logZ +

 ∑
{i,j}∈Ex

〈w, ψ(i, j, yi, yj)〉

 = − logZ + 〈w,Ψ(x,y)〉 ,

(2.37)

so our hypothesis as in the case of the structural SVM is of the form hw(x) =

argmaxy 〈w,Ψ(x,y)〉.

Unlike structural SVMs, M3Ns require a loss function ∆(y, ŷ), which decom-

poses over elements in y and ŷ. As Ψ is a sum of local feature functions ψ, for a

given input pattern x, ∆ becomes a sum of local losses δ over all vertices i ∈ Vx,

with

∆(y, ŷ) =
∑
i∈Vx

δ(i, yi, ŷi) (2.38)

as the proportion of predictions within y and ŷ that differ between teh two inputs,

that is, δ(i, yi, ŷi) = 1
|Vx|1yi=ŷi

, where 1· is the indicator function returning 1 or 0

if its input is true or false, respectively.

In the full structural SVM quadratic program, we have one dual variable αx(y)

for every wrong labeling y of every example x. While the work of [106] deals with

this exponentially sized body of constraints by iteratively selecting and introducing

the dual variables associated with the most violated constraint, in contrast, the

work of [104] takes advantage of the special structure of the Markov network and re-

formulates the dual program with “marginal” dual variables µx(yi) =
∑

y∼[yi]
αx(y)

53

and µx(yi, yj) =
∑

y∼[yi,yj]
αx(y). Here, y ∼ [yi, yj] denotes the set of all labelings

y with the variable assignments yi, yj in positions i, j, respectively. Given our

training set S, we can then pose an alternate dual quadratic program as follows:

max
∑

(xi,yi)∈S

∑
u∈Vx

∑
yu

µxi
(yu)δ(u, yiu, yu)

−1

2

∑
(xi,yi),

(xj ,yj)∈S

∑
(u,v)∈Exi
yu,yv

∑
(r,s)∈Exj
yr,ys

µxi
(yu, yv)µxj

(yr, ys) 〈ψ(u, v, yu, yv), ψ(r, s, yr, ys)〉

s.t.
∑

yu
µx(yu, yv) = µx(yv),

∑
yu
µx(yu) = C, µx(yu, yv) ≥ 0

.

In this formulation, we now have a number of dual variables polynomial in the

length of the sequences and number of possible local labelings, and in the event

where the Markov networks together form a forest, this formulation reaches the

same solution as the original structural quadratic program.

In the event where one has 3-cliques, one can introduce even more marginal

dual variables defined over these cliques, and with loops, one can “triangularize”

the dependency graph. Of course, triangularization and subsequent introduction

of 3-clique dual variables leads to an exponential number of dual variables in the

size of both loops and cliques, but on certain classes of problems, the loops and

cliques are small enough so that this is a reasonable suggestion. However, in a case

where the graphical model holds a larger clique, or a very large loop as is common

in some applications, the number of variables required in the optimization problem

can become very large to the point where solving the problem becomes intractable.

The suggestion in this intractable case is to simply solve the QP with its pair-

wise marginal dual variables, as a “relaxed” version of the full problem, e.g., ignore

any loops and just focus on enforcing local consistency. Though the theoretical

guarantees of equivalence to OP 4 no longer hold, they empirically demonstrate the

effectiveness of this method on the WebKB data [104]. In this problem each node

54

represents a web page, and each edge represents a link between the two pages. The

web pages do not comprise a tree nor a graph that can be tractably triangularized,

so the collective classification of the web pages relies upon the workings of this

relaxation.

Closely related work features a grid Markov Random Field employed to segment

3D scan data, with model parameters used through a max margin framework [4].

In this work, they take the original OP 4. They reformulate the “family” of linear

constraints consisting of a single constraint for each possible wrong answer

∀i,∀y ∈ Y \ yi : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+ ∆(yi,y)− ξi (2.39)

and reformlate it into the single non-linear constraint

∀i : 〈w,Ψ(xi,yi)〉+ ξi ≥ max
y∈Y\yi

(〈w,Ψ(xi,y)〉+ ∆(yi,y)) (2.40)

This constraint has the inference procedure in the maximization term. In this

case, the maximization procedure for the Markov random field can be shown to be

equivalent to an integer linear program, which is relaxed to a real LP. By “fold-

ing” this LP back into the non-linear term of the constraint, with some algebraic

manipulation the authors derive a modified quadratic program that implicitly has

the non-linear constraint. Of course, a real relaxation to compute this max term

would produce an answer greater than or equal to the original integer linear pro-

gram, leading to a QP possibly “overconstrained” with respect to OP 4. Though

used specifically for the scan segmentation problem setting, this “folding” strategy

could be used in any structural learning problem with an inference mechanism that

can be expressed as a linear program, in line with [103]. Mathematically speaking,

the resulting learning algorithm should be mathematically equivalent to our learn-

ing method for the special case where the separation oracle is computed though a

linear-program.

55

Some applications that utilize methods derived from M3N include sequence

tagging [104], image segmentation [4], alignment models for translation [63, 70],

and general translation [69].

Related to M3N networks are maximum margin Bayesian networks [44]. Such

methods based on directed models must satisfy normalization constraints that

M3N’s, based on undirected Markov fields, need not obey, i.e., some of the probabil-

ities must sum to 1. Though with general network topologies parameter inference

in training and inference with the models is approximate, they do show improved

performance when the directedness of the model encodes valuable information.

2.3 Search and Learn (SEARN)

Recall that the basic idea behind OP 4 as used in both structural SVMs and M3Ns

is, loosely, for each training example (x,y) to make the discriminant function f

for the correct output greater than the discriminant function for any incorrect

output ŷ so that f(xi,yi) > f(xi, ŷ). Obviously, in the exact case where our

problem setting allows non-approximate inference method which can exactly solve

h(x) = argmaxy∈Y f(x,y) to find the maximizing y, this will minimize empirical

risk on the training sample.

There are two major problems that arise in the inexact case. First, in the

work in the structural SVM and the M3N, we observe that it is often no longer

possible to ensure that the discriminant function f is maximized for correct inputs

versus incorrect inputs. Second, if the inference procedure used in computing

argmaxy∈Y f(x,y) is no longer tractable, even in cases where we can solve the first

problem to our satisfaction, merely ensuring that f is maximized for correct inputs

56

versus incorrect inputs no longer has any guarantee of minimizing empirical risk!

Consider, for example, some inference procedure in h that works via greedy

search, with straightforward local decisions in attempting to approximate a max-

imizing argument y for f(x,y). We could definitely have the situation where the

desirable output yopt maxmizes f , but that h will instead find some suboptimal ȳ

with f(x, ȳ) < f(x,yopt) through convergence to a local minimum. However, it is

also possible that if our learning procedure had been, in some sense, aware of the

local decisions in the greedy algorithm, then a different parameterization w of f

could have been found that would have led the local decisions to a final output of

yopt.

Recent work by Daumé, called SEARN (a portmanteau of “search” and “learn”),

implicitly incorporates information about inexact inference processes capable as be-

ing phrased as a form of greedy or beam search into the training method [27, 28, 29].

Though primarily motivated as a way to simplify and speed structural predictors

and training, this may also provide benefits over other methods that have no con-

sideration for the particular eccentricities of an inexact inference process.

It is important to note that the SEARN system is not limited in application to

inexact inference methods (though inexact inference is what is primarily covered in

its introductory literature, as the search in the provided examples is greedy), nor

does the underlying learner have to be an SVM or any of its derivatives. One may

apply it to any structured prediction problem which can be phrased as a search

problem, the search can be any beam search, and make use of any multiclass

classifier.

The method works by rephrasing the structured prediction problem as a search

57

problem. The search moves from state to state by means of a policy, and at the

end of the search one has a “state” representing a complete structured predic-

tion. For example, to take a simple example of NLP tagging, one may have states

(x, ŷ1:t−1) consisting of the input sequence of words in the sentence x, a sequence

ŷ1:t−1 = ŷ1, . . . , ŷt−1 of already tagged words, and the “policy” (in reality a multi-

class classifier) of finding the next state (x, ŷ1:t) where the word at position t now

has its tag ŷt. (One may view a maximum entropy Markov model [74] for sequence

prediction as a very special restricted case of a SEARN learner.)

As the learning algorithm focuses on training a model parameterization to

make local decisions that lead to the correct global output, it is, in some sense,

integrated into the search procedure, so it has the potential to be sensitive to

peculiar tendencies of a method to fall into local minima.

2.4 Conditional Random Fields

Conditional random fields (CRFs) share similarities with M3N learning, in that

both are intended for the class of problem where, given an input pattern x, one

finds a labeling y of nodes in a probabilistic graphical model [64, 109].

Given an input x ∈ X and an output y ∈ Y , we have the following w param-

eterized distribution for the probability of y given x. (Note that this form is the

same as the M3N conditional distribution of (2.36).)

P (y|x;w) = exp [〈w,Ψ(x,y)〉 − z(w|x)] (2.41)

Note that Ψ retains a very similar meaning as in the M3N network, in that Ψ(x,y)

is the sum of feature vectors for all cliques k in the underlying graphical model G

58

for which we are finding the node labels y, so

Ψ(x,y) =
∑

k∈cliques(G)

ψ(x,y{k}) (2.42)

Here, y{k} represents the label configuration in y for the nodes in clique k. The

value of the clique potential function for a clique k is therefore
〈
w, ψ(x,y{k})

〉
Further, similar to the Z normalizing constant in the M3N conditional distribution,

we have the log partition function

z(w|x) = log

[∑
ŷ

exp [〈w,Ψ(xi, ŷi)〉]

]
(2.43)

With this conditional probability for P (y|x;w), we may write the conditional

likelihood of the entire training sample S = ((x1,y1), (x2,y2), . . . , (xn,yn)) with

x[S] = x1,x2, . . . ,xn and y[S] = y1,y2, . . . ,yn as

P (y[S]|x[S];w) =
n∏
i=1

P (yi|xi;w) = exp

[
n∑
i=1

〈w,Ψ(xi,yi)〉 − z(w|xi)

]
(2.44)

Where a CRF differs substantially from the M3N method is that instead of learning

the parameters w with an aim of maximizing margin, what the goal is instead is

to find the most likely parameterization w of the model given the training set S,

to wit:

P (w|x[S],y[S]) = P (w)P (y[S]|x[S],w) (2.45)

For their prior distribution over the parameters, they choose a zero mean Gaussian

P (w) ∝ exp
[
− 1

2σ2‖w‖2
]
. The goal in training is to find the most likely parame-

terization w∗ given the training sample S (i.e., the posterior of the parameters),

specifically:

w∗ = argmax
w

P (w|x[S],y[S]) (2.46)

How can we calculate this? Note that according to Bayes’ rule,

P (w|x[S],y[S]) ∝ P (w)P (y[S]|x[S];w) (2.47)

59

Let L(w) be the negative log-posterior of the parameters w, specifically:

L(w) = − logP (w|x[S],y[S]) + (some constant) (2.48)

=
‖w‖2

2σ2
−

n∑
i=1

[〈w,Ψ(xi,yi)〉 − z(w|xi)] (2.49)

As L(w) is the negative log of the posterior, we can maximize this posterior by

finding w that minimizes L(w).

The method of minimization employed in CRF training is typically some form

of gradient descent on L. The gradient is given as

δ

δw
L(w) =

w

σ2
−

n∑
i=1

Ψ(xi,yi)−

E︷ ︸︸ ︷∑
y∈Y

P (y|xi;w)Ψ(xi,y)

 (2.50)

The interesting portion of computing the gradient at each step is the term labeled

E. This sum may be computed in time exponential in the size of the largest clique

in the optimally triangularized version of the underlying graphical model G. This

marginal term is calculated through the sum/product belief propagation algorithm.

This requirement of a marginal over all possible outputs is a weakness of CRFs.

In the case of graphical models, we have the sum-product algorithm to compute

this marginal, but in other applications, computing a function over all possible

inputs may be either intractable, or add complexity to the learning procedure, as

it requires another algorithm aside from the inference step.

In the case of graphical models, the sum
∑

y∈Y P (y|xi;w)Ψ(xi,y) in (2.50) may

be computed in time exponential in the size of the largest clique in the optimally

triangularized version of the underlying graphical model G. Chains and trees have

maximal clique size of 2, but in cases where G has large cliques or loops it will no

longer be tractable to do exact computation of the E term. For example, in the

case where G takes the form of a grid or lattice (as is common in image processing

60

applications, for example), exact computation of E for the gradient is no longer

possible.

In the case when G is not a general graphical model, one typically employs

some form of approximation in computing this gradient, leading to approximate

training of model parameters. In [109], a stochastic gradient descent method is

employed which makes use of approximations of the gradient. [47] also uses gra-

dient descent, utilizing contrastive divergence [48] to approximate the gradient in

computing the step at each iteration. Bayesian CRFs, a method closely related to

CRFs, in training utilizes an approximation of the posterior of the model param-

eters [85]. Discriminative random fields, another method closely related to CRFs,

uses psuedolikelihood to estimate model parameters [61, 62].

Another interesting innovation relating to conditional random fields is that

it might even be possible for a learning method based on approximate inference

to, in some cases, do better than a CRF model built for exact inference, with a

locally trained model giving better sequence predictions. In particular, a CRF that

is trained in a piecewise fashion in some cases appears to perform better than a

globally trained CRF [101]. The ability of a locally and, in some sense, “inexactly”

trained sequence model to perform comparably to globally trained models was a

feature in [84, 92] as well.

In particular, in [92] is a paper about the use of CRFs for sequence predic-

tions in the case where one has constraints on the output that one knows a priori.

For example, consider a simple semantic role labeling task, where one has a sen-

tence and wishes to discover the verb-argument structure, where each “verb” has

a single argument, and each argument itself is one of several types. Then one can

have constraints difficult or impossible to include in standard Viterbi: for exam-

61

ple, one would want exactly one argument label, the active verb is provided as

input, various verbs disallow certain types of arguments from being used, etc. The

suggestion is to phrase the Viterbi sequence inference procedure as instead being

an instance of an integer linear program. The flexibility of being an ILP allows

them to include a more general class of constraints than can be accommodated by

a Viterbi like algorithm. The paper is interesting and relevant to this work in two

respects. First, the constrained inference procedure is not used in training, leading

to a machine learning procedure which is, in some respect, “relaxed,” as the eval-

uation inference mechanism differs, in some sense, from the inference mechanism

for which the training algorithm is trying to optimize. Instead of training for a

constrained sequence predictor, they train the model as a vanilla CRF for an un-

constrained sequence predictor. Second, going even further, they utilize a training

method which does not learn a model as a sequence at all, i.e., effectively just

learning a multiclass classifier. Performance of the purely locally trained model

without the ILP constraints is quite low, though with the inclusion of constraints

the performance rises rapidly, even to the point of exceeding the performance of

the “properly” globally trained model once all constraints are active.

2.5 Local Learning, Global Inference

There is also considerable work on models which are trained locally, but used

to perform some global inference task. The primary thrust of the University of

Illinois at Urbana-Champaign (UIUC) Cognitive Computation Group (CCG) led

by Dan Roth is to apply machine learning techniques for reasoning and inference

over natural language in a unified fashion. However, “unified” should not be taken

to mean “non-modular,” in contrast to other work that attempts to learn a truly

62

single “end to end” classifier without reliance upon a pipeline. What do we mean

by a pipeline? Suppose one wants to do semantic role labeling on text as a small

part of a larger information retrieval system, where various phrases are labeled

according to what “role,” they play in the sentence, that is, for “Anne saw Bob,”

we have “Anne” as the subject noun, “saw” is the action, and “Bob” is the object.

What modules can we break this down into? We have POS tagging, which supports

attempts to build a parse tree, which further support word sense disambiguation,

which in turn supports semantic role labeling. While a somewhat more modern

and fashionable approach might be to go directly from text to SRL outputs in

a single learning framework with almost no intermediate representation, papers

from the CCG quite typically employ subinference modules trained locally, but

during inference these modules are arranged in a pipeline, and the outputs of

these modules are selected with an aim of increasing global pipeline performance.

This allows interactions among these modules up and down the pipeline. This

practice of locally trained models combined together to perform inference, often

in the form of a pipeline, is a theme endemic throughout a great deal of the CCG

work [90, 82, 83, 84, 91]. This is in contrast to typical pipelined module framework

which takes each successive stage of the pipeline as “correct” input for the next

stage of the pipeline, leading to increased compounding of errors. This body of

work may be viewed as a situation where inference could be exact (though as a

practical nature it is not), but the learning process is approximate in that the

individual pipeline elements are trained only locally.

63

2.6 Summary

This section introduced structured machine learning, the field of learning param-

eterizations for functions h : X → Y where X and Y could be complex structured

inputs and outputs. This is in contrast to, for instance, the common task of binary

classification with Y = {−1,+1}. However, machine learning can be applied to

far more sophisticated functions which can output, for instance, output sequence

labels, or parse trees for sentences, translations for sentences, or even clusterings

for a given set of items, tasks where structured prediction methods have been

successful. This chapter summarized the major discriminative structured predic-

tion frameworks, including conditional random fields, maximum margin Markov

networks, but in most detail the structural support vector machine.

The structural support vector machine learner learns a parameterization w for

a hypothesis function hw : X → Y which can be phrased in terms of maximizing

some w-parameterized discriminant function fw : X × Y → R, i.e., hw(x) =

argmaxy∈Y fw(x,y). To find this parameterization, the structural SVM utilizes a

quadratic problem with many constraints for each training example (xi,yi) ∈ S for

a training set S, such that the discriminant function of the correct output fw(xi,yi)

is separated from that of any incorrect output fw(xi,y). In the margin scaling

variant this separation must be at least the loss ∆(yi,y) between the two with any

violation punished with a slack variable. In the slack scaling variant, the separation

must be 1, but the slack variable is scaled by ∆(yi,y) to punish violations of high

loss examples more severely. Since this requires constraints for every possible wrong

output, a cutting plane algorithm iteratively finds and introduces the most violated

constraint until convergence. The algorithm is demonstrably correct theoretically,

and terminates in a polynomial number of iterations. These methods will form the

64

basis for the methods in Chapter 3 and Chapter 4 for learning parameterizations

for correlation clustering, k-means clustering, and spectral clustering.

65

CHAPTER 3

SUPERVISED CORRELATION CLUSTERING

Clustering techniques are often leveraged for any application where we wish to

group sets of items. For example, in the noun-phrase coreference task, a single

document’s noun-phrases are clustered by which noun-phrases refer to the same

entity [77], and in news article clustering, a single day’s worth of news articles

are clustered by topic [40]. However, it is often difficult to make these cluster-

ing methods produce desirable clusterings. Chapter 1 introduced the notion of

supervised clustering, where a clustering algorithm is parameterized to produce

desirable clusterings.

This chapter provides a supervised clustering method for correlation cluster-

ing [7, 33]. Correlation clustering’s goal is to, given an item x, find the clustering y

which maximizes the sum of all pairwise similarities of items xi, xj ∈ x in the same

cluster in y. The attraction of correlation clustering lies in its ability to choose the

number of clusters, its simplicity, and, though finding the optimal clustering under

the correlation clustering criteria is an NP-hard problem, the clustering solution

can be approximated efficiently.

The supervised correlation clustering method, based on the structural SVM

learning methods of Section 2.1, parameterizes the pairwise similarity through su-

pervised learning. By changing the parameterization, we change which clustering

is optimal under the correlation clustering criteria. The supervision takes the form

of a training set, where users provide complete clusterings of a few of these sets to

express their preferences, e.g., provide a few complete clusterings of several docu-

ments’ noun-phrases, or several days’ news articles. From these training examples,

we learn a function to cluster future item sets using the learning techniques de-

66

scribed in Section 2.1. We derive a method based on these techniques that learns

an item-pair similarity measure as described in Section 1.2. The method we derive

is capable of directly optimizing correlation clustering performance for multiple

problem specific loss functions, and is computationally efficient.

To review the basic supervised clustering learning problem, the method receives

a set S of n training examples S = {(x1,y1), . . . , (xn,yn)} ∈ (X × Y)n, all drawn

i.i.d. from some distribution P (X, Y), with the random variables X and Y taking

values from the set X and Y respectively. X is the set of all possible sets of items

and Y is the set of all possible clusterings (partitionings) of these sets. For any

(x,y), x = {x1, x2, . . . , xm} is a set of m items, and y = {y1, y2, . . . , yc} with yi ⊆ x

is the partitioning of x into c clusters. The goal is to learn a clustering function

hw : X → Y that can accurately cluster new sets of items.

Given a loss function that compares two clusterings ∆ : Y × Y → R, the

training error for a clustering function hw on an example (x,y) is ∆(hw(x),y).

The goal is to find hw to minimize risk ErrP (hw) =
∫
X×Y ∆(hw(x),y) dP (x,y),

which we instead approximate by empirical risk ErrS(hw) = 1
n

∑n
i=1 ∆(hw(xi),yi)

since the distribution P (x,y) is unknown.

The approach taken here is to modify the similarity measure to encourage

parameterizations w of our correlation clustering function hw so it performs well

under ∆. Modifying the similarity measure has some intuitive appeal: if you want

news articles clustered by topic, a great clustering method using author similarity

will probably produce worse results than a mediocre clustering method using topic

similarity.

67

9 -9 1 -7 -5 -2 -6 -8

7 9 -8 -3 -4 8 -6

9 -4 -3 -4 -9 -5

-8 -4 -9 -9 -3

b c d e f g h i

4 7 -3 -6

6 -6 -5

-8 -4

4

a

b

c

d

e

f

g

h

Figure 3.1: Correlation clustering on a matrix of similarities for items xa
through xi, where shaded boxes indicate that a pair is considered
to be in the same cluster. This represents the “optimal” cluster-
ing, e.g., xa through xd are joined, xe through xg are joined, and
xh and xi are joined.

3.1 Correlation Clustering

For our clustering method, we use correlation clustering [7, 33]. The ideal cor-

relation clustering of a set of items x is the clustering y maximizing the sum of

similarities for item pairs in the same cluster, where K is a matrix of pairwise

similarities. The objective function f : X × Y → R is

f(x,y) =
∑
y∈y

∑
xi,xj∈y

Ki,j (3.1)

with the ideal correlation clustering is the maximizing y for this objective function,

that is, argmaxy f(x,y).

Bansal et al. [7] originally introduced correlation clustering where all elements

Kij ∈ {−1,+1}, Joachims and Hopcroft [54] considered the case where Kij ∈

{−1, 0,+1}, but we consider the more general correlation clustering whereKij ∈ R,

a setting also explored by other authors [33, 102]. As shown in Figure 3.1, pairs

considered dissimilar can appear in the same cluster if the net effect of including

68

them is positive (e.g., xa and xc, despite having a negative similarity Kac = −9,

are joined in the optimal clustering), and pairs considered similar should not be

in the same cluster if the net effect of including them is negative (e.g., xb and xh,

despite having similarity Kbh = 8, are not joined in the optimal clustering).

Correlation clustering could be optimized through many means, but we first

consider a very simple greedy algorithm given in Algorithm 3. This algorithm starts

with a trivial partition y with each item of the input set x in its own cluster, and

iteratively joins the two clusters in y that most increase the correlation clustering

objective function, until no joining will increase the correlation clustering objective

function or there is nothing to join.

(Greedy Correlation Clustering)

1: Input: An input set of items x, inferring similarity matrix K ∈ R|x|×|x|

2: y← {{xi} : xi ∈ x}
3: let Merge(y, y, y′) ≡ (y \ {y, y′}) ∪ {y ∪ y′}
4: repeat
5: ȳ, ȳ′ ← argmaxy,y′∈y:y 6=y′

∑
xi∈y

∑
xj∈y′ K(i, j)

6: if
∑

xi∈ȳ
∑

xj∈ȳ′ K(i, j) > 0 then

7: y←Merge(y, ȳ, ȳ′)
8: end if
9: until y has not changed during an iteration, or |y| = 1

10: return y

Algorithm 3: A greedy approximation to correlation clustering.

An alternative to simple greedy approximation is a real relaxation approxima-

tion, either in the form of a linear [33] or semidefinite program [102]. We use a

linear program equivalent to work appearing in [33]. In the linear program, each

pair of items xi, xj ∈ x has a corresponding variable eij indicating the degree

to which xi and xj are in the same cluster. For all the eij variables which we

collectively term e, the program is:

69

Optimization Problem 10. (Relaxed Correlation Clustering)

max
e

∑
eij∈e

eij ·Kij (3.2)

s.t. eij ∈ [0, 1], eij = eji, eij ≥ ejk + eik − 1. (3.3)

By itself this relaxation does not produce a clustering since the eij may be

fractional, but techniques exist for deriving a proper partitioning [33, 102].

We have defined correlation clustering and algorithms and methods to provide

an approximate correlation clustering y given a set of items x. We next discuss

how to parameterize correlation clustering with the structural SVM.

3.2 Supervised Correlation Clustering with SVMs

This section describes our supervised correlation clustering algorithm. We define

our model, summarize the structural SVM algorithm [106, 107], and then describe

how to adapt the algorithm to clustering. We begin to describe how to apply struc-

tural SVMs to the problem of supervised correlation clustering, by first phrasing

the supervised correlation clustering problem in terms of a structural SVM. We

refer to the resulting method as SVM-CC (SVM supervised correlation clustering).

Our supervised correlation clustering method will modify the similarity mea-

sure so that the correlation clustering method presented in Section 3.1 produces

desirable clusterings. Recall that our similarity matrix Kw, which we now sup-

pose is parameterized by w, has entries corresponding to the similarity of pairs of

items. This similarity is a real number indicating how similar the corresponding

70

pair is; positive values indicate the pair is alike and should be clustered, whereas

negative values indicate negative evidence for co-cluster membership. Our choice

of parameterization is to let each pair of different items xi, xj ∈ x have a feature

vector ψ(xi, xj) ≡ ψi,j to describe the pair. The entry in the similarity matrix K

is then Kw(i, j) = 〈w, ψi,j〉.

How can we learn this parameterization? The structural SVM algorithm de-

scribed in Section 2.1 provides a general framework for learning functions with

complex structured output spaces [106, 107]. In order to phrase supervised corre-

lation clustering as a structural SVM problem as shown in OP 4 or OP 5, we must

first devise an appropriate ∆(y, ŷ) function to indicate how “different” cluster-

ings are from each other, as well as come up with an appropriate Ψ(x,y) feature

function to relate input sets x and output clusterings y in such a fashion that the

〈w,Ψ(x,y)〉 is equivalent to the w-parameterized correlation clustering objective

function fw(x,y).

∆(y, ŷ) indicates a non-negative real-valued loss between a true cluster y and

a predicted cluster ŷ. ∆(y, ŷ) = 0 if y = ŷ, and ∆ rises as the two clusters

become more dissimilar. In our experimental section we use two loss functions ∆:

a loss based on the MITRE precision and recall score for noun-phrase coreference,

and a “pairwise” loss that counts the number of pairwise cluster relationships the

clusterings disagree on. More details of these loss functions appear in Section 3.3.

We must also phrase our w-parameterized discriminant function fw(x,y) of

(3.1) as

fw(x,y) = 〈w,Ψ(x,y)〉 (3.4)

as shown in Section 2.1. We can rewrite the correlation clustering objective func-

71

tion f(x,y) of (3.1) as follows:

fw(x,y) =
∑
y∈y

∑
xi,xj∈y

Kw(i, j) (3.5)

=
∑
y∈y

∑
xi,xj∈y

〈w, ψ(xi, xj)〉 (3.6)

=

〈
w,

∑
y∈y

∑
xi,xj∈y

ψ(xi, xj)

〉 . (3.7)

The objective function is an inner product of our parameterization w, and a sum of

ψ vectors. So, if we begin working from (3.7), we can derive the Ψ(x,y) combined

feature function of the input x and output y as

Ψ(x,y) =
1

|x|2
∑
y∈y

∑
xi,xj∈y

ψ(xi, xj) (3.8)

Since fw(x,y) = 〈w,Ψ(x,y)〉 is the correlation clustering objective, we may phrase

a w-parameterized correlation clustering for a set of items x as follows, with Ψ

taking the form given in (3.8):

hw(x) = argmax
y

fw(x,y) = argmax
y
〈w,Ψ(x,y)〉 (3.9)

In terms of the structural SVM formulations in terms of OP 4, by phrasing

correlation clustering in this fashion we may apply the program to find a w such

that, for every training example (xi,yi), and every possible wrong clustering y,

we will have SVM-CC find the vector w to make the value of the objective for

the correct clustering be greater than the value of the objective for this incorrect

clustering by at least a margin of the loss between yi and y. Note that
∑n

i=1 ξi

upper bounds the training loss.

Of course, merely specifying the correlation clustering objective and a loss

function is insufficient for the practical application of either OP 4 or OP 5. These

problems themselves are still intractable given the large number of constraints they

72

entail: they require as many constraints for a given example (xi,yi) as there are

different partitions of the set xi, which itself equals the |xi|th Bell number [89].

The implementation of Algorithm 1 instead applies the cutting plane algorithm of

Algorithm 1 by finding some ŷ = argmaxyH(y) which is the maximization of the

function H(y) given by (2.21) (if trying to solve OP 4) or (2.22) (if trying to solve

OP 5). For the case of margin scaling, recall that (2.21) is

H(y) ≡ 〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ ∆(yi,y) (3.10)

By solving ŷ = argmaxyH(y), the algorithm finds the clustering ŷ associated with

the most violated constraint for (xi,yi), i.e., the output that requires the greatest

slack. Since H(ŷ) is the necessary slack for ŷ under the current w, if H(ŷ) >

ξi + ε, the constraint is violated by more than ε, so we introduce the constraint

and re-optimize. The algorithm repeats this process until no new constraints are

introduced. The proof of convergence and correctness of this algorithm appeared

in Section 2.1.3.

3.3 Loss Functions

Many learning tasks already have existing performance measures. For exam-

ple, performance on noun-phrase coreference is often evaluated with the MITRE

score [108]. While many learning methods optimize to some implicit performance

measure, good performance on this learning measure may not translate into good

performance on the desired measure. In this section we test whether SVM-CC’s

ability to optimize to a particular loss function is beneficial. We use SVM-CC with

two loss functions, described in the sequel.

73

3.3.1 Pairwise Loss ∆P

∆P (Pairwise Loss) is

∆P (y, ȳ) = 100
W

T
, (3.11)

where T is the total number of pairs of items in the set x which is being partitioned

by y and ȳ, i.e., T =
(|x|

2

)
. W is the total number of pairs where y and ȳ

disagree about their cluster membership. This loss is scaled from 0 to 100, where

∆P (y, ȳ) = 0 indicates that all the pairwise relationships are equal, that is, y = ȳ,

and ∆P (y, ȳ) = 100 indicates that all pairwise relationships are flipped, which is

not actually possible except in cases where y and ȳ are the clusters where every

item is in its own cluster, or where all items are in one cluster (or vice versa). This

is the complement of the Rand index [87].

3.3.2 MITRE Loss ∆M

∆M (MITRE Loss) is ∆M(y, ȳ) = 100 2RP
R+P

where R and P are the MITRE recall

and precision scores respectively [108]. Though this measure is difficult to describe

succinctly and accurately, the MITRE measures R and P can be briefly summa-

rized and understood in terms of the number of operations to transform y into ȳ.

Suppose we consider two operations: merge two clusters in a given clustering y to

form one cluster, or split one cluster in y to form two clusters. The compliment of

recall 1− R and precision 1− P are proportional to how many merges and splits

are needed to transform ȳ into y.

Since merges are the inverse of splits, R and P get flipped if we flip which of y

or ȳ we consider as being the “correct” clustering; which is to say, recall of y with

respect to ȳ is precision of ȳ with respect to y. Because these functions R and

74

P can be considered mathematically equivalent with just an inversion of function

arguments, we focus on describing recall of ȳ with respect to truth y, R(y, ȳ).

Though we shall provide a formal expression for R(y, ȳ) in (3.13) in the sequel,

it is not obvious where the expression comes from, so some intuitive understanding

prior to the expressions presentation is desirable. The expression can be viewed

in terms of the number of “joins” we would need to do on the clusters within ȳ to

get it into form like y. To explain further, for each cluster y ∈ y, we count how

many clusters in ȳ the elements in y are scattered across. If y’s elements appear

within C = |{ȳ ∈ ȳ : ȳ ∩ y 6= ∅}| clusters in ȳ, then C−1 joins would be necessary

to make these elements into one cohesive cluster. By summing over all y ∈ y,

we get the number of joins required for all of ȳ. (Viewing this really in terms of

minimum required operations, by doing joins of two clusters in ȳ we might render

another join redundant, but we do not concern ourselves with it: imagine that all

the “splits” of clusters in ȳ happened first.) Of course, recall is not the measure

of the joins that need to happen, but rather the joins that did happen that should

have. In total, to build y, we would need the number of elements in y’s partitions

minus the number of partitions, e.g.,
∑

y∈y(|y| − 1).

R(y, ȳ) =

∑
y∈y(|y| − 1)−

∑
y∈y (|{ȳ ∈ ȳ : ȳ ∩ y 6= ∅}| − 1)∑
y∈y(|y| − 1)

(3.12)

=

∑
y∈y(|y| − |{ȳ ∈ ȳ : ȳ ∩ y 6= ∅}|)∑

y∈y(|y| − 1)
(3.13)

In the case where the denominator of (3.13) is 0, which happens when there are

as many clusters in y as there are items being clustered, then R(y, ȳ) = 1 for

any ȳ since, intuitively, if all items should be in their own cluster, then no joins

need to happen at all, so every join that should happen must have all ready have

happened, regardless of what ȳ is.

75

Precision P (y, ȳ) = R(ȳ,y). The final MITRE loss ∆m is

∆M(y, ȳ) =
2P (y, ȳ)R(y, ȳ)

P (y, ȳ) +R(y, ȳ)
, (3.14)

which is the harmonic mean between recall and precision.

3.4 Approximate Inference for the Separation Oracle

In this section we describe the difficulty of finding the most violated constraint in

argmaxyH(y) and suggest methods for approximately finding the most violated

constraint with two clustering methods.

Consider the cost function H for loss margin scaling (2.21) as in OP 4.

H(y) ≡ ∆(yi,y) + 〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉 (3.15)

The last term is a constant, and so can be ignored since it does not change the max-

imum. The cost function is a loss ∆ between the true labeling yi and prediction y

plus the correlation clustering objective function. Finding the y to maximize the

correlation clustering objective function is NP-complete [7], and the addition of the

loss term is unlikely to help tractability, so finding argmaxyH(y) is intractable, just

as the basic inference problem is. Fortunately, algorithms exist for approximately

maximizing these clustering objectives, and argmaxyH(y). These approximations

will not solve argmaxyH(y) exactly, but are possibly close enough that SVM-CC

still learns something reasonable. Applying a similar margin maximizing frame-

work to perform collective classifications, [103] inferred approximated constraints

with a linear relaxation. Approximate inference may work for clustering as well.

However, recall that we had our theoretical guarantees of Section 2.1.3, which

ensure that Algorithm 1 terminates in reasonable times and with a solution which

76

is close to the solution we desire in OP 4 or OP 5. How are the termination and

the correctness of the structural SVM algorithm affected if one uses approximate

maximization of H(y)? The proof of polynomial time termination in Theorem 4

still holds. The proof does not depend upon finding argmaxyH(y) exactly, but

rather that new introduced constraints are violated by more than ε, and so cause

the quadratic objective to increase by a minimum amount. The proof of correct-

ness for Theorem 2 no longer holds. Without finding argmaxyH(y) exactly, either

violated constraints may remain undetected, or the objective may be raised. We

consider two approximations: a simple greedy approach CG corresponding to Algo-

rithm 3, and a real relaxation of correlation clustering CR corresponding to OP 10.

We consider how they impact the correctness of the algorithm in the sequel, and

later in Section 3.6 empirically evaluate their performance. Later, in Chapter 5,

we treat the problem of using these types of approximation in much greater detail.

3.4.1 Greedy Approximation to Clustering, CG

To greedily approximate argmaxyH(y), we can adapt Algorithm 3, with the

simple modification that the merges that take place are those that most increase

the cost function, not those that most increase the objective function. The advan-

tage of this algorithm is that it can incorporate any loss ∆ at all, although some

∆ functions may be of such a form that the maximization argmaxyH(y) is not

approximated well by such a simple greedy search.

Fairly formal pseudocode for this algorithm is given in Algorithm 4, but its

workings are intuitively easy to understand: Start with an initial partitioning y

with every item of x in its own cluster. Repeatedly find and merge the two clusters

yi, yj ∈ y that would maximally increase H(y). Halt and return y when no merge

77

(Greedy Correlation Clustering Separation Oracle)

1: Input: An input example (xi,yi), current model parameterization w.
2: ŷ← {{xj} : xj ∈ xi}
3: let H(y) ≡ 〈w,Ψ(xi,y)〉+ ∆(yi,y) for margin scaling (OP 4)
4: let H(y) ≡ (〈w,Ψ(xi,y)〉 − 〈w,Ψ(xi,yi)〉+ 1) ∆(yi,y) for slack scaling

(OP 5)
5: let Merge(y, y, y′) ≡ (y \ {y, y′}) ∪ {y ∪ y′}
6: repeat
7: ȳ, ȳ′ ← argmaxy,y′∈ŷH(Merge(ŷ, y, y′))
8: if H(Merge(ŷ, y, y′)) > H(ŷ) then
9: ŷ←Merge(ŷ, yi, yj)

10: end if
11: until ŷ has not changed during an iteration, or |ŷ| = 1
12: return ŷ

Algorithm 4: The greedy approximation to the correlation clustering sepa-
ration oracle argmaxyH(y) for example (xi,yi).

increases H(y).

Given the close relation between Algorithm 3 and Algorithm 4, we refer to both

with the shorthand CG, with the understanding that when we are talking about

training a model we are referring to the separation oracle variant Algorithm 4,

and when referring to prediction we are talking about the prediction variant Algo-

rithm 3.

Corollary 1. The greedy approximation CG leads to an underconstrained program

with respect to OP 4, with an objective value not greater than OP 4’s objective.

Proof. Suppose the true argmaxyH(y) is ŷ, but the approximate argmaxyH(y)

found with this greedy approximation is y∗, so that H(ŷ) ≥ H(y∗). Some con-

straints from the full QP OP 4 violated by more than ε might not be found and

introduced. This leads to an optimization program which is underconstrained rela-

tive to OP 4, i.e., the solution found may be infeasible by more than the ε tolerance.

78

Since the underconstrained program’s feasible region contains the solution to OP 4,

the objective cannot be greater than OP 4’s objective.

3.4.2 Relaxation Approximation to Clustering, CR

The relaxation of OP 10 can also be used as a separation oracle in the case where

our loss function is the pairwise loss ∆P , and we are using the margin scaled

structural SVM learning framework of OP 4. For a given training example (x,y),

the linear program that serves as a “relaxed” separation oracle for ∆P under the

margin scaled structural SVM producing a relaxed most violated constraint e is

Optimization Problem 11. (Relaxed Correlation Clustering)

max
e

∑
ea,b∈e

ea,b ·

(
〈w, ψa,b〉+ (1− 2 · 1∃y∈y.xa∈y∧xb∈y) ·

100(|x|
2

)) (3.16)

s.t. ea,b ∈ [0, 1], ea,b = eb,a, ea,b ≥ eb,c + ea,c − 1 (3.17)

The 1· indicator function tests the indicated condition, which in the case of its

use in (3.16) is a test for the existence of a cluster y ∈ y holding xa and xb, i.e., a

test that the two items should be in the same cluster according to y. The second

term of which this indicator function is a part represents the loss incurred by (or

avoided by) setting ea,b to a non-zero value.

However, Ψ and ∆ are defined for discrete clusterings y, not relaxed cluster-

ings e. We can use the relaxed solution in the constraints by extending (3.8) to

incorporate a relaxed solution e instead of the discrete solution y.

Ψ(x, e) =
1

|x|2
∑
ei,j∈e

ei,j · ψ(xi, xj) (3.18)

79

Note that (3.18) is equivalent to (3.8) if all ei,j are integral. We can further extend

the ∆P to accommodate relaxed clusterings through

∆P (y, e) = 100

∑
ei,j∈e

∣∣1∃y∈y.xi∈y∧xj∈y − ei,j
∣∣∑

ei,j∈e 1
, (3.19)

which is essentially the average percentage over all ei,j variables of how far off

from the true clustering y they are. In the case where all ei,j ∈ {0, 1}, (3.19) is

equivalent to (3.11).

One interesting characteristic of this separation oracle is that it finds the most

violated constraint, but over an expanded space that admits fractional solutions to

the correlation clustering procedure, with the original search space Y as a subset

of this expanded space. Though we shall explore the implications of relaxations as

separation oracles more fully in Section 5.3.2, for now we present this result.

Corollary 2. The relaxed approximation CR leads to an overconstrained program

with respect to QP OP 4, with an objective not less than than OP 4’s objective.

Proof. The feasible region of the LP relaxation contains the integer solution to

argmaxyH(y). This means the relaxed solution e forms an upper bound on

argmaxyH(y), i.e., H(ŷ) ≤ H(e). If ŷ’s corresponding constraint would be intro-

duced, e’s corresponding constraint must also be introduced. So, at the end of the

iterations no constraint in the QP OP 4 is significantly violated, and as additional

constraints not in the OP 4 may have been introduced, the QP is potentially over-

constrained with respect to OP 4. Since the extra constraints may exclude OP 4’s

solution from the feasible region, the objective cannot be less than QP OP 4’s

objective.

The incorporation of ∆P into the linear objective of the predictor OP 10 to

derive the separation oracle OP 11 was just a matter of incrementing and decre-

80

b

a

d

c

b c ed

9

-3

-4

-8

2

-7

7

9

-1

-4

b

a

d

c

b c ed

-1

7

-14

2

12

3

-3

-1

9

6

Figure 3.2: Correlation clustering on a matrix of similarities for the
item set xi = {xa, xb, xc, xd, xe} with clustering yi =
{{xa, xb, xc}, {xd, xe}}. The left matrix holds the raw similarities
as would be used in computing argmaxy 〈w,Ψ(xi,y)〉, whereas
the right matrix holds the adjusted simiarities that would be
used in computing the y corresponding to the most violated con-
straint, argmaxy 〈w,Ψ(xi,y)〉+ ∆P (yi,y).

menting pairwise similarity scores depending on whether a given pair should not or

should be in the same cluster, respectively. Since ∆P is decomposable in the same

fashion Ψ(x,y) is, any technique used for correlation clustering can be used to

approximate argmaxyH(y) for margin scaling under ∆P . More specifically, if we

consider correlation clustering as an operation over a similarity matrix K inferred

from an item set x, ∆P is incorporated by incrementing (or decrementing) elements

of K by the amount of loss caused (or avoided) by joining the corresponding pair

in a clustering. OP 11 is simply OP 10 adjusted to incorporate this incrementing

and decrementing.

In Figure 3.2 we see an example of this adjustment for a set of five items

xi = {xa, xb, xc, xd, xe} with true clustering yi = {{xa, xb, xc}, {xd, xe}}. In this

case the pairwise scores are adjusted downward or upward 100

(5
2)

= 100
10

= 10, since

there are 10 pairwise relationships, i.e.,
(
5
2

)
, among five items, so each adjustment

is either 10 (for pairs not in the same cluster in yi) or −10 (for pairs in the same

81

cluster in yi). With the pairwise scores thus modified, the clustering procedure is

run as normal.

While incorporating ∆P is straightforward, the MITRE loss ∆M is another

story since it is not linearizable in the same fashion that ∆P is, so incorporating

it into the linear program of OP 10 is impossible while maintaining it as a linear

program. For this reason, we do not use the relaxed separation oracle CR when

optimizing for MITRE loss ∆M .

Similar to the greedy approximation, given the close relation between OP 10

and OP 11, we refer to both with the shorthand CR, with the understanding that

in the context of training or prediction we are referring to the separation oracle or

prediction variant, respectively.

3.4.3 Discretized Relaxation to Clustering, C∗R

For evaluation on the test set, we employ C∗R, a discretized version of CR. C∗R forces

a relaxed solution e into discrete clusters with a simple technique: Start with an

initial partitioning y that has every item in x in its own cluster. Iterate over all

xa ∈ x. If xa is currently in a singleton cluster in y, iterate through all other

xb ∈ x, put xa in xb’s cluster for the first xb that satisfies ea,b > 0.7. Algorithm 5

provides pseudocode for this procedure.

This discretization procedure is very simple compared to others in the litera-

ture [33], but in actual practice, the correlation clustering linear program rarely

produces non-integer solutions. In fact, in our experiments, at no time was there a

non-integer solution to the linear program during prediction with a learned model,

so even the simplest discretization procedure would have sufficed. Had this not

82

(Discretized Relaxation Correlation Clustering, C∗R)
1: Input: An input set of items x
2: e← the solution to OP 10
3: y← {{xi} : xi ∈ x}
4: let Merge(y, y, y′) ≡ (y \ {y, y′}) ∪ {y ∪ y′}
5: let FindCluster(y, x) ≡ y ∈ y such that x ∈ y
6: for x ∈ x do
7: if |FindCluster(y, x)| > 1, continue
8: find any x′ ∈ x− x such that ex,x′ > 0.7
9: if no such x′ exists, continue

10: y←Merge(y, {x},FindCluster(y, x′))
11: end for
12: return y

Algorithm 5: The discretization procedure C∗R.

been the case, we would have been motivated to do something less simple.

3.5 Training Algorithm

Algorithm 6 gives the training algorithm for learning the parameterization w of

correlation clustering given the training sample S = {(x1,y1), . . . , (xn,yn)} with

regularization parameter C and tolerance ε. This algorithm is Algorithm 1, in-

stantiated with correlation clustering as described in the previous matter. The

symbol ye is used to indicate either a discrete clustering y or a soft clustering e

as returned by the relaxation CR. The clustering algorithms CG and CR are aug-

mented to simultaneously maximize the appropriate loss function ∆ as shown in

(3.10) and described algorithmically in Section 3.3.

83

(Supervised Correlation Clustering Algorithm)

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: if learning using relaxations then
6: ê← output of OP 11 given (xi,yi)
7: else
8: ŷ← output of Algorithm 4 given (xi,yi)
9: end if

10: ŷe← ŷ or ê as appropriate
11: compute ξi = max{0,maxye∈Si

∆(yi,ye) + 〈w,Ψ(xi,ye)〉 − 〈w,Ψ(xi,yi)〉}
12: if ∆(yi, ŷe) + 〈w,Ψ(xi, ŷe)〉 − 〈w,Ψ(xi,yi)〉 > ξi + ε then
13: Si ← Si ∪ {ŷe}
14: w← optimize primal over

⋃
i Si

15: end if
16: end for
17: until no Si has changed during iteration

Algorithm 6: Cutting plane algorithm for the supervised correlation cluster-
ing problem, based on the cutting plane algorithm for struc-
tural SVMs Algorithm 1.

3.6 Empirical Analysis

This section describes experiments to test the ability of SVM-CC to exploit depen-

dencies in data, to examine the importance of the loss function during optimiza-

tion, and to examine the different approximations to argmaxyH(y). We evaluate

SVM-CC’s performance on noun-phrase clustering and news article clustering.

3.6.1 Datasets

For the MUC-6 noun-phrase coreference task, there are 60 documents with their

noun-phrases assigned to coreferent clusters. Each document had an average of

84

101 clusters, with an average of 1.48 noun-phrases per cluster; there are many

single element clusters. The first 30 documents form the training set. The last

30 form the evaluation set. The pairwise feature vectors for pairs of noun-phrases

are those used in [78]. Each feature vector contains 53 features, e.g., whether the

noun-phrases appear to have the same gender, how many sentences apart they are,

whether either one is the subject in a sentence, etc.

The news article clustering data set is a new data set we derived by trawling

Google News. Google News itself works by clustering news articles, but presum-

ably their clustering method is sufficiently sophisticated that teaching an unso-

phisticated clustering method how to cluster in the same fashion is interesting.

For each day for 30 days (starting July 14 2004 through August 12 2004), at most

10 topics from the “World” category were selected, and from each topic at most

15 articles were selected. The topics form our true reference clusters. The first 15

days are the training set, and the last 15 days are the test set.

We have various simple heuristics for extracting the article text, quoted article

text, headline, and title. These extraction procedures were hand coded and far

from perfect, but seemed to work well on the majority of the data. Given that

the text was extracted in 2004, which is long past the age where the “real text”

of a page and its textual formatting can be more or less reliably determined just

from the HTML, the basis of the procedure was to render the indicated web page

in a virtual web browser and pick out the text which appeared to conform to

certain formatting with respect to darkness, size, and placement on the page, which

differed depending upon which type of element we were attempting to extract

(e.g., page title, headline, text, quoted text). The extraction procedure is highly

noisy, however, and a significant portion of the entries were badly extracted (e.g.,

85

extraction of unrelated side text, banners, menu text, advertisement text, etc.).

Each article has 30 TFIDF weighted vectors for unigrams, bigrams, and tri-

grams of the text appearing in the title, the headline according to two extraction

methods, article text, and article text in quotations, and for all of these there are

Porter stemmed and non-stemmed versions of the vectors. The pairwise feature

vector ψa,b for two articles xa, xb ∈ x are the 30 cosine similarities between these

entities corresponding vectors in xa and xb, plus one feature which is always the

constant 1. For example, feature 11 is the cosine similarity among TFIDF bigrams

in unstemmed text.

3.6.2 Experimental Setup

With these data sets, we trained and tested several supervised correlation cluster-

ing models. A model consists of the learned similarity weights w. In all cases, the

C regularization parameter was chosen from several values based on k-fold cross

validation on the training set (k = 10 for NP-coreference, k = 5 for news article

clustering). Significance tests between the results for two models use the paired

two-tailed T-test. Performance is considered significantly different for p values less

than 0.05.

For our baseline, we use PCC (pairwise classification correlation clustering),

the näıve approach described and critiqued in Section 1.3. In summary, to learn a

similarity measure for clustering, this PCC method will take all pairs of items in all

training sets, take each pairwise feature vector as an input vector, and let positive

examples for this classification learning algorithm be those pairwise vectors in the

same cluster, and negative examples be those pairwise vectors in different clusters.

86

Table 3.1: Results for NP Coreference, with columns corresponding to dif-
ferent constraint inference methods used in training, and rows
corresponding to different loss functions used in testing.

CG PCC Default

Test with CG,∆M 41.3 51.6 51.0

Test with CG,∆P 2.89 3.15 3.59

With such a model learned, when you want to cluster a new set of items, one would

simply run all pairs in this new set through the learned classifier. The output values

are the pairwise similarity values. Positive and negative outputs indicate a pair

should or should not be in the same cluster, respectively. Then, cluster based on

these output similarities. PCC uses SVMlight as the pairwise classifier, and clusters

with correlation clustering.

3.6.3 Supervised Correlation Clustering vs. the Pairwise

Learner

Section 1.3 outlines problems with a method like PCC. We supposed SVM-CC

would be able to handle transitive dependencies better than a simple pairwise

classifier. How does SVM-CC compare to PCC?

Table 3.1 shows a comparison on the noun-phrase task. The CG column contains

results of two models trained on SVM-CC using the greedy CG approximation, with

the first optimized and tested with respect to the MITRE loss ∆M , the second with

respect to the pairwise loss ∆P . Both tests used greedy CG clustering on the test set

with the learned similarity measure. The PCC column contains analogous results

87

Table 3.2: Results for News Articles, with columns corresponding to differ-
ent constraint inference methods used in training, and rows cor-
responding to different loss functions used in testing.

CG CR PCC Default

Test with CG,∆P 2.36 2.43 2.45 9.45

Test with C∗R,∆P 2.04 2.08 1.96 9.45

for PCC. The default column contains results for a model that either puts each

item in its own cluster (for ∆P), or all in one cluster (for ∆M).

The SVM-CC model performs significantly better. While the ∆M performance

could be explained as optimization to a loss which PCC cannot do, the ∆P loss, as

the proportion of pairwise relationships that are wrong, is analogous to pairwise

accuracy, which is what PCC’s classifier optimizes. Even under this configuration,

SVM-CC performs significantly better.

What happens for item sets without complex transitive dependencies between

items? Consider the case where you view two noun-phrases in isolation, versus

two news articles in isolation. While it is often very difficult to tell whether two

noun-phrases co-refer by just looking at two noun-phrases taken out of context, it

is usually quite easy to tell if two news articles are about the same topic just by

viewing the two articles. For this reason, it seems less helpful to exploit depen-

dencies in a task like news article clustering. In Table 3.2, we see the results of a

comparison between SVM-CC and PCC. The CG and CR columns refer to the clus-

terers used in the cost function approximation in SVM-CC. The two rows show the

performance of the learned similarity measure with different clustering methods.

Though results seem mixed, the results among the different methods in each row

88

are not statistically different from one another. These empirical results suggest

that SVM-CC is more effective than the nave PCC approach when the data con-

tains transitive dependencies, and that both methods perform comparably when

not.

3.6.4 Effects of Optimizing to the Correct Loss

The SVM-CC algorithm has the ability to optimize to specific loss functions. How

important is it to use the correct loss function during training? We address this

question in an experiment that evaluates how a model optimized for one loss func-

tion performs when evaluated under a different loss function.

Table 3.3 shows evaluation results on the NP-task for models optimized to

different losses (corresponding to columns) and evaluated on different losses (cor-

responding to rows). The performances in the first row for the MITRE loss ∆M

are not significantly different for models optimized to ∆M and ∆P . Interestingly,

when optimized under the pairwise loss ∆P , there is a great difference; indeed,

models optimized to ∆M are not even significantly different from the default clus-

tering shown in Table 3.1. We conclude that optimization to the appropriate loss

function can make a significant and substantial difference in clustering accuracy.

3.6.5 Importance of Loss in the Separation Oracle

The cost function H includes a loss function, but when computing argmaxyH(y),

sometimes including the loss function is difficult or impossible for computational

reasons, e.g., including the MITRE score in the linear objective for correlation clus-

89

Table 3.3: Training and testing on separate losses on the noun-phrase co-
reference task. Columns represent the particular ∆ function that
was optimized during training of the model in question, while rows
represent the ∆ used in evaluation.

Opt. to ∆M Opt. to ∆P

Performance on ∆M 41.3 42.8

Performance on ∆P 4.06 2.89

Table 3.4: Comparison of performance when loss was not used in the
argmaxyH(y), versus when it was included. NP-coreference ex-
periments used CG clustering. News experiments used ∆P loss.

w/ loss w/o loss

NP-coreference, ∆M 41.3 41.1

NP-coreference, ∆P 2.89 2.81

News, train CG, test CG 2.36 2.42

News, train CR, test C∗R 2.08 2.16

tering. Can we sometimes get away with not including the loss in the argmaxyH(y)?

Note, we do still include the loss when introducing a new QP constraints; however,

the method to choose which constraint to introduce would no longer necessarily

find the best constraint.

A comparison of SVM-CC models that differed only in whether the loss is or

is not included in the cost function is seen in Table 3.4. No two results in a row

of this table differ significantly. This bodes well for situations where including the

cost in the argmaxyH(y) approximation is difficult.

90

Table 3.5: Comparison of performance on the news dataset when different
clustering methods were used to approximate argmaxyH(y).

Train CG Train CR

Test CG 2.36 2.43

Test C∗R 2.04 2.08

3.6.6 Greedy vs. Relaxed Clustering in Training

For clustering, finding the exact argmaxyH(y) present in Line 6 of the algorithm

requires solving an NP-hard problem, so we instead use greedy and relaxation

approximations. How do these approximations compare?

The different clustering methods CG and CR are used in training models for

the news article task. In Table 3.5 we compare models that differ only in which

approximation was used during training. The test results are not significantly

different. This comparison was run only on the news story task: the off-the-shelf

linear solver used in the correlation clustering implementation could not handle

some problem sizes in the noun-phrase MUC-6 task. These results provide no

basis to prefer either the greedy underconstrained approximation or relaxation

overconstrained approximation.

3.6.7 Discussion of the Model’s Learned Weights

Aside from comparative end performance figures, which provide a macroscopic view

of the algorithm, it is also of interest to examine in greater detail the workings of

the supervised correlation clustering procedure on a dataset. In particular, we shall

91

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8

1-Title

2-Title

3-Title

1-Headline

2-Headline

3-Headline

1-Headline2

2-Headline2

3-Headline2

1-Text

2-Text

3-Text

1-Quoted

2-Quoted

3-Quoted

1-Title Porter

2-Title Porter

3-Title Porter

1-Headline Porter

2-Headline Porter

3-Headline Porter

1-Headline2 Porter

2-Headline2 Porter

3-Headline2 Porter

1-Text Porter

2-Text Porter

3-Text Porter

1-Quoted Porter

2-Quoted Porter

3-Quoted Porter

Offset

N
o

rm
a

liz
e

d
 w

 V
e

c
to

r W
e

ig
h

ts
Normalized Weight

F
e
a
tu

re
s

C
G

 T
ra

in
e
d

C
R

 T
ra

in
e
d

P
C

C

Figure 3.3: For the final models selected through cross validation trained
through either CG, CR, or PCC, this presents a plot of the learned
weights.

92

examine the weights learned by these supervised correlation clustering procedures

on a dataset.

These supervised correlation clustering procedures all provide a learned weight

vector w given a training sample S, with the view that future sets of items x will

have pairwise similarities between items xa, xb ∈ x take the form of 〈w, ψa,b〉, where

ψa,b is the pairwise feature vector between xa and xb. These pairwise similarities are

then used in the correlation clustering procedure to produce the output clustering

y = h(x), as described in Section 3.1. So, we can see in the learned weight vector w

which feature values correlate positively or negatively with co-cluster membership.

The News article dataset is a prime candidate for this sort of analysis, since

it has a very simple and easy to understand feature set: all of its features are

cosine similarities between different pieces of text that appear in news articles, so

they are on roughly the same scale, which means that different elements within

the same learned vector w are somewhat comparable. However, note that this sort

of comparison is not statistically meaningful or valid: the features in this dataset

are naturally highly dependent, and the weights learned by this discriminative

procedure should be treated as being likewise dependent.

In Figure 3.3, we see a graphical representation of the learned weight vectors for

the models whose performance figures have been figured throughout this section,

for the greedy CG trained model, the relaxed CR trained model, and the PCC

trained model. The weights are not those as they appear in w, but rather w
‖w‖ .

The elements of the w vector are grouped by feature, with the number of tokens

per gram noted first, which portion of the document the feature came from noted

second, and whether or not this is the result of Porter stemming noted third.

93

For the sake of this discussion, let wG, wR, and wP be the normalized weight

vector w
‖w‖ that results from training with CG, CR, or PCC, respectively.

As we see, the vectors learned by CG and CR are remarkably similar. They rarely

disagree in terms of whether the weight for the corresponding feature is positive or

negative, and on the three occasions that they do the result is barely perceivable

in Figure 3.3. This is in somewhat stark contrast to the PCC trained vector, which

is even visually quite different. Futher, 〈wG,wP 〉 ≈ 0.205 and 〈wR,wP 〉 ≈ 0.205

in comparison to 〈wG,wR〉 ≈ 0.999.

There is one very perverse effect which is evident immediately upon viewing

Figure 3.3: the most helpful features for determining item pair similarity is similar-

ity of unigram article text both stemmed and unstemmed, but perversely the least

helpful feature for item pair similarity is similarity of trigram article text, both

stemmed and unstemmed. Upon further examination, the reason for this appears

to be the noisy nature of the extraction: when we fail to extract text from a page

from a given news web site, we typically fail for every news story from that web

site and, further, we fail in exactly the same way by mistakenly grabbing the same

exact text from each page of that website, even those dealing with different news

stories entirely. (Sometimes this is a menu of links on the page, or some side text

which all pages share, or an error message, or some such.) Since trigram similarity

is a better indicator than unigram similarity of absolute similarity between bodies

of text, the trigram similarity is working to counteract this “mistaken identity”

case, as if to say, “yes, this pair has very strong unigram similarity, but because

it has very high trigram similarity it is more probable that they share exactly the

same text, which means that their similarity is completely coincidental.”

Another interesting effect is the usefulness of quoted text. While unigram

94

quoted text is not considered helpful, higher order grams are one of the more

useful features for quoted text. As unlikely as it is that two articles on the same

news story will be written with exactly the same text, it is highly likely that the

quotes in two articles on the same news story will contain exactly the same text.

3.6.8 Efficiency of Supervised Correlation Clustering

While we did not run a formal performance comparison on the time it took to learn,

in a typical run, when run on the NP-coreference problem, learning a model for

SVM-CC converged after about 1000 constraints were introduced into the work-

ing set, and the resulting quadratic program was typically reoptimized 50 times.

In terms of the time spent between producing the most violated constraint versus

solving the quadratic problem, the overhead of finding the most violated constraint

is small relative to the time spend reoptimizing the QP; using greedy CG cluster-

ing, only one percent of the time spent reoptimizing the QPs was spent clustering

to find the most violated constraint. This was prior to the development of the

1-slack structural SVM described in Section 2.1.4, which dramatically reduces the

complexity of the quadratic program, hence the time spent in the QP solver, and

consequently the time spent training the algorithm. Of all the reported experi-

ments, the longest SVM-CC ever took to converge was between 3 and 4 hours,

with under one hour as a more typical time. Due to PCC’s simplicity one might

suspect superior performance; however, with slightly under half a million noun-

phrase pairs in the training set, training PCC’s classifier required half a week with

half a million constraints.

95

3.7 Conclusions and Discussion

We formulated a supervised correlation clustering method SVM-CC based on an

SVM framework for learning structured outputs. The algorithm accepts a series

of “training clusters,” a series of sets of items and clusterings over that set. The

method learns a similarity measure between item pairs to cluster future sets of

items in the same fashion as the training clusters.

The learning algorithm’s correctness depends on an ability to iteratively find

and introduce the most violated constraint. Since finding the most violated con-

straint is intractable for clustering, we use existing clustering methods to help find

an approximation. We experimentally evaluate two approximations: one based

on greedy clustering, and one based on a linear programming relaxation. Both

produce comparable results. Further, we find that a simplified formulation that

excludes the loss from argmaxyH(y) does not lead to a loss in accuracy. Overall,

the results suggest that SVM-CC’s ability to optimize to a custom loss function

and exploit transitive dependencies in data does improve performance compared

to a näıve classification approach.

96

CHAPTER 4

SUPERVISED K-MEANS AND SPECTRAL CLUSTERING

4.1 Introduction

Among the algorithms typically used for clustering, k-means and its variants are

arguably the most widely used and effective. However, successful use of k-means

and other clustering methods requires a carefully chosen similarity measure that

must be constructed to fit the task at hand. In this chapter, we propose a super-

vised learning approach to finding a similarity measure so that k-means provides

the desired clusterings for the task at hand. As described in Section 1.2, given

training examples of item sets with their correct clusterings, the goal is to learn a

similarity measure so that future sets of items are clustered in a similar fashion.

In particular, we use the techniques of Section 2.1 to provide a structural support

vector machine algorithm for this supervised k-means learning problem, capable

of directly optimizing a parameterized similarity measure to maximize cluster ac-

curacy. We show theoretically and empirically that the algorithm is efficient, and

that it provides improved clustering accuracy compared to non-learning methods,

as well as compared to more conventional approaches to this supervised clustering

problem.

This chapter differs from Chapter 3 insofar as this chapter describes learning

parameterizations for k-means clustering and its variants, rather than correlation

clustering. The two methods have their respective advantages. An advantage

to correlation clustering is its ability to dynamically pick the number of clusters,

whereas k-means requires the number of clusters to be fixed a priori at k, making

them unsuitable for many tasks if the number of partitions for an output cluster-

97

ing of a data set x is unknown. On the other hand, k-means clustering can be

more efficient, since correlation clustering of any type requires a maximization over

O(|x|2) values, whereas the common k-means practice of making distance compar-

isons between points and clusters and points requires a maximization over O(k|x|)

values for each iteration, where there are usually very few iterations. However, we

stress that the two frameworks are complimentary, not competitive: which is the

“right” clustering algorithm, k-means/spectral clustering or correlation clustering,

depends on the problem.

In contrast to previous methods proposed for learning k-means or spectral

clustering parameterizations summarized in Section 1.4, this method scales even

under thousands of features and training examples, can utilize existing k-means

clustering algorithms in the training procedure, and can optimize the learned pa-

rameterization to perform well on many different loss functions.

4.2 Parameterized k-Means

In this section we shall introduce the k-means clustering algorithm, and then de-

scribe increasingly complex parameterizations of k-means that allows us to adjust

the clusterings k-means produces through supervised learning.

The k-means clustering algorithm is classically described as taking an input set

x of m items, x1, x2, . . . , xm, where each item xi has some corresponding vector

ψi ∈ RN . A clustering algorithm computes some clustering y of x with k clusters

so as to minimize intracluster Euclidean distance over these ψi, i.e.,

argmin
y

∑
y∈y

∑
xi∈y

∥∥∥∥ψi − P
xj∈y ψj

|y|

∥∥∥∥2

2

. (4.1)

98

Algebraic manipulation reveals this minimization is equivalent to finding y to

maximize

argmax
y

∑
y∈y

1

|y|
∑
i,j∈y

〈ψi, ψj〉 (4.2)

in a form often called kernel k-means [36].

To avoid confusion, note that by k-means we refer to the problem of minimizing

(4.1), and emphatically not to any one particular instantiation of search procedure

that attempts to solve this problem, e.g., batch k-means, point-iterative k-means,

or spectral clustering algorithms. In short, k-means is the problem, and we are

comparing algorithms that solve this problem in the context of structural SVM

learning.

How can we parameterize this (4.2) objective function to provide a family of

similarity measures for learning? A simple but powerful parameterization is to

provide some linear weighting w ∈ RN to distort the ψi dimensions:

argmax
y

∑
y∈y

1

|y|
∑
i,j∈y

ψTi diag(w)ψj. (4.3)

We can alternately phrase (4.3) as

argmax
y

∑
y∈y

1

|y|
∑
i,j∈y

〈w, ψi ◦ ψj〉 . (4.4)

Here, ◦ is the componentwise vector product. By changing weights in w, we affect

what clustering y of x is optimal under this parameterized k-means objective (4.4).

4.2.1 Parameterization as Kernel Learning

Though formulation of (4.4) is simple, it is a somewhat limited parameterization

insofar as it requires that points explicitly exist in a vector space. To begin to gen-

99

eralize this, suppose instead of ψi◦ψj, that any pair xi, xj in x has a corresponding

pairwise vector ψij ∈ RN .

argmax
y

∑
y∈y

1

|y|
∑
i,j∈y

〈w, ψij〉 (4.5)

If we then define a matrix K ∈ Rm×m with entries

Kij = 〈w, ψij〉 (4.6)

we can view (4.5) as

argmax
y

∑
y∈y

1

|y|
∑
i,j∈y

Kij. (4.7)

For simplicity, we assume for any K the associated x and w are obvious in context.

Work in kernel k-means clustering often specifies that K is symmetric posi-

tive semi-definite (SPSD), i.e., K � 0 [36]. Why? The items in the set x have

representations in some (implicit) vector space if and only if K � 0 [65]. This is

relevant to our setting, since the proof of convergence for batch k-means clustering

depends on the existence of this space, and may not converge without it [65].

How can we ensure K � 0? Consider an alternate definition of K. For a given

x, let K(`) ∈ Rm×m be the matrix of the `th pairwise feature in pairwise ψij, i.e.,

K
(`)
ij = 〈e`, ψij〉. We may then define K as K =

∑N
`=1 w`K

(`). Restricting w ≥ 0

and all K(`) � 0 will imply K � 0, since non-negative linear combinations of

symmetric positive semi-definite (SPSD) matrices are likewise SPSD. This style of

parameterization has strong connections to the field of kernel learning [65].

Enforcing w ≥ 0 is the responsibility of the training procedure, but the con-

straint on the features in the pairwise ψij is the responsibility of the practitioner

providing these vectors. Fortunately, this is usually not difficult to satisfy. For

example, the very common case with pairwise vectors ψij = ψi ◦ ψj seen in (4.5)

100

satisfies the constraint. More generally, features in ψij whose values comes from a

kernel function evaluation over xi, xj ∈ x satisfy the constraint.

4.2.2 Parameterization as Similarity Learning

The restrictions to enforce K � 0 pose practical disadvantages. First, for the

user providing ψij pairwise feature vectors, ensuring that every single feature is a

kernel may be difficult in some settings. Second, enforcing positivity constraints

on w is bothersome insofar as it may complicate the parameter learning procedure,

and it is even unhelpful: it is plausible that some pairwise features are negatively

correlated with common cluster membership. To take a canonical example, if one

is clustering web pages, certain link relationships among pages are often strong

indicators that pages are of different types [57]. With some effort, tricks may be

employed to overcome some of these difficulties (for example, doubling features

with positive and negative versions of the features to allow negative correlations,

and diagonal offsets large enough to ensure K � 0), but this is troublesome and

often confusing.

To avoid these problems, the alternative to Section 4.2.1’s restrictions is to

simply lift them, i.e., accept any ψij pairwise vectors and parameterization w.

The cost of this greater simplicity and flexibility is that the resulting K is often

no longer SPSD. Though “kernel k-means” becomes a bit of a misnomer in this

case, we retain its use, as an established term for this representation. This is not

a major problem, but if a practitioner does not choose to enforce constraints to

ensure K � 0, this restricts us to clustering algorithms robust to K 6� 0 in both

our training procedures and inference. In this work we do not enforce K � 0.

101

4.3 Supervised k-means with Structural SVMs

With k-means parameterization defined as above, how do we actually learn a pa-

rameterization? We provide a supervised approach based on structural support

vector machines, taking as input a training set

S = {(x1,y1), (x2,y2), . . . , (xn,yn)}.

Each xi ∈ X is a set of items and yi ∈ Y a complete partitioning of that set. For

example, S could have xi as noun-phrases in a document and yi as the partitioning

into co-referent sets, or xi as a pixel image with yi as the segmentation of the

image into coherent regions, etc. The output of the learning algorithm is a w-

parameterized hypothesis h : X → Y , where the clustering algorithm in h uses the

w parameterized similarity measure when clustering inputs x. Intuitively, the goal

is to learn some w so that each h(xi) is close to yi on the training set, and so that

h predicts the desired clustering also for unseen sets of items x.

To refresh your memory from Section 2.1, structural SVMs are a general method

for learning hypotheses with complex structured output spaces [106]. From a

training set S = {(x1,y1), . . . , (xn,yn)}, a structural SVM learns a hypothesis

h : X → Y mapping inputs x ∈ X to outputs y ∈ Y , trading off model complexity

and empirical risk, with hypotheses taking the form

h(x) = argmax
y∈Y

f(x,y), (4.8)

maximizing a discriminant function f : X × Y → R with

f(x,y) = 〈w,Ψ(x,y)〉 . (4.9)

The Ψ combined feature vector function relates inputs and outputs, and w is the

model parameterization learned from S. The quality of a hypothesis is evaluated

102

using a loss function ∆ : Y × Y → R describing the extent to which two outputs

differ. The Ψ and ∆ functions are task dependent.

In a similar vein to Chapter 3’s phrasing parameter learning for correlation

clustering in the language of structural SVMs, to use structural SVMs to learn

parameterizations for k-means clustering, we must state our clustering procedure

h(x) in terms of h(x) = argmaxy 〈w,Ψ(x,y)〉, provide a loss function ∆(y, ŷ),

and provide the separation oracle argmaxy∈Y 〈w,Ψ(xi,y)〉 + ∆(yi,y). These are

explained in the following three sections.

4.3.1 Combined Feature Function Ψ

To express h(x) as h(x) = argmaxy 〈w,Ψ(x,y)〉, we work from (4.7) and (4.6):

h(x) = argmax
y∈Y

∑
y∈y

1

|y|
∑
i,j∈y

Kij (4.10)

≡ argmax
y∈Y

∑
y∈y

1

|y|
∑
i,j∈y

〈w, ψij〉 (4.11)

≡ argmax
y∈Y

〈
w,
∑
y∈y

1

|y|
∑
i,j∈y

ψij

〉
. (4.12)

So, Ψ(x,y) is

Ψ(x,y) =
∑
y∈y

1

|y|
∑
i,j∈y

ψij (4.13)

for the most general parameterization of k-means.

In this work, we also want to represent and learn from “relaxed” clusterings,

such as those that appear in methods like spectral clustering. More specifically,

we shall provide a matrix representation of clusterings. Consider this alternate

representation of clusterings y: for each partitioning y of m items into k clusters,

let Y ∈ Rm×k be an equivalent alternate matrix representation of the clustering.

103

Each column in Y corresponds to some cluster y ∈ y, where each element i in

the column is |y|−0.5 if i ∈ y, and is 0 otherwise. For example, the following two

clustering representations are equivalent:

y = {{1, 3}, {2, 4, 5}} Y =



1√
2

0

0 1√
3

1√
2

0

0 1√
3

0 1√
3


.

More formally, any matrix Y corresponding to a discrete clustering y will obey

three basic constraints. First is column orthonormality: for any columns Y:,i or Y:,j

from Y, ‖Y:,i‖2 = 1, YT
:,iY:,j = 0, i.e., YTY = I. Second, each column’s nonzero

entries are equal: for any pair of column Y:,i’s entries Yj,i 6= 0 and Y`,i 6= 0,

Yj,i = Y`,i. Third is that there are no negative entries: any entry Yj,i ≥ 0.

With this new representation Y, we may rephrase (4.7) as:

argmax
Y

trace(YTKY). (4.14)

We phrase the objective in terms of (4.9) to get Ψ(x,Y):

h(x) = argmax
Y

trace(YTKY)

≡ argmax
Y

〈
w,

m∑
i=1

m∑
j=1

(
YT
i,:Yj,:

)
ψij

〉
.

So, Ψ(x,Y) is

Ψ(x,Y) =
m∑
i=1

i−1∑
j=1

(
YT
i,:Yj,:

)
ψij. (4.15)

Note that (4.15) generalizes (4.13) insofar as the two are equal for any Y corre-

sponding to y, and (4.15) is defined for any spectral output Y.

104

As an aside, that Ψ(x,Y) is quadratic in the entries of Y brings up a subtle but

important distinction regarding the generality of structural SVMs versus alterna-

tive formulations of OP 4, like max-margin Markov nets (M3N) [104], associative

Markov nets, and their variants [103]. These alternatives require that “inference”

(in this case, k-means clustering) be phrased as either a Markov random field or

linear program, respectively. One could begin to express the quadratic nature of

Y as pairwise cliques in an M3N, or linearize clustering by optimizing Z = YYT

for associative networks. However, these methods would be incapable of feasibly

capturing Y orthonormality, or the rank(Z) = k constraint on Z. In contrast, the

restriction of the structure and number of columns of Y, the nonlinearity of Y in

Ψ, and the nonlinearity of the clustering procedure are all incidental and naturally

expressed in structural SVMs since the structure of Ψ(x,y) is unrestricted.

4.3.2 Loss Function ∆

The loss function ∆ for the dissimilarity between two clusterings we use in this

work is

∆(Y, Ŷ) = 100 ·
(

1− 1

k
trace(YT ŶŶTY)

)
(4.16)

= 100 ·
(

1− 1

k
‖YT Ŷ‖2F

)
. (4.17)

For Y corresponding to a discrete partitioning y, (4.16) is

∆(y, ŷ) = 100 ·

(
1− 1

k

∑
y∈y

∑
ŷ∈y

|y∩ŷ|2
|y|·|ŷ|

)
. (4.18)

This loss ∆ has attractive qualities. It is symmetric and invariant to column rear-

rangements. Also, as seen in (4.18), ∆ essentially counts agreement among pairs of

items in clusters which is normalized by the size of the clusters in question. This

105

is favorable relative to alternate loss functions based on the Rand index [87] used

in the correlation clustering work seen in Section 3.3.1. Where this normaliza-

tion is absent as in pairwise loss ∆P , loss becomes heavily biased against mistakes

in larger clusters. Finally, though any judgment about the appropriateness of a

loss function must necessarily be subjective, this ∆ appears to give qualitatively

sensible judgments about the similarity of two clusterings.

Though irrelevant for k-means since k-means assumes that it knows the number

of clusters a priori, this ∆ would not be able to meaningfully compare clusterings

with different numbers of clusters: for example, if ŷ is the clustering with each

item in its own cluster, i.e., Ŷ = I, then ∆(Y, Ŷ) = 0 no matter what Y is.

However, in our applications we suppose we know the number of clusters, so this

does not apply.

4.3.3 Separation Oracle and Prediction

For the separation oracle argmaxy∈Y 〈w,Ψ(xi,y)〉+∆(yi,y), the form of ∆ is well

suited to constructing the separation oracle: one can employ a clustering algorithm

as the separation oracle and cluster over the matrix (K − 1
k
YYT) in place of K in

the (4.7) objective.

However, finding the actual clustering y that globally maximizes (4.7) either for

prediction or computing the most violated constraint is an NP-hard problem. This

has led to the adoption of many varied approximate algorithms to maximize this

objective function. The survey in [36] characterizes many of the popular clustering

algorithms that approximate the maximization of the discriminant function (4.7).

We use three methods from that paper that are all robust to K 6� 0. We denote

106

these differing methods as Iterative, Spectral, and Discrete. In prediction, one

could use other clustering methods if one conformed to SPSD restrictions on K as

defined in Section 4.2.1, including batch k-means, normalized cut algorithms, etc.

In the separation oracle, however, we must use these robust methods: even with

K � 0, it is quite possible that (K − 1
k
YYT) 6� 0.

Iterative is point-incremental k-means [35]. We use point-incremental (i.e.,

recomputing cluster centers with each point reassignment) and not standard batch

(i.e., recomputing cluster centers after a pass over all points) k-means sinceK easily

becomes non-SPSD without positivity constraints on w’s elements, breaking batch

k-means’ convergence guarantees.

The algorithm works by randomly assigning all m items to k clusters, and

then iterating over all points, reassigning them to the cluster with the “closest”

cluster center. Unlike typical batch k-means clustering which waits until a pass

is completed before updating cluster centers, point-iterative k-means updates the

centers upon each point reassignment. Compared to batch k-means, point-iterative

k-means does not depend upon K � 0 and tends to produce clusterings with lower

intracluster distance [35].

Since this clustering algorithm is a form of local search, one may implement an

approximate separation oracle for any loss function ∆, not just that described in

Section 4.3.2, at the cost of k loss function evaluations for every point reassignment.

Spectral is a straightforward eigenanalysis of K to produce a “relaxed” clus-

tering in the matrix representation Y described in Section 4.3.1. If we relax Sec-

tion 4.3.1’s constraints on Y except for having orthonormal columns, then this

107

optimization problem

argmax
Y

trace(YTKY)

over this multi-vector Rayleigh quotient may be maximized by assigning Y’s

columns as the eigenvectors corresponding to the k-largest eigenvalues of K. This

eigenvector matrix is a relaxed “clustering” in that we have relaxed the require-

ments for the special structure of Y listed in Section 4.3.1 that ensured it corre-

sponded to some discrete clustering y.

Discrete is a discretized spectral method via Bach and Jordan post-processing [5],

and is a combination of the previous methods: once we have our eigenvector matrix

Ȳ, we cluster K̄ = ȲȲT with point-incremental k-means to find a discrete y.

There is one subtle but important point that arises from using approximations

in the separation oracle: the known performance guarantees for Algorithm 1 are

known to apply only to the case where the separation oracle argmaxy∈Y H(y) of

maximization of cost function H in (2.21) is calculated exactly [106]. In Sec-

tion 4.3.3 we constructed our separation oracle from a clustering algorithm, but

because clustering algorithms are approximations, this may not find the globally

optimal y. Here we discuss what we still guarantee about our supervised k-means

algorithms, in a discussion which mirrors the similar results in Section 3.4 for

correlation clustering, and is treated in far greater detail in Chapter 5.

Consider the space of possible clusterings Y for training example (xi,yi). Dur-

ing training, the ideal clusterer separation oracle would find the true maximizing

clustering y∗ = argmaxy∈Y 〈w,Ψ(xi,y)〉+∆(yi,y). (To reiterate, under this ideal

case, Algorithm 1 is guaranteed to solve OP 4.) However, this ideal is unrealizable.

So what happens when we use one of our approximations?

108

Let us first consider polynomial time termination. The polynomial time termi-

nation guarantee still holds, since the proof does not depend on the quality of the

solution, but rather on the idea that any constraint violated by more than ε must

increase the objective by some minimum amount [106].

Correctness and empirical risk are less easy to deal with. The separation or-

acles can be divided into two broad categories according to what they do solve,

depending on whether they use the discrete clusterers Iterative/Discrete, or relaxed

Spectral.

The methods Iterative and Discrete may return some suboptimal clustering,

i.e., some clustering ŷ such that

〈w,Ψ(xi, ŷ)〉+ ∆(yi, ŷ) < 〈w,Ψ(xi,y
∗)〉+ ∆(yi,y

∗). (4.19)

In such a suboptimal case, constraints violated by more than ε in OP 4 may go

undetected by Algorithm 1, leading to termination with a solution infeasible in

OP 4. In other words, the problem becomes underconstrained. We term this type

of suboptimal approximation undergenerating in the discussion of Section 5.3.1,

which contains deeper theoretical discussion.

The method Spectral is a very different animal. Rather than searching Y for

local maxima, it instead searches some relaxed Y space which it can efficiently

search for a global maximum. In this case, Y is the space of all indicator ma-

trices Y where the special structure of entries described in the Spectral method

in Section 4.3.3 is abandoned, save for the requirement of orthonormal columns.

More to the point, Y ⊂ Y , and because the separation oracle searches over Y , at

the end of Algorithm 1 we not only shall have all constraints in OP 4 respected,

but additional constraints from outputs Y ∈ (Y −Y). The solution is feasible but

probably suboptimal with respect to OP 4. The problem becomes overconstrained.

109

We will later term this type of relaxed approximation overgenerating in the much

deeper discussion of Section 5.3.2.

Either underconstrained or overconstrained learning has its unique costs. With

underconstrained learning, since constraints in OP 4 may be violated, slack no

longer bounds empirical risk, thus eroding one of the basic principles of SVM

learning. On the other hand, with overconstrained learning, Algorithm 1 solves a

problem which accounts for outputs that would never arise from a discrete cluster-

ing algorithm, thus unnecessarily ruling out parameterizations w which may yield

superior performance. It is unclear theoretically whether either way is better, so

our experiments shall provide an empirical evaluation of both underconstrained

and overconstrained learning for k-means style clustering.

4.4 Training Algorithm

For clarity, we present Algorithm 7, the training algorithm for learning the pa-

rameterization w of k-means or spectral clustering given the training sample

S = {(x1,y1), . . . , (xn,yn)} with regularization parameter C and tolerance ε. This

algorithm is Algorithm 1, instantiated with k-means clustering as described in the

previous material of the chapter. In this description we use Y as a general term

for both discrete or relaxed clusterings, as it generalizes both relaxed clusterings

Y and discrete clusterings y. The clustering algorithm, whether discrete k-means

or spectral clustering, is that augmented with loss ∆ as described in Section 4.3.3.

110

(Supervised k-Means/Spectral Clustering Algorithm)

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: Ŷ ← k-means/spectral clustering of xi augmented with loss ∆
6: compute ξi = max{0,maxY∈Si

∆(yi,Y) + 〈w,Ψ(xi,Y)〉− 〈w,Ψ(xi,yi)〉}
7: if ∆(yi, Ŷ) +

〈
w,Ψ(xi, Ŷ)

〉
− 〈w,Ψ(xi,yi)〉 > ξi + ε then

8: Si ← Si ∪ {Ŷ}
9: w← optimize primal over

⋃
i Si

10: end if
11: end for
12: until no Si has changed during iteration

Algorithm 7: Cutting plane algorithm for the supervised k-means/spectral
clustering problem, based on the cutting plane algorithm for
structural SVMs Algorithm 1.

4.5 Empirical Analysis

We implemented supervised k-means clustering with the SVMpython structural

SVM package [39]. The module’s code, instructions and examples of use, as well

as the datasets that we used in our experiments, are accessible from:

http://www.cs.cornell.edu/∼tomf/projects/supervisedkmeans/.

To empirically analyze our methods, we compare it to conventionally trained

and untrained clusterers, and also provide comparisons of our methods using un-

derconstrained and overconstrained learning on real and synthetic datasets. Pa-

rameterizations w and pairwise vectors ψij are unconstrained as outlined in Sec-

tion 4.2.2, i.e., not requiring K � 0.

In all experiments, pairwise feature vectors ψij are composed from “node”

features vectors ψ̄i, ψ̄j ∈ RNn and an explicitly provided pairwise feature vector

111

Table 4.1: Dataset statistics, including number of example clusterings n,
number of clusters k in each example clustering, average num-
ber of points m in the clusterings, node features Nn, and pairwise
features Np. (The SSVM learns N = Nn +Np weights in w.)

Dataset n k Avg. m Nn Np

WebKB-L 4 6 1041 50397 100796

WebKB-N 4 6 1041 41131 0

News 8-1 7 10 150 0 30

News 8-2 7 10 150 0 30

News 8-4 7 10 150 0 30

Synth 5 5 100 0 750

ψ̄ij ∈ RNp such that

ψij =

 ψ̄i ◦ ψ̄j

ψ̄ij

 .
Pairwise feature vectors ψij are in RN where N = Nn+Np, and correspondingly we

have w ∈ RN . Some datasets evaluated have no node or explicit pairwise features,

i.e., sometimes Nn = 0 or Np = 0.

We shall provide a web page with our software for download, as well as the

datasets shown in this chapter.

4.5.1 Datasets

We used three general “families” of datasets in our empirical analysis, from which

we drew one or more specific evaluation datasets. The datasets are listed in Ta-

ble 4.1.

112

News is a dataset related to the news article clustering dataset of Section 3.6

insofar as it uses different features, although we organize and use it in separate

ways. The sets of items and partitioning was collected through trawling Google

News for one day and extracting the text of news articles from the linked news

sites. During any particular day, there are many different topics or stories. The set

of articles in a particular story for a day form each of the example clusters. Each

area (Google News has seven major areas: Business, Entertainment, Health, Na-

tion, Sports, Technology, World) serves as an example clustering, with the stories

forming the clusters, and the articles as the cluster elements. The data is expressed

as a pairwise feature vector between articles, where each feature is the cosine sim-

ilarity of TFIDF weighted token vectors, where these token vectors are unigrams,

bigrams, and trigrams of text in the title, article text, and quoted sections of the

article text, in both original and Porter stemmed versions of the features, for 30

features in all. We sampled from three days (August 1, 2, and 4 of 2004) to get

three datasets (News 8-1, News 8-2, and News 8-4). Each of these news datasets

contains seven example clusterings corresponding to the general area, and each

clustering itself contains ten clusters, i.e., k = 10.

Its use in our experiment was to make a separate predictive experiment for each

clustering as the test set. For example, when testing the predictive performance

when the “Entertainment” clustering in the News 8-2 clustering was the test set,

the six clusterings corresponding to the remaining areas in News 8-2 (Business,

Health, Nation, Sports, Technology, World) comprised the training set, with no

clusterings from 8-1 or 8-4 being present. So, there are 21 separate predictive

experiments, each experiment corresponding to a differing clustering being chosen

as the test clusterer.

113

In the same vein as the discussion of Section 1.5, note that this is another

example of a learning task which would be impossible to phrase as a multiclass

classification task, since we would not encounter the partitions (or “classess’) used

in prediction in our training set.

WebKB consists of web pages retrieved from the computer science depart-

ments of four universities, labeled as being a course web page, faculty page, stu-

dent page, etc [25]. It is often used in classification and multiclass classification

tasks that seek to exploit the link structure among the web documents. In our

experiment, we effectively turned this into two closely related datasets.

One of these datasets contains only node features (WebKB-N) as TFIDF-scaled

unigram word count vectors. There are no pairwise features.

The other dataset (WebKB-L) contains these word count features and addi-

tional features relating to the relationships among these documents, and also criti-

cally a pairwise feature vector with two regions, corresponding to documents where

one document links to another, and another where both are linked from the same

document (co-citation). If documents are linked or co-cited, the respective region

in the pairwise feature vector will contain the componentwise product of the node

features, plus a single 1 indicator feature. If they are not linked or co-cited, the

corresponding region is zeroed.

Though this is naturally a classification rather than a clustering problem, as

we know what classes will occur in our test data a priori, it nonetheless serves as

an appropriate test bed for our supervised clustering algorithms as well.

Synth is a synthetic dataset meant to emphasize the importance of some fea-

tures being harmful and others helpful, in the face of significant noise. It was

114

Table 4.2: Range of C values tested during the leave-one-out search for train-
ing hyperparameters. All powers of ten between and including
these endpoints were considered. A separate C value was chosen
for each different test set within that dataset through evaluating
leave-one-out error on the resulting training set.

Dataset Low C High C Dataset Low C High C

WebKB-L 1·10−1 1·104 News 1·100 1·105

WebKB-N 1·100 1·105 Synth 1·10−2 1·103

generated in this way: there are 5 clusters, each with 20 points. Between every

pair of the 100 points is a pairwise feature vector. This pairwise feature vector

is comprised of 15 “regions” (one for each possible cluster pair), each region with

50 features (so 750 pairwise features total). For a pair of points in clusters i and

j, the feature “region” corresponding to i, j will have 5 of the 50 features active.

Also, noise is introduced for each pairwise feature vector: instead of consistently

indexing the region (i, j), it will 20% of the time replace i with a random cluster

(so 16% of the time it will differ from i), and the same for j. So, only about

70.5% of pairwise vectors have the “correct” index. (Without noise, learned clus-

terers produced perfect clusterings. While useful as a sanity check, it makes for

uninteresting comparisons.) Only one dataset was generated.

4.5.2 Experimental Setup

To evaluate performance, we trained k-means parameterizations on our dataset.

For each dataset of n clustering examples, we ran n experiments, where each clus-

tering was taken in turn as the single example “test set” with the n− 1 remaining

115

clusterings as the training set. For each experiment, LOO cross validation was

used on the n− 1 size training set to choose the two training hyperparameters: C

(values drawn from a sample of powers of 10 seen in Table 4.2), and which classifier

to use as the final predictor (Iterative, Spectral, or Discrete).

The parameterizations were trained with Iterative and Spectral separation ora-

cle supervised k-means trainers. In addition to these supervised k-means clustering

methods, we have two baselines.

Pair is a model training method based on binary classifiers by taking all pair-

wise feature vectors, considering whether the associated pair is in the same cluster,

and treating it as a binary classification problem trained for accuracy with an SVM.

During classification, entries in the similarity matrix K are outputs of the learned

binary classifier. This style of supervised clustering using binary classifiers has

been successfully used in work on noun-phrase coreference resolution [78]. The

resulting training method differs from supervised k-means clustering insofar as the

clustering procedure and desired ∆ are not considered in training, but it will still

try to increase or decrease the similarity of pairs in or out of the same cluster,

respectively. Hyperparameters (C and clusterer in prediction) were selected in an

identical fashion to supervised k-means clustering.

None is a second baseline, which consists of Iterative classification with all

equal weights, i.e., no training at all.

4.5.3 Clustering Accuracy

Table 4.3 and Table 4.4 detail the loss figures resulting from training the clusterer

with the Iterative and Spectral separation oracle (columns Iterative and Spectral),

116

training the clusterer with the pairwise binary classifier (column Pair), and with

no training (column None). While loss ∆ values can reach 100, a more reasonable

upper bound is k−1
k
· 100, the loss resulting from putting all points together in 1

cluster.

4.5.4 Supervised Clustering vs. Pairwise/Untrained

How do efforts to do any supervised k-means clustering compare against the more

näıve pairwise binary training? On the WebKB-L, WebKB-N and News datasets,

the performance gains from structural SVM training in ∆ figures are quite dra-

matic, and both Iterative and Spectral trained supervised k-means clustering meth-

ods outperform these baselines on these datasets every time.

The relationship on Synth is somewhat different: while there are differences, the

pairwise trained model even “wins” once (testing on cluster 3), and the extent to

which either class of supervised k-means clustering models wins is not conclusively

better, statistically speaking. Why does this happen? One important power of

supervised clustering methods is their ability to exploit cluster structure: two

items i, j ∈ x with low similarity Kij can still be in the same cluster owing to

the effect of other items in x. In contrast, the baseline pairwise classifier treats

all judgments on pairwise ψij independently. However, since all ψij are generated

independently in the synthetic dataset and there is no long range dependency

structure to exploit, pairwise classification for training w works fine.

The untrained model does quite poorly in Synth, but this is expected since the

dataset was generated specifically to contain large numbers of pairwise features

correlated negatively with co-cluster membership. Recall from Section 4.5.1 that

117

our Synth dataset had 15 “regions” of pairwise features (corresponding to each

unordered pair of the 5 clusters), so only 5 of these 15 regions, or one third of all

pairwise features, were positively correlated with co-cluster membership, whereas

the remaining two-thirds are negatively correlated.

4.5.5 Discrete Iterative vs. Relaxed Spectral Clustering in

Training

How does discrete Iterative compare against the relaxed Spectral when used as a

separation oracle during training?

We use non-parametric tests like Fisher sign or Wilcoxon signed-rank tests.

While the loss figures are not independent since they result from shared training

sets, we accept these non-parametric tests as an imperfect measure that neverthe-

less gives some indication of difference.

Results of the comparison are seen in Table 4.5. These results reflect the feeling

one might get glancing at Table 4.3 or Table 4.4: there is no clear winner in WebKB

or News. The exception is the Synth synthetic data set, where the Iterative trained

model appears to yield superior performance.

4.5.6 The Importance of Link Features in WebKB

The WebKB-L dataset differs from WebKB-N in that it contains pairwise features

relevant to the hyperlink structure in the corpus, whereas WebKB-N are straight-

forward document vectors. Each of the 8 supervised k-means clustering WebKB-L

118

Table 4.3: Loss ∆ on the test sets of the two WebKB datasets and the Synth
dataset (lower is better). The left columns identify the dataset
and the particular clustering used as the test dataset in the cor-
responding row.

Dataset Test Clustering Iterative Spectral Pair None

WebKB-L Cornell 45.3 53.3 79.7 74.7

Texas 59.8 56.7 78.9 72.8

Washington 53.1 46.6 60.6 76.2

Wisconsin 47.3 60.2 81.1 77.5

WebKB-N Cornell 63.0 61.4 74.8 78.6

Texas 69.9 56.8 75.5 78.7

Washington 68.8 58.2 74.9 78.3

Wisconsin 72.6 66.2 77.0 78.6

Synth 1 43.3 55.6 48.1 74.7

2 53.4 58.7 54.7 74.7

3 56.0 56.7 55.2 74.7

4 39.3 59.5 43.9 74.7

5 40.3 63.4 49.1 74.7

trained models outperform their corresponding WebKB-N trained model. While 8

wins to 0 losses is statistically significant under a sign test, these loss ∆ figures are

not independent; nevertheless, the magnitude of the differences, always over 10 in

the case of Iterative trained models, suggests a substantial gain. As the usefulness

of exploiting hyperlink structure in WebKB is a feature of most publications fea-

turing this dataset, it is important that our methods are able to handle definitions

of these general pairwise features.

119

Table 4.4: Loss ∆ on the test sets of the three News datasets (lower is better).
The left columns identify the dataset and the particular clustering
used as the test dataset in the corresponding row.

Dataset Test Clustering Iterative Spectral Pair None

News 8-1 Business 23.7 20.6 45.2 49.5

Entertainment 12.7 22.2 53.0 25.9

Health 28.1 28.7 57.4 38.8

Nation 3.8 3.8 40.2 14.6

Sports 15.2 14.3 47.6 59.9

Technology 35.9 30.4 51.7 37.3

World 3.7 2.4 41.7 62.1

News 8-2 Business 3.6 4.6 34.1 63.8

Entertainment 22.7 9.5 40.1 22.8

Health 20.4 20.4 48.4 43.9

Nation 24.6 23.7 47.4 60.6

Sports 20.2 15.8 59.3 57.0

Technology 16.1 13.8 48.3 41.3

World 12.2 11.9 50.5 70.4

News 8-4 Business 19.7 14.9 42.7 33.5

Entertainment 4.6 6.3 46.8 32.4

Health 15.0 16.2 51.7 32.1

Nation 19.4 20.3 41.2 30.0

Sports 19.0 19.0 55.6 54.7

Technology 5.8 11.6 46.4 37.6

World 4.8 5.8 39.6 39.3

120

Table 4.5: Counts of the times within Table 4.3 and Table 4.4 the Iterative
trained model won, tied, or lost versus the Spectral trained model
respectively. For the purpose of this count, the results from the
three news datasets are aggregated. The W , ns/r, P1-tail columns
are quantities relevant to the Wilcoxon test, where W is the sum
of signed ranks, ns/r the number of non-tied trials, and P1-tail the
level of significance.

Dataset Win Tie Lose W ns/r P1-tail

WebKB-L 2 0 2 4 4 >0.05

WebKB-N 0 0 4 4 4 >0.05

News 8 3 10 30 18 0.2611

Synth 5 0 0 15 5 0.05

4.5.7 Efficiency of Supervised k-Means/Spectral Cluster-

ing

Clustering performance aside, how does training time depend on characteristics of

the dataset? To answer this question empirically, we took the basic Synth dataset

described in Section 4.5.1. The basic dataset has 5 clustering examples, 5 clusters,

750 features, and 100 points. To test the algorithms in a controlled way, we varied

each of these characteristics (examples, clusters, features, points), and trained over

20 training sets to test the time it took to train a model. Results are reported for

both Iterative and Spectral clustering. The regularization parameter C = 104 was

constant in all training methods. The structural SVM used in training was the

1-slack structural SVM described in Section 2.1.4.

As we increase the number of training example clusterings in our training set,

Figure 4.1 reveals a relationship linear for Spectral and approximately linear for It-

121

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

clusterings

Iterative
Spectral

Figure 4.1: Results of a timing experiment on a synthetic dataset where we
varied the number of example clusterings n in the training set.

erative. That training time is linear in the number of training examples is expected

due to this being the 1-slack structural SVM of Section 2.1.4.

Figure 4.2 shows that increasing the number of clusters while holding other

statistics constant leads to a steady decrease in training time for Spectral trained

methods. This appears to be a symptom of the difficulty of learning this dataset:

the number of points and dimensions is constant, but spread over an increasing

number of clusters in each example. Consequently the best hypothesis that can be

reasonably extracted from the provided data becomes weaker, and fewer iterations

are required to converge. The Iterative method, on the other hand, often takes

longer. Logs reveal this is due to one or two iterations where Iterative being used

as the separation oracle took a very long time to converge, explaining the unstable

nature of the curve.

122

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

se
co

nd
s

clusters

Iterative
Spectral

Figure 4.2: Results of a timing experiment on a synthetic dataset where we
varied the number of example clusters k in each example.

 0

 200
 400

 600

 800
 1000

 1200

 1400
 1600

 1800

 10000 20000 30000 40000

se
co

nd
s

dimensions

Iterative
Spectral

Figure 4.3: Results of a timing experiment on a synthetic dataset where we
varied the number of features N in every pairwise feature vector.

123

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180 200

se
co

nd
s

points

Iterative
Spectral

Figure 4.4: Results of a timing experiment on a synthetic dataset where we
varied the number of points within each cluster m/k in the train-
ing set examples.

Figure 4.3 shows a linear relationship of number of features versus training time.

This linear time relationship is unsurprising given that computing similarities and

evaluating the Ψ function is linear in the number of features. Spectral is slower

than Iterative both on account of the speed of the clustering algorithm, as well as

requiring more iterations of Algorithm 1.

Let’s now examine how training time varies with the number of points in each

cluster. Figure 4.4 shows Spectral time complexity as a straightforward polyno-

mially increasing curve (due to the LAPACK DSYEVR eigenpair procedure working

on steadily larger matrices). The Iterative trained classifier also tends to increase

with number of points, with a hump on lower numbers of points arising from Iter-

ative clustering often requiring more time for the clusterer to converge on smaller

datasets, a tendency reversed as more points presumably smooth the search space.

124

One theme seen throughout is that the timing behavior of relaxed spectral

training is very predictable relative to the discrete k-means training. Considering

the somewhat unpredictable nature of local search versus largely deterministic

matrix computations, it is unsurprising to see the latter’s relative stability carry

over into model training time.

4.6 Conclusions and Discussion

We provided a means to parameterize the popular canonical k-means clustering

algorithm based on learning a similarity measure between item pairs, and then

provided a supervised k-means clustering method to learn these parameterizations

using a structural SVM. The supervised k-means clustering method learns this

similarity measure based on a training set of item sets and complete partitionings

over those sets, choosing parameterizations optimized for good performance over

the training set.

We then theoretically characterized the learning algorithm, drawing a distinc-

tion between the iterative local search k-means clustering method and the relaxed

spectral relaxation, as leading to underconstrained and overconstrained supervised

k-means clustering learners, respectively. Empirically, the supervised k-means

clustering algorithms exhibited superior performance compared to näıve pairwise

learning or unsupervised k-means. The underconstrained and overconstrained su-

pervised k-means clustering learners compared to each other exhibited different

performance, though neither was clearly consistently superior to the other. We

also characterized the runtime behavior of both the supervised k-means clustering

learners through an empirical analysis on datasets with varying numbers of ex-

125

amples, clusters, features, and items to cluster. We find training time is linear or

better in the number of example clusterings, clusters per example, and number of

features.

126

CHAPTER 5

APPROXIMATION ALGORITHMS AND STRUCTURAL SVMS

The supervised clustering algorithms in Chapter 3 and Chapter 4 relied upon

a separation oracle that returned approximate solutions, i.e., one that did not

necessarily return the most violated constraint, despite the theoretical guarantees

seen in Section 2.1.3 depending upon finding the exact most violated constraint.

While empirically the methods often learn model parameterization that perform

well, a deep understanding of the use of approximations in structural support vector

machines remains limited. Existing theoretical guarantees of solution quality and

correctness must be revised and reviewed under the case of using approximations.

This problem is not unique to structural SVMs and supervised clustering. Dis-

criminative training methods like conditional random fields [64], maximum-margin

Markov networks [104], and structural SVMs [107] all share this problem. They all

have theoretical guarantees of one form or another about training procedure con-

vergence, and some mathematical characterization of solution quality, as seen in

the case of structural SVMs in Section 2.1.3. Indeed, in cases where exact inference

is tractable, these learning methods have substantially improving prediction per-

formance on a variety of structured prediction problems, including part-of-speech

tagging [3], natural language parsing [107], sequence alignment [114], and classifi-

cation under multivariate loss functions [51].

However, these theoretical guarantees hold only under certain assumptions. In

the context of structural SVMs, the basic assumption was that both the inference

problem (i.e., computing a prediction) and the separation oracle required in the

cutting-plane training algorith of Algorithm 1 can be solved exactly. As we saw

in Chapter 3 and Chapter 4, clustering does not obey this assumption, as finding

127

the cluster that corresponds to the global maximum of the discriminant function

of either correlation clustering or k-means is an NP-hard problem.

There are larger issues at stake beyond supervised clustering as well. In many

important machine learning problems (e.g., multi-label classification, image seg-

mentation, machine translation) the natural methods of modeling these problems

lead to situations where exact inference and, the case of structural SVMs, the

separation oracle are computationally intractable. Unfortunately, use of approxi-

mations in these settings abandons many of the existing theoretical guarantees of

structural SVM training, and relatively little is known about discriminative train-

ing using approximations. While the work of Chapter 3 and Chapter 4, as well as

the work of the existing literature of this field gives us some empirical confidence

that these methods work at least sometimes, we do not really understand when

they work and when they do not work.

To help expand our knowledge of approximate inference in structured learning,

this chapter explores training structural SVMs on problems where exact inference

is intractable. A pairwise fully connected Markov random field (MRF) serves as

a representative class of intractable models. This class includes natural formula-

tions of models for multi-label classification, image segmentation, and clustering.

We identify two classes of approximation algorithms for the separation oracle in

the structural SVM cutting-plane training algorithm, namely undergenerating and

overgenerating algorithms, and we adapt loopy belief propagation (LBP), greedy

search, and linear-programming and graph-cut relaxations to this problem. We

provide a theoretical and empirical analysis of using these algorithms with struc-

tural SVMs.

We find substantial differences between different approximate algorithms in

128

training and inference. In particular, much of the existing theory can be ex-

tended to overgenerating though not undergenerating methods. In experimental

results, intriguingly, our structural SVM formulations using the overgenerating

linear-programming and graph-cut relaxations successfully learn models in which

relaxed inference is “easy” (i.e., the relaxed solution is mostly integral), leading

to robust and accurate models. We conclude that the relaxation formulations are

preferable over the formulations involving LBP and greedy search.

5.1 Approximations in Structured Output Prediction

Several discriminative structural learners were proposed in recent years, includ-

ing conditional random fields (CRFs) [64], Perceptron HMMs [23], max-margin

Markov networks (M3Ns) [104], and structural SVMs (SSVMs) [107]. As seen in

Chapter 2, notational differences aside, these methods all learn (kernelized) linear

discriminant functions, but differ in how they choose model parameters.

Recall that in Section 2.1.1 we introduced the margin-scaled structural SVM

problem in the form of OP 4. However, because this problem in its raw form

requires introducing a constraint for every wrong output, a step which is typically

intractable, Algorithm 1 was introduced to solve OP 4 through use of a cutting

plane algorithm. Algorithm 1 iteratively constructs a sufficient subset
⋃
i Si of

constraints and solves the QP only over this subset (line 10).

The algorithm employs a separation oracle to find the next constraint to include

into the working set (line 7 of Algorithm 1). It finds the currently most violated

constraint (or, a constraint that is violated by at least the desired precision ε),

corresponding to the constraint which, if active under the current model param-

eterization w, would require the greatest slack. If a polynomial time separation

129

oracle exists, OP 4 and Algorithm 1 have three theoretical guarantees [107] which

are presented in detail in Section 2.1.3 and reviewed very briefly here:

Polynomial Time Termination: Algorithm 1 terminates in a polynomial num-

ber of iterations, and thus overall polynomial time.

Correctness: Algorithm 1 solves OP 4 accurate to a desired precision ε, since

Algorithm 1 terminates only when all constraints in OP 4 are respected

within ε (lines 9 and 14).

Empirical Risk Bound: Since each ξi upper bounds training loss ∆(yi, h(xi)),

1
n

∑n
i=1 ξi upper bounds empirical risk.

Unfortunately, proofs of these properties rely on the separation oracle (line 7)

being exactly solvable, and do not necessarily hold with approximations. We will

later analyze which properties are retained.

5.2 Markov Random Fields in Structural SVMs

A special case of structural SVM that we will examine throughout this chapter is

that applied to Markov random field (MRF), the same base formulation as seen in

M3N [104]. In this, Ψ(x,y) is constructed from an MRF log-potential function

f(x,y) =
∑

k∈cliques(G)

φk(y{k}) (5.1)

with graph structure G = (V,E) and the loss function is restricted to be linearly

decomposable in the cliques, i.e., ∆(y, ŷ) =
∑

k∈cliques(G)
δk(y{k}, ŷ{k}). Here, y is

the value assignment to variables, δk are sub-component local loss functions, and φk

are potential functions representing the fitness of variable assignment y{k} to clique

130

k. The network potential f(x,y) serves as a discriminant function representing

the variable assignment y in the structural SVM, and h(x) = argmaxy∈Y f(x,y)

serves as the maximum a posteriori (MAP) prediction.

OP 4 requires we express (5.1) in the form f(x,y) = 〈w,Ψ(x,y)〉. First

express potentials as φk(y{k}) =
〈
w, ψ(x, y{k})

〉
. The feature vector functions ψk

relate x and label assignments y{k}. Then, f(x,y) = 〈w,Ψ(x,y)〉 where Ψ(x,y) =∑
k∈cliques(G)

ψk(x, y{k}).

In the following, we use a particular linearly decomposable loss function that

simply counts the percentage proportion of different labels in y and ŷ, i.e., ∆(y, ŷ) =

‖100 · y − ŷ‖0/|V |. Further, in our applications, labels are binary (i.e., each

yu ∈ B = {0, 1}), and we allow only φu(1) and φuv(1, 1) potentials to be non-

zero. This latter restriction may seem onerous, but any pairwise binary MRF with

non-zero φu(0), φuv(0, 0), φuv(0, 1), φuv(1, 0) has an equivalent MRF where these

potentials are zero.

To use Algorithm 1 for MRF training and prediction, one must solve two

argmax problems:

Prediction: argmaxy∈Y 〈w,Ψ(x,y)〉

Separation Oracle: argmaxy∈Y 〈w,Ψ(x,y)〉+ ∆(yi,y)

The prediction problem is equivalent to MAP inference. Also, we can state the

separation oracle as MAP inference. Taking the MRF we would use to solve

argmaxy∈Y 〈w,Ψ(x,y)〉, we include ∆(yi,y) in the argmax by incrementing the

node potential φu(y) by 100
|V | for each wrong value y of u, since each wrong variable

assignment increases loss by 100
|V | . Thus, we may express the separation oracle as

MAP inference.

131

5.3 Approximate Inference Theory

Unfortunately, MAP inference is #P -complete for general MRFs. Fortunately, a

variety of approximate inference methods exist. For prediction and the separation

oracle, we explore two general classes of approximate inference methods, which we

call undergenerating and overgenerating approximations.

5.3.1 Undergenerating Approximations

Undergenerating methods approximate argmaxy∈Y by argmaxy∈Y , where Y ⊆ Y ;

in more conventional language, the maximizing y that they return may not be a

global maxima in Y . In Algorithm 1, because the separation oracle is searching a

subset of the constraints, at the time of termination there may still remain con-

straints in OP 4 violated by more than ε. In this way, use of such a method in

the separation oracle may result in a quadratic problem which is underconstrained

with respect to the true optimal solution OP 4. In supervised correlation clustering

we had the greedy approximation of Section 3.4.1, and in supervised k-means clus-

tering the iterative point-incremental and discretized spectral clustering methods

of Section 4.3.3.

In this work dealing with Markov random fields, we consider the following

undergenerating methods in the context of MRFs:

Greedy iteratively changes the single variable value yu that would increase net-

work potential most.

LBP is loopy belief propagation [79].

132

Combine picks the assignment y with the highest network potential from both

greedy and LBP.

We now theoretically characterize undergenerating learning and prediction. All

theorems generalize to any learning problem, not just MRFs. Due to space con-

straints, provided proofs are proof skeletons.

Since undergenerating approximations can be arbitrarily poor, we must restrict

our consideration to a subclass of undergenerating approximations to make mean-

ingful theoretical statements. This analysis focuses on ρ-approximation algorithms,

with ρ ∈ (0, 1]. What is a ρ-approximation? In our case, for predictive inference,

if y∗ = argmaxy 〈w,Ψ(x,y)〉 is the true optimum and y′ the ρ-approximation

output, then

ρ · 〈w,Ψ(x,y∗)〉 ≤ 〈w,Ψ(x,y′)〉 (5.2)

Similarly, for our separation oracle, for y∗ = argmaxy 〈w,Ψ(x,y)〉 + ∆(yi,y)

as the true optimum, and if y′ corresponds to the constraint found by our ρ-

approximation, we know

ρ [〈w,Ψ(x,y∗)〉+ ∆(yi,y
∗)] ≤ 〈w,Ψ(x,y′)〉+ ∆(yi,y

′) (5.3)

For simplicity, this analysis supposes S contains exactly one training example

(x0,y0). However, this is easily generalizable. To generalize, one may view n

training examples as 1 example, where inference consists of n separate processes

with combined outputs, etc. In a similar fashion, combined ρ-approximation out-

puts may be viewed as a single ρ-approximation output. Further, this practice

of effectively combining multiple examples into one example reflects the actual

implementation of the structural SVM [53].

Theorem 8. (Polynomial Time Termination) If R̄ = maxi,y∈Y ‖Ψ(xi,y)‖,

133

∆̄ = maxi,y∈Y ‖∆(yi,y)‖ are finite, an undergenerating learner terminates after

adding at most ε−2(C∆̄2R̄2 + n∆̄) constraints.

Proof. The original proof holds as it does not depend upon separation oracle qual-

ity (Algorithm 1, line 7).

Lemma 1. After line 6 in Algorithm 1, let w be the current model, ŷ the con-

straint found with the ρ-approximation separation oracle, and ξ̂ = H(ŷ) the slack

associated with ŷ. Then, w and slack ξ̂+ 1−ρ
ρ

[〈w,Ψ(x0, ŷ)〉+ ∆(y0, ŷ)] is feasible

in OP 4.

Proof. To outline the proof idea, if we knew the true most violated constraint y∗,

we would know the minimum ξ∗ such that w, ξ∗ was feasible in OP 4. The proof

upper bounds ξ∗.

With a ρ-approximation algorithm as our separation oracle, instead of solving

y∗ = argmaxy∈Y ∆(y0,y) + 〈w,Ψ(x0,y)〉 exactly, we find some ŷ such that

∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉 ≥ ρ [∆(y0,y
∗) + 〈w,Ψ(x0,y

∗)〉] (5.4)

Since we did not solve argmaxyH(y) exactly, we have not necessarily found the

most violated constraint. In fact, we have underestimated the slack required to

make the current model w feasible under OP 4 by exactly this amount.

[∆(y0,y
∗) + 〈w,Ψ(x0,y

∗)〉]− [∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉] (5.5)

The first term of (5.5) is unknown, but we have the benefit of the ρ-approximation

bound to help us. We can be certain that we have not underestimated the required

134

slack by more than

[∆(y0,y
∗) + 〈w,Ψ(x0,y

∗)〉]− [∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉]

≤ 1

ρ
[∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉]− [∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉]

=
1− ρ
ρ

[∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉]

So, we know that the true slack ξ∗ required for this example under w obeys

ξ∗ ≤ ξ̂ +
1− ρ
ρ

[∆(y0, ŷ) + 〈w,Ψ(x0, ŷ)〉] (5.6)

Since the w is feasible under slack ξ∗, it must also be feasible under this upper

bound.

Theorem 9. When iteration ceases with the result w, ξ, if ŷ was the last found

most violated constraint, we know that the optimum objective function value v∗ for

OP 4 lies in the interval

1
2
‖w‖2 + Cξ ≤ v∗ ≤

1
2
‖w‖2 + C

[
1
ρ
[〈w,Ψ(x0, ŷ)〉+ ∆(y0, ŷ)]− 〈w,Ψ(x0,y0)〉

]

Proof. This is simply Lemma 1 applied to the last iteration.

So, even with ρ-approximate separation oracles, one may bound how far off a

final solution is from solving OP 4. Sensibly, the better the approximation, i.e., as

ρ approaches 1, the tighter the solution bound.

The next result concerns empirical risk. The SVM margin attempts to ensure

that high-loss outputs have a low discriminant function value, and ρ-approximations

produce outputs within a certain factor of optimum. As seen in Theorem 1, any

(w, ξ) solution to OP 4 which is feasible (and not even necessarily optimal) will

135

have a ξ-based upper bound empirical risk, but only under the condition that

h(x) = argmaxy∈Y 〈w,Ψ(x,y)〉, i.e., h(x) does not return an approximation to

this argmax but rather the true maximizing argument. Recall that the proof of

Theorem 1 depends upon the fact that if ∆(yi, h(xi)) > 0, then it must be that

〈w,Ψ(xi, h(xi))〉 > 〈w,Ψ(xi,yi)〉, leading to the constraint associated with h(xi)

requiring a greater slack. However, if h(xi) does not return a maximizing argument,

this proof falls apart. However, if we suppose h uses a ρ-approximate algorithm

for inference, we can say something about the resulting empirical risk

Theorem 10. (ρ-Approximate Empirical Risk) For w, ξ feasible in OP 4

from training with single example (x0,y0), the empirical risk using ρ-approximate

prediction has upper bound (1− ρ) 〈w,Ψ(x0,y0)〉+ ξ.

Proof. The idea of the proof is to take the constraint associated with the output

y′ = h(x0) from OP 4 associated constraint, which we must be respecting if we

have a feasible solution, then apply known bounds to the constraint’s 〈w,Ψ(x0,y
′)〉

term.

We have a single example (x0,y0), with slack ξ. We know

∆

(
y0, argmax

y
〈w,Ψ(x0,y)〉

)
≤ ξ, (5.7)

hence the claim that ξ upper bounds empirical risk. The thing is, ξ upper bounds

empirical risk only when our prediction function h exactly solves that argmax.

However, in general, based on the constraints in OP 4, we know that for any y′

with the feasible solution w, ξ:

∆(y0,y
′) ≤ 〈w,Ψ(x0,y0)〉 − 〈w,Ψ(x0,y

′)〉+ ξ. (5.8)

To illustrate the usefulness of this statement, let’s first think of this in the

“known separable” case, i.e., we have managed to find a feasible solution to OP 4

136

such that ξ = 0. In this case, it must be that for our training example (x0,y0), the

y0 is a maximizer, that is, y0 is a valid solution for argmaxy 〈w,Ψ(x0,y)〉, and in

the case where there are multiple optimizers, any such ŷ must have ∆(y0, ŷ) = 0.

In the case where we have a ρ-approximator, whatever such y′ we find from

this approximation must have 〈w,Ψ(x0,y
′)〉 ≥ ρ 〈w,Ψ(x0,y0)〉, and consequently

∆(y0,y
′) ≤ (1 − ρ) 〈w,Ψ(x0,y0)〉. So, while ξ no longer necessarily bounds em-

pirical risk when our predictor is a ρ-approximation, the existence of the margin-

scaling-by-loss allows us to still say something useful about empirical risk.

The case where ξ > 0, the inseparable (or, more precisely, not provably sepa-

rable) case is a little more difficult to imagine, but the bound of (5.8) still holds.

However, this quantity is known only once we have made a prediction y′, with no

information available a priori. However, with some minimum fuss, we can produce

a bound.

∆(y0,y
′) ≤ 〈w,Ψ(x0,y0)〉 − 〈w,Ψ(x0,y

′)〉+ ξ (5.9)

≤ (1− ρ) 〈w,Ψ(x0,y0)〉+ ξ (5.10)

This last relies upon

〈w,Ψ(x0,y
′)〉 ≥ 〈w, ρΨ(x0,y

∗)〉 (5.11)

≥ 〈w, ρΨ(x0,y0)〉 (5.12)

where y∗ = argmaxy∈Y 〈w,Ψ(x0,y)〉. In this way we see that the inseparable case

is similar to the separable case. The theorem comes from (5.10).

If also using undergenerating ρ-approximate training, one may employ Theo-

rem 9 to get a feasible ξ.

137

5.3.2 Overgenerating Approximations

Overgenerating methods approximate argmaxy∈Y by argmaxy∈Y , where Y ⊇ Y .

We consider the following overgenerating methods:

LProg is an expression of the inference problem as a relaxed integer linear pro-

gram [11]. We first add yuv ∈ B values indicating if yu = yv = 1 to linearize

the program:

maxy

∑
u∈{1..|V |}

yuφu(1) +
∑

u,v∈{1..|V |}

yuvφuv(1, 1) (5.13)

s.t. ∀u, v. yu ≥ yuv yv ≥ yuv (5.14)

yu + yv ≤ 1 + yuv yu, yuv ∈ B (5.15)

We relax B to [0, 1] to admit fractional solutions. Importantly, there is always

some optimal solution where all yu, yuv ∈ {0, 1
2
, 1} [46].

Cut is quadratic pseudo-Boolean optimization using a graph-cut [58]. This is a

different relaxation where, instead of y ∈ B|V |, we have y ∈ {0, 1,∅}|V |.

The LProg and Cut approximations share two important properties [11, 46]:

Equivalence says that maximizing solutions of the Cut and LProg formulations are

transmutable. One proof defines this transmutation procedure, where ∅ (in cuts

optimization) and 1
2

(in LP optimization) variable assignments are interchange-

able [11]. The important practical implication of equivalence is both approxima-

tions return what amounts to the same solution, modulo special cases where there

are non-unique maximizing assignments. Persistence says unambiguous labels (i.e.,

not fractional or ∅) are optimal labels.

138

As a final detail, in the case of LProg, we have a loss function

∆(y, ŷ) =
1

|V |
∑

u∈{1..|V |}

|yu − ŷu| (5.16)

and combined feature function

Ψ(x,y) =
∑

u∈{1..|V |}

yuψu(1) +
∑

u,v∈{1..|V |}

yuvψuv(1, 1). (5.17)

Cut’s functions have similar formulations.

Theorem 11. (Polynomial Time Termination) If R̄ = maxi,y∈Y ‖Ψ(xi,y)‖,

∆̄ = maxi,y∈Y ‖∆(yi,y)‖ are finite (Y replacing Y in the overgenerating case),

an overgenerating learner terminates after adding at most ε−2(C∆̄2R̄2 + n∆̄) con-

straints.

Proof. The original proof holds as an overgenerating learner is a straightforward

structural learning problem on a modified output range Y .

Theorem 12. (Correctness) An overgenerating Algorithm 1 terminates with

w, ξ feasible in OP 4.

Proof. The learner considers a superset of outputs Y ⊇ Y , so constraints in OP 4

are respected within ε.

With these “extra” constraints from overgenerating inference, Algorithm 1’s

solution may be suboptimal w.r.t. the original OP 4. Further, for undergener-

ating methods, correctness does not hold, as Algorithm 1 may not find violated

constraints present in OP 4.

Theorem 13. (Empirical Risk Bound) If prediction and the separation oracle

use the same overgenerating algorithm, Algorithm 1 terminates with 1
n

∑
i ξi upper

bounding empirical risk R∆
S (h).

139

Proof. Similar to the proof of Theorem 11.

5.3.3 Related Work

In prior work on discriminative training using approximate inference, structural

SVMs have learned models for correlation clustering, utilizing both greedy and LP

relaxed approximations [40]. For M3Ns, Anguelov et al. [4] proposed to directly fold

a linear relaxation into OP 4. This leads to a very large QP, and is inapplicable to

other inference methods like LBP or cuts. Furthermore, we will see below that the

linear-program relaxation is the slowest method. With CRFs, likelihood training

requires computing the partition function in addition to MAP inference. Therefore,

the partition function is approximated [26, 47, 62, 109], or the model is simplified

to make the partition function tractable [101], or CRF max-likelihood training is

replaced with Perceptron training [92].

The closest work on this subject is a theoretical analysis of MRF structural

learning with LBP and LP-relaxation approximations using structural perceptron

learning [59]. It defines the concepts separable (i.e., there exists w such that

∀(xi,yi) ∈ S,y ∈ Y , 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉), algorithmically separable

(i.e., there exists w so that empirical risk under the inference algorithm is 0), and

learnable (i.e., the learner using the inference method finds a separating w). The

paper illustrates that, when using approximate inference, these concepts are not

equivalent. Our work’s major differences are our analysis handles non-zero training

error, generalizes to any structural problem, uses structural SVMs, and we have

an empirical analysis.

140

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

se
co

nd
s

problem size

LProg
Cut

LBP
Greedy

Exact

number of nodes
Figure 5.1: Runtime comparison. Average inference time for different meth-

ods on random problems of different sizes.

 1

 4

 16

 64

 256

 1024

 0 200 400 600 800 1000

nu
m

be
r

of
 s

up
er

io
r

la
be

lin
gs

experiment

Combined
Cut/LProg

Greedy
LBP

Figure 5.2: Quality comparison. Inference on 1000 random 18 label prob-
lems. Lower curves are better.

5.4 Experiments: Approximate Inference

Before we move into learning experiments, it helps to understand the runtime and

quality performance characteristics of our MAP inference algorithms.

141

For runtime, Figure 5.1 illustrates each approximate inference method’s average

time to solve a single pairwise fully connected MRF with random potentials as the

number of nodes increases.1 Note that cuts are substantially faster than LBP, and

several orders of magnitude faster than the linear relaxation while maintaining

equivalence.

For evaluating solution quality, we generate 1000 random problems, ran the in-

ference methods, and exhaustively count how many labelings with higher discrim-

inant value exist. The resulting curve for 10-node MRFs is shown in Figure 5.2.

For cut, ∅ labels are randomly assigned to 0 or 1. The lower the curve, the better

the inference method. LBP finds “perfect” labelings more often than Greedy, but

also tends to fall into horrible local maxima. Combined does much better than

either alone; apparently the strengths of Greedy and LBP are complimentary.

Finally, note the apparent terrible performance of Cut, which is due to assigning

many ∅ labels. At first glance, persistence is an attractive property since we know

unambiguous labels are correct, but on the other hand, classifying only when it is

certain leads it to leave many labels ambiguous.

5.5 Experiments: Approximate Learning

Our goal in the following experiments is to gain insight about how different ap-

proximate MRF inference methods perform in SSVM learning and classification.

Our evaluation uses multi-label classification using pairwise fully connected MRFs

1Implementation details: The methods were C-language Python extension modules. LProg
was implemented in GLPK (see http://www.gnu.org/software/glpk/glpk.html). Cut was
implemented with Maxflow software [13]. Other methods are home-spun. Experiments were run
on a 2.6 GHz P4 Linux box.

142

as an example application.

Multi-label classification bears similarity to multi-class classification, except

classes are not mutually exclusive, e.g., a news article may be about both “Iraq”

and “oil.” Often, incorporating inter-label dependencies into the model can im-

prove performance [16, 38].

How do we model this labeling procedure as an MRF? For each input x, we

construct an MRF with a vertex for each possible label, with values from B = {0, 1}

(1 indicates x has the corresponding label), and an edge for each vertex pair (i.e.,

complete graph MRF).

What are our potential functions? In these problems, inputs x ∈ Rm are

feature vectors. Each of the ` possible labels u is associated with a weight vector

wu ∈ Rm. The resulting vertex potentials are φu(1) = 〈wu,x〉. Edge potentials

φuv(1, 1) come from individual values in w, one for each label pair. Thus, the overall

parameter vector w ∈ R`m+(`
2) has `m weights for the ` different w1,w2, . . . ,w`

sub-component weight vectors, and
(
`
2

)
parameters for edge potentials. In terms of

ψ functions, ψu(x, 1) vectors contain an offset version of x to “select out” wu from

w, and ψuv(x, 1, 1) vectors have a single entry set to 1 to “select” the appropriate

element from the end of w.

5.5.1 Datasets and Model Training Details

We use six multi-label datasets to evaluate performance. Table 5.1 contains statis-

tics on these datasets. Four real datasets, Scene [12], Yeast [38], Reuters (the

RCV1 subset 1 data set) [67], and Mediamill [99], came from the LIBSVM multi-

label dataset collection [17]. Synth1 is a synthetic dataset of 6 labels. Labels

143

Table 5.1: Basic statistics for the datasets, including number of labels, train-
ing and test set sizes, number of features, and parameter vector w
size, and performance on baseline trained methods and a default
model parameterization.

Dataset Labels Train Test Features w Size Baseline Default

Scene 6 1211 1196 294 1779 11.43±.29 18.10

Yeast 14 1500 917 103 1533 20.91±.55 25.09

Reuters 10 2916 2914 47236 472405 4.96±.09 15.80

Mediamill 10 29415 12168 120 1245 18.60±.14 25.37

Synth1 6 471 5045 6000 36015 8.99±.08 16.34

Synth2 10 1000 10000 40 445 9.80±.09 10.00

follow a simple probabilistic pattern: label i is on half the time label i − 1 is on

and never otherwise, and label 1 is always on. Also, each label has 1000 related

binary features (the learner does not know a priori which feature belong to each

label): if i is on, a random 10 of its 1000 features are set to 1. All features other-

wise implicitly have value 0. This hypothesis is learnable without edge potentials,

but exploiting label dependency structure may result in better models, since edge

potentials could capture the dependency that label i cannot be on if i−1 is on, etc.

Synth2 is a synthetic dataset of 10 labels. In this case, each example has exactly

one label on, and all other labels are off; which of the 10 labels is on for a given

example is chosen randomly. There are also 40 features. For an example, if label

i is on, 4i randomly chosen features are set to 1. So, an example with 4 non-zero

feature values has label 1 and no other labels, an example with 8 non-zero feature

values has label 2 and no other labels, etc. Only models with edge potentials could

possibly learn this concept, since the node potentials are a linear function, which

could not capture just with node potentials alone the sort of relationships the node

would have to observe (e.g., for the node corresponding to label 2 “on-ness,” the

144

node would have to capture that with 8 features on, the node should be “on,” that

is, have value 1, but with 4 or 12 or more features on the node should be “off,”

that is, have value 0).

We used 10-fold cross validation to choose C from 14 possible values

C ∈ {1·10−2, 3·10−2, 1·10−1, . . . , 3·104}. (5.18)

This C was then used when training a model on all training data. A separate

C was chosen for each dataset and separation oracle, but not for each predictive

inference method; this means that all performance figures for a given separation

oracle and dataset (i.e., a row in one of the groups of Table 5.2 and Table 5.3)

come from the same trained model.

5.5.2 Results and Analysis

Table 5.2 and Table 5.3 report loss on the test set followed by standard error.

For each dataset, we present losses for each combination of separation oracle used

in learning (the rows) and of predictive inference procedure used in classification

(the columns). This lets us distinguish badly learned models from bad inference

procedures as explanations for inferior performance.

For purpose of our base comparisons, we include three other inference methods

to help shed insight into the workings of the structural SVM under approximate

inference.

Baseline trains an MRF with no edges, making exact inference trivial at the cost

of having no label dependencies. Performance measures for models trained

for this loss appear in the “Baseline” column of Table 5.1.

145

Table 5.2: Multi-labeling loss on the first group of three of the six datasets.
Results are grouped by dataset. Rows indicate separation oracle
method. Columns indicate classification inference method.

Greedy LBP Combine Exact LProg

Scene Dataset

Greedy 10.67±.28 10.74±.28 10.67±.28 10.67±.28 10.67±.28

LBP 10.45±.27 10.54±.27 10.45±.27 10.42±.27 10.49±.27

Combine 10.72±.28 11.78±.30 10.72±.28 10.77±.28 11.20±.29

Exact 10.08±.26 10.33±.27 10.08±.26 10.06±.26 10.20±.26

LProg 10.55±.27 10.49±.27 10.49±.27 10.49±.27 10.49±.27

Yeast Dataset

Greedy 21.62±.56 21.77±.56 21.58±.56 21.62±.56 24.42±.61

LBP 24.32±.61 24.32±.61 24.32±.61 24.32±.61 24.32±.61

Combine 22.33±.57 37.24±.77 22.32±.57 21.82±.56 42.72±.81

Exact 23.38±.59 21.99±.57 21.06±.55 20.23±.53 45.90±.82

LProg 20.47±.54 20.45±.54 20.47±.54 20.48±.54 20.49±.54

Reuters Dataset

Greedy 5.32±.09 13.38±.21 5.06±.09 5.42±.09 16.98±.26

LBP 15.80±.25 15.80±.25 15.80±.25 15.80±.25 15.80±.25

Combine 4.90±.09 4.57±.08 4.53±.08 4.49±.08 4.55±.08

Exact 6.36±.11 5.54±.10 5.67±.10 5.59±.10 5.62±.10

LProg 6.73±.12 6.41±.11 6.38±.11 6.38±.11 6.38±.11

146

Table 5.3: Multi-labeling loss on the second group of three of the six datasets.
Results are grouped by dataset. Rows indicate separation oracle
method. Columns indicate classification inference method.

Greedy LBP Combine Exact LProg

Mediamill Dataset

Greedy 23.39±.16 25.66±.17 24.32±.17 24.92±.17 27.05±.18

LBP 22.83±.16 22.83±.16 22.83±.16 22.83±.16 22.83±.16

Combine 19.56±.14 20.12±.15 19.72±.14 19.82±.14 20.23±.15

Exact 19.07±.14 27.23±.18 19.08±.14 18.75±.14 36.83±.21

LProg 18.50±.14 18.26±.14 18.26±.14 18.21±.14 18.29±.14

Synth1 Dataset

Greedy 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

LBP 13.94±.12 13.94±.12 13.94±.12 13.94±.12 13.94±.12

Combine 8.86±.08 8.86±.08 8.86±.08 8.86±.08 8.86±.08

Exact 6.89±.06 6.86±.06 6.86±.06 6.86±.06 6.86±.06

LProg 8.94±.08 8.94±.08 8.94±.08 8.94±.08 8.94±.08

Synth2 Dataset

Greedy 7.27±.07 27.92±.20 7.27±.07 7.28±.07 19.03±.15

LBP 10.00±.09 10.00±.09 10.00±.09 10.00±.09 10.00±.09

Combine 7.90±.07 26.39±.19 7.90±.07 7.90±.07 18.11±.15

Exact 7.04±.07 25.71±.19 7.04±.07 7.04±.07 17.80±.15

LProg 5.83±.05 6.63±.06 5.83±.05 5.83±.05 6.29±.06

147

Default always predicts the best-performing single labeling of the training set. In

some sense, this is the worst one could do. This loss also appears in Table 5.1.

Exact exhaustively searches all labelings. For comparative purposes it is useful

to know how we would do if we actually solved OP 4. Note that in order to

enable comparisons on the Reuters and Mediamill datasets, we pruned these

datasets so only the 10 most frequent labels were present.

Cut is omitted from Table 5.2 and Table 5.3. Its equivalence to LProg means

the two are interchangeable and always produce the same results, excepting Cut’s

superior speed.

In all datasets, some edged model always exceeds the performance of the edge-

less model. On Mediamill and Reuters, selecting only the 10 most frequent labels

robs the dataset of many dependency relationships, which may explain the rela-

tively lackluster performance.

The Sorry State of LBP, but Relax

Let’s first examine the diagonal entries in Table 5.2 and Table 5.3. Models trained

with LBP separation oracles yield generally poor performance. What causes this?

LBP’s tendency to fall into horrible local maxima (as seen in Section 5.4) misled

Algorithm 1 to believe its most violated constraint was not violated, leading it

to early termination, mirroring the result in [59]. The combined method reme-

dies some of these problems; however, LProg still gives significantly better/worse

performance on 3 vs. 1 datasets.

How does LProg training compare against exact training? Table 5.2 and Ta-

ble 5.3 show that both methods give similar performance. Exact-trained models

148

Table 5.4: Percentage of “ambiguous” labels in relaxed inference. Columns
represent different data sets. Rows represent different methods
used as separation oracles in training.

Scene Yeast Reuters Mediamill Synth1 Synth2

Greedy 0.43% 17.02% 31.28% 20.81% 0.00% 31.17%

LBP 0.31% 0.00% 0.00% 0.00% 0.00% 0.00%

Combine 2.90% 91.42% 0.44% 4.27% 0.00% 29.11%

Exact 0.95% 84.30% 0.67% 65.58% 0.00% 27.92%

LProg 0.00% 0.43% 0.32% 1.30% 0.00% 1.48%

significantly outperform relaxed-trained models on two datasets, but they also lose

on two datasets.

Relaxation in Learning and Prediction

Observe that relaxation used in prediction performs well when applied to models

trained with relaxation. However, on models trained with non-relaxed methods

(i.e., models that do not constrain fractional solutions), relaxed inference often

performs quite poorly. The most ludicrous examples appear in Yeast, Reuters,

Mediamill, and Synth2. Table 5.4 suggests an explanation for this effect. The

table lists the percentage of ambiguous labels from the relaxed classifier (frac-

tional in LProg, ∅ in Cut). Ignoring degenerate LBP-trained models, the relaxed

predictor always has the fewest ambiguous judgments. Apparently, SSVMs with

relaxed separation oracles produce models that disfavor non-integer solutions. In

retrospect, this is unsurprising: ambiguous labels always incur loss during training.

Minimizing loss during training therefore not only reduces training error, but also

encourages parameterizations that favor integral (i.e., exact) solutions. Under-

generating and exact training do not control for this, leading to relaxed inference

149

yielding many ambiguous labelings.

On the other hand, observe that models trained with the relaxed separation

oracle have relatively consistent performance, irrespective of the classification in-

ference procedure; even LBP never shows the catastrophic failure it does with

other training approximations and even exact training (e.g., Mediamill, Synth2).

Why might this occur? Recall the persistence property from Section 5.3: unam-

biguous labels are optimal labels. In some respects, this property is attractive,

but Section 5.4 revealed its dark side: relaxation predictors are very conservative,

delivering unambiguous labels only when they are certain. By making things “ob-

vious” for the relaxed predictors (which are the most conservative with respect to

what they label), it appears they simultaneously make things obvious for all pre-

dictors, explaining the consistent performance of relaxed-trained models regardless

of prediction method.

SSVM’s ability to train models to “adapt” to the weakness of overgenerat-

ing predictors is an interesting complement with Searn structural learning [29],

which trains models to adapt to the weaknesses of undergenerating search based

predictors.

Known Approximations

How robust is SSVM training to an increasingly poor approximate separation ora-

cle? To evaluate this, we built an artificial ρ-approximation separation oracle: for

example (xi,yi) we exhaustively find the optimal y∗ = argmaxy∈Y 〈w,Ψ(xi,y)〉+

∆(yi,y), but we return the labeling ŷ such that f(x, ŷ) ≈ ρf(x,y∗), finding the

ŷ with discriminant function value closest to ρf(x,y∗) without exceeding it. In

this way, we build an approximate undergenerating MRF inference method with

150

0

5

10

15

20

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Scene

18

21

24

27

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Yeast

3

4

5

6

7

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Reuters

16

20

24

28

32

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Mediamill

0

4

8

12

16

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Synth1

Train Test

4

8

12

16

1

0
.9
9

0
.9
7
5

0
.9
5

0
.9

0
.8
5

0
.8

0
.7

0
.6

0
.5

Synth2

Figure 5.3: Known ρ-approximations chart, showing the information of Ta-
ble 5.5 graphically.

151

Table 5.5: Known ρ-approximations table, showing performance change as
we use increasingly inferior separation oracles.

ρ Approx. Scene Yeast Reuters Mediamill Synth1 Synth2

Factor Train Test Train Test Train Test Train Test Train Test Train Test

1.000 4.97 10.06 18.91 20.23 4.30 5.59 17.65 18.75 0.00 6.86 4.57 7.04

0.990 4.36 10.87 19.35 21.06 4.01 5.39 17.19 18.13 0.00 8.61 5.20 7.36

0.975 3.95 11.45 19.27 20.56 3.55 4.99 17.68 18.40 3.64 12.72 4.43 6.76

0.950 9.06 10.72 19.90 20.98 3.97 5.68 18.09 19.66 0.32 6.64 5.35 7.90

0.900 3.96 10.74 18.72 20.14 3.90 5.51 17.10 17.84 2.55 13.19 6.21 8.84

0.850 5.67 11.32 20.04 21.35 3.88 5.21 18.15 19.97 1.45 9.08 6.74 8.57

0.800 5.15 10.59 19.37 21.04 4.93 6.41 19.25 20.86 2.72 14.09 8.83 11.02

0.700 6.32 11.08 24.24 26.26 5.22 6.28 29.24 30.01 0.60 8.69 9.56 11.57

0.600 19.01 20.00 19.00 20.80 4.44 5.44 19.57 20.26 4.21 15.23 12.90 15.48

0.500 10.83 12.28 21.09 22.31 4.65 5.69 29.89 30.42 4.07 10.92 11.85 13.68

0.000 71.80 71.00 45.78 45.36 58.48 58.65 33.00 34.75 36.62 36.84 49.38 50.01

known quality.

Table 5.5 and Figure 5.3 detail these results. The first column indicates the

approximation factor used in training each model for each dataset. The remaining

columns show train and test performance using exact inference.

What is promising is that test performance does not drop precipitously as

we use increasingly worse approximations. For most problems, the performance

remains reasonable even for ρ = 0.9.

152

5.6 Conclusion

This chapter theoretically and empirically analyzed two classes of methods for

training structural SVMs on models where exact inference is intractable. Focusing

on completely connected Markov random fields, we explored how greedy search,

loopy belief propagation, a linear-programming relaxation, and graph-cuts can be

used as approximate separation oracles in structural SVM training. In addition

to a theoretical comparison of the resulting algorithms, we empirically compared

performance on multi-label classification problems. Relaxation approximations dis-

tinguish themselves as preserving key theoretical properties of structural SVMs,

as well as learning robust predictive models. Most significantly, structural SVMs

appear to train models to avoid relaxed inference methods’ tendency to yield frac-

tional, ambiguous solutions.

153

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This chapter will present the conclusions of this work. Further, with this work

done, there are still many unanswered questions, mysteries, and potential for future

work with supervised clustering and structural SVMs, and so after the conclusions

we briefly present some of the more interesting ideas that could be developed in

future work.

6.1 Conclusions

As argued in Chapter 1, many tasks involve partitioning a given item set into re-

lated groups. For example, automated news aggregators group news articles which

are about the same story. Noun-phrase coreference systems group a document’s

noun-phrases which refer to the same entity. In image segmentation, one identifies

regions of the image corresponding to the same object. A common practice in these

problems and others like them is to employ clustering techniques to find related

groups in sets of items. Since manually tuning clustering algorithms to solve these

problems is difficult, the common approach is to employ supervised machine learn-

ing techniques to learn how to partition other item sets of the same type, learning

how to cluster item sets x based on example clusterings y. Supervised clustering

is the problem of tuning clustering algorithms using supervised learning so they

perform well on a task of interest to the practitioner.

How can we learn a clustering function? The goal of nearly all popular clus-

tering methods is to find the clustering maximizing some criteria f(x,y), where

f : X × Y → R is commonly called a discriminant function. This discriminant

154

function is typically some formula involving the pairwise similarity between pairs

of items; for example, in correlation clustering f(x,y) it is the sum of all pairwise

similarities between items xi, xj ∈ x in the same clustering in y, and in k-means

the sum of similarities of each item to its cluster’s center. For this reason, nearly all

supervised clustering methods learn the item pair similarity measure, thus affecting

which clustering y will maximize f(x,y).

In this sense, one may view supervised clustering as a metric or similarity

learning task. We argued, however, that general metric learning frameworks are

insufficient, since they do not learn metrics optimized for clustering performance.

All the different existing clustering methods would group items in different ways

(whether it be k-means, spectral, correlation, single-link, complete-link, average-

link, etc., clustering) even over the same pairwise similarity measure, so it is critical

that the similarity measure be learned in such a fashion so that the cluster method

in question performs well for the task at hand. Other methods might wind up

finding parameterizations optimized to the wrong criteria as argued in Section 1.3

and Section 1.7.

In order to learn this parameterization for our clustering, we employed a struc-

tural SVM learning algorithm, which we described in Chapter 2 as a general

method for learning parameterizations of functions with complex structured in-

puts and outputs. With a training set, the structural SVM learning method’s goal

is to find a parameterization such that the discriminant function is maximized for

the correct output, versus all possible incorrect outputs. Violations of this are

punished proportionately to each incorrect output’s “loss” relative to the correct

output, where loss is a sort of judgment function. Since different tasks may have

different loss functions, structural SVMs have the ability to learn parameteriza-

155

tions optimized for specific tasks, an important distinction between the proposed

supervised clustering method and those already existent in the literature.

We then derived supervised clustering methods for correlation clustering in

Chapter 3 and k-means/spectral clustering in Chapter 4. In particular, we empir-

ically demonstrated the method’s usefulness in being able to optimize to a task

specific loss function, its computational efficiency, and its ability to learn parame-

terizations of various clustering methods.

Since correlation and k-means style clusterings require the use of approxima-

tions to maximize their discriminant function, and structural SVMs incorporate

the predictive method into the learning program, the learning method itself be-

comes approximate. We presented a detailed empirical and theoretical analysis of

the use of approximations and structural SVMs in Chapter 5. In short, though

some of the theoretical guarantees of the structural SVM learning algorithm no

longer hold, we can make new statements for undergenerating approximations

(based on some type of local maximization) and overgenerating approximations

(based on some type of relaxation). In particular, when using ρ-approximate un-

dergenerating approximations in structural SVMs, the extent to which the original

theoretical guarantees are violated can be bounded. When using overgenerating

approximations, the important theoretical guarantees hold at the cost of possible

suboptimality of the structural SVM parameterization.

6.2 Agglomerative Clustering with Structural SVMs

While we have presented methods for learning parameterizations for correlation

and k-means/spectral clustering, there are many other types of popular cluster-

156

ing algorithms that may be more appropriate for some tasks. One of the more

popular of these methods are agglomerative methods including single link, com-

plete link, and average link clustering. However, there are problems that prevent

a straightforward method of learning parameterizations of these methods.

Consider the case of single link clustering. For a given set of items x with a

model parameterization w, suppose we infer a similarity matrix K where Kij =

〈w, ψij〉. Classic single link clustering would, starting from a clustering where each

item was in its own cluster, repeatedly find the two items xi, xj ∈ x not yet in

the same cluster with maximum similarity, join them, and return the resulting

dendrogram [55, 72]. The algorithm is similar to finding the maximum spanning

tree in a completely connected graph with nodes corresponding to x’s items and

edge weights defined by K. Consider the following variant of the classic single link

clustering algorithm, which differs insofar as this produces a simple partitioning

(not a dendrogram), and it stops when there is no merge that does not involve a

negative similarity in K. This algorithm is shown in Algorithm 8. In this proce-

(Single Link Clustering)

1: Input: An input set of items x inferring similarity matrix K
2: y← {{xi} : xi ∈ x}
3: let Merge(y, y, y′) ≡ (y \ {y, y′}) ∪ {y ∪ y′}
4: let FindCluster(y, x) ≡ y ∈ y such that x ∈ y
5: repeat
6: xī, xj̄ ← argmaxxi,xj∈x:FindCluster(y,xi) 6=FindCluster(y,xj)

Kij

7: if Kij ≥ 0 then
8: y←Merge(y,FindCluster(y, xi),FindCluster(y, xj))
9: end if

10: until y has not changed during an iteration, or |y| = 1
11: return y

Algorithm 8: The variant single link clustering algorithm.

dure, the Ψ(x,y) combined feature function will be the sum of pairwise similarity

157

a

b

c

d

f

e

(a)

a b
c

d f
e

(b)

a

b

c

d

f

e

(c)

Figure 6.1: A set of six items with its partitioning, including the optimal sin-
gle link partitioning in one dimensional distortion versus another
distortion.

vectors ψij corresponding to those xi, xj selected for merging in Algorithm 8 in the

construction of y given set x. The problem with this scheme is that those pairs

included in Ψ(x,y) will depend upon w.

Consider Figure 6.1, where Figure 6.1(a) shows a set of six items x = {a, b, c, d, e, f}

with partitioning y = {{a, b, c}, {d, e, f}}. Further, suppose that the pairwise

feature vectors ψij contain two features corresponding to the two dimensions in

which the points of x are shown: one feature is the horizontal displacement of

the two points raised to the −2 power, and the other is similar but for vertical

displacement. The sum of the two would therefore be one over the square of the

Euclidean distance. By changing the corresponding weights in w, we effectively

change the importance of the dimension in calculating the similarity or distance,

e.g., effectively shrink or expand one dimension as one raises or lowers the corre-

sponding weight in w, respectively. For example, when one increases the weight

in w corresponding to the horizontal feature, the horizontal similarity is raised,

corresponding to the horizontal distance shrinking.

158

In Figure 6.1(b) we see a distorted version of the Euclidean space in which

the points of x lie, corresponding to a w where the weight corresponding to the

vertical dimension is high relative to the horizontal feature weight. Under such a

w, the combined feature function has a value Ψ(x,y) = ψac + ψbc + ψde + ψef .

However, consider the distorted space shown in Figure 6.1(c), corresponding to

a w where the horizontal feature weight is raised. Under that w, the combined

feature function has a value Ψ(x,y) = ψab+ψbc+ψde+ψdf . So, for learning single

link clustering with structural SVMs, the evaluation of a function Ψ(x,y) requires

that y must not only contain the partitioning of x, but also which pairs of items

xi, xj ∈ x were joined to lead to that partitioning.

The trouble is that many applications that might make use of an algorithm

like Algorithm 8 might not care about which items were joined, but just whether

the final partition was correct [78]. Without this link structure, it is impossible

to evaluate Ψ(x,y) sensibly since the Ψ function does not have access to w.

An alternate formulation of structural SVMs may allow us to learn the latent

link structure required by single link clustering and other agglomerative methods,

which would fall prey to similar problems.

6.3 Non-smooth Loss and Margin-Scaled Structural SVMs

There is a subtle point that arises when using margin-scaled structural SVMs

optimized over a relatively non-smooth loss function ∆, i.e., a ∆ function which

sometimes has very high ∆(y,y′) for two outputs y and y′ which have relatively

close Ψ(x,y) and Ψ(x,y′) combined feature functions.

Imagine we are learning a model for the noun-phrase coreference task, using the

159

MITRE loss ∆M of Section 3.3.2, and the margin-scaling structural SVM of OP 4.

Imagine a noun-phrase coreference learning task where there is a single training

example (x0,y0), where there is only one training example. The first two noun-

phrases in x0, i.e., x1, x2 ∈ x0, are joined in y0, and all other noun-phrases are

in their own individual cluster in y0, i.e., y0 = {{x1, x2}, {x3}, {x4}, . . . , {x|x0|}},

with the first two coreferent and all others non-coreferent. Such an example is not

actually that contrived; while no noun-phrase coreference labeling is this sparse,

the cluster structure is still rather sparse.

Now consider the hypothetical “wrong output” y with all noun-phrases non-

coreferent, y0 = {{x1}, {x2}, {x3}, {x4}, . . . , {x|x0|}}. Then, Ψ(x0,y0)−Ψ(x0,y) =

1
|x0|2ψ12, where ψ12 is pairwse feature vector between x1, x2 ∈ x, and ∆M(y0,y) =

100. This leads to the constraint of (2.10) of OP 4 corresponding to y taking this

form: 〈
w,

1

|x0|2
ψ12

〉
≥ 100− ξ0. (6.1)

In order to satisfy this constraint for ξ0 = 0, that is, without using any slack, we

would need a w with length at least

‖w‖2 ≥
100 · |x0|2

‖ψ12‖2
. (6.2)

The structural SVM objective function (2.8), which is

min
w,ξ

1

2
‖w‖2 + Cξ0 (6.3)

Now imagine the situation after the first iteration of Algorithm 1, when y is the first

constraint returned by the separation oracle (which it will be, since ∆(y0,y) = 100

and no other output has so high a loss), and consequently the constraint (6.1) is

the only one in the working set. In such a situation, the w which best enforces the

margin on this single constraint while being of minimum length is some multiple

160

of ψ12, which we term w = βψ12 for some scalar multiple β. Further, since (6.1) is

the only constraint, at the optimum solution to the (6.3) objective it is an equality,

so the slack ξ0 = 100− β ‖ψ12‖22
|x0|2 . The objective (6.3) then becomes

min
β

1

2
β2‖ψ12‖22 + 100C − Cβ ‖ψ12‖22

|x0|2
(6.4)

This reaches its minimum at β = C
|x0|2 , with required slack ξ0 = 100− C‖ψ12‖22

|x0|4 .

In effect, we have a constraint requiring that 〈w,Ψ(x0,y0)〉 and 〈w,Ψ(x0,y)〉,

where the two Ψ are very close relative to the Ψ(x0,y
′) of other outputs y′. This

constraint will effectively wind up “dominating” the others. If C is set too low, the

ξ0 will be set so high on account of this constraint that few other wrong outputs y′

for x0 will have any chance of being introduced as constraints – effectively, we will

learn from only one constraint. If C is set high enough to the point ξ0 is lowered,

so that other constraints do influence the problem, we run the risk of overfitting.

The entire process is held hostage on account of this single wrong output y.

This was an issue when learning coreference models optimized for MITRE loss

∆M in the coreference experiments of Chapter 3: the C value had to be set very

high in order to learn a meaningful model.

Problems of this sort are mitigated when one moves from the margin scaling

model to the slack scaling model of OP 5. In slack scaling, the slack term is

scaled by the loss function. All constraints require an equal margin, and only if

the constraint is violated would the loss come into play, making it harder for the

learning algorithm to “cheat” on that constraint by requiring proportionally more

slack. It becomes harder for a single wrong output which just happens to have a

very high ∆ to hijack the process.

In practice, slack formulations are hardly used, owing to the separation oracle

161

(2.22) being harder to optimize. However, informal experiments with slack scaled

learning with MITRE loss with a separation oracle based on local search yielded

models with superior performance. Recent work has improved the ability to op-

timize slack scaled structural SVMs [94], techniques which could be extended to

clustering to improve performance of optimizing to non-smooth loss functions like

MITRE loss.

6.4 Nonlinear Parameterization for Clustering

The preceding discussion of parameterizations of correlation clustering and k-

means clustering have not explicitly considered w, and in actual application we

have kept the parameterization as effectively a real vector w ∈ RN . However, w

may also be considered a non-linear parameterization vector by considering the

duals of the structural SVM optimization problems shown in OP 4 and OP 5 of

Section 2.1.1.

Optimization Problem 12. (Margin-Scaled Structural SVM Dual QP)

max
α
−1

2

∑
i=1..n
y∈Y

∑
j=1..n

y∈Y

αi,yαj,ȳ 〈Ψ(xi,yi)−Ψ(xi,y),Ψ(xj,yj)−Ψ(xj, ȳ)〉

+
∑
i=1..n
y∈Y

αi,ȳ∆(yi,y) (6.5)

s.t. ∀i,y : αi,y ≥ 0 (6.6)

162

Optimization Problem 13. (Slack-Scaled Structural SVM Dual QP)

max
α
−1

2

∑
i=1..n
y∈Y

∑
j=1..n

y∈Y

αi,yαj,ȳ 〈Ψ(xi,yi)−Ψ(xi,y),Ψ(xj,yj)−Ψ(xj, ȳ)〉

+
∑
i=1..n
y∈Y

αi,ȳ (6.7)

s.t. ∀i,y : αi,y ≥ 0 (6.8)

∀i :
∑
y

αi,y
∆(yi,y)

≤ C

n
(6.9)

In any structural SVM learning problem of the form presented in Section 2.1.1,

we may view the parameterization w learned in the primals of OP 4 and OP 5 as

a weighted sum of the Ψ combined feature vectors seen in training:

w =
∑
i=1..n
y∈Y

αi,y (Ψ(xi,yi)−Ψ(xi,y)) . (6.10)

For solutions obtained through Algorithm 1, this y ∈ Y is actually limited to

y ∈ Si, i.e., the working set of the i-th example, since there cannot be non-zero

dual variables αi,y for outputs y outside of the working set Si.

In the case of supervised clustering, whether it be the correlation clustering

Ψ functions of (3.8) or (3.18), or the k-means/spectral Ψ functions of (4.13) or

(4.15), these Ψ(x,y) combined feature functions always take the form of some sort

of weighted sum of the pairwise feature vectors between pairs of items in x, i.e.,

Ψ(x,y) =
∑

xi,xj∈x

βi,j,yψxi,xj
(6.11)

where this βi,j,y ∈ R coefficient is some number depending upon y and whether this

Ψ was calculated for learning correlation or k-means clustering. This β number is

readily available from the appropriate Ψ(x,y) equation. Let us be explicit. For

Ψ(x,y) in (3.8), βi,j,y = 1/|x|2 if xi, xj are in the same cluster in y, and βi,j,y = 0

163

if xi, xj are in different clusters in y. For Ψ(x, e) in (3.18), βi,j,y = ei,j/|x|2.

For Ψ(x,y) in (4.13), βi,j,y = 1/|c| where c is the cluster both xi, xj appear in

in y, or βi,j,y = 0 if xi, xj are in different clusters in y. For Ψ(x,Y) in (4.15),

βi,j,Y = YT
i,:Yj,:.

Combining (6.10) and (6.11), we can characterize w in a similar fashion.

w =
∑
i=1..n

xj ,x`∈xi

γi,j,`ψxj ,x`
(6.12)

To be explicit, γi,j,` =
∑

y∈Y αi,y(βi,j,yi
− βi,j,y). Again, for solutions obtained

through Algorithm 1, this y ∈ Y is limited to y ∈ Si.

For both correlation clustering and k-means, the pairwise similarity score Kij

in this work is always a product between the parameterization w and pairwise

feature vector ψi,j, i.e., Kij =
〈
w, ψxi,xj

〉
. This allows us to characterize the

pairwise similarity score for an item pair xj,x` ∈ x more explicitly as

Kj,` =
∑
i=1..n

xĵ ,xˆ̀∈xi

γi,ĵ,ˆ̀
〈
ψxj ,x`

, ψxĵ ,xˆ̀

〉
(6.13)

Here, this inner product 〈·, ·〉 can be replaced with some sort of kernel function

evaluation κ(·, ·). An example use would be to use a degree-2 polynomial kernel.

As seen in (4.3), the pairwise similarity Ki,j can be understood as ψTi diag(w)ψj.

These ψi and ψj vectors do not necessarily, and in many applications do not,

explicitly exist. If one instead wished to learn a full matrix parameterized inner

product ψTi Wψj for a matrix W ∈ Rm×m, one could implicitly learn W by using

a degree-2 polynomial kernel for κ. (However, it would probably be faster to

just map the ψi feature vectors explicitly into a quadratic space with ψ̂i, so that

ψTi Wψj ≡ ψ̂Ti diag(w)ψ̂j, where w is the linearization of W .)

The difficulty with such a scheme is that all of these kernel evaluations would

164

be awfully inefficient. Clustering a new data set would require first calculating the

similarity matrix K, and each entry would require as many kernel evaluations as

there were pairs of items in each set of items xi in all n training examples used

to train the model, instead of the very simple linear inner product Kij = 〈w, ψij〉.

Fortunately, approximate kernel methods with strong theoretical guarantees and

empirical results for structural SVMs have been developed which could be easily

applied in this situation [113].

165

APPENDIX A

SVMPY THON : WRITING STRUCTURAL SVMS IN PURE PYTHON

This appendix describes my SVMpython framework [39]. SVMpython is a variation

and extension of the SVMstruct software framework written by Thorsten Joachims.

With SVMstruct, one may design a structured machine learning method as de-

scribed in Section 2.1 by implementing a few functions in C, encapsulating task

specific procedures. SVMpython allows the same functionality, but allows the de-

veloper to write the extension functions in pure Python. By doing so, SVMpython

takes advantage of many of the features of Python, allowing for far more rapid

implementation of ideas than would be possible under C.

To understand this document, one must have a basic understanding of the

Python programming language. In particular, one should be able to understand

Python code. Further, one should understand the material of Section 2.1, and in

particular the cutting plane algorithm of Algorithm 1.

This is not a reference guide to SVMpython. The SVMpython distribution1 con-

tains its own documentation and reference. This document instead explains SVMpython.

It first explains motivation for SVMpython by comparing and contrasting it with the

SVMstruct package upon which it is based. It closes with a step by step example of

building a binary classifier in SVMpython that makes use of nearly all of the impor-

tant functionality of SVMpython. After reading this, one should understand whether

to use SVMpython or SVMstruct, and be comfortable writing one’s own structural

SVM learning framework with SVMpython.

1Downloadable at http://www.cs.cornell.edu/∼tomf/svmpython2/ .

166

A.1 The Underlying SVMstruct Framework

The goal of SVMpython is to provide a framework as powerful as SVMstruct, except

with allowing a developer to write in Python rather than C. Since they provide

identical functionality, a developer has a choice of whether to use SVMpython or

SVMstruct, and so a detailed understanding of both frameworks, and the relation-

ship between them, is critical. We begin by explaining SVMstruct, calling attention

to the fact that most of what is said about SVMstruct is true about SVMpython.

The SVMstruct framework is an implementation of the structural support vector

machine, a cutting plane algorithm described in Section 2.1. The implementation

exploits the fact that, independent of whatever problem is being addressed with

the structural SVM, implementations of learning methods based on Algorithm 1

would share a tremendous amount of code between them. There are only a few

task dependent pieces of Algorithm 1:

1. The combined feature function Ψ(x,y).

2. The loss function ∆(y, ŷ).

3. The separation oracle function, ŷ = argmaxy∈Y H(y), with H defined in

(2.21) and (2.22) for margin and slack loss scaling, respectively. The separa-

tion oracle finds the output ŷ associated with the most violated constraint

for a given example (xi,yi) ∈ S and current model parameterization w.

4. The prediction function, hw(x), with hw(x) ≡ argmaxy∈Y 〈w,Ψ(x,y)〉. Tech-

nically, this is not part of Algorithm 1 since that algorithm concerns only

learning a model parameterization w, but presumably, one would learn a

model without intending to use it in prediction.

167

The SVMstruct framework performs all the non-task specific operations of Algo-

rithm 1, and calls some hook functions to fill in the task specific material. These

hook functions are implemented by the developer in C. The internal SVMstruct

code is completely indifferent as to the nature of the inputs x ∈ X , the outputs

y ∈ Y , the loss ∆, and the algorithms used for the separation oracle and prediction

function.

This is worth emphasizing, since lack of understanding of the black box nature

of the developer-provided hook functions is the source of most of the major mis-

understandings about the implementation of the structural SVM: SVMstruct treats

the developer hook functions as a complete black box, from which it extracts only

a few standard data structures (notably the Ψ and ∆ functions). It is totally

agnostic to the form of the inputs x, outputs y, whatever algorithms are used in

prediction and constraint inference. With this is a general purpose learning frame-

work which can be used to implement a structural SVM learner for a wide variety

of tasks.

Of course, there is far more involved in successfully leveraging SVMstruct than

implementing four functions. The SVMstruct framework consists of two executables:

a learner which takes a training set and outputs a model parameterization, and a

predictor which takes a set of inputs x and a model parameterization, and outputs

predictions y for each input x. Practically, there are many other steps that must

be accomplished:

1. The data structures holding an input x and output y must be defined in the

structures PATTERN and LABEL, respectively.

2. In both training and prediction, it is necessary to read the training set or

evaluation set S = {(x1,y1), . . . , (xn,yn)}.

168

3. If learning a linear parameterization w, the most common case, one must at

least set the number of linear parameters to learn.

4. The model and its learned parameters must be serialized once the model is

learned, and subsequently deserialized when it comes time to make predic-

tions with that learned model, as separate executables are built for training

a model and predicting using that model.

5. Predictions y = hw(x) must be output to a file in the case of prediction.

6. The structures corresponding to x, y, and the model must be properly deal-

located.

From the point of view of the developer, the task of implementing a structured

learner with SVMstruct involves several steps:

1. Downloading the SVMstruct source code2.

2. Modifying the svm struct api types.h file, to add problem specific defini-

tions of the structures PATTERN and LABEL (corresponding to x and y inputs

and outputs), probably STRUCTMODEL and STRUCT LEARN PARM since learners

may want to have user-specifiable options which will affect the learning pro-

cess, and perhaps STRUCT TEST STATS if one wishes to retain and produce a

more detailed performance report than average loss over the test set.

3. Modifying the svm struct api.c file, to fill in the myriad and mostly initially

empty functions—28 in all, though some have default behavior perfectly

acceptable for most applications—with the desired task specific functionality.

The SVMstruct learning and classification executables follow the paths shown in

Figure A.1 and Figure A.2, respectively. Boxes indicating a particular process

2Available at http://svmlight.joachims.org/svm struct.html.

169

in the algorithm. The first line holds the name of the function to implement in

svm struct api.c, and subsequent lines describe what the user is intended to

accomplish in implementing that function.

SVMstruct’s requirement that the developer implement these functions in C

leads to some rather basic problems for developers.

1. Performing I/O of highly structured data in C is somewhat involved, espe-

cially in situations where the size of your inputs are unknown a priori.

2. The C language does not lend itself to quick prototyping. Research by its

very nature almost always involves playing around with a number of different

ideas, so barriers to change are undesirable. Through no particular fault of

its own, simple changes in an instantiation of SVMstruct often require changes

in many separate locations in the source code.

3. The minimal C standard library requires that users rely upon external non-

standard libraries or their own implementation of even the most basic support

algorithms (e.g., hash tables, union-find structures, string processing).

A.2 Introduction to SVMpython

The SVMpython software package allows one to write these developer interface func-

tions in Python rather than C. What is Python? Python is a very high level in-

terpreted programming language, with dynamic strong duck typing and garbage

collection. As an interpreted language, Python is comparable to Perl or Ruby,

though it has much simpler language structure than either. Python programs

are often written to use a mixture of imperative, object oriented, and functional

170

The Main Loop
This repeats until no
new constraints are
added in a pass over
the training examples.

psi
The Ψ(x i,y i) feature function is
precomputed for each example.

svm_struct_learn_api_init
Allows user code to perform basic
initialization prior to reading any data.

parse_struct_parameters
Custom command line arguments
are passed to the user code.

read_struct_examples
User code reads and returns (x,y)
example pairs from an indicated file.

init_struct_model
User code modifies the initial model,
setting its sizePsi attribute.

init_struct_constraints
User code may add additional linear
constraints to the SVM QP.

SVMstruct repeatedly iterates over all
training examples.

Margin or slack
rescaling?

find_most_violated_constraint_slackrescaling
For a given example (xi,yi), user code returns the output
ȳ requiring the greatest slack under the current model.

find_most_violated_constraint_marginrescaling
For a given example (xi,yi), user code returns the output
ȳ requiring the greatest slack under the current model.

SVMstruc t computes the s lack
required under the returned output,
and the psi and loss outputs. If
the required slack exceeds current
slack by more than epsilon, introduce
the constraint into the SVM QP, and
perhaps reoptimize to find w.

psi
User code computes the Ψ(xi,ȳ)
combined feature function.

loss
User code provides the Δ(yi,ȳ) loss.

marginslack

print_struct_learning_stats
User code which provides additional
diagnostic output after learning.

write_struct_model
Dump the learned model, including
important hyperparameters, to a file.

empty_label
User code to check if the ȳ label is
"empty."

print_struct_iteration_stats
User code which provides additional
diagnostic output for each iteration.

free_label
User code to free data for a label,
which here is used on ȳ.

free_struct_sample
Calls user implemented functions to
free the (xi,yi) example pairs.

free_pattern
Frees each
input x.

free_label
Frees each
output y.

free_struct_model
Frees any user specific
data in the model.

svm_struct_learn_api_exit
Allows user code to perform
any necessary cleanup.

print_struct_help
Summarize command line
options, and exit.

if error...

Figure A.1: Flowchart showing the flow of execution within the SVMstruct

learner, with the flow of execution starting from the upper
left. Steps associated with a particular call to a developer’s
extension function have the box lead with the function name in
svm struct api.c.

171

The Main Loop
Repeats once for each input example.

svm_struct_classify_api_init
Allows user code to perform basic
initialization prior to reading any data.

parse_struct_parameters_classify
Custom command line arguments
are passed to the user code.

read_struct_model
User code to read a model from an
indicated file.

read_struct_examples
User code reads and returns (x,y)
pairs to predict from an indicated file.

SVMstruct passes over all input pairs.

write_label
Write the prediction to the output file.

loss
User code provides the Δ(yi,y) loss.

print_struct_testing_stats
User code which provides additional
diagnostic output after prediction.

classify_struct_example
Compute the prediction y=h(xi).

free_label
User code to free a label, called on
the predicted label y.

eval_prediction
Accumulate additional statistics
about the performance.

free_struct_sample
Calls user implemented functions to
free the (xi,yi) example pairs.

free_pattern
Frees each
input x.

free_label
Frees each
output y.

free_struct_model
Frees any user specific data in the
model.

svm_struct_classify_api_exit
Allows user code to perform any
necessary cleanup.

print_struct_help_classify
Summarize command line
options, and exit.

if error...

empty_label
User code tests if label yi is "empty,"
i.e., if true output is unknown.

Figure A.2: Flowchart showing the flow of execution within the SVMstruct

classifier, with the flow of execution starting from the upper
left. Steps associated with a particular call to a developer’s
extension function have the box lead with the function name in
svm struct api.c.

172

programming paradigms. Python is a general purpose language, well suited to a

wide range of applications from simple scripts to large highly structured projects.

Supporting this is an extremely large standard library offering a wide range of ser-

vices. Converse to its rich library, Python’s syntax and semantics are very spare

and simple to the point of one being able to form a comprehensive understanding

of them within a matter of minutes. In addition to these basic traits, there are

also many subjective traits of Python which make it attractive: relative to other

languages, code in Python is often highly compact, readable, very rapidly devel-

oped, and existing code is changed easily. It is difficult to justify these statements

with any responsibly produced empirical evidence, but suffice to say, many Python

programmers consider them true.

Perhaps most important to this document, however, is Python’s relationship

with C. Python provides an extensive C API library; the base functionality of the

Python interpreter and its core classes are implemented with this API, but other

code may make use of the API as well. This API allows C code to be written

and compiled such that it is callable by Python code, a process called extending.

Conversely, it is also possible for C code to call Python code for programs that

want a programmable interface, a process called embedding.

What SVMpython is, is SVMstruct with embedded Python in the developer hook

functions. In other words, the C code which SVMstruct intends to be a developer

hook function instead calls functions from a Python module. The Python mod-

ule is loaded at runtime. The underlying SVMstruct code is totally unaware and

indifferent to the fact that the developer hook functions are instead calling func-

tions defined in a Python module. It is important to note that any operations

outside of the developer hooks, including most significantly optimization of the

173

SVM quadratic program, are totally unmodified and retain the speed of the C

implementation.

To take one particular example, the C developer hook function read struct

examples calls the Python module’s read examples function. The read struct

examples C function has signature

SAMPLE read_struct_examples(char *file, STRUCT_LEARN_PARM *sparm)

where a SAMPLE item holds an array of (x,y) example pairs, and the number of

examples. The Python function that this function calls within SVMpython has

signature

def read_examples(file, sparm)

where the file argument is a Python string, and the sparm element is a special

type provided by SVMpython called Sparm. This function is expected to return a

sequence containing two-element tuples, consisting of an input xi and output yi, so

that the i-th element of the returned sequence holds the training example (xi,yi).

These inputs and outputs can be any Python objects whatsoever.

One special case is that if an output yi is the Python None object, then that

corresponds to the output being unknown. This is useful, for example, during

classification, when sometimes we really do not know the “right” answer for our

inputs. So, do not use None as your output unless this is the desired result.

By using SVMpython, one also inherits Python’s weaknesses, most notably its

slow execution speed. While enabling rapid development, being an interpreted

language leads to a corresponding slowdown in runtime. In my own experience,

competently written C tends to run at about a tenth of the time of competently

174

written Python. The typical approach within SVMpython development is to proto-

type a design in pure Python, and then move the most computationally intensive

pieces to C code.

For the benefit of the developer’s Python module, SVMpython provides a Python

module named svmapi, within this are all of the relevant datatypes and functions

from the C code. For example, the Sparm Python type seen above corresponds to

the STRUCT LEARN PARM C type, Sparse corresponds to the SVECTOR C type, and

so on. Further, many SVMstruct provided utility functions have analogs exposed

in the svmapi module: the classify example C function is exposed through the

Model.classify method, the create svector function has its functionality ex-

posed through the constructor for Sparse instances, etc.

A.3 Default Behavior, and Model Persistence

Many of the Python analogues to their C hook functions must be implemented

or the module will not function (for example, psi and classify example). How-

ever, owing to some advantages of Python language, some of the functions, if not

implemented, have default behavior which will be acceptable in a wide variety of

circumstances.

To take one example, the C hook functions for memory management (free

pattern, free label, free struct model, and free struct sample) have no

analogue in Python, owing to reliance upon Python’s garbage-collected memory

management scheme. The function write label for the output of labels y defaults

to outputting the Python object’s string representation to the file, which may be

acceptable in some circumstances.

175

However, one of the most useful features of SVMpython and the use of default

implementation of functions is its automatic serialization and deserialization of the

learned model.

The model, represented in C through a STRUCTMODEL struct, and in Python

through a StructModel class instance, is the main output of the learner. The

learned model parameterization contains not only the learned w, but also com-

monly additional hyperparameters affecting how both learning and classification

are performed. For example, across many applications, it is common to have com-

mand line options to change how features are induced from the input data, or

to allow choice among different styles of normalization, or to provide other more

task specific hyperparameters. It is also common for hyperparameters to be deter-

mined from the training data, e.g., the number of features of various types, or in

the supervised k-means clusterer the value of k.

In implementation, in SVMstruct under C, such an addition would require several

modifications concerning its declaration and usage, naturally. However, because

this is an object that is shared between two processes, we must also properly read

and write all hyperparameters to and from the model file within the write struct

model and read struct model files, respectively, which we call serialization and

deserialization.

In C, a hyperparameter in a model has a lifecycle consisting of five or six phases:

declaration, setting, usage, serialization, deserialization, deallocation. More specif-

ically, these phases are: declaration of the hyperparameter in STRUCTMODEL, setting

the hyperparameter either by parsing the relevant command line option or ana-

lyzing the training data, usage of the hyperparameter value in code, serialization

of the hyperparameter to the model file, the deserialization from the model file,

176

and possibly the deallocation if the hyperparameter if it is stored in dynamically

allocated memory outside of the STRUCTMODEL block.

Unfortunately, all of these phases occur in different places throughout the code:

declaration is in the STRUCTMODEL structure, setting is in the init struct model

hook function, usage is obviously wherever the hyperparameter is meant to con-

trol behavior, serialization is in write struct model, deserialization is in read

struct model, and the possible deallocation is in free struct model.

Within SVMpython, by relying upon Python objects we obviate not only the

problems of declaration and memory management, but also the problems of seri-

alization and deserialization, through the use of “pickling.”

Pickling is Python’s primary serialization procedure. Serialization is the process

of converting an object to data which can be later recovered, through deserializa-

tion, to an accurate clone of the original object. It is typically used in situations

where two or more processes need access to the same object but, for whatever

reason, it is infeasible for these processes to share the same address space and

directly address the same object. This typically happens in network transmission

or in situations when the processes are run during different times.

Through the use of Python’s pickle or cPickle modules, an object is trans-

formed into a bytes array and optionally written to a file or port, or transformed

into a string. Pickling and unpickling describe the serialization and deserialization

of an object, whereas picklable and unpicklable describes those objects which can

and cannot be pickled, respectively. Without going into details, the majority of

Python objects are picklable, as are those picklable objects containing picklable

objects, and so on. Further, many of the types declared in svmapi have been

177

implemented to be picklable, including StructModel.

A.4 Flow of Control in SVMpython

Similar to Figure A.1 and Figure A.2, we present flowcharts Figure A.3 and Fig-

ure A.4 showing the control flow within the SVMpython learning and classification

procedures, respectively.

A.5 Using SVMpython to Make a Binary Classifier

In this example, we will use SVMpython to build an actual binary classifier. We

shall start with a very simple minimal binary classifier, and then work our way up,

exploring all the concepts necessary to write a module for SVMpython as we proceed.

Despite the simplicity of the example, this will illustrate in fairly complete depth

all the steps necessary to make a structured learner in SVMpython.

A.5.1 An Initial Bare Bones Binary Classifier

For the sake of simplicity this initial binary classifier will work with linear kernels

only, though we note that the framework can be used with other frameworks as

well. We begin by making a Python module, which we shall name binary1. This

is just a plain source file binary1.py.

The first order of business in either training or classification is the reading of

data. In this case, with binary classification, we read SVMlight style inputs, where

178

lines, each corresponding to an example, are of the form

〈label〉 〈index〉:〈value〉 〈index〉:〈value〉 〈index〉:〈value〉 . . .

where 〈label〉 is either 1 or −1, and the remainder of the line specifies a sparse

vector, with each positive 〈index〉 as the integer element number of the vector and

〈value〉 as the real value, with successive index values being strictly increasing.

import svmapi

def read_examples(filename, sparm):
This reads example files of the type read by SVM^light.
examples = []
for line in file(filename): # Each line corresponds to an example.

if line.find(’#’)>=0: line=line[:line.find(’#’)] # Ignore comments.
tokens = line.split()
if not tokens: continue # Skip empty lines.
target = int(tokens[0]) # Get the label y.
assert target==-1 or target==1 # Ensure labels.
tokens=[tuple(t.split(’:’)) for t in tokens[1:]] # Get the features.
features=[(int(k),float(v)) for k,v in tokens] # Get index,value pairs.
examples.append((features, target)) # Append example pair.

print len(examples), ’examples read’
return examples

We have an import svmapi for the benefit of future functions which will make use

of the functionality provided by the svmapi module. Our function read examples

should return a sequence of two-element tuples, with the first item of the i-th

tuple as the input xi (in this case, a bag-of-words document feature vector), and

the second element as the label yi (in this case, either the integer −1 or 1).

Suppose we try to run the SVMpython learner on this module.

./svm_python_learn --m binary1 -c 1e3 example1/train.dat model.1

We indicate we want to run the SVMpython learning executable using the binary1

module, regularization parameter C = 1 · 103, the training set at path example1/

train.dat3, writing the resulting learned model parameterization to the file model.

3Note that this comes from the example1 set available for download from http://svmlight.
joachims.org/ .

179

1. However, we run into a problem in that we get the error function Could not

find function init model! Obviously, just reading data is not enough to learn.

We must initialize the model, and perform other tasks.

def init_model(sample, sm, sparm):
sm.size_psi = max(max(k for k,v in x) for x,y in sample)+1

In init model, we must at least initialize the maximum size of the Ψ(x,y) vector

by setting the size psi attribute. The psi function (which corresponds to the

combined feature function Ψ) returns vectors, and SVMstruct needs to know ahead

of time what the maximum size of these vectors will be. In the case of binary

classification, we have Ψ(x,y) = y · x, so the size is the maximum index value for

any x we could return. These vectors are indexed from 0, so we want the maximum

“index” value for our vectors plus 1. As for the value itself:

def psi(x, y, sm, sparm):
return svmapi.Sparse([(k, y*v) for k,v in x]) # Psi(x,y) = y * x

The psi function is the programmatic implementation of the Ψ(x,y) combined

feature function. The return value is expected to be either a Sparse object, or

a Document object (which functions as essentially a collection of Sparse objects,

more useful when using kernels on complex objects). A Sparse instance is instan-

tiated with the first argument as a sequence of two-element tuples of index-value

pairs, where the index is a non-negative int, and the value is a float. We also

provide the loss function ∆:

def loss(y, ybar, sparm):
return 1 if y != ybar else 0 # 1 if labels differ, 0 if the same.

The loss function ∆(y, ȳ) has value 1 if y 6= ȳ, and 0 if y = ȳ. This loss function

provided here is equivalent to the default loss function which SVMpython will use if

180

no loss function is provided, so we could just as easily not use it, but we provide

it for clarity.

Then we have code for the prediction h(x) = argmaxy∈Y 〈w,Ψ(x,y)〉 and

the separation oracle ŷ = argmaxy∈Y H(y). If you work forward from the cost

functions H of (2.21) and (2.22) respectively for this particular Ψ and ∆, you

will find that find most violated constraint margin and find most violated

constraint slack return the proper argmaxyH(y).

def score(x, sm):
return sum(sm.w[k]*v for k,v in x) # Effectively, <w, x>.

def classify_example(x, sm, sparm):
return 1 if score(x,sm)>=0 else -1 # Considered positive for <w,x> >= 0.

def find_most_violated_constraint_margin(x, y, sm, sparm):
return 1 if 2*score(x,sm)>=y else -1 # Return most violated output.

def find_most_violated_constraint_slack(x, y, sm, sparm):
return find_most_violated_constraint_margin(x,y,sm,sparm)

In fact, the argmaxyH(y) is identical in both cases. Though this almost never

occurs in problem domains more complicated than binary classification, there is

still default behavior built into SVMpython: if neither of the above separation or-

acle functions is defined, it will instead default to the more general find most

violated constraint, which we can define in place of having two separate iden-

tical functions:

def find_most_violated_constraint(x, y, sm, sparm):
if 2*score(x, sm) >= y: return 1 # Returns the output associated with
else: return -1 # the most violated constraint.

Note the use of the score function. This function is not one of the developer

hook functions; it is just a helpful function in this case. It is worth noting that

developers are free to declare whatever other functions, classes, modules, or other

181

objects within this hook module that they like, so long as they do not use one of

the names reserved for the developer hook functions.

This completes the linear binary classification module. Figure A.5 provides a

comprehensive view of the entire binary1 module. We can then learn and classify.

./svm_python_learn --m binary1 -c 1e3 -w 2 example1/train.dat model.1

./svm_python_classify --m binary1 example1/test.dat model.1 predictions

The first command learns a model parameterization from the training data example1/

train.dat and writes it to model.1, using regularization parameter C = 1 · 103,

and the -w 2 option tells the structural SVM to use the 1-slack variant described

in Section 2.1.4. The second command uses this model parameterization to classify

example1/test.dat, writing the predicted values to a file named predictions.

A.5.2 Writing the Output Hook Functions

SVMpython and SVMstruct allow many hook functions through which the developer

may produce custom output at appropriate times. By default, these functions do

nothing, with the exception of write label, which simply prints the output to a

file. However, in some cases, it may be useful to produce other output.

Let us start with print learning stats. One nice thing would be if the train-

ing executable output the average loss on the training set. By default, SVMpython

does not. Fortunately for us, print learning stats hook function is called once

learning finishes. In this case, we sum the losses of predictions over all training

examples, and then output the resulting average.

def print_learning_stats(sample, sm, cset, alpha, sparm):
total = sum(loss(y, classify_example(x,sm,sparm), sparm) for x,y in sample)
print ’Average loss on train set is’, float(total) / float(len(sample))

182

On the earlier training command, now we have an additional line of output:

Average loss on train set is 0.0075, which is the same average loss one gets

if one runs svm python classify over the training set with the learned model.

The classification executable, on the other hand, does output average loss, but

in certain situations it would be helpful to have more information beyond the

average loss. For example, in this case of binary classification we might also wish

to have precision and recall over the test set. In implementing such a change,

we make use of the hook functions eval prediction and print testing stats.

Unlike in training, during classification the predictions are already being produced.

After every prediction, the eval prediction function is called. The intent of this

function is to accumulate statistics, which are then output in print testing

stats once iteration over all inputs has finished. Let us see the implementation,

which will then be explained.

def eval_prediction(exnum, (x, y), ypred, sm, sparm, teststats):
if exnum==0: teststats = 0, 0, 0
falseneg, falsepos, truepos = teststats
if y== 1 and ypred== 1: truepos += 1
elif y== 1 and ypred==-1: falseneg += 1
elif y==-1 and ypred== 1: falsepos += 1
return falseneg, falsepos, truepos

def print_testing_stats(sample, sm, sparm, teststats):
falseneg, falsepos, truepos = teststats
Compute recall.
try: rec=float(truepos)/float(truepos+falseneg)
except ZeroDivisionError: rec=1.0
print ’Recall is %g’ % rec
Compute precision.
try: prec=float(truepos)/float(truepos+falsepos)
except ZeroDivisionError: prec=1.0
print ’Precision is %g’ % prec

The idea is that eval prediction, getting the true input/output pair (x,y) and

predicted output ypred = h(x), accumulates in teststats statistics. Initially this

argument is None, but in the first example (when exnum==0), we let it be the

183

number of false negatives, false positives, and true positives, which we increment

as appropriate depending upon y and ypred. Whatever the return value from

eval prediction is passed as the next call’s teststats, with the final return

value passed to print testing stats as its teststats value. In this case, the

teststats is a tuple of the three integers.

It would be quite possible and in some respects simpler to simply repeat the

predictions within print testing stats. However, through this arrangement, the

additional computational cost of duplicating the prediction computation is avoided.

There is an additional hook function print iteration stats, which is called

at the end of each iteration over all training examples. This function accepts

many arguments that detail some of the more technical aspects of how iteration is

proceeding. We do not detail the use of this function as its usefulness is somewhat

esoteric.

Finally, there is the write label hook function, which accepts two arguments:

an open file, and a label which came from the classify example prediction func-

tion. If left unimplemented, the default behavior for this function is to simply

print the label to the file. We have seen this default behavior in action before: the

predictions file produced by the svm python classify executable in the earlier

sample commands will contain predictions, 1 and -1, one per line, corresponding

to the outputs. For the sake of argument, suppose that we choose to make output

more parsimonious: instead of having 1 and -1 one per line, suppose we have a

continuous stream of + and - with no linebreaks. We can accomplish this quite

simply by implementing the write label hook function like so:

def write_label(fileptr, y):
fileptr.write(’+’ if y==1 else ’-’)

184

With this change, the predictions file will contain as many characters as there are

documents in the classification set, and only + and - characters.

A.5.3 Custom Constraints

Algorithm 1, and correspondingly its implementation within SVMstruct and SVMpython

starts with an empty constraint set. For various reasons, sometimes one wants to

introduce special constraints. In this case we will show how to introduce constraints

so that, when learning under a linear model, all learned weights are positive.

Unfortunately, this example requires a few minor changes to other seemingly

unrelated pieces of the code, specifically the introduction of a bias term and an

output of the feature.

We must first introduce a bias term, because in our input data, all feature

values are positive, and if we have all weights positive, it would be impossible to

render anything other than a positive judgement. However, unlike, say, SVMlight

or other SVM frameworks for binary classification, the SVMstruct and SVMpython

frameworks do not define a bias term; the concept would not have a consistent

meaning across all machine learning applications, and it is unclear how the value

of the term would be derived. However, since an “offset” is often useful, a common

approach is to instead add a constant “offset” feature to data. By doing so, we

effectively add a bias term, although one subject to regularization through the

‖w‖ term of the SVM QP. We have our x examples as a list of index-value pairs

representing a vector; these are used in the computation of Ψ, in prediction, and

in the separation oracle. Within read examples, after features is declared we

add in a new index-value pair like so:

185

features = [(0, 1.0)] + features

The index value 0 is valid; remember that these index values are reused as indices

in the Sparse declaration in the psi function, which requires only non-negative

integers. However, the 0 index value never appears in SVMlight style data. Thus,

we may safely use it as a bias term. In reality, from an efficiency standpoint, it

would be preferable to not explicitly insert this feature; as it is shared, we could

modify the psi, classify example, and separation oracle functions to act as if

the constant feature is there. However, in this didactic document, we go with

simplicity.

For informative purposes, we also introduce the following at the end of the

print learning stats function. This is so we can clearly see the effect of our

coming change.

print ’Range of sm.w: %g to %g, with bias feature %g’ % (
min(sm.w[1:]), max(sm.w[1:]), sm.w[0])

If we run the learner as is with command

./svm_python_learn --m binary2 -c 1e5 example1/train.dat model.1

one of the last lines of output is

Range of sm.w: -1.01823 to 1.47326, with bias feature 0.0587552

so we have some negative weights. Now let us try adding the constraints to enforce

non-negative feature values. We do this through implementation of the init

constraints function.

186

Before we begin on how to do that, it is important to understand Document

objects, and why they exist. The Document class (or the DOC struct in C) is

SVMpython’s, SVMstruct’s, and SVMlight’s way of storing vectors. We need a Document

class in addition to the existing Sparse vector class, since vectors in the context

of kernel machines are more complicated than normal intuitive understanding of

real vectors would suggest.

For example, suppose we have vectors a,b, c,d ∈ V where V is some vec-

tor space. Suppose further we wish to exploit a kernel κ : V × V → R which

maps into an implicit vector space V ′, with φ : V → V ′ as the implicit mapping

from V to V ′, so that κ(r, s) ≡ 〈φ(r), φ(s)〉. If we want to compute the product

〈φ(a) + φ(b), φ(c) + φ(d)〉, this product is equivalent to κ(a, c)+κ(a,d)+κ(b, c)+

κ(b,d), and emphatically not equivalent to κ(a + b, c + d).

Representation of vectors summed in the implicit feature space but not real

space is endemic through kernelized SVMs, most notably in the model parameter-

ization w, but in structural SVMs also in the Ψ combined feature function as seen

in (6.11) under Section 6.4.

To support this sort of “implicit sum,” we have Document objects, collections

of Sparse objects. Kernelized products between Document instances are sums of

the kernelized products between combinations of the Sparse instances contained

within the two Document instances. All Sparse instances have parameters to

control how their kernel evaluation proceeds: only those with matching kernel id

attributes have their product computed (so Sparse instances with mismatching

IDs are effectively orthogonal), and any kernel evaluations of a Sparse instance is

multiplied by its factor attribute.

187

Constraints are exposed to SVMpython developer hook functions as sequences

of two-element tuples. The first element is a Document instance, and the second

element a float. If we call these d and `, respectively. This leads to a constraint:

〈w,d〉+ ξj ≥ ` (A.1)

The ξj is a slack variable. Owing to the nature of the optimization procedure, it is

impossible for a constraint to not have an associated slack. Which slack variable is

used (e.g., the value of j) is controlled by a Document instance’s slackid attribute.

This must be a positive integer. We select a slack ID that is not used by any

training example (namely, the number of examples plus one), and share it among

all of the positivity constraints.

def init_constraints(sample, sm, sparm):
cons = []
for k in xrange(1,sm.size_psi):

s = svmapi.Sparse([(k, 100.0)])
d = svmapi.Document([s], slackid=len(sample)+1)
cons.append((d, 1.0))

return cons

The init constraints function allows the user to define custom constraints by

returning a list of Document, float tuples. So, for every feature, we add a con-

straint, with a vector that (in the linear case) selects out that feature, multiplies it

times 100, and enforces that this be greater than 1 punishable by the slack associ-

ated with the constraint, so the feature value must exceed 1
100

. Unfortunately, due

to the requirement that some slack exists, an arrangement like this is the best we

can do while ensuring positivity. We could change the 100 to a higher value, but

at some point we make the underlying matrix problem ill-conditioned, so this must

be done with care. Owing to the presence of the slack variable, it is somewhat

tricky to get a proper mix to ensure positivity.

If we re-run the learner under the above settings, we now get the final output

188

Range of sm.w: 0.0096154 to 3.30798, with bias feature -1.30616

A.5.4 Kernels

In this section we will extend our previously linear classifier into one that can

handle non-linear implicit feature mappings through kernels.

For the sake of this section, we do not use the additional code written in

Section A.5.3, but rather start from the code as it existed prior to that section.

In SVMpython and SVMstruct, one may set the SVM kernel through the -t

command line option. While the use of kernels affects internal computations, user

hook code is also not immune. Classification and the separation oracle involve

an argmax over an inner product 〈w,Ψ(x,y)〉, but with the use of kernels, this

inner product is potentially a kernel evaluation. The code as it stands makes

assumptions that it is work in the linear case only. Fortunately, with a few calls

to some supporting objects and support functions, we can get the learner and

classifier “kernelizable” in short order.

Our first step is to change read examples so that x examples are stored as

Sparse instances, instead of Python lists of two-element tuples. (Actually, from a

space and time efficiency standpoint, this would have been a good implementation

to have in any event.) We remove the line starting with examples.append and in

its place insert two lines

svec = svmapi.Sparse(features)
examples.append((svec, target)) # Append example pair.

so that the x input is now svec instead of features. As a side note, with this

189

change, the module’s functionality remains intact even with the same code: Sparse

objects iterate over their index-value pairs just as if they were a list of index-value

tuples.

The next two steps are to change the psi and score functions.

def psi(x, y, sm, sparm):
return svmapi.Sparse(x, factor=y)

def score(x, sm):
return sm.svm_model.classify(x)

Recall that previously, in psi, we directly modified the vector values so that they

were negated if y = −1. Our intention was really that the inner product 〈w,x〉

be negated if y = −1, and it is more appropriate, in the general kernel case, that

this negation happen after the kernel evaluation, not before. This is the primary

reason for the factor attribute on the Sparse instance, a multiplicative factor by

which kernel evaluations on this Sparse vector are multiplied. In this new version

of psi, we construct a new Sparse vector from the existing x Sparse vector, and

set the appropriate factor.

The score function, as before, computes the inner product 〈w,x〉, but this

time with the aid of the method classify on the Model instance contained within

the StructModel instance. This function computes the kernelized inner product

between the model parameterization and our vector x.

We now have a kernelized binary classifier, and by relying upon existing library

routines we can do so without much effort at all.

190

A.6 Summary

This chapter described SVMpython, an extension to SVMstruct that allows one to de-

rive a structural SVM learning algorithm in Python. We first discussed SVMstruct

which, owing to the use of C, poses some challenges for some developers, especially

researchers that may be more interested in prototyping new ideas quickly than in

raw speed. In SVMpython, by allowing developers to develop structural SVM algo-

rithms in pure Python, we retain Python’s advantages in rapid prototyping and

superior comprehensibility. Further, by relying upon Python, many of the mun-

dane tasks of implementing a structural learner in C are obviated, most notably

those related to memory management, rich comparisons of data, and especially

model parameterization, serialization, and deserialization. We closed the chapter

with an in-depth example implementation of a very simple structural SVM that

does binary classification. Through this example, we provided a tour of most of

the important functionality of SVMpython from a developer’s perspective.

191

The Main Loop
This repeats until no
new constraints are
added in a pass over
the training examples.

psi
The Ψ(x i,y i) feature function is
precomputed for each example.

print_help
Summarize command line
options, and exit.

read_examples
User code reads and returns (x,y)
example pairs from an indicated file.

init_model
User code modifies the initial model,
setting its sizePsi attribute.

init_constraints
User code may add additional linear
constraints to the SVM QP.

SVMstruct repeatedly iterates over all
training examples.

Margin or slack
rescaling?

find_most_violated_constraint_slack
For a given example (xi,yi), user code returns the output
ȳ requiring the greatest slack under the current model.

find_most_violated_constraint_margin
For a given example (xi,yi), user code returns the output
ȳ requiring the greatest slack under the current model.

SVMstruc t computes the s lack
required under the returned output,
and the psi and loss outputs. If
the required slack exceeds current
slack by more than epsilon, introduce
the constraint into the SVM QP, and
perhaps reoptimize to find w.

psi
User code computes the Ψ(xi,ȳ)
combined feature function.

loss
User code provides the Δ(yi,ȳ) loss.

marginslack

print_learning_stats
User code which provides additional
diagnostic output after learning.

write_model
Dump the learned model, including
important hyperparameters, to a file.

print_iteration_stats
User code which provides additional
diagnostic output for each iteration.

parse_parameters
Custom command line arguments
are passed to the user code.

if error...

Figure A.3: Flowchart showing the flow of execution within the SVMpython

learner, with the flow of execution starting from the upper left.
Steps associated with a particular call to a developer’s module
function have the box lead with the function name.

192

The Main Loop
Repeats once for each input example.

parse_parameters_classify
Custom command line arguments
are passed to the user code.

read_model
User code to read a model from an
indicated file.

read_examples
User code reads and returns (x,y)
pairs to predict from an indicated file.

SVMstruct passes over all input pairs.

write_label
Write the prediction to the output file.

loss
User code provides the Δ(yi,y) loss.

print_testing_stats
User code which provides additional
diagnostic output after prediction.

classify_example
Compute the prediction y=h(xi).

eval_prediction
Accumulate additional statistics
about the performance.

print_help_classify
Summarize command line
options, and exit.

if error...

Figure A.4: Flowchart showing the flow of execution within the SVMpython

classifier, with the flow of execution starting from the upper left.
Steps associated with a particular call to a developer’s module
function have the box lead with the function name.

193

import svmapi

def read_examples(filename, sparm):
This reads example files of the type read by SVM^light.
examples = []
for line in file(filename): # Each line corresponds to an example.

if line.find(’#’)>=0: line=line[:line.find(’#’)] # Ignore comments.
tokens = line.split()
if not tokens: continue # Skip empty lines.
target = int(tokens[0]) # Get the label y.
assert target==-1 or target==1 # Ensure labels.
tokens=[tuple(t.split(’:’)) for t in tokens[1:]] # Get the features.
features=[(int(k),float(v)) for k,v in tokens] # Get index,value pairs.
examples.append((features, target)) # Append example pair.

print len(examples), ’examples read’
return examples

def init_model(sample, sm, sparm):
sm.size_psi = max(max(k for k,v in x) for x,y in sample)+1

def psi(x, y, sm, sparm):
return svmapi.Sparse([(k, y*v) for k,v in x]) # Psi(x,y) = y * x

def loss(y, ybar, sparm):
return 1 if y != ybar else 0 # 1 if labels differ, 0 if the same.

def score(x, sm):
return sum(sm.w[k]*v for k,v in x) # Effectively, <w, x>.

def classify_example(x, sm, sparm):
return 1 if score(x,sm)>=0 else -1 # Considered positive for <w,x> >= 0.

def find_most_violated_constraint(x, y, sm, sparm):
return 1 if 2*score(x,sm)>=y else -1 # Return most violated output.

Figure A.5: The code for binary1.py, an extension module that implements
linear binary classification for SVMpython.

194

APPENDIX B

PYGLPK : THE PYTHON GNU LINEAR PROGRAMMING KIT

PyGLPK is a Python extension module that provides an interface to the GLPK,

the GNU Linear Programming Kit [71]. The underlying GLPK is a library con-

taining a set of C routines through which one may solve linear programming and

mixed integer programming problems.

The GLPK solves linear programs of the form where one is minimizing (or

maximizing) variables x0, x1, x2, . . . , xn−1 and y0, y1, y2, . . . , ym−1 over an objective

function

z = c0x0 + c1x1 + c2x2 + · · ·+ cn−1xn−1 + c′ (B.1)

subject to constraints

y0 = a00x0 + a01x1 + a02x2 + · · ·+ a0,n−1xn−1

y1 = a10x0 + a11x1 + a12x2 + · · ·+ a1,n−1xn−1

y2 = a20x0 + a21x1 + a22x2 + · · ·+ a2,n−1xn−1

...
...

...

ym−1 = am−1,0x0 + am−1,1x1 + am−1,2x2 + · · ·+ am−1,n−1xn−1

(B.2)

and variable bounds

∀i ∈ 0..n− 1 : `xi
≤ xi ≤ uxi

∀j ∈ 0..m− 1 : `yj
≤ yj ≤ uyj

(B.3)

where the xi and yj variables (the column and row variables, respectively) are all

in R, optionally with some xi ∈ Z within a mixed integer program. The ci and

aij values are not variables, but constant objective function terms and constraint

matrix terms.

The PyGLPK is a Python C extension module, which provides a module glpk in

Python for utilizing the functionality of the GLPK, allowing one to solve problems.

195

In this chapter we will review the PyGLPK, and go over concrete examples of

its use. This chapter does not present a full list and description of every method

and attribute of every object in the PyGLPK. Those wishing such a comprehensive

document will find it in the PyGLPK source distribution. The GLPK presents a

very large library of API functions, and the PyGLPK exposes nearly all of its

functionality. A suitable explanation of every possible use of every possible op-

tion would be a book unto itself. Rather, we present a functional introduction

to PyGLPK, demonstrating most of its important functionality. This chapter as-

sumes one is familiar with both linear programming and the Python programming

language.

This chapter describes PyGLPK 0.3, which encapsulates the functionality of

GLPK 4.18 through 4.31. At the time of this writing GLPK is a quickly evolving

library, and future versions of PyGLPK may change as the underlying GLPK

changes.

B.1 Principles of the PyGLPK

The GLPK was chosen for the underlying linear programming library because it

is freely available, reasonably efficient, well documented, allows mixed integer pro-

gramming, provides a programmatic interface through a dynamic library, and is

relatively bug free both in terms of crashes and memory leaks. Surprisingly few

linear programming libraries meet all of these criteria. Being bug free is partic-

ularly important, as some applications of linear programming may call for many

thousands of separate linear programs to be solved, as in Section 5.5, even a small

memory leak can be debilitating.

Python interfaces to GLPK already exist, so why write a new Python wrapper?

196

While some Python interfaces to GLPK exist, they all either expose an extremely

limited subset to the API [93], or they are just total transliterations of the GLPK

C API into Python [80, 81]. The goal of PyGLPK was to expose nearly all docu-

mented behavior of the GLPK while maintaining a Pythonic interface.

Pythonic, a vague but useful adjective, means making good use of or support-

ing Python idioms. By an idiom we mean a characteristic way of accomplishing a

certain type of task. For even the simplest programming tasks, there is often an

established “right way” to accomplish that task, suggested by either the language

or the culture that grew up around that language. For example, consider an object

that contains a collection of items, and the task of iterating over and retrieving

those items. In C one might construct next and get functions that, given the

object and an index, return either that subobject or the index to the next object.

In C++ one might use operator overloading to provide iterators whose use resem-

bles pointer arithmetic. In Java one might exploit the +Iterable+ and +Iterator+

interfaces.

Let us give a concrete example of this through a crash introduction to PyGLPK.

The class central to glpk is LPX, which encapsulates a linear program, includ-

ing program definition and current solutions. An LPX instance (let us call it lp)

contains a member rows, e.g., lp.rows, which somehow contains the linear pro-

gram’s rows. We seem to know nothing about how to interact with this row’s

object. However, if we further state that rows acts like a sequence, a hypotheti-

cal semi-experienced Python programmer knows how to do many things with no

further information. He knows how to get the number of rows (len(lp.rows));

he knows how to get the first row (lp.rows[0]); he knows how to iterate over

all rows (for row in lp.rows: # do something); he knows how to get a list of

197

0 1 2 3 4

1

2

3

first row
constraint

second row
constraint

Figure B.1: Graphical representation of the two linear constraints of the
problem of Section B.2.

the last three rows (lp.rows[-3:]); he knows how to delete the last three rows

(del lp.rows[-3:]). Through respecting established Python idioms with regard

to sequences, these portions of PyGLPK could be termed Pythonic.

B.2 Simple Two Dimensional Example

In this section we will illustrate the usage of PyGLPK by presenting a simple linear

program, and explaining the PyGLPK code that implements and solves the linear

program line by line. Suppose we consider the following maximization problem

over two variables x0, x1:

198

Optimization Problem 14. (Simple Linear Program of Section B.2)

maximize x0 + x1

subject to y0 = 3x0 + 4x1

y1 = 9x0 + 4x1

y0 ≤ 12

y1 ≤ 18

The constraints of this problem are represented graphically in Figure B.1. From

the picture and the linear constraint equations, it is clear that the optimal solution

lies at x0 = 1, x1 = 2.25. However, we will solve this problem with PyGLPK.

1 import glpk # Import the PyGLPK module.
2

3 lp = glpk.LPX() # Construct the linear program.
4 lp.obj.maximize = True # Set as maximization.
5 lp.cols.add(2) # Add const. matrix columns.
6 for col in lp.cols: # Iterate over columns.
7 col.name = ’x%d’%col.index # Name the columns x0, x1.
8 col.bounds = None, None # No bounds on the variables.
9 lp.obj[col.index] = 1.0 # Each objective coef. is 1.

10 lp.rows.add(2) # Add const. matrix rows.
11 for row in lp.rows: row.name = ’y%d’%row.index # Name the rows y0, y1.
12 lp.matrix = [3, 4, # Set the constraint matrix
13 9, 4] # matrix in one assignment.
14 lp.rows[0].bounds = None, 12 # Constrain y0 <= 12 .
15 lp.rows[1].bounds = None, 18 # Constrain y0 <= 18 .
16 lp.simplex() # Run the simplex algorithm.
17 for col in lp.cols: # For each column print out the
18 print ’%s = %g’ % (col.name, col.value) # variable’s name and value.

Let us go through this program line by line. In line 1 we see the import statement

of the PyGLPK module, which is named glpk. In line 3 we construct the linear

program instance by calling the LPX constructor. Line 4 illustrates the use of the

obj member of the linear program, an object of type Objective, an instance of

which holds information relating to the objective function value. In this case, we

are setting its maximize attribute to True, which indicates that we are optimizing

199

to maximize the objective (whereas, if the attribute were set False, we would be

minimizing the objective).

The problem has two columns, and two rows. The rows and columns are stored

within two attributes of the linear program, rows and cols respectively, both of

type BarCollection. We add two members with this object’s add method in line

5. By iterating over the cols member as we do in line 6, we can go over all of

the columns within the program. The variable col is a member of class Bar; both

columns and rows are instances of this class. These instances hold information not

only about a column and row within the constraint matrix, but also information

about the variable associated with that row or column.

In line 7 we set the name of each column’s variable to "x0" and "x1", to match

the names given in OP 14. This is accomplished by assigning a string to each Bar

instance’s name attribute. Note that actually naming the columns is completely

optional. It is done here for illustrative purposes.

In line 8, we set the bounds for the column’s variable. In both cases, we do not

want any bounds for the variable, neither lower nor upper bounds. Setting bounds

is done through a Bar instance’s bounds attribute, which accepts two values. The

first value is a lower bound, the second is an upper bound. This establishes the

acceptable range for a variable. The value None indicates that there should be

no corresponding bound. So, by setting the bound attribute to None, None, we

indicate that the variable should be completely unbounded.

In line 9, we set the objective function’s coefficients. Since there is a term

in the objective function for every column variable, we set the column variable’s

coefficient in the objective function, while we are at it. The coefficient is set

200

by indexing into the obj attribute of the linear program, indexing either being

numeric, or by name of the column. In this case, indexing is numeric, by using

the column’s index attribute to get its corresponding column number in the linear

program’s constraint matrix.

In line 10, we next add the two rows, in a similar fashion to how we added the

two columns.

In line 11, we iterate over the rows and set the row names to "y0" and "y1",

in a similar fashion as we set the column names in lines 6 and 7.

In line 12 and 13, we set the linear program’s constraint matrix. In this particu-

lar case, we set the constraint matrix all at once, by assigning to a linear program’s

matrix attribute. In a real application, it would be far more plausible to set the

constraint matrix row by row, or column by column, or at least set the constraint

matrix in sparse notation. We shall see examples of these in future examples, but

for now, we keep this simple example where a matrix is specified completely and

explicitly in one command.

In line 14 and 15, we have the bounds set on the rows variables. In OP 14,

we want to have y0 ≤ 12 and y1 ≤ 18. Correspondingly, we set the bounds on

the row indexed by 0, which corresponds to y0, to None, 12 (meaning no lower

bound, but an upper bound of 12), and the bounds on the row indexed by 1, which

corresponds to y1 ,to None, 18 (no lower bound, and an upper bound of 18).

We have now fully specified our problem. It is now time to run actual opti-

mization. In line 16, we run the simplex algorithm through the simplex method

on the LPX instance.

201

In the last two lines, 17 and 18, we print the variable values for x0 and x1, by

iterating over the columns in the cols instance, and for each column, printing out

its name and value. As expected, the final output to this problem is

x0 = 1
x1 = 2.25

We have thus built and solved a very simple linear program.

B.3 Satisfiability Solver Example

In addition to linear programming, PyGLPK through the GLPK also allows one to

solve mixed integer programs (MIP). Mixed integer programs are specified in the

same fashion as a regular linear program, except that certain column variables can

be constrained to also be integral. While optimizing a mixed integer program is

known to be an NP-hard problem, they are useful in many situations. One of the

most commonly used subclasses of a mixed integer program is a Boolean integer

problem, where the column variables must be integral and be only 0 and 1.

In this section we show a simple example of how to use PyGLPK to find so-

lutions for the Boolean satisfiability problem for a given conjunctive normal form

expression. The implementation will thus essentially prove through reduction the

NP-hardness of the problem.

First, what is a Boolean satisfiability problem? In the Boolean satisfiability

problem, given a Boolean expression, we want to determine if there is an assignment

of True and False values to the variables of the expression such that the expression

evaluates to True. Suppose one has a conjunctive normal form expression, that

202

is, a conjunction (and-ing, ∧) of several disjunctions (or-ing, ∨) of logical literals,

e.g.:

(¬x1∨¬x3∨¬x4)∧(x2∨x3∨¬x4)∧(x1∨¬x2∨x4)∧(x1∨x3∨x4)∧(¬x1∨x2∨¬x3)

(B.4)

We want to find truth values to all four xi variables so that the CNF expression

is true. This problem has been viewed from many different ways, but we’ll see how

to encode and (we hope) solve it within a mixed-linear program. We will build a

function solve_sat to satisfy a given CNF.

First, we need to define how we encode our input CNF expressions that we

want to satisfy:

• Each logical literal is represented as either a positive or negative integer,

where i and -i correspond to the logical literals xi and ¬xi, respectively.

• Each clause in the expression, i.e., disjunction of literals, is represented as a

tuple of such encoding of literals, e.g., (-1, 2, -3) represents the disjunc-

tion (¬x1 ∨ x2 ∨ ¬x3).

• The entire conjunctive expression is a list of such tuples, e.g., the expression

above would have encoding:

[(-1, -3, -4), (2, 3, -4), (1, -2, 4), (1, 3, 4), (-1, 2, -3)]

• The function will return either None if it could not find a satisfying assign-

ment, or a list of Booleans assignment representing the satisfying assign-

ment, where the truth of each logical variable xi is held in assignment[i-1].

This is our strategy for how to solve this with a mixed integer program:

203

1. For each logical variable xi, have a column variable representing both its

positive and negative literals xi and ¬xi. These column variables should be

either 0 or 1 depending on whether the corresponding literal is false or true,

respectively.

With some extra effort, at the cost of a slight amount of extra complexity,

one could halve the number of variables, with one column variable for each

logical expression variable, instead of two for each. However, for didactic

purposes we accept a slightly less efficient encoding of the problem.

2. Because we want literal consistency, we specify that the sum of all literal pair

column variables must be 1. This forbids literals for a given logical variable

from being set both false or both true.

3. For each clause, we define a constraint specifying that the sum of all its literal

column variables must be at least 1. This forces each clause to be true.

4. First we run the simplex solver (implying a relaxed problem where the column

variables can range from 0 to 1). Then we run the integer solver (the column

variables can be either 0 or 1).

5. If the integer solver finds an optimal solution, we return a list of bool values,

True and False, corresponding to x1, x2, etc., in the input CNF. If a positive

literal has a corresponding column variable with value 1, then we assign its

logical variable to true. Correspondingly, if there is no satisfying assignment

found, we return None.

Here is the implementation of that function:

1 def solve_sat(expression):
2 if len(expression)==0: return [] # Trivial case. Otherwise count vars.
3 numvars = max([max([abs(v) for v in clause]) for clause in expression])
4 lp = glpk.LPX() # Construct an empty linear program.
5 glpk.env.term_on = False # Stop the annoying output.

204

6 lp.cols.add(2*numvars) # As many columns as there are literals.
7 for col in lp.cols: # Literal must be between false and true.
8 col.kind = bool
9 def lit2col(lit): # Function to compute column index.

10 return [2*(-lit)-1,2*lit-2][lit>0]
11 for i in xrange(1, numvars+1): # Ensure "oppositeness" of literals.
12 lp.rows.add(1)
13 lp.rows[-1].matrix = [(lit2col(i), 1.0), (lit2col(-i), 1.0)]
14 lp.rows[-1].bounds = 1.0 # Must sum to exactly 1.
15 for clause in expression: # Ensure "trueness" of each clause.
16 lp.rows.add(1)
17 lp.rows[-1].matrix = [(lit2col(lit), 1.0) for lit in clause]
18 lp.rows[-1].bounds = 1, None # At least one literal must be true.
19 retval = lp.simplex() # Try to solve the relaxed problem.
20 assert retval == None # Should not fail in this fashion.
21 if lp.status!=’opt’: return None # If no relaxed solution, no exact sol.
22 retval = lp.integer() # Try to solve this integer problem.
23 assert retval == None # Should not fail in this fashion.
24 if lp.status != ’opt’: return None
25 return [col.value > 0.99 for col in lp.cols[::2]]

B.3.1 Line by Line Explanation

We shall now go over this code line by line.

Lines 2 through 3 are pretty straightforward non-PyGLPK Python code. The

first line takes care of the boundary case where we have an empty expression. In

the second line, from the expression, we find the maximum indexed logical variable

we have, and use that as our count of the number of logical variables.

In line 4, with the LPX constructor, we construct an empty linear program.

The line 5 is a simple preference assignment to quiet the input. Within the glpk

module, there is a singleton member env, of type Environment. By assigning to

various attributes contained within env, you can affect behavior of the underlying

GLPK library. In this case, we are assigning False to the term_on (terminal

output on) parameter, to suppress all output.

In line 6, we add as many column variables in the linear program as there

205

are possible literals over all our logical variables. Each logical variable xi has two

possible literals: itself (xi), and its negation (¬xi).

Initially we have no columns at all. So, from the lp.cols we call the add

method, telling it to add as many columns as there are twice the number of logical

variables.

In line 7 and 8, we set the kind of each column object as a bool. The kind

attribute may be any of float (which is default), int, or bool. A mixed integer

program is an LPX instance which has 1 or more columns set as int or bool.

Setting the kind as bool is actually equivalent to setting the kind as int with

bounds from 0 to 1.

Remember, these lp.cols objects act like sequences (albeit with restrictions

on their content). In order to access their elements (in this case, columns), we

can either iterate over the columns as we do here, or index into them directly as

lp.cols[colnum].

Line 9 and 10 define a helper function lit2col to smooth implementation by

providing a clean translation from the literal number in our expression function

argument, to the column number. Recall that we have a column for each possible

literal. This function maps literal code 1 to column index 0, -1 to column index 1,

2 to 2, -2 to 3, 3 to 4, -3 to 5, 4 to 6, and so forth.

Lines 11 through 14 define our consistency constraints to make sure two op-

posite literals are not both true or not both false. For each logical variable, we

add one new row (what will be a consistency constraint). Notice that we are now

using the lp.rows object. Recall that this is similar to the lp.cols object, and

in reality they are the same type, except it represents the rows of the problem,

206

instead of the columns.

In line 13 we get the last row, which is the one we just added (note the use of the

-1 index to address the last row), and assign to its matrix attribute. The matrix

attribute for any row or column corresponds to the entries of the row or column

vector in our constraint matrix. In this case, we are setting the two locations of

this constraint matrix row corresponding to the two column variables for xi and

¬xi to 1.0, so that a variable and its negation must be 1, and neither 0 (both false)

or 1 (both true).

Finally, in line 14, we set the bounds attribute for this row’s variable to 1.0.

Note that this differs from the previous bound definition: here we use only one

number. This indicates we want an equality constraint. More generally, setting the

bounds attribute to just a single value a is equivalent bounds to a, a. For instance,

it would have been equivalent to assign 1.0, 1.0 to bounds.

We also have constraints added for each term within the larger clause, in lines

15 through 18. These are our clause satisfiability constraints, to make sure that at

least one literal in each clause is true. For each clause we, again, add a single row,

as in line 16. We access this last added row, and assign to its matrix attribute. In

this case, we are specifying that the row’s constraint coefficients should be 1.0 for

each column variable corresponding to each literal within this clause. Finally, we

set the bounds attribute for this row, establishing the lower bound 1 and upper

bound None. An assignment of None indicates unboundedness in this direction.

In line 19, we finally employ the simplex solver to attempt to solve a relaxed

version of basic the problem. The problem is relaxed in the sense that the variables

can be non-integers. The simplex solver does not respect the kind set to the column

207

variable, treating the column variables as all continuous real valued variables.

However, it does respect the [0, 1] bounds on the column variables implied by the

bool kind on the bounds. We run the simplex solver first because the integer

optimization method requires an existing optimal basic solution, e.g., a simplex

solution.

Line 20 is a quick assertion check to ensure there are no problems with the

simplex solver. The simplex method and other solver codes typically return None,

unless the method was unable to start the search due to a fault in the problem

definition (which returns the string ’fault’), or because the simplex search ter-

minated prematurely (due to one of several possible conditions).

In a real application, one would probably be interested in writing code in a fault

tolerant matter to see what went wrong in an attempt to solve the problem, and

then attempt to solve it. However, for this toy example, we just noisily fail with

an exception. Note that “not terminating prematurely” does not indicate that

an optimal solution was found. For instance, the solver could have determined

that a solution did not exist, perhaps due to unboundedness or infeasibility. It

merely means that the search did not terminate abnormally, or incorrectly. In

order to check whether we found an optimal solution – as opposed to, say, having

determined that the problem is infeasible – we check the status attribute, as we

do in line 21. If it does not hold ’opt’, that is, that an optimal solution was found,

then we return None to indicate that we could not find a satisfying assignment.

Note that we return None in this case because, if there is no solution to the relaxed

unconstrained problem, there is certainly no solution to the constrained version.

There could be a solution to the relaxed problem and no solution to the integer

problem, but not vice versa.

208

After calling the simplex solver, we hold an optimal basic solution to the relaxed

problem. We solve the problem as an integer problem in line 22. This is very similar

to our invocation of the simplex solver, except this time we are using the integer

solver. Again, in line 23, we fail noisily if we encounter something unexpected, and

in line 24 quietly return None if we could not find a satisfying integer assignment.

The function we are writing is supposed to return a satisfying truth assignment

to all our variables if such an assignment is possible. Since we have gotten this far

without returning None or throwing an exception, we know we have a satisfying

assignment. In particular, a variable is true if its positive literal has a corresponding

column variable of 1.

Remember that literal x1 corresponds to column 0, x2 to column 2, x3 to column

4, xi to column 2(i− 1), and so forth. We go over each of the even columns (using

the slice ::2 to indicate every column from beginning to end, counting by 2s), test

whether the value of this columns variable is 1, and return the resulting list as our

satisfying assignment in line 25.

B.3.2 Example Run

How does this work? Recall our CNF formula.

(¬x1∨¬x3∨¬x4)∧(x2∨x3∨¬x4)∧(x1∨¬x2∨x4)∧(x1∨x3∨x4)∧(¬x1∨x2∨¬x3)

(B.5)

This has the encoding

[(-1, -3, -4), (2, 3, -4), (1, -2, 4), (1, 3, 4), (-1, 2, -3)]

Suppose we run this in our Python interpreter.

209

exp = [(-1, -3, -4), (2, 3, -4), (1, -2, 4), (1, 3, 4), (-1, 2, -3)]
print solve_sat(exp)

This prints out:

[True, True, False, False]

So, x1 = True, x2 = True, x3 = False, and x4 = False. Is this a satisfying

assignment? The first and second clauses are true because ¬x4. The third and

fourth clauses are true because x1. The fifth (last) clause is true because x2. Since

all the clauses are true, the conjunction is true as well, so the expression is satisfied

with this variable assignment.

Now, suppose we input the expression x1 ∧ ¬x1, which is plainly unsatisfiable.

exp = [(-1,), (1,)]
print solve_sat(exp)

This prints out:

None

This value indicates that the expression is unsatisfiable, which is what we want.

B.4 Conclusions

In this chapter we have provided a brief functional introduction to PyGLPK, a

Python encapsulation of the existing GNU Linear Programming Kit. The PyGLPK

presents an interface to GLPK which encapsulates nearly all of the documented

functionality of the GLPK in a Pythonic interface. The explanation of PyGLPK

210

focused on examples of using PyGLPK to solve specific problems: a small two

dimensional example, and an implementation of a SAT solver. We illustrated how

to set up a problem, add constraints, optimize, and retrieve solution values in both

linear and integer problems.

211

BIBLIOGRAPHY

[1] Charu C. Aggarwal, Stephen C. Gates, and Philip S. Yu. On the merits of
building categorization systems by supervised clustering. In ACM SIGKDD-
1999, pages 352–356. ACM Press, 1999.

[2] Yasemin Altun, David McAllester, and Mikhail Belkin. Maximum margin
semi-supervised learning for structured variables. In Yair Weiss, Bernhard
Schölkopf, and John Platt, editors, Advances in Neural Information Process-
ing Systems (NIPS) 18, pages 33–40, Cambridge, MA, 2006. MIT Press.

[3] Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden
Markov support vector machines. In ICML ’03: Proceedings of the 20th
international conference on Machine learning, pages 3–10, 2003.

[4] Dragomir Anguelov, Ben Taskar, Vassil Chatalbashev, Daphne Koller,
Dinkar Gupta, Geremy Heitz, and Andrew Ng. Discriminative learning of
Markov random fields for segmentation of 3D scan data. In CVPR ’05: Pro-
ceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 2, volume 2, pages 169–176,
Washington, DC, USA, 2005. IEEE Computer Society.

[5] Francis R. Bach and Michael I. Jordan. Learning spectral clustering. In
Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, editors, Ad-
vances in Neural Information Processing Systems (NIPS) 16. MIT Press,
2003.

[6] Francis R. Bach and Michael I. Jordan. Learning spectral clustering, with
application to speech separation. Journal of Machine Learning Research,
7:1963–2001, 2006.

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2002.

[8] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic
framework for semi-supervised clustering. In ACM SIGKDD-2004, pages
59–68, August 2004.

[9] J. C. Bezdek. Pattern recognition with fuzzy objective function algoritms.
1981.

212

[10] Mikhail Bilenko, Sugato Basu, and Raymond J. Mooney. Integrating con-
straints and metric learning in semi-supervised clustering. In ICML ’04:
Proceedings of the 21st international conference on Machine learning, New
York, NY, USA, 2004. ACM Press.

[11] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete
Appl. Math., 123(1-3):155–225, 2002.

[12] Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown.
Learning multi-label scene classification. Pattern Recognition, 37(9):1757–
1771, 2004.

[13] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. PAMI,
26(9):1124–1137, 2004.

[14] Ulf Brefeld and Tobias Scheffer. Semi-supervised learning for structured out-
put variables. In ICML ’06: Proceedings of the 23rd international conference
on Machine learning, pages 145–152, New York, NY, USA, 2006. ACM Press.

[15] Claire Cardie and Kiri Wagstaff. Noun phrase coreference as clustering. In
Joint Conference on Empirical Methods in NLP and Very Large Corpora,
1999.

[16] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Hierarchical clas-
sification: combining Bayes with SVM. In ICML ’06: Proceedings of the
23rd international conference on Machine learning, 2006.

[17] Chih-Chung Chang and Chih-Jen Lin. LIBSVM : A li-
brary for support vector machines, 2001. Software at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[18] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-
Supervised Learning (Adaptive Computation and Machine Learning). The
MIT Press, September 2006.

[19] Olivier Chapelle and Alexander Zien. Semi-supervised classification by low
density separation. In Tenth International Workshop on Artificial Intelli-
gence and Statistics, pages 57–64, 01 2005.

[20] Ira Cohen, Nicu Sebe, Fabio G. Cozman, and Thomas S. Huang. Semi-
supervised learning for facial expression recognition. In MIR ’03: Proceedings

213

of the 5th ACM SIGMM international workshop on Multimedia information
retrieval, pages 17–22, New York, NY, USA, 2003. ACM Press.

[21] William Cohen and Jacob Richman. Learning to match and cluster entity
names. In ACM SIGIR’01 Workshop on Mathematical/Formal Methods in
IR, 2001.

[22] David Cohn, Rich Caruana, and Andrew McCallum. Semi-supervised clus-
tering with user feedback, April 2001.

[23] Michael Collins. Discriminative training methods for hidden Markov models:
theory and experiments with perceptron algorithms. In ACL-EMNLP, pages
1–8, Morristown, NJ, USA, 2002. Association for Computational Linguistics.

[24] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, January 1967.

[25] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom
Mitchell, Kamal Nigam, and Seán Slattery. Learning to extract symbolic
knowledge from the world wide web. In AAAI ’98/IAAI ’98: Proceedings of
the fifteenth national/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, pages 509–516, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[26] Aron Culotta, Michael Wick, and Andrew McCallum. First-order probabilis-
tic models for coreference resolution. In NAACL-HLT, pages 81–88, 2007.

[27] Hal Daumé III. Practical Structured Learning Techniques for Natural Lan-
guage Processing. PhD thesis, University of Southern California, Los Angeles,
CA, August 2006.

[28] Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured
prediction. 2006.

[29] Hal Daumé III, John Langford, and Daniel Marcu. Searn in practice. Tech
Report, 2006.

[30] Hal Daumé III and Daniel Marcu. A Bayesian model for supervised clustering
with the Dirichlet process prior. Journal of Machine Learning Research,
6:1551–1577, 2005.

[31] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.

214

Information-theoretic metric learning. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages 209–216, New York,
NY, USA, 2007. ACM.

[32] Tijl De Bie, M. Momma, and Nello Cristianini. Efficiently learning the metric
using side-information. In ALT2003, volume 2842, pages 175–189. Springer,
2003.

[33] Erik Demaine and Nicole Immorlica. Correlation clustering with partial
information. In RANDOM-APPROX 2003, pages 1–13, August 2003.

[34] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[35] Inderjit S. Dhillon, Yuqiang Guan, and J. Kogan. Iterative clustering of high
dimensional text data augmented by local search. In ICDM ’02: Proceedings
of the 2002 IEEE International Conference on Data Mining (ICDM’02), page
131, Washington, DC, USA, 2002. IEEE Computer Society.

[36] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. A unified view of kernel
k-means, spectral clustering and graph cuts. Technical Report TR-04-25,
University of Texas Dept. of Computer Science, 2005.

[37] J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 1973.

[38] André Elisseeff and Jason Weston. A kernel method for multi-labelled classi-
fication. In Advances in Neural Information Processing Systems (NIPS) 14,
pages 681–687, Cambridge, MA, 2002. MIT Press.

[39] Thomas Finley. SVMpython, 2007. http://www.cs.cornell.edu/∼tomf/

svmpython2/.

[40] Thomas Finley and Thorsten Joachims. Supervised clustering with support
vector machines. In ICML ’05: Proceedings of the 22nd international confer-
ence on Machine learning, pages 217–224, New York, NY, USA, 2005. ACM
Press.

[41] Thomas Finley and Thorsten Joachims. Supervised k-means clustering.
Number 1813-11621, 2008. http://hdl.handle.net/1813/11621.

215

[42] Chris Fraley and Adrian E. Raftery. Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Asso-
ciation, pages 611–631, June 2002.

[43] Bogdan Gabrys and Lina Petrakieva. Combining labelled and unlabelled
data in the design of pattern classification systems. International Journal of
Approximate Reasoning, 35(3):251–273, 2004.

[44] Yuhong Guo, Dana Wilkinson, and Dale Schuurmans. Maximum margin
bayesian networks, 2005.

[45] Peter Haider, Ulf Brefeld, and Tobias Scheffer. Supervised clustering of
streaming data for email batch detection. In ICML ’07: Proceedings of
the 24th international conference on Machine learning, pages 345–352, New
York, NY, USA, 2007. ACM.

[46] Peter L. Hammer, Pierre Hansen, and Bruno Simeone. Roof-duality, comple-
mentation, and persistency in quadratic 0–1 optimization. Math. Program.,
28:121–155, 1984.

[47] Xuming He, Richard S. Zemel, and Miguel A. Carreira-Perpinan. Multiscale
conditional random fields for image labeling. cvpr, 02:695–702, 2004.

[48] Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Comput., 14(8):1771–1800, 2002.

[49] Feng Jiao, Shaojun Wang, Chihoon Lee, Russ Greiner, and Dale Schuurmans.
Semi-supervised conditional random fields for improved sequence segmenta-
tion and labeling. In Proceedings of Coling/ACL 2006, Sydney, Australia,
July 17-21 2006.

[50] Thorsten Joachims. Learning to align sequences: A maximum-margin ap-
proach. Technical report, August 2003.

[51] Thorsten Joachims. A support vector method for multivariate performance
measures. In ICML ’05: Proceedings of the 22nd international conference on
Machine learning, pages 377–384, New York, NY, USA, 2005. ACM Press.

[52] Thorsten Joachims. Training linear SVMs in linear time. In ACM SIGKDD-
2006, pages 217–226, New York, NY, USA, 2006. ACM.

216

[53] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane
training of structural SVMs. Machine Learning Journal, 2008, to appear.

[54] Thorsten Joachims and John Hopcroft. Error bounds for correlation clus-
tering. In ICML ’05: Proceedings of the 22nd international conference on
Machine learning, pages 385–392, New York, NY, USA, 2005. ACM Press.

[55] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika,
(2):241–254, 1967.

[56] Toshihiro Kamishima and Fumio Motoyoshi. Learning from cluster examples.
Machine Learning, 53(3):199–233, December 2003.

[57] Jon M. Kleinberg. Hubs, authorities, and communities. ACM Computing
Surveys, 31(4), December 1999.

[58] Vladimir Kolmogorov and Carsten Rother. Minimizing non-submodular
functions with graph cuts – a review. PAMI, 26(2):147–159, 2004.

[59] Alex Kulesza and Fernando Pereira. Structured learning with approximate
inference. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-
vances in Neural Information Processing Systems (NIPS) 20, pages 785–792,
Cambridge, MA, 2008. MIT Press.

[60] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney. Semi-
supervised graph clustering: a kernel approach. In ICML ’05: Proceedings of
the 22nd international conference on Machine learning, pages 457–464, New
York, NY, USA, 2005. ACM.

[61] Sanjiv Kumar and Martial Hebert. Discriminative random fields: A discrim-
inative framework for contextual interaction in classification. In Proceedings
of the 2003 IEEE International Conference on Computer Vision (ICCV ’03),
volume 2, pages 1150–1157, 2003.

[62] Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spa-
tial dependencies in natural images. In Sebastian Thrun, Lawrence Saul,
and Bernhard Schölkopf, editors, Advances in Neural Information Process-
ing Systems (NIPS) 16, Cambridge, MA, 2004. MIT Press.

[63] Simon Lacoste-Julien, Ben Taskar, Dan Klein, and Michael I. Jordan. Word
alignment via quadratic assignment. In Proceedings of the Human Language

217

Technology Conference of the NAACL, Main Conference, pages 112–119,
New York City, USA, June 2006. Association for Computational Linguistics.

[64] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence data.
In ICML ’01: Proceedings of the 18th international conference on Machine
learning, 2001.

[65] Gert R. G. Lanckriet, Nello Christianini, Peter L. Bartlett, Laurent El
Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semi-definite
programming. In ICML ’02: Proceedings of the 19th international conference
on Machine learning, pages 323–330, 2002.

[66] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui,
and Michael I. Jordan. Learning the kernel matrix with semidefinite pro-
gramming. Journal of Machine Learning Research, 5:27–72, 2004.

[67] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new
benchmark collection for text categorization research. J. Mach. Learn. Res.,
5:361–397, 2004.

[68] Jai Li, Surajit Ray, and Bruce G. Lindsay. A nonparametric statistical ap-
proach to clustering via mode identification. Journal of Machine Learning
Research, 8(8):1687–1723, 2007.

[69] Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Benjamin Taskar.
An end-to-end discriminative approach to machine translation. In ACL,
2006.

[70] Percy Liang, Ben Taskar, and Dan Klein. Alignment by agreement. In
Proceedings of the Human Language Technology Conference of the NAACL,
Main Conference, pages 104–111, New York City, USA, June 2006. Associa-
tion for Computational Linguistics.

[71] Andrew Makhorin. GNU linear programming kit, version 4.31, 2008. http:
//www.gnu.org/software/glpk/glpk.html.

[72] Christopher D. Manning and Hinrich Schütze. Foundations of statistical
natural language processing. MIT Press, Cambridge, MA, 1999.

[73] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and

218

measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision,
volume 2, pages 416–423, July 2001.

[74] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy
markov models for information extraction and segmentation. In ICML ’00:
Proceedings of the 17th international conference on Machine learning, pages
591–598. Morgan Kaufmann, 2000.

[75] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In ACM
SIGKDD-2000, pages 169–178, 2000.

[76] Andrew McCallum and Ben Wellner. Toward conditional models of identity
uncertainty with application to proper noun coreference. In IJCAI Workshop
on Information Integration on the Web, 2003.

[77] MUC-6. In Proceedings of the Sixth Message Understanding Conference
(MUC-6). Morgan Kaufmann, 1995.

[78] Vincent Ng and Claire Cardie. Improving machine learning approaches to
coreference resolution. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 104–111, 2002.

[79] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1988.

[80] Joao Pedro Pedroso. Python-glpk, 2007. http://www.dcc.fc.up.pt/∼jpp/
code/python-glpk/.

[81] Minh-Tri Pham. Ctypes-glpk: A python wrapper for glpk using ctypes, 2007.
http://ctypes-glpk.googlecode.com/.

[82] V. Punyakanok and D. Roth. The use of classifiers in sequential inference.
In Advances in Neural Information Processing Systems (NIPS) 13, pages
995–1001. MIT Press, 2001.

[83] V. Punyakanok, D. Roth, and W. Yih. The necessity of syntactic parsing
for semantic role labeling. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1117–1123, 2005.

[84] V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Learning and inference

219

over constrained output. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1124–1129, 2005.

[85] Yuan Qi, Martin Szummer, and Thomas P. Minka. Bayesian conditional
random fields. In AI & Statistics, January 2005.

[86] Ashish Raj, Gurmeet Singh, and Ramin Zabih. MRF’s for MRI’s: Bayesian
reconstruction of MR images via graph cuts. In CVPR ’06: Proceedings
of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1061–1068, Washington, DC, USA, 2006. IEEE
Computer Society.

[87] William M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(366):846–850, 1971.

[88] Philippe Rigollet. Generalization error bounds in semi-supervised classifica-
tion under the cluster assumption. Journal of Machine Learning Research,
8:1369–1392, 2007.

[89] Gian-Carlo Rota. The number of partitions of a set. The American Mathe-
matical Monthly, 71(5):498–504, 1964.

[90] D. Roth. Reasoning with classifiers. In Proc. of the European Conference on
Machine Learning (ECML), pages 506–510, 2001.

[91] D. Roth and W. Yih. Probabilistic reasoning for entity and relation recog-
nition. In Proc. the International Conference on Computational Linguistics
(COLING), pages 835–841, 2002.

[92] D. Roth and W. Yih. Integer linear programming inference for conditional
random fields. In ICML ’05: Proceedings of the 22nd international conference
on Machine learning, 2005.

[93] Jean-Sébastien Roy. PuLP: A linear programming modeler in python, 2005.
http://www.jeannot.org/∼js/code/index.en.html#PuLP.

[94] Sunita Sarawagi and Rahul Gupta. Accurate max-margin training for struc-
tured output spaces. In ICML ’08: Proceedings of the 25th international
conference on Machine learning, pages 888–895, New York, NY, USA, 2008.
ACM.

[95] Matthew Schultz and Thorsten Joachims. Learning a distance metric from

220

relative comparisons. In Sebastian Thrun, Lawrence Saul, and Bernhard
Schölkopf, editors, Advances in Neural Information Processing Systems 16.
MIT Press, Cambridge, MA, 2004.

[96] Matthias Seeger. Learning with labeled and unlabeled data. Technical report,
Institute for ANC, Edinburgh, UK, 2000.

[97] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse depen-
dence on training set size. In ICML ’08: Proceedings of the 25th international
conference on Machine learning, pages 928–935, 2008.

[98] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
In CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and
Pattern Recognition (CVPR ’97), page 731, Washington, DC, USA, 1997.
IEEE Computer Society.

[99] Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geuse-
broek, and Arnold W. M. Smeulders. The challenge problem for automated
detection of 101 semantic concepts in multimedia. In ACM-MULTIMEDIA,
2006.

[100] Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong Lim. A machine
learning approach to coreference resolution of noun phrases. Computational
Linguistics, 27(4):521–544, 2001.

[101] Charles Sutton and Andrew McCallum. Fast, piecewise training for discrim-
inative finite-state and parsing models. Technical Report IR-403, Center for
Intelligent Information Retrieval, 2005.

[102] Chaitanya Swamy. Correlation clustering: maximizing agreements via
semidefinite programming. In ACM-SIAM SODA, pages 526–527. Society
for Industrial and Applied Mathematics, 2004.

[103] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative
Markov networks. In ICML ’04: Proceedings of the 21st international con-
ference on Machine learning, page 102, New York, NY, USA, 2004. ACM.

[104] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov net-
works. In Advances in Neural Information Processing Systems (NIPS) 16.
2003.

[105] Ivor W. Tsang and James T. Kwok. Distance metric learning with kernels.

221

In International Conference on Artificial Neural Networks (ICANN), pages
126–129, June 2003.

[106] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin
Altun. Support vector machine learning for interdependent and structured
output spaces. In ICML ’04: Proceedings of the 21st international conference
on Machine learning, 2004.

[107] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Large margin methods for structured and interdependent output
variables. JMLR, 6:1453–1484, 2005.

[108] Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette
Hirschman. A model-theoretic coreference scoring scheme. In MUC-6, pages
45–52. Morgan Kaufmann, 1995.

[109] S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and
Kevin P. Murphy. Accelerated training of conditional random fields with
stochastic gradient methods. In ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, 2006.

[110] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained
k-means clustering with background knowledge. In ICML ’01: Proceedings
of the 18th international conference on Machine learning, 2001.

[111] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance met-
ric learning for large margin nearest neighbor classification. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Pro-
cessing Systems (NIPS) 18, pages 1473–1480, Cambridge, MA, 2006. MIT
Press.

[112] Eric Xing, Andrew Y. Ng, Michael Jordan, and Stuart Russell. Distance met-
ric learning, with application to clustering with side-information. In S. Thrun
S. Becker and K. Obermayer, editors, Advances in Neural Information Pro-
cessing Systems (NIPS) 15, volume 15, pages 505–512. MIT Press, 2003.

[113] Chun-Nam Yu and Thorsten Joachims. Training structural svms with kernels
using sampled cuts. In ACM SIGKDD-2008, August 2008.

[114] Chun-Nam Yu, Thorsten Joachims, Ron Elber, and Jaroslaw Pillardy. Sup-
port vector training of protein alignment models. In RECOMB, 2007.

222

[115] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A sup-
port vector method for optimizing average precision. In SIGIR ’07: Proceed-
ings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 271–278, New York, NY,
USA, 2007. ACM.

[116] Yisong Yue and Thorsten Joachims. Predicting diverse subsets using struc-
tural svms. In ICML ’08: Proceedings of the 25th international conference
on Machine learning, pages 1224–1231, New York, NY, USA, 2008. ACM.

223

