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Unlike other simpler morphologies that AB diblock copolymers (DBCs) can form,

ordered bicontinuous phases are made of two interweaving network structures of

the minority phase A in a matrix of the majority phase B. These network struc-

tures are attractive for applications involving ordered nanoscale porous materials

including solar cell active membranes, filters, catalysts, and nanolithographic tem-

plates. Key challenges in obtaining these structures successfully are: (i) the need

for very precise chemistries due to their very limited region of stability in pure

block copolymer melts, (ii) the limited tunability of the morphology feature size

for specific applications, and (iii) their proclivity for defect formation. The use

of additives could provide more handles to tailor feature size and to enhance the

stability of bicontinuous phases (e.g., by alleviating the packing frustration of the

short A-blocks which creates an entropic penalty that hampers the stability of such

phases). We used molecular modeling to delineate phase diagrams, provide design

guidelines for lithographic applications, and to explore the nucleation behavior of

one of these phases from a disordered melt. We have used different strategies to

modify the stability of bicontinuous phases by exploring the effect of distinct ad-

ditives: (i) A cosurfactant (short DBC) that straddles the interface and alleviates

packing frustration in both A and B-domains, (ii) two solvents selective to each

phase that swells both domains unevenly (for potential nanolithographic applica-



tions), and (iii) an A-selective homopolymer that swells only one of the domains

but provides additional configurational entropy to access bicontinuous phases be-

yond those found in pure DBC melts.

A combination of theory and molecular simulations is used to study these sys-

tems. Self-consistent field theory is fast and used to calculate free energies of pre-

specified morphologies but fails to include molecular fluctuations. Coarse-grained

molecular simulations are slower and require more sophisticated techniques for

calculating free energies but can capture molecular fluctuations and more realisti-

cally describe defects and kinetically trapped phases. Bicontinuous phases in the

DBC + homopolymer system (namely the Gyroid, Double diamond and Plumbers

Nightmare) are particularly challenging because they possess large unit cells with

hundreds of molecules (and thousands of monomers) per unit cell, and the observed

morphology depends strongly on simulation box size, which is unknown a priori.

Accurate free energy estimates are required to ascertain the stable phase, partic-

ularly when multiple competing phases spontaneously form at the conditions of

interest. A variant of thermodynamic integration was implemented to obtain free

energies and hence identify the stable phases and their optimal box sizes. Clear ev-

idence was found of phase coexistence between bicontinuos phases, consistent with

previous predictions for the same blend using Self-consistent field theory. Our

simulations also allowed us to examine the microscopic details of these coexisting

bicontinuous phases and detect key differences between the microstructure of their

nodes and struts.
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CHAPTER 1

INTRODUCTION

At the right conditions, diblock copolymers (DBCs) have a propensity to self-

assemble into microstructures due to the balance between repulsive forces between

unlike monomers and the connectedness of the monomers within a chain. Con-

ventional structures such as lamellae, cylinders and ordered micelles have been

thoroughly studied for about 25 years and thin films of these phases are currently

being used for directed self-assembly (DSA) [106, 94, 20, 40, 12] in nanolitho-

graphic applications to build a variety of devices. Besides these structures, DBCs

can also form bicontinuous network structures[100] where one of the monomers

form two distinct interweaving networks within a matrix containing the other

monomer. The topology of the network distinguishes between the various bicon-

tinuous phases. Some of them such as the double gyroid (hereafter called gyroid

or the G phase), the double diamond (hereafter called the diamond, or D phase)

and plumber’s nightmare (hereafter called the P phase) have been synthesized suc-

cessfully in amphiphilic water-oil-surfactant emulsions[108]. These network struc-

tures are attractive for applications involving ordered nanoscale porous materi-

als including solar cell active membranes, filters, catalysts, and nanolithographic

templates[121, 126, 32, 90, 85, 46, 92, 96].

However, bicontinuous phases in self-assembled DBC systems are poorly un-

derstood despite decades of research due to several reasons. First, the G phase is

the only stable bicontinuous phase in pure DBC melts; that too only within a very

narrow region of the phase diagram[76, 119]. Phase diagrams of DBCs with ad-

ditives have been predicted to stabilize D and P phases; again, in narrow regions.

This requires precise synthesis of the building blocks (DBC molecules). Second, for
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specific applications the targeted structures have to possess certain feature sizes

(correlated to relative volume fractions of A-type monomer), which is in turn lim-

ited by the phase diagram. A second key issue is that their self-assembly is dogged

by kinetic issues and the appearance of defects is common in these systems. Long

anneal times often do not resolve these issues entirely. As far as we know, ap-

proaches similar to those used in DSA (successful in lamellae and cylinders) have

not been applied to bicontinuous structures which are three dimensional. Third,

kinetic factors become more important near phase transitions where free energies

of competing phases are comparable and the propensity to nucleate defective or

distorted phases is higher.

The narrow regions of stability of these phases have implications in experimen-

tal work. Several instances of misidentified phases abound in the experimental

literature. Early during the discovery of the bicontinuous phases, the gyroid was

mistaken to be a diamond phase (then called ordered bicontinuous double-diamond

OBDD)[114]; and the OBDD was later reassigned to be the gyroid phase. Other

experiments of DBCs with cosurfactants had inconclusive assignment of a bicon-

tinuous phase between the region of stability of the lamellar and cylinder phases.

Among the more complex bicontinuous phases, the D phase has only recently been

discovered in a DBC blended with homopolymer[112]. The P phase remains elu-

sive till date. Despite claims of a P phase discovered in a complex material with

inorganic particles and block copolymers, it was later reassigned to a distorted G

phase.

The small region of stability of bicontinuous phases has been attributed to two

related ideas: One, packing frustration[53] and two, interfacial curvature[75]. In

short, the packing of chains required to optimize entropy does not optimize the

2



Figure 1.1: Illustrations of (a) Packing frustration showing cross-section of a G
phase showing nodes and interconnecting tubes, and (b) Curvature modification
using a cosurfactant. Gray lines mark the interface.

enthalpic energy and vice versa. This frustration in packing is worst for bicontin-

uous phases. As illustrated in Figure 1.1a, each of the bicontinuous networks is

composed of tubes (struts) that are connected by nodes. The gyroid is the sim-

plest bicontinuous phase with three tubes meeting at every node while the D and

P phases have four and six tubes respectively meeting at every node. In order to

accommodate meeting of multiple tubes, the nodes are bulkier than the tubes and

thus the center of a node is farthest from the interface. If the DBC stretches to the

same degree in the nodes and tubes, regions with low density or vacancies would

arise within the node. To compensate for this, the minority blocks have to stretch

which would lead to a loss of conformational entropy. If both blocks stretch, then

the topology of the nodes is sacrificed and the morphology is distorted. Thus,

only a delicate balance between chain stretching, local density fluctuations and in-

terfacial distortions stabilizes the bicontinuous phases. Leveraging entropy thusly

has been a hot topic for soft matter self-assembly in recent years; in particular for

DBCs, entropy-stabilized corners have been developed in lamellar nanolithography
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using appropriate homopolymers[107].

The second issue is related to minimizing enthalpic contacts between the two

blocks and therefore, optimizing the interfacial curvature. Higher the volume dis-

parities between the two blocks, higher the curvature. For example, Figure 1.1b

shows a blend of two DBCs, which in their melt forms would form interfaces

possessing different curvature, but when blended would form an interface of in-

termediate curvature. Bicontinuous phases have non-zero local curvature but zero

mean curvature. So, as the volume disparity of the two domains increases, the

lamellar phase often gives way to bicontinuous phases before leading to high cur-

vature cylinders and micelles. As a result of these interactions, the G phase is

the only stable bicontinuous phase found in pure melts of DBCs, and theoretical

predictions show that the region .

The use of carefully chosen additives can circumvent all of these issues. By

expanding the phase diagram with additional design parameters (e.g., size of the

additive, strengths of interaction, relative volume fraction), we have new dimen-

sions and handles with which to tune the morphology. Additives can increase the

region of stability of the phase of interest, and in doing so, they could also de-

crease the propensity to possess defects where they are farthest from a coexistence

region, or phase boundary. That being said, an inappropriate choice of additive

(with unfavorable interactions) can also lead to macrophase separation. Therefore,

a good understanding of the macroscopic and microscopic behavior of the additive

of interest is required. this can be challenging in experiments due to the large

number of variables involved in the phase diagram. Sweeping through all of them

is impractical. Thus, modeling is useful in relatively quickly pinpointing regions

of the phase diagram where the phase of interest is stable. We use coarse-grained
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modeling that captures behavior at the length scale of the domain sizes. We use

a combination of methods - self-consistent field theory (SCFT) which is fast and

calculates equilibrium quantities but does not capture molecular fluctuations, and

particle-based simulations (MD) which is slower but captures fluctuations, and

allows us to study defects, transient features and non-equilibrium behavior of the

phases.

In this dissertation, we have studied DBCs with three additives, each uniquely

modifying the phase diagram and providing a route to access a bicontinuous phase.

Apart from the strategy in choosing the chemistry and architecture of the chemi-

cal molecule, a secondary differentiating feature is the size of the additive relative

to the DBC (α) and the selectivity of the additive to each block in the DBC. In

Chapter 2[87], we study solvents where α � 1. Addition of a solvent imparts

enhanced chain mobility for the polymers (indirect temperature control), and the

solvent selectivity causes it to swell non-uniformly into the two microdomains (in-

direct volume fraction control). We study two phase-selective solvents so that we

can independently control the degree of temperature and volume control. Solvent

annealing is extremely useful when morphology control is impossible via temper-

ature changes that would degrade the DBC itself. In our blend, We start from a

lamellae-forming DBC and obtain a stable G phase by adding solvents. Due to the

disparate length scales of the solvent and DBC, we can only use SCFT to study

this blend. In chapter 3[88], we use an intermediate value of α < 1. We use a

cosurfactant (shorter DBC) that straddles the interface and directly affects the in-

terfacial curvature, and thus modifies the stability of the phase. Starting from two

DBCs, one forming a cylinder and the other forming a lamellar phase we obtain a

stable G phase by modifying the surface tension. Using particle-based simulations

in addition to field-based simulations, we see a high propensity of defective phases
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close to the appearance of the G phase. Furthermore, we find smaller domain

sizes of bicontinuous phases compared to a pure DBC melt. In both the above

strategies, the conformational entropy of the additive is not significant enough

to alleviate packing frustration such that more complex bicontinuous phases are

stabilized. In chapter 4, we use an additive only slightly smaller than the DBC

(α ∼ 1) selective to only one of the blocks. We start with a G-forming DBC and

add a selective homopolymer. This selectivity and high α causes the additive to

behave like a dry brush within the A-domains thus expelled from the interface

and targeting the bulky nodes. This strategy results in a region of stability of

the D phase and coexisting D-P and D-G regions. It also dramatically improves

the stability window for the G phase as well as tunability of the G phase. We

also concurrently developed a technique to calculate free energy differences using

modified thermodynamic integration with enough accuracy that would be able to

resolve the phase diagram near a triple point of coexistence of bicontinuous phases.

In Chapter 5, we summarize the results and suggest several future directions this

work could take.
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CHAPTER 2

PHASE BEHAVIOUR OF PMMA-B-PHEMA WITH SOLVENTS

METHANOL AND THF: MODELING AND COMPARISON TO

THE EXPERIMENT

2.1 Introduction

The self-assembly of block copolymers has long been used for the synthesis of mate-

rials for a variety of applications like photovoltaic devices[21], catalysts[126], enan-

tiomer separation devices[32] and nanolithography[90]. Controlling the morphol-

ogy and tailoring its feature size for a specific application are challenging because

in block copolymer melts, these are primarily determined by two key parameters:

interaction strength (FloryHuggins parameter χ times the degree of polymerization

N) and volume fraction f of one of the blocks. Furthermore, after the copolymer

has been synthesized (fixed f and N), the only handle available to tune the mor-

phology is temperature (inversely related to χ). However, morphology control via

temperature has some drawbacks since temperature annealing can access multi-

ple phases only near the orderdisorder transition (ODT), and for many polymer

chemistries of interest the ODT may be high enough to cause polymer degra-

dation. Instead, solvent annealing of the block copolymer with varying solvent

concentrations has been successfully used to tune the morphology[41, 1, 22, 6, 89].

Furthermore, in thin films, solvent annealing neutralizes the surface energy of the

air interface allowing further morphological control[103, 18]. Although using a

single solvent does provide some tunability, finding the ideal solvent quality and

degree of selectivity (for either block at the temperature of interest) can be re-

strictive if only one among a handful of existing solvents is to be considered. This
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limitation is readily removed by using a mixture of two (or more) solvents, so that,

e.g., varying the composition of the solvent can allow tuning the solvent quality at

a fixed temperature. This approach then provides multiple handles to control the

morphology and feature size: the amount of solvent(s) in the mixture, the ratio

of solvent quantities, and selectivity (determined by chemistry and temperature).

Indeed, solvent vapor annealing has been shown to allow access to structures that

are unattainable through thermal annealing[6, 89]. Recently, the two-solvent ap-

proach was used to successfully demonstrate control over the lamellar width of

sub-20 nm lamellar domains[18].

Self-consistent field theory (SCFT) has shown considerable success in modeling

the self-assembly of block copolymer melts at low to intermediate values of χN .

In particular, it predicts the stability of the gyroid phase up to χN = 100[25], a

prediction that has been verified in experiments[22]. Another advantage of SCFT

is that it can be easily extended to include solvents. However, the SCFT equations

quickly get computationally intensive as χN is increased due to the increase in the

number of basis sets needed for numerical convergence, thus limiting the range of

parameters that can be studied. Keeping this limitation in mind, we adopted this

well-established theoretical framework for the present study.

Several theoretical studies have used SCFT to map out regions of the multidi-

mensional phase diagram of block copolymers upon addition of solvents. A phase

selective solvent lowers the overall χN [89] by acting as a plasticizer and swelling

the polymer. It also alters the effective f value by inducing preferential swelling

of one block domain. Several previous studies focused on the regime where the

solvents were dilute and neutral, thus, χeff = φpolymerχ[43, 84] and there was no

preferential swelling. In such cases the ODT decreases monotonically as more sol-
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vents are added[84]. For a single selective solvent, the phase diagram shifts toward

the selective phase[48], much like the shift of the phase diagram toward the block

type having a larger Kuhn length. The solvent size is typically much smaller (a

few Ångströms) than that of the block copolymer (tens of nanometres), and since

the morphologies have feature sizes of the order of the block length, the solvent is

approximated as a structureless particle with a finite size (with the ratio of solvent

size to polymer size = α). The smallness of α has been found to lead to a fairly

uniform spatial distribution of the solvent except near the interfaces[47].

The vast majority of the work with SCFT has focused on the effect of solvent

on the formation of lamellar, cylindrical, and micellar phases[84, 47, 51, 8]. In

this work we studied the phase behaviour of poly(methyl methacrylate)-block -

poly(2-hydroxyethyl methacrylate) (PMMA-block -PHEMA) with tetrahydrofuran

(THF) and methanol by using both solvent-annealing experiments and SCFT.

Particularly, we are interested in exploring the thermodynamic stability of the

gyroid phase since, unlike other phases commonly found in block copolymers, it is

bicontinuous which means that the two block domains interweave uninterruptedly

in all directions. This leads to nanostructures with enhanced mechanical stability

(even if one of the block domains is etched away) and transport properties (for

thermal or electrical conduction) that are the same regardless of sample spatial

orientation; these qualities make the gyroid phase appealing for such potential

applications as active porous matrices for solar cells[17], batteries, and separation

devices. We find that the gyroid phase is observed in our experiments under

conditions which are fairly consistent with those where SCFT predicts its stability.

The rest of this chapter is organized as follows. In section 2.2, the experi-

mental results conducted by members of the Ober group are briefly described. In
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sections 2.3 and 2.4 the theory and the estimation of model parameters used

by the theory are respectively presented. In section 2.5 the modeling results are

expounded and discussed. Finally, the main conclusions are summarized, followed

by supplementary information and funding acknowledgements.

2.2 Description of experimental results

The block copolymer used was a 50:50 mass ratio PMMA-block -PHEMA, of molec-

ular weight 40 kDa and polydispersity 1.08. The PMMA-block -PHEMA chemistry

selected is appealing for nanolithography because it allows one to harness both

a top-down approach[64] by virtue of one of the blocks being photosensitive, as

well as a bottom-up approach by exploiting the self-assembly of the diblock chains

into specific nano-segregated morphologies. The experiments were conducted by

the Ober group at room temperature which is well below the glass transition tem-

perature of the two blocks in the polymer. Upon thermal annealing, the pure

copolymer forms a lamellar phase with about a 40 nm spacing.

Composition(vol%) Film thickness Swelling Time Resulting morphology
(methanol/THF) (nm) (s)
Pure copolymer 145 1.00 Disordered (no annealing)
80/20 440 3.03 6300 Lying cylinders
50/50 368 2.53 6300 Spherical micelles
50/50 368 2.53 20700 Gyroid
20/80 460 3.17 6300 Lying lamellae

Table 2.1: Experimental parameters and results

A detailed explanation of the methods and their applications is the topic of a

separate article[9, ?]. In brief, the copolymer was spin-coated on a thin film. Due

to rapid processing conditions, the as-spun thin film was disordered. It was then

exposed to vapour with the solvent mixture composition of interest. The swelling
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ratio is calculated as the ratio of film thickness after and before exposure to the

solvent. The resulting morphologies were characterized by the analysis of both

AFM images and in situ GISAXS measurements. In all cases, exposure of the

film after solvent annealing caused rapid evaporation of the solvent preserving the

same morphologies although with uniaxial shrinking. The solvent-annealing time

and the resulting morphologies are listed in Table 2.1.

For the two extreme compositions, a lying cylinder morphology (finger-like

AFM pattern) is obtained at the 80:20 methanol-THF ratio, whereas a lying lamella

is observed at the 20:80 methanol-THF ratio. At the 50:50 methanol-THF ratio,

a gyroid morphology (pin-wheel like AFM pattern) is observed at long annealing

times but spherical micelles are seen at short annealing times. Given that the latter

difference is observed for the identical swelling ratio, it suggests that kinetic effects

were significant, or external conditions were not identical (or varied slightly over

exposure time), or both. It would hence be helpful to use a theoretical framework

like SCFT to try to outline the regions of thermodynamic stability for the different

phases observed experimentally. A more detailed description of the experiments

and results (including GISAXS spectra) is given in ref. [?].

2.3 Theory

Self-consistent theory[84, 48, 76, 109] treats the solvent as a structureless particle,

the polymer as a continuous Gaussian chain and the entire system to be incom-

pressible. For our system, there are four chemical ‘species’ denoted by subscript

i in the system – two monomers (A, B) and two solvents (M, T), and three com-

ponents (subscript c) – one block copolymer (P) and two solvents (M, T). The
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Kuhn lengths of PMMA and PHEMA are given by bA and bB respectively, the

total degree of polymerization is N and the fraction of PMMA in the copolymer

is f . The overall volume fraction of the copolymer in solution is ϕP and those of

methanol and THF are ϕM and ϕT , respectively; local densities are denoted by

φi. The ratio of solvent size of methanol and THF to polymer size is αM and αT ,

respectively. In SCFT, particles are in effective fields {ωi(r); i = A,B,M, T}. For

each kind of species i in the system,

ωi(r) =
∑
j 6=i

χijNφj(r) + ξ(r) (2.1)

where ξ(r) is a Lagrange multiplier to enforce the incompressibility constraint

on dimensionless local concentrations, φA(r) + φB(r) + φM(r) + φT (r) = 1. The

polymers are parameterized by a continuous contour variable 0 < t < N . qP (r, t)

is the chain propagator of the 0− tth region in a polymer chain at location r and

obeys the diffusion equation:

∂qP (r, t)

∂t
=


Nb2

A

6
∇2qP (r, t)− ωA(r)qP (r, t) 0 < t < fN

Nb2
B

6
∇2qP (r, t)− ωB(r)qP (r, t) fN < t < N

(2.2)

with qP (r, 0) = 1. Its complementary from the t+1th to N th region in the polymer

chain is given by

∂q†P (r, t)

∂t
=


ωA(r)q†P (r, t)− Nb2

A

6
∇2q†P (r, t); 0 < t < fN

ωB(r)q†P (r, t)− Nb2
B

6
∇2q†P (r, t); fN < t < N

(2.3)

with q†p(r, 1) = 1. Under the assumption that the solvents are structureless, the

diffusion equation for its propagator in the limit N → 0 reduces to

∂qS(r, t)

∂t
= −ωS(r)qS(r, t); {S = M,T} (2.4)

The partition function of the polymer is given by

QP =
1

V

∫
drqP (r, 1) (2.5)
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and for each solvent S is

QS =
1

V

∫
drqs(r, 1) =

1

V

∫
dr exp(−αsωs(r)) (2.6)

The local concentration for the polymer is

φP =
ϕP
V

∫
P

dtqP (r, t)q†P (r, 1− t) (2.7)

and for the solvents are

φS =
ϕS
V

exp(−αSωS(r)) (2.8)

Finally, the free energy per molecule is given by

F

kT
= −

∑
c={P,M,T}

ϕc
αc

ln

(
αcQc

ϕc

)
− 1

V

∫
dr

 ∑
i={A,B,M,T}

ωi(r)φi(r)

 (2.9)

Equations 2.1 through 2.9 are solved self-consistently using the Polymer Self

Consistent Field (PSCF) code[79] which requires a good initial guess for conver-

gence. The ternary phase diagram at a given χN and α was systematically mapped

out using the solution from a nearby point for quick convergence. The starting

point was chosen as a PMMA-block -PHEMA copolymer melt. Methanol was sub-

sequently added (traversing along one axis in composition space) and finally THF

was added to span the rest of the phase diagram. Initial simulations were run us-

ing only the lamellar and cylindrical phases to quickly search the parameter space;

the parameters were then tweaked to produce a cylinder phase in methanol-rich

regions and a lamellar phase in THF-rich regions. It was also checked that the

choice of traversal of the axis (methanol first and THF second, or vice versa) did

not affect the free energy calculation.

The number of basis sets Nb required for convergence of the numerical simula-

tion increases rapidly as the Flory-Huggins parameter increases; this is because the
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PMMA PHEMA
Molecular weight of monomer (g mol−1) 100.12[29] 130.14[29]

Degree of polymerization 200 154
Kuhn length (nm) 1.7[93] 1.03[33]

Mole fraction 0.57 0.43
Volume fraction 0.52 0.48

Table 2.2: Polymer parameters

block interfaces become sharper and more basis functions are needed to describe

the domain shapes. This large number of basis sets rapidly escalates the simulation

time needed, especially as the dimension of the morphology increases (lamellae are

one dimensional, cylinders are two-dimensional, while gyroid and spherical micelles

are three-dimensional). The inclusion of three-dimensional phases severely limits

the range of the Flory-Huggins parameter accessible by the theory.

2.4 Calculation of parameters and modeling details

The input parameters in SCFT include chain architecture, volume fraction of the

chain, Flory-Huggins interaction parameters and solvent size. Table 2.2 gives

details of the chain architecture in the analogous experiments. Based on the

monomer volume, PMMA has approximately 3 monomers per Kuhn segment while

PHEMA has about two. Since a Kuhn segment is composed of about two to three

monomers, the effective degree of polymerization N to be used in the SCFT model

is 200/3 + 154/2 ≈ 144. The Flory-Huggins parameter captures the enthalpic

chemical interaction between every pair of species. A positive value indicates re-

pulsive energy whereas a negative value indicates attractive energy. Various empir-

ical formulae exist in the literature to estimate the Flory-Huggins parameters for

polymer-polymer, solvent-solvent and polymer-solvent interactions. In this work,
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Vref δd δp δh
(cm3 mol−1) (J1/2 cm3/2)

PMMA (group contribution) 85 17.66 5.76 7.82
PHEMA (group contribution) 107 17.3 6.51 15.57

THF 81.7 16.8 5.7 8.0
Methanol 40.7 15.1 12.3 22.43

Table 2.3: Solubility parameters[122, 3] used in the estimation of Flory-Huggins
interaction parameters using Equation 2.11.

we used the relationship between the Flory-Huggins parameter and solubilities of

the constituents which follows the general principle that ‘like solvates like’. It is

estimated by the relationship[7]:

χ12 =
Vref
RT

(δ1 − δ2)2 (2.10)

where χ12 is the Flory-Huggins parameter, Vref is the reference volume and δi is the

Hildebrand solubility parameter (for nonpolar species) of the constituent i. Note

that with this formalism the Flory-Huggins parameter cannot be negative and it

is inversely proportional to temperature, allowing us to use scaled parameters. For

our system, we have used the set of three Hansen solubility parameters[42] in order

to incorporate polar and hydrogen bonding effects into the single Flory-Huggins

parameter with the relationship

χ12 =
Vref
RT

[
(δ1,d − δ2,d)

2 + (δ1,p − δ2,p)
2 + (δ1,h − δ2,h)

2] (2.11)

The Hansen solubility parameters have a contribution from dispersive (subscript

d), polar (p) and hydrogen bonding (h) forces. The solubility parameters for

the polymers vary considerably across the literature based on the estimation

technique, and, for this current work, these are estimated from group contri-

bution methods[122]. The solubility parameters for the solvents are from stan-

dard tables[3]. Table 2.3 lists the values of solubility parameters used and Table

2.4 lists the values of Flory-Huggins interaction parameters at 298 K scaled by

χPMMA−PHEMA ≈ 2.08. Thus, χN would be 300 for the block copolymer.
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χ/χPMMA−PHEMA PMMA PHEMA THF Methanol
PMMA 0 1 0.01 4.31
PHEMA 1 0 0.96 1.4

THF 0.01 0.96 0 4.18
Methanol 4.31 1.4 4.18 0

Table 2.4: Flory-Huggins parameters normalized by χPMMA−PHEMA.

It can be inferred from Table 2.4 that methanol is a poor solvent, with its inter-

action with PHEMA being more unfavourable than that of PMMA with PHEMA.

On the other hand, THF and PMMA have almost identical interaction parameters;

the key difference between them being that THF is a structureless solvent while

PMMA is a chain that has conformational degrees of freedom.

2.4.1 Test runs and adjusting χN and α

For computational expediency, some departures from experimental conditions were

introduced. The experimental system consists of a thin film of thickness of a

few hundred nanometres (see Table 2.1), which is many times the unit cell of

any morphology of interest. The films were cast on native silicon oxide whose

polarity imparts some affinity for the polar groups in both PMMA and PHEMA

segments and hence one would expect both polymers to have similar substrate

wetting properties (the analysis of “as spun” films of the pure diblock copolymer

revealed domains with no long-range order nor preferential orientation with respect

to the interfaces). While solvent annealing tends to neutralize the surface energy

of the air interface, its effect on substrate wetting is more difficult to assess. It is

expected that any preferential substrate-polymer interaction will primarily affect

the orientation of block domains (relative to the surface) rather than the type of

morphology (phase) that it forms. However, if a strong substrate preference for one
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block was to occur then the tendency to form, for example, a lying lamellar phase

could be enhanced. For our study, we will neglect interfacial effects and focus only

on bulk properties, assuming that both solvents are absorbed in the bulk phase.

The swelling factor is thus the inverse of the average block copolymer volume

fraction. The Flory-Huggins parameters in Table 2.4 only provide a qualitative

picture of the interactions because errors in estimation of solubility parameters

propagate and are magnified when using Equation 2.11. Since the experiments

showed a gyroid phase between cylinder and lamellar phases as the solvent ratio was

varied, we perform initial tests probing the stability of lamellar and cylinder phases

for a range of conditions. The tests indicated that either a larger FloryHuggins

parameter disparity between methanol and PMMA, or a larger solvent size than

experimental conditions is required to achieve stable cylinder and lamellar phases

in the range of compositions of interest.

Since the simulation becomes costly on increasing the Flory-Huggins parameter

disparity, we only use the ratio fixed by the Hansen solubility parameters. The

scaled Flory-Huggins parameters in Table 2.4 reflect the actual chemistry of the

copolymer and solvents, and we will refer to χPMMA−PHEMA as χ henceforth.

The other parameters are scaled according to Table 2.4. Furthermore, the range

of c explored is limited to 20 ≤ χN ≤ 40 (and 50 in a special case) due to

computational expediency, which is much smaller than the value of 300 that was

estimated in the previous section. The contribution to the mixing free energy in

Equation 2.9 increases inversely as the size of solvent is reduced. Indeed at a

very low solvent size (and thus, low α), the disordered phase is favored; and a

very high α results in a breakdown of the assumption of structurelessness of the

solvent in comparison with the block copolymer. In order to compensate for the

relatively low value of χN that we can practically adopt, we increase α but stay
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within a range of values that has been used in previous SCFT studies of block

copolymers with solvents[84, 48, 47, 51, 8]. Specifically, we performed simulations

with αmethanol = 0.002 (closest to the experimental value), 0.005 and 0.01. αTHF

is scaled accordingly. A similar approach was used in a previous SCFT study

wherein a lower χN and solvent molecules with the same size of the statistical

monomer unit (α ∼ 0.005) were used to model the lamellar to cylinder transition

observed in experiments of PS-PMMA with two solvents[34]. Henceforth, we will

only refer to the parameter amethanol and drop the subscript. The phases studied

are disordered (homogeneous), lamellar, cylindrical and gyroid phases. The BCC

spherical micellar phase has been included only in a special case due to the difficulty

in attaining convergence for this phase with a 50:50 block copolymer. Free energies

of various phases under study are compared and the one with the lowest free energy

is identified as the stable phase (the normalized free energies are calculated to be

within 10−4). In all cases studied, we do not find multiphase coexistence (see

Section 2.7 for more details).

2.5 Modeling results

Three dimensional ternary phase diagrams for the PMMA-block -PHEMA +

methanol + THF system are shown in Figure 2.1 for different choices of χN and α

parameters. The vertex on the right in each horizontal plane corresponds to pure

DBC and thus a swelling factor of 1. The vertex on the left is pure methanol and

the vertex on the far back is pure THF. The experimental observations are overlaid

by dashed lines/shaded regions for visual comparison. Since the exact partitioning

of the solvents into the experimental polymer film is unknown, we assume that the

solvent compositions match those of the annealing vapor phase. The vertical axis
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Figure 2.1: Ternary phase diagram for α = 0.002, α = 0.005 and α = 0.010. The
dashed lines and shaded regions represent the region of swelling ratios and solvent
compositions studied by the experiments.
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at a swelling factor ϕDBC = 1 corresponds to the phase diagram of the pure diblock

copolymer. Since we have a near 50-50 volume ratio and above χNODT (∼ 10.5) for

a melt, we find a stable lamellar phase at this axis for all values of χN in Figure

2.1a through 2.1c.

For α = 0.002 (Fig. 2.1a), a transition to the disordered phase takes place as the

swelling factor is increased. Since χmethanol−polymer > χTHF−polymer, the THF-rich

mixture undergoes an ODT at lower solvent concentrations than the methanol-rich

mixture at a given swelling factor and χN . As χN is increased, the ODT occurs at

higher solvent concentration (and thus, a higher swelling factor). Interestingly, the

transition to the disordered phase is different between the methanol-rich and the

THF-rich regions. The THF-rich region undergoes a lamellar to disordered transi-

tion, while in the methanol-rich region, the disordered phase may be approached

via the cylinder, gyroid or lamellar phases depending on the χN and swelling fac-

tor. As justified in the previous section, we also explore the phase diagram for

higher solvent sizes.

The phase diagram for α = 0.005 is shown in Figure 2.1b. At χN = 20, the

stable phases are the lamellar and disordered phases. At χN = 30 and higher,

the methanol-rich axis transitions from the lamellar to the gyroid to the cylinder

phase as the swelling factor increases. At a given swelling factor, depending on the

starting point at the methanol-rich plane, a cylinder to gyroid to lamellar transition

occurs as the THF fraction in the solvent mixture is increased. Furthermore, the

gyroid region of stability is the widest for χN = 30 and gets narrower as χN is

increased.

The phase diagram for α = 0.01 in Figure 2.1c is qualitatively similar to that

in Fig. 2.1b except for an apparent shift upward of χN as α is increased; e.g., the
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Figure 2.2: Phase diagram at constant χN for increasing α.

diagram for χN = 40, α = 0.005 looks most similar to that for χN = 30, α = 0.01.

Figure 2.2 illustrates this by showing the effect on increasing α at constant χN

which looks qualitatively similar to Fig. 2.1b. Thus, in this region of phase space

explored, we have an effective χ parameter that increases monotonically with ϕ

and α.

2.5.1 Approximate comparison with the experiment

For a specific case of parameters (χN = 30, α = 0.01), we have also included the

BCC spherical micellar phase and double diamond phase in the calculations for

obtaining the phase diagram (plotted in Figure 2.3). Here, the diamond phase is

not stable in any region of the phase diagram while spherical micelles replace part

of the phase region where cylinders are stable in Figure 2.2. The spherical micelles

become stable near the ODT and the methanol-rich region. Comparing Figure

2.3 with Figure 2.2, the progression of phases is much the same upon including
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Figure 2.3: Phase diagram including spherical micelles and double diamond in the
calculation. Minority phase = PMMA.

the spherical phase (lamellar to gyroid to cylinder to spherical micelles) and is

consistent with the effect of reduced χeff on increasing swelling. Consistent with

experimental data, the theory predicts the presence of cylinder and lamellar phases

at the 80:20 and 20:80 methanol-THF ratios respectively.

From the theory, near the 50:50 methanol-THF region, one would expect a

transition from the micelle to the gyroid phase upon increasing the methanol-

THF ratio to occur via an intermediate cylinder phase. In the experiments, this

intermediate phase was not seen. One reason for this discrepancy could be that the

experimental solvent composition in the polymer film is not necessarily identical

to that of the imposed vapor phase composition due to partitioning of components

among the vapor and film phases (and that these compositions may have slightly

changed during a long annealing period). Even in the simplest case of a binary

methanol and THF mixture, the ompositions of the coexisting vapor and liquid
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Figure 2.4: Isosurfaces of normalized density φ∗ of PMMA for (a) the gyroid phase
and (b) the cylinder phase.

phases would not be identical[68]. A second possible reason for the absence of the

cylinder phase in experiments for this case could be slow kinetics of the gyroid

to cylinder transition. Previous studies in the literature of block copolymer melts

have shown epitaxial pathways of instability for χN = 20 and lower[91, 70, 124, 71].

This region of metastability of the gyroid phase for a pure block copolymer melt

was shown to extend well into the cylinder phase, close to the cylinder to micelle

transition[71]. Furthermore, the free energy barrier for the gyroid to the cylinder

phase increases with χN [70]. This scenario seems likely given that the morphology

at the 50:50 solvent ratio in experiments nucleates from a disordered film and

evolves over time.

2.5.2 Density distributions across the microstructure

We also investigated the spatial distribution of densities normalized by the overall

volume fraction of the various components. The densities of the polymer blocks

usually vary widely between zero and its maximum value while the solvents, being
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Figure 2.5: Effect of increasing a on the density distributions of different com-
ponents. Morphologies relevant to χN = 30, swelling factor = 3.3 with 80:20
methanol-THF. The lowest value of α is not shown here (disordered phase pro-
duces a flat distribution of densities).

much smaller, have a more uniform distribution with smaller variations of density

from its average, by less than 10% for low values of α. As the swelling factor is

increased, the width of the interface increases and the relative density deviations

about the mean are suppressed, eventually leading to a disordered phase (not

shown). THF and methanol behave slightly differently. THF accumulates at the

PMMA-PHEMA interface, whereas methanol prefers the center of the PHEMA

domain. Due to the high selectivity of methanol, increasing the ratio of methanol

to THF increases the relative width of the PHEMA domain for all phases under

study (not shown).

On the other hand, increasing the ratio of THF to methanol results in a higher
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accumulation of THF at the interface, with no significant change in the relative

width of the PMMA domain. Figure 2.4a and b show density isosurfaces for gyroid

and cylinder phases respectively, obtained under identical conditions χN = 30,

α = 0.005, swelling factor = 3.3 with 80:20 methanol-THF. Figure 2.5 shows a

comparison of density distributions for different phases as the solvent size increases.

For the sake of clarity, density distributions for multidimensional phases in Figure

2.5 are shown along the vectors denoted in Figure 2.4a and b. For χN = 30, a

swelling factor of 3.33 and 80:20 methanol-THF, as α is increased from 0.002 to

0.01, the stable phases are disordered, gyroid and cylinder (see also Fig. 2.2a). As α

is increased, methanol exhibits a stronger preference for the core of the PHEMA-

rich domains. For α = 0.005 the positive (and negative) relative deviations in

density from the average is about 20%, whereas for α = 0.01 this deviation is as

high as 50%. In this case, even PHEMA is repelled from the core of the majority

domain and is concentrated near the interface.

The aforementioned effect of methanol exclusion from the centers of the

PHEMA domain is not seen when increasing χN at fixed α (Figure 2.8 in Sec-

tion 2.7), at least within the range of χN explored. This suggests that although

the “macroscopic” phase diagrams look qualitatively the same on either increas-

ing χN or increasing α, due to changes in the “microscopic” behavior of solvent

distribution, these scenarios are certainly not equivalent.

From SCFT, one can also get domain sizes of various morphologies. Figure 2.6

shows the region of the phase diagram where the lamellar phase is stable, color

coded by the domain spacing (normalized by that of the pure block copolymer).

As swelling increases, the domain size decreases, an effect that is minimal in the

methanol-rich region and becomes larger as the THF-methanol ratio is increased.
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Figure 2.6: Effect of solvent addition on domain spacing for the lamellar phase at
χN = 30, α = 0.01.

The largest spacing reduction we observe (26%) is more significant than that (9%)

reported in ref. [18] (for a different system), likely a reflection of the larger swelling

ratios we explore. A simplistic explanation of this spacing-reduction is that when

the domains are swollen by a good solvent (like THF), the inter-block interfacial

tension decreases and its area increases; hence the polymer chain “brushes” that

stick out from opposite sides can interpenetrate more. Domain size reduction

and enlargement can occur for other phases also (results not shown). Figure 2.6

further illustrates (as in ref. [18]) that solvent annealing may be an effective

technique for decreasing the domain size (appealing for lithographic applications),

and particularly in our case, for the lamellar phase which occurs for THF-rich

conditions.
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2.6 Conclusions

We have studied the phase behaviour of 50:50 PMMA-b-PHEMA with methanol

and THF using both experiments and an approximate model via SCFT. Experi-

ments limited to 3 solvent compositions (and for specific swelling ratios) revealed

the formation of different phases including the gyroid phase. Given the uncertain-

ties and challenges associated with exactly matching experimental systems with

model parameters, we used SCFT to investigate the dependence of the phase dia-

gram for intermediate values of Flory-Huggins interaction parameters and a range

of solvent sizes. Starting from a pure diblock copolymer, increasing the swelling

leads eventually to a disordered phase, a process that occurs via the gyroid and

cylinder phases near the methanol-rich region, and via a direct lamellar to dis-

ordered transition near the THF-rich region. These trends agree well with the

accepted tenet that addition of solvents effectively decreases χN and shifts the

effective composition of the diblock copolymer towards the more selective solvent

by inducing non-uniform swelling. Increasing the solvent size leads to preferential

swelling and at α = 0.01, it results in depletion of PHEMA at the methanol-rich

core of the PHEMA domains. Consequently, the cylinder and gyroid phases are

stabilized for significantly larger regions of the phase diagram.

Besides morphological control, co-solvent annealing also allows some control

on the domain size by tuning the swelling factor and solvent ratio. Based on the

density distribution of the various components, the stability of cylinder and gyroid

phases could be attributed to alleviation of packing frustration of the copolymer by

the solvents, particularly methanol. Increasing χN also leads to the stabilization of

these phases, although over the range of χN values studied this effect was milder

than that of the increasing solvent size. Since simulating high values of χN is
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computationally prohibitive, we proposed a combination of a somewhat higher α

and lower χN than experiments to mimic the phase behavior at high χN , at least

qualitatively. We observe a cylinder to gyroid to lamellar phase transition as the

ratio of methanol-THF is increased over experimentally relevant swelling factors,

although the location of the predicted phase boundaries does not exactly coincide

with experiments. This limitation may be partially rooted on the errors associated

with the estimation of χ values from solubility parameters; better estimates of the

χ parameter should yield more accurate theoretical predictions. Other sources of

error may have also been at play in the experiments such as uncertainties on the

molecular weights (and polydispersity) of the polymers, variation in the solvent

composition, and the possible occurrence of longlived metastable states.

Altogether, our theoretical calculations are consistent with the experimental

finding that, starting with a 50:50 block copolymer, the gyroid phase can be sta-

bilized by swelling with a mixed solvent of a suitable composition. They also

validate the general strategy of using a mixture of two solvents as a means to

vary the solvent quality to allow access to different phases of interest even at a

fixed temperature; and provide a comprehensive phase diagram for future exper-

iments to rely on. Whether such a strategy could be used to target bicontinuous

phases other than the gyroid remains to be explored but we suspect that non-

symmetric block copolymer compositions could be more suitable and that at least

one oligomeric “solvent” would be needed to more drastically alleviate the packing

frustration that is typically associated with the lack of stability of such complex

phases[66, 77]. Our results also suggest some areas that need further improvement

and investigation. A more atomistic approach or additional experimental data (for

calibration) would be needed to obtain more reliable χ parameters and overcome

some of the limitations associated with the group-contribution methods that we
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Figure 2.7: Free energy values and curvature at χN = 40, α = 0.01, swelling factor
= 5.

adopted in this work. Also, more experimental and modeling work is needed to

elucidate the pathways and kinetics rates associated with the formation of different

phases and their inter-conversion.

2.7 Supplementary information

2.7.1 Possibility of two-phase coexistence

The curvature of free energy (second derivative) with respect to volume fraction

was calculated to detect multiphase coexistence. Two-phase coexistence occurs

when the curvature of the free energy-volume fraction graph becomes negative, or

contains an inflexion point[84]. The curvature is calculated from the second-order

central finite difference, i.e.,

∂2F

∂ϕ2
=
F (ϕ+ ∆ϕ)− 2F (ϕ) + F (ϕ−∆ϕ)

(∆ϕ)2

For all points studied, we did not observe a negative curvature although as α was

increased the curvature became less positive. Figure 2.7 shows the free energy and
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Figure 2.8: Effect of increasing a on the density distributions of different com-
ponents. Morphologies relevant to χN = 30, swelling factor = 3.3 with 80:20
methanol-THF. The lowest value of α is not shown here (disordered phase pro-
duces a flat distribution of densities).

curvature at χN = 40, α = 0.01 and swelling factor = 5 where the curvature was

least positive near 50:50 methanol-THF.

2.7.2 Normalized density distribution on increasing χN

Figure 2.8 shows the density distribution of all the components when increasing χN

from 30 at the smallest solvent size. Two effects can be seen: first, the interface gets

sharper as χN is increased, and second, the solvent distributes uniformly across

both (PMMA-rich and PHEMA-rich) domains and its density variation (around

the average) is only ∼5%. This variation is much smaller than that observed upon
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increasing the solvent size (as illustrated in Figure 2.5).
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CHAPTER 3

A THEORETICAL AND SIMULATION STUDY OF THE

SELF-ASSEMBLY OF A BINARY BLEND OF DIBLOCK

COPOLYMERS

3.1 Introduction

Diblock copolymers “DBCs” are linear polymers made up of two types of ho-

mopolymers (blocks) joined end-to-end. Due to the chemical incompatibility be-

tween the monomers, they tend to segregate but cannot do so at the macroscale

because of their intramolecular linkage. Exploiting such a tendency for microphase

segregation, block copolymers have been used for nanotemplating materials useful

in lithography and the synthesis of nanoporous structures for multiple applica-

tions including catalysts and solar cell active layers. Of particular interest are bi-

and cocontinuous phases that have three-dimensional symmetry, with continuous

domains of the different block types. These phases have superior electrical, me-

chanical, and optical properties[96, 17, 126] which are essentially isotropic; i.e.,

they do not depend on a particular alignment of the morphology with respect

to external interfaces. This is because these phases have either two interweaving

(bicontinuous) networks or a single (cocontinuous) network, of the minority block

embedded in a matrix of the majority block.

Unfavorable enthalpic interactions in DBCs drive the formation of interfaces

during microphase segregation, restricting the junction points of the two different

blocks to lie at or near the interface. On the one hand, formation of the interface

localizes sections of the DBC chains reducing the configurations they can explore

and hence the conformational entropy. On the other hand, the interface tends
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to curve towards the minority domain allowing the blocks to balance the amount

of stretching required to fill the space. The interplay between these interactions

determines the stable microphase[75].

The confluence of results from experiments and self consistent field theory

(SCFT) has led to a detailed understanding of the phase diagram of a pure melt

of DBCs[72]. Under some approximations, such a phase diagram is completely de-

scribed by two parameters: The volume fraction of one of the components f , and

the product of Flory-Huggins interaction parameter and the degree of polymeriza-

tion χN . The phases found to be stable (over particular f − χN regions) are the

micellar (body-centered-cubic and close-packed), cylindrical (hexagonally packed),

gyroid, and lamellar phases. Recent SCFT calculations have resolved another fifth

stable phase[119] of cocontinuous morphology, O70, which has subsequently been

observed in experiments[56].

The incorporation of an additional species to a DBC melt adds more dimen-

sions to the phase diagram, although it also opens up the possibility of macrophase

separation. Nevertheless, the new dimensions potentially allow a larger window of

stability of the desired phases and perhaps conditions more accessible via exper-

iments. In particular, adding a second DBC made of the same chemical species

forces both species to share the interface; such an additive is often referred to as

the “cosurfactant”. Shi and Noolandi[101] first studied the effect of adding a very

small amount of surfactant and analytically studied the change in interfacial ten-

sion and its contribution to the free energy. Early work focused on polymers of the

same total degree of polymerization but different block lengths (allowing a common

χN value for the system). For dilute blends, a one-component approximation was

shown to be valid using theory[74]. Later studies on blends over a wide range of
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compositions have mapped out macrophase separation and two-phase coexistence,

but they were restricted to the cylinder, lamellar, micellar, and disordered phases

only, and did not consider the gyroid phase or other bicontinuous and cocontinuous

phases[73, 60].

Experiments have shown that it is possible to obtain bicontinuous and cocon-

tinuous phases by blending suitable DBCs – typically an asymmetric copolymer

and a symmetric copolymer[105, 16, 11]. It was also shown that blending two

symmetric DBCs does not always lead to a lamellar phase, but also to a spongy

phase. Hashimoto and co-workers[16, 11] studied a binary blend of asymmetric

and symmetric DBCs in detail, and found an unidentified bicontinuous phase in

between cylinder and lamellae. Spontak et al.[105] studied a bidisperse blend of

DBCs and found a similar behavior, a cylinder to gyroid to lamellar transition

upon increase of overall volume fraction of the minority domain. The preparation

method was also found to be critical in determining the observable morphology of

the binary blends[60]. Previous simulations[52] have shown that for a bidisperse

system of carefully chosen composition, the region of stability of the gyroid phase

is enhanced due to the preferential arrangement of the longer diblock at the nodes

of the gyroid network.

The present work explores via SCFT and particle-based simulation the phase

behavior of a binary blend of DBCs consisting, as in former experimental systems,

of a longer asymmetric DBC and a shorter, symmetric DBC. A specific goal is

to complement previous experimental observations to clarify, in particular, the

stability of the gyroid phase versus other bicontinuous or cocontinuous phases, an

issue that was left unresolved in the study of Court and Hashimoto[16]. We find

that while SCFT does predict the existence of a narrow composition range where
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the gyroid phase is stable, particle-based simulations are unable to resolve among

the gyroid phase, cylindrical phase, and a disordered cocontinuous phase. The

latter simulations also reveal that such a result is partially due to the existence of

packing frustration in the majority-block domains of the gyroid phase.

3.2 Simulation Methods

3.2.1 Self-Consistent Field Theory

In SCFT, polymer chains are modeled as flexible Gaussian chains. The main idea

is to replace the calculation of the partition function of the entire system by the

calculation of the partition function of a single chain in an external field. Here, we

describe the theory for a bidisperse block copolymer blend. For each component

c in the blend, the degree of polymerization is Nc and the volume fraction of

monomer of type A is fc, with ϕc the overall volume fraction of the component.

χ is the Flory-Huggins interaction parameter between unlike monomers A and B,

and N is the chain length of one of the components chosen as the reference. The

set of equations for the external fields for the canonical ensemble are[75, 72, 119]:

ωA(r) = χNφB(r) + ξ(r) (3.1)

ωB(r) = χNφA(r) + ξ(r) (3.2)

φA(r) + φB(r) = 1 (3.3)

where φi are local density fields that satisfy the incompressibility condition (Equa-

tion 3.3), ξ(r) is the Lagrange multiplier introduced to enact the incompressibility

constraint, and ωi(r) is the mean field that acts on a subunit of monomer type i.

35



The chain propagators “q” obey a diffusion-type of equation,

∂qc(r, t)

∂t
=
Ncb

2
i

6
∇2qc(r, s)− ωi(r)qc(r, s) (3.4)

for each component c in the blend, b is the Kuhn length of monomer i, s is a

contour variable between 0 and 1 specifying position along the polymer chain, and

i denotes the identity of the block along the contour length of the chain. Hence,

i =


A, s < fc

B, s > fc

(3.5)

The density fields are calculated as

φA(r)

N
=
∑
c

ϕc
NcQc

∫ fc

0

dsqc(r, s)q
†
c(r, s) (3.6)

φB(r)

N
=
∑
c

ϕc
NcQc

∫ 1

fc

dsqc(r, s)q
†
c(r, s) (3.7)

The partition function of the single chain Qc is

Qc =
1

V

∫
V

drqc(r, 1) (3.8)

The above set of equations [Equations 3.1-3.8] is solved selfconsistently using the

pseudo-spectral method and the code developed by Morse and co-workers[79]. The

ω fields are initially guessed and expanded in a symmetry-adapted basis function

based on the morphology for which the free energy is to be calculated. The equa-

tions are then solved iteratively until convergence. Finally, the free energy F is

evaluated as

F

ρkT
=
∑
c

(
ϕc
Nc

[
ln

(
ϕc
Qc

)
− 1

])
+

1

V

∫
dr

[
φA(r)φB(r)χN −

∑
i=A,B

ωiφi(r)

]
(3.9)

The equations are solved in dimensionless units. Different Kuhn lengths are used

for the two monomers, and the results depend on the variables χ, Nc, fc and the

blend composition ϕc.
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3.2.2 Dissipative Particle Dynamics

Particle-based simulations account for density and composition fluctuations in the

system whose effect is neglected in SCFT. Furthermore, they readily allow the anal-

ysis of spontaneously formed network phases lacking long-range order. Dissipative

particle dynamics (DPD) has been introduced[45] as a coarse-graining approach to

study mesoscale phenomena at longer time and length scales than those allowed

by conventional molecular dynamics. To achieve this, the potential of interac-

tion between particles is modified and coupled with a thermostat that consists of

dissipative and random forces. It has been applied successfully[37, 53] to model

microphase assembly of copolymer systems. Each macromolecule is modeled as a

chain of beads (particles) linked by harmonic springs with the spring force given

by FS
ij = −kSrij, where bead i is connected to bead j and spring constant kS = 4

in our calculations. The interparticle interaction force between beads is given by

FC
ij =


aij(1− |rij|), |rij| < 1

0, |rij| > 1

(3.10)

whose range also defines the effective “bead diameter” and the unit length used to

reduce all lengths reported hereafter. It should be noted that we did not incorpo-

rate bead size asymmetry in this model, and the mass, length and time scales are

all set to unity. To model the differing chemical interactions between monomers

of different types, the coefficient aij is defined as

aij =


25, i = j

25 + 3.27χ, i 6= j

(3.11)

where χ is the Flory-Huggins parameter. The equations of motion are integrated

using a modified velocity Verlet scheme[38]. The Lowe-Andersen thermostat[62] is
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used to maintain the reduced temperature fixed at unity. It acts on the relative

velocity along the particles’ center of masses and is designed to conserve their

momentum. The overall density of the beads in the simulation box is exactly ρ = 3

and all simulations are carried out in the canonical (constant density, composition,

and temperature) ensemble.

For each blend composition, simulations were carried out in cubic boxes for

two million iterations with time step δt = 0.05; i.e., a duration of 105 units in

dimensionless time. We only explored cubic boxes because our key interest was in

identifying bicontinuous or cocontinuous phases with cubic symmetry. The range

of box sizes studied was chosen taking into account that the shorter chains act

as a cosurfactant and thus lower the thickness of the minority block domain re-

sulting in smaller unit cells than those used for the pure DBC with the longer

chains. Accordingly, our simulation box sizes “Lbox” ranged from Lbox = 10− 25.

The box size is critical because it artificially imposes a periodic length scale to

the system. Cubic bicontinuous and cocontinuous phases are most affected since,

e.g., for the gyroid morphology, we have to accommodate an integral number of

unit cells (typically just one) in the box. This effect is milder for other phases

but even for hexagonal cylinders, the tubes tend to align along the [111] direction

of the simulation box. To probe the G phase at multiple box sizes, we used the

final configuration obtained from simulations where it formed spontaneously and

expanded or contracted the box with appropriate chain insertions and deletions

to match both the overall density of ρ = 3 and the volume fraction of the blend.

For preparing such initial configurations, an ad-hoc Monte Carlo scheme was used

wherein the pressure was either reduced (to zero) for volume expansions or in-

creased to large values (80 here) for contractions, while chain insertions/deletions,

and relaxation moves were performed concurrently.
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After the compression/expansion run, the configurations are further equili-

brated using DPD for 2 × 106 time steps at δt = 0.05, after which the pressure

(and compressibility factor) is calculated at a finer time step of δt = 0.01. Five

configurations from this run are used as starting points for separate MC-EXE runs

as described below.

3.2.3 Calculation of free energies

Due to the multitude of box sizes studied using DPD and the morphologies ob-

tained at each blend composition, a reliable estimate of the free energy is crucial to

determine the stable phase. To calculate the free energy, we resort to Monte-Carlo

simulations in an expanded ensemble[27] (MC-EXE). The potential model used for

this system is the same one used for the DPD simulations.

To calculate the chemical potential, chains are gradually added/removed, in

λm stages, i.e., one bead at a time in this work. The transitions between these

stages (∆ = +1 for insertion and ∆ = −1 for deletion) are accepted according to

the Metropolis criterion

Pacc = min{1, exp(ν + ψm+∆ − ψm)} (3.12)

where ν = −∆ lnW , withW the Rosenbluth weight[31]. ψm are the biasing weights

that are iteratively adjusted to attain a uniform sampling of all intermediate λm

stages (i.e., a “flat histogram” approach). From the simulation, the free energy

difference between successive stages is calculated using Bennett’s acceptance ratio

method[5]

β∆Am,m+1 = C − ln
lm+1,m

lm,m+1

(3.13)
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where lm,m+1 is the number of transitions from λm to λm+1 and C is calculated

from ∑
m

1

1 + exp(νm→m+1 − C)
=
∑
m+1

1

1 + exp(νm+1→m − C)
(3.14)

The excess chemical potential for the whole chain (each species) is simply the cu-

mulative free energy change over these stages, i.e., µex =
∑N−1

m=0 ∆Am,m+1. Finally,

the excess free energy of the system is calculated by

βaex = β
∑
c

ycµ
ex − (Z − 1) (3.15)

= β
∑
c

(
yc

N−1∑
m=0

∆Am,m+1

)
− (Z − 1) (3.16)

where yc is mole fraction of component c, Z = βPV/(
∑

cMc) is the compressibility

factor, Mc is the number of chains of component c, and β = 1/kT (with k =

Boltzmanns constant). Error bars in the free energy estimates (for each set of

blend compositions and system sizes) were obtained as the standard deviation of

the values obtained from 5 independent simulations.

The free energies from this MC-EXE method (Equation 3.16) are expected to

be suitable for the purpose of discerning the stability of different morphologies

obtained at the same thermodynamic conditions. It should be pointed out, how-

ever, that for morphologies with three dimensional symmetry, like the bicontinuous

phases, equation 3.16 ignores a correction needed to account for the fact that our

simulations do not allow fluctuations in the number of unit cells (of the given

morphology) in the system[111, 78]. Such a correction is especially important to

identify the optimal system size at which a phase attains its minimum free energy.

In such cases, an alternative “thermodynamic integration” method “TI” is prefer-

able to simulate free energies. With TI, we can estimate the free energy difference

(of a given phase) between the desired χN and the disordered phase at χN = 0 by
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Component N f
as 2.866 0.185
s1 1 0.485
s2 0.79 0.455
s3 0.652 0.490

Table 3.1: Chain lengths used in the SCFT study. N is the “relative” degree of
polymerization and f is the fraction of monomer A in each component.

constructing a 3-step reversible path from the initial and final states[80] consisting

of: (i) applying an ordering field of the desired morphology at χN = 0 to drive

self-assembly, (ii) increasing the value of χN to the final state, and (iii) switching

off the ordering field at the final value of χN . A detailed account of how this TI

method is implemented (e.g., to create the ordering field) and its application to

different systems is the subject of a forthcoming publication. In this paper, we

will just use it for a representative case to validate the conclusions drawn from the

MC-EXE results.

3.3 Results

3.3.1 SCFT

We used SCFT in a canonical ensemble to predict the phase behavior of three

binary blends in the composition range 0 ≤ ϕs ≤ 1, for varying lengths of the sym-

metric chains. Here, ϕs is the volume fraction of the symmetric diblock copolymer

chains in the mixture. It is related to the overall volume fraction of the minority

block or monomer type A (ϕA) by the relation ϕA = fas(1−ϕs)+fsϕs. Asymmetric

Kuhn lengths were used, namely, bA : bB = 1:1.11, to mimic PS-b-PI. Three lengths

of the shorter diblock were studied, which are denoted in order of decreasing size
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Figure 3.1: Phase diagram from SCFT for blends s1 (top), s2 (middle), and s3
(bottom) as described in Table 3.1. Blue = cylinders, green = gyroid, red =
lamellar, black = disordered.

as s1, s2, and s3. Note that since SCFT describes the behavior of chains in the

infinitely long chain length limit, only relative chain length values are meaningful

and we choose as reference Ns1 = 1. Details of the system are found in Table 3.1

and the results are summarized in Figure 3.1. The phase diagram was constructed

for χNs1 ranging from 11 to 25 in steps of unity. This enables us to study the

blends in the same temperature range, with the as-s1 blend entirely above the

ODT (χNs1 = χ > χNODT ). As ϕA is increased, a progression of phases from C

to G to L was observed for each of the blends. At low values of χNs1, the blends

of s2 and s3 with large amounts of the symmetric component were in the disor-

dered state as is expected due to the proximity of the ODT for the pure symmetric

DBC. Other candidate phases included in the study were the double diamond and

body-centered-cubic micellar phases, but these were found to be always unstable.

42



Figure 3.2: Phase diagram at constant temperature (χNs1 = 15). The solid black
lines mark the phase boundaries obtained by Court and Hashimoto [16].

The predicted sequence of stable phases on increasing ϕA; i.e., C → Bicon-

tinuous → L and the L → Disorder (for small Nsi/Nas) is consistent with the

experimental observations of Hashimoto and co-workers[16]. Note also that in

their experiments no macrophase separation was observed for any of the blends

under study. Figure 3.2 compares all three mixtures at the same value of χ, and the

experimental data by Court and Hashimoto at room temperature. The uniden-

tified bicontinuous (Bicon.) phase in the experiments occurs around regions in

the theoretical phase space where the gyroid is stable. In the experiments, the

pure asymmetric polymer yielded a BCC sphere microstructure, which we did not

observe in our SCFT calculations, although the free energy of the spheres was

only marginally higher than that of hexagonal cylinders. For both theory and ex-

periment, the as-s2 blend has the widest range of stability of gyroid which may

be attributed to the highest degree of asymmetry (f = 0.455) in the short chain.
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Figure 3.3: Morpohlogies obtained at χN = 35 for various blend compositions ϕA
and at various box lengths. For clarity, only the interfaces between block domains
are shown.

However, there is disagreement between the theory and experiments in the location

of the ϕA window where the bicontinuous phase is stable. In experiment, there

is a significant shift towards higher volume fractions whereas in the theory there

is hardly any shift at all (for all the values of χ explored). The reason for such

qualitative difference is unclear, although it may be partially attributed to differ-

ences between the gyroid morphology of SCFT and the unresolved experimental

bicontinuous morphologies.
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3.3.2 DPD

We performed DPD simulations for only one of the systems studied with SCFT, the

one with the longest symmetric diblocks, s1. This choice was set by the requirement

of a moderate chain length for the long asymmetric DBC to keep the system size

computationally tractable; accordingly, a too-short symmetric DBC would have

entailed the use of unrealistically few beads in that chain. For the asymmetric

chain, the number of beads per chain is Nas = 18 and the fraction of beads of

type A is fas = 1/6. For the symmetric chain, the chain length is Ns = 6 and

the fraction of A-type monomers is fs = 0.5. This results in both types of chains

having the same number of A-type beads (=3). The systems were simulated at

a value of χNs = 35, hereafter simply denoted as χN , and for different values of

blend composition ϕs, which is the volume fraction of the short, symmetric chains

in the blend. ϕs is varied from 0 to 1, so that the overall volume fraction of A,

fA = 1/6 + ϕs/3 varies from fas = 1/6 to fs = 1/2.

The double gyroid (G) and cylinder (C) phases were formed spontaneously at

relatively low values of ϕs. Other spontaneous phases that were observed during

the course of these simulations were the simple cubic woodpile (W) phase[115], per-

forated lamellar (PL) phase, lamellar phase (L), and various cocontinuous networks

whose symmetry could not be ascertained. Snapshots of spontaneously appearing

microphases are shown in Figure 3.3.

At ϕA = 0.167 (ϕs = 0), we observe hexagonally arranged cylinders (C) for

moderate values of box size (17 ≤ Lbox ≤ 25). For small box sizes (15 ≤ Lbox ≤

16), we observe a 2-layer woodpile phase (W). To our knowledge, this phase has

never been reported in simulations (a four-layer woodpile structure was recently

reported in experiments[115]). In this phase, cylinders of alternating layers point
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Figure 3.4: Variation of free energies of the woodpile and cylinder phases with box
size at blend composition ϕA = 0.1833. The error bars give the standard deviation
of the data.

in perpendicular directions with the two layers repeating periodically.

Figure 3.4 shows the calculated free energies for the woodpile and C phases

for a blend composition of ϕA = 0.1833. Although the stable phase could not be

resolved from this plot given the proximity of free energy minima and the size of

the error bars, finite size effects are likely more significant for the woodpile phase

which only occurs for small boxes. For Lbox = 15 at which the woodpile phase has

the lowest free energy, it remains stable for over 10 million steps. Once formed,

there are likely both a considerable kinetic barrier and a stabilizing finite size

effect (from the tubes connecting through the box periodic boundaries) to allow

the reorientation of tubes into a hexagonally arranged C structure. On doubling

the box size, the woodpile phase undergoes a transition to the C phase in fewer

than one million steps, further supporting the idea that the woodpile phase is

metastable with respect to the cylinder phase.

The woodpile phase continued to appear at smaller box sizes for values of ϕA up

to 0.2167 (ϕs = 0.15). For the rest of the box sizes only cylindrical morphologies
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formed, albeit with the appearance of more defects as ϕA increased. These defects

included necking of cylinder tubes and the formation of loops, branched points

(nodes), and in some cases, undulating tubes.

For ϕA = 0.2267 (ϕs = 0.18), we first observed a G morphology that emerged

spontaneously for Lbox = 19. In this vicinity, we ran simulations at finer intervals

in ϕA. The G phase appeared spontaneously for ϕA = 0.2250, 0.2267, 0.2283, and

0.2300 in competition with both the C phase and cocontinuous network structures.

A discussion of the free energy results and stability of these phases is described in

detail in section 3.3.3.

Between ϕA = 0.2333 (ϕs = 0.20) and ϕA = 0.2433 (ϕs = 0.23) no clear

symmetry of the morphologies could be identified for any box size. A dominating

feature of these morphologies was the prevalence of single networked structures,

instead of the two interweaving networks characteristic of bicontinuous phases.

Since both the majority and minority phases were continuous, these network phases

were termed cocontinuous. Upon increasing ϕA to 0.2667 (ϕs = 0.3), we observed

perforated lamellar structures (PL) for most of the box sizes investigated. It should

be noted that these perforations were not always hexagonally arranged but were

more of a random nature. At ϕA = 0.3 (ϕs = 0.4), the PL phase was observed for

most box sizes, with the L phase appearing for smaller box sizes. Up to ϕA = 0.4

(ϕs = 0.7), the L phase competed with the PL phase. However, for ϕA = 0.4,

the perforations were tiny and dynamic, appearing and disappearing throughout

the lamellae. We therefore concluded that the phase observed is indeed the L

phase and the perforations are just a transient feature of the morphology. Upon

increasing ϕA, the perforations disappeared entirely and we get a perfect L phase.

To map out in more detail the conditions at which the G phase emerges, further
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χN
ϕA

0.2233 0.2250 0.2267 0.2283 0.2300
30 def C def C/def PL def C/def PL def C/def PL def C
35 C G, C, Cocon. G, C, Cocon. G, C, Cocon. G, C, Cocon.
40 PL, C G, C, Cocon. G, C, Cocon. PL, C, Cocon. PL, C, Cocon.
45 C Cocon. PL, C – def PL

Table 3.2: Morphologies obtained using DPD by varying χN for blend compo-
sitions 0.2333 ≤ ϕA ≤ 0.2300. “Def” refers to morphologies with defects, C =
cylinders, G = gyroid, PL = perforated lamellae, and Cocon. = cocontinuous
phase.

simulations were run by varying χN in steps of 5 in the vicinity of 35. A summary

of our findings is presented in Table 3.2. For χN = 30 only the PL and C phases

appear spontaneously. For χN = 40, we again observe the G phase, but in a

narrower window than for χN = 35, and for larger values of χN values, the G

phase altogether disappears.

It should be noted that for the model adopted in the DPD simulations, the

order-disorder transition (ODT) occurs at χNODT ∼ 28 and hence our choice of

χN would put the as-s2 blend near the vicinity of the ODT and the as-s3 blend

below the ODT, which is qualitatively similar to the experimental conditions. At

χN = 35, (χN − χNODT )/χNODT = 0.25, which would correspond to a χN

of 13.125 for SCFT (a value included in the results of Figure 3.1). Note that

differences between the simulated and theoretical phase diagrams are caused not

only by the difficulties in exactly mapping model parameters but more importantly

by the effect of local fluctuations and finite chain length which are not accounted

for in the theory.
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Figure 3.5: Structure factor of (a) gyroid for Lbox = 19.5, ϕA = 0.2250, (b)
cylinders for Lbox = 19, ϕA = 0.2250, and (c) cocontinuous phase for Lbox = 25,
ϕA = 0.2267.

3.3.3 Stability of the G phase

The G phase appeared spontaneously for certain box lengths at compositions be-

tween ϕA = 0.2250 and ϕA = 0.2300. At the same volume fractions, we also found

the C phase at slightly larger box sizes, and cocontinuous morphologies at even

larger box sizes. The cylinder morphologies were not all defect-free, with some

necking between some tubes. For some box sizes, the defects occurred throughout

the tubes and led to a cocontinuous network. To classify the observed morpholo-

gies, the structure factor of block A was calculated from[99]:

S(q) =

(∑
j cos(q · rj)

)2

+
(∑

j sin(q · rj)
)2

M
(3.17)

where rj is the position vector for beads of the minority block and M is the total

number of all beads in the system. For the morphologies labeled as the G phase,
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Figure 3.6: Order parameter 〈S lnS〉 as a function of box size for the gyroid,
cylinders and cocontinuous morphologies for blend compostiions 0.2250 ≤ ϕA ≤
0.2300; χN = 35.

the peaks in S(q) occurred at positions consistent with the ratios
√

6 :
√

8 :
√

14 :
√

16 :
√

20 :
√

22 :
√

24 :
√

26 :
√

30 :
√

32 :
√

38 :
√

42[24], although not all of

them were always present prominently. An example is plotted in Figure 3.5a for a

snapshot taken at ϕA = 0.2250. For the C phase, we get peaks consistent with the

ratios
√

1 :
√

3 :
√

4 :
√

7, indicating a hexagonal ordering (Figure 3.5b). Figure

3.5c shows peaks of a cocontinuous phase in the ratios
√

1 :
√

4 :
√

6 :
√

10, which

are inconsistent with any known cubic bicontinuous phase; these phases are termed

as disordered cocontinuous because often the square of the peak wavelengths is not

in integral ratios.

Visual inspection of snapshots and structure factors proved inadequate to

characterize a particular type of order in cocontinuous phases; e.g., to deter-

mine whether it is a highly defective C phase or not. To try to characterize

the order in these cocontinuous phases, we used the order parameter given by

〈S lnS〉 =
∫

dqS(q) lnS(q), which measures the amount of order in the system[37].
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Figure 3.7: Variation of free enenrgy with box size for different morphologies for
blend composition ϕA = 0.2300 and χN = 35: (a) from MC-EXE method and (b)
from TI method (showing free-energy diference relative to that at χN = 0).

This order parameter is therefore akin to the negative of an “entropy” in the

structure factor. In general, it is expected to be highest for the lamellar phases,

somewhat lower for hexagonal cylinders and perforated lamellae, even lower for

bicontinuous and cocontinuous phases (as the number of peaks contributing to the

structure increases), and is zero for the disordered phase. The results are plotted

in Figure 3.6 for χN = 35. It is seen that the G phases have much lower val-

ues than the C phases, whereas some of the cocontinuous morphologies are more

network-like while others have some cylinder-like character. This order parameter

was used to distinguish perforated lamellae from cocontinuous phases for blend

compositions in the 0.2333 ≤ ϕA ≤ 0.2433 range.

For the blend composition ϕA = 0.2300, the simulated free energy via MC-EXE

is plotted against simulation box size in Figure 3.7a. Changes in free energy with

box size are most pronounced in the G phase (observed in other blend compositions

as well). In contrast, the average free energies of the cocontinuous phases seem the

least sensitive to box size. Figure 3.7b shows the free energy relative to χN = 0

for the gyroid and cylinder phases using the TI method. Note that the TI results

exhibit error bars (O(0.01)) that are much smaller than those for theMC-EXE

method (O(0.1)), and that (at least in this case) the MC-EXE and TI results are
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Figure 3.8: Free energies of the gyroid and cocontinuous phases relative to that of
the cylinder phase for various blends at (a) χN = 40, (b) χN = 35.

consistent in that: (i) the free energies of the cylinder and gyroid phase are within

error bars of each other and (ii) the free energy minimum for a given phase occurs

at the same box size (Lbox). In view of this and that the TI method would be

difficult to apply to get free energies for the disordered cocontinuous phases, we

will henceforth only discuss results obtained via the MCEXE method.

For a given set of conditions (χN and blend composition), the stable phase is

the one which has the lowest free energy among all box sizes. Figure 3.8 gives the

lowest free energy of each phase relative to that of the cylinder phase for the range

of ϕA studied. One can see that the free energies for the three competing phases

are within error bars of each other for all blend compositions, and variations in

simulation initial conditions might lead to the appearance of one phase or another

(even if only as a long-lived metastable state). Furthermore, with free energies so

close together, multi-phase coexistence is a possibility (a scenario that could not be

directly explored due to the small box sizes used for computational expediency). It

is conjectured that similar metastability issues and partial phase transformations

may have contributed to the difficulty in identifying the “bicontinuous” structure

observed in the experiments of Court and Hashimoto[16].

We also examined the effect of box size on the contributors to the free energy
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Figure 3.9: End-to-end distances for B block of asymmetric chains as.

(as per Equation 3.16). The compressibility factor (Z) and therefore the pressure

tend to decrease slightly upon increasing box size, suggesting that larger box sizes

may help relieving some mechanical stress associated with the orientation or com-

patibility of the morphological patterns in the simulation box. In contrast, the

chemical potential for each component does not follow any particular trend among

all blend compositions studied (results not shown), thus indicating a non-trivial

dependence of the free energy of such contributors. We also calculated the end-to-

end distances for both the asymmetric and symmetric chains in all morphologies.

For the G phase, as box size increases, the end-to-end distance of the asymmetric

chains as increases; this is true for the overall chain and for the individual A and

B blocks within as. These data are shown in Figure 3.9 for ϕA = 0.2300. On the

other hand, the end-to-end distances of the symmetric chains s1 of all morpholo-

gies lie within the same range of values (∼1.295 – 1.315 data not shown). This

is expected, as shorter chains are known to act as stiffer entropic springs. It is
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Figure 3.10: Local density of the majority domain. Red portions indicate regions
of the minority domain. Green (low density) pockets in the ‘bulk’ of blue domain
evidence packing frustration. (a) Gyroid phase for Lbox = 19.5, ϕA = 0.2250,
(b) cocontinuous phase for Lbox = 25, ϕA = 0.2267, and (c) cylinder phase for
Lbox = 19, ϕA = 0.2250.

then the extension of the longer (15-bead) B blocks in the as component that is

expected to have a larger contribution to conformational entropy in the system and

serve as a probe of the degree of confinement in the B-rich domain. The fact that

for all morphologies the as-B block end-to-end distance tends to decrease upon

reducing the box size reflects a concomitant decrease in the B-domain “thickness”

that accentuates the confinement of the enclosed chains. However, this trend need

not be monotonous (e.g., if the domain geometry does not scale affinely with Lbox)

and is strongly dependent on morphology (e.g., chain extension in the disordered

cocontinuous phases seems the least sensitive to box size).

Figure 3.9 also shows that the C phase is the one that achieves the lowest level

of chain stretching (for a suitable choice of box size). Because chain stretching is

a hallmark of packing frustration, these observations suggest that one should also

observe regions of lower density in the centers of the B (majority) block domains

which the as-B block chains are trying to fill (driving their over extension). This

expectation is verified in Figure 3.10 which shows the spatial variation of the B-

block density and where one can see lower density regions (green) in the center
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Figure 3.11: Isosurfaces of A-block fraction = 0.5 for the gyroid phase with Lbox =
19.5, ϕA = 0.2250: grey surface represents overall A-monomers in the blend, green
mesh for symmetric chains, and red mesh for asymmetric chains. (a) Density
calculated as the number of symmetric chain A beads over total number of beads.
Points 1 and 2 show nodes that the symmetric chains occupy, 3 is a node which
such chains do not occupy, and 4 refers to a tube that such chains occupy. (b)
Density calculated as number of A beads of all chains over total number of beads.

of the B-domain. Indeed, one also sees that the low B-density pockets increase

going from the C to the G and to the cocontinuous phases, in correspondence to

their average as-chain end-to-end distances under those conditions. While packing

frustration is the result of morphology-specific competition of enthalpic interactions

(trying to minimize the interfacial surface area) and entropic interactions that favor

uniform mixing and density, it is likely that the disparity in the B-block lengths

enhances packing frustration in the B domain. Note that since the SCFT we used

before (in Section 3.3.1) assumes uniform domain densities and Gaussian chain

behavior, it is not suitable to capture the chain stretching behavior and the local

lower density regions as described in Figures 3.9 and 3.10.

Finally, we examined the spatial distribution of chains in the A (minority) do-

main and around the block interfaces to detect any signs of morphology-dependent

packing frustration or local segregation. No regions of lower density are detectable

in the A domains (results not shown), perhaps a consequence of the short A blocks

and the thin tubes or struts involved. The structure factors of each of the com-
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ponents indicate that there is no preferential arrangement towards nodes or tubes

for the longer chains (results not shown) and that the interface is shared evenly

between the two components (see Figure 3.11a). However, the A-B junctions of

the longer, asymmetric chains are more confined within the minority domain while

the A-B junction of the shorter, symmetric chains occupies the domain periphery

in the G (see Figure 3.11b), C, and cocontinuous phases. In a sense, two paral-

lel interfaces emerge having the same morphology separated by a small distance

(equal or less than one bead diameter), with the shorter chains occupying the one

with the lower curvature. These results are surprising in that one may have ex-

pected the outer interface to be formed by the asymmetric chains since these are

being “pulled” toward the centers of the B domains (i.e., the packing frustration of

their B-blocks).We conjecture that it is the shorter symmetric chains that form the

outer interface because in this way (i) they are less confined at the interface and

hence lose less translational and mixing entropy and (ii) the packing frustration

in the narrow A domains is alleviated. Interface “shifting” could then be seen

as an alternative strategy to fill the A-domain uniformly when chain stretching

is too demanding and minimal (as with the short A-blocks used here). As blend

composition is increased and the curvature of the A-B interface decreases, we find

that these two interfaces almost coincide and for the perforated lamellae, these are

essentially identical.

3.4 Conclusions

In this work, we have shown that for a binary blend of DBCs containing a longer

cylinder-forming asymmetric DBC and a shorter lamellae-forming symmetric DBC,

the phase diagram reveals the progression from a cylinder to a lamellar phase
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with an intermediate morphology. Although SCFT calculations predict that the

gyroid phase is stable over a narrow composition range of the blend, particle-based

simulations indicate that in such a region the free energy of the gyroid, cylinder,

and disordered cocontinuous phases are within error bars of each other, even for

multiple values of χ. Further examination of the structure factor and chain spatial

distributions show that both types of DBCs occupy the interface evenly; e.g.,

they do not preferentially reside in the nodes or the struts of the gyroid phase.

However, the shorter chains penetrate less and the longer chains penetrate more

into the minority domain, creating a “double” interface that likely relieves packing

frustration in the A-rich phase but contributes to packing frustration in the B-rich

phase. Such chain stretching and interface shifting can be seen as mechanisms

by which the system can realize a given morphology minimizing the loss in chain

conformational entropy (by extending mostly the more forgiving longer chains) and

in translational entropy (by reducing the confinement of the shorter chains). In the

future, it will be interesting to explore the feasibility of using an asymmetric DBC

additive but of a composition chosen to alleviate packing frustration in both of the

domains; depending on the length and composition of such an additive, it could

stabilize a gyroid phase over a broader range of conditions and at overall A-block

volume fractions that may be lower or higher than those where it is observed in

pure DBCs[95].

An intriguing finding in this work is the appearance of a metastable woodpile

phase. Although its free energy was found to be within error bars of the cylindrical

phase, the woodpile phase transforms to a cylinder phase when the box size is

doubled in each dimension. In spite of this, the fact that the woodpile phase

appears spontaneously seems to indicate that its stability could be achieved not far

from the composition space explored in this work. Some of our ongoing work entails
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precisely exploring DBC blends and conditions where the woodpile phase becomes

stable. A related but broader area of interest relates to understanding how the

preparation and processing conditions (e.g., via the use of transient external forces

and flows) could bias the system to be kinetically trapped in a desired metastable

phase among a number of competing phases having similar free energies (e.g.,

to trap the woodpile phase at compositions where it competes with a stable C

phase, or to form the G phase at conditions where it competes with the C and

cocontinuous phases).

Finite size effects associated with small box sizes constitute one of the impor-

tant shortcomings of particle-based simulations. In principle, for periodic ordered

morphologies one should consider using ensembles where the number of unit cells

is increased until attaining a limiting convergent behavior. Ongoing work focuses

on determining the true unit cell size of the morphologies by indirect estimation

of the “chemical potential” associated with number of unit cells[111] from calcu-

lations of free energy using thermodynamic integration[78] and those of chemical

potentials and compressibility factors using the methods described in this paper.

In the case of ordered, orthorhombic cocontinuous phases, one should consider

varying not only the system size but also the asymmetry of the box sides to attain

the optimal unit cell shape (which need not be the same as the theoretical one).

Constant pressure simulations, as opposed to constant density simulations, could

also help discriminate the most stable phase at conditions where competing phases

may lead to non-negligible differences in density. Clearly, such undertakings would

entail large investments of computational resources and advocate for alternative

hybrid approaches, like the one adopted here, where the results and strengths of

SCFT and particle-based simulations are combined to probe both large system-size

behavior (via SCFT) and crucial details of the local structure of selected phases
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(via DPD).
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CHAPTER 4

SIMULATION OF FREE-ENERGIES OF BICONTINUOUS

PHASES FOR BLENDS OF DIBLOCK COPOLYMER AND

SELECTIVE HOMOPOLYMER

4.1 Introduction

In block copolymer and surfactant systems, bicontinuous phases like the gyroid

(G), the double diamond (D), the plumbers nightmare (P), and Neovius (N) phase

are characterized by a periodic cell that has 3D symmetry and where the minority

component forms two networks embedded in a continuous matrix of the majority

component that interweave but never intersect each other. These networks are

made of struts and nodes where the number of struts that connect into a node are

3,4, 6, and 8 for the G, D, P, and N phases, respectively. The field of bicontinuous

network synthesis has become an area of prolific research with application-driven

goals. These range from photonic devices, solar cells, drug-delivery patches to

complex coacervates. Several material properties directly depend on the underlying

structure (e.g., optical, electrical, mechanical, transport, etc.)[21, 54, 59, 85, 120,

123, 126] and being able to synthesize a variety of morphologies using the same set

of building blocks can provide great flexibility in designing new materials. Over the

last two and a half decades, considerable success has been achieved in synthesizing

a variety of morphologies using bottom-up approaches by self-assembly of block

copolymer materials.

However, the assembly of bicontinuous morphologies from block copolymers

continues to be a challenging task for several reasons. First, these phases are typ-

ically stable only in a narrow region of the phase diagram. The need to synthesize
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molecules with very tight compositions and to operate at very specific conditions

can be not only expensive but also limiting in terms of practicability and poten-

tial applications. Second, kinetic trapping, whose effects are enhanced near phase

boundaries, may preclude their timely formation and long annealing times are often

necessary in experiments to obtain bicontinuous structures. In the past, bicontin-

uous morphologies have been misidentified in several experimental studies[114, 39]

and sometimes cannot be unambiguously identified when appearing as a mixed or

partially transformed material[14, 15]. To circumvent these issues, incorporating

additives to the block copolymers is a promising route to expand the stability re-

gion of these phases and to reduce kinetic traps by targeting conditions near the

center of the stability regions. Given the different types of additives that can be

used, theoretical and simulation studies are necessary to chart the associated phase

diagrams which can be used to guide experiments towards the facile realization of

any desirable bicontinuous phases.

The blend of an A-B type DBC with a homopolymer of type A provides a route

to obtain multiple bicontinuous morphologies where we have two non-intersecting,

interweaving networks of A-type material assembled within a matrix of the ma-

jority B[24, 28, 73, 23, 65, 66, 77, 76, 118]. The relevant design parameters for

this bottom-up assembly are: (i) volume fraction of B in the DBC (fdbc), (ii)

relative degree of polymerization of the homopolymer (α = Nhom/Ndbc), and (iii)

volume fraction of the added homopolymer (φ = volume of homopolymer/total

volume of the blend). Our focus will be on the G forming volume fraction of DBCs

(fdbc = 1/3), since that is the only bicontinuous morphology stable for a pure DBC

and has been shown to lead to progressively more complex bicontinuous phases as

more homopolymer is added[65, 66].
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Previous work[65, 66] focused extensively on values of α = 0.8 and used both

self-consistent field theory (SCFT) and particle-based simulations to predict con-

ditions at which the three bicontinuous phases – the G, D and P phases would

be stable. While SCFT provides a relatively expedite and reliable means to map

out such phase diagrams, its reliance on mean-field approximations can make its

predictions inaccurate at conditions where, e.g., density fluctuations or non-ideal

chain conformations are important. Particle-based simulations, where polymers

are modeled as chains of connected beads, are in principle free of the effects of

mean-field assumptions and can be used to gain insights into the kinetic aspects

of self-assembly but are computationally much more expensive. Accordingly, it

is only feasible to conduct particle-based simulations of chains of relatively small

degree of polymerization which introduces a discreteness to the polymer composi-

tions and size ratios that are studied. We note, however, that the use of soft-bead

potentials like that associated with Dissipative Particle Dynamics (DPD) to some

extent circumvents the short-chain curse in that each soft bead is meant to repre-

sent the effective interaction potential of a short polymer (hence a 10-bead DPD

chain could approximate a polymer with 100-1000 repeat units). Even so, each

unit cell of a bicontinuous phase will typically contains several thousand chains

and it becomes computationally prohibitive to simulate more than one unit cell.

Another key challenge that is especially formidable for particle-based models

of bicontinuous phases is that their unit cell size is not known a-priori. This

implies that the stability of the morphology is sensitive to the box size, and only

for a box size commensurate with the natural unit cell size can one be guaranteed

to attain optimal stability. In practice, upon varying the simulation box size,

different morphologies may nucleate, and free energy calculations are required to

ascertain the morphology that is thermodynamically stable. For one dimensional
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or two dimensional morphologies, a small-to-moderate mismatch in unit cell size

and simulation box size is naturally circumvented because the structure can rotate

in space and align in a way that best fit the periodic box. For example, the

hexagonally packed cylinders can point anywhere between the [111] direction and

the [100] depending on box size. This is not the case for a bicontinuous phase whose

three dimensional unit cell cannot rotate to accommodate slight mismatches in the

size of the simulation box. Note that this issue is not addressed by box length

search algorithms that look for equal pressure in all dimensions[97]. Also, we will

only be concerned with a constant density ensemble, primarily because the soft

DPD potential we adopted was developed for constant density simulations[37].

Also, because the optimum cell size for a bicontinuous morphology is determined

by a unique (a-priori unknown) number of molecules N∗, neither an NPT ensemble

(where N need not be N*) nor a µV T ensemble will get around this issue.

Thus, to discriminate among competing phases and to determine the correct

unit cell size of a bicontinuous phase, one needs to calculate free energies for differ-

ent box sizes and identify the lowest free energy conditions and phases. However,

simulating the free energy for such materials is highly non-trivial and is the biggest

challenge that this work addresses. Indeed, since bicontinuous phases can be con-

sidered to be soft crystals (which are unique in having a very large number of

molecules per unit cell), simulation of their free energies is subject to the key dif-

ficulties that were first pointed out by Swope and Andersen[110]. In particular,

the use of periodic boundary conditions precludes the possibility of changing the

number of unit cells, rising the potential of neglecting an additional contribution

to the free energy corresponding to the number of unit cells Nc and the associated

‘potential of the unit cell’ νc:

d(βA) = Udβ − βpdV + βµdN + βνcdNc (4.1)
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where β = 1/kBT . Thus methods based on Equation 4.1 like those relying on

molecular insertions to estimate chemical potentials are unreliable for free energy

calculations of crystalline structures because: (i) they typically ignore the impor-

tant finite size effect associated with constraining the number of unit cells, and

(ii) they result in large error bars (arising not only from the chemical potential

of each species but also from the pressure[88]. Although advanced methods have

been proposed to concurrently calculate unit cell sizes and free energies for simple

crystals[125], thermodynamic integration is the most appealing option when deal-

ing with the complex DBC phases of interest. We have previously discussed the

limitations of chemical-potential-based methods in connection to simulations of the

G phase[88], and shown that they can be circumvented by using thermodynamic

integration[57], which has also recently been shown to be effective in calculating

the free energies of simpler morphologies in DBC systems[80, 83] and soft crys-

talline materials[19]. To the best of knowledge, however, such a method has not

been applied to discriminate the stability of different bicontinuous phases.

The aims of this chapter are twofold: (i) To use a variant of thermodynamic

integration to reliably estimate the correct unit cell size for bicontinuous phases

in particle-based simulations, and (ii) to study the effect of homopolymer chain

length on the stabilization of different types of bicontinuous phases. In particular,

we will focus on the region of the phase diagram (parameterized by α and φ) near a

triple point where the G, D, and P phases have been predicted to occur by SCFT.
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4.2 Methods

4.2.1 Model for molecular interactions

We adopt a coarse-grained model of polymers based on the bead-spring soft po-

tential model typically associated with DPD simulations. This model has been

extensively used for capturing the microphase separation of DBCs while abstract-

ing out detailed molecular information.[37, 45] We only describe here the most

relevant model features; readers are referred to reference [88] for more details. Let

Usoft be the contribution of the soft repulsive potential between all beads (irre-

spective of bead type) which depends on rij, the distance between the beads; and

let Uspring be a harmonic potential that connects the different beads within a single

polymer molecule which depends on rs, the distance between bonded beads:

Usoft =

# beads∑
i,j 6=i

Usoft,ij(rij) =

# beads∑
i,j 6=i

12.5(1− rij)2 (4.2)

Uspring =

# bonds∑
s=1

Uspring,s(rs) =

# bonds∑
s=1

2r2
s (4.3)

Finally, let Uint denote the interatomic potential between unlike beads in the

system (where τi is the type of bead i) that depends on the strength of χ, the

Flory-Huggins parameter:

Uint =

# beads∑
i,j;τi 6=τj

Uint,ij(rij) =

# unlike pairs∑
ij;τi 6=τj

1.635χ(1− rij)2 (4.4)

All simulations were performed at the monomer density ρ = 3, using χNdbc = 45

and a DBC length of Ndbc = 18, each containing 6 beads of type A and 12 beads

of type B. Correspondingly, the length of the homopolymer Nhom (restricted to

whole number) was coupled to the parameter α = Nhom/Ndbc. We used the values
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Nhom = 12(α = 0.667), Nhom = 13(α = 0.722) and Nhom = 14(α = 0.778), since

these were the ones closest to the triple point where the G, D, and P phases were

predicted to coexist17. The volume fraction of homopolymer in the blend is given

by φ.

We used molecular dynamics (MD) simulations with time step δt = 0.05 and

cubic boxes of side Lbox to explore a range of Lbox between 15 and 35. This range

is broad enough to capture all three bicontinuous morphologies of interest, based

on knowledge of the approximate unit cell sizes from Ref. [65]. From these simu-

lations, we obtain a list of candidate ordered phases. We then expand or compress

the box of any such phase to other desired Lbox values and correspondingly insert

or delete chains to maintain the target monomer density (ρ = 3). At the new

box sizes, we run MD for an additional dimensionless time t* =105 units and as-

certain that the morphology does not get destroyed. For more details, the reader

is referred to Ref. [88]. We then use these configurations as starting point for

calculating the free energies as described below.

4.2.2 Calculation of free energies

Construction of a reversible path

To evaluate the free energy of a target ordered phase at given conditions (χN, φ,

and α) we use a reference state with χN = 0 where the A-B DBC plus A-

homopolymer blend behaves as a disordered blend of homopolymers. Such a ref-

erence state is convenient since it will be the same for any ordered phase that may

form at different box sizes at the χN of interest (for given φ and α). However, eval-

uating the free energy difference between the ordered state or state 1 (at high χN)
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Figure 4.1: Illustration of the reversible path to caculate free energy.

and the disordered state or state 0 (at χN = 0) involves at least one phase transi-

tion (e.g., a disorder-to-order transition) and it is typically very difficult to directly

pinpoint the phase transitions via simulations due to the significant hysteresis that

occurs upon heating or cooling the sample across transitions.

The method of thermodynamic integration to calculate free energy differences

across a phase transition relies on using a suitably parametrized potential energy

function that can gradually be turned off and on to bridge the different phases

involved in the transition. We construct a reversible (hysteresis-free) path along a

phantom dimension by applying an external field whose strength can be changed

to drive the transition (Figure 4.1a). Previous authors have employed a similar

technique[80, 82] but we introduce some specific adaptations. Our external field

is generated by creating a grid in the simulation box that forms a pixelated repre-

sentation of the phase segregated morphology (i.e., the A and B domain volumes

are discretized into voxels) and gradually applying an energy penalty P (in kBT

units per atom) for any bead that is located in the wrong voxel type. No penalty is
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applied if the bead is in the correct region, as illustrated in Figure 4.1b. This step

involving the application of the external field Uext will be referred to as Branch

1 and its parametrizing variable as ξ. Subsequently, in branch 2 we increase χN

in Uint (parametrized by λ) while concurrently remove the external field P . The

overall potential for this process is given by

U(ξ, λ) = U0 + ξUext + λ(Uint − Uext) (4.5)

U0 = Usoft + Uspring (4.6)

And the free energy change for the two-branch process is:

∆F (disorder→ order) = ∆F (ξ : 0→ 1;λ = 0) + ∆F (ξ = 1;λ = 0→ 1) (4.7)

∆F =

∫ 1

0

〈
∂U

∂ξ

〉
ξ,λ=0

dξ +

∫ 1

0

〈
∂U

∂λ

〉
ξ=1,λ

dλ (4.8)

=

∫ 1

0

〈Uext〉ξ,λ=0dξ +

∫ 1

0

〈Uint − Uext〉ξ=1,λdλ (4.9)

Calculation of the external field

The ordering field Uext is defined on a cubic grid in the simulation box. The geom-

etry of the external field can be obtained either from: (i) simulated morphologies

derived from those spontaneously nucleated or (ii) the idealized phases predicted

by SCFT. In principle, the proposed free-energy calculations should not depend

on the precise field geometry chosen, provided that it drives the system into the

target phase and it does not leave any spurious effect that lingers in the final mor-

phology (once the field is turned off). Unless otherwise stated, we used approach

(i) as the details of the geometries thus generated (like node and tube shapes and
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dimensions) were expected to be closer to those of the target phase. Additional

details of this approach are described in Section 4.5.1.

Choosing the strength of the external field P is an important consideration

for computational efficiency since too strong a P will make both branches longer.

Indeed, P should be just strong enough to induce order in the system. For this,

we examined the evolution of both the structure factor (calculated according to

reference[99] and the average chain end-to-end distances for a system that forms a

diamond phase at φ = 0.3, α = 0.722 in a 20× 20× 20 simulation box. A value of

P > 1kBT per bead was found to be sufficient to attain the ordered structure factor

while a value of P = 5kBT was an overkill; we henceforth adopt a conservative

value of P = 2kBT per bead.

Based on the position ri, each bead i is assigned to a voxel in the grid we

created, v(ri). The external potential applied depends on the type of bead τi and

the average density of that monomer in the voxel [ρ∗τ (v)] and is defined as follows:

Uext,i(v(ri); τi) =


P , ρ∗τ (v) > 0.5

0, ρ∗τ (v) < 0.5

(4.10)

Finally, we have Uext =
∑# beads

i Uext,i.

Assessing integration methods

The next question in using thermodynamic integration is to select a method to

obtain free energy changes. Some authors[88, 80] have used expanded ensembles

(EXE)[63, 58, 13] to obtain the total free energy change along the integration path
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in a single simulation (by calculating and adding up free energy differences be-

tween neighboring stages along the path). The relative probability of transitioning

between adjacent values of the integration parameter (for example, ξ), which is

proportional to exp(−Uext∆ξ) since kBT = 1, should ideally be between 0.1 and 1

for obtaining a flat histogram in the expanded ensemble and to get good statistics.

Since at ξ = 0 the morphology is disordered, a large number of beads will reside in

the ‘wrong’ grid, resulting in a large contribution to Uext. This would require the

ξ-staging to have very small step sizes with several hundred such steps to cover the

entire ξ range, leading to an exponential increase in the time needed to complete a

round trip thus making impractical the generation of enough round trips to attain

accurate statistics. A partial workaround for this issue is to use a “divide and

conquer” strategy so that the ξ steps are grouped into several “blocks” so that

numerous round trips can be achieved within each block. However, a more com-

mon way to overcome such an issue (well-suited to large-system sizes) is by using

methods that do not require the system to be able to jump between neighboring ξ

states; e.g., by using suitable numerical quadrature formulas.

We hence chose to run several parallel simulations at selected values of the

integration parameter and to evaluate the integrals in Equation 4.9 numerically.

Several such quadrature methods exist and have been used in molecular simula-

tions; namely: (i) Trapezoid and Simpson’s quadrature (for uniform spacing of ξ

and λ), (ii) Curve fitting (with arbitrary choice of spacing) followed by an analyt-

ical integration of the curve[102, 55, 86], and (iii) Gaussian quadrature - Lobatto

or Legendre[104, 19] scheme (for prescribed spacing of ξ and λ). To identify the

best technique, we calculated the free energy change for a model lamellar phase

with Lbox = 10 at (χN, φ, α) = (45, 0.300, 0.722). The smallness of the box size

results in a (metastable) lamellar phase, albeit with a high free energy, and forms
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entirely due to the strong confinement. Nevertheless, these simulations are more

than an order of magnitude faster than those for the box sizes relevant to this

work and allow us to test several spacings of the integrating parameters ξ and λ

and variations of the quadrature technique. Based on these comparisons, which

are described in detail in Sections 4.5.2 and 4.5.3, in subsequent simulations, we

adopted an 11-point Gauss-Legendre quadrature for each of the two integration

branches.

The starting configurations for each of the points along the integration branches

are generated serially starting from (ξ, λ) = (0, 0) and using the final snapshot of

a previous point until the entire path has been traversed. Longer equilibration

times (2 × 105 MC cycles) are required when the morphology is disordered and

shorter equilibration (5×104 MC cycles) is sufficient after the morphology becomes

ordered. After equilibration, data is collected for at least over 106 MC cycles for

each point, with up to 3 × 106 cycles for values (ξ < 0.2;λ = 0). Errors for each

value of (ξ, λ) are estimated using block averages as described in Ref. [31], and

since the Gaussian quadrature scheme is a weighed summation, the total error is

calculated by weighting and summing over the individual errors.

4.3 Results and discussions

We choose specific regions within the previously predicted SCFT phase diagram[67]

as shown in Figure 4.2 to calculate the free energies using particle-based simula-

tions. First, we briefly focus on the region marked by an X in Figure 4.2 where the

G phase at (φ, α) = (0.100, 0.722) is the only morphology expected to be stable;

this state is used to validate the TI method. Subsequently, we focus our attention
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Figure 4.2: Phase diagram as predicted by SCFT[67] showing C and L phases in
addition to G, D and P phases. Using particle-based simulations, we studied the
point marked by a red cross and the region within the red box.

on the region enclosed by the red box in Figure 4.2 that contains the triple point

where the G, D and P phases coexist.

4.3.1 Finding the correct box size

At (φ, α) = (0.100, 0.722), we find that a G phase spontaneously nucleated at

Lbox = 24. Other box sizes nucleate disordered tubes connected by nodes. Using

chain insertions and deletions to keep the target density, we obtain the G phase

at neighboring box sizes with ∆Lbox of -1.5, -1 and +1 (relative to the Lbox = 24

base case). We subsequently run MD simulations for at least 106 time steps and

determined the average morphologies for which to calculate the free energy.

The free energy per monomer is plotted for these box sizes in Figure 4.3. From
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Figure 4.3: Free energy calculated using thermodynamic integration for the G
phase in a DBC + homopolymer blend at (φ, α) = (0.100, 0.722).

these, we see that the free energy goes through a clear minimum with respect to

box size, and the optimum box size for the G phase at these macro-conditions of

φ and α is between 23 and 24. These error bars can further be reduced by running

longer simulations depending on the resolution required, especially if competing

phases are present with similar free energies values. The fact that the most stable

box size (lowest free energy) within the discretization of box lengths tested –

essentially corresponds to the box size where the G phase formed spontaneously, is

consistent with the intuitive notion that it would also have the lowest nucleation

free-energy barrier from the disordered state.
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4.3.2 Vicinity of the triple point

Spontaneously formed morphologies

From MD simulations, we get a variety of ordered morphologies that spontaneously

formed from a disordered melt in the range 0.3 ≤ φ ≤ 0.35 and 0.667 ≤ α ≤ 0.778.

The box lengths at which these were spontaneously formed are given in Table 4.1.

The D phase forms at all the values of (φ, α) studied. These D morphologies have

two nodes in the unit cell, and on replicating the structure in all directions, we

get two interweaving networks of the minority component A. The cylinder (C)

morphology is observed at box sizes quite close to those where the D phase forms,

and each unit cell has one tube in the [111] direction which forms a hexagonal

pattern upon replicating the simulation box. The P phase forms at three of the

nine points explored, and each simulation box contains two nodes, one belonging

to each network. The G phase occurs only at φ = 0.3 and each simulation box

contains sixteen nodes, eight belonging to each network. Since each G network is

chiral, more nodes are present within a unit cell than for the other morphologies,

hence requiring larger box sizes. The G phase formed at α = 0.667 was found to

contain a defect which could not be averaged out. The spontaneous box sizes of all

morphologies generally increase upon increasing either φ or α, the only exception

being at the box size where the defective G phase formed.

Morphology stability

The results for the free energy calculations are shown in Figure 4.4, where f is

the Helmholtz free energy per monomer and β = 1/kBT . The difference between

the βf for each calculation and the lowest βf (called βfmin) among all box sizes
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φ = 0.300 φ = 0.325 φ = 0.350
Lbox Phase Lbox Phase Lbox Phase

α = 0.778
20 C 22 D 22,23 D
21 D 28 P

α = 0.722
20 D 23 D 22 D
33 G 21,22 C 27 P

25 P

α = 0.667
20,21 D 21 D 21,22 D

34 Defective G 23 C

Table 4.1: Ordered morphologies at their spontaneously nucleated box sizes

Figure 4.4: Per monomer free energy differences between the current phase and
the most stable phase at the given macroconditions for the for the DBC + ho-
mopolymer blend at χNdbc = 45 with the (φ, α) composition indicated. ∆Lbox is
the difference between the Lbox of a given phase and the smallest Lbox where that
phase formed spontaneously.
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and morphology types for the same (φ, α) is plotted against ∆Lbox. ∆Lbox is the

difference between the box size the free energy is evaluated at, and the box size at

which the morphology was spontaneously formed (see Table 4.1). In cases where

there are more than one box size at which the morphology nucleates, we choose

the lower value. For the G phase at (φ, α) = (0.300, 0.667) only, we calculated the

free energies by using the SCFT-based external field as explained in Section 4.2.2.

As can be observed, the free energies for all morphologies exhibit a minimum at or

near ∆Lbox = 0. Errors calculated in f by block averages are smaller than 5×10−4

and may further be reduced by running longer simulations. Specific comments on

each phase follows:

C phase: The C phase is not the stable morphology at any of the (φ, α) values

tested and only appears accompanying the D phases. Typically, but not always, it

nucleates when the box size is slightly mismatched for the optimum D morphology.

At (φ = 0.325, α = 0.667) and (φ = 0.325, α = 0.778), the D phase is the only

ordered phase to appear at all.

D phase: For the shortest homopolymer added (Nhom = 12, α = 0.667), the D

phase is completely stable for 0.3φ0.35. The G and C phases are metastable with

respect to the D phase. Upon increasing to 0.722, the D phase has arguably a

slightly lower free energy with respect to the G phase at φ = 0.3, but has a slightly

higher free energy with respect to P phase at φ = 0.325, and comparable to the P

phase (within error bars) at φ = 0.35. For higher α = 0.778, the D phase again

has the lowest free energy compared to all other competing phases (i.e., the C and

P phases).

P phase: It is stable only at (φ = 0.325, α = 0.722). At (φ = 0.350, α = 0.722),

its free energy is within error bars from that of the D phase, indicating that these
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φ = 0.300 φ = 0.325 φ = 0.350
Lbox Phase Lbox Phase Lbox Phase

α = 0.778 21 D 22 D 23 D

α = 0.722
20 D 26 P 22 D
33 G 26 P

α = 0.667
20 D 22 D 22 D
34 G

Table 4.2: Stable morphologies and box sizes

two morphologies may coexist.

G phase: It appears only at φ = 0.3, and for both α = 0.667, and α =

0.722, it is of comparable free energy with the D phase, indicating that these two

morphologies may coexist.

The summary of stable phases and findings are given in Table 4.2. In the region

of parameter space we explored, the D phase is the predominant stable phase.

Although we do not find a point that could be assigned to be a triple point where

the G, P, and D phases would coexist (which SCFT predicts in this region), one can

argue that somewhere in between the (φ, α) = (0.300, 0.722) composition where

the G and D “coexist, and the (φ, α) = (0.325, 0.722) composition where the P and

D phases almost coexist, would be a good candidate for a triple point. Interfacial

simulations that could probe the direct coexistence among these morphologies are

highly non-trivial given the disparate unit cell sizes involved and are not addressed

in this work.

Direct one-to-one comparison between SCFT and MD phase diagrams is chal-

lenging due to the disparity in the assumptions underlying these models. For

DBCs, the χN at which the order-disorder transition occurs for chains of finite

length and soft DPD beads is higher than that predicted by SCFT. This partially

motivated our choice of a higher value of χN = 45 in our simulations to allow for
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Figure 4.5: Comparison between phase diagrams from SCFT (full lines) and MD
(dots). Green: stable G phase, red: stable D phase, purple: D coexisting with P,
blue: G coexisting with P and yellow: G coexisting with D

an approximate comparison with a χN = 25 SCFT phase diagram. Furthermore,

the SCFT phase diagram was found to be little sensitive to changes in χN near the

triple point1. Figure 4.5 compares our results from those obtained from SCFT[67].

The ordered bicontinuous phases from SCFT are in colored regions while the gray

regions denote two-phase coexistence. Results from our MD simulations are over-

laid using circles. We have good agreement for all three a points at α = 0.778,

and for the D-P coexistence regions at α = 0.722. For (φ, α) = (0.300, 0.722) our

results are indicative of a D-G phase coexistence region, a location that is not far

from the corresponding region predicted by SCFT. For the α = 0.667 case, how-

ever, our results do not agree with SCFT. In particular, the φ = 0.300 point would

be expected to have the highest propensity to form a stable G phase for being

the farthest from the (SCFT-predicted) phase boundary. Instead, our results for

1SCFT calculations by J. C. Araque showed that the phase diagram was essentially unchanged
by increasing χN up to 30.

78



(φ, α) = (0.300, 0.667) indicate a D-G phase coexistence since both phases have

similar free energies. Therefore, our MD results indicate that the stability region

of the D phase and D-G coexistence regions is larger than that predicted by SCFT

near the triple point. For higher φ, the G phase has disappeared and D is the

only stable ordered phase. Aside from kinetic reasons that may have precluded

the timely formation of the G phase in simulation, the decrease in stability of the

G phase may be attributed to density fluctuations that become progressively more

important as decreases, leading to deviations from SCFT predictions.

4.3.3 Analysis of microstructure

Particle-based simulations allow us to probe the microscopic details of the different

bicontinuous morphologies. In this section we primarily revisit the notion of pack-

ing frustration, which has been a successful framework to explain why some bicon-

tinuous morphologies are usually unstable in amphiphilic systems[75]. Some stud-

ies rationalize such differences in stability by examining interfacial curvatures and

mathematical descriptions of idealized surfaces[69, 36]. However, particle-based

simulations yield fluctuating interfaces with transient non-idealities and hence it

is more convenient to look at packing frustration from the chain stretching per-

spective. Bicontinuous networks consist of approximately cylindrical short tubes

or struts which are interconnected by nodes to form the network. Since the nodes

are bulkier than the tubes, their centers are at a greater distance from the inter-

face and DBCs straddling the nodal surface have to stretch to occupy the centers

of the nodes. This stretching, however, leads to a loss of conformational entropy

since the chains would prefer to adopt more relaxed conformations. Failure to

stretch results in low density regions near the centers of nodes, which would lead
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to a loss of mixing entropy. Both scenarios are manifestations of entropic packing

frustration and their interplay contributes toward shaping the stable morphology.

To detect signs of packing frustration in our systems, we calculated the average

end-to-end distances of the A-blocks in each molecule while keeping track of the

location of the voxel containing the center of mass of that block. First, we identify

the individual networks by calculating clusters of voxels where the density of A

beads (see SI) is greater than 0.5. Within each network, we calculate the distance

of each voxel from the interface (edge of the cluster), di. For bicontinuous networks,

centers of nodes are well defined within the network as the geometric center of the

set of voxels with maximum di. From the geometric center of each node, we also

calculate the distance of each A-type voxel within the network, dc. Further details

of this calculation are provided in the section 4.5.4. Finally, we calculate the mean

square end-to-end distance of the chains and the number of chains with centers

of masses in voxels parametrized by the pair of values (di, dc). The end-to-end

distances (calculated for ten snapshots to improve statistics) are normalized by

the average end-to-end distances in a homopolymer melt of the same length as the

A-blocks of the chains.

We confine our analysis to the three bicontinuous morphologies near the triple

point where they have almost identical composition (i.e., similar α and φ). We

show plots for the mean square end-to-end distances 〈R2〉 in Figure 4.6, averaged

over (a) di and (b) dc. From Figure 4.6a, we see that the DBCs are confined near

the interface within 0 ≤ di ≤ 3 and that there is a remarkable increase in end-to-

end distance 〈R2
dbc〉 indicating that the chains overstretch for di > 1. Homopolymer

chains, on the other hand, have relaxed conformations with a mean square end-to-

end distance 〈R2
hom〉 around unity. Conceptually, this observation is consistent with
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Figure 4.6: Mean square end-to-end distances for DBCs (circles) and homopoly-
mers (triangles) as a function of di (a) and, dc (b). Symbols are in green for the
G phase at (φ, α, Lbox) = (0.300, 0.722, 33), red for the D phase at (φ, α, Lbox) =
(0.325, 0.722, 22), and blue for the P phase at (φ, α, Lbox) = (0.325, 0.722, 26). The
colored vertical dashed lines denote the node radius for the corresponding mor-
phology. Snapshots of G (c) , D (d) and P (e) phases. Homopolymer is shown in
brown and DBC is shown in red (A-block) and blue (B-block). Black circles show
the nodes.

the notion that it is through homopolymer chains maximizing their conformational

entropy (inside the A domains) that bicontinuous phases with larger nodes can be

stabilized. There is a slight decrease in 〈R2
hom〉 from unity as the chains get closer

to the interface, where the chains are expectedly more confined since they do not

penetrate into the B domains. Finally, the node radius (rnode) is inferred from the

maximum value of di for each phase (marked with a dotted line in Figure 4.6a).
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In Figure 4.6b (〈R2〉 vs. dc), we again observe that DBCs stretch as they pen-

etrate the node (dc < rnode, where rnode is marked by a dotted line). Furthermore,

DBCs stretch more for phases with larger nodes. Since these morphologies allow

probing the effect of enlarging the nodes while preserving the total volume frac-

tion of A-type beads, we calculated for each phase the fraction of each type of

chain within the node with respect to the total number of chains of that type.

Going from G → D → P , the fraction of homopolymer chains increases from

0.27 → 0.55 → 0.79, while for DBC chains (lining the node surface) it increases

from 0.11→ 0.23→ 0.41. As the node volume increases, both types of chains are

increasingly confined to the nodes.

Packing frustration in a phase would be significant only if a large number of

chains stretch to a large degree. In Figure 4.7 and in Section 4.5.4 we plot popu-

lation color maps where the surface height is proportional to the total number of

chains for all voxels at a distance di and dc and the color represents the correspond-

ing 〈R2〉. Those plots show that the maximum number of DBC centers of mass

lie at the interface (di = 1), while a maximum number of homopolymer centers of

mass lie just below the interface, i.e., at di = 2. Further, all morphologies have

an overall normalized 〈R2〉 value close to 1, implying that the chain conformations

approach those of the pure homopolymer melt, even for the DBC chains.

The color maps for the homopolymers also capture some physical attributes

of the interconnecting tubes, as illustrated in Figure 4.7 for the P phase . The

gray surface marks the boundary of the node; the region toward the reader being

the node while the region farther back being the tubes. From the tube region in

Figure 4.7 one can conclude that the tubes have a constant thickness and do not

taper as one goes away from the node. We denote the maximum value of di outside
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Figure 4.7: Population color maps showing the number of chains as a func-
tion of dc and di and color coded based on 〈R2

hom〉 for P phase: (φ, α, Lbox) =
(0.325, 0.722, 26).

the node as rtube. The P phase has a well-defined and bulky node (rnode > rtube),

whereas it is less demarked for the D phase and the size of the node is almost

indistinguishable from the tube (rnode ≈ rtube) for the G phase for φ ≥ 0.300 (see

Section 4.5.4). This latter blurriness of the nodal interface (rooted in dynamic

fluctuations) could be one of the underlying reasons why φ = 0.300 is at the limit

of stability of the G phase. At conditions where the G is the only stable phase; e.g.

for (φ, α) = (0.100, 0.722), one has that rnode > rtube despite that 〈R2
hom〉 deviates

from unity (see Section 4.5.4).

As the number of tubes per node increases, the corresponding tube thicknesses

actually decreases for these morphologies (rtube : 5 → 4 → 3 while rnode : 5 →

6 → 7 as G → D → P ). Furthermore, we know the average distance between

nodes which is 2π/q∗, where q∗ is the abscissa of the primary peak of the structure

factor. From this and our knowledge of the node radius, we can calculate the

average length of the interconnecting tubes which goes as ltube : 17→ 13.5→ 12 as
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G→ D → P . Both of these observations are consistent with a smaller fraction of

homopolymers residing in the tubes and being distributed among more numerous,

thinner and shorter interconnecting tubes.

4.3.4 Free energies of structures containing defects

Another important consideration in analyzing bicontinuous structures is the ef-

fect of morphological defects on their free energy and relative stability. This can

be illustrated with the G phase that spontaneously nucleated at φ = 0.300 for

α = 0.667 which contained a defect in one of the nodes as shown in Figure 4.8a.

When such a structure is used to define the geometry of the external field in the

thermodynamic integration, the nodal defect lingers throughout and leads to G-

phase free energies which are slightly larger than those that we obtained using a

defect-free external field (based on SCFT). This comparison is shown in Figure

4.8b where, interestingly, the optimal box size for the defect-containing G phase

is larger (Lbox = 35) than that for the defect-free G phase (Lbox = 34). The dif-

ference in the free-energy minima between these two morphologies (evaluated at

those optimal box sizes) can be seen as the free-energy cost associated with the

nodal defect.

A second kind of defect we investigated was the volume asymmetry of networks

within the spontaneously nucleated bicontinuous phase. The two minority compo-

nent networks do not intersect and the diffusive barrier is too high for the timely

exchange of either type of molecules between the two networks. Therefore, once

nucleated, the structures asymmetry remains essentially fixed, allowing only minor

fluctuations. The asymmetries we obtained ranged from 0.1% to 7% (see details

in Section 4.5.5) which produced free energy differences of about 2× 10−4 (in kBT
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Figure 4.8: (a) Morphology of G phase at Lbox = 34 obtained using Uext generated
from a defective (top) and non-defective (bottom) G morphology. The regions
inside the red ellipse show the same nodal region in both morphologies, highlighting
a defect in one of the networks of the top phase. (b) Free energies for the G
phase obtained from the defect-based Uext and the non-defect-based Uext at φ =
0.300, α = 0.667.

units), which is slightly higher than the error bars in the individual simulations

(1.2×10−4), but significantly lower than the change produced by the defect studied

in Figure 4.8.

To the best of our knowledge, this is the first time that free energies of specific

defects have been calculated for any bicontinuous phase. Understanding the free

energies of defects is the first step in identifying the free energy landscape of a

particular phase, and subsequently, to probe the barriers to morphology formation

for kinetic studies.

4.3.5 Nucleation of bicontinuous phases

Having identified conditions (and box sizes) at which the G, D, and P phases are

stable, we can use them to monitor the dynamic process by which they are spon-
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taneously nucleated. A rigorous analysis of their nucleation kinetics would entail

not only simulating free energy barriers but also creating an ensemble of transi-

tion pathways (for selected values of supersaturation) so as to identify transition

states and quantify rates. These calculations require specialized techniques such

as forward flux sampling[113, 2] or the string method[49], and larger system sizes

(to reduce finite size effects); such highly challenging calculations are beyond the

scope of this work.

We can nonetheless get some preliminary insights into the ordering process by

following the trajectories of brute-force simulations. By starting from a completely

disordered state (stable at high temperatures or χN → 0), we are enacting a very

rapid quench at the temperature (or χN) of interest so that there is a significant

degree of supercooling (or supersaturation) of that initial metastable disordered

phase that drives it into the stable ordered state. We illustrate this analysis for

the D phase and at conditions chosen because a competing C phase also appears

at very similar box lengths; namely at (φ, α) = (0.300, 0.722) and Lbox = 20.

For χN = 45, we may get either the D phase or the C phase depending on

the random seed used to assign velocities at the start of the simulation. At this

degree of supercooling, the A domains first coarsen and later coalesce then align

to form the final morphology, as shown in Figure 4.9. We also looked at the

evolution of the structure factor at the wave vector magnitudes (q) corresponding

to the first four peaks of the phase.. For the D phase[112] these occur at ratios
√

2 :
√

3 :
√

4 :
√

6, and for the C phase[30] at 1 :
√

3 :
√

4 :
√

7. The first peak

occurs at
√

2π/Lbox for the D phase and 4π/(
√

3Lbox) for the C phase pointing in

the [111] direction. When forming the D phase at χN = 45, the first four peaks

grow during coarsening until t∗ ∼ 1000. Afterwards, as the domains split into two
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Figure 4.9: Evolution from structure factor peaks and snapshots of C and D phases.
(a), (b): D phase formation at χN = 45. The second peak shows a sharp maximum
when the morphology splits into two distinct networks. (c), (d): C phase formation
at χN = 45. The first peak is significantly larger than subsequent peaks. (e),(f):
D phase formation through C phase intermediate at χN = 30. Morphology first
segregates into aligned cylinders with small defects which later order into the D
phase. The second peak increases from low (C-like) values to a high (D-like) value.
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non-intersecting networks, the second peak rises sharply before settling to a value

close to the first peak height. In contrast, en route to forming the C phase (Figure

4.9c), prolate domains align by t∗ = 1000 causing the first peak to rise above the

others and is the highest at around t∗ = 3000 where the morphology resembles a

perforated lamellae. As the perforations decrease to form the C phase, the first

peak settles to a steady value, much higher than the second peak. Interestingly, at

lower χN = 30 (corresponding to a lower degree of supersaturation), we observe

a transition from the C to the D phase within a total simulation time of t∗ = 105

– as detected by both visual inspection of the morphology and the evolution of

structure factor peaks (see Figure 4.9e). We note that such a reduction of χN is

mostly expected to slow down the kinetics of the ordering process, while leaving

the relative stability of the D and C phases largely unchanged (as per unreported

SCFT calculations).

Altogether, our results suggest that in the formation of the D phase at the

conditions studied, the C phase or a defective C phase (e.g., a phase containing

aligned but partially connected prolate domains) could in some spatial regions

be an important intermediate that ripens into the final D morphology. Whether

partially connected cylinders may also play a role in preforming the tubes and

nodes associated with other bicontinuous structures remains to be explored. In a

methodological context, our results suggest that the structure factor peak heights

may be an informative order parameter for future studies concerned with tracking

the evolution of phase transitions involving bicontinuous phasees.
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4.4 Conclusions

We have demonstrated the use of thermodynamic integration to calculate the free

energies of bicontinuous phases using a two-branch reversible path evaluated using

Gauss-Legendre quadrature. Other free energy calculation techniques (e.g., based

on calculations of chemical potentials) usually ignore the effect of constraining

the number of unit cells in the simulation box[110]. In the parameter range we

investigated; i.e., 0.3 ≤ φ ≤ 0.35 and 0.667 ≤ α ≤ 0.778 and χN = 45, the D

phase is the predominantly stable phase. Conditions are identified where the P

and the D phases as well as the G and D phases have free energies very close to

each other, which would foreshadow a proximal coexistence region for these pairs

of phases.

Furthermore, our approach identifies the optimum box size, which is particu-

larly important for bicontinuous phases whose free energy is very sensitive to the

simulation box length. In this study we only obtained the optimum box size within

a discretization of ∆Lbox = ±1 in box length; if a higher accuracy is desired, one

may perform calculations for smaller ∆Lbox values. In most cases, the box length

at which a phase nucleates spontaneously coincides with that of the optimum box

size inferred from free energy calculations. Having identified the most stable phase

at particular conditions, we probed the effects of microscopic details of the spon-

taneously formed network phases. We found that defects in the geometry of the

external field used in the integration can affect the resulting free energy if such

defects do not anneal out in the final target structure. We also found that the

relative volume asymmetry between the two networks, if less than 7%, does not

significantly affect the free energy, but such small differences could slightly alter

the coexistence regions for the P phase and the relative stability between the G
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and D phases.

We also examined how the chains are spatially distributed within different re-

gions of these bicontinuous phases. The homopolymers are expectedly excluded

from the A-B interfaces while the DBCs are absent in the tube interiors. Our anal-

ysis based on distributions of the distance between the center of mass of individual

chains and the interfaces reveals some structural details not apparent using visual

inspection. For example, the G nodes and tubes are of similar thicknesses at con-

ditions where the stability of the G phase is borderline, while the node and tubes

are more distinguishable in size at conditions where the G phase is fully stable.

As the nodes get larger going from G→ D → P , the chains spatially redistribute

to accommodate both more homopolymers within the nodes, and more DBCs on

the surface of the nodes. These trends result in the interconnecting tubes getting

both thinner in radius and shorter in length. In all morphologies, the majority of

chains have end-to-end distances close to that of a pure homopolymer of the same

length in the melt state, and only a few DBC chains that stray from the interface

have stretched conformations. These observations are consistent with the idea that

the added homopolymer effectively eliminates the packing frustration that DBC

chains would experience to fill in the bicontinuous nodal centers.

In this work, we used as-nucleated morphologies spontaneously formed upon

quenching it from a disordered system. For the case of (φ = 0.300, α = 0.667),

the G phase thus formed had a defect in the node, and we found its free energy to

be higher than the defect-free morphology generated via a SCFT-based external

field. In the literature, thermodynamic integration has been successfully used to

probe the relative stability of defects in a lamellar phase[82]. Similarly, our work

could be extended to explore the free-energy and morphological changes associated
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with the annealing of defects in bicontinuous phases. This is especially important

in the context of understanding the nucleation of these phases and the transitions

between them, which is also a topic of our future studies.

We have focused on conditions in the vicinity of the theoretically predicted

triple point where the G, D, and P phases coexist. Only recently has the D phase

been shown to be a stable morphology in blends of DBC and homopolymer[112]

albeit for a different A-B ratio in the DBC and smaller α. Despite the initial

report of a P[28] in a copolymer-ceramic hybrid material, a recent re-examination

of those samples revealed that it is more consistent with a distorted G[116]. Further

strategies to enlarge the stability window of the P are required other avenues such

as adding nanoparticles and star polymers to this blend might prove productive

and are the object of ongoing research.

4.5 Supplementary information

4.5.1 Calculation of average density for Uext

The ordering field Uext is defined on a cubic grid and the number of voxels in each

dimension is the closest integer of the box length. Thus, each voxel is approxi-

mately a unit length in each direction. As indicated in the main text, we preferred

to determine the geometry of the external field based on the morphologies sponta-

neously nucleated via MD. Accordingly, the geometry of the ordering field is based

on averaging over 10 snapshots taken 104 dimensionless time units apart from an

MD simulation of the target morphology formed at the conditions of interest. This

averaging is done to smooth out the resolution of the morphology and to eliminate
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the spurious effects of transient defects. To calculate the average spatial density

distribution, one cannot directly calculate them from different snapshots because

the interfaces are not only locally fluctuating but can also shift (translate) over

the course of the simulation. Therefore, we need to translate each snapshot to a

common position[98].

To calculate the magnitude of structure factor Sτ (q) of component τ of each

individual snapshot, we use the equation:

Sτ (q) =

(∑
τj=τ cos(q · rj)

)2

+
(∑

τj=τ sin(q · rj)
)2

Nτ

(4.11)

where q is the wave vector and rj is the location of particle j of type τ and Nτ is

the total number of beads of τ in the box. The phase θk is given by

θk = tan−1

(∑
τj=τ cos(qk · rj)∑
τj=τ sin(qk · rj)

)
(4.12)

The density (reduced by the average volume fraction of the minority domain)

at the center of each voxel is given by

ρ∗(r) = 1 +
∑

k,|qk|<2

βk sin (qk · r + θk); βk =
2

ρ∗τ

√
Sτ (q)

N
(4.13)

The cutoff in qk is used to smear out the effect of individual beads. For a translation

r→ r′ = r + ∆r, the new density profile is:

ρ′∗(r) = ρ′∗(r′ −∆r) (4.14)

= 1 +
∑

k,|qk|<2

βk sin[qk · (r′ −∆r) + θk] (4.15)

= 1 +
∑

k,|qk|<2

βk sin[qk · r′ + {−qk ·∆r + θk})] (4.16)

= 1 +
∑

k,|qk|<2

βk sin(qk · r′ + θ′k) (4.17)
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Figure 4.10: (a) Average D morphology, and (b) Ten morphologies translated such
that they overlap. Note how each snapshot has fluctuating interfaces. Only the
AB interfaces are shown.

Defining θ′k ≡ −qk ·∆r + θk,

=⇒ ∆θ = −qk ·∆r (4.18)

We see that a translation only produces a change in the phase factor[98]. In or-

der to pick the translation ∆r for each snapshot, we choose a basis set of three wave

vectors that best describes the morphology. The set of basis vectors is obtained by

trial-and-error of various combinations of linearly independent qks that contribute

to the largest peak in the structure factor calculated from Equation 4.11. Taking

any one of the snapshots as the reference snapshot, we readily have ∆θ, and we

can then calculate ∆r for each snapshot from Equation 4.18. Finally all the newly

translated θ values are averaged over and we invert the average structure factor

to calculate the average density profile. One example of calculating the average

morphology for the diamond phase at Lbox = 20, φ = 0.3, α = 0.722 is shown in

Figure 4.10.

This averaging procedure did not work well for the G phase at one particular

state point studied because the simulated morphologies contained a long-lived de-
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Figure 4.11: Integrand along each integration branch. The blue points are from
a simulation of 100 equally spaced points for each branch. The red text shows
the equation of the fitted curve drawn in red. The simulation conditions were
Lbox = 10, φ = 0.300, α = 0.722, and P = 2.

fect that persisted in the averaged G phase. For this case only (corresponding to

φ = 0.300 for α = 0.667), we used a defect-free (ideal) morphology of the G phase

obtained from SCFT.

4.5.2 Choice of quadrature method

In Figure 4.11, we plot the integrand for 100 equally-spaced points for both

branches. We shall use this to compare the free energies calculated for fewer

number of points using the methods described below.

1. Trapezoid quadrature: The trapezoid quadrature is a suitable first guess

because it fits a zero curvature line between neighboring integration points.

Although this systematically underestimates the free energy because the

derivative of free energy is always negative, this error is small when using

100 points for evaluation of the integral, and we shall use this estimate to

compare the accuracy of other techniques.
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2. Curve fitting: The integral can be evaluated by fitting a curve (function)

and evaluating its antiderivative. Polynomials usually provide a good fit;

however higher order polynomials lead to oscillations near the edge of the

range of integration (Runge’s phenomenon). An erroneous or ill-sampled

data point can also lead to fluctuations in the fitted polynomial, and thus

the resulting answer[102]. Instead, we propose a non-polynomial fitting func-

tion. Based on the behavior of the comprehensive 100-point calculation, we

propose an exponential (stretched) function of this type for the first branch:

g(ξ) = α + βe−γξ (4.19)

The advantages of using Equation 4.19 are that: (i) its antiderivative is

readily available G(ξ) = αξ − β

γ
e−γξ, and (ii) approximate values α and β

are easily available. From Figure 4.11, and simulations for other box sizes

(not shown), we observe γ ≈ 5 ∼ O(10) for P = 2. Thus, α + β = g(0)

and β ≈ g(1), which are the end points in our simulation (whose values may

be easily estimated by short simulations). For the second branch, the same

function with respect to λ works with an additional linear term α1λ for the

increase in χN . The coefficients are different for both branches but can be

estimated similarly.

P was varied from 1, 2, 5, and 1000 without detecting any discernible change

in the estimate of free energy using the 100-point integration. The quality of

the fit (and value of all coefficients) depended on the value of P imposed. A

very high value of P causes the curve to linearize near ξ = 1, and subsequently

branch 2 gets very sharp near λ = 1. P = 2 was chosen for subsequent

simulations to sample according to g.

Furthermore, with the knowledge of the nature of the curve, we can leverage

the use of non-uniform sampling[31] in ξ or λ, but at points such that G is

95



uniformly spaced. This is to obtain a slowly varying integrand which could

require fewer evaluations to evaluate the integral accurately.

F (λ = 0→ 1) =

∫ 1

0

dλ

〈
∂U

∂λ

〉
λ

=

∫ 1

0

dλ

〈
∂U

∂λ

〉
λ

g(λ)
g(λ) (4.20)

=

∫ G(1)

G(0)

〈
∂U

∂λ

〉
λ

g(λ)
d[G(λ)];

dG(λ)

dλ
= g(λ) (4.21)

3. Gaussian quadrature schemes: We can also apply Gaussian quadrature

schemes that approximate the integrals as a weighted sum of the integrands,

with pre-specified weights and points at which to evaluate the integral. For

the kind of integral we have (with unity as weighting function), we compare

two options: the Lobatto scheme that specifically includes both end-points

and the Legendre that uses neither end-points[86].

4.5.3 Comparison of methods

We compare the accuracy of these methods in Figure 4.12 for the overall process

across different numbers of integration points in each branch. As expected, the

trapezoid rule fares the worst, irrespective of whether the points are uniformly

spaced in ξ/λ or G(ξ/λ). The spacing sampled according to Equation 4.21 per-

forms significantly better by fitting for the coefficients and integrating. Among

the Gaussian quadrature methods, the Gauss-Legendre integration (not including

end points) is accurate even for just 5 integrating points, while the Gauss-Lobatto

(including end points) fares as poorly as conventional trapezoid integration. As

explained below, the issue can be traced to the behavior of the integrand when the

external field is completely switched off.
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Figure 4.12: Free energy versus number of points used to evaluate the integral. The
following methods were compared: (i) Using trapezoid integration of the data (blue
dots), (ii) Fitting the data according to Equation S6 and analytically evaluating of
the integral (green squares), (iii) Evaluating Eq. 4.21 using trapezoid (purple dots),
(iv) Evaluating Eq. 4.21 by fitting a curve (orange squares), or Gauss-Legendre
(red triangles) and Gauss-Lobatto (blue triangles)

Figure 4.13: (a) Values of the integrand (Uint−Uext) over the course of a simulation.
(b) Comparison of the grid used to calculate the integrand (grey) with the actual
morphology (blue for λ = 0.99, red for λ = 1) after 4 million MC cycles. The
interface drift is apparent for λ = 1.
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The Gauss-Lobatto quadrature includes the point (ξ, λ) = (1, 1). At this value

of λ the external field is completely removed during the simulation. This often leads

to a drift in the morphology over the course of a long simulation because the center

of the morphology is not constrained (recall that this drift necessitated shifting

of snapshots to a common position before calculating the average isosurface, as

mentioned earlier). However, our grid on which Uext is defined was not designed

to drift during the simulation, but is set at the beginning of the simulation. Thus,

there is a significant contribution to the integrand (Uint − Uext), not because the

morphology itself deviates from the imposed one, but because it drifts across the

periodic boundaries. This drift contributes erroneously to the free energy estimate,

a problem that is worse for a small box size (Lbox = 10). This issue can be

worked around by imposing a small departure from zero in ξ and λ; namely of

magnitude 0.01, to inhibit this artificial drift as demonstrated in Figure 4.13.

Using this approach and for large box sizes (all of our morphologies are at least

twice the model lamellar unit cell) we see only minor fluctuations. The extreme

points used in Gauss-Legendre quadrature do not include (ξ, λ) = (1,1), but rather

(ξ, λ) = (1, 0.99), so it is able to produce accurate results.

4.5.4 Analyzing network topologies

In order to investigate the evidence of packing frustration in our systems, we

calculated topological markers di and dc of voxels with majority of A-type beads.

di is the distance of the voxel from the interface while dc is the distance of the

voxel from the center of the closest node. Here, we describe in detail the method

used to calculate di and dc. We demonstrate an example in Figure 4.14 for a 2-D

cross-section of the P phase. The simulation box is divided into a cubic grid of
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Figure 4.14: Illustrations for how the network structure is characterized, showing
a 2-D projection of one network of the P phase (centered around a node) in a
10 × 10 grid. (a) Assigning voxels to clusters of type A and marking them as 1.
The distance from the interface (di) of the voxel marked in red is found by drawing
a circle that touches the interface. (b) Assigning di for each voxel and inferring
the node center by the set of voxels with max dis. (c) Calculating dc for each voxel
within the network.

voxels of approximate one distance unit in edge that would yield an integer number

of voxels in the box. The local density for each voxel is calculated using Equation

4.13 and the voxel is labeled 1 if the normalized density of A-type beads is greater

than 0.5 and 0 otherwise, as shown in Figure 4.14a. In order to identify the unique

networks, we find clusters of voxels marked 1 with the criterion that if the nearest

neighbor is also marked 1 it belongs to the same cluster. This is the region enclosed

in blue. Within each cluster, we then calculate the distance of each voxel from

the interface, or the edge of the cluster, di. We do so by calculating the radius of

the largest sphere still enclosed within the cluster. For the voxel marked in red in

Figure 4.14a, this value is 2. The corresponding di for each voxel is shown in Figure

4.14b. We then identify the set of voxels farthest from the interface (possessing

highest values of di), enclosed in green in this case. The geometric center of the

voxel is then denoted as the center of the node and in Figure 4.14c, we calculate

the distance from the center of the node for each voxel (rounded to nearest whole

number). Thus, each A-type voxel has two numbers associated with it, di and
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Figure 4.15: Population color maps showing the number of chains as a func-
tion of dc and di and color coded based on 〈R2

dbc〉. (a) G phase: (φ, α, Lbox) =
(0.300, 0.722, 33), (b) D phase: (φ, α, Lbox) = (0.325, 0.722, 22), (c) P phase:
(φ, α, Lbox) = (0.325, 0.722, 26).

Figure 4.16: Population color maps for (a) stable G phase at (φ, α, Lbox) =
(0.100, 0.722, 24), and (b) G phase coexisting with D at (φ, α, Lbox) =
(0.300, 0.722, 33). Note that 〈R2

hom〉 < 1 and rnode > rtube in (a), while 〈R2
hom〉 ≈ 1

and rnode ≈ rtube in (b).

dc. We then calculate the number of chains whose center of mass lies in the voxel

possessing values of (di, dc), and their associated square end-to-end distances.

The population color maps for each of the bicontinuous phases near the triple

point is shown in Figure 4.15. The homopolymer color maps can be used to

distinguish the geometric features of the phases as explained in the main text.
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Figure 4.17: Dependence of free energy on network asymmetry for the P phase at
conditions (φ, α, Lbox) = (0.325, 0.722, 25).

The DBC color maps, on the other hand (Figure 4.15), are similar for the G, D

and P phases with the maximum number of DBC centers of mass lying at the

interface (di = 1); and the value of 〈R2〉 is fairly independent of dc along a fixed di.

We finally plot in Figure 4.16 the homopolymer color maps for the G phases having

significantly different composition (amount of homopolymer), one is the stable G

phase with φ = 0.1 and the other is the G phase with φ = 0.3 that coexists with

the D phase.

4.5.5 Asymmetry in networks of G and P phases

An important feature of the G and P microstructures spontaneously nucleated is

that their networks may have asymmetric volumes as the two minority compo-

nent networks do not intersect. Furthermore, the diffusive barrier is too high for

exchange of either type of molecules between the two networks in the unit cell.
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Therefore, once nucleated, the structures asymmetry is fairly fixed allowing only

minor fluctuations. We define the degree of asymmetry as the difference in the

number of voxels occupied by each network divided by the total number of voxels

in the simulation box. The asymmetries we obtained ranged from 10−3 to 0.07.

The different values occur by chance based on how the phases nucleated from a

disordered system quenched to the target value of χN . It could be expected that

asymmetry in the volumes of these networks would contribute to the free energy as

well. To quantify this effect, we performed free energy calculations for P networks

at (φ, α, Lbox) = (0.325, 0.722, 25) with varying asymmetry. Ten independent sim-

ulations were run for the given box size value and the average configurations from

each of these simulations was evaluated for network asymmetry. We then selected

networks with particular values of asymmetry and use them to create the geometry

of the external fields needed for the calculation of free energies. As Figure 4.17

shows, these free energies have a spread of about 2× 10−4, which is slightly higher

than the error bars in the individual simulations (1.2 × 10−4). It appears that

the free energy does not change significantly up to a network asymmetry of nearly

0.076, although this wasn’t tested for every box size of every morphology because

of the limited availability of computational resources. In any case, there might be

a slight shift in the stability of the phases depending on the network asymmetry

at which the free energies were calculated.
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CHAPTER 5

OUTLOOK

The primary goal of this work was to stabilize bicontinuous phases using additives

with a view to make them more accessible in experiments. We have identified

routes to obtain a stable G phase using additives that target different aspects of

the microstructure. Using uneven swelling of the microdomains using selective

solvents in different volume ratios (Chapter 2), we were able to access the gy-

roid phase starting from a lamellar-forming DBC. Additionally, we calculated a

four-dimensional phase diagram that provides a design roadmap to obtain specific

domain sizes in the lamellar phase for nanolithographic applications. In chapter 3,

using an interface modifier we modified the curvature of a cylinder-forming block

copolymer to induce the formation of a G phase. In Chapter 4, we start with a

G phase at overall volume fraction of A components φA = 1/3 and find it to be

stable over a large region of volume fractions up to φA = 0.53. Thus we have

established routes using suitable additives to obtaining the G phase starting from

a DBC whose composition can lie between f = 0.167 to f = 0.5, instead of a very

narrow region near f = 1/3 for a pure DBC.

These studies also show the improved tunability of morphologies of DBCs. We

showed in Chapter 2 how solvents can be used to decrease the width of lamellar

domains. This is possible even for bicontinuous phases. The unit cell sizes vary

from Lbox = 19 to Lbox = 33 for the G phase which is about 4.6 to 8 times the root

mean squared end-to-end distance of the 18-mer polymer used in our simulations.

Adding a cosurfactant decreases the domain sizes by decreasing surface tension,

while adding a long homopolymer that acts as a dry brush, significantly increasing

the domain sizes. Figure 5.1 shows that upon adding the appropriate additive,
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Figure 5.1: Tuning size of G domains using additives. Adding a cosurfactant
decreases the domain size relative to a pure DBC, while adding a homopolymer
increases the domain size relative to pure DBC. In this figure, φ refers to the total
volume fraction of all A-type beads.

we not only tune the unit cell sizes, but can also obtain a much wider range of

volume fractions of the A-domains of the G phase. Thus, by selectively choosing

the right additives bicontinuous phases are accessible from three different starting

morphologies as well as widely tunable in terms of the domain sizes.

With respect to simulation methodology, we used both SCFT and MD were

used to study the phase diagrams. In Chapter 2 (two solvents), SCFT was the

only applicable technique because of large disparity in sizes of the solvent and

polymer. Thus, below α = 0.05 we cannot use particle-based simulations directly.

We found a region of phase space (χN = 30, α = 0.01) that showed good agreement

with experiments and predicts that the BCC micelles found in experiment was a

kinetically trapped state. In Chapter 3 (cosurfactant straddling the surface), SCFT

was used to quickly summarize the phase diagram to identify regions of interest

for performing detailed MD simulations. Using MD, it was difficult to discern the

stable phase because both C and G occurred at the same macroscopic conditions

(φA, α) but at different simulation box sizes. An incommensurate simulation box

size also frustrates the bicontinuous morphologies and this can artificially induce

the appearance of kinetically trapped phases. Thus, free energy techniques are
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required to identify the stable phase, as well as the optimum simulation box size.

Methods used primarily in Chapter 2 using chemical potential calculations were

within error bars of each other. A more serious issue with the technique is that

it does not allow a change in number of unit cells which introduces an additional

term in the free energy calculation[110]. Thus, we identified a need to develop a

newer technique to calculate free energies directly (particularly for bicontinuous

phases), that would both find the optimum box size for each morphology and with

smaller error bars.

In Chapter 4 (homopolymer additive), we developed and used a modified ver-

sion of thermodynamic integration that constructs a reversible path from the mor-

phology of interest and a disordered structure. Free energies were calculated with

a resolution of 10−4kBT per monomer which is suitable to resolve the stability

of phases near the triple point, and to pinpoint the optimum box size for each

phase. Furthermore, this technique may be used to calculate free energies of spe-

cific defects or topological features. In agreement with previously predicted SCFT

calculations[67], we found D-G and D-P regions with comparable free energies close

to the triple point, while deviating from SCFT At lower α, thus elucidating the

effects of fluctuations.

The next direction of research lies in extending current free energy calculations

to include calculation of free energy barriers that occur during the nucleation of

these phases. Studying phase transformations (order-order transitions) between

phases with disparate unit cell sizes is an open problem, and therefore we can

only study specific transitions where the unit cell sizes match. In Chapter 4,

we have shown how the C and D phases can switch back and forth in a single

MD simulation at Lbox = 20. Using more sophisticated methods[113, 49], we can

106



look at mechanisms of the growth of these domains and splitting of a disordered

structure into two distinct networks, or between two ordered phases that occur at a

single box size. From Chapter 3, we can also look at C-G transition because they

occur at box sizes close to each other. Other than a rapid temperature quench

(such as the one we studied in Chapter 4), rapid expansion can be another route

to obtain metastable phases, which could subsequently trapped in those states.

This was demonstrated in simulation[81] for the transition from BCC micelles to

a more complex I-WP phase (Each node interconnects 8 tubes). These studies

are experimentally relevant and can help design better routes to obtaining the

morphology of interest.

The search for newer and more complex phases is not over. We showed a

woodpile phase occurring in simulation in Chapter 3. This points to a region of

stability nearby, or a larger region of metastability in the vicinity of parameters

studied. Detailed SCFT calculations for the two-layer woodpile phase could be

a future direction. Entropically engineered materials[26], rather than enthalpy

alone, has been an emerging field of research. Additives bring in translational and

mixing entropy while polymer-based additives essentially provide a large degree of

conformational entropy (as extensively studied in this work). By leveraging the

added entropy of homopolymers, an entire repository of lamellar bend angles was

successfully obtained for incorporation in nanolithographic applications. Use of

tethered nanoparticles[50] also produces a similar phase behavior as block copoly-

mers. Techniques exploiting other forms of entropy (such as rotational entropy,

new chain architectures) and more numbers of blocks[4] can yield newer kinds of

phases. For instance, introducing chirality in one of the blocks has been shown

to produce new phases (helical H*[44]) and even phase transitions (H∗ → G[10])

in experiment. This also opens the door to developing coarse-grained models for
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chiral molecules. Branched chain architecture produces newer arrangements of mi-

celles (A15)[35]. Changing the stiffness of the individual blocks (rod-coil DBCs,

or liquid crystalline molecules with a side chain[117]) also affects the phase behav-

ior. Currently, we are working on obtaining the G phase for a bolaamphiphile[61]

containing a branched side chain.
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