On Computing Graph Closures

Samir Khuller”

TR 88-921
June 1988

Department of Computer Science
Comell University
Ithaca, NY 14853-7501

* This work was supported by the National Science Foundation under grant DCR-85-52938 and PYI
Matching Funds from AT&T Bell Labs.

On Computing Graph Closures

Samir Khuller ~
Computer Science Department,
Cornell University,
Ithaca, NY 14833

June 10, 1988

Abstract

Given a graph G, the closure of G is the graph obtained from G by
recursively joining pairs of non-adjacent vertices whose degree sum is
at least n until no such pair remains. We give an efficient algorithm to
compute the closure using F-heaps. We also define the general closure
of a graph and show that computing the general closure is P-complete
with respect to log space transformations.

1 Introduction

Let G(V, E) be an undirected simple graph. The closure of G is the graph
obtained from G by recursively joining pairs of non-adjacent vertices whose
degree sum is at least n (the number of vertices in G) until no such pair
remains. We denote the closure of G by ¢(G). In [BoMu 76] it is shown
that the closure of G is well defined and the sequence in which the edges
are added is not important.

The closure of a graph has the following interesting property : A graph
G has a Hamiltonian cycle if and only if the closure has a Hamiltonian cycle

*supported by NSF grant DCR 85-52938 and PYI matching funds from AT&T Bell
labs.

(see 'BoM: 76). In fact. if one is given a hamiltonian cycle in ¢(G) it is
not hard to construct a hamiltonian cycle in G.

Here we show that the closure of a graph can be computed in O(n?) time.
This improves the O(n*) bound given in GoMi 84!. We make use of the
F-heaps data structure, which has been used to improve the running time
of many graph-theoretic algorithms. For details on F-heaps see FrTa 84).

A natural generalization of the problem of computing the graph closure
is considered. Given a graph GG and a set of admaissible edges E' (E' is a
subset of the edges of G), the general closure of G is the graph obtained
from G by recursively joining pairs of non-adjacent vertices whose degree
sum is at least n and the pair is in the set of admissible edges. until no such
pair remains. We denote the general closure of G by ge(G. E') where E' is
the set of admissible edges. We show that computing the general closure of
a graph is P-complete with respect to log space transformations, thereby
giving evidence that the problem may be inherently sequential.

2 Algorithm

The graph is assumed to be represented as an adjacency matrix. The idea
is to keep all the candidate edges in an F-heap choosing them one at a time
to add to G. Each time we choose an edge to be added to G, the degrees
of the two vertices incident to the edge increase and we update the corre-
sponding edges of the F-heap which are incident to one of the two vertices.

Summarizing the steps of the Algorithm:

1)Make-heap(H).

2) For all pairs of vertices (u,v) do
If (u,v) ¢ E then
insert(uv,H) with key(uv)= n - deg(u) - deg(v);

3) While find-min(H) < 0 do
e := delete-min(H); {let e = (z,y)}
Forall v € V do
If (v,z) ¢ E then decrease-key(1,vx,H);
If (v,y) ¢ E then decrease-key(1,vy,H);
od;

Add e to G;
od;

G now represents ¢(G).

ANALYSIS:
Step 1 and 2 can clearly be implemented in O(n?) time. In step 3 there are
atmost O(n?) iterations of the while loop since each edge gets added to G
atmost once. Each iteration costs only O(n) time since the amortized cost
of O(n) decrease-key operations is O(n) (see [FrTa 84]).

The algorithm illustrates another use of the F-heaps data structure. The
algorithm can also be implemented in O(n®) time without using F-heaps.

3 General Closure

Given G(V,E) and a set of admissible edges E’, the general closure of G
is the graph obtained from G by recursively joining pairs of non-adjacent
vertices whose degree sum is at least n and the pair is in the set of admis-
sible edges, until no such pair remains. It is obvious that the algorithm to
compute the closure can be easily modified to compute the general closure
of a graph as efficiently. The only difference is that a set of admissible edges
are specified and all new edges added to the graph are restricted to be in
this set.

MONOTONE CIRCUIT VALUE PROBLEM:

A monotone circuit is defined to be a logical circuit a = (a;, as, ..., am),
where each o4 is an input gate (having a value TRUE or FALSE), an AND
gate (a, = a; A o, for some 1,57 < k << m) or an OR gate (ax = a; V v, for
some 1,7 < k < m). The monotone circuit value problem (also referred to as
MCV P) is the problem of determining whether the last gate a,, receives
the value TRUE or FALSE, given a truth assignment to the input gates.
An example is given in figure 1.

The problem has been shown to be P-complete [Go 77], even when the

input gates have fan-out 1 (they appear once as input to another gate) and
each AND/OR gate has fan-out at most 2 [GSS 82.

TRANSFORMATION:

Computing the general closure of G can be turned into a decision prob-
lem by posing a question about the result of the algorithm, such as ‘In the
graph gc(G. E') is there an edge (u,v) (assuming (u,v) is an admissible edge
in £') 77. We show that computing the general closure is P-complete by
giving a log space transformation from the M CV P to the decision problem
described above.

For each instance of the MC'V P we construct a graph G* in such a way
that the circuit value of the considered instance is TRUE if and only if the
general closure problem returns a ‘yes’ answer. Each gate of the circuit 1s
represented by a subgraph.

For AND gate k(k = m) with fan-out 2 (ax = a; A @), we construct
the subgraph as shown in figure 2. For OR gate k(k < m) with fan-out
2 (g = a; V a;), we construct the subgraph as shown in figure 3. For a
TRUE input gate k we construct the subgraph in figure 4. For a FALSE
input gate k we construct the subgraph in figure 5. The number next to
each vertex denotes the degree of the vertex. The number next to each
edge denotes the deficiency of the edge, where the deficiency of admissible
edge (u,v) is defined to be deg(u) + deg(v) - 2N (N is defined later). Each
dotted edge denotes an admissible edge. Real edges are not shown in the
figure.

The input and output vertices of the gates are used, to connect the
different subgraphs. If gate 7 is input to gate k, a vertex of degree N (which
is an output vertex in the subgraph corresponding to gate 1) is connected
by an admissible edge to a vertex of degree N-1 (which is an input vertex in
the subgraph corresponding to gate k). If the fan-out of a gate ay is 1 then
the output vertex in the subgraph corresponding to the gate is not attached
to any vertex by admissible edges. We associate a TRUE (FALSE) value
with the output of a gate if the output vertex has its degree increased due
to the addition of an admissible edge incident to it (no admissible edges
added, hence no change in the degree).

Let the total number of vertices in the graph generated by “putting”
the subgraphs (corresponding to the gates) together be N. We refer to this
set of nodes as V;. Introduce N new nodes into the graph making the total
number of nodes in the graph 2N. We refer to this set of nodes as V;. For
each node in v € V; with degree d, introduce d edges from v to any d nodes

4

in V5. Introduce edges between all nodes in V3.

[t should be noted, that in the graph G* (graph corresponding to the
monotone circuit) initially, only the admissible edges corresponding to the
TRUE input gates satisfy the condition for them to be added to the graph.

We now illustrate the simulation of each gate by the subgraph.

AND gate ay:

1) Both inputs FALSE: Outputs are false since no admissible edges can be
added. The degrees of the input vertices do not change, neither do the
degrees of the output vertices change.

2) One input TRUE, other input FALSE: (see fig. 6(a) and 6(b)) The
degree of the TRUE input vertex of gate « increases by 1, due to the ad-
dition of the edge ¢, (this edge gets added due to the increase in degree of
the output vertex of gate a;). Figure 6(b) illustrates the edges (shown in
bold) which get added to the graph. Both the outputs are FALSE (since
the degree of the output vertices does not change).

3)Both inputs TRUE: (see fig. 7(a) and 7(b)) Since the degree of vertex v;
(fig. 7(b)) increases by 2 due to the addition of both e, and e, the edges
e3 and e4 are added to the graph. This sets both the outputs to TRUE
(degrees of output vertices increase).

OR gate ax:

1) Both inputs FALSE: Clearly, both the outputs will be FALSE.

2) One input TRUE: (see fig. 8(a), 8(b), 8(c) and 8(d)) The degree of
vertex v, (fig. 8(c)) increases by 1 and all the edges shown in fig. 8(d) get
added to the graph.

It should be noted, that the addition of edges does not cause any change
in the degree of the false input vertex. Both the outputs are set to TRUE.
3) Both inputs TRUE: (see fig. 9(a) and 9(b)) Clearly both outputs are set
to TRUE.

It is obvious that the circuit has output TRUE if and only if the the
degree of the output vertex of gate a,, increases (denoting a TRUE output).

Theorem 1 Computing the general closure of a graph G is P-complete with
respect to log space reductions.

Proof: Since the monotone circuit value problem is P-complete, and the

entire transformation shown above can be done in logarithmic work space,
the general closure problem is P-complete. O

4 Acknowledgements

[would like to thank Estie Arkin for introducing me to this problem and for
extremely useful discussions. Thanks also to Shyam Kapur for commenting
on an earlier draft of the paper.

References

‘BoMu 76 J.A.Bondy and U.S.R.Murty, ‘Graph Theory with Applica-
tions’, .Vorth-Holland, (1976).

(FrTa 84] M.L.Fredman and R.E.Tarjan, ‘Fibonacci heaps and their uses
in improved network optimization algorithms’, Proceedings of FOCS
conference, (1984), pp 338-346.

'Go 77! L.M.Goldschlager, ‘The monotone and planar circuit value prob-
lems are log space complete for P’, SIGACT News, vol 9, 2, summer
(1977), pp 25-29.

'GSS 82] L.M.Goldschlager, R.A.Shaw and J.Staples, ‘The maximum flow
problem is log space complete for P’ Theoretical Computer Science,
21, pp 105-111.

[GoMi 84] M.Gondran and M.Minoux, ‘Graphs and Algorithms’,.

TRUE

Figure 1. Alogical circuit

output of gate q; O N output of gate q; O N
-1 ©o-1
input of gate ak O N-1 input of gate ak O N-1
LI R S R
-1 -1
No NO o N N O NO O N
-1 -1
-1 -1 -1) -1
N-1 O O N-1
-3 . -3
O, N-2
) -2
@) O
output of gate ak output of gate ak

-x next to an admissible edge
denotes the deficiency of the edge

X next to a vertex denotes the
degree of the vertex

....... denotes an admissible edge

Figure 2. AND gateag

O N

output of gate qj O N output of gate q;j
C : -1
input of gate ai O N-1 input of gate ak O N-1
N o ‘o N N O ON
-1 -_‘..." .“.v." -1 —1 "'.‘--n ‘.“..,.' -1
N-1 QO O N-1
22 5
N-1 O O N-1
-1 S
N O O N
1 R
O’ N-1
-1 -1
N O O N

output of gate ak

-x next to an admissible edge
denotes the deficiency of the edge

X next to a vertex denotes the
degree of the vertex

....... denotes an admissible edge

Figure 3. OR gateay

output of gate ak

output of gate ak ® N

Figure 4. TRUE gateak

output of gate ak

-x next to an admissible edge
denotes the deficiency of the edge

X next to a vertex denotes the
degree of the vertex

....... denotes an admissible edge

Figure 5. FALSE gateaik

TRUE
output of gate g

+1
€1

inputof gateak @ +1

o 0 ©

.

outputofgateax o~

TRUE

outputofgateqj ¢ +1

input of gate ak

+3

output of gate ak O

FALSE

FALSE

outputofgatea; @
input of gate ak @
6 0 0

0

.o output of gate ax

Figure 6(a). AND gateayg

FALSE

outputofgatea; ¢

input of gate ak @

.__f'io"'
-3
2

O output of gate ak

FALSE
Figure 6(b). AND gateay

TRUE

output of gate qj +1
I +1

input of gateax @
© o ©

output of gate ak O

TRUE

output of gate qj

input of gate ak

+3

output of gate ak

+1

TRUE

TRUE

output of gate q; +1
I +1

inputof gateax o
6 © ©

ol

O output of gate ax
Figure 7(a). AND gatea

TRUE

output of gate q; +1

input of gate ak +4

output of gate ak

TRUE +1
Figure 7(b). AND gatea

TRUE FALSE

output of gate q; +1 output of gatea; @
input of gate ak I +1 input of gate ak @
o o o o
6 o)
O . L
O
output of gate ax O O output of gate ak
Figure 8(a). OR gateak
TRUE FALSE
output of gate qj +1 outputof gateaj ¢
input of gate ak +3 input of gate ak o
© DO
+z % ©
o) o
O O
o
outputofgateax o~ "5 output of gate ak

Figure 8(b). OR gateak

TRUE FALSE

output of gate q; +1 output of gatea; @

input of gate ak input of gate a G)

+3 O
o)
- Vi
outputofgateax o~ .o output of gate ak

Figure 8(c). OR gateak

TRUE FALSE
output of gate qj +1 output of gatea; @
input of gate ak +3 input of gate ak @

+3

+1

output of gate ak
+1

output of gate ak

+1
TRUE TRUE

Figure 8(d). OR gateai

TRUE TRUE

output of gate q; +1 output of gate q; +1
input of gate ak I +1 input of gate ak I +1
g o o ©

6 o

o o
RO
outputofgateax o .o output of gate ax
Figure 9(a). OR gatea

TRUE TRUE

output of gate q; output of gate q; +1

input of gate ak input of gate ak

+3 +3

output of gate ai output of gate ak

+1
TRUE TRUE t1

Figure 9(b). OR gateax

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

