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Formins are a family of conserved proteins that assemble unbranched actin 

filaments. In budding yeast, Saccharomyces cerevisiae, the formin isoforms Bni1p and 

Bnr1p are vital for nucleating and elongating the essential actin cables to guide 

polarized growth. Here I demonstrate that there are three localization regions in the N-

terminal domain of Bni1p: one in the N-terminal 333 amino acids which requires 

dimerization, one in the region encompassed by amino acids 334-834 which covers the 

DID-DD-CC domains, and the third in the Spa2p binding domain. The three 

localization regions can each localize to the bud cortex and bud neck independently of 

endogenous Bni1p at the right stage of the cell cycle. Bni1p truncations with internal 

regions of the N-terminal half deleted confirm that the N-terminal domain is important 

for localization. Cells with delocalized Bni1p truncations have misoriented cables, 

defects in nuclear movement and spindle orientation, with the extent of these 

phenotypes varying in accordance with how much of the N-terminal region is 

truncated. Defects in nuclear movement and spindle orientation are due to the Bni1p 

truncations assembling actin cables at the wrong place. Thus, although the N-terminal 

localization regions of Bni1p are not needed for the viability of cells, they are needed 

for proper functions of formins.    
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CHAPTER 1 

General Introduction 

Polarity in Saccharomyces cerevisiae 

Cell polarity underlies many functions that are fundamental to cell development 

and processes such as differentiation, activation of the immune response, directed 

migration, and cytokinesis. Budding yeast, Saccharomyces cerevisiae, also known as 

baker’s yeast or brewer’s yeast, is a great model organism to study polarity due to its 

small genome and powerful genetics methods. And because of the small size of yeast 

cells, the actin cytoskeleton is the primary component for regulating polarized growth 

and for segregation of most intracellular structures (Fagarasanu and Rachubinski, 

2007). Studies have shown that yeast cell polarity is analogous to higher organisms 

(Drubin and Nelson, 1996).  In budding yeast, cells undergo polarized growth in two 

instances: budding during vegetative growth and mating between haploid cells (Figure 

1.1).   

There are three types of yeast cells determined by their different mating type: 

MATa and MATα cells, which are haploid cells containing one set of chromosomes, 

and MAT a/α cells, which is a diploid cell type containing two sets of chromosomes. 

All three cell types are able to initiate budding when cells reach a critical cell size in 

the late G1 phase of the cell cycle. The budding site is first selected. Then the actin 

cytoskeleton composed mainly of actin cables and actin patches becomes polarized to 

establish an axis for secretion and organelles to be targeted to the bud site (actin 

cytoskeleton will be discussed later in this introduction). The bud thus continues to 
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grow with the directed transport of secretory vesicles and the segregation of organelles 

(Pruyne et al., 2004b). Cytokinesis occurs when the bud grows to a critical size, 

usually smaller than the mother cell, and the nuclei have been segregated (Figure 1.1). 

The other polarized growth, mating, initiates when a haploid yeast cell receives a 

pheromone signal from the opposite mating type. Haploid cells are then arrested in G1 

phase and polarized axes are reoriented to form a mating projection called a “shmoo” 

in the direction of a potential mate. Finally, plasma membrane as well as nuclei are 

fused with the mating partner to form a diploid cell (Bardwell, 2004).  

Both budding and mating processes require the establishment of a polarized 

cytoskeleton through the small GTPase Cdc42p. Cdc42p, which is highly conserved 

through all eukaryotes, is a member of the Rho subfamily of Ras GTPases. As with 

other GTPases, Cdc42p can bind to Guanosine diphosphate (GDP) and Guanosine 5'-

triphosphate (GTP), with the GTP bound form being the active state. Cdc24p is the 

only known Guanine nucleotide Exchange Factor (GEF) for Cdc42p which induces 

the transition from GDP-Cdc42p to GTP-Cdc42p, turning on Cdc42p. There are four 

potential GTPase Activating proteins (GAP) for Cdc42p: Bem2p, Bem3p, Rga1p and 

Rga2p. GAPs promote the hydrolysis of GTP-Cdc42p to GDP-Cdc42p, turning off 

Cdc42p. The Rho GDP dissociation inhibitor (GDI) Gdi1p can regulate Cdc42p by 

inhibiting the dissociation of GDP from Cdc42p as well as by inhibiting its GTPase 

activity and by extracting Cdc42p from membranes into the cytosol (Perez and 

Rincon, 2010).  

Though both budding and mating processes establish polarized growth through 

Cdc42p, they differ in specific signaling pathways. During budding in wildtype cells,  
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Figure 1.1 Yeast polarized growth  

At the beginning of a budding cycle (G1 phase), a bud site is first selected by 

cortical cues. Actin patches are clustered at the future bud site, actin cables are formed 

from this site while aligning along the cell cortex. Septins are recruited and form a 

ring structure.  

As the bud emerges (S phase), actin patches concentrate towards the small bud tip. 

Actin cables extend from the small bud tip and the bud neck towards the mother cell. 

The septin ring stays at the bud neck and expands into a wider structure. The nucleus 

and spindle pole bodies are replicated.  The bud cell grows apically (from the tip).  

As the bud grows bigger (G2 phase), actin patches distributed near the bud cortex 

instead of at the concentrated bud tip area. Actin cables also grow from bud cortex and 

bud neck to the mother cell. The bud grows isotropically into an ellipsoid shape. 

Septins still localizes at the bud neck. The newly assembled spindle pole body 

migrates to the other side of the nucleus, setting up a spindle between the two spindle 

pole bodies. The spindles are elongated and one of the nuclei is transported near the 

bud neck area.  

At the end of bud growth (M phase), the actin patches and cables are redistributed 

towards the bud neck. An actin ring called the actomyosin ring assembles in between 

the widened septin ring barrier. The cytoplasmic microtubules emanating from the two 

spindle poles associate closely with the mother or bud cortex, and as the spindle 

elongates, one nucleus is moved into the bud and transported towards the bud cortex 

while one nucleus stays in the mother cell.  After chromosome separation, the spindle 
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breaks down, and the nucleus undergoes fission. The actomyosin ring contracts at the 

bud neck and the septum forms, thus completing mitosis.  

After the bud is separated from the mother cell, mother cell directly goes into the 

next cell cycle while the bud needs to grow to the size of the mother before it can 

initiate budding itself.   

During the G1 phase, if a haploid yeast cell receives pheromone signal for 

opposite mating type, budding cycle will be inhibited and instead a mating projection 

call “shmoo” is formed. Actin patches and cables are formed towards the shmoo tip. 

The two shmoo cells fuse and nucleus then fuse and form a diploid cell. 
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the bud sites are selected according to their ploidy. Diploid cells bud bipolarly, 

meaning that budding occurs from either pole of the elongated mother cell. Haploid 

cells bud axially with future bud sites adjacent to previous ones. These two budding 

patterns have different cortical markers, but they both deliver the bud site selection 

signal to the Ras related GTPase Rsr1p. Rsr1p directly interacts with Cdc42p and this 

interaction is enhanced by the presence of Cdc24p (Kozminski et al., 2003). Cdc24p, 

which is sequestered by Far1p in the nucleus during early G1 phase, is released from 

the nucleus to the cytoplasm when G1 cyclin activated Cdc28p phosphorylates Far1p 

to be degraded (Shimada et al., 2000). Cdc24p binds Rsr1p and the scaffolding protein 

Bem1p, which also interacts with Cdc42p and its downstream effectors p21 Activated 

kinases (PAK) Cla4p, Ste20p, Boi1p and Boi2p. The binding of Cdc24p with Rsr1p 

and Bem1 might trigger its release from autoinhibition, leading to the activation of 

Cdc42p (Shimada et al., 2004b). Together, Cdc42p, Cdc24p and Bem1p form a 

positive feedback loop that regulates the recruitment of Cdc42 to the future bud site 

(Butty et al., 2002; Howell et al., 2009; Wedlich-Soldner et al., 2004). 

After Cdc42p has been recruited to the presumptive bud site, its localization at the 

growth site is highly dynamic (Wedlich-Soldner et al., 2004). Several mechanisms are 

proposed for the dynamics and maintenance of Cdc42p polarization. First, the Bem1p 

mediated protein complex has been proposed to constitute a positive feedback loop to 

maintain Cdc42p polarization  (Irazoqui et al., 2003). Second, septins are thought to 

act as a
 
barrier between the cortex of the bud and the mother,

 
maintaining the 

asymmetric distributions of cortical proteins including Cdc42p (Barral et al., 2000). 

Third, actin structures are suggested to have opposing roles in maintaining Cdc42p at 
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the bud tip. Actin patches are responsible for the dispersal of Cdc42p through 

endocytosis while
 
actin cables are required to counteract the dispersal and maintain

 

Cdc42p polarity (Irazoqui et al., 2005; Marco et al., 2007). Finally, Rdi1p mediates a 

fast recycling pathway of Cdc42p (Slaughter et al., 2009).  

In rsr1Δ cells which lack the bud site selection pathway, Cdc42p polarization can 

still occur at a single site, though at a random location. The symmetry breaking here 

could be explained by an amplification mechanism in which a stochastic initial 

gathering of polarity markers including Cdc42p, Bem1p, and Cdc24p develop into a 

concentrated cluster of polarity factors (Howell et al., 2009; Kozubowski et al., 2008). 

On the other hand, during mating, peptide pheromones secreted by haploid MATa 

cells and MATα cells (a factor and α factor, respectively) bind to GPCRs (G-protein 

coupled Receptors) on the opposite cell type, which activates a heterotrimeric G 

protein-coupled Mitogen-Activated Protein Kinase (MAPK) cascade. The pheromone 

bound GPCR dissociates the heterotrimeric G protein into a Gα monomer (Gpa1) and 

a Gβγ heterodimer. The free Gβγ dimer binds to multiple targets including PAK 

Ste20p, and a MAPK cascade scaffold protein Ste5p. Ste20p phosphorylates Ste11p (a 

MAPK kinase kinase), which phosphorylates Ste7p (a MAPK kinase), which 

phosphorylates and activates the MAPK Fus3p and Kss1p (Dohlman, 2002). Activated 

Fus3p also phosphorylates Far1p (Elion et al., 1993), which acts as a cell cycle 

inhibitor to arrest the cell in G1 phase as mentioned above during the budding process. 

In response to mating pheromones, the Far1p-Cdc24p complex is exported from the 

nucleus and, instead of being targeted to the bud site, interacts with Gβγ and is 

targeted to the shmoo tip. Far1p also recruits Cdc42p and Bem1p directly, as well as 
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through Cdc24p (Butty et al., 1998).  

Once the polarization of Cdc42p is established during budding or mating, it 

organizes the actin cytoskeleton, septins, polarized secretion and cell wall synthesis 

and thus orchestrates the growth of the bud and shmoo formation. Cdc42p performs 

these functions by regulating a variety of downstream effectors such as: PAK kinases 

Ste20p, Cla4p and Skm1p; Cdc42-Rac interactive binding domain (CRIB) containing 

proteins Gic1p and Gic2p, formin protein Bni1p, exocyst subunit Sec3p, and Boi1/2p, 

which will be discussed in Appendix I. PAKs are serine/threonine kinases that are 

involved in multiple cellular processes. They can phosphorylate type I myosin Myo3p 

and Myo5p which are nucleation promoting factors (NPF) of the Arp2/3 complex, 

which functions in endocytosis (Wu et al., 1996; Wu et al., 1997). Ste20p regulates 

multiple MAPK pathways that control mating, filamentous growth, and osmotic
 
stress 

response, and is also involved in exit from mitosis
 
and hydrogen peroxide-induced 

apoptosis (Chen and Thorner, 2007). Cla4p has been implicated in the phosphorylation 

and assembly of the septin ring, which plays
 
a fundamental role in cytokinesis and cell 

compartmentalization (Versele and Thorner, 2004).
 
In addition, Cla4p regulates 

mitotic entry and exit  (Hofmann et al., 2004). Very little is known about Skm1p,
 
and 

no clear function has been attributed to this PAK (Martin et al., 1997). The CRIB 

domain containing proteins Gic1p and Gic2p are suggested to have a role in the 

recruitment of septins to the bud site (Iwase et al., 2006). The formin protein Bni1p is 

an actin cable nucleator and has been shown to interact with Cdc42p. Its regulation 

and function will be discussed later in this introduction. Sec3p is an exocyst subunit 

that is on the plasma membrane instead of on the secretory vesicles (Finger et al., 
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1998). Its interaction with Cdc42p could lead to its polarized localization (Zhang et 

al., 2001).  

Unlike mating, the budding process finishes with cytokinesis, dividing the bud 

from the mother. In budding yeast, two complementary mechanisms contribute to the 

process of cytokinesis: contraction of the actomyosin ring and septum formation, both 

of which need septin rings. Septin rings are ring-like structures composed of GTP 

binding proteins Cdc3p, Cdc10p, Cdc11p, Cdc12p, and the nonessential component 

Shs1p. They are recruited to the future bud site early in the cell cycle, before bud 

emergence. Septins play essential roles in cytokinesis, not only as a scaffold for the 

formation of the actomyosin ring and septum, but also as barriers to restrict the 

movement of cytokinetic component outside of bud neck area (Dobbelaere and Barral, 

2004) as well as diffusion between mother and bud cell (Barral et al., 2000; Takizawa 

et al., 2000).  

Yeast actin cytoskeleton 

Actin structures in vivo are composed of actin filaments, also called F-actin, which 

are assembled from actin monomers. An actin monomer, also called G-actin, is a small 

globular protein. It polymerizes to form double stranded helical filament structure, F-

actin, which participates in many important cellular processes. Actin monomers are 

also asymmetric and they follow the same orientation in a single actin filament, 

forming two structurally and functionally different ends. The slow growing end is 

called the minus or pointed end and the fast growing end is called plus or barbed end. 

The rate limiting step in de novo actin polymerization is the formation of dimers and 

trimers since actin dimers are highly unstable. Once actin trimers or tetramers are 
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formed, they are stable seeds for polymerization (Sept and McCammon, 2001).  

The actin monomer contains a nucleotide-binding site that can bind ATP or ADP. 

The conformation of actin is different between ATP and ADP bound actin. ATP 

bound actin has a higher affinity for adjacent subunits than ADP bound actin, leading 

to the fact that ATP-actin favors filaments polymerization while ADP-actin favors 

depolymerization (Alberts, 2002).  

In vitro the assembly of an actin filament is largely dependent on the concentration 

of the G-actin pool. A balance is eventually reached between polymerization and 

depolymerization, and the filaments enter a steady-state phase called “treadmilling”. 

In this state, there is a constant polymerization and depolymerization of the filaments. 

The filaments polymerize at their barbed ends and depolymerize at their pointed ends. 

The concentration of G-actin in this state is called “critical concentration”. If the G-

actin concentration is lower than critical concentration, depolymerization occurs. On 

the contrary, if the G-actin concentration is higher than critical concentration, 

polymerization happens (Alberts, 2002). 

Actin polymerization in vivo is much more complicated than in vitro. Many actin 

binding proteins participate in different aspects of actin filament dynamics. Profilin is 

one example. Profilin is a small, abundant, and an almost essential G-actin binding 

protein. It is highly conserved and critical for actin organization and cell morphology. 

In budding yeast, there is only one profilin homolog, Pfy1p. It is estimated that most 

of the G-actin in vivo exists bound to profilin due to its abundance (Pollard et al., 

2000). Thus, profilin binding could inhibit spontaneous actin assembly by preventing 

interactions between actin monomers. It also restricts actin monomer addition to 
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filament barbed ends, blocking addition to pointed ends. However, it can promote 

actin assembly caused by formin proteins, a family of actin nucleator which I will talk 

more in this introduction later. In addition, profilin stimulates the nucleotide exchange 

on G-actin (Goldschmidt-Clermont et al., 1991; Korenbaum et al., 1998; Selden et al., 

1999).  

As shown in Figure 1.1, the actin cytoskeleton in yeast consists of three structures: 

actin patches, cables and an actomyosin ring, which are involved in endocytosis, 

polarized growth and cytokinesis respectively.  

Actin patches contain branched actin structures. They are motile with a life time of 

approximately 10~20s. The actin filaments in patches are nucleated by the conserved 

actin nucleator Arp2/3 complex, which is composed of seven proteins: Arp2p, Arp3p, 

Arc15p, Arc18p, Arc19p, Arc40p, and Arc35p (Winter et al., 1997). The Arp2/3 

complex is activated by five NPFs in vivo: the yeast homolog of Wiskott-Aldrich
 

syndrome protein (WASP) Las17p, Pan1p, type I myosins Myo3p, Myo5p and Abp1p 

(Duncan et al., 2001; Goode et al., 2001; Lee et al., 2000; Winter et al., 1999). When 

activated, the Arp2p and Arp3p subunits form a structure that mimics the barbed end 

of an actin filament. Actin monomers then polymerize at this barbed end while the 

Arp2/3 complex remains bound to the pointed end (Pollard and Beltzner, 2002). The 

complex binds to the sides of a preexisting actin filament to nucleate formation of a 

new filament at a 70° angle (Higgs and Pollard, 2001).  

Actin patches mainly function in endocytosis. A working model of actin patch 

development has three stages: the first is early recruitment, which is a nonmotile 

phase. It begins with the cytosolic regions of membrane receptors or static complexes 
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residing at the cell cortex. Clathrin, multiple scaffolding proteins and clathrin adaptors 

are recruited to these early complexes, which in turn recruit additional patch 

components that promote actin assembly, including Las17p, Pan1p and End3p. The 

second stage is the intermediate stage with slow motility. Actin can be detected at this 

stage along with the Arp2/3 complex and membrane invagination. Patches undergo 

slow, nondirectional movements within the plane of the cortex. The third stage is 

scission and rapid transport of patches. Patches/vesicles begin to move inward rapidly 

from the cell cortex while shedding off many of the early patch components such as 

Las17p, Pan1p, Myo3p, and Myo5p. Serine/threonine kinase Prk1p and Ark1p are 

suggested to trigger the transition from slow movement to fast movement by 

negatively regulating the actin assembly-stimulating activity of proteins such as Pan1p 

(Moseley and Goode, 2006). This fast movement has been suggested to be traveling 

along actin cables with a rate similar to actin cable flow (Huckaba et al., 2004).   

In budding yeast, actin cable filaments can be distinguished
 
from Arp2/3 complex-

dependent filaments by their association
 

with the F-actin binding proteins 

tropomyosins: Tpm1p and Tpm2p (Evangelista et al., 2002; Liu and Bretscher, 1989; 

Pruyne et al., 1998). They are required for polarized secretion and organelle 

inheritance. Actin cables are bundles of relatively short actin filaments that are aligned 

along the cell cortex from the bud site/tip and bud neck into the mother cell. Besides 

the actin cable specific stabilizing proteins Tpm1p and Tpm2p, actin cables are also 

decorated with F-actin bundling proteins Sac6p and Abp140p. During polarized 

growth, the actin cables are oriented with their barbed ends towards the growth sites 

(Figure 1.1). Myosin V motor proteins, Myo2p and Myo4p, walk along these cables 
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towards the growth site carrying cargos such as organelles, secretory vesicles, and 

mRNAs. Formin proteins are responsible and essential for the nucleation and 

assembly of actin cables at the bud tip and bud neck. Actin cables are dynamic 

structures. For a typical actin cable during budding, the barbed ends of the filaments 

associate with the bud tip/cortex or bud neck, where it is anchored and continuously 

assembled by formin proteins, while the pointed ends move away from the assembly 

site with a rate of around 0.3μm/s (Yang and Pon, 2002). The speed of the actin cable 

movement coincides with the speed of the actin polymerization rate, suggesting that 

actin polymerization drives the actin cable away from the growth site.   

The actomyosin ring is composed of many proteins including the Class II Myosin 

Myo1p, actin, tropomyosins, and IQGAP Iqg1p. Myo1p is recruited to the 

presumptive bud site shortly before bud emergence to form a ring. This recruitment is 

dependent on septins. The Myo1p ring remains at the mother-bud neck until the end of 

anaphase, when it’s joined by a ring of F-actin. This actin ring formation is dependent 

on formin proteins (Tolliday et al., 2002). The actomyosin ring then contracts to a 

point and disappears. Although the formation of the Myo1p ring is not dependent on 

actin, its contraction is actin dependent. During ring contraction, cortical actin patches 

congregate at the mother-bud neck, and actin cables are oriented towards the neck 

from both mother and bud, and the septum forms. Thus cell separation happens (Bi et 

al., 1998).  

Polarized transport by Myosins  

The major function of actin cables is to serve as the tracks for type V myosins to 

carry cargos such as secretory vesicles, organelles and mRNAs to the polarized sites 
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(Figure 1.2). There are two type V myosins in budding yeast, with heavy chains 

encoded by MYO2 and MYO4.  Myo2p is essential and responsible for the transport of 

secretory vesicles, which are the essential cargo of  Myo2p (Pruyne et al., 2004b; 

Pruyne et al., 1998), as well as the orientation of the nucleus (Beach et al., 2000; 

Hwang et al., 2003; Yin et al., 2000), and segregation of vacuoles (Weisman, 2003), 

mitochondria (Altmann et al., 2008; Simon et al., 1995), peroxisomes (Fagarasanu et 

al., 2006; Hoepfner et al., 2001), and trans-Golgi network (TGN) (Arai et al., 2008). 

The non-essential Myo4p transports mRNAs of ASH1 and IST2 (Takizawa et al., 

1997; Takizawa and Vale, 2000), as well as cortical endoplasmic reticulum (Schmid et 

al., 2006).  

Myo2p transports different cargos by binding to cargo specific receptors. PI4P and 

Rab proteins, specifically Ypt31/32p for TGN and Sec4p for secretory vesicles, 

collaborate in the association of secretory compartments with Myo2p (Santiago-Tirado 

et al., 2011). Vac17p on vacuoles (Ishikawa et al., 2003), Inp2p on peroxisomes 

(Fagarasanu et al., 2006) mediate the cargo interaction with Myo2p respectively. 

Nuclear orientation depends on forces acting on cytoplasmic microtubule radiating 

from the spindle pole body (SPB), a plaque-like structure embedded in the nuclear 

envelope equivalent to the centrosome of higher organisms. For nuclear orientation, 

Myo2p guides the cytoplasmic microtubule by transporting Kar9p which in turn binds 

to microtubule plus ends localizing protein Bim1p (Hwang et al., 2003; Yin et al., 

2000). Unlike other organelle transport, the movement of the nucleus is relayed to the 

microtubule motor protein Dyn1p and associated dynactin complex later during 

anaphase (Li et al., 1993; Muhua et al., 1994). Thus, nuclear segregation involves two  
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Figure 1.2 Transport of organelles and secretory vesicles by Myo2p on actin 

cables 

Actin cables are nucleated and assembled by the formin Bni1p from the bud tip and 

Bnr1p from the bud neck to serve as tracks for Myo2p transport. Myo2p transports 

microtubule plus ends through Bim1p (red) and Kar9 (purple) for orientation of the 

nucleus (1); the vacuole through Vac17p (teal) and Vac8p (green) (2); peroxisome 

through Inp2p (3); trans-Golgi network through Ypt31/32p (4); post-Golgi secretory 

vesicles through Sec4p (5); and mitochondria possibly through Mmr1p (6). Adapted 

from an image made by Kirk Donovan.  
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pathways: one through Myo2p and the other through the dynein/dynactin pathway. 

Failure of either pathway is not lethal and simply results in a low frequency of 

abnormal nuclear segregation. However, loss of both pathways is lethal (Fujiwara et 

al., 1999; Miller et al., 1999; Tong et al., 2001).  

Formin proteins 

Formin proteins are large (120-220 kDa), multidomain proteins. They were first 

named after a knockout mouse that exhibited “limb deformity” in 1990 (Mass et al., 

1990; Woychik et al., 1990). This family of proteins is highly conserved and 

characterized by the presence of Formin Homology domain 1 and 2 (FH1 and FH2) 

domains. Formins exist in all eukaryotes examined, with most species possessing 

many isoforms. Phylogenetic analyse of formins was performed using the FH2 domain 

(Higgs and Peterson, 2005), thus categorizing the metazoan formins into seven 

subgroups: Diaphanous (Dia); Formin-related gene in leukocytes (FRL); Dishevelled-

associated activator of morphogenesis (DAAM); Formin homology domain-containing 

protein (FHOD); Formin (FMN); Delphilin and Inverted formin (INF) (Figure 1.3). 

Four of these subfamilies Dia, FRL, DAAM and FHOD possess similarities outside of 

the FH2 domain,
 
and have been termed DRF (Diaphanous related formin). 

Formin proteins assemble unbranched actin filaments. They have been implicated 

in the formation of multiple cellular structures such as stress fibers, filopodia, cell-cell 

junctions, phagocytic cups and contractile rings. These structures are essential to 

migration, cell division, polarized growth, phagocytosis, and more (Campellone and 

Welch, 2010). The major role of formins, which is conserved among eukaryotes, is 

their actin assembly ability. Formins are able to both nucleate and elongate actin  
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Figure 1.3 Domain organizations of mammalian formins.  

CC, coiled coil; DAAM, Dishevelled-associated activator of morphogenesis; DAD, 

Diaphanous-autoinhibitory-domain; DD, Dimerization domain; Dia, Diaphanous; DID, 

Diaphanous inhibitory domain; FH1, Formin homology domain 1; FH2, Formin 

homology domain 2; FHOD, Formin homology domain-containing protein; FMN, 

formin; FRL, formin-related in leukocytes; FSI, formin–Spire interaction domain; 

GBD, GTPase binding domain; INF, inverted formin; PDZ, Postsynaptic density 

protein, Discs large, Zona occludens 1 domain; W, WASP homology 2 domain. 

Adapted, with permission, from the © 2010 Macmillan Publishers Limited. All rights 

reserved 238 | APRIL 2010 | volume 11 (Campellone and Welch, 2010) 
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filaments. Besides assembling actin filaments, Bnr1p, Frl1, Frl2, Frl3 and mDia2 also 

have the ability to bundle actin filaments in vitro (Esue et al., 2008; Li and Higgs, 

2005; Moseley and Goode, 2005). Also, Frl1 and Inf2 were shown to sever and/or 

depolymerize actin filaments (Chhabra and Higgs, 2006; Harris et al., 2004). In 

addition to their roles in actin structure formation, many mammalian formins have also 

been shown to bind to microtubules and proteins that interact with microtubule plus 

ends to promote microtubule stability (Bartolini et al., 2008; Lewkowicz et al., 2008; 

Wen et al., 2004). This suggests that formins could function in the crosstalk between 

the actin and microtubule cytoskeleton (Chesarone et al., 2010).  

Studies suggest that diverse formins assemble filaments using similar mechanisms, 

but the rates of particular assembly steps vary (Kovar et al., 2006). Generally, the C-

terminal region of formin proteins contains the FH1 and FH2 functional domains 

while the N-terminal half typically governs localization and activity of the C-terminal 

functional region. In vitro, the FH2 domains of most formin proteins are required and 

sufficient to nucleate unbranched actin filaments and enable processive elongation at 

the barbed ends (Copeland et al., 2004; Harris et al., 2004; Harris et al., 2006; Kovar 

et al., 2003; Kovar and Pollard, 2004; Li and Higgs, 2003; Pruyne et al., 2002; 

Romero et al., 2004). Both biochemical and structural studies on several formins 

suggest that the FH2 domain needs to form homodimers to perform its actin nucleation 

activity (Harris et al., 2004; Harris et al., 2006; Lu et al., 2007; Moseley et al., 2004; 

Shimada et al., 2004a; Xu et al., 2004). In the dimer, a loop of amino acids called the 

“lasso” from one FH2 domain encircles another loop, the “post”, from the other FH2 

domain and forms a highly stable and flexible interaction. A “knob” region between  
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Figure 1.4 Structure of FH2 dimer and its role on actin filament barbed ends 

(A) Ribbon diagram showing the overall architecture of the FH2 dimer. One molecule 

is colored using the visible spectrum (from blue at the N terminus to red at the C 

terminus), the second molecule is colored tan. The lasso, linker, knob, coiled-coil, and 

post subdomains are labeled, and the approximate dimensions of the dimer are 

indicated. The N and C termini and selected α helices of one molecule are labeled. 

Note the manner in which the lasso region of each molecule encircles a portion of the 

post subdomain of the other molecule in the dimer. Adapted, with permission, from 

the Cell 2004 by Cell Press 711 | March 2004 | Volume 116 (Xu et al., 2004) 

(B) Processive barbed end elongation by Formin FH1-FH2. A FH2 dimer associates 

with the barbed end of an actin filament, while the FH1 domains recruit profilin–actin. 

The FH1 domain delivers profilin–actin to the barbed end, and the FH2 upward the 

barbed end to interact with the newly added actin monomer while rotating along with 

the actin filament.  
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the “lasso” and the “post” on each monomer projects above the plane of the lasso and 

post interface, giving the dimer a doughnut shape (Figure 1.4a). Moreover, a co-

crystal structure of a Bni1p FH2 dimer with tetramethylrhodamine–actin revealed that 

each FH2 dimer bridges two actin subunits in a configuration that resembles the short-

pitch actin dimer of a filament (Otomo et al., 2005b). As mentioned earlier, the actin 

dimers are unstable and energetically unfavorable. The FH2 domain dimers can thus 

stabilize spontaneously formed actin dimers and trimers to overcome the kinetic 

barriers (Chesarone et al., 2010; Pring et al., 2003). To elongate an actin filament, the 

FH2 dimer remains bound to the barbed end while moving processively during the 

rapid addition of actin subunits, protecting the barbed end from capping proteins. The 

structure of the FH2 dimer with actin also suggests a model, in which the FH2 dimer 

alternates between two bound states. In one state, both FH2 monomers bind the two 

terminal actin subunits at the barbed end of filament. In the other state, a third actin 

subunit is incorporated with the structural change of the flexible linker connecting the 

two FH2 dimers (Otomo et al., 2005b) (Figure 1.4b). In this model, the formin is 

predicted and has been shown to rotate along the axis of the double helical F-actin 

structure (Mizuno et al., 2011).  

N-terminal to the FH2 domain is a proline-rich region called the FH1 domain, 

which binds profilin. As described above, profilin is an essential small actin binding 

protein that’s associated with actin monomers, and profilin-actin comprises the major 

pool of monomeric actin in vivo (previous introduction). The FH1 domains of different 

formins vary in length, proline content and number of potential profilin binding sites 

(Higgs, 2005). Profilin stimulates formin-induced actin assembly in vitro most likely 
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through increasing the local concentration of G-actin at the barbed end by interacting 

with the formin FH1 domain and with actin monomers (Kovar et al., 2003; Moseley 

and Goode, 2005; Pring et al., 2003; Sagot et al., 2002b). The importance of profilin is 

more obvious for the fission yeast formin Cdc12p. Cdc12p alone acts as a standard 

barbed end capping protein, limiting filament growth to the pointed end. Addition of 

profilin gates Cdc12p’s actin assembly ability at the barbed end (Kovar et al., 2003).  

The N-terminal region of formin proteins is generally considered to be the 

regulatory region. One mechanism suggested for the regulatory function of the N-

terminal domain in DRF proteins is through autoinhibition by binding of the N-

terminal Diaphanous inhibitory domain (DID) to the C-terminal Diaphanous 

autoregulatory domain (DAD) (Alberts, 2001; Li and Higgs, 2003; Li and Higgs, 2005) 

(Figure 1.3). Both biochemical and structural evidence suggest that autoinhibition is 

relieved by binding of Rho GTPases to the GTPase binding domain (GBD), which 

partially overlaps with the DID (Lammers et al., 2005; Li and Higgs, 2003; Li and 

Higgs, 2005; Nezami et al., 2006; Otomo et al., 2005a; Rose et al., 2005; Seth et al., 

2006).  

It has also been shown that the N-terminal region of formin proteins can 

homodimerize through a Dimerization Domain (DD) (Li and Higgs, 2005; Otomo et 

al., 2005a). It is worth noting that relieving autoinhibition by GTPases is incomplete, 

raising the possibility that additional regulatory factors exist for full activation (Li and 

Higgs, 2005; Seth et al., 2006). Also, there might be a feedback loop between formin 

proteins and Rho activators, indicated by Dia1 stimulating Rho-GEF (LARG) (Kitzing 

et al., 2007). 
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In addition to functioning in formin autoinhibition, the DAD domain has been 

suggested in a recent paper to have a direct role in actin nucleation (Gould et al., 2011). 

In addition to binding to the DID domain in the N-terminal region to mask the 

function of the FH2 domain, a dimerized DAD domain from mDia1 is sufficient to 

nucleate actin assembly. This property of the DAD domain may be common among 

other DRF family proteins which contain DAD domains. Consistent with this model,  

the FH1-FH2-COOH domains, which includes the DAD from Bni1p, Bnr1p, and 

Daam1p all have significantly higher actin assembly activities than their FH1-

FH2ΔDAD counterparts (Gould et al., 2011).   

Formins in Saccharomyces cerevisiae 

Two formin isoforms exist in the budding yeast Saccharomyces cerevisiae: Bni1p 

and Bnr1p. Although bni1Δ or bnr1Δ single deletions are not lethal, deleting both of 

them is lethal (Ozaki-Kuroda et al., 2001; Vallen et al., 2000). They both belong to the 

DRF family, and similar to other formin proteins in the DRF family, they contain 

FH1, FH2 and DAD domains at the C-terminus, as well as GBD and DID domains at 

the N-terminus. Bni1p also contains a Formin homology domain 3 (FH3), which is 

implicated in subcellular localization and formin regulation (Kato et al., 2001; 

Petersen et al., 1998) and a Spa2p Binding Domain (SBD) which binds to polarisome 

scaffolding protein Spa2 and has been suggested to localize Bni1p (Fujiwara et al., 

1998) (Figure 1.5a). The role of formin proteins functioning in actin cable assembly 

was first established in studies of Bni1p (Evangelista et al., 2002; Pruyne et al., 2002; 

Sagot et al., 2002a; Sagot et al., 2002b). Since bni1Δ bnr1Δ is lethal, bnr1Δ bni1ts 

cells were used and actin cables as well as actin rings were diminished within minutes  
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Figure 1.5 Formins in budding yeast Saccharomyces cerevisiae  

(A) Domain organization of formins in budding yeast, Bni1p and Bnr1p. CC, coiled 

coil; DAD, Diaphanous-autoinhibitory-domain; DD, Dimerization domain; Dia, 

Diaphanous; DID, Diaphanous inhibitory domain; FH1, Formin homology domain 1; 

FH2, Formin homology domain 2; FH3, Formin homology domain 3; GBD, GTPase 

binding domain; SBD, Spa2p binding domain. 

(B) Distribution of Bni1p and Bnr1p in selected cell. Bni1pGFP from a high-copy 

plasmid. Bnr1pGFP fluorescence is shown in endogenous labeled cells. Adapted with 

permission from David W Pruyne 
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after shifting cells to the restrictive temperature without disrupting actin patch 

integrity (Evangelista et al., 2002; Sagot et al., 2002a). Subsequent biochemical assays 

demonstrated that the FH2 domain of Bni1p directly nucleates the assembly of actin 

cables (Pruyne et al., 2002; Sagot et al., 2002b).  

The two formin proteins Bni1p and Bnr1p partially overlap in their localization 

(Figure 1.5b). During polarized growth, Bni1p localizes to the future budding site in 

unbudded cells, to the tip of small buds, at the cortex of medium buds, and to the bud 

neck during anaphase. On the other hand, Bnr1p localizes to the neck of cells with 

buds of all sizes and disappears before the constriction of actomyosin ring (Buttery et 

al., 2007; Fujiwara et al., 1998; Gao et al., 2010; Kamei et al., 1998; Pruyne et al., 

2004a).  In pheromone stimulated cells, Bni1p localizes to the shmoo tip (Evangelista 

et al., 1997), while Bnr1p localizes to the septin collar at the shmoo base (Gao et al., 

2010). 

Bni1p and Bnr1p share similar but distinct functions. Bni1p and Bnr1p maintain 

distinct sets of actin cables. In unbudded cells, bni1Δ cells display a higher incidence 

of unorganized actin cables and reduced proportion of Myo2p at the nascent bud site, 

while bnr1Δ cells show a similar actin distribution as wild type yeast. In small to 

medium budded cells, actin cables in bni1Δ cells are reduced in the bud with Myo2p 

and Sec4p, a Rab protein on secretory vescicles, concentrated at the bud neck and also 

diffusely at the bud cortex. In small to medium-budded bnr1Δ cells, actin cables in the 

mother are reduced with Myo2p and Sec4p distributed similarly to wildtype cells. In 

large budded cells, the actin cable structure in both bni1Δ and bnr1Δ cells are similar 

to wildtype cells, although bni1Δ cells have more disorganized cables (Pruyne et al., 
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2004a). A comparative study of their biochemical activities showed that Bnr1p could 

bundle actin filaments and is 10-15 fold more potent than Bni1p in actin assembly 

activity in vitro (Moseley and Goode, 2005; Wen and Rubenstein, 2009). Bni1p is 

phosphorylated in vivo, but Bnr1p hasn’t been shown to be phosphorylated (Moseley 

and Goode, 2005). Live cell imaging of Bni1p tagged with 3GFP displayed linear, 

retrograde movements with a rate of 0.48 ±0.22µm/s, similar to that of actin cable 

growth. This retrograde movement of Bni1p is dependent on actin cables and its actin 

assembly ability. It is proposed that Bni1p nucleates actin assembly at the cell cortex, 

then releases from the cortex and is carried with the assembling cable before falling 

off, while Bnr1p showed relative static and confined localization at the bud neck 

before actomyosin ring contraction. Fluorescence Recovery After Photobleaching 

(FRAP) experiments confirmed the dynamic properties of Bni1p between polarized 

sites and the cytoplasm with t1/2 <8s. On the other hand, FRAP of the entire bud neck, 

where Bnr1p is localized, resulted in little or no recovery of Bnr1p. FRAP of half of 

the bud neck showed that Bnr1p has a  t1/2  of recovery around 60s, suggesting a slow 

exchange rate of Bnr1p even within the bud neck region (Buttery et al., 2007).  The 

above differences in localizations and functions between Bni1p and Bnr1p suggested 

that the two formin isoforms are regulated differently.  

As a DRF, Bni1p has been suggested to be regulated by autoinhibition similarly to 

its mammalian homolog mDia1. Indeed, overexpression of Bni1FH1-COOH or 

Bni1pΔDAD, but not overexpression of full length Bni1p, induced excessive actin 

filaments (Evangelista et al., 1997; Sagot et al., 2002a). Direct evidence came from an 

in vitro pyrene actin assembly assay showing that an N-terminal piece of Bni1p could 
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inhibit the acceleration phase of actin polymerization by the Bni1FH1-COOH region 

(Wang et al., 2009).  

Autoinhibition could be released by binding of small GTPases to the N-terminal 

GBD domain. Both Bni1p and Bnr1p have been shown to bind to small Rho GTPases. 

Besides Cdc42p, there are five other Rho proteins in budding yeast, Rho1p-5p. 

Cdc42p is the critical director of polarized growth including actin polarization, septin 

assembly and exocytosis (see previous introduction). Rho1p is involved in the Pkc1p-

dependent cell wall integrity (CWI) pathway and cell polarity establishment. Rho2p 

may share some common function with Rho1p (Park and Bi, 2007). Rho3 and Rho4 

share a function in cell polarity with Rho3p being the major one. Rho5p was suggested 

to play a role in CWI pathway also (Schmitz et al., 2002). Among these six Rho 

proteins, Rho1p and Cdc42p are essential. Bni1p has been shown using yeast two 

hybrid assays to interact with Cdc42p (Evangelista et al., 1997; Richman et al., 1999; 

Richman et al., 2004), Rho1p (Kohno et al., 1996) and Rho3p (Robinson et al., 1999), 

all preferably binding the active GTPases. Cdc42p and Rho1p have been shown to 

bind to Bni1p in vitro (Evangelista et al., 1997; Kohno et al., 1996). On the other hand, 

only Rho4p binds to Bnr1p by yeast two hybrid and in vitro pull down assays 

(Imamura et al., 1997). Cdc42p is required for
 
recruitment of Bni1p to the nascent bud 

site (Jaquenoud and Peter, 2000; Ozaki-Kuroda et al., 2001). cdc42ts mutants have 

less polarized cables in unbudded cells (Dong et al., 2003). Bni1p is delocalized in 

rho1-ts stains during mating (Qi and Elion, 2005), and formin nucleated actin cables 

and rings are also lost in rho1-ts strains (Dong et al., 2003; Finger et al., 1998; Guo et 

al., 2001; Tolliday et al., 2002). rho3Δ rho4Δ double disruption is lethal but can be 
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rescued by the expression of Bni1p ΔGBD or Bnr1pΔGBD to restore normal actin 

staining, suggesting that Rho3p and Rho4p’s main function may be to activate formins 

by binding to the GBDs and relieving
 
the autoinhibitory state formed between the 

GBD and the DAD region (Dong et al., 2003). 

In addition to the general autoinhibitory mechanism among DRFs, the yeast 

formins Bni1p and Bnr1p possess their own regulatory pathways. Bud6p has been 

suggested to differentially regulate Bni1p and Bnr1p (Moseley and Goode, 2005). 

Bud6p is a component of the 12S polarisome complex composed of Spa2p, Pea2p, and 

Bud6p (Sheu et al., 1998). Bud6p was first identified as an actin binding protein using 

yeast two hybrid (Amberg et al., 1995). Bud6p-GFP expressed at endogenous levels 

showed that its localization overlaps with both Bni1p and Bnr1p (Delgehyr et al., 

2008). Bud6-GFP first associates with the bud tip after bud emergence, and then 

accumulates at the bud
 
neck coincident with initiation of spindle

 
assembly. Bni1p and 

Bud6p colocalize
 
at the bud cortex in small budded cells, but association of Bud6p 

with the bud
 
neck in medium budded cells is not accompanied by Bni1p. On the other 

hand, Bnr1p is recruited
 
at the bud neck following bud emergence before Bud6p.

 
Both 

proteins then colocalize until Bnr1p disappears
 
prior to cytokinesis, when Bni1p 

colocalizes with Bud6p during cytokinesis. Although yeast two hybrid assays 

suggested that Bud6p interacts with the C-terminal region of both Bni1p and Bnr1p 

(Kamei et al., 1998), an in vitro pull down assay showed that only the Bni1p C-

terminal region could interact with Bud6p. Bud6p can also stimulate the actin 

assembly activity of Bni1 FH1-COOH (Moseley and Goode, 2005; Moseley et al., 

2004).  
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Bni1p also functions intimately with another component of polarisome, Spa2p. 

Spa2p has been suggested to bind specifically to Bni1p to regulate its localization 

(Fujiwara et al., 1998; Sheu et al., 1998). Spa2p serves as the scaffolding protein of 

the polarisome complex and interacts with all the other known components as well as 

MAP kinase Mpk1p and GAP proteins, Msb3p and Msb4p (Tcheperegine et al., 2005; 

van Drogen and Peter, 2002). Bni1p 826-987aa binds directly to
 
the C-terminal, SHD-

V region of Spa2p (Fujiwara et al., 1998), thus Bni1p 826-987aa is defined as the 

Spa2 binding domain (SBD). In spa2Δ or bni1Δ822-987 cells, the localization of 

Bni1p at the small bud tip was significantly reduced (Ozaki-Kuroda et al., 2001).  

On the other hand, Bud14p, a protein that interacts with Glc7p, the catalytic 

subunit of type 1 protein phosphatase, to control dynein-dependent microtubule sliding 

at the bud cortex and facilitates nuclear migration (Knaus et al., 2005), has been 

suggested to specifically regulate Bnr1p’s actin assembly activity (Chesarone et al., 

2009). Bud14p inhibits Bnr1p by displacing Bnr1p from growing barbed ends, 

controlling the duration of Bnr1p-mediated actin assembly and promoting Bnr1p 

cycling between the active and inactive state.  

Phosphorylation is suggested to play an important role in Bni1p’s regulation. The 

MAPK Fus3p was shown to regulate Bni1p during mating (Matheos et al., 2004), and 

phosphorylation of Bni1p was greatly reduced in fus3Δ cells. Bni1p-GFP also failed to 

localize to the shmoo tip in fus3Δ cells. The fact that Bni1p was less phosphorylated in 

ste20Δ cells further suggested that disrupting mating MAPK pathway affects the 

phosphorylation of Bni1p (Goehring et al., 2003). The phosphorylation of Bni1p by 

Fus3p could activate and recruit Bni1p to the shmoo tip during mating. A feedback 
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loop might exist in this signaling pathway since Fus3p-GFP and the MAPK 

scaffolding protein GFP-Ste5p were not localized to the shmoo tip after pheromone 

treatment in bni1Δ cells (Qi and Elion, 2005).  The actin cable motor protein Myo2p 

has also been suggested to transport Ste5p to the shmooing tip, which might function 

in the feedback loop (Qi and Elion, 2005).  

Another interesting observation made by Wang et al is that Bni1p is 

phosphorylated by Prk1p (Wang et al., 2009), a serine/threonine kinase that regulates 

actin-coupled endocytosis (Toshima et al., 2005). They were able to show that Bni1p 

was phosphorylated directly by Prk1p in vitro at three sites, one in the GBD domain, 

one in the FH1 domain and one at the C-terminal end. Deletion of the PRK1 gene 

reduces the phosphorylated Bni1p to about 50%, while deleting both PRK1 and ARK1, 

which encodes a homolog of Prk1p, reduces the phosphorylated state further (Wang et 

al., 2009). Using actin assembly assays, it was shown that the autoinhibitory effect of 

Bni1p N-terminal region on the actin assembly of Bni1p FH1-COOH can be released 

with the addition of Prk1p. It would be interesting to know how Prk1p/Ark1p 

coordinates its function on activation of formin proteins and endocytosis by the 

Arp2/3 complex.  

Although those previous studies provide a general picture of how the formins are 

regulated, exactly how formins are regulated spatially and temporally is not clearly 

known.  Thus I set out to study the regulation of the formin protein Bni1p.  
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CHAPTER 2 

N-terminus of Bni1p contains multiple localization signals 

Abstract 

Formin proteins are critical regulators of actin structure, which nucleate and 

elongate unbranched actin filaments in all eukaryotes. Budding yeast, Saccharomyces 

cerevisiae, has two formin isoforms, Bni1p and Bnr1p, which have similar but distinct 

functions and localization, organizing different sets of actin cables during bud growth.  

Here I examine the N-terminal region of Bni1p responsible for bud cortex and bud 

neck localization.  I found three non-overlapping regions: one in the N-terminal 333 

amino acids which requires dimerization, one in the 334-834 amino acids which 

covers DID-DD-CC domains and the third in the Spa2p binding domain. The three 

regions can each localize to the bud cortex and bud neck at the right cell cycle stage 

independently of endogenous Bni1p. 

Introduction 

As described in the Chapter 1 general introduction, the formin protein Bni1p has a 

critical role in organizing the actin cytoskeleton. During budding, in small to medium 

budded cells, Bni1p assembles actin cables from the bud tip/cortex. Later during 

cytokinesis, Bni1p shifts localization and assembles actin cables from the bud neck. 

How Bni1p is regulated to assemble actin cables spatially and temporally has always 

been of great interests to me. It has been shown that the N-terminal half of Bni1p, 1-

1240aa is sufficient for its localization (Ozaki-Kuroda et al., 2001). In this chapter, a 

series of GFP-tagged constructs encompassing different regions of the N-terminal 

domains were made and characterized to define localization determinants. Three 
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different localization domains before the FH1 domain were identified in the N-

terminal region. They all localize to the bud cortex and bud neck during the right cell 

cycle stage independent of endogenous Bni1p.  

Materials and methods 

Yeast strains and molecular biology techniques 

Strains used in this study are listed in Table 2.1. All strains were generated in the 

S288C strain background coming from the deletion consortium (Brachmann et al., 

1998). Standard media and techniques for growing and transforming yeast were used 

(Sherman, 1991). Plasmids used in this study are listed in Table 2.2. Bni1p 

overexpression plasmids were made using template pHL012 (Liu et al., 1992), and 

inserting different Bni1p regions using BamHI and MluI restriction sites. GFP was 

inserted using MluI and NotI. To express the different regions of Bni1p, the relevant 

strains were grown overnight in 5 ml Sraff-URA media to an OD600 of 0.4 and then 0.5 

ml 20% galactose was added to the media for 3-4 hrs.  

Yeast two hybrid screen 

Bait plasmids containing Gal4p binding domain (BD) were transformed into PJ69-

4α strains. I used a prey library from the Fields lab (Uetz et al., 2000). The library was 

constructed using PJ69-4a strains with prey plasmids containing Gal4p activating 

domain (AD). Each prey plasmid contains one of the S. cerevisiae open reading 

frames and was transformed into PJ69-4a cells individually to construct the yeast 

library. The library contains all the predicted yeast genes. PJ69-4α cells with bait 

plasmid were grown overnight in 5 ml SC-Trp media until the OD reached 0.8~1.0. 

1ml of the prey library in PJ69-4a cells was added to the PJ69-4α cells. 45 ml of  
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Table 2.1 Yeast strains used in Chapter 2 

Strain Genotype Source 

ABY1848 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/MET15 lys2Δ0/LYS2  

(Evangelista et al., 

2002) 

pJ69-4α MATα
 
trp1-901 leu2-3,112 ura3-52 his3-200 

gal4Δ gal80Δ LYS2::GAL1-HIS3
 
GAL2-ADE2 

met2::GAL7-lacZ 

(James et al., 

1996) 

pJ69-4a MATa
 
trp1-901 leu2-3,112 ura3-52 his3-200 

gal4Δ gal80Δ LYS2::GAL1-HIS3
 
GAL2-ADE2 

met2::GAL7-lacZ 

(James et al., 

1996) 

ABY2838 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15∆0 bni1Δ::KanR/ 

bni1Δ::KanR 

This study 

ABY3280 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

spa2∆::Kan
R
 

Invitrogen 

ABY1854 MATα his3∆1 leu2∆0 ura3∆0 lys2∆0 rho2∆::Kan
R
 (Dong et al., 

2003) 

ABY1590 MATa ade2-101 his3∆200 leu2-3, 112 ura3-52 

lys2-801 rho3∆::Kan
R
 

(Dong et al., 

2003) 

ABY1849 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

rho4Δ::KanR 

(Dong et al., 

2003) 

ABY1862 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

rho5Δ::KanR 

(Dong et al., 

2003) 

ABY1589 MATa ade2 his3 leu2 lys2 trp1 rho1::HIS3 

ade3::rho1-2 LEU2 

(Dong et al., 

2003) 

KKY404 MATa his3-Δ200 leu2-3,112 lys2-801am ura3-52 

cdc42-101::LEU2 

(Kozminski et al., 

2000) 
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Table 2.2 Plasmids used in Chapter 2 

Plasmid Backbone Genotype 

pWL062 pRS316 PGAL1-10-BNI1 (1-1953)-GFP 

pWL150 pRS316 PGAL1-10-BNI1 (1-333)-GFP 

pWL151 pRS316 PGAL1-10-BNI1 (1-333)-Leucine zipper-GFP 

pWL054 pRS316 PGAL1-10-BNI1 (1-596)-GFP 

pWL071 pRS316 PGAL1-10-BNI1 (1-596)-Leucine zipper-GFP 

pWL060 pRS316 PGAL1-10-BNI1 (1-717)-GFP 

pWL055 pRS316 PGAL1-10-BNI1 (1-834)-GFP 

pWL148 pRS316 PGAL1-10-BNI1 (334-834)-GFP 

pWL099 pRS316 PGAL1-10-BNI1 (1-834Δ596-717)-GFP 

pWL067 pRS316 PGAL1-10-BNI1 (1-1239)-GFP 

pWL117 pRS316 PGAL1-10-BNI1 (501-717)-GFP 

pWL084 pRS316 PGAL1-10-GFP-BNI1 (1-1239)-GFP 

pWL108 pRS316 PGAL1-10-BNI1 (592-834)-GFP 

pWL107 pRS316 PGAL1-10-BNI1 (987-1239)-GFP 

pWL088 pGBKT7 BNI1 1-724 

pWL053 pRS316 PGAL1-10-BNI1 (1-347)-GFP 

pWL070 pRS316 PGAL1-10-BNI1 (1-347)-Leucine zipper-GFP 
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2xYPDA/Kan was added to the mixture. The mixture was incubated at 30°C for 

20~24 hrs with gentle shaking at 30~50 rpm. Cells were checked by light microscope 

to determine whether mating had occurred. Mated cells either were spun down and 

plated on SC-Leu-Trp-His or SC-Leu-Trp-His-Ade to select for the yeast two hybrid 

candidates, or the cells were diluted and plated on SC-Leu, SC-Trp and SC-Leu-Trp to 

calculate the mating efficiency. A total of 408,000 diploids, made by mating the prey 

strains with the bait library, were screened and 189 candidates were confirmed after 

restreaking. Sequencing of the candidates revealed 46 different genes. Ten candidates 

were chosen arbitrarily and retransformed and dilution assays were performed to 

verify the interactions.  

Microscopy 

Live cells were placed under 2% agarose in synthetic medium containing 

appropriate amino acids. Images were acquired with a spinning disc confocal 

microscopy system (3I Corp) using a DMI 6000B microscope (Leica) and a digital 

camera (QuantEM; Photometrics). Images were further analyzed and adjusted using 

Slidebook 5. To disrupt microtubule structures, cells were treated with 120 µg/ml 

benomyl in DMSO for 10 min. Tub1p-GFP was used to verify the disruption of 

microtubules. To disrupt actin structures, cells were treated with 200 µM Latruculin A 

for 10 min. Phalloidin staining was used to verify the disruption of F-actin structures: 

Cells were fixed with 3.7% formaldehyde for 30 min to 1 hr, then washed three times 

with PBS and treated with 0.2% Triton X-100 for 15 min. The cells were washed and 

incubated with 100 µl PBS + 3 µl Alexa568-phalloidin for 1 hr.  After final washes, 

the cells were examined by microscopy. When washing the cells, the centrifugation 
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speed should be kept low to keep the intact actin structures. I used a tabletop 

centrifuge at 5000 rpm for 1 min. 

Results 

The N-terminal domain of Bni1p contains more than one localization region 

Full length Bni1p-GFP localizes at the bud site, concentrates at the tip of small 

budded cells, more broadly as a cap in medium budded cells, and then disappears from 

the bud cortex of large budded cells and re-appears at the bud neck prior to cytokinesis 

(Figure 2.2A and (Ozaki-Kuroda et al., 2001; Pruyne et al., 2004a)). To study the 

localization determinants, constructs compassing different regions of Bni1p were 

inserted behind the GAL1 promoter and C-terminally tagged with GFP in a low copy 

plasmid (Figure 2.1). Cells transformed with these plasmids were induced in galactose 

for 3-4 hrs. A summary of the live-cell imaging of different GFP tagged Bni1p 

constructs is shown in Table 2.3. Bni1p-1-1239-GFP, encompassing the entire N-

terminal region up to the FH1 domain, showed a broader localization than Bni1p-GFP 

at the bud cortex of small and medium sized buds, and localized to the bud neck in 

large budded cells (Figure 2.2B). The shortest N-terminal region that still strongly 

localized to the bud cortex was Bni1p-1-717-GFP (Figure 2.2C). Constructs shorter 

than Bni1p-1-717-GFP localized very weakly, with barely detectable localization to 

the bud cortex and neck. Since the Spa2p binding region lies outside this construct, 

and Spa2p has been suggested to regulate Bni1p’s localization (Fujiwara et al., 1998; 

Sheu et al., 1998), these results identified an additional localization domain. The 

localization of Bni1p-822-992-GFP covering the Spa2p binding region was also 

studied and this construct localizes mostly to the nucleus but also weakly to the bud  
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Figure 2.1 Scheme of Bni1p N-terminal overexpression constructs   

Constructs that are localized at the bud cortex and bud neck during the right cell stages 

are in green, constructs that are not localized at the bud cortex or bud neck are in red.  
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Figure 2.2 Selected GFP images of overexpressed Bni1p N-terminal constructs 

during budding  

(A-K) GFP images of overexpressed Bni1p N-teminal regions in a BNI1 background. 

(L, M) GFP images of overexpressed Bni1p N-teminal regions in a bni1Δ background 

after treated with 200 µM latrunculinA for 10 min.  Bni1p constructs were expressed 

behind the GAL1 promoter and tagged with GFP at the C-terminus, induced with 

galactose for 3 to 4 hr. Scale bar: 5 µm.  
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cortex and bud neck (Figure 2.2D). However, Bni1p822-992aa-GFP is no longer 

localized at the bud cortex and neck in spa2Δ cells (Figure 2.5G), suggesting that this 

localization is Spa2p dependent.  Thus Bni1p has at least two localization domains in 

its N-terminal 1-1239 amino acid region.  

The GBD domain of Bni1p localizes to the bud cortex and bud neck when 

dimerized 

As indicated above, Bni1p-1-717-GFP localizes to the bud cortex and the bud 

neck, yet shorter constructs like Bni1p-1-596-GFP do so very weakly (Figure 2.2E). 

The difference between these two constructs is the region proposed to be a 

dimerization domain (DD) (Figure 2.1). Since the DD region of mDia1 has been 

shown to facilitate dimerization (Li and Higgs, 2005), I asked whether dimerization 

might be important for localization. I therefore explored whether artificially 

dimerizing the Bni1p-1-596 construct might allow it to localize appropriately. To do 

this, I appended a leucine zipper from human CREB which functions as a dimerization 

domain (Schumacher et al., 2000). Bni1p-1-596-L-Zipper construct localized robustly 

to the cell cortex and neck (Figure 2.2F). With this result in hand, I explored how 

much of the N-terminal domain, when dimerized, is necessary for this localization. 

Accordingly, I found that Bni1p-1-333-GFP does not localize to the bud cortex, 

whereas Bni1-1-333-L-Zipper localizes to both the bud cortex and the bud neck 

(Figure 2.2G and H). Expression of just the leucine zipper fused to GFP is cytoplasmic 

(Figure 2.2I). Additionally, the Bni1p N-terminal construct with the DD deleted could 

also localize at the bud cortex and neck, suggesting that the coil-coil following the DD 

might be contributing to the dimerization of N-terminus of Bni1p (Figure 2.2J).  
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Figure 2.3 Selected GFP images of overexpression Bni1p N-terminal constructs in 

bni1Δ cells  

Bni1p constructs are expressed under GAL1 promoter and tagged with GFP at the C-

terminus, induced with galactose for three to four hours. Scale bar: 2µm.  
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The N-terminal half of Bni1p contains three localization regions 

The above results suggested that the N-terminal region of Bni1p contains more 

than one localization domain. To determine whether additional N-terminal regions 

contribute to the localization of Bni1p, the localization of the remaining domains were 

also studied using GFP tagged constructs. To our surprise, Bni1p-334-834-GFP which 

covers the DID, DD and the following predicted coiled coil (CC) region before the 

SBD domain was also able to localize to the bud cortex and bud neck (Figure 2.2K), 

similarly to Bni1p-1-1239-GFP. Thus, Bni1p is localized at the bud cortex by three 

localization regions, one residing in the N-terminal 333 amino acids that requires 

dimerization, one in the region encompassed by 334-834 amino acids which covers the 

DID-DD-CC domains and the third lies in the region of the Spa2p binding domain. 

However, additional features of Bni1p are necessary to restrict the full-length protein 

to the tip of the bud cortex of small budded cells.  

To test if the localization regions were dependent on endogenous Bni1p, all 

constructs were examined in bni1Δ cells. All the localizations were not changed in 

either bni1∆ cells (Figure 2.3) or bnr1∆ cells, indicating that they are not dimerizing 

with endogenous Bni1p to localize, but must be binding a cortically localized 

determinant in the bud and later at the neck. Moreover, the localization of Bni1p-1-

333-L-Zipper, or Bni1-GFP, to the bud cortex is independent of the actin cytoskeleton 

as the localization was unchanged by treating cells for 10 mins with 200µM of the 

actin depolymerizing drug Latrunculin A (Figure 2.2L and M).  

The role of microtubules in Bni1p localization 

In addition to localizing to the bud cortex and bud neck, several of the Bni1p  
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Table 2.3 Localization of Bni1p N-terminal constructs  

Numbers indicate Bni1p amino acid residues in constructs. “+” or “-” indicates 

whether the construct was detected by live imaging at the indicated place. The number 

of “+” indicates how strong the localization is in terms of percentage of cells was 

observed with the localization. * both spindle and spindle pole body localizations 

Bni1p-

GFP 

construct

s 

Bud tip 

localizatio

n 

Bud 

cortex 

localizatio

n 

Bud neck 

localizatio

n 

Spindle 

pole body 

localizatio

n 

Mother 

cortex 

localizatio

n 

Expressio

n checked 

by 

Western 

Bni1p +++ + +++ +/- - Yes 

1-333 - - + - - NA 

1-333-

LZ 

+++ +++++ +++ +++ * - Yes 

1-596 + + + + - Yes 

1-596-

LZ 

+++ +++++ +++ +++ * - Yes 

1-717 +++ +++++ +++ +/- + Yes 

1-834 +++ +++++ +++ ++ + Yes 

822-992 + + + - + Yes 

1-1239 +++ ++++++ +++ + ++ Yes 

ΔDD 1-

834 

+++ +++ +++ ++ - Yes 

ΔFH3 1-

834 

- - + + - Yes 

ΔDD 1-

1239 

+++ +++ +++ ++ +/- Yes 

ΔFH3 1-

1239 

+ + + - - Yes 

592-834 - - - - - Yes 

592-717 - - - - - Yes 

987-

1239 

- - - - - Yes 

334-717 - +/- +/- - - NA 

343-717 - - - - - NA 

334-834 +++ +++ +++ + - Yes 

343-834 - - - ++ - NA 

1-347 - - - - - Yes 

1-347-

LZ 

+++ +++++ +++ +++ * - Yes 

501-717 - - - - - Yes 
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Figure 2.4 The role of microtubules in Bni1p localization  

(A) Colocalization of Bni1p with SPB. SPB was labeled with Spc42p-RFP and 

observed in the same cell expressing full length Bni1p-GFP. (B) GFP images of cells 

with Bni1p overexpression constructs treated with DMSO or 120 µg/ml benomyl for 

10 mins. Scale bar: 5µm. 

(A) 

       

(B) 
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constructs were shown to also have a cytoplasmic spindle pole body (SPB) and spindle 

localization (Figure 2.2, Figure 2.4A and Table 2.3). This phenotype is most obvious 

in cells overexpressing constructs tagged with the leucine-zipper. In those cells, strong 

SPB and sometimes spindle staining could be observed. Since even full length Bni1p 

colocalizes with the SPB (Figure 2.4A), I wanted to know whether microtubules have 

any role in the regulation of Bni1p localization. One hypothesis would be that Bni1p is 

transported to the bud cortex and bud neck from the SPB through cytoplasmic 

microtubules. To test this, cells were treated with benomyl to disrupt microtubule 

structure. Tub1p-GFP was used to verify the disruption of microtubules. The 

disruption of microtubules did not affect Bni1p’s bud cortex and neck localization 

(Figure 2.4B), indicating that microtubule transport is not the main mechanism to 

transport Bni1p to the growth site during budding. The localization of Bni1p on the 

SPB might suggest that Bni1p could be functioning inside or from the nucleus. This 

function may exist in a cell stage other than bud growth, such as sporulation, as 

indicated by formin AgBnr2p in Ashbya gossypii (Kemper et al., 2011). Since the 

Bni1p constructs used in this study were overexpressed, they may go to places where 

they do not normally localize during budding.  

The effects of small GTPases on the localization of Bni1p 

Since the dimerized G domain of Bni1p could be localized to the bud cortex and 

bud neck, and small GTPases are the only known binding partners of the G domain, it 

is natural to think that small GTPases might have a role in the localization of Bni1p G 

domain. However, in rho2Δ, rho3Δ, rho4Δ, and rho5Δ cells, dimerized G domain 

localized to the bud cortex and the bud neck similarly to wildtype cells, suggesting  
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Figure 2.5 Selected images of Bni1p overexpression constructs 

(A-F) The localization of GFP tagged Bni1p 1-347-LZ in different small GTPases 

mutant. (G) The localization of GFP tagged Bni1p 822-992 in spa2Δ cells. (H) The 

mother cortex localization of GFP tagged Bni1p 1-1239 in WT cells. Bni1p constructs 

are expressed under GAL1 promoter and induced with galactose for three to four 

hours. Scale bar: 2µm.  
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that either none of these non-essential small GTPases function in the G domain 

localization or that multiple small GTPases are sharing the localizing function (Figure 

2.5A-D). For the two essential small GTPases Rho1p and Cdc42p, temperature 

sensitive strains were used and shifted to the restrictive temperature for 1 hr. In the 

cdc42-101ts mutant, the G domain localized to the bud cortex and bud neck, though 

the bud cortex localization was more diffuse (Figure 2.5F). In rho1-2ts cells, which 

have been suggested to have defects in the actin cytoskeleton (Helliwell et al., 1998), 

the bud neck localization was not affected; however, the bud cortex localization in 

small to medium budded cells was diminished, though not completely, and was 

sometimes observed on the mother cortex (Figure 2.5E).  

Yeast two hybrid screen for peptides that binds the N-terminal region of 

Bni1p 

To identify proteins that interact with the N-terminal region of Bni1p and possibly 

function in localizing Bni1p, I performed a yeast two hybrid screen. Bni1 1-724aa, 

which covers the GBD-DID-DD domain, was used as the bait. A total of 408,000 

diploids containing both bait and prey plasmids were screened and 189 candidates 

were discovered after restreaking. Sequencing of the candidates revealed 46 different 

genes. Proteins that showed yeast two hybrid interactions with Bni1p 1-724aa occur at 

a frequency of 1:2200. The candidates are shown in Table 2.4. Small GTPases which 

have shown yeast two hybrid interactions with Bni1p GBD in previous literature, such 

as Cdc42p, Rho1p and Rho3p (Evangelista et al., 1997; Kohno et al., 1996; Robinson 

et al., 1999), were not recovered in this screen. This could be explained by the fact that 

small GTPases are prenylated and bind to the membrane, which stops the proteins  



 

48 

 

 

 

 

 

 

 

Table 2.4 Yeast two hybrid candidates with Bni1 1-724aa  

* Yeast two hybrid (y2h) interactions were checked on SC-Leu-Trp-His, SC-Leu-Trp-

His-Ade plates using growth assays. The number of “+” indicates how well the cells 

grew. “-” means no growth was observed. “/” means the dilution assay as not been 

performed 
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Candidate 

proteins 

Times 

recovered 

from the 

screen 

 

 

Related function 

*Y2h 

with 

Bni1 

1-

724aa 

*Y2h 

with 

Bni1 1-

1239aa 

*Y2h 

with 

Bnr1 

1-

758aa 

Nip100p 2 component of dynactin complex ++ - - 

Sec15p 6 Exocyst component + - - 

Exo84p 1 Exocyst component + + - 

YAP1801p 8 Clathrin adaptor ++ + - 

Bzz1p 4 Actin patch component +++ - - 

Atg17p 9 Scaffold for phagophore 

assembly site 

+++ + - 

Nap1p 4 Binds cyclin and functions in 

budding, histone transport 

+++ + - 

Sfh1 25 Chromatin remodel complex +++ + - 

Mca1p 2 Homolog of caspase, may 

function in cell cycle progression 

++ - - 

Slx5p 4 Subunit of the Slx5-Slx8 SUMO-

targeted ubiquitin ligase complex 

+++ ++ - 

Far7p 1 Functions in pheromone cell 

cycle release 

/ / / 

Rsc8p 1 Chromatin remodel complex / / / 

Rrp9p 10 RNA splicing / / / 

Spp382p 9 RNA splicing / / / 

Prp19p 1 RNA splicing / / / 

Dsn1p 21 MIND kinetochore complex / / / 

Nsl1p 3 MIND kinetochore complex / / / 

Spc24p 1 MIND kinetochore complex / / / 

Spc25p 1 MIND kinetochore complex / / / 

YDR532Cp 7 Subunit of kinetochore-MT 

binding 

/ / / 

Mcm16p 4 Kinetochore-MT mediated 

chromosome segregation 

/ / / 

Bbp1p 1 SPB duplication / / / 

Rim20p 13 PH response / / / 

Ubp12p 1 ubiquitin hydrolase / / / 

Cdc23p 3 APC/C subunit, ubiquitin ligase / / / 
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Table 2.4 continued 

 

 

 

 

Candidate 

proteins 

(continued) 

Times 

recovered 

from the 

screen 

 

 

Related function 

Y2h 

with 

Bni1 

1-

724aa 

Y2h 

with 

Bni1 1-

1239aa 

Y2h 

with 

Bnr1 

1-

758aa 

Oxr1p 1 oxidative damage resistance / / / 

Cyc8p 2 General transcriptional co-

repressor 

/ / / 

Hap5p 2 transcriptional activator / / / 

Ada2p 3 Transcription coactivator / / / 

Rrn6p 1 rDNA transcription factor 

complex 

/ / / 

Skn7p 4 Nuclear response regulator and 

transcription factor 

/ / / 

Ady3p 1 spore wall formation / / / 

Slx4p 3 endonuclease / / / 

Ade2p 2 Phosphoribosylaminoimidazole 

carboxylase 

/ / / 

Pat1p 9 mRNA-decapping factor / / / 

Trm3p 1 methyltransferase / / / 

Sds3p 4 component of deacetylase 

complex 

/ / / 

Iki3p 1 elongator component / / / 

Bfr2p 2 90s preribosome / / / 

Bfr1p 1 mRNP complex / / / 

Pex5p 1 peroxisomal / / / 

Mrp4p 1 mitochondria ribosomal protein / / / 

Rpb3p 1 RNA polymerase II / / / 

Ydr357p 1 unknown / / / 

Gds1p 1 unknown / / / 

retrotransposon 5  / / / 
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from going into the nucleus to induce the yeast two hybrid interactions. 

Among the candidates identified, several of them are related to polarity, such as 

the dynactin component Nip100p, actin patch component Bzz1p and clathrin adaptor 

YAP1801p (Table 2.4). One category is of great interest: the exocyst components 

Sec15p and Exo84p. The exocyst is an eight-subunit protein complex required for 

efficient vesicle fusion with the plasma membrane (Guo et al., 1999a; TerBush et al., 

1996). It is composed of Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p, and 

Exo84p. The exocyst docks
 
vesicles at the plasma membrane before fusion (Guo et al., 

1999b). Two of the exocyst subunits, Sec3p and some Exo70p, localize to
 
the plasma 

membrane by interacting with Rho family GTPases (Guo et al., 2001; Wu et al., 2010; 

Zhang et al., 2001). The remaining exocyst subunits are associated with secretory 

vesicles transported by Myo2p along actin cables to growth sites, with the Rab 

GTPase Sec4p (Guo et al., 1999b). Assembly of the complete exocyst by interaction
 
of 

the plasma membrane-associated and vesicle-associated subunits
 
tethers the vesicle to 

the plasma membrane and is necessary
 
for subsequent vesicle fusion (Guo et al., 

1999b; TerBush et al., 1996). The fact that two of the exocyst components were 

recovered from the yeast two hybrid screen suggests the interaction between the 

exocyst and Bni1p.  

Discussion and future directions 

Three localization domains in the Bni1p N-terminal region 

Formins are essential proteins that regulate actin dynamics. How formin proteins 

nucleate and elongate actin cables has been well studied (see general introduction). 

However, how exactly formins are regulated to assemble actin cables at the right time 
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and right place is largely unknown. In this study, I expressed different N-terminal 

regions and used live cell imaging to study the localization signals of the budding 

yeast formin Bni1p. Previously, our lab found that the other budding yeast formin 

Bnr1p, which stays at the bud neck, has two independent localization domains, L1 (1-

466aa) and L2 (466-733aa) (Gao et al., 2010). Here, three localization domains were 

identified in the N-terminal region of Bni1p that lie before the functional FH1 and 

FH2 domains. The first is the 1-333aa region which is part of GBD that does not 

overlap with DID, also called the G domain. This region by itself does not localize to 

the bud cortex and has very weak bud neck localization. However, when a leucine-

zipper from human CREB is added to artificially dimerize the G domain, the G 

domain then localized to the bud cortex and bud neck clearly and at the right cell cycle 

stage. This localization is most likely through binding to small GTPases. The second 

localization region is 334-834aa, which covers the DID-DD-CC domain. How this 

region is localized is of great interest. No clear binding partners have been identified 

for this region except Bni1p C-terminal DAD region, but 334-834aa still localizes well 

in bni1Δ cells indicating its localization is not through binding to endogenous Bni1p. 

The third localization region is 822-992aa, which is the SBD. This region binds to 

Spa2p and Spa2p has been implicated in localizing Bni1p previously (Fujiwara et al., 

1998; Sheu et al., 1998). Indeed, 822-992aa is no longer localized at the bud cortex 

and neck in spa2Δ cells (Figure 2.5G).  

The fact that Bni1p 1-333aa needs to be dimerized to be localized to the correct 

place fits into the autoinhibition model of Bni1p. When the N-terminal DID domain 

binds to the C-terminal DAD domain, Bni1p exists in the inactive autoinhibited state. 
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When the interaction between DAD and DID is disrupted, both C-terminal and N-

terminal regions are released, thus activating both ends of the protein. The C-terminal 

FH2 domain needs to homodimerize to assemble actin cables, while the N-terminal 

region need to dimerize to localize to the right place in the cell. It would be interesting 

to know exactly what protein(s) release the autoinhibition and bind(s) to Bni1p N-

terminal region to localize it.  

When some of the GFP tagged Bni1p constructs were overexpressed, GFP was 

observed at the mother cortex as well, eg. Bni1p 1-1239aa, Bni1p 1-834aa (Table 2.3, 

Figure 2.5H), which was never seen for the full length Bni1p. The mother cortex 

localization only happens in large budded cells. This again suggests that additional 

factors are needed to restrict Bni1p to the tip of bud, and there might be diffusion 

barriers between mother and cortex, e.g. septins, to restrict the polarized growth only 

in the buds.  

The role of small GTPases on the localization of Bni1p 

It has been suggested that small GTPases functions in the regulation of formin 

proteins in budding yeast (see introduction). The localization of the dimerized G-

domain, which is the presumptive GTPases binding domain, was thus examined in 

Rho GTPases mutants. Surprisingly, none of the small GTPases mutants had defects in 

the localization of the dimerized G-domain at the bud neck, suggesting that the 

localization of Bni1p to the bud neck could be through binding to other factors. Single 

deletion of the non-essential Rho proteins did not affect the bud cortex localization. 

The temperature sensitive mutants of Rho1p and Cdc42p on the other hand had a 

diffuse distribution of the G-domain at the bud cortex, with rho1-2 even having 
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mother cortex localization. This suggests that Rho1p and Cdc42p are playing some 

role in the localization of dimerized G-domain. However, since both Rho1p and 

Cdc42p had been suggested to function in multiple aspects of cell polarity, this 

disruption on the Bnip1 could be indirect.  

Yeast Two hybrid screen 

With the identification of three localization domains in the N-terminal region of 

Bni1p, the next question would be to explore how these domains are localized 

individually. To address this, a yeast two hybrid screen was carried out. An interesting 

category of candidates are the exocyst components. One hypothesis for the 

interactions between Bni1p and exocyst is that Bni1p could interact with exocyst at the 

growth site, where the exocyst mediates the fusion of secretory vesicles with the 

plasma membrane. Since secretory vesicles are transported by actin cables to the bud 

growth site which is nucleated by Bni1p, the interaction of Bni1p with the exocyst 

might help with the docking of secretory vesicles before the associated exocyst 

components interact with membrane-bound components. To test this hypothesis, 

interactions between the exocyst components and Bni1p need to be confirmed with 

biochemical assays such as pull downs and immunoprecipitations. This step could be 

difficult due to the possible transient interaction between Bni1p with exocyst 

components. Specific Bni1p mutants that only disrupt the interactions with exocyst 

complex would need to be isolated. Phenotypes of exocytosis and exocyst components 

would need to be observed to study whether disrupting the interaction between the 

exocyst and Bni1p would have any effect on exocyst function.  

Another hypothesis would be that the exocyst functions in a feedback loop of 
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Bni1p, helping carry Bni1p back to the bud tip/cortex. Retrograde transport of Bni1p 

has been observed along actin cables (Buttery et al., 2007), however the movement of 

Bni1p towards the bud tip/cortex has not been directly observed. This hypothesis 

could be easily tested by observing Bni1p-3GFP or Bni1p 1-717-3GFP in an exocyst 

component temperature-sensitive mutant at the restrictive temperature.  

Future experiments will be needed to test the interactions between the exocyst 

components and Bni1p, and how their interactions are regulated.  
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CHAPTER 3 

Bni1p constructs lacking the N-terminal localization domains compromise 

growth and spindle orientation 

Abstract 

In Chapter 2, I have shown that the N-terminal region of Bni1p has multiple 

localization regions.  Here I explore the phenotypes of cells in which endogenous 

BNI1 has been replaced to express five different N-terminal Bni1p truncations. Based 

on their growth phenotypes, I divided them into two classes: Class I truncations have 

deletions from amino acid residue 79 up to 821, and class II truncations have deletions 

from residue 79 up to 1230.  Class I mutants have little effects on growth or the actin 

cytoskeleton, or in combination with arp1∆.  However, Class II deletions grow slower 

than bni1∆ cells, have a defect in nuclear segregation at low temperature, and are 

synthetically lethal with arp1∆ indicating a defect in spindle orientation, and have a 

dominant phenotype.  All the effects of Class II mutants can be abrogated by an 

additional mutation eliminating their actin nucleating activity. Moreover, a class II 

mutant can be suppressed by appending a CRIB domain to restore its polarized 

distribution.  Thus, Class II mutants cause a dominant effect by mislocalized assembly 

of actin filaments.  Since Class I mutants, but not Class II mutants, contain Bni1p’s 

Spa2p Binding Domain (SBD), it is likely that loss of binding to Spa2p is responsible 

for the different properties of Class I and Class II mutants.  Class I cells grew more 

poorly when combined with spa2∆, and surprisingly, Class II mutants were lethal in 

combination with spa2∆.  Thus, Spa2p appears to play a role in localizing Bni1p, but 

spa2∆’s lethality with Class II mutants reveals it has an additional function 
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independent of its ability to bind the SBD of Bni1p. 

Introduction 

Since the N-terminal region of Bni1p has been suggested to be important for the 

regulation and localization of Bni1p, I chose to study the phenotypes of Bni1p 

truncations that lack defined regions of the N-terminal domain. Around this time, a 

PhD student in our lab, Lina Gao, found that yeast cells lacking localized formins are 

still viable. To study the regulation of formin localization, I sought to find a situation 

in which the localized formin is needed for viability.  

In budding yeast, Bni1p has been suggested to function in nuclear movement and 

spindle orientation. Unlike mammalian cells, the nuclear envelope in budding yeast 

does not break down during mitosis. Microtubule organizing centers, called spindle 

pole bodies, are embedded in the nuclear envelope and the spindles form inside the 

nucleus while cytoplasmic microtubules radiate from SPBs (Figure 1.1). Nuclear 

positioning is ensured by two redundant pathways. The Kar9p/Myo2p/actin pathway 

acts early during bud formation. Myo2p guides the cytoplasmic microtubule 

orientation by transporting Kar9p which in turn binds to the microtubule plus ends 

localizing protein Bim1p (Beach et al., 2000; Hwang et al., 2003; Segal and Bloom, 

2001; Yin et al., 2000). The asymmetric distribution of Kar9p ensures that one spindle 

pole body is positioned to the bud neck and aligns the spindle along the mother–bud 

axis (Kusch et al., 2002; Liakopoulos et al., 2003; Moore and Miller, 2007). This step 

is actin and Bni1p dependent as Myo2p walks along actin cables and bni1 mutants, but 

not bnr1 mutants, have been shown to have nuclear movement and microtubule 

orientation defects (Fujiwara et al., 1999; Kusch et al., 2002; Lee et al., 1999; 
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Theesfeld et al., 1999). The second pathway functions later in the cell cycle, upon the 

onset of anaphase, and depends on the function of the minus end directed microtubule 

motor dynein protein and dynactin complex (Adames and Cooper, 2000; Yeh et al., 

2000). These dynein/dynactin dependent movements are mediated by microtubule 

sliding along the bud (Adames and Cooper, 2000). Although disruption of either the 

Kar9p/Myo2p/actin or the dynein pathway is viable, disruption of both pathways is 

lethal (Fujiwara et al., 1999; Miller et al., 1999; Tong et al., 2001). 

In this chapter, I describe studies on a series of Bni1p N-terminal truncations 

which all retain the FH1 domain to the C-terminus. I found that these Bni1p 

truncations are mislocalized and result in misoriented actin cables, which leads to 

defects in nuclear movements. The implications of these results are discussed below.  

Materials and methods 

Yeast strains and molecular biology techniques 

Strains used in this study are listed in Table 3.1. All strains were generated in the 

S288C strain background coming from the deletion consortium (Brachmann et al., 

1998). Standard media and techniques for growing and transforming yeast were used 

(Sherman, 1991). To make benomyl plates, benomyl stock need to be added to the 

boiling and sterilized yeast media before it gets cooled down. Plasmids used in this 

study are listed in Table 3.2. Figure 3.1A shows the scheme for the integration plasmid 

used to make the Bni1p truncation mutants. Figure 3.1B shows the scheme for the 

integration plasmids used to label endogenous Bni1p with 3GFP. Growth assays were 

performed using 1:10 dilutions.  
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Table 3.1 Yeast strains used in Chapter 3 

Strain Genotype Source 

ABY1848 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/MET15 lys2Δ0/LYS2  

(Evangelista et 

al., 2002) 

ABY1801 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bnr1Δ::KanR/ bnr1Δ::KanR 

(Gao et al., 2010) 

ABY2856 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 bni1∆79-

343::LEU2 

This study 

ABY2857 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 bni1∆79-

574::LEU2 

This study 

ABY2858 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 bni1∆79-

821::LEU2 

This study 

ABY2859 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 bni1∆79-

988::LEU2 

This study 

ABY2854 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 bni1∆79-

1230::LEU2 

This study 

ABY2887 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

bnr1Δ::Kan
R
 bni1∆79-343::LEU2 

 This study 

ABY2888 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

bnr1Δ::Kan
R
 bni1∆79-574::LEU2 

This study 

ABY2889 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

bnr1Δ::Kan
R
 bni1∆79-821::LEU2 

This study 

ABY2890 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

bnr1Δ::Kan
R
 bni1∆79-988::LEU2 

This study 

ABY2891 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

bnr1Δ::Kan
R
 bni1∆79-1230::LEU2 

This study 

ABY3090 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/MET15 lys2Δ0/LYS2 

BNI1/BNI1-3GFP 

 This study 

ABY3092 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bni1Δ79-343::LEU2/ bni1Δ79-343-3GFP::LEU2, 

URA3 

This study 

ABY3093 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bni1Δ79-574::LEU2/ bni1Δ79-574-3GFP::LEU2, 

URA3 

This study 

ABY3094 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bni1Δ79-821::LEU2/ bni1Δ79-821-3GFP::LEU2, 

URA3 

This study 
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Table 3.1 continued 

Strain 

(cont’d) 

Genotype Source 

ABY3095 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bni1Δ79-988::LEU2/ bni1Δ79-988-3GFP::LEU2, 

URA3 

This study 

ABY3096 MAT a/α his3∆1/ his3∆1  leu2∆0/ leu2∆0  

met15?/met15? lys2?/lys2?  ura3∆0/ ura3∆0 

bni1Δ79-1230::LEU2/ bni1Δ79-1230-

3GFP::LEU2, URA3 

This study 

ABY3283 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

spa2Δ::KanR bni1∆79-343-3GFP::LEU2,URA3 

This study 

ABY3284 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

spa2Δ::KanR bni1∆79-574-3GFP::LEU2,URA3 

This study 

ABY3285 MATa his3∆1 leu2∆0 ura3∆0 met15? lys2? 

spa2Δ::KanR bni1∆79-821-3GFP::LEU2,URA3 

This study 

ABY2851 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15Δ0 arp1Δ::Kan
R
/ 

arp1Δ::Kan
R
 BNI1/ bni1Δ79-988::LEU2 

This study 

ABY2852 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15Δ0 arp1Δ::Kan
R
/ 

arp1Δ::Kan
R
 BNI1/ bni1Δ79-1230::LEU2 

This study 

ABY2860 MAT? his3∆1 leu2∆0 ura3∆0 met15∆0 

arp1Δ::Kan
R
 bni1∆79-343::LEU2 

This study 

ABY2861 MAT? his3∆1 leu2∆0 ura3∆0 met15∆0 

arp1Δ::Kan
R
 bni1∆79-574::LEU2 

This study 

ABY2862 MAT? his3∆1 leu2∆0 ura3∆0 met15∆0 

arp1Δ::Kan
R
 bni1∆79-821::LEU2 

This study 

ABY2881 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15Δ0 arp1Δ::Kan
R
/ 

arp1Δ::Kan
R
 BNI1/ bni1Δ79-988 I1431A::LEU2 

This study 

ABY3007 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15Δ0 CRIB-bni1Δ79-

988::LEU2/CRIB-bni1Δ79-988::LEU2 

This study 

ABY2897 MATa/α his3∆1/ his3∆1 leu2∆0/ leu2∆0  ura3∆0/ 

ura3∆0  met15∆0/met15Δ0 bni1Δ79-988::LEU2/ 

bni1Δ79-988::LEU2 

This study 
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Table 3.2 Plasmids used in Chapter 3 

Plasmid Backbone Genotype 

pWL031 pRS305 PBNI1-BNI1 (1-79)-BNI1 (344-1953)   

pWL032 pRS305 PBNI1-BNI1 (1-79)-BNI1 (575-1953)   

pWL033 pRS305 PBNI1-BNI1 (1-79)-BNI1 (822-1953)   

pWL034 pRS305 PBNI1-BNI1 (1-79)-BNI1 (989-1953)   

pWL027 pRS305 PBNI1-BNI1 (1-79)-BNI1 (1231-1953)   

pWL085 pRS306 BNI1C-3GFP-BNI13’ 

pWL046 pRS305 PBNI1-BNI1 (1-79)-BNI1 (989-1953 I1431A)   

 pWL069 pRS305 PBNI1-BNI1 (1-79)-CRIB-BNI1 (989-1953)   
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Figure 3.1 Scheme of constructs   

(A) Map of BNI1 truncation integration plasmid pWL027. All the BNI1 truncation 

integration plasmids follow the same scheme. (B) Map of plasmid pWL085 and its 

integration site to label endogenous Bni1p with 3GFP. Schemes of constructs are 

numbered in nucleotides.  

 

(A) 

 

(B) 
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 Microscopy 

Live cells were placed under 2% agarose in synthetic medium, with appropriate 

amino acid. Images were acquired with a spinning disc confocal microscopy system 

(3I Corp) using a DMI 6000B microscope (Leica) and a digital camera (QuantEM; 

Photometrics). Images were then further analyzed and adjusted using Slidebook 5.  

The following protocol was followed for visualization of actin structure: 5 ml of 

cells were grown to mid-log phase and formaldehyde was added to 3.7% final 

concentration for fixation for 30 min ~1 hr. Cells were washed three times with PBS 

and treated with 0.2% Triton X-100 for 15 min. The cells were washed and incubated 

with 100 µl PBS + 3 µl Alexa568-phalloidin for 1 hr.  After final washes, the cells 

were ready to be looked at under the microscope. When washing the cells, the 

centrifugation speed should be kept low to keep the actin structures intact. I used a 

tabletop centrifuge at 5000 rpm for 1 min. To disrupt actin structures, cells were 

treated with 200 µM Latrunculin A for 10 min. Phalloidin staining was used to verify 

the disruption of actin structures.  

Protein extracts and immunoblotting 

Cells were grown to log phase and chilled on ice, washed with ice-cold water and 

then resuspended in 200 μL protein extraction buffer containing 20 mM Tris-HCl pH 

7.4, 0.2 mM EDTA, 0.1 M NaCl, 1 mM DTT, and 5% yeast protease inhibitors 

cocktail in DMSO (Sigma). Roughly 100μL of glass beads (Sigma) were added and 

the tubes were vortexed for 1 min 3 times with 1 min incubation on ice between each 

vortex. The samples were centrifuged for 5 min at max speed to remove the cell wall 

and other membranes. Samples were resolved by SDS-PAGE, transferred into a PVDF 
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membrane (Immobilon, MILLIPORE), and the relevant protein detected by ECL 

Western blotting using antibodies against GFP (Santa Cruz) at 1:200.  

Results 

The C-terminal domain of Bni1p contains a fourth localization domain 

To explore how important the localization domains are for growth, I made a series 

of constructs deleting progressively larger internal regions of Bni1p from residue 79aa 

up to the FH1 domain (Figure 3.2A).  These constructs were targeted to the 

chromosomal locus so that the proteins were expressed from the endogenous BNI1 

promoter and there expression were examined by in Figure 3.2C.  All the constructs 

were viable and were not affected by the simultaneous deletion of BNR1 (Figure 3.2B); 

thereby, confirming our lab’s previous result that expression of just the FH1-FH2-

COOH region of either formin is sufficient for viability (Gao and Bretscher, 2009).  

For ease of description, I have grouped the internal deletion series into two classes 

according to their growth: Class I deletions have no effect on the growth of cells, 

whereas Class II comprise the two largest internal deletions, bni1∆79-988-3GFP and 

bni1∆79-1230-3GFP, which grew less well and were both cold-sensitive and 

temperature sensitive in both BNR1 and bnr1∆ backgrounds (Figure 3.8 and Table 

3.3). In fact, Class II internal deletions grew less well than bni1∆ cells, a point I will 

discuss later. 

I next examined the actin cytoskeleton and the localization of the Bni1p-derived 

constructs tagged with 3GFP in cells. Phalloidin staining of Class I BNI1 deletion 

mutants have a modest disruption of their actin cytoskeleton, which becomes more 

noticeable with increasing size of the internal deletion. In bni1-∆79-821-3GFP cells,  
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Figure 3.2 Two classes of Bni1p N-terminal truncations 

(A) Schemes of BNI1 truncation constructs regarding to full length BNI. Numbers 

indicate nucleotides. (B) Growth assays of bni1 truncations in BNR1 and bnr1Δ at 

26°C on YPD plates. (C) Western blot with antibodies against GFP to show 

expression of the indicated Bni1p constructs. 
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(A) 

 
(B) 

                                  
(C)     
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although the actin patches are somewhat polarized, more disoriented actin cables are 

observed, especially in the mother cells. In contrast, in the Class II BNI1 mutants, 

actin cables were obviously shorter and disoriented, and actin patches were 

depolarized.  Class I BNI1 mutants localized very similarly to wild type Bni1p-3GFP, 

concentrating at the nascent bud site, tips of small buds, a crescent over the cortex of 

medium buds, and at the septal planes between dividing cells (Figure 3.3).  Despite 

this general similarity, the localization of bni1∆79-821-3GFP was less robust than the 

other Class I mutants.  The localization of the Class II BNI1 mutants was much 

weaker, only being seen in a polarized manner in unbudded and tiny budded cells. 

This suggests that a fourth localization domain exists in the C-terminal region of 

Bni1p, which might only function in the early stage of the cell cycle.  

Since the constructs expressing just the FH1-FH2-C-terminus of Bni1p are 

localized at the beginning of the cell cycle, a localization determinant must exist in 

this region. Thus, in addition to the three N-terminal localization regions described in 

Chapter 2, Bni1p has a fourth F-actin-independent localization region in the FH1-

FH2-C-terminal part of Bni1p. 

Spa2p has an additional function in addition to binding the SBD of Bni1p 

The major difference between the Class I and Class II internal deletion series of 

Bni1p is the presence of the Spa2p binding domain (SBD). If Spa2p is a major 

determinant of Bni1p localization, one would predict that combining spa2∆ with Class 

I BNI1 mutants should phenocopy a Class II mutant. Indeed, combining Class I 

mutants with spa2∆ compromised the growth of the cells in a progressive manner with 

the larger deletions being more affected (Figure 3.4A). To explore the basis for these  
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Figure 3.3 Phalloidin staining and live GFP image of bni1ΔNp-3GFP strains  

Experiments were performed at room temperature as in Methods and Material. Scale 

bar: 5µm. 
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Figure 3.3 Phalloidin staining and live GFP image of bni1ΔNp-3GFP strains 

(continued) 
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Figure 3.4 Phenotypes of bni1ΔN in spa2Δ background  

(A) Growth assays of Class I Bni1p truncations with or without Spa2p at 26°C on 

YPD plates. (B) Phalloidin staining and live GFP image of Class I Bni1p truncation in 

spa2Δ background. Scale bar: 5µm. (C) Sporulation and dissection plate of 

heterozygous Class II bni1∆79-1230/BNI1 spa2∆/SPA2 strains. Circle indicates 

bni1∆79-1230 SPA2 spores; rectangular indicates bni1∆79-1230 spa2∆ spores. The 

spores from the same tetrad are shown in one column. 

 

 
B 
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growth defects, I looked at actin structure and localization of the Bni1p-3GFP 

truncated proteins. When spa2∆ was combined with the Class I mutants, actin 

structures are more disrupted especially in bni1∆79-821 spa2Δ cells, which had 

greatly reduced cables and depolarized actin patches.  The localization of the Bni1p-

deletion constructs was also affected, with the larger deletions being the most severe 

(Figure 3.4B).   

I next examined the effect of combining spa2∆ with the Class II BNI1 deletion 

mutants, which lack Bni1p’s Spa2 binding domain, and found that they showed 

synthetic lethality (Figure 3.4C). Thus, although the SBD is not present in these Bni1p 

constructs, Spa2p is essential for the viability of these cells, indicating that Spa2p has 

an important function independent of its interaction with the SBD of Bni1p. 

The N-terminal region of Bni1p is essential for spindle orientation 

Bni1p has been suggested to function in the Kar9p/Myo2p/actin pathway for 

nuclear movement and spindle orientation, in parallel with the dynein and dynactin 

pathway. Disruption of either pathway is viable, but disruption of both pathways is 

lethal (Fujiwara et al., 1999; Miller et al., 1999; Tong et al., 2001). As Arp1p is a core 

component of the dynactin complex, disruption of ARP1 will lead to the disassembly 

of the dynactin complex (Schroer, 2004), leaving actin cables as the only mechanism 

to direct spindle orientation and transport of one nucleus into the bud. I therefore set 

out to exploit the phenotypes of Bni1p truncations in arp1∆ cell that lacks a functional 

dynein/dynactin pathway, in the hope that this would be the more stringent condition 

for cell growth that will make the regulation of Bni1p essential. 

When I combined bni1∆ with arp1∆ I was surprised to find that a bni1∆ arp1∆ 
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strain is viable, thereby in principle contradicts with the design of this study. However, 

this result is also observed by others (Lee et al., 1999; Yeh et al., 2000), suggesting 

this is due to strain background differences.  Fortuitously, when I combined arp1∆ 

with the Class I and Class II series of internal truncations in Bni1p, there was a clear 

finding: Class I truncations are viable in conjunction with arp1∆, and Class II are 

inviable in conjunction with arp1∆ (Figure 3.5).  

To explore in more detail the potential role of the Bni1p localization determinants 

in spindle orientation and nuclear segregation, I examined the Class I mutants in more 

detail in both ARP1 and arp1∆ cells. Since these processes require microtubules, 

which are less stable at low temperature, I examined the sensitivity of the strains for 

growth at 14°C and in the presence of sub-lethal levels of the microtubule-

destabilizing drug benomyl (Figure 3.6A). Class I mutants and bni1∆ ARP1 cells 

showed no cold or benomyl sensitivity. However, in the arp1Δ background, bni1∆79-

821 of Class I truncation is cold sensitive and benomyl sensitive, behaving similarly to 

bni1Δ (Figure 3.6A). This suggests that Class I truncations are defective in 

microtubule mediated spindle orientation. DAPI staining of Class I truncations to 

identify cells with more than one nucleus (Figure 3.6B) further confirmed that they 

have a deficiency in nuclear movement at 16°C and this deficiency was exaggerated 

by arp1Δ.  

Consistent with their synthetic lethality with arp1Δ, Class II truncations are cold 

sensitive and benomyl sensitive by themselves (Figure 3.7A), displaying more severe 

microtubule related defects. Heterozygous Class II mutants also exhibited cold 

sensitivity and benomyl sensitivity, suggesting that the truncation mutants are  
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Figure 3.5 Growth assay of bni1ΔNp in an arp1Δ background with or without 

ARP1 on a CEN-URA3 plasmid  
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Table 3.3 Phenotypes of Bni1p truncations in different backgrounds   

* Growth was tested using growth assays. WT: the growth is similar to wild type cells. 

c: cold sensitive, performed at 14°C on YPD plates; t: temperature sensitive, 

performed at 37°C on YPD plates; s: sick at 26°C on YPD plates. The number of letter 

“c” “t” “s” shows how severe the phenotype is. # b: benomyl sensitive, performed on 

10 µg/ml benomyl plates at 26°C; The number of letter “b” shows how severe the 

sensitivity is.  
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Strain 

background 
Bni1p Growth* 

 

Benomyl 

sensitivity 

# 

Strain 

background 
Bni1p Growth 

 

Benomyl 

sensitivity 

Haploid WT 

BNI1::LEU2 WT WT 

Haploid 

arp1Δ 

BNI1::LEU2 WT b 

bni1∆::LEU2 WT WT bni1∆::LEU2 cc;tt bb 

bni1∆90-343 WT WT bni1∆90-343 cc;t bb 

bni1∆90-574 WT WT bni1∆90-574 cc;tt bb 

bni1∆90-821 WT WT bni1∆90-821 ccc;ttt;ss bb 

bni1∆90-988 ccc;ttt;ss bb;ss bni1∆90-988 Dead NA 

bni1∆90-1230 ccc;tt;s bb;ss bni1∆90-1230 Dead NA 

Haploid 

bnr1∆ 

BNI1::LEU2 WT 
WT 

Haploid 

arp1∆bnr1∆ 

BNI1::LEU2 WT 
WT 

bni1∆::LEU2 dead 
NA 

bni1∆::LEU2 dead 
NA 

bni1∆90-343 WT 
WT 

bni1∆90-343 WT 
NA 

bni1∆90-574 WT 
WT 

bni1∆90-574 c;t 
NA 

bni1∆90-821 cc 
bb 

bni1∆90-821 ccc;ttt;ss 
NA 

bni1∆90-988 ccc;ttt 
bbb 

bni1∆90-988 NA 
NA 

bni1∆90-1230 ccc;ttt 
bbb 

bni1∆90-1230 NA 
NA 
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Table 3.3 continued 

 

Strain 

background 
Bni1p Growth* 

 

Benomyl 

sensitivity 

# 

Strain 

background 
Bni1p Growth 

 

Benomyl 

sensitivity 

Diploid 

BNI1::LEU2/ 

BNI1::LEU2 
WT 

WT 

Diploid 

arp1∆ 

/arp1∆ 

BNI1::LEU2/ 

BNI1::LEU2 
WT 

WT 

bni1∆::LEU2/ 

bni1∆::LEU2 
WT 

WT bni1∆::LEU2/ 

bni1∆::LEU2 
cc;t 

bb 

bni1∆90-343/ 

bni1∆90-343 
WT 

WT bni1∆90-343/ 

bni1∆90-343 
WT 

WT 

bni1∆90-574/ 
bni1∆90-574 

WT 
WT bni1∆90-574/ 

bni1∆90-574 
WT 

WT 

bni1∆90-821/ 

bni1∆90-821 
WT 

b bni1∆90-821/ 

bni1∆90-821 
ccc 

bbb 

bni1∆90-988/ 

bni1∆90-988 
ccc 

bbb bni1∆90-988/ 

bni1∆90-988 
Dead 

NA 

bni1∆90-1230/ 
bni1∆90-1230 

ccc 
bbb bni1∆90-1230/ 

bni1∆90-1230 
Dead 

NA 

Diploid 

arp1∆ 

/arp1∆ 

BNI1::LEU2 
/BNI1 

WT 
WT 

 

bni1∆::LEU2 

/BNI1 
WT 

b 

bni1∆90-343 

/BNI1 
WT 

WT 

bni1∆90-574 
/BNI1 

WT 
WT 

bni1∆90-821 

/BNI1 
c 

b 

bni1∆90-988 

/BNI1 
cc 

bb 

bni1∆90-1230 

/BNI1 
cc 

bb 
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Figure 3.6 Phenotypes of Class I Bni1p truncations regarding spindle and nuclei 

orientation  

(A) Growth assay of Class I truncations with or without Arp1p at 26°C, 14°C on YPD 

plates and at 26°C on 10 µg/ml benomyl plates.  (B) Binucleated phenotype of Class I 

truncations with or without ARP1p. Cells were grown at room temperature till 

OD=0.2 then shifted to 16 °C for 8hrs. The numbers of nuclei in the mother cells were 

counted after DAPI staining. Cells>500.  

(A)          

                   
(B)             
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Figure 3.7 Phenotypes of Class II Bni1p truncations 

Growth assays of Class II truncations at 26°C, 14°C on YPD plates and at 26°C on 10 

µg/ml benomyl plates. (A) Growth assays of Class II Bni1p haploids. (B) Growth 

assays of heterozygous Class II Bni1p in ARP1/ARP1 or arp1Δ/arp1Δ background. 

(A)   

           

 

(B) 
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dominant negative (Figure 3.7B). 

Actin assembly activity is essential for Bni1p class II phenotypes  

Since the major role of Bni1p in S. cerevisiae is to nucleate and assemble actin 

cables to serve as tracks for polarized growth, I asked whether the C-terminal actin 

assembly activity of the N-terminal truncation of Bni1p caused the phenotypes. I 

mutated the FH2 domain of Class II truncations using a single amino acid change that 

has been reported to almost completely abolish the actin assembly ability (Xu et al., 

2004). This actin nucleation dead version of bni1Δ79-988 is not synthetically lethal 

with arp1Δ (Figure 3.8A) and behaved similarly to bni1Δ (Figure 3.8B), suggesting 

that all the phenotypes caused by bni1Δ79-988 are due to its actin assembly activity.  

As Bni1Δ79-988p-3GFP is poorly localized (Figure 3.3), I wanted to know 

whether defects in spindle orientation/nuclear migration are due to mislocalized actin 

assembly. To test this, I tagged the Class II Bni1p truncations with the Cdc42-Rac 

Interactive binding (CRIB) domain of Gic2p, which binds Cdc42p and should localize 

the construct to the bud tip during bud growth and the bud neck during cytokinesis 

(Brown et al., 1997; Burbelo et al., 1995). The CRIB-bni1Δ79-988 construct was able 

to restore Bni1p’s normal localization and did not show cold sensitivity (Figure 3.9). 

In addition, phalloidin staining showed polarized actin patches and directed actin 

cables in CRIB-bni1Δ79-988 cells (Figure 3.9B), suggesting that the phenotypes 

associated with expression of the Bni1p C-terminal region are mainly due to 

delocalized Bni1p during budding.  

Discussion and future direction 

In the previous chapter, I described the identification of three different localization  
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Figure 3.8 Phenotypes of bni1ΔNp mutants are due to its actin assembly ability  

(A) Dissection of Class II mutant in arp1Δ indicates that mutating I1431A would 

rescue the synthetic lethality of arp1Δbni1Δ79-988. (B) Growth assay of 

arp1Δbni1Δ79-988 I1431 showed that it behaved similarly to arp1Δbni1Δ.  

 

(A)  

                         

 

 

(B) 
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Figure 3.9 Tagging bni1ΔN with CRIB domain rescues the cold sensitivity and 

actin disruption in bni1Δ79-988p  

(A) Growth assay of CRIB tagged bni1Δ 79-988 at 26°C and 14°C. (B) Phalloidin 

staining and live GFP image of CRIB tagged bni1Δ 79-988. Scale bar, 2µm.  

 

(A) 

       

 

(B)           
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domains in the N-terminal region of Bni1p. In this chapter, I further studied the 

function of the N-terminal region by observing the phenotypes of cells with different 

deletions of the N-terminal domain. The five Bni1p truncations were divided into two 

classes according to their growth (Figure 3.2). Actin staining shows that Class I has 

minor defects in actin structures during bud growth and live cell images suggest that 

Bni1p localization was not much affected. However, Class II Bni1p leads to 

misoriented and short actin cables with depolarized actin patches. Class II Bni1p-

3GFP surprisingly showed that Bni1p deleted of almost the entire N-terminal region 

before FH1 domain could still be localized, although only in unbudded or tiny-budded 

cells. This localization could be due to the Bud6p binding at the C-terminal end of 

Bni1p (Ozaki-Kuroda et al., 2001).  

The major difference between class I and class II Bni1p constructs is the existence 

or absence of SBD, which has been shown to be a localization domain dependent on 

Spa2p (Chapter 2). To find out whether the loss of Spa2p binding caused the 

differences, I studied Bni1p truncations in spa2Δ cells. Class I truncations indeed 

showed more severe phenotypes in a spa2Δ background than in SPA2 cells. However, 

Class II truncations were found to be synthetically lethal with spa2Δ, revealing that 

Spa2p contributes a function independent of binding Bni1p through SBD. One likely 

mechanism would be that Spa2p regulates Bni1p through another polarisome 

component Bud6p. Since Spa2p is the scaffolding protein of the polarisome complex, 

disruption of Spa2p would affect the function of Bud6p which has been shown to 

regulate Bni1p (Moseley and Goode, 2005; Moseley et al., 2004). Besides being the 

scaffolding protein of the polarisome, Spa2p has also been found to co-
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immunoprecipitate with Myo1p, Myo2p, and Pan1p which are all proteins involved in 

cell polarity and actin function (Shih et al., 2005). Further studies are needed to 

determine what function Spa2p contributes and whether it has an additional direct or 

indirect function in the regulation of Bni1p.  

The phenotypes of Bni1p truncations were also studied in cells defective in the 

dynein and dynactin pathway. Since Bni1p was suggested to function in the early 

stage of nuclear movement and dynein/dynactin pathway was shown to function at a 

later stage, disruption of the dynein/dynactin pathway leaves the Kar9p/Myo2p/actin 

pathway as the only mechanism for nuclear transport and spindle orientation (Fujiwara 

et al., 1999; Miller et al., 1999; Tong et al., 2001). However, in our background, bni1Δ 

is not synthetically lethal with arp1Δ or dyn1Δ. A third mechanism involving pushing 

force from astral microtubule elongation might be responsible for functioning in the 

double disruption strains to move nuclei (Yeh et al., 2000). On the other hand, Class II 

bni1 truncations are synthetically lethal with arp1Δ. Further experiments suggested 

that bni1 truncations have defects in spindle orientation and nuclear movement. Also, 

Class II bni1 truncations that have no actin assembly ability are not synthetically lethal 

with arp1Δ anymore. Combining the actin staining and Bni1p localization of these 

bni1 truncations, I suggest that bni1 truncations, especially class II, are nucleating 

actin cables at the wrong places during budding, resulting in the misorientation of 

spindles and defects in nuclear movements. In bni1Δ cells, actin cables nucleated by 

Bnr1p from the bud neck could be acting with Myo2p to orient the spindle towards the 

bud neck. Alternatively, spindle orientation simply relies on the dynein/dynactin 

pathway and/or possibly pushing force from astral microtubules. To test our 
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hypothesis, a Class II bni1 truncation was tagged with a CRIB domain to help 

localizing Bni1p. Indeed, this CRIB tagged Bni1p truncation could restore the 

mislocalization of Bni1p truncation and rescue its cold sensitivity. 

As shown in Table 3.1, the deletion of Bnr1p does not affect the phenotypes of 

Bni1p truncations in terms of spindle orientation. This suggests that either Bnr1p does 

not function in the Kar9p/Myo2p/actin pathway or Bni1p truncation mutants are 

dominant negative which has been suggested in the heterozygous mutants (Figure 3.8).  
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CHAPTER 4 

Discussion and future direction 

I have demonstrated that yeast formin Bni1p is regulated by localization regions in 

the N-terminal region. However, exactly which protein(s) regulate Bni1p and how the 

regulation is adjusted during different stages in cell cycle and mating is not clear. The 

most obvious and critical challenge is to find those proteins. Yeast two hybrid screen 

would give some suggestions on how to pursue this question, which has been 

discussed in Chapter 2. Another sensitive and quantitative method, which is mass 

spectrometry coupled with Stable isotope labeling by amino acids in cell culture 

(SILAC), could also be used to identify binding partner. Strains with integrated Bni1 

1-717aa tagged with 3HA under its own promoter will be labeled with heavy lysine 

and arginine, and strains with no tagged Bni1 1-717aa will be grown in normal media. 

Proteins that specifically bind to Bni1-717aa will be identified and quantified after 

running mass spectrometry. These results can be compared with the yeast two hybrid 

candidates. Double hits would be of high interests and reveal localization and activity 

regulation or new intriguing functions of N-terminal region of Bni1p. The mass 

spectrometry results would help to reveal new proteins that are missed by the yeast 

two hybrid assay. Since the likely candidates to localize Bni1p are membrane bound 

proteins which cannot be transported into the nucleus for the yeast two hybrid assays 

to work, the mass spectrometry might be especially informative. In addition, the yeast 

two hybrid library is a cDNA library which covers the whole length of a protein while 

the binding between Bni1p and candidates may only be through part of the protein 

masked in the full length molecule. Also, since the localization of Bni1p is cell cycle 
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dependent, it would be intriguing to use cells from different cell cycle stages to do this 

quantitative mass spectrometry which would tell us how Bni1p is regulated 

temporally.  

The localization of dimerized G-domain in rho1ts and cdc42ts suggested that it 

could bind membrane independent of small GTPases. This could be through the basic 

residues binding to membrane, similar to Cdc42p effectors Ste20p, Gic1p, and Gic2p 

(Takahashi and Pryciak, 2007). This could be tested by mutating some of the basic 

residues in the G-domain. If the basic residues indeed have effects on G-domain’s 

localization, it is possible that they interact with negatively charged phospholipids on 

the membrane. Lipid binding assays could be performed to explore this possibility.   

The results presented in this study reveal that Bni1p has four localization domains 

and they contribute cumulatively to Bni1p’s function in polarized growth and spindle 

orientation. It is surprising that so many independent localization domains exist in one 

protein.  These findings could suggest that the cell needs very careful and intimate 

control of Bni1p localization to coordinate its localization, and hence cable assembly, 

with all the other events going on at sites of growth.  Alternatively, the many 

localization domains may be used under other growth conditions, for example during 

shmooing, or during the highly polarized growth that occurs during filamentous 

growth.  The finding of four distinct localization domains implies that four different 

mechanisms may be involved in localizing Bni1p.  In addition to looking for different 

binding partners of Bni1p localization domains, the differences between the 

localization domains could shed light on the question. GFP tagged localization 

domains should be observed during shmoo formation and different cell stages after 
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cell cycle release or along with Tub1p, which indicates cell stage more accurately than 

simply looking at bud size. Double labeling of different localization domains in the 

same cell could give the differences of their precise localization temporally and 

spatially. FRAP of the different domains could also give information on how dynamic 

those domains are.   

As shown in Chapter 3, Spa2p regulates the localization and function not only 

through the SBD. One obvious mechanism is that Spa2p regulates Bni1p indirectly 

through Bud6p, another component of polarisome which binds Bni1p C-terminal end. 

Since bud6Δ is already quite sick, to study the role of Bud6p on Bni1p, specific amino 

acids change could be made in the Bni1p C-terminal ends to abolish the binding of 

Bni1p to Bud6p (Moseley and Goode, 2005). The phenotypes of the Class I and Class 

II Bni1p truncations with Bud6p binding deficiency could reveal whether Spa2p is 

regulating Bni1p through Bud6p. In addition, Sph1p, a Spa2p homolog, and the other 

polarisome component Pea2p could also be interesting candidates in regulating Bni1p 

and their role in polarity has not been clearly studied.     
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APPENDEX I 

Identification of Boi1/2p in S. cerevisiae 

Abstract 

      Pob1p, the homolog of budding yeast Boi1p and Boi2p in fission yeast, has been 

shown to mediate the interaction between Cdc42p and the formin For3p (Rincon et al., 

2009). An interaction between Boi1/2p and Cdc42p was shown previously (Bender et 

al., 1996) and here I show that Bni1p and Boi1/2p also interact. To study whether 

Boi1/2p is functionally similar to Pob1p, temperature sensitive strains of boi1∆ boi2ts 

were generated and revealed that Boi1/2p contribute to yeast polarity. 

Introduction 

In the fission yeast, Schizosaccharomyces pombe, a protein called Pob1p has been 

suggested to bind Cdc42p and the formin protein For3p through different domains and 

is required for For3p localization to the tips. It was proposed that Pob1p facilitates 

Cdc42-mediated relief of For3p autoinhibition to stimulate actin cable formation 

(Rincon et al., 2009). The Pob1p homolog AgBoi1/2p in Ashbya gossypii has also 

been implicated in regulating actin structure (Knechtle et al., 2006). In Saccharomyces 

cerevisiae, there are two Pob1p homologs, Boi1p and Boi2p. Analysis of the yeast 

genome suggests that Saccharomyces cerevisiae underwent a global genomic 

duplication, and BOI1 and BOI2 represent the duplication of a primordial BOI gene 

(Seoighe and Wolfe, 1999).  Boi1p and Boi2p both contain a Src homology 3 (SH3) 

domain, a sterile alpha motif (SAM) domain, a poly-proline rich region and a 

pleckstrin homology (PH) domain. They were first discovered by binding polarity 

scaffold protein Bem1p through their poly-proline rich region (Bender et al., 1996). 
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Similar to many polarity proteins, they localize to growth sites during budding, at the 

bud tip in small to medium budded cells and at the bud neck during cytokinesis 

(Hallett et al., 2002). In some G1 cells, they were also found be to be localized to the 

nucleus (Norden et al., 2006), suggesting they shuffle between the nucleus and 

cytoplasm. It has also been suggested that Cdc28p phosphorylates Boi1p and Boi2p 

directly in a cell cycle dependent manner (McCusker et al., 2007). No obvious 

mammalian homolog has been found for Boi1/2p, although anillin, a scaffolding 

protein that binds actin, RhoA and myosin at the cleavage furrow (Piekny and Glotzer, 

2008), has been suggested to be the homolog mainly due to its PH domain and 

nucleus-cytoplasm shuffling ability. Since Boi1p has been shown to interact with 

active Cdc42p (Bender et al., 1996), it would be very interesting to know whether the 

Boi1p and Boi2p in Saccharomyces cerevisiae are also involved in the regulation of 

formins as in Schizosaccharomyces pombe.  

Materials and methods 

Yeast Strains and General Molecular Biology Techniques 

Strains used in this study are listed in Table 5.1. All strains were generated in the 

S288C strain background coming from the deletion consortium (Brachmann et al., 

1998). Standard media and techniques for growing and transforming yeast were used 

(Sherman, 1991). Dilution assays were performed at a ratio of 1:10.  

Yeast two hybrid assay 

Yeast 2 hybrid plasmids are shown in Table 5.2. Bait plasmids containing Gal4p 

binding domain (BD) were transformed into PJ69-4α strains and prey plasmids 

containing Gal4p activation domain (AD) were transformed into PJ69-4a strains. The  
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Figure 5.1 Domain organizations of Boi2p and construct scheme 

(A) Domain organizations of Boi2p. (B) Scheme of construct of the integration library 

used in the temperature sensitive screen. Numbers on the constructs represents 

nucleotides 
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Table 5.1 Yeast strains used in Appendix I 

Strain Genotype Source 

ABY3097 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
  

Invitrogen 

ABY3208 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
 boi2-1::Leu2 

This Study 

ABY3211 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
 boi2-4::Leu2 

This Study 

ABY3212 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
 boi2-5::Leu2 

This Study 

ABY3213 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
 boi2-6::Leu2 

This Study 

ABY3214 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 

boi1∆::Kan
R
 boi2-7::Leu2 

This Study 

pJ69-4α MATα
 
trp1-901 leu2-3,112 ura3-52 his3-200 

gal4Δ gal80Δ LYS2::GAL1-HIS3
 
GAL2-ADE2 

met2::GAL7-lacZ 

(James et al., 1996) 

pJ69-4a MATa
 
trp1-901 leu2-3,112 ura3-52 his3-200 

gal4Δ gal80Δ LYS2::GAL1-HIS3
 
GAL2-ADE2 

met2::GAL7-lacZ 

(James et al., 1996) 
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Table 5.2 Plasmids used in Appendix I 

* The genotype was labeled in nucleotides.  

Plasmid Backbone Genotype* 

pWL105 pRS305 BOI2 (3239-3343)  

pWL106 TOPO2.1 BOI2 (-41-3238) 

pWL123 pRS316 PBOI2-BOI2 (full length) 

pRC651 Leu Cen PSEC4-GFP-SEC4 

pKD001 pRS306 PMYO2-MYO2-3GFP 

pWL085 pRS306 BNI1C-3GFP-BNI13’ 

pWL088 pGBKT7 BNI1 1-2172 

pWL089 pGBKT7 BNI1 1-3717 

pWL090 pGBKT7 BNR1 1-2274 

pWL091 pGADT7 BOI1 541-981 

pWL095 pGADT7 BOI1 1-2250 

pWL096 pGADT7 BOI1 1-981 

pWL092 pGADT7 BOI2 658-1125 

pWL097 pGADT7 BOI2 1-2220 

pWL098 pGADT7 BOI2 1-1125 
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transformed PJ69-4a and PJ69-4α were mated with different combinations and 

selected on SC-Trp-Leu plates. The resulting diploids were checked for interaction 

using dilution assays on SC-Trp-Leu-His or SC-Trp-Leu-His-Ade plates.  

Isolation of conditional boi1Δboi2-ts mutants 

PCR-derived mutagenized DNA encoding the BOI2 full length with short 5’ and 

3’ ends (residues -41–3238) was amplified with primers (5'-

GAGGATCCGAATCATACCAACTTCTCCG-3') and (5'- 

GTGCGGCCGCGATCATCGGCATCCTTTC-3'). The mutagenic PCR was 

performed using the PCR reaction mixture: 1 mM dCTP, 1 mM dTTP, 0.2 mM dATP, 

0.2 mM dGTP, 75ng template DNA (pWL106), 5.5 mM MgCl2, 0.5 mM primers, 1X 

Taq buffer (Roche), 10 μg BSA, and 0.05% Tween 20 per 100μl reaction; and after the 

mix had warmed up to 80°C, 0.3 mM MnCl2 and 5u Taq DNA polymerase were added. 

The mutagenic PCR reaction mixture was subjected to eight cycles of amplification 

and the BamHI-NotI fragment of the PCR product was subcloned into the 

corresponding region of pWL105 to make libraries of mutagenized BOI2 (Schott et al., 

1999). boi1Δ strain (Invitrogen deletion consortium) was transformed with BamHI 

linearized mutagenized library to replace WT BOI2 (Figure 5.1). Transformants were 

grown at the permissive temperature of 26°C and replica-plate to 37°C and 26°C to 

identify temperature-sensitive isolates. Around 14,000 colonies were screened and 5 

temperature sensitive alleles were recovered. They were named ABY3208 (boi1Δ 

boi2-1), ABY3211 (boi1Δ boi2-4), ABY3212 (boi1Δ boi2-5), ABY3213 (boi1Δ boi2-

6), ABY3214 (boi1Δ boi2-7) (Figure 5.2). All the five strains were able to grow at 

higher temperature after longer incubation. Thus an overexpression suppression screen 
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is not applicable for the five stains identified. The temperature sensitive strains contain 

one or multiple nucleotide changes.  

The temperature sensitive strains can be suppressed by transformation with 

pWL123, a low copy plasmid with full length BOI2. Mating and sporulation 

confirmed that temperature sensitive phenotype always goes with boi1Δ boi2ts 

markers.  

Microscopy and Imaging 

Live cells were placed under 2% agarose in synthetic medium, with appropriate 

amino acid. Images were acquired with a spinning disc confocal microscopy system 

(3I Corp) using a DMI 6000B microscope (Leica) and a digital camera (QuantEM; 

Photometrics). Images were then further analyzed and adjusted using Slidebook 5. 

Results 

Yeast two hybrid showed weak interaction between Boi1/2p with N-terminal 

region of Bni1p 

The Boi1/2p homolog in S. pombe Pob1p interacts with formin protein For3p 

through its SAM domain in the N-terminal region. The interactions of Boi1/2p with 

formin proteins were also examined using yeast two hybrid. As shown in Figure 5.2 

and Table 5.3, the N-terminal region of Bni1p but not Bnr1p showed a weak 

interaction with the N-terminal region of both Boi1p and Boi2p.  

Isolation of temperature sensitive strains of boi1Δ boi2ts   

Single disruption of either boi1 or boi2 does not cause obvious phenotype 

regarding polarity. Double disruption of boi1Δ boi2Δ is lethal or sick depending on the 

strain background (Bender et al., 1996; Matsui et al., 1996; Norden et al., 2006). In the 



 

96 

 

 

 

Figure 5.2 Growth assay of the yeast two hybrid assays between formins and 

Boi1/2p 

Growth assays were performed on SC-Leu-Trp and SC-Leu-Trp-His plates.  

 
 

 

 

Table 5.3 Summary of the yeast two hybrid assay between formins and Boi1/2p  

Yeast two hybrid (y2h) results on SC-Leu-Trp-His plates. “+” indicates there is an 

interactions while “-” indicates no interaction has been observed.  
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Figure 5.3 Growth assay of boi1Δ boi2ts at 26°C, 30°C, 32°C, 35°C, and 37°C  
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Table 5.4 Nucleotide and amino acid change in boi1Δboi2ts mutant alleles  
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deletion consortium strain background, the deletion of both is lethal. Thus temperature 

sensitive alleles of boi2ts were generated in a boi1Δ background: boi1Δ boi2-1, boi1Δ 

boi2-4, boi1Δ boi2-5, boi1Δ boi2-6, boi1Δ boi2-7 (Figure 5.3 and Table 5.4). The 

phenotypes will mainly be discussed for boi1Δ boi2-5, boi1Δ boi2-6 because they 

have 1 and 2 missense mutations respectively and they will be referred collectively as 

boi2ts for simplification. No morphological changes were observed for these strains 

after incubating at the restrictive temperature for 5 hrs. After 20 hrs incubation at 37°C, 

besides dead cells, multi-budded cells were observed in the boi2ts strains (data not 

shown). 

Cell polarity is affected in boi2ts cells 

No obvious changes in the actin cytoskeleton were observed after boi2ts strains 

were shifted to the restrictive temperature for various amounts of time (from 1 hr to 5 

hrs).  However, since it is hard to see actin cables clearly in small to medium buds, the 

distributions of Myo2p and Sec4p, which always correlate with directed growth and 

are dependent on actin cable organization, were examined. Both Myo2p and Sec4p 

were found to have polarization defects in boi2ts stains after shifting to the restrictive 

temperature. In small and medium budded cells, Myo2p and Sec4p always concentrate 

at the bud tip in wildtype and boi1Δ cells. However in boi2ts strains, Myo2p and 

Sec4p are more dispersed in the bud and could also be observed at the bud neck region 

(Figure 5.4). This phenotype is similar to bni1Δ which lacks actin cables to serve at 

tracks for vesicle transport to the bud tip (Pruyne et al., 2004a). Thus, I examined the 

distribution of Bni1p in boi2ts stains at the restrictive temperature. Consistently,  
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Figure 5.4 Phenotypes of polarity marker Sec4p and Myo2p in Boi2ts strains at 

restrictive temperature  

(A) Live GFP image of Sec4p-GFP distribution in the strains either at room 

temperature (upper panel) or at 37°C (lower panel) for 2hrs. (B) Live GFP image of 

Myo2p-3GFP distribution in the strains either at room temperature (upper panel) or at 

37°C (lower panel) for 2hrs.  Scale bar, 2µm. 

(A) Sec4p-GFP 

 

(B) Myo2p-3GFP 
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Bni1p-3GFP was seldom observed at bud tips at the restrictive temperature. Also 

interestingly, bud neck localization of Bni1p was frequently observed in medium 

budded cells, a phenotype never observed in wild type cells (Figure 5.5A). The same 

is also true for the localization of Bni1Np that contains the region interacted with 

Boi1p and Boi2p (Figure 5.5B). The localization of Bni1p and Bni1Np explain the 

distribution of Sec4p and Myo2p in the boi2ts strains at the restrictive temperature.  

Discussion and future directions 

Formins are critical regulators of the actin cytoskeleton, nucleating and elongating 

actin cables for polarized transport of organelles and secretory vesicles. How the 

formins are regulated so that they assemble actin cables at the right time and right 

place has been of great interest to us. Boi1p and Boi2p are good candidates to be 

formin regulators in S. cerevisiae as their homolog Pob1p in S. pombe has been proven 

to be so (Rincon et al., 2009). Boi1p and Boi2p have not been extensively studied in 

literature but their role in polarity has been suggested (Bender et al., 1996; Matsui et 

al., 1996; McCusker et al., 2007). Thus I started to study the possible function of 

Boi1/2p on formin localization. 

The interaction between Boi1/2p and formins 

The potential interaction between Boi1/2p and the formins was first studied using 

yeast two hybrid. Weak interactions were observed between Bni1p 1-724aa and Boi1p 

1-750aa and Boi2p 1-740aa. However, the SAM domain did not show any interaction 

with the formins. This is different from the yeast two hybrid results with Pob1p in S. 

pombe, in which the SAM domain of Pob1p has been shown to interact with the For3p 

N-terminal region. This could be explained by the slow growth rate of yeast two  
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Figure 5.5 Localization of Bni1p is affected in Boi2ts strains at restrictive 

temperature  

(A) Live GFP image of Bni1p-3GFP in the strains indicated either at room 

temperature (upper panel) or at 37°C (lower panel) for 1 hrs. (B) Live GFP image of 

Bni1p 1-717aa-3GFP in the strains either at room temperature (upper panel) or at 

37°C (lower panel) for 1 hrs. Scale bar, 2µm.  

(A) Bni1p-3GFP 

   

(B) Bni1p 1-717aa-3GFP 
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hybrid strains transformed with Boi1/2p SAM plasmids, suggesting that 

overexpressing the SAM domains could be detrimental to budding yeast. It is also 

possible that the poly-proline rich FH1 domain in the formins can mediate the 

interactions with Boi1/2p through their SH3 domain. Biochemical assays are needed 

to further confirm the interactions of Bni1p with Boi1/2p. Pull down systems in which 

strains with Bni1p-3GFP and overexpressed N-terminal Boi2p tagged with HA or myc 

have been established but the assays have not been performed due to lack of time. 

The role of boi1/2p in polarized growth 

As shown in Figure 5.5, at restrictive temperature in boi2ts strains, Myo2p and 

Sec4p’s localization in the small to medium buds is more dispersed, whereas in 

wildtype cells Myo2p and Sec4p always concentrates at the very tip of the bud. As 

Myo2p transports vesicles marked by Sec4p along actin cables, this phenotypes 

indicates defects in actin structure in the bud in small to medium budded cells. The 

localization of full length Bni1p and Bni1p 1-717aa were studied and found that they 

both had a very low percentage of localization at the bud tip/cortex at restrictive 

temperature in boi2ts strains (Figure 5.5). In addition, their localizations were 

sometimes observed at the bud neck in medium budded cells which never occurs in 

wild type cells. No defects have been observed for polarity in large budded cells. I 

propose that Boi1/2p functions either to regulate the localization of Bni1p at the bud 

tip/cortex or during the transition of Bni1p from the bud tip/cortex to the bud neck.  
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