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ABSTRACT

Query compilation and adaptive query processing aim to improve the runtime

and robustness of analytical databases. However, due to the high cost of com-

pilation, standard methods for combining these involve shaping the adaptive

optimization to allow reuse of a single program instead of recompiling. We com-

bine recent developments in both of these areas to show that both compile-once

and recompilation-based execution can be practical for adaptive join ordering.

We first introduce a low-latency query compilation framework that man-

ages the trade off between compile time and execution time at all stages. First,

we describe abstractions to allow easily generating intermediate representation

code. Next, we detail the intermediate representation, backend and optimiza-

tions that enable similar execution performance to LLVM while achieving much

faster compilation time. We then integrate online join order learning that aban-

dons any a-priori optimization into this framework. We propose two orthogonal

approaches: a compile-once approach that uses indirection to permute the join

order and a recompilation approach that generates code for each join order.

We experimentally compare each approach against optimized, analytical

databases (MonetDB, DuckDB) on the join order benchmark, TPC-H and JCC-H.

Overall, we find that we are able to match or incur modest overheads on queries

unfavorable to adaptive optimization while dominating in queries where opti-

mizers are susceptible to choosing a disastrous query plan. We further show that

our low latency compilation framework is able to improve both proposed meth-

ods across database sizes and in particular, is critical for practical recompilation-

based execution.
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CHAPTER 1

INTRODUCTION

Query optimization typically relies on reductive data statistics such as his-

tograms or sketches and simplifying assumptions such as uniformity and un-

correlated data. In practice, this leads to scenarios where the optimizer misses

the optimal plan causing orders of magnitude increases in runtime. This has

led to a plethora of work on improving optimizers using techniques from ma-

chine learning by enabling them with learned cost models or learned cardinality

estimates or even replacing them entirely with learned models.

An alternative solution is to increase the integration between planning and

execution via adaptive query processing. Here, the database system interleaves

query optimization and query execution: the database captures information

about the currently executing plan and improves it if the plan performs poorly.

Taking this to the extreme, the database can eschew a-priori optimization en-

tirely and learn a good plan from scratch for each query by trial and error. This

idea forms the basis of SkinnerDB, an in-memory system that uses reinforce-

ment learning to learn join orders from scratch on each incoming query. While

giving up prior join ordering entirely comes with overheads in the common

case, it can produce orders of magnitude speedups compared to poor query

plans chosen by optimizers.

Parallel to these developments in query optimization is query compilation,

a technique for increasing the performance of in-memory database systems.

When I/O does not dominate query execution, every instruction executed mat-

ters for runtime. The database can exploit this by generating machine code spe-

cific to each query similar to just-in-time (JIT) compilation systems. This en-
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ables much faster execution than standard interpreted engines as the database

can generate tight, optimized loops over fused operators which preserves tuple

values in registers and avoids unnecessary materialization.

While adaptive execution has been successfully incorporated into inter-

preted or vectorized engines, a natural tension exists between adaptive and

compilation-based processing. This arises from the potentially hundreds of mil-

liseconds that it takes to compile a single query plan when generating a high

level language like C++ or even using standard compilation frameworks like

LLVM. This cost is expensive for single queries and only grows larger if the

database must recompile multiple plans within each query.

To get around the high compilation latency, execution engines have started

to adaptively switch between interpretation to avoid the compilation cost for

quick queries. For short running pipelines, it will use interpretation but for

longer running pipelines, it switches to compiled execution. However, this

leads to increased complexity as now the database must juggle two types of exe-

cution engines and the performance gap between interpreted and compilation-

based execution is high. More recently, Kersten et al. drew from other JIT compi-

lation systems and created a low latency query compilation framework dubbed

Tidy Tuples which allows them to match the latency of interpreted systems on

even short running queries while only being slightly slower than LLVM [8]. On

the other hand, Menon et al. recently worked around the latency of recom-

piles by designing adaptive optimizations that fit into a compile-once frame-

work [13]. By introducing indirection that can be permuted at runtime, they are

able to compile a query plan in such a way that it can be adapted without re-

compiling. Specifically, they consider adapting the join order for left-deep joins
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under certain schema and column access restrictions.

Motivated by these two lines of work, we investigate how to combine Skin-

nerDB’s per-query adaptive processing with a compilation engine with the goal

of reducing the overhead of adaptive optimization as much as possible. We

create a compile-once permutable approach for adapting join order over a left-

deep plan that has none of the aforementioned restrictions. We additionally

build a low latency compilation engine and demonstrate that recompilation-

based execution is surprisingly practical despite compiling new code for each

join plan explored. We experimentally compare these approaches to existing

high-performance analytical databases such as MonetDB [6] and DuckDB [17]

on a variety of end-to-end benchmarks. Surprisingly, despite using no data

statistics or cardinality estimates, we can achieve competitive performance in

optimization settings where join ordering is easy while out performing in more

challenging settings. In even harder settings, when query rewrites obfuscate

information to existing optimizers, our approach dominates.

This thesis is organized as follows: Chapter 2 provides the necessary back-

ground on intra-query learning, compilation-based execution and methods for

integrating adaptivity into compilation-based systems. Chapter 3 outlines our

compilation framework and how it achieves the low latency required for mak-

ing recompilation practical. Chapter 4 proposes both permutable and recom-

pilation methods for integrating intra-query learning in a compilation engine.

Chapter 5 evaluates the proposed methods and Chapter 6 discusses related

work.
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CHAPTER 2

BACKGROUND

2.1 Intra-query Learning

Intra-query learning is an extreme form of adaptive query processing that as-

sumes that join order planning by using cardinality estimates or other metrics

cannot be done prior to query execution. As such, the database must learn good

join orders from scratch for each query. It accomplishes this by dividing up join

execution into minute time slices called episodes. During each episode, it selects

a join order and executes that for a fixed number of computational steps. In do-

ing so, it produces a small fragment of the join output and gains information

on the performance of the selected join order. This data can be used to inform

future join order selections.

The SkinnerDB system realizes this approach for learning left-deep query

plans on the fly and is outlined in Algorithm 1 [22]. It uses reinforcement learn-

ing to balance the trade-off between exploring new join orders and exploiting

high performing ones and maintains additional data structures that allow for ef-

ficiently resuming progress for a specific join order and sharing progress across

join orders.

For selecting join orders for each episode, it relies on the UCT algorithm

which models a sequence of decisions as a sequence of multi-armed bandit

problems. When applied to join ordering, each decision in the sequence cor-

responds to the next table to join with the set of currently joined tables. The

benefit of this algorithm is that it obtains bounded regret, i.e., the difference

4



Algorithm 1: Intra-query Learning

procedure SKINNERJOIN(q,U, S , b,R)

f inished ← false

t ← 0

while ¬ f inished do

o← UCTCHOICE(U, t)

sprior ← RESTORESTATE(S , o)

f inished, s← CONTINUEJOIN(R, q, o, b, sprior)

UCTUPDATE(U, t, o,REWARD(s, sprior))

UPDATESTATE(S , o, s)

t ← t + 1

end while

end procedure

between the execution time of the best left-deep join order and the cumulative

execution time across the history of the join order selections is bounded. This

is because the algorithm efficiently manages the trade off between exploration

and exploitation. That is, it balances gathering information about a promising

but unknown join order with exploiting the highest performing join order it has

previously encountered.

To track progress, the system maintains a join order tree where each edge

is annotated with a table. Each node contains the last fully completed tuple

for the selected partial join order from root to that node. During execution, a

join order can resume starting at the tuple immediately after this last completed

tuple. It can additionally skip over rows that have an index below the last fully
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completed tuple for that table as all rows that include a tuple below that index

have already been added to the output.

Finally, to account for the fact that individual episodes can produce pre-

viously outputted tuples, it materializes a set of tuple id vectors representing

which tuples in the cross product have been added to the result.

2.2 Compilation-based Execution

There are two paradigms currently for building a performant execution engine

for in-memory analytical databases: vectorized and compilation-based execu-

tion.

In vectorized execution, the database source code contains kernels that ex-

ecute a specific function over a primitive type, such as filtering an integer col-

umn on an equality condition. Given the query plan, the execution engine then

chains together these kernels to execute the query.

In contrast, compilation-based execution generates code specific to each in-

coming query that computes the output. Akin to JIT compilation systems, this

code is then compiled and loaded into the database binary after which it is called

to compute the query result. While early versions of this technique involved

generating a high level language like C++, newer engines directly generate an

intermediate representation (IR) like LLVM. This avoids any unnecessary file

I/O and expensive compilation passes that convert the high level language into

IR.

While compilation engines offer high performance, code generation itself
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is a large bottleneck as time spent compiling code is time not spent executing

the query. The standard workaround is to introduce multiple execution back-

ends that execute the generated IR such as an interpreter or a standard compiler.

By switching between a backend that is quick but inefficient, such as an inter-

preter or a low-latency compiler, and a more optimized backend that spends

additional time generating efficient code, the database can hide the latency of

compilation for quick queries.

2.3 Adaptivity and Compilation

Adaptive query processing is a technique where either the query plan or the

implementation of the operators in that query plan are varied at query execution

time to increase robustness to optimizer mistakes due to unknown or outdated

data statistics. The aforementioned intra-query learning adopted by SkinnerDB

is an extreme case where a-priori optimization is completely removed. More

moderate versions of this technique include switching between a fixed set of

plans at runtime or re-optimizing when cardinality estimates differ.

When integrating these techniques into a compilation-based engine, since all

query processing takes place in a JIT environment, the execution engine must

either compile all plans that the runtime will need before execution begins or

somehow reuse prior generated code to avoid recompiling.

Compiling multiple plans means the database is restricted to a small number

of possible plans as beyond a certain point, the overhead of compiling the ex-

tra plans removes any benefit gained from adaptivity. Nevertheless, this is still

viable in scenarios such as select operator implementation where the database
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can choose between executing each filtering predicate using a branch or a vec-

torized select instruction [15]. For larger search space problems, the database

must explicitly address the cost of compilation as every new plan tried incurs

the compilation overhead.

Permutable compiled queries is a technique introduced by NoisePage that

enables reuse of prior generated code by framing the adaptive optimization in

such a way that recompilation is unnecessary [13]. This is accomplished by gen-

erating code once that uses indirection based on some global state. For example,

filter re-ordering can be written in this fashion using a function pointer array

where each function evaluates a filter and the order of the array corresponds to

the filter order executed by the engine. By permuting this array, the database

can execute different filter orders without recompiling. Adaptive optimizations

that vary the implementation of a fixed operator can also be expressed in this

paradigm. For aggregations, the database can trigger a fast path optimization

by checking whether a key is present in a dynamically set hot array. Finally, re-

stricted versions of join ordering can be expressed under this model. NoisePage

includes a method of reordering left-deep join plans for a star schema where

each table is joined to a single center table. They additionally add the restriction

that the corresponding join predicate only references the center table columns.

The database compiles a key-check function for each joined table and maintains

an array of hash tables and function pointers. As each join can only add or re-

move tuples from the center table, the database can change the join order similar

to the filter case by simply changing the order in which the hash table table look

ups and key-check functions are invoked.

8



CHAPTER 3

COMPILATION FRAMEWORK OVERVIEW

Before describing how the Skinner join algorithm can be integrated in a com-

pilation engine, we first give an overview of our SQL compilation framework

largely based on the Tidy Tuples framework [8] and depicted in Figure 3.1. At

a high level, a physical query plan passes through the translator layer which

generates IR that corresponds to that specific query. This IR then undergoes op-

timization passes before being passed to an execution backend that translates

the IR into executable assembly. This backend for our system is either a lower

latency compiler which we call ASM or LLVM. Finally, this executable assem-

bly is invoked to generate the query result. We now go into specifics for each of

these components.

3.1 Translator Layer

Each operator in the physical query plan gets an associated translator object

which generates IR that computes the result of the plan sub tree rooted at that

node. This translator objects keeps track of which IR values map to its output

schema. Our code uses a mix of both the produce, consume model [14] and

the callbacks model [21] for managing inter-operator interactions. Specifically,

we mostly use the produce, consume model to trigger an operator to generate a

loop over its result and push tuples to the parent operator but for ad-hoc inter-

actions such as triggering a scan over an individual column, we use the callback

model. We divide up the plan into pipelines that correspond to materialization

points between operators and generate a function per pipeline. Any data struc-

tures such as vectors or hash tables used across pipelines are managed by an ex-

9



Figure 3.1: Compilation Framework Overview
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Figure 3.2: Proxy If Statement Example

ternal state manager which allows for sharing not only across functions but also

across IR builders by injecting them using constant pointers. A pipeline man-

ager keeps track of pipeline dependencies so that during execution, the pipeline

executor that invokes each pipeline function knows in which order to call them.

Each translator maintains a reference to an IR builder and generates IR via

either directly calling the builder or a generative programming framework sim-

ilar to the proxy layer used in Tidy Tuples, originally introduced in the LMS

framework [18] and used in LB2 [21]. The key idea is to create wrapper classes

such as a proxy::Int32 that represents a 32-bit integer in the IR and stores a

reference to the IR builder. Given a proxy::Int32 x and proxy::Int32 y,

writing x + y directs the builder to generate an add instruction in the IR. In ad-

dition to the standard integer, floating point and pointer types, we additionally

provide wrappers for constructing aggregate data types like structs and vec-

tors. Functions and data structures implemented in the database source code

can be accessed in the IR by similarly creating a proxy wrapper class where

each member function of the wrapper class generates an absolute call to the

actual function pointer inside the database binary.
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For control flow, we implement functional wrappers for if statements and

for loops that generate basic blocks and manage loop variables inside of the IR

builder. We perform high-level dead code elimination during code generation

by lazily generating constant values in the IR and avoiding code generation

for the corresponding branch if the condition is a constant. For example, in

Figure 3.2, the proxy layer code is C++ where program is an IR builder. During

the code generation process, as the constants are lazily translated, creating cond

and x do not result in any generated IR instructions. The implementation of

proxy::If recognizes that the condition is a constant and only invokes the

lambda for the then branch without creating any new basic blocks. The IR layer

performs constant folding for the add instruction as we describe below which

results in 20 being passed as a constant to the PrintI32 function.

3.2 IR Layer

For our intermediate representation, we avoid using the sea of nodes represen-

tation used by LLVM and instead use a flat vector of 64-bit instructions as out-

lined by the Tidy Tuples framework and the LuaJIT compiler [12]. Using this

instruction representation, basic blocks are represented as a list of contiguous

segments of the instruction array and instructions can be referenced by their

offset in this array. Each instruction contains an opcode such as I32 ADD and

encodes all the information needed for that instruction like the set of argument

values, the set of basic block labels and output type. For instructions that re-

quire more information than can fit in a single 64-bit encoding such as a get

element pointer (GEP) instruction which is used to index over arrays and index

into structs, auxiliary instructions are inserted immediately before the main in-
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struction which are ignored when traversing over the IR. Constant values are

maintained in a separate instruction array and the value encoding within each

instruction marks whether or not the value is a constant. This enables constant

folding during IR generation and largely eliminates the need for dead code elim-

ination in the IR.

Similar to LLVM, the IR is in static single assignment (SSA) form where each

value is defined only once and phi instructions are used to coalesce multiple val-

ues across control flow edges in loops and ternary statements. However, unlike

LLVM and as recommended by Tidy Tuples and LuaJIT, the IR builder does not

support inserting instructions arbitrarily and is append/update only. Instruc-

tions are removed simply by shrinking the corresponding segment in a basic

block to exclude them and are updated by overwriting the encoded instruction

at that array index. For example, when generating a phi instruction at a branch,

each basic block generates a PHI MEMBER instruction which maintains a refer-

ence to the corresponding PHI instruction and a reference to the input value.

This reference is created by first generating the PHI MEMBER with a null PHI

reference and then when the PHI instruction is created, overwriting the previ-

ously generated instruction with a reference to the newly created instruction.

The IR builder applies optimizations such as constant folding immediately

when building IR as it can identify constant or non-constant values. Before pass-

ing to one of the backends, it performs control flow graph (CFG) simplification.

This entails removing unused basic blocks, merging chains of basic blocks into

a single basic block and removal of redundant phi nodes.
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3.3 Backend

As mentioned above, we use either a custom compiler or LLVM to convert the

IR into executable assembly.

For LLVM, the conversion is straight forward as each IR instruction corre-

sponds directly to a sequence of LLVM instructions. Once created, we apply

instruction combining, global value numbering, CFG simplification and dead

code elimination within LLVM before handing it to the ORC API to generate

executable x86-64.

For our ASM backend, the goal is to produce much lower latency than LLVM

at the cost of producing slightly less efficient code. We utilize the asmjit library

as an assembler [9]. We perform no complex tiling of IR instructions and instead

map each IR instruction one-to-one to a sequence of x86-64 instructions. Because

each value is marked as a constant or not, we can take advantage of constant

operands in x86 instructions. For example, the IR instruction I32 ADD %1,

i32 1 will correspond to add eax, 1 if value %1 is mapped to register eax.

We additionally implement the lazy address calculation optimization men-

tioned in the Tidy Tuples paper. Since x86 supports complex addressing modes

such as [base + offset] and [base + index * scale + offset], we

do not compute the result of a GEP instruction unless required as a function ar-

gument or a value to be stored in memory. Instead, for loads and stores, we

reference the arguments of the GEP to retrieve the base, offset and index/scale

parameters. We restrict GEP instructions at the IR level to contain at most one

non-constant operand to match exactly to these addressing modes.
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Each non-constant IR value is mapped to either a physical register or a stack

slot using the linear scan register algorithm [16]. For comparisons that are used

in conditional branches, we attempt to map that to the flag register. The lazy

address calculation is supported by assigning an additional register to any store

instruction. Liveness is computed using the standard work list algorithm which

is reduced into live intervals over the original instruction order.

3.4 Pipeline Adaptivity

For certain pipelines which simply iterate over its input such as filtering

pipelines or scan pipelines, we mark those as split pipelines and have the

pipeline function accept the range of which input values to process. This al-

lows for switching between the ASM and LLVM backends to enable the bene-

fits of the low latency ASM backend on short running pipelines and the speed

of LLVM on long running pipelines. This technique was previously used to

switch between interpreted and compiled execution in [10]. The pipeline ex-

ecutor initially executes the pipeline with the ASM backend and measures the

runtime. It then estimates the remaining total pipeline runtime with either the

ASM backend or LLVM backend and switches accordingly. Non-split pipelines

do not switch backends and either use the ASM or LLVM backend.
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CHAPTER 4

COMPILING ADAPTIVE JOINS

We now describe how we incorporate the plan level adaptivity from SkinnerDB

into this compilation framework in two ways. First, we build a permutable or

compile-once approach that uses state-based indirection to support changing

the join plan without compiling additional plans. We also build a recompila-

tion variant that takes advantage of the low latency ASM backend by simply

generating assembly code for each new plan that it explores.

4.1 Overview

Input Pipelines

Similar to how a hash join is computed in a compilation engine, the Skinner

join translator will start by generating pipelines that materialize all its inputs

and build hash tables on the join columns. Note that while a standard hash join

plan can avoid materializing one of the tables to use as the base table in the join

output pipeline, this is not feasible when the join order can vary at run time.

While not necessary for our system, for scans without any filters that are inputs

to the Skinner join operator, we can make use of pre-built secondary indexes on

each join column and avoid re-materializing each table by just doing random

access on the underlying column data.
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UCT Implementation

As previously mentioned, we select join orders using the UCT algorithm. As

the code for this is common across all queries, we can avoid generating this

code for each query by making use of the proxy layer mentioned in Section 3.1.

We implement this directly in the database source code under a join executor

function and then in each IR builder, declare it as an external function, passing

the join executor function pointer.

Within the join executor, as it is in database source code, we can directly

use C++ classes to manage data structures that are agnostic to how the join is

computed such as the UCT tree, the progress tracking tree as well as the offset

array.

High-level Join Implementation

Within the join output pipeline, the Skinner join translator again makes use of

the proxy layer to declare data structures that must be accessed within the gen-

erated code for the join. This involves the set of tuple id vectors used to dedu-

plicate the output which we maintain as an adaptive radix tree [11]. It initializes

these data structures and then invokes the aforementioned join executor.

The join executor accepts as input metadata about the join such as the join

graph, the number of tables and the number of predicates, etc. It additionally

accepts pointers to each of the required data structures and information specific

to each variant that allows it to trigger execution of the chosen join order during

each episode.
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4.2 Permutable Execution

Motivation

The aforementioned permutable join method for left-deep joins by Menon et.

al, makes several assumptions that no longer apply in the more general sce-

nario considered by the Skinner join algorithm. We start by describing these

assumptions and how they are invalidated before describing how we overcome

them.

• Their algorithm assumes that the center table is fixed and so all joins are

between each table and the center table. Additionally, they assume that

all column references are restricted to the base table. This means that each

join only marks whether or not the tuple from the base table should be

removed or kept. When operating on an arbitrary left deep query plan,

each join can produce multiple tuples and the base table can change. This

necessitates a control flow mechanism beyond simply looping over the

base table and filtering it based on the order of join table functions in an

array.

• Join predicates can only ever be executed in the non-center table functions

while for an arbitrary join plan, the predicates can potentially be executed

after any of the tables referenced by the predicate are joined.

• Since predicates are not restricted to reference solely the base table, each

function needs to be able to reference any of the previously joined tables’

columns.

• We need to be able to suspend a specific join after a certain number of
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computation steps to maintain the regret bounds guaranteed by the Skin-

ner join algorithm while in the PCQ join scenario, the individual table

functions do not require specific profiling code.

• Since each join with a table is only a function of the center table’s columns

and since the center table is fixed, there is no need for resuming execu-

tion of a specific join order at a specific tuple id vector as each function is

stateless. In the Skinner join setting, since the join order completely varies,

each join can pause at any point and we must be able to resume execution

where it left off.

Nevertheless, we use this as a starting point as the core idea of a compile-

once approach is promising and address each of these issues below.

Control Flow

We compile a single function for each table in the join and use a callback style

mechanism to organize arbitrary control flow between the tables. We create

a function pointer array containing one entry for each table in the join. The

ith entry corresponds to the callback for the ith table of the join. Within this

function, we generate a loop over the table and invoke the callback for every

valid tuple of the current join order prefix. This effectively uses the call stack to

represent the current state of the join. For the final table, invoking the callback

represents a valid tuple in the output. As such we maintain a global array of

tuple ids that contains the current tuple id for each table in the join. Before

invoking the next function, the ith function will store the current tuple id in the

ith position of the array. The final table will invoke a function that checks if
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Figure 4.1: Permutable Execution Overview

the current tuple id vector is present within the output set and if not, inserts

it, materializes the full join tuple by loading the appropriate columns and calls

consume on the parent operator. In the join executor, it can set the join order by

setting the next function in this function pointer array.

Predicate Invocation

As any join predicate should be checked immediately after all the tables refer-

enced by the predicate have been joined, under the above control flow mecha-

nism, any join predicate can be executed in any referenced tables’ functions. We

thus compile it in every referenced table’s function but for each instance, guard
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it under a flag stored in a global array of booleans. When passing this to the join

executor, we pass the pointer to the boolean array but also a set of tables for each

predicate as well as for each predicate/table pair, what index in the array cor-

responds to the flag that that predicate is guarded under in the corresponding

table’s function. When setting a join order to execute, the join executor iterates

over each table and enables every predicate associated with that table if all other

tables referenced by the predicate have been joined. Any other flag is set to false

skipping execution of that predicate in the corresponding table.

Column Access

Since each table can now refer to any column from a previously joined table, we

create a global struct that contains each table’s column. At the start of each func-

tion, we unpack all columns of the struct and marking each child operator’s IR

value map to read from the unpacked struct. When loading the next tuple from

the current table, we update the IR value map for each child operator to contain

the unpacked values and then before invoking the callback, store the current

table’s columns in the struct. This process can be optimized by noting that each

function only requires the table columns that appear in a join predicate.

Budgeted Execution

As the reward function used for selecting join orders is based on how much

progress is made executing a specific join order, it is vital that we be able to sus-

pend join execution after a fixed number of computational steps. To track steps,

we have each tuple considered by each table’s function to count as one compu-
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tational step which matches the original SkinnerDB paper. For each episode, we

refer to the total number of computational steps as the budget. To keep track of

how the budget changes throughout join execution, we make use of the function

arguments and return value. Each function accepts as an argument the remain-

ing budget for the current episode. For each tuple it loops over, it decrements

this value. Each function returns how much budget is remaining after perform-

ing its join and so when a function runs out of budget, it returns zero. When

a function invokes a callback, it sets the budget equal to the returned value to

account for any computational steps spent joining tuples to the current tuple

of the join prefix. The final function for outputting tuples simply returns the

passed in budget.

Progress Resuming

A key aspect of the original algorithm is resuming progress for a specific join

order at a specific tuple id for each table. Under the above callback control flow

model, this corresponds to reconstructing the full call stack where each function

is processing a specific tuple from the corresponding table. We accomplish this

by passing an additional boolean function parameter to denote whether or not

we are resuming progress. If this is true, the function will start processing at

the max of the last fully completed tuple of that table and a tuple id read from

a global array which is set by the join executor. If false, it starts processing from

last fully completed tuple of that table. This flag is marked as a loop variable

for each function’s loop and on every subsequent iteration is set to false. It is

initialized to the conjunction of the function argument and whether or not we

actually resumed progress by selecting the last executed tuple as the next one
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to process. On every subsequent iteration, it will be false. This loop variable is

passed as the resume progress parameter for each callback invocation.

Note that because of progress sharing across join orders, it is not in general

true that the tuple id vector the join resumes progress at will be a valid result

tuple and so all join predicates must be checked again. However, no additional

code changes are needed for this as the predicates will be checked on the first

progress resuming iteration. When one of the checked join predicate is false, the

corresponding table function will move to the next iteration where the resume

progress parameter is now false. Upon returning, the same will happen in the

caller’s loop.

Finally, when budget runs out, we need to mark whether the current tuple

was fully processed or partially processed. We do this by returning a status: -1

representing that we are out of budget and have fully processed the current tu-

ple id vector or -2 representing that we are out of budget and need to backtrack

the tuple id vector by one starting from the current table position.

Pseudo code

We combine each of the above elements and present what the translator gen-

erates in C style code in Figure 4.2. The specific query is a basic inner join be-

tween two tables on an integer column SELECT * FROM A INNER JOIN B

ON A.x = B.x;. We generate a function for each table joinA and joinB that

represent joining table A and B respectively.

The callbacks for each table that represent joining all remaining tables with

the currently joined tables are stored in the next array with index 0 correspond-
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ing to the callback for joinA and 1 for the callback of joinB.

At the core of joinA is a loop over the tuples of table A. The loop be-

gins at the max of the last fully completed tuple of table A specified in the

last_completed_tuple array or the specific tuple to resume progress set in

progress. For each tuple, it stores the index of the currently considered tuple

in a global array, fetches any predicate columns and decrements the available

budget. Since the predicate involved can execute after either table is joined,

the function checks if the appropriate flag is set meaning that all available ta-

bles for that predicate have been joined. If so, it checks the predicate and if

false, moves to the next tuple in table A. Note that when checking the predi-

cate, it compares the current value of A.x value to predicate_columns.b_x

which represents the currently joined value of B.x. When all predicates are

valid, the function updates the currently joined value of A.x by updating

predicate_columns.a_x and invokes the callback to join the remaining ta-

bles. At any point in time, if budget reaches 0, the function returns and sets the

appropriate status denoting whether or not the last tuple was fully evaluated or

not.

The joinB function is symmetric to the joinA function except that it reads

from each of the join state variables at index 1. When the last table invokes the

callback, it invokes valid_tuple which checks if the current fully joined tuple

has previously been outputted to the parent operator and if not, outputs it.

To set a specific join order, the join executor needs to set the global variables

appropriately before invoking the first table’s function. For example, for the join

order A B, the join executor should set the callback array as next[0] = joinB

and next[1] = valid_tuple denoting that for every tuple of A, it is then
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joined with B and then every tuple of that result is added to the join out-

put. Since the predicate is only available after both A and B are joined,

flags[0] = false and flags[1] = true should be set to denote that the

predicate is invoked when joining B. If this is the first time that this join order

is being executed, then the executor should invoke joinA(BUDGET, false)

where BUDGET is the budget per episode and resume_progress is false as

we cannot fast forward. If this is not the first time this join order has been exe-

cuted, then the executor should set progress to be the last considered tuple for

this join order and should instead call joinA(BUDGET, true). The executor

should finally set last_completed_tuple to contain the last fully executed

tuple for each table.

4.3 Recompiling Execution Overview

Motivation

Prior work explicitly avoids regenerating IR from the plan level because of the

high cost of compilation. However, because of the lower latency backend, our

framework is in a regime where code generation and compilation is cheap and

so compilation time is not a discounting factor. Even still, for recompilation-

based execution to be practical, either it needs to improve compilation time or

execution time. For the former, in simple join settings, the recompilation envi-

ronment can potentially speed up by avoiding duplicate predicate generation.

For execution, it avoids the multiple layers of indirection from the callback func-

tion pointer array to the predicate flags to support join order switching without

recompiling. We outline the specifics of this variant along each of the axes of the
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// Join State

int32_t (*next[2])(int32_t, bool);

int32_t idx[2];

int32_t last_completed_tuple[2];

int32_t progress[2];

bool flag[2];

int32_t backtrack_idx;

struct {

int32_t a_x;

int32_t b_x;

} predicate_columns;

TupleIdVectorSet output;

// Column Data

int32_t* A_x; int32_t A_cardinality;

int32_t* B_x; int32_t B_cardinality;

int32_t joinA(int32_t budget, bool resume_progress) {

int32_t progress_tuple = resume_progress ? progress[0] : 0;

int32_t tuple_idx = max(progress_tuple, last_completed_tuple[0] + 1);

resume_progress = tuple_idx == progress_tuple;

while (next_tuple < A_cardinality) {

idx[0] = next_tuple;

int32_t a_x = A_x[tuple_idx];

budget--;

if (flag[0] && a_x != predicate_columns.b_x) {

if (budget == 0) {

return -1;

}

next_tuple++;

resume_progress = false;

continue;

}

if (budget == 0) {

backtrack_idx = 0;

return -2;

}

predicate_columns.a_x = a_x;

int32_t next_budget = next[0](budget, resume_progress);

if (next_budget < 0) {

return next_budget;

}

budget = next_budget;

next_tuple++;

resume_progress = false;

continue;

}

return budget;

}

int32_t joinB(int32_t budget, bool resume_progress) {

// symmetric to the above

}

int32_t valid_tuple(int32_t budget, bool) {

if (output.insert(idx)) {

// output tuple (A_x[idx[0]], B_x[idx[1]])

}

return budget;

}

Figure 4.2: Generated code for a permutable binary join:
SELECT * FROM A INNER JOIN B ON A.x = B.x;
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Figure 4.3: Recompiling Execution

permutable variant.

Control Flow

As the join order is known at join order compile time, we no longer need a func-

tion pointer array and indirect calls between each of the compiled table func-

tions. Instead, each table function can make use of a direct call to the function

of the next table in the join order. While it is possible to inline all the functions,
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we choose to preserve the callback structure to make the progress resuming and

budgeted execution logic easy to implement.

Predicate Invocation

Since the join order is known at join order compile time, we know in which

function join predicates should be evaluated. Thus, we do not need to generate

code for each predicate multiple times and we do not need to guard them under

a boolean flag.

Column Access

Since we preserve the callback control, we still need the global struct of

predicate columns to allow each function to reference previously joined table

columns. However, because the join order is known at compile time, we do

not need to eagerly unpack the whole struct. Instead, we can lazily unpack

the struct as needed during predicate evaluation which leads to only the re-

quired columns being loaded for each function. Additionally, we save on mem-

ory loads if within a function, a prior join predicate evaluated to false.

Overview

Given this, the recompilation variant has the potential to generate more efficient

code which can offset the overhead of compiling a separate set of functions for

each new join order that it tries. We now describe how the system can support

code regeneration with minimal changes inside of a standard compile-once then
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execute framework.

We preserve the translator objects throughout the lifetime of the query. This

enables us to reference them from within the join executor to trigger compilation

of a new set of join order functions by embedding a constant pointer containing

the join translator object pointer and passing that as an argument to the join ex-

ecutor. The join translator presents a CompileJoinOrder interface that can be

used to trigger compilation of a specific join order. It accepts the join order itself

but also any global objects that must be shared across all join order functions as

described in the next section. It returns a pointer to the root function of the join

order that is used to execute the join order for a specific budget. The translator

object maintains a cache of previously generated programs to avoid recompiling

the same join order multiple times. For a join order not in the cache, it creates

a new IR builder, regenerates each of the global data structures using the below

mechanism, generates each of the join functions and lowers it to executable code

via a backend.

State Sharing

As we compile separate join order with separate IR builders, we need a mech-

anism to share query global values across all JIT programs. The tuple id vector

set used to deduplicate the output must be the same across all join orders. Sim-

ilarly, the materialized input tables and hash index objects should be reused

across all functions. To accomplish this, we make use of constant pointers in the

IR level.

Note that the top level IR builder used for the join pipeline will initialize
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the necessary data structures and invoke the join executor and will thus outlive

any individual functions used in join evaluation. This means it can manage the

lifetime of all values that are required to be shared across all subsequently gen-

erated functions. To share references, it passes pointers to each of the aforemen-

tioned objects as arguments to the join executor. The join executor then passes

these to the translator when triggering the compilation of a new join orders. As

we are now in database source code, we can embed these pointers as constant

pointers in the newly generated IR by simply augmenting the proxy wrapper

classes to use a given pointer instead of allocating a new data structure.
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CHAPTER 5

EVALUATION

5.1 Setup

All experiments were conducted on a machine with an AMD Ryzen 7 5800x

CPU and 64 GB of RAM on Ubuntu 20.04 with kernel version 5.17.5. As we

focus on the compilation aspects of the system and since the original SkinnerDB

paper does not support parallelism, we limit all experiments to use a single

thread and leave that to future work.

We compare against DuckDB and MonetDB, which feature high perfor-

mance, vectorized execution engines. For DuckDB, we use version 0.3.4. For

MonetDB, we observe performance degradations version to version so we com-

pare against both versions 11.41.21 and 11.43.13. Our system makes use of

primary-foreign key indexes for join evaluation. We evaluate DuckDB both with

and without indexes. MonetDB automatically creates indexes and ignores any

index creation statement. MonetDB uses dictionary encoding (DC) for string

columns while DuckDB does not so we report numbers for our system with

dictionary encoding enabled and disabled.

5.2 Query Latency

We evaluate end-to-end query latency of each variant including compile and

execution time across a variety of benchmarks which stress join evaluation in

varying intensities. The variants tested are the recompiling and permutable
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Database Runtime(s)
ASM Permute 51.6 ± 0.2
ASM Recompile 53.9 ± 0.1
LLVM Permute 59.8 ± 0.2
LLVM Recompile 182.8 ± 1.4
DuckDB 110.3 ± 0.1
DuckDB + Indexes 266.3 ± 0.1
ASM Permute + DC 40.7 ± 0.2
ASM Recompile + DC 43.5 ± 0.2
LLVM Permute + DC 49.5 ± 0.2
LLVM Recompile + DC 176.3 ± 2.3
MonetDB (11.41.21) 55.7 ± 0.1
MonetDB (11.43.13) 76.6 ± 0.2

Table 5.1: Total Runtime - JOB

variant each using the ASM backend or LLVM backend.

5.2.1 Join Order Benchmark

The Join Order Benchmark (JOB) is a series of 113 queries over the Internet

Movie Database schema which describes movies, actors, etc [11]. Each query

consists of a join of optionally filtered tables directly into a flat aggregation

and so primarily stresses join planning and execution. We report total runtime

across all queries for each variant as well as the baselines in Table 5.1.

DuckDB

For the comparison with DuckDB, we first note that adding indexes to DuckDB

surprisingly hurt performance significantly. This is likely because DuckDB’s op-

timizer is relatively new and does not properly do cardinality estimation which

means on certain queries, it chooses an incorrect join plan resulting in a severe
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slowdown. This occurs on queries 12b, 13a-d, 26c, 30a-c, 31a-c, 33a-c which

have a latency increase between 10.1x and 72.5x when indexes are added. This

corresponded to a total of 155 seconds of added latency which matches the to-

tal latency gap observed. Therefore, we focus on the version without indexes

below.

For the permutable variants, the ASM backend achieved a 2.16x speedup

while the LLVM backend achieved a 1.86x speedup compared to the non-

indexed DuckDB variant. For the recompilation variants, the LLVM backend

resulted in much larger execution time which is as expected: the high cost of

compiles combined with compiling new code for each plan is prohibitively ex-

pensive. However, when combined with the lower latency ASM backend, the

recompilation variant achieves a 2.04x speedup.

To identify the source of the overall speedup, we zoom into a per-query chart

in Figure 5.1. For all but one query on the LLVM permutable variant, all queries

that took longer than 1 second resulted in a speedup. For the remainder of the

queries where we slowed down, the runtime of the query in DuckDB was less

than 1 second which means that it had negligible impact on the total runtime

when accounting for the large speedups on longer running queries.

MonetDB

For MonetDB, note that the later version has significant performance reductions

resulting largely from two queries: 20a and 26c which incurred latency increases

of 7.5x and 15.45x from version 11.41.21 to 11.43.13. This is an example of how

tweaking static optimizers to improve performance somewhere can result in
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Figure 5.1: Per-query speedups of each JOB query (log scale) vs. DuckDB
runtime

drastic performance degradations elsewhere. Nevertheless, we compare against

the faster variant (version 11.41.21) below.

For the permutable variants, the ASM backend achieved a 1.36x speedup

while the LLVM backend achieved a 1.12x speedup compared to MonetDB. For

the recompilation variants, the LLVM backend again resulted in much larger

execution time but when combined with the lower latency ASM backend, the

recompilation variant achieves a 1.28x speedup.

We plot the per-query speedups versus MonetDB query latency in Figure 5.2.

Note that several queries resulted in a slow down which is likely due to Mon-

etDB’s much more mature optimizer compared to DuckDB. MonetDB selecting

a high performing query plan is a scenario that our approach cannot match
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Figure 5.2: Per-query speedups of each JOB query (log scale) vs. MonetDB
11.41.21 runtime (log scale)

as we have to learn a fresh query plan from scratch on each invocation of the

query. As they do not have this overhead, they can spend that time executing

the join. However, this is offset by the drastic speedups achieved on long run-

ning queries where MonetDB selects an incorrect query plan. For example, on

MonetDB’s longest running queries, 6f and 6d, we achieve a 10.65 and 11.79

speedup respectively.

Robustness

To show how a classical mature optimizer is reliant on unsound heuristics, we

generate a variant of JOB where we insert redundant predicates. We select four

tables in the query and either add the predicate table.join_col >= 0 five
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Strategy
Database Original (s) Smallest (s) Largest (s)
ASM Permute + DC 40.6 ± 0.1 51.1 ± 0.2 240.8 ± 0.4
MonetDB (11.43.13) 78.4 ± 0.1 69.3 ± 0.1 2222.9 ± 10.8

Table 5.2: Total Runtime - JOB with additional predicates

times if that table has no unary predicates applied or if it does have unary pred-

icates, repeat the same unary predicate five times. The addition of these pred-

icates has no impact on the query output or optimal query plan. We choose

tables based on the largest four tables after unary predicates are applied or the

smallest four tables after unary predicates are applied. Note that we do not ap-

ply any form of common sub expression elimination. The results are displayed

in Table 5.2.

We select the permutable variant with the ASM backend as this had the high-

est performance on the unmodified benchmark. When adding additional pred-

icates to queries on our system, we expect runtime to increase because of the

additional time needed to scan those tables to check those predicates as well as

the additional time to build up hash tables on all join columns to enable join

order learning. However, as we learn join orders on the fly, we expect that the

average time spent executing the join should remain the same regardless of any

added predicates. This is what we observe as when adding predicates to the

smallest tables, we incur a slight overhead of 1.25x increase and when adding

to the largest tables, we incur a larger 5.92x increase.

In theory, the performance of a classical database system that uses an

optimize-then-execute approach should not drastically increase as the predi-

cates do not affect the tables that input into the join and so the optimal join order

remains the same. The only additional overhead would be that of scanning the
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tables to check the predicates and the cost of hash table construction. However,

in practice, this is not what is observed. When adding redundant predicates to

the smaller tables, MonetDB’s runtime actually improves. A large improvement

comes from query 26c where it originally took 14.96 seconds to execute but only

takes 2.78 seconds with the predicates added. Examining the plan reveals that

MonetDB pushed the filtered tables deeper into the join resulting in a better join

order. In contrast, when adding predicates to the largest tables, the opposite

occurs. MonetDB runtime increases by 28.35x compared to the original. The

slowdown comes from queries 16a-d and 17a-f which incur between a 7x and

36x latency increase for the opposite reason as mentioned previously.

5.2.2 TPC-H, JCC-H

The TPC-H benchmark is a standard analytical query benchmark that features

a variety of queries with complex filtering, varying number of joins, grouping

and aggregation where data is generated from a uniform distribution. We use

queries 1-3, 5-12, 14, 18, and 19 from the benchmark as the remaining queries

contained features that we do not support. We evaluate our framework on

both scale factor 1 and scale factor 10 to understand performance at different

database sizes.

In general, this is not a scenario in which adaptive join processing should

be expected to outperform as existing optimizers can easily select a good query

plan. This means that we have the overhead of learning a query plan from

scratch on each query without the possibility of an optimizer mistake to offset

these common case overheads.
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SF 1
Database Runtime(s)
ASM Permute 1.80 ± 0.01
ASM Recompile 1.88 ± 0.02
LLVM Permute 2.32 ± 0.01
LLVM Recompile 3.87 ± 0.05
DuckDB 3.43 ± 0.00
DuckDB + Indexes 3.83 ± 0.01
ASM Permute + DC 1.57 ± 0.01
ASM Recompile + DC 1.62 ± 0.02
LLVM Permute + DC 2.08 ± 0.01
LLVM Recompile + DC 3.56 ± 0.07
MonetDB (11.41.21) 1.65 ± 0.01
MonetDB (11.43.13) 1.64 ± 0.01

SF 10
Database Runtime(s)
ASM Permute 22.5 ± 0.5
ASM Recompile 21.9 ± 0.1
LLVM Permute 21.4 ± 0.1
LLVM Recompile 23.4 ± 0.3
DuckDB 41.5 ± 0.1
DuckDB + Indexes 51.5 ± 0.1
ASM Permute + DC 19.2 ± 0.1
ASM Recompile + DC 19.5 ± 0.2
LLVM Permute + DC 19.3 ± 0.4
LLVM Recompile + DC 21.7 ± 0.4
MonetDB (11.41.21) 16.9 ± 0.1
MonetDB (11.43.13) 16.7 ± 0.1

Table 5.3: Total Runtime - TPC-H

The JCC-H benchmark is a variant of the TPC-H benchmark that retains the

same query templates but augments the data and query constants to include

skew and join crossing correlations [3]. With this addition, our framework is in

a position to outperform if existing optimizers make a drastic mistake. Again,

we use queries 1-3, 5-12, 14, 18, and 19 from the benchmark and evaluate our

framework on both scale factor 1 and scale factor 10 to understand performance

at different database sizes.

We start by reporting total runtimes for each benchmark and variant in Ta-

bles 5.3 and 5.4. This shows that we achieve competitive performance to exist-

ing engines as we achieve comparable performance on TPC-H SF1 to MonetDB

and achieving 1.9x faster performance compared to DuckDB. The same trends

hold for SF10 except we are now slightly slower than MonetDB. For JCC-H, we

achieve comparable performance to DuckDB on both SF1 and SF10. We achieve

comparable performance to MonetDB (11.41.21) on SF1 and are 1.4x slower than

MonetDB (11.43.13). On SF10, we are 6x faster than MonetDB (11.41.21) and are
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SF 1
Database Runtime(s)
ASM Permute 3.22 ± 0.05
ASM Recompile 3.30 ± 0.06
LLVM Permute 3.62 ± 0.03
LLVM Recompile 4.85 ± 0.07
DuckDB 3.26 ± 0.01
DuckDB + Indexes 3.57 ± 0.01
ASM Permute + DC 2.9 ± 0.04
ASM Recompile + DC 2.97 ± 0.06
LLVM Permute + DC 3.30 ± 0.02
LLVM Recompile + DC 4.40 ± 0.09
MonetDB (11.41.21) 2.82 ± 0.01
MonetDB (11.43.13) 1.97 ± 0.00

SF 10
Database Runtime(s)
ASM Permute 40.9 ± 0.4
ASM Recompile 41.4 ± 0.4
LLVM Permute 39.3 ± 0.5
LLVM Recompile 40.9 ± 0.6
DuckDB 38.1 ± 0.2
DuckDB + Indexes 42.2 ± 0.1
ASM Permute + DC 36.8 ± 0.4
ASM Recompile + DC 38.1 ± 0.6
LLVM Permute + DC 36.7 ± 0.4
LLVM Recompile + DC 36.2 ± 0.9
MonetDB (11.41.21) 220.5 ± 13.2
MonetDB (11.43.13) 20.8 ± 0.1

Table 5.4: Total Runtime - JCC-H

1.76x slower than MonetDB (11.43.13). To understand why, we drill down into

per-query latency plots in Figures 5.3, 5.4, 5.5 and 5.6.

Broadly, the performance of each of the variants is roughly the same. This is

because although all queries but query 1 include a join, the join order space is

relatively easy and so the differences between compiling a single program for

each join and permuting a single program get washed out. The only notable

exception is the LLVM recompilation variant as it once again demonstrates that

compiling a new program for each join order tried with an expensive compila-

tion framework does not scale. Similarly, we see that on low data sizes at scale

factor 1, the LLVM permutable variant performs slightly worse than the ASM

variants as the cost of compilation exceeds the execution cost. This disappears

at scale factor 10 as the cost of execution dominates the cost of compilation.

On both JCC-H and TPC-H, on queries 1, 6 and 19, our system outperforms

both DuckDB and MonetDB. For query 1 which contains no joins, this is a

byproduct of the fact that we use a compilation-based execution engine rather
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Figure 5.3: Latency of each TPC-H query vs. DuckDB at SF1, SF10
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Figure 5.4: Latency of each TPC-H query vs. MonetDB at SF1, SF10
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Figure 5.5: Latency of each JCC-H query vs. DuckDB at SF1, SF10
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Figure 5.6: Latency of each JCC-H query vs. MonetDB at SF1, SF10 (log
scale)
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than a vectorized engine. Because we generate tuple-at-a-time code, we avoid

materializing any intermediate result while both vectorized engines have some

materialization [7]. Q6 is similar to query 1 in that it contains no joins and so we

can outperform for the same reason. Q19 features complex filtering conditions

which means that the improvement likely comes from our use of branch-based

filter execution and choice of predicate order. Prior experiments show that the

difference between join order in Q19 which only uses two tables has a relatively

small impact on the final query time [4].

The only other notable performance improvement comes from MonetDB

(11.41.21) which is 319x slower than the ASM permutable variant on query 2

of JCC-H SF10. Both versions tested flatten the sub-query but have different

join orders and sub-plan reuse and is fixed in the later version of MonetDB

(11.43.13).

The queries that have a notable slowdown compared to baselines are queries

3, 7, 9 and 10.

For query 3, our system spends 70% of the query in filtering the base tables

and building hash tables on each of the join columns. In particular, because

we are forced to materialize all inputs fully, we cannot pipeline any of the join

inputs and so we end up building more hash tables than the baseline systems.

Further, we are limited to building a hash table per column to enable arbitrary

join order learning which accounts for even more hash tables compared to the

baseline systems. Query 10 also features this issue as 50% of the query is spent

filtering and building hash tables while the remainder is spent evaluating the

join.
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For query 7, 62% of the time is spent in the join phase with the remainder in

the prepossessing phase to build hash tables. This adaptivity does not pay off

as existing optimizers can find a good join order in both the regular and skewed

versions.

Query 9 features a high cardinality join output piped into an aggregation. To

enable join order learning, we have to materialize the tuple indexes of outputted

tuples to avoid outputting duplicates which is unnecessary in baseline systems.

This accounts for 35% of the query execution time while another 35% is spent

doing hash table lookups which is an area that we have not spent much time

optimizing. Notably, DuckDB on query 9 on TPC-H does much worse than

both our system and MonetDB due to an incorrect join order.

5.3 Compilation Latency

To validate that the ASM backend actually compiles faster than the LLVM back-

end and to compare the execution performance of both, we compare the time

spent compiling in each backend and the time spent actually executing the

query. We fix the seed used for random exploration so that all implementations

follow the same sequence of episodes.

We display the runtime breakdown for JOB in Figure 5.7. We can see that

both the recompilation and permutable variants experienced a compilation time

increase for the LLVM backend. The ASM backend generates slightly less effi-

cient code as the execution phases are mostly the same but achieves negligible

compile times. Even for the recompilation variants which compile a program for

each join order tried, the LLVM backend experienced approximately the same
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Figure 5.7: JOB Runtime Breakdown

execution time as the recompilation variant but was completely outclassed in

compilation time.

We display the runtime breakdown for TPC-H in Figure 5.8 and for JCC-H

in Figure 5.9. For scale factor 1, we observe the same trend as for JOB where the

ASM backend generates roughly equivalent quality code to the LLVM backend

but incurs almost no compilation time. For scale factor 10, the data is at a size

where the differences in code quality are noticeable. In particular, the LLVM

permutable variant spends a noticeable amount of time compiling but gener-

ates faster code leading to a runtime improvement compared to the ASM per-

mutable variant. The LLVM recompilation variant, while roughly around the

same latency, still is inhibited by compile time while the ASM variant spends

negligible time compiling. We can see that both the recompilation and per-

mutable variants experienced a compilation time increase for the LLVM back-

end. The ASM backend generates code of comparable quality as the execution
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Figure 5.8: TPC-H Runtime Breakdown
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Figure 5.9: JCC-H Runtime Breakdown
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phases are mostly the same but achieves negligible compile times. Even for the

recompilation variants which compile a program for each join order tried, the

LLVM backend experienced slightly faster execution time than the ASM back-

end but was completely dominated in compilation time.
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CHAPTER 6

RELATED WORK

Adaptive Execution

Adaptive execution has long been explored as a method of increasing robust-

ness to optimizer mistakes or handling incorrect or unknown data statistics.

Babu et al. surveyed adaptive optimization techniques and divide them into

plan-based and routing-based categories [2]. Plan-based systems still use an

optimizer to generate the best initial plan but then adapt at runtime if runtime

statistics like intermediate result sizes are significantly worse than those pre-

dicted. Routing-based systems choose how to process tuples through a series of

operators on a per-tuple or per-batch basis. They eschew a traditional optimizer

and instead use runtime statistics to measure plan performance. Systems under

this paradigm include Eddies introduced by Avnur et. al [1] which re-routes

tuples through operators on a per-tuple basis and SkinnerDB [22] which forms

the basis of the adaptive join execution we consider.

Other systems in the intersection of plan-based and routing-based are Vec-

torwise and NoisePage. Vectorwise is a vectorized analytical database that

included micro-adaptivity: the database compiles each kernel under different

compilers and settings and selects the best performing variant by using a multi-

armed bandit algorithm [19]. NoisePage is an analytical database that includes

a routing-based join algorithm in restricted settings that is initialized with the

result of an optimizer [13].
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Adaptivity and Compilation

In the intersection of compilation-based execution and adaptivity, the most rele-

vant work is Permutable Compiled Queries (PCQ) [13]. They propose a method

for integrating plan and operator-implementation adaptivity into their database

NoisePage without recompiling by introducing global state that is permuted to

change the plan. They implement filter re-ordering, fast paths for hot keys in

aggregation and reordering left-deep join plans where each table is joined in-

dependently to a single center table subject to predicate restrictions. We focus

solely on the join case and build a permutable compilation algorithm that al-

lows for searching over arbitrary left-deep join plans without any schema or

predicate restrictions.

HyPer includes adaptivity in the execution engine as it switches between

compiled and interpreted execution for a fixed query plan [10]. This allows

them to avoid the high compilation latency of LLVM for short running queries.

More recently, Schmidt et al. extend this to include the above adaptivity tech-

niques from PCQ in the HyPer successor Umbra [20]. Similar to HyPer, Umbra

adaptively switches between a fast compiler and LLVM to hide the latency of

compilation for short queries. To avoid recompiling queries, they compile an ex-

ploration phase into their unoptimized backend at the IR level by introducing

special dynamic basic blocks: an alternative block that executes one of many ba-

sic blocks, an optional block that optionally executes a basic block and a variant

block that arbitrarily reorders basic blocks. When switching to LLVM, they re-

move adaptivity and compile the best performing implementation. We instead

learn throughout the query to maintain regret bounds on the join order selected

and utilize standard mechanisms such as indirect calls to enable the indirection
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with less complexity in the compilation framework.

Several works explore optimizations outside of joins and are thus comple-

mentary to our work. Weld integrates JIT compilation using LLVM with adap-

tive optimizations [15]. They switch between using branches to evaluate ternary

expressions and unconditionally evaluating both cases and then selecting de-

pending on a cost model and selectivity estimates. For parallel aggregations,

they also adaptively choose between using a single global hash table and thread-

local hash tables that are merged together. Grizzly dynamically adapts predi-

cate order, adapts between thread local and a single global hash table for aggre-

gations, and dynamically chooses between using a static array or a hash table

with a speculative optimization on the values range for aggregation [5]. Their

framework initially uses a generic variant for an exploration phase and then re-

compiles new variants by generating C++, reverting back to the original if the

assumptions were invalidated.
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CHAPTER 7

CONCLUSION

This thesis integrated the per-query adaptive query optimization of SkinnerDB

with a customized compilation-based execution engine with the goal of match-

ing databases with high performance execution engines and static optimizers

on queries where they make no optimizer mistakes.

The compilation engine features an intermediate representation tailored for

fast and efficient optimizations and a machine code backend which can match

performance of existing compilation frameworks like LLVM despite spending

much less time compiling. We proposed two methods of integrating adaptive

query optimization into this engine: a compile-once approach that uses global

state and indirection to allow permuting the join order without recompiling and

a recompilation approach that compiles a new program for each join order ex-

plored during execution.

We evaluated these techniques on three benchmarks and compared against

DuckDB and MonetDB, two high performance databases which do not use

query compilation but feature vectorized execution engines. The experiments

showed that we can match or incur slight slowdown for easy to optimize bench-

marks but achieve multiple times faster performance in more difficult optimiza-

tion settings. We additionally validate that the low latency query compilation

framework generates code of a similar quality to that of LLVM while being or-

ders of magnitude faster in compilation time which is critical to enable equiva-

lent performance in the recompilation variant.

To conclude, our results show that even extreme forms of adaptive query
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optimization that give up a-priori optimization entirely can be successfully inte-

grated into a high performance database when paired with a tailored execution

engine.
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[10] André Kohn, Viktor Leis, and Thomas Neumann. Adaptive execution of
compiled queries. In 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE), pages 197–208, 2018.

[11] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix
tree: Artful indexing for main-memory databases. In 2013 IEEE 29th Inter-
national Conference on Data Engineering (ICDE), pages 38–49, 2013.

[12] Luajit 2.0 ssa ir. http://wiki.luajit.org/SSA-IR-2.0, 2018. Ac-
cessed: 2022-05-16.

[13] Prashanth Menon, Amadou Ngom, Lin Ma, Todd C. Mowry, and Andrew
Pavlo. Permutable compiled queries: Dynamically adapting compiled
queries without recompiling. Proc. VLDB Endow., 14(2):101–113, oct 2020.

[14] Thomas Neumann. Efficiently compiling efficient query plans for modern
hardware. Proc. VLDB Endow., 4(9):539–550, jun 2011.

[15] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker,
Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf,
Holger Pirk, Saman Amarasinghe, Samuel Madden, and Matei Zaharia.
Evaluating end-to-end optimization for data analytics applications in weld.
Proc. VLDB Endow., 11(9):1002–1015, may 2018.

[16] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21(5):895–913, sep 1999.

[17] Mark Raasveldt and Hannes Mühleisen. Duckdb: An embeddable ana-
lytical database. In Proceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD ’19, page 1981–1984, New York, NY, USA, 2019.
Association for Computing Machinery.

[18] Tiark Rompf and Martin Odersky. Lightweight modular staging: A prag-
matic approach to runtime code generation and compiled dsls. In Pro-
ceedings of the Ninth International Conference on Generative Programming and
Component Engineering, GPCE ’10, page 127–136, New York, NY, USA, 2010.
Association for Computing Machinery.

[19] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. Micro adaptivity in

56



vectorwise. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, page 1231–1242, New York, NY, USA,
2013. Association for Computing Machinery.

[20] Tobias Schmidt. Adaptive query execution: Dynamically rewriting com-
piled queries. Master’s thesis, Technical University of Munich, 2021.

[21] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. How to architect
a query compiler, revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, page 307–322, New York, NY, USA,
2018. Association for Computing Machinery.

[22] Immanuel Trummer, Junxiong Wang, Ziyun Wei, Deepak Maram, Samuel
Moseley, Saehan Jo, Joseph Antonakakis, and Ankush Rayabhari. Skin-
nerdb: Regret-bounded query evaluation via reinforcement learning. ACM
Trans. Database Syst., 46(3), sep 2021.

57


