
MODELS AND ALGORITHMS FOR
TRANSPORTATION IN THE SHARING

ECONOMY

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Daniel Freund

August 2018

c© 2018 Daniel Freund

ALL RIGHTS RESERVED

MODELS AND ALGORITHMS FOR TRANSPORTATION IN THE SHARING

ECONOMY

Daniel Freund, Ph.D.

Cornell University 2018

This thesis consist of two parts. The first deals with bike-sharing systems which

are now ubiquitous across the U.S.A. We have worked with Motivate, the opera-

tor of the systems in, for example, New York City, Chicago, and San Francisco, to

innovate a data-driven approach to managing both their day-to-day operations

and to provide insight on several central issues in the design of their systems.

This work required the development of a number of new optimization models,

characterizing their mathematical structure, and using this insight in designing

algorithms to solve them. Many of these projects have been fully implemented to

improve the design, rebalancing, and maintenance of Motivate’s systems across

the country.

In the second part, we study a queueing-theoretic model of on-demand trans-

portation systems (e.g., Uber/Lyft, Scoot, etc.) to derive approximately optimal

pricing, dispatch, and rebalancing policies. Though the resulting problems

are high-dimensional and non-convex, we develop a general approximation

framework, based on a novel convex relaxation. Our approach provides effi-

cient algorithms with rigorous approximation guarantees for a wide range of

objectives and controls.

BIOGRAPHICAL SKETCH

Daniel Freund grew up in Cologne, Germany, and graduated from the Städtische

Apostelgymnasium in 2009. Subsequently, he spent time on Kibbutz Ma’agan

Michael in Israel before completing his undergraduate education in Mathemat-

ics at the University of Warwick in Coventry (UK). During his undergraduate,

he was given the opportunity to participate in the Weizmann Institute’s 2012

Kupcinet-Getz International Summer School. After graduating in 2013 he en-

rolled as a Ph.D. student at the Center for Applied Mathematics at Cornell

University in Ithaca, New York. He spent the summer and fall of 2015 as a

Data Scientist at Motivate, discovering many of the problems discussed in this

thesis. After graduating from Cornell he will join Lyft as post-doctoral research

fellow for one year before joining the faculty at MIT as an Assistant Professor of

Operations Management in 2019.

iii

Dedicated to those who (nevertheless) persisted.

And a family of elephants. . .

iv

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, David B. Shmoys. This thesis

would not have been possible if it were not for his guidance, mentorship, and

unwavering support and he has become a role model for me in more than one

way. I also want to thank David P. Williamson and Jon M. Kleinberg for serving

on my committee and giving valuable feedback. Throughout my time at Cornell

I had the privilege to work with many other Cornell faculty, most importantly

Shane G. Henderson and Siddhartha Banerjee – being infected by their scientific

curiosity was perhaps the most important lesson I learned in graduate school!

Before I became interested in the mixture of data and theory, and trans-

portation and economics that is at the core of this thesis, I had great mentors

who helped me walk my first research steps: Moni Naor, Ben Fisch, Matthias

Poloczek, and Daniel Reichman with whom I wrote my first papers, Bobby Klein-

berg and Éva Tardos who taught me most of my theoretical foundations, and

John Hopcroft, who encouraged me to explore my interests.

Most of the results in this thesis were the product of collaborations with other

graduate students, whose brilliance I benefited from: I am particularly grateful to

Thodoris Lykouris and Alice Paul as well as Nanjing Jian and Ashkan Norouzi-

Fard. Through Cornell’s Citi Bike research group I also had the opportunity to

work with a number of talented undergraduate students, including Holly M.

Wiberg, Aaron M. Ferber, and Hangil Chung among others; I am looking forward

to seeing many more results from them.

The first part of this thesis would not have been possible without a long-

lasting collaboration between our group at Cornell and Motivate. This collabora-

tion allowed me to spend 7 productive months at Motivate, which was enabled

in large part by Jacob Doctoroff, Emily Gates, Jay Walder, Jules Flynn, and Chris

v

Lewis – I am greatly indebted to all of them. I am also thankful to Chris Sholley,

Ashivni Shekhawat, and Cindy Chiao from whom I learned a great deal while

interning at Lyft.

The last 5 years would not have been fun if it were not for the people and

relationships that shaped them: Eoin, Mark, Sam, Flora, Jonathan, Molly, Steffen,

Aditya, Mischa, and Rahmtin of the extended Lake St. family, Benny, Daniela,

Laura, Netta, Maja, Manu, Chen, Anna, Simona, and Limor of my klike, Roni,

my MYM teammates, and my JM buddies made these years enjoyable through

ups and downs.

Finally, I want to thank my family for always supporting me: Sylvia and

Friedhelm for always rooting for me; Neil, Phyl, Ari, and Gabe for your love,

your cookies, and your editorial help; David, Genia, and Tommy for always

being there for me; and most of all my parents for Pit and Mit, for providing me

with endless opportunities, and for challenging me to always give my best.

This work was in part supported by NSF grants CCF-1526067, CMMI-1537394,

CCF- 1522054, and CCF-1740822, and written during the Simons special semester

on real-time decision making.

Many chapters in this thesis begin with quotes by Aaron Sorkin’s characters.

They should be attributed to him, but “Good writers borrow from other writers.

Great writers steal from them outright.” (S. Seaborn/A. Sorkin)

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Distinctive Features of Shared Vehicle Systems 2
1.2 Challenges of Imbalance . 7

1.2.1 Levers to reduce imbalance in ride-sharing 9
1.2.2 Rebalancing in Bike-Sharing 10
1.2.3 Free-floating Shared Vehicle Systems 11

1.3 Contributions . 12
1.3.1 Results in Part I . 13
1.3.2 Results in Part II . 16

1.4 Impact on Industry . 18

I Inventory Models in Bike-Sharing Systems 20

2 Related Work 21
2.1 Routing . 21
2.2 Forecasting . 24
2.3 System Design . 25

3 User Dissatisfaction Function 26
3.1 Definition . 26
3.2 Discussion of Assumptions . 28

4 Allocation of Dock Capacity 35
4.1 Notation . 39
4.2 A Discrete Gradient-Descent Algorithm 40

4.2.1 Multimodular . 41
4.2.2 Algorithm . 43
4.2.3 Optimality without Operational Constraints 44
4.2.4 Operational Constraints & Running Time 49

4.3 Scaling Algorithm . 55
4.4 Case Studies . 57

4.4.1 Long-Run-Average Cost . 57
4.4.2 Data Sets . 59
4.4.3 Impact on Objective. 60

4.5 A Posteriori Evaluation of Impact 64

vii

4.5.1 Arrivals at Stations with Increased Capacity 65
4.5.2 Measured Impact . 68

4.6 Running Time . 70

5 Tradeoffs for Incentives in New York’s Citi Bike System 73
5.1 The Incentive Scheme . 75
5.2 Data Analysis and Definitions . 77
5.3 Policies . 83
5.4 Results . 90
5.5 Conclusion . 99

6 Rebalancing 101
6.1 Motivation . 101
6.2 Overnight Rebalancing . 104
6.3 Trikes . 115
6.4 Corrals . 120

7 Scheduling Maintenance 127
7.1 Problem Definition . 129
7.2 LP Formulation . 133
7.3 Primal-Dual Subroutine . 134
7.4 Main Result . 137
7.5 Upper Bound . 139
7.6 Extensions . 152
7.7 Computational Experiments . 154

8 Industry Impact 157

II Queuing Network Models for Shared Vehicle Systems 160

9 A Basic Model 168
9.1 Related work . 168
9.2 Preliminaries . 171

9.2.1 Basic setting . 171
9.3 Pricing in the Vanilla Case . 179

9.3.1 Pricing via the Elevated Flow Relaxation 181
9.3.2 Approximation Framework 182
9.3.3 Multi-objective Pricing . 188

10 Advanced Extensions 192
10.1 Other Controls . 192
10.2 Incorporating travel-times between nodes 198
10.3 Constrained point pricing . 207

viii

11 Conclusion 212
11.1 Open Questions . 212
11.2 Thoughts on Industry and Academia 214

III Appendices 216

12 Appendix to Chapter 1 217
12.1 Connections to M-Convex Functions 217
12.2 Connections to Discrete Midpoint Convex Functions 218
12.3 Tradeoff between number of reallocated and new docks 219

13 Appendix to Chapter 2 222
13.1 Irreducibility of the Priced System 222
13.2 Concave Reward Curves . 224
13.3 Infinite-unit Limit . 225
13.4 Settings without Prices . 228

13.4.1 Delays without prices . 230
13.5 Tightness Of Our Guarantees . 233
13.6 Auxiliary lemma . 234

ix

LIST OF TABLES

1.1 Summary of Features Present in Different Commuting Options . 6

4.1 Summary of main computational results with c denoting bike-
optimal, cπ the long-run-average cost. 61

4.2 Improvement of 200 docks moved based on long-run average
evaluated with demand estimates June 2016, evaluated with de-
mand estimates from 2017. 63

4.3 Estimated impact of reallocated capacity on out-of-stock events. 69
4.4 Comparison of the running times of each of the three algorithms

in each of the three cities . 72

5.1 Relative performances of each policy during AM and PM periods
compared to the completely online policy under the deterministic
performance evaluation. 91

5.2 Relative performance of each policy during AM and PM periods
compared to the completely online policy under the probabilistic
performance evaluation. 92

7.1 Graph statistics for each group of graphs averaged over all in-
stances. 155

7.2 Computational results of the primal-dual algorithm for each
group of graphs and budget with results averaged over all in-
stances. 155

7.3 Improvement of Optimality Gap using Virtual Budgets. 156

x

LIST OF FIGURES

1.1 Asymmetric demand at 4 stations in the BART system. Solid lines
denote arrivals whereas dashed lines denote departures. 8

1.2 Number of Rentals originating at stations in the East Village and
the Financial District during a week in July 2017, bucketed into
one-hour intervals. 8

1.3 Average fraction of docks filled at stations over various times of
the day. 9

1.4 Number of bikes (in blue) and capacity (in green) of a particular
bike-share station over the course of one day from 6AM to 12AM.
Between 10AM and 8PM, a pattern persists wherein the number
of bikes continuously fluctuates between one below capacity and
at least two below capacity, but it never reaches capacity. This
strongly indicates that the last dock at the station was defective
at the time. 16

3.1 As a function of bikes for stations with capacity 39. 28
3.2 As a function of (d, b) at a single station. 28
3.3 Visualizations of user dissatisfaction functions based on real data. 28
3.4 Fraction of rebalancing actions (bikes being added or taken) at

stations within Citi Bike’s system. Most of it happens at a small
fraction of stations. 31

4.1 Improvement in objective for moves to bike-optimal allocation
for June ’16 data. 62

4.2 Evaluation of impact at stations with increased and decreased
capacity. 68

4.3 Visualization of docks moved by optimal solution for z ∈
{500, 1500}; red circles correspond to docks being taken, blue
circles to docks being added. 71

4.4 Number of UDF evaluations by each algorithm in each city. . . . 72

5.1 On the left-hand side, we display the user dissatisfaction function
for four stations with different demand patterns as in Figure 3.1.
On the right-hand side, we show the respective discrete derivatives. 81

5.2 Total number of incentivized rentals/returns in the test period. . 84
5.3 Static Policy’s total number of incentivized trips, grouped by

impact on objective (δr) for the PM period. 93
5.4 Scatter plots of incentivized trips indicating which trips are

included/excluded in Dynamic CC (60) incentivization policy,
when cost parameter is 0.0 (top) and 0.3 (bottom). 97

6.1 Pictures of a corral and a trike being used in NYC. 104

xi

6.2 Truck routes for three trucks on August 8, 2016. Each circle cor-
responds to a station at which at least one of the trucks stops. A
white outer circle corresponds to a pick-up, a black outer circle to
a drop-off. Initially, all trucks start at a NYCBS depot in the East
Village. 105

6.3 Linearization of cs(·). 109
6.4 A posteriori optimization for overnight truck rebalancing in Man-

hattan. 112
6.5 Trike routes identified by the maximum-weight matching formu-

lation. Red lines indicate trikes that pick up bikes at white circles
and drop them off at black ones. (Map data: Google Maps) . . . 120

6.6 Total improvement (red) of trikes and corresponding diminishing
returns (blue). 121

6.7 Results of 40 simulated days with different sets of corrals; ×
denotes the average performance. 125

6.8 Corral stations in NYC with 1
4-mile radius (Map data: Google

Maps). 126
6.9 Shortage measure for July 2015 and July 2016. 126

7.1 Screenshot from the Citi Bike app, taken on December 19th, 2017,
indicating that the station at E 33 St & 5 Ave had one empty dock
available at the time. 128

7.2 Finding the subintervals between l and r where the time of the
next event is in bold. 142

7.3 Case 1: Marking X as inactive. 147
7.4 Case 2: Replacing e with f . 147
7.5 Neutral subsets pruned in each case to yield component S 1 with

cost < 1
2 D. 147

7.6 Illustration of the pick procedure. 148

9.1 Example for non-concavity of throughput for finite units (m =

1, n = 3) . 179
9.2 Biregular graph construction as described in Lemma 38. Fig.

9.2(a) shows the construction for (S2,3,S2,2) and (S2,2,S2,1). Fig.
9.2(b) shows the general construction. Note that the sum of
weights of incident edges for any node on the left (i.e. any state in
Sn,m) is 1, while it is (m + n− 1)/m for nodes on the right (i.e. states
in Sn,m−1). 188

xii

CHAPTER 1

INTRODUCTION

The number of commuting options available to the people of San Francisco

has increased significantly in this decade. Aside from private vehicles, the

options used to be restricted to BART, Muni, taxis, and cable/street cars (as well

as some water transportation). Today, these have been complemented by ride-

sharing (Uber/Lyft), dock-based bike-sharing (Ford GoBike), free-floating car

sharing (Zipcar), station-based car sharing (Maven), electric scooter sharing with

large (Scoot) or small (Bird, Spin, LimeBike) scooters, and electric bicycles (JUMP).

We will refer to the collection of these services interchangeably as shared vehicle

or on-demand transportation systems. Though San Francisco may be extraordinary

with respect to the adoption rate of these systems, the increasing variety of

transportation options is ubiquitous in major cities around the world.

A common denominator of on-demand transportation systems is the users’

flexibility to enter and leave the system anywhere and anytime. This gives

the systems several characteristics (cf. Table 1.1) that distinguish them from

traditional mass transit. Thus, despite the study of mass transportation systems

being among the oldest research areas within operations research (OR), the

design and operation of shared vehicle systems require specialized models and

algorithms. Before summarizing the contributions in this thesis, we now describe

the distinctive features of shared vehicle systems and give an overview of the

different operational levers present.

1

1.1 Distinctive Features of Shared Vehicle Systems

Schedules & Routes. Traditional public transportation systems can be charac-

terized by customers entering and leaving vehicles (e.g., buses, trains) at fixed

stations, that the vehicles visit in fixed order, at fixed times. The contrast to

on-demand transportation systems, or bike-sharing as a special case thereof,

is well-described through a quote by Jay Walder [2016], CEO of Motivate, the

operator of several bike-sharing systems (BSS) across the world:

[...] Bike sharing creates a system for personal mobility. It is personal-

ized mass transit. You distance yourself from the idea of stations and

routes and schedules.[...]

Walder’s description points out the major difference between traditional

public transportation and on-demand transportation systems: customers do not

have to adhere to fixed schedules and routes. Instead, they engage vehicles at

their preferred time and take their preferred route to their destination.

Stations. Beyond the routes and schedules, Walder also mentions the

distancing from stations. Though the largest BSSs in the US are station-based

(resp., dock-based), these stations are quite different from public transit stations

in more than one way. First, given the flexibility with respect to schedules,

stations are not meant to be waited at (though customers may have to wait for a

stock-out to end, in order to rent/return a bike). Second, given the flexibility with

respect to routes, stations really can be thought of as part of a complete network, in

which any ride can go from any station to any other station. Third, setting up

bike-sharing stations happens on a different time-scale than traditional public

2

transit: as an extreme example, contrast the 48 stations Citi Bike added to the

Upper West and Upper East Sides of Manhattan during the summer of 2015 with

the 3 new subway stations along the planned Second Avenue Subway that were

constructed from 2011 to 2017.1 More generally speaking, shared vehicle systems

have expanded to new cities/service areas much faster than traditional public

transit.

Entering and Leaving the System. Just like on-demand transportation, pri-

vate vehicles also offer the flexibility for users to commute on their preferred

schedule and route. However, as pointed out by Chicago bike advocate Julie Sher-

man [2017], there are two significant differences when it comes to the beginning

and the end of a trip:

I like the flexibility of being able to usually find and grab a bike as

I make my way from point A to B, and then point F to G, without

worrying that my own bike is sitting out vulnerable to the elements,

vandalism, and theft.

Both differences pointed out by Sherman relate to the users’ responsibility for

the vehicle in shared vehicle systems: users enter and leave the system at the

beginning and end of each trip. As such, they hold no responsibility for the

vehicle after ending the trip. Also, they thereby gain the flexibility to begin trips

at locations other than the end location of the most recent trip.

Data and Real-time Decision-making. Different transportation systems

vary both with respect to the data they (can) collect and the extent to which data

is used operationally. This is true even for traditional public transportation: in

1Remarkably, the subway stations had first been proposed in 1919!

3

San Francisco, the BART system collects data reflecting the origin-destination

pairings of all trips, yet the Muni system does not. This is partially due to billing

requirements: BART prices depend on the destination, Muni prices do not. The

operational needs also explain the vast pools of data that shared vehicle systems

collect:

• Dispatch decisions by ride-sharing systems are made in almost real time

and require real-time data of which available drivers are nearby.

• Surge prices are set on a time-scale in the order of minutes and rely on

an accurate reflection of the local and global balance between supply and

demand.

• Routing decisions for rebalancing trucks in bike-sharing systems are made

a few times per hour and are based on an accurate reflection of the current

state of the system.

In contrast to the above real-time decisions, planning decisions like the following

rely on somewhat coarser data:

• Non-motorized rebalancing decisions in bike-sharing (cf. Section 1.2.2) are

made at most on a monthly time-scale.

• System design questions in bike-sharing systems, e.g., what stations to add

docks to or where to set up stations, are made no more frequently than on

an annual time-scale.

The operational decisions in public transportation systems, e.g., setting routes

and schedules, more closely reflect the latter set of decisions. In contrast to the

real-time decisions, these tend to not rely on pools of data as vast as those in

4

shared vehicle systems (cf. Section 1.4 for a summary of the kinds of data we

have used in our collaboration with Motivate).

Two-sidedness. Most of the challenges and solutions described in this thesis

deal with the need to balance demand and supply in on-demand transportation

systems. In today’s ride-sharing systems, this crucially requires ensuring that

sufficiently many drivers are driving to serve customers with sufficiently low

ETAs; in turn, having sufficiently many drivers relies on having enough riders

requesting rides at sufficiently high prices (to make driving worthwhile the

drivers’ time). This is a fundamental difference compared to both traditional

public transportation systems and to other shared vehicle systems in which the

supply is set explicitly by the platform. As a result, pricing and other decision-

making in these platforms must simultaneously consider the supply and demand

sides. In this regard, challenges faced by ride-sharing systems are more similar

to those in other two-sided markets, like Airbnb, Upwork, or Handy. However,

other challenges in ride-sharing are first and foremost based on its nature as an

on-demand transportation service. Throughout this thesis, the focus is on those

challenges, rather than on the two-sided nature of these systems.

5

Ta
bl

e
1.

1:
Su

m
m

ar
y

of
Fe

at
ur

es
Pr

es
en

ti
n

D
iff

er
en

tC
om

m
ut

in
g

O
pt

io
ns

Ti
m

e-
sc

al
e

of
D

ec
is

io
ns

D
at

a
av

ai
la

bl
e

Im
ba

la
nc

e
of

Su
pp

ly
Tw

o-
Si

de
dn

es
s

Fl
ex

ib
ili

ty
of

ro
ut

es
/s

ch
ed

ul
es

Fl
ex

ib
ili

ty
of

en
te

ri
ng

/l
ea

vi
ng

R
id

e-
sh

ar
in

g

(U
be

r,
Ly

ft
,e

tc
.)

R
ea

l-
ti

m
e

(D
is

pa
tc

h)
to

W
ee

kl
y

(I
nc

en
ti

ve
s)

R
ea

l-
ti

m
e

A
lle

vi
at

ed
by

dr
iv

er
s’

st
ra

te
gi

c
be

ha
vi

or

Ye
s

Ye
s

Ye
s

D
oc

k-
ba

se
d

bi
ke

-s
ha

ri
ng

(C
it

iB
ik

e,
H

ub
w

ay
,e

tc
.)

M
in

ut
es

or
H

ou
rs

to

Se
as

on
al

D
em

an
d

ce
ns

or
in

g

du
e

to

st
oc

k-
ou

ts

A
lle

vi
at

ed

on
ly

by

pl
at

fo
rm

’s
re

ba
la

nc
in

g

N
o

Ye
s

Ye
s

Fr
ee

-fl
oa

ti
ng

ca
r-

sh
ar

in
g

(C
ar

2G
o,

Z
ip

ca
r

)

H
ou

rs
(R

eb
al

an
ci

ng
)

to
Se

as
on

al
(P

ri
ce

s)

D
em

an
d

ce
ns

or
in

g

du
e

to
st

oc
k-

ou
ts

A
lle

vi
at

ed

on
ly

by

pl
at

fo
rm

’s
re

ba
la

nc
in

g

N
o

Ye
s

Ye
s

Fr
ee

-fl
oa

ti
ng

bi
ke

-/
sc

oo
te

r-
sh

ar
in

g

(J
U

M
P,

Bi
rd

,e
tc

.)

H
ou

rs
(R

eb
al

an
ci

ng
)

to
Se

as
on

al
(P

ri
ce

s)

D
em

an
d

ce
ns

or
in

g

du
e

to
st

oc
k-

ou
ts

A
lle

vi
at

ed

on
ly

by

pl
at

fo
rm

’s
re

ba
la

nc
in

g

N
o

Ye
s

Ye
s

Tr
ad

it
io

na
lP

ub
lic

Tr
an

si
t

(B
A

R
T,

M
un

i,
Su

bw
ay

,e
tc

.)

Se
as

on
al

(S
ch

ed
ul

es
)

Sy
st

em
-d

ep
en

de
nt

A
lle

vi
at

ed
by

sc
he

du
le

s
N

o
N

o
Ye

s

Pe
rs

on
al

Ve
hi

cl
es

(C
ar

,b
ik

es
,e

tc
.)

N
/A

N
/A

N
/A

N
o

Ye
s

N
o

6

1.2 Challenges of Imbalance

Users’ flexibility in using on-demand transportation systems poses challenges

for platform operators unbeknownst to traditional mass transportation modes.

Fundamentally, these challenges are due to imbalance in the system. Though it

is true across modes of transportation that travel demand is strongly asymmetric

in each rush hour (cf. Figure 1.1 and Figure 1.2), the consequences for users

vary across systems. Since buses and subways are scheduled to ride back and

forth along their routes, asymmetric demand in these systems only implies that

capacity in one direction is more utilized than in the other. Yet, capacity is still

available in both directions. In contrast, in bike-sharing and other shared vehicle

systems, the means of transportation themselves may not be available. This effect

is displayed in Figure 1.3, which shows for several stations the fraction of docks

filled with bikes over time; when the fraction of docks filled is 0 (or 1), i.e., when

stations are empty (or full), customers suffer out-of-stock events, meaning that

they cannot rent (return) bikes at (to) the station. This lack of availability has been

cited (Capital Bikeshare [2014]) as one of the major reasons for dissatisfaction

among users of bike-sharing systems. Similarly, ride-sharing systems compete on

lower pick up times (Banerjee et al. [2018]), which also increase due to imbalance

in the system. As such, alleviating the effects of imbalance is a major focus

of platform operators. However, the tools available to operators vary, as we

describe for different platforms below.

7

Figure 1.1: Asymmetric demand at 4 stations in the BART system. Solid
lines denote arrivals whereas dashed lines denote departures.

Figure 1.2: Number of Rentals originating at stations in the East Village
and the Financial District during a week in July 2017, bucketed
into one-hour intervals.

8

Figure 1.3: Average fraction of docks filled at stations over various times of
the day.

1.2.1 Levers to reduce imbalance in ride-sharing

Fundamentally, ride-sharing companies need to match drivers to passengers

who request rides and set prices for these rides. Most platforms, like Uber and

Lyft, set static prices per mile/minute, which are then adjusted via a surge price

that depends on real-time supply-demand imbalance. Dispatch, the decision

which driver to match, is of course always dependent on current conditions.

Though many trade-offs need to be considered in the context of dispatching (e.g.,

dispatching drivers from further away increases the odds of either the driver or

the passenger canceling the ride), imbalance within the system can in principle

be reduced by dispatching from high-supply to low-supply areas.

The effects of surge pricing on the balance between demand and supply

happen on at least three different levels: first, in the very near-term, surge prices

9

decrease demand in areas where they are are charged. Second, over a slightly

longer time-scale, they incentivize drivers to drive in areas more likely to have

surge prices, which give higher earnings to those drivers; as such, they can

increase supply locally over a slightly longer time-scale. Third, surge prices

increase average-earnings for drivers and thereby, over a longer time-scale,

increase the incentives for drivers to drive at all at a given time. Thus, surge

prices allow platforms to modulate the demand-side in the short-term as well

as increasing the local and global supply over longer time-scales. Beyond these

effects, surge prices can also be applied to change the distribution of drivers

within the system: by setting higher prices for rides to low-demand areas and

lower prices for rides to high-demand areas, operators may ensure that more

supply remains where it is most needed (cf. Section 9.3).

Though not (explicitly) applied by current ride-sharing platforms, it is also

conceivable for ride-sharing platforms to reduce imbalance by paying drivers to

relocate (cf. Section 10.1). In fact, when considering an autonomous system, in

which the platform operates vehicles, this is an appropriate way to think about

the cost induced by the relocation of vehicles.

1.2.2 Rebalancing in Bike-Sharing

In contrast to ride-sharing systems, bike-sharing systems have yet to start using

pricing to modulate demand. This is partly due to the public-private partnerships

via which these systems are set up and that enforce rules banning pricing from

being used for demand regulation. Instead, operators have focused on the

supply-side, having developed a range of different rebalancing solutions to

10

handle imbalance.

Most of the rebalancing in bike-sharing systems tends to be done via vans

and box-trucks that can move between around 20 and 60 bikes at a time within

the system – these are especially efficient when there is little congestion and

many bikes can be picked up at once. Beyond box-trucks, platforms also operate

so-called trikes: trailers pulled by a cyclist that can hold up to 18 bikes at a time.

However, given the physical difficulty of pulling the trailer, trikes tend to be used

over relatively short distances. Finally, some operators of dock-based systems

select specific stations at which the capacity is artificially increased through

so-called corrals. This is done by placing bikes in between the docks and thus

using all available physical space at the stations. To ensure that the bikes do not

get stolen, an employee looks after the bikes until, in the next rush hour when

the demand goes in the opposite direction, the corrals empty out again.

1.2.3 Free-floating Shared Vehicle Systems

Free-floating car, scooter, or bike-sharing systems all have in common the fact

that they do not apply, at the time of this writing, dynamic pricing to modu-

late demand. However, they do use rebalancing. In comparison to dock-based

bike-sharing systems, the operational challenges are somewhat different though.

Whereas a single employee with a box-truck can move up to 60 bikes within the

system, in a car-sharing system, each vehicle moved requires a single employee.

For free-floating bikes or scooters, it is not the limited capacity of vehicles moved

per employee, but rather the dispersed locations of vehicles (rather than in a sin-

gle station) that make it difficult to efficiently operate vans or trucks. Noticeably,

11

in systems with electric vehicles, an additional requirement for the operator is to

ensure, that vehicles are charged, in addition to being rebalanced. At least two of

the platforms operating these systems experiment with crowdsourcing to tackle

both charging and rebalancing (LimeBike [2018], Bird [2018]).

1.3 Contributions

This thesis treats a range of optimization issues arising in the operation of shared

vehicle systems. Each chapter contains the results of a different project. Most

chapters include theoretical results and many involve the data analysis that

motivated the theory developed. Broadly speaking, Part I of this thesis deals

with dock-based bike-sharing systems, Part II with more general shared vehicle

systems.

The main methodological difference between the two parts is due to different

models of the system: the model in Part I treats the demand for rentals and

returns at each station as exogenously given and time-varying. This gives rise

to a tractable model for many different applications in practice, even though

it sacrifices subtleties due to effects within the network. In particular, treating

returns as exogeneously given implies that they need not be triggered by rentals

elsewhere. Though this may seem restrictive, we find in Chapter 3 that it captures

the most important characteristics of real data-sets. In contrast, in Part II, we

analyse queueing-theoretic models that capture such effects, treating both rentals

and returns as endogeneous. However, the model in Part II assumes that the

system is in a time-invariant steady-state. In contrast to the application-driven

focus of Part I, Part II aims to derive strong theoretical guarantees; these are

12

interesting from a stochastic control perspective, but also provide implementable

insights. Yet, for practical considerations the algorithms may rely on too many

parameters that would need to be estimated. Given the difference between the

two parts with respect to both modeling and the purpose of the results, we

separate the related work sections, providing one in each part.

Feasible Permutations. Most chapters in this thesis can be read indepen-

dently of each other. That being said, most chapters in Part I assume knowledge

of Chapter 3. Similarly, most results in Part II rely on Sections 9.2 and 9.3. Below,

we summarize the results of each chapter.

1.3.1 Results in Part I

The results in Part I apply an inventory management model introduced in the

groundbreaking work of Raviv and Kolka [2013]. The goal of the model is to

estimate, over a finite time-horizon, the number of out-of-stock events at a station

in a dock-based bike-sharing system as a function of the initial number of bikes.

For a fixed sequence of arrivals (rentals and returns), it is easy to compute the

updated number of bikes after each arrival as one fewer (rental) or one more

(return) than before the arrival; exceptions occur when the station is empty or full,

which is exactly the case in which a rental, respectively a return, experiences an

out-of-stock event (cf. Chapter 3 for details). Raviv and Kolka [2013] developed

this notion and extended it to exogeneously given stochastic arrival processes.

This sparked a line of work (cf. Chapter 2) that applies the inventory model in

routing models that aim to guide the dispatching of rebalancing trucks in bike-

share systems. Throughout Part I, we develop various use cases of variations

13

of the model beyond the application in routing. We conclude the first part in

Chapter 8 with a discussion of real-world implementations of our work.

Capacity Allocation. In Chapter 4 we apply the inventory model to study

the sizing of stations within a bike-share system; that is, given the exogeneous

arrivals, we ask how many docks should be placed at each location within the

system. We model this question as an optimization problem, derive discrete

convex properties for it, and use those to develop a discrete gradient-descent

algorithm with running time linear in the number of docks in the system. Next,

we prove that the algorithm is amenable to scaling techniques to guarantee

convergence in time logarithmic in the number of docks. Using rich data-sets

from NYC, Boston, and Chicago, we derive suggestions on where within the

system docks should be added and taken away. Finally, based on changes to the

system implemented by Citi Bike in NYC, we develop a counterfactual analysis

to evaluate the improvement in the system due to the docks moved.

Incentive Design. In Chapter 5 we consider a data-set from Citi Bike’s

Bike Angel program. The program incentivizes users to return bikes to stations

where bikes are scarce and to rent bikes where empty docks are needed. When

originally set up, the program was based on fixed stations in each rush hour

at which rentals, respectively returns, were incentivized. We apply the user

dissatisfaction functions to study the tradeoffs between this static set of stations

and an incentive scheme that dynamically updates the set of incentivized stations

based on real-time data. We thereby characterize the improvements possible by

switching to a dynamic scheme.

Rebalancing. Chapter 6 contains three different applications of Raviv and

Kolka’s inventory model. We begin by describing the real-world implementa-

14

tion of an integer-programing based decision aid to guide trucks for overnight

rebalancing. Though the integer program itself is similar to what is known in

the literature, to the best of our knowledge, ours was the first attempt to oper-

ationalize this methodology in practice. Thereafter, we consider two kinds of

rebalancing that are not truck-based: trikes and corrals. For trailers, we show

that, under appropriate assumptions, the user dissatisfaction functions at two

separate stations can be coupled via the trailer; this gives rise to a maximum-

matching formulation to identify the best pairs of fixed stations between which to

route trailers. For corrals, we design a maximum coverage integer programming

formulation to find the optimal placement of corrals within the system.

Maintenance Scheduling. Beyond rebalancing, service quality in bike-

sharing systems is also affected by maintenance decisions. Specifically, the docks

in stations sometimes break. In such cases, the capacity of the station is effectively

reduced by the number of defective docks. Similarly, each returned bike that is

labelled as defective reduces the effective capacity of the station. While bikes

are designated as broken when they are returned, defective docks need to be

inferred from data (cf. Figure 1.4). Combining the inference and the inventory

model, the operator can estimate (at each station) the impact of defective docks

on user experience; this in turn may inform the prioritization of locations in a

maintenance schedule. In Chapter 7 we model this problem as a budgeted (by

the length of a shift) prize-collecting traveling salesman problem where the prize

corresponds to the reduction in out-of-stock events. We design a polynomial-

time primal-dual algorithm for this problem with an approximation guarantee

of 2, improving upon the previously best-known guarantee of 2 + ε in time O(n
1
ε).

As a corollary of our analysis, we also obtain an approximation guarantee of 2

for the budgeted prize-collecting minimum spanning tree problem, improving

15

Figure 1.4: Number of bikes (in blue) and capacity (in green) of a particular
bike-share station over the course of one day from 6AM to
12AM. Between 10AM and 8PM, a pattern persists wherein the
number of bikes continuously fluctuates between one below
capacity and at least two below capacity, but it never reaches
capacity. This strongly indicates that the last dock at the station
was defective at the time.

upon the previously best-known guarantee of 3.

1.3.2 Results in Part II

Throughout Part II we focus on variations of a simple closed queueing network

model of a shared vehicle system. In the simplest version of the model, we are

16

given n locations with pairwise (Poisson) demand-rates and m vehicles. Cus-

tomers appear to travel from an origin location to a destination; each customer

has a value drawn from a known distribution. If no vehicles are present at the

origin, the customer disappears; else, we offer the customer a price. If the price

is higher than the customer’s value, then the customer declines and disappears.

Else, the customer accepts the price and instantaneously travels to the destina-

tion, i.e., the number of vehicles at the origin decreases by one and increases by

one at the destination. In that case, the platform receives a reward. Our goal

is to maximize the steady-state rate at which the platform collects the rewards.

In this simplest version, rewards are independent of the price offered, i.e., the

goal of the platform is to maximize ridership (throughput) and the dynamics are

completely characterized by the customers’ trips. We formally define this model

in Section 9.2.

Vanilla Case. Though the queueing dynamics are easily explained, maximiz-

ing steady-state rewards is a non-concave maximization problem. In Section 9.3

we provide an algorithm with strong provable guarantees for regimes of interest;

in particular, we show that it is possible to obtain prices that are independent

of the current configuration of vehicles, yet have a parametric guarantee that

linearly converges to optimality as the number of vehicles grows. Thereafter, we

extend our analysis far beyond the simple setting described above.

Objectives. In Section 9.3.3 we first extend the analysis to hold for objectives

like social welfare and revenue. Then, we show that our approach naturally

applies to multiobjective settings in which one objective (e.g., social welfare)

ought to be maximized subject to a lower bound on another (e.g., revenue).

For these settings we obtain bicriteria approximation algorithms with the same

17

guarantees.

Controls. In Section 10.1 we extend the results to controls other than prices.

Specifically, we study a dispatch mechanism and a rebalancing mechanism. The

former models the decision that a ridesharing platform makes when a ride

request is made and the platform decides which driver to dispatch for serving

the request. The latter corresponds to, depending on the exact system modeled,

incentives given to drivers to relocate, the control of autonomous vehicles, or (in

car-sharing or scooter-sharing) an explicit effort to rebalance to different locations

upon the end of a trip. We show that in some ways the two controls can actually

be viewed as mathematically equivalent and prove that the same guarantees

obtained for the basic setting hold, in fact, for any combination of the controls.

Travel-times. In Section 10.2 we extend the model to capture travel-times

inbetween stations. Though we prove that our analysis yields asymptotic op-

timality for this case as well, we also show that in heavy traffic, i.e., when we

obtain a solution in which induced demand exactly matches the available supply,

one cannot hope to attain the same rate of convergence obtained for the case

without travel times: even an optimal policy cannot achieve a rate of convergence

faster than the square-root of the number of vehicles. In a slightly lighter regime,

however, a linear rate of convergence to optimality is still achievable!

1.4 Impact on Industry

The availability of data and the complexity of the systems make shared vehicle

systems an attractive application for operations research. Though this is recog-

nized by the many papers published over the last five years (cf. Sections 2 and

18

9.1), the impact on practice seems limited. In fact, a study by de Chardon et al.

[2016] found that in the space of bike-sharing, operators did not use optimization

to support their decision-making. Even worse, the study states that

[..] New York City is the sole operator we know using custom soft-

ware forecasting station demand and trip flows [..].

Many of the contributions in Part I overcome this limitation, as they have had

impact on the bike-sharing systems operated by Motivate International (incl.

New York City, Boston, San Francisco, and others). We summarize these industry

implementations at the end of Part I, in Chapter 8.

On availability of data. Most of the data we relied on is publicly available.

The demand-rates used to compute the inventory model in Part I are based on

historic ridership-data and a live-feed of the number of bikes at each station.2 The

observed real impact in Section 6.4 also rely on the latter. The data underlying

the pilots conducted for overnight rebalancing (cf. Section 6.2) as well as the data

underlying the Bike Angels analysis (cf. Section 5) are proprietary to NYCBS.

2https://www.citibikenyc.com/system-data

19

Part I

Inventory Models in Bike-Sharing

Systems

20

CHAPTER 2

RELATED WORK

”We’re meant to keep doing better. We’re meant to keep discussing

and debating and we’re meant to read books by great historical schol-

ars and then talk about them” — J. Breckenridge

Over the past decade bike-sharing has become a prominent research topic

within areas such as data mining, machine learning, and optimization. In this

chapter, we provide an extensive literature review of this research area. We begin

by summarizing the literature on routing for rebalancing, then discuss existing

work on forecasting in bike-sharing systems, and finally describe related work

on the design of bike-sharing systems.

2.1 Routing

Much of the research on bike-sharing systems has focused on optimizing the

routes of rebalancing trucks employed by system operators. A particularly

influential paper in this context is Raviv and Kolka [2013] who define a user

dissatisfaction function to measure the number of out-of-stock events at an

individual station as a function of the number of bikes at the station. Different

ways of computing this cost function have been suggested by Schuijbroek et al.

[2017], O’Mahony et al. [2016], and Parikh and Ukkusuri [2014]. Subsequent work

by Raviv et al. [2013] defined a routing problem based on the user dissatisfaction

function: at first, a time bound is given in which trucks can be routed to move

bikes within the system; thereafter, no more decisions are made, and the objective

21

is given by the expected number of out-of-stock events, given the configuration

of bikes resulting from the trucks’ rebalancing. Such routing problems, and

attempts to solve them to optimality for larger and larger instances, were further

investigated by Forma et al. [2015], Ho and Szeto [2014], and Szeto et al. [2016],

among others. Parts of our work in Section 6 are very much related to those

papers. Similarly, a line of work, starting with Rainer-Harbach et al. [2013]

and followed by Raidl et al. [2013] and Kloimüllner et al. [2014] investigated

greedy strategies for the rebalancing problem, though they considered a slight

variation (i.e., a fluid version) of the user dissatisfaction function. The work by

Kloimüllner et al. [2014] stands out in that regard in that it also applies to the

dynamic case, in which unsatisfied demand also occurs during the rebalancing

process. An orthogonal approach to rebalancing has been taken by Shu et al.

[2013], O’Mahony et al. [2016], and Jian and Henderson [2015]; all of these papers

aim to find the optimal configuration of bikes at the beginning of some period.

Shu et al. [2013] assume complete knowledge of the future and solve a flow

problem; O’Mahony et al. [2016] employs the user dissatisfaction function; Jian

and Henderson [2015] use a simulation-optimization based approach to capture

network effects. In these three versions, limited means for rebalancing (and thus,

the routing aspect of the problem) are disregarded since the focus is solely on

the optimal allocation of bikes. Contardo et al. [2012], Vogel et al. [2014], and

Nair et al. [2013] are similar to Shu et al. [2013] in that they solve particular

flow problems rather than routing problems. Nair et al. [2013] aims to obtain

certain service levels with at least some probability. Vogel et al. [2014] presents

an NP-hard flow model that also takes into consideration a rebalancing cost. All

of these assume that not only the rate of rentals and returns at each station is

known, but also the routing probability of each customer, i.e., the probability

22

of a customer at a given station having a particular destination. An approach

similar to that of Jian and Henderson [2015] was pursued by Datner et al. [2017],

in which they also account for the cost of longer travel times due to out-of-stock

events rather than minimizing only the number of out-of-stock events.

A disjoint line of work has focused on minimizing the length of the route of

a single capacitated truck, or the combined length of routes for a fleet of such

trucks, that needs to visit nodes with given demand and supply. The paper

by Benchimol et al. [2011] is an early example of such work. They give an

approximation algorithm, a hardness result, and a polynomial-time algorithm

for instances, wherein the underlying graph is a tree. The same problem has

been studied by Chemla et al. [2013] and Dell’Amico et al. [2014] from a mixed-

integer programming perspective. Further works in the same spirit have been

pursued by Erdoğan et al. [2014], Erdoğan et al. [2015], and Bulhões et al. [2018].

Interestingly, Di Gaspero et al. [2013], in a sense, combines the approaches of

maximizing impact and minimizing travel time: given fixed targets for each

station, the authors aim to minimize a weighted combination of travel time and

absolute value distance (summed over all stations) between the targeted bike

allocation and the one resulting from rebalancing.

Some recent papers have taken different approaches based on robust optimiza-

tion. Ghosh et al. [2016] studies a repositioning appraoch based on an iterative

two-player game, in which the environment generates a demand scenario out of

feasible demand scenarios; they apply this approach to small systems with 20

stations. They also develop a simulation model, which Lowalekar et al. [2017]

uses to demonstrate the benefit of multi-stage stochastic optimization. Ghosh

et al. [2017] makes explicit the distinction between routing and repositioning with

23

the former being about minimizing travel time and the latter being about finding

the best obtainable allocation.

In contrast to the work outlined on rebalancing with trucks, O’Mahony and

Shmoys [2015] also investigates the use of trailers in bikesharing systems; later

work by Freund et al. [2016] (cf. Section 6) also considers so-called corrals.

2.2 Forecasting

Separate from the literature on rebalancing, there is also a long line of literature

related to forecasting. Most of the forecasting relates to prediction of demand

based on historical data; examples include Li et al. [2015], Rudloff and Lackner

[2014], Salaken et al. [2015], O’Mahony and Shmoys [2015], and Riquelme et al.

[2017]. Several other forecasting questions have been studied as well: Kaspi et al.

[2016] tries to detect which bikes in a system are broken given the usage data

at each station, a question relevant for routing problems such as the budgeted

prize-collecting traveling salesman problem studied by Paul et al. [2017] (cf.

Section 7); Hsu et al. [2016] uses a discrete choice model to study the behavior

of users when faced with out-of-stock events; Zhang et al. [2016] predicts the

destination and destination time of customers given the origin, the time and

personal information about the user (gender/age); an approach to predicting

pairwise demand, rather than incoming/outgoing demand at individual stations,

can be found in Singhvi et al. [2015]; Chen et al. [2016] dynamically clusters

stations to predict which stations will run out of available bikes/docks.

24

2.3 System Design

Finally, there is a line of work on the design of such systems. Kabra et al.

[2015] applies techniques from econometrics to study the density with which

stations should be placed. O’Mahony et al. [2016] defines an integer program to

investigate what allocation of docks, given a budget of docks, to existing stations

minimizes out-of-stock events (using the local user dissatisfaction function at

each station); Freund et al. [2017] (cf. Section 4) extends this question in various

ways and provides an efficient algorithm to solve it. Jian et al. [2016], using

simulation optimization in the same manner as Jian and Henderson [2015], aims

to find the optimal allocation of docks, though they allow for network effects

that cause non-convexities. All of these papers are based not on rebalancing but

on the question of what the result of optimal rebalancing would look like. A

similar approach is used by Saltzman and Bradford [2016], which investigate

the augmentation problem, that is, the problem of (optimally) adding docks

to existing stations. While Saltzman and Bradford [2016] uses simulation, this

question can also be approached using the methodology described in Chapter 4.

25

CHAPTER 3

USER DISSATISFACTION FUNCTION

Raviv and Kolka [2013] define a user dissatisfaction function (UDF) that uses

demand information to map the number of bikes at each station at the beginning

of a time interval to the expected number of customers over the course of the in-

terval that will not be able to rent/return because of the station being empty/full.

We begin this chapter by formally defining these UDFs.

3.1 Definition

We denote a sequence of s customers at a bike-share station by X = (X1, . . . , Xs) ∈

{±1}s. The sign of Xt identifies whether customer t arrives to rent or to return a

bike, i.e., if Xt = 1, then customer t wants to return a bike and if Xt = −1, then

customer t wants to rent a bike. The truncated sequence (X1, . . . , Xt) is written as

X(t). We denote throughout by d and b the number of open docks and available

bikes at a station before any customer has arrived. Notice that a station with d

open docks and b available bikes has d + b docks in total. Whenever a customer

arrives to return a bike at a station and there is an open dock, the customer

returns the bike, the number of available bikes increases by 1, and the number of

open docks decreases by 1. Similarly, a customer arriving to rent a bike when

one is available decreases the number of available bikes by 1 and increases the

number of open docks by 1. If instead a customer arrives to rent (return) a bike

when no bike (open dock) is available, then she disappears with an out-of-stock

event. We assume that only customers affect the inventory-level at a station, i.e.,

26

no rebalancing occurs. It is useful then to write

δX(t)(d, b) := max{0,min{d + b, δX(t−1) − Xt}}; δX(0)(d, b) = d;

βX(t)(d, b) := max{0,min{d + b, βX(t−1) + Xt}}; βX(0)(d, b) = b;

as a shorthand for the number of open docks and available bikes after the first t

customers arrive.

Our objective is based on the number of out-of-stock events. In accordance

with the above-described model, customer t experiences an out-of-stock event if

and only if δX(t)(d, b) = δX(t−1)(d, b), that is, out-of-stock events occur if and only if

an arriving customer does not change the number of bikes at the station. Since

d + b = δX(t)(d, b) + βX(t)(d, b) for every t, this happens if and only if βX(t)(d, b) =

βX(t−1)(d, b). Since we are interested in the number of out-of-stock events as a

function of the initial number of open docks and available bikes, we can write

the objective as

cX(d, b) = |{τ : Xτ = 1, δX(τ−1)(d, b) = 0}| + |{τ : Xτ = −1, βX(τ−1)(d, b) = 0}|.

It is then easy to see that with cX(0)(d, b) = 0, cX(t)(d, b) fulfills the recursion

cX(t)(d, b) = cX(t−1)(d, b) + 1{βX(t)(d,b)=βX(t−1)(d,b)}.

Given, for each station i ∈ [n], a distribution pi over possible sequences

of arrivals {(±1)s, s ∈ N0}, which we call demand-profile, we can write ci(d, b) =

EX∼pi[c
X(d, b)] for the expected number of out-of-stock events at station i and

c(~d, ~b) =
∑

i ci(di, bi).

27

Figure 3.1: As a function of bikes for stations with capacity 39.

Figure 3.2: As a function of (d, b) at a single station.

Figure 3.3: Visualizations of user dissatisfaction functions based on real
data.

3.2 Discussion of Assumptions

The formulation of the UDFs is based on several key assumptions. Before delving

into the various applications of the UDFs, we discuss here these assumptions as

well as the advantages that come along with them.

28

Seasonality and Frequency of Reallocations.

In contrast to bike rebalancing, the reallocation of docks (cf. Chapter 4) is a

strategic question that involves docks being moved at most on an annual level.

As such, one concern would be that the recommendations for a particular month

do not yield improvement for other times of the year. Of course, one way of

dealing with this would be to explicitly distinguish, in the demand profiles,

between different seasons, i.e., have k different distributions for k different types

of days and then consider the expectation over these as the objective. Though

the user dissatisfaction functions accommodate that approach, we find on real

data (cf. Section 4.4.3) that this is not actually necessary: the reallocations that

yield greatest impact for the summer months of one year also perform very well

for the winter months of another. This even held true in New York City, where

the system significantly expanded year-over-year: despite the number of stations

in the system more than doubling and total ridership increasing by around 70%

from 2015 to 2017, we find that the estimated improvement due to reallocated

docks is surprisingly stable across these different months.

Cost of Reallocations.

Throughout Chapter 4 we consider reallocations of docks as being bounded

by the number of docks that are being moved instead of associating it with an

explicit cost. Mathematically, this is equivalent to handling a fixed per-unit cost

for each dock reallocated. This is motivated mostly by the real-life operations

of our industry partner: the cost of physically reallocating capacity from one

location to another is negligible when compared to the administrative effort and

political implications associated with reallocating capacity. In particular, this

29

implies that the tactical question of how to carry out the reallocations is of minor

importance in practice. Further, the cost of reallocating docks can be compared

to the cost of rebalancing bikes: while the (one-off) reallocation of a single dock

is about an order of magnitude more expensive than that of a single bike, the

reallocated dock has daily impact on improved service levels (in contrast to the

one-off impact of a rebalanced bike); thus, the cost amortizes extremely fast

(Motivate estimates in as little as 2 weeks). Finally, the cost to acquire a new dock

is 40-80 times higher than that of reallocating a dock. Thus, we focus our analysis

only on reallocating capacity, even though we show in Appendix 12.3 that the

algorithm also extends to capture the tradeoff between installing newly bought

and reallocating existing docks.

Bike Rebalancing.

The optimization problem in Chapter 4 assumes that the bikes are optimally

rebalanced initially, yet the user dissatisfaction functions assume that no rebal-

ancing takes place over the course of the time horizon in which out-of-stock

events are measured. The former is relaxed in Section 4.4.1 in which we consider

a regime that assumes that no rebalancing occurs at all. The latter is motivated

by the fact that rebalancing is quite concentrated (cf. Figure 3.4): in fact, in New

York City more than 60% of all rebalancing is concentrated at just 28 of 762 sta-

tions. Given this concentration, our justification distinguishes between stations

where very little rebalancing is done and stations where a lot of rebalancing is

done. At the former kind of station, we assume we may discount rebalancing

entirely. At the latter, having an allocation of bikes and docks with a lower user

dissatisfaction function value leads to a lesser need for rebalancing; either way,

30

the user dissatisfaction function captures the operator’s priorities without even

taking into account rebalancing. Nevertheless, in Section 4.5, when analyzing the

impact of reallocated capacity, we do explicitly consider the effect of rebalancing.

Figure 3.4: Fraction of rebalancing actions (bikes being added or taken) at
stations within Citi Bike’s system. Most of it happens at a small
fraction of stations.

Out-of-stock Events and Demand Profiles.

In practice, we cannot observe attempted rentals at empty stations nor can we ob-

serve attempted returns at full stations. Worse still, given that most bike-sharing

systems have mobile apps that allow customers to see real-time information

about the current number of bikes and empty docks at each station, there might

be customers who want to rent a bike at a station, see on the app that the station

has only one bike available presently, and decide against going to the station out

of concern that by the time they get there, the bike has already been taken by

someone else — should such a case be considered an out-of-stock event (respec-

tively, an attempted rental)? The user dissatisfaction functions assume that such

events do not occur as the definition relies on out-of-stock events occurring only

when stations are either entirely empty or entirely full.

Further, in order to compute the user dissatisfaction functions, we need to be

31

able to estimate the demand profiles: using only observed rentals and returns

is insufficient for this as it ignores latent demand at empty/full stations. To get

around this, we mostly adapt a combination of approaches by O’Mahony and

Shmoys [2015], O’Mahony et al. [2016], and Parikh and Ukkusuri [2014]: we

estimate Poisson arrival rates (independently for rentals and returns) for each

30 minute interval and use a formula developed by O’Mahony et al. [2016] to

compute, for any initial condition (in number of bikes and empty docks) the

expected number of out-of-stock events over the course of the interval. We plug

these into a stochastic recursion suggested by Parikh and Ukkusuri [2014] to

obtain the expected number of out-of-stock events over the course of a day as

a function of the number of bikes and empty docks at 6AM (in Chapter 5, we

apply the same method for different starting times). This is far from being the

only approach to compute user dissatisfaction functions; for example, in Section

4.5 we explicitly combine empirically observed arrivals with estimated rates for

times when rentals/returns are censored due to stations being empty/full.

Exogeneous Rentals and Returns.

The demand profiles assume that the sequences of arrivals are exogeneous, i.e.,

there is a fixed distribution that defines the sequence of rentals and returns.

Before justifying this assumption, it is worth considering a setting in which

it fails spectacularly: consider an allocation of bikes and docks that allocates

no bikes at all. Of course, this would imply that no attempted rental is ever

successful and therefore no returns ever occur. As such, the sequence of arrivals

of returns at one station are not independent of the allocations elsewhere.

The main justification for this assumption comes from orthogonal work by

32

Jian et al. [2016]: this paper used a simulation optimization approach to find

the configuration of bikes and docks across the system that minimizes the num-

ber of out-of-stock events over the course of the day. In contrast to the user

dissatisfaction functions, decensoring the demand data for the simulation re-

quired additional modeling decisions. However, the simulation allowed for two

different kinds of endogeneity:

• A return at one station had to be triggered by rentals at another. In particu-

lar, each (successful) rental caused a later attempt for a bike to be returned.

• A failed return at a station (due to out-of-stock events, i.e., stations being

full) triggered a later attempt to return a bike at a station nearby.

While this still assumed that demand for rentals is exogeneous, it endogenized

returns, excluding (at least) the example suggested above. However, it causes the

resulting simulation optimization problem to be non-convex in an unbounded

fashion; that is, one can construct examples in which two initial conditions are

only two bikes away from each other (meaning they differ only by one station having

two bikes fewer, the other two more); yet, one of them has arbitrarily many out-

of-stock events fewer (in expectation), than the other. Even worse, both solutions

still have strictly better objectives than the solution in between (in which one

bike is moved). This level of sensitivity not only makes it harder to optimize,

but also makes solutions difficult to interpret. Jian et al. [2016] proposed a range

of different gradient-descent algorithms as heuristics to find good solutions,

including an adaptation of the algorithm we present and analyze in Section 4.2.

Despite the simulation adding key complexities to the system, the heuristics

gave only limited improvements of approximately 3% (to the expected total

number of out-of-stock events) when given the solution found by the algorithm

33

in Section 4.2 as a starting point. We discuss additional advantages of the user

dissatisfaction functions below.

Advantages of User Dissatisfaction Functions.

The user dissatisfaction functions yield several advantages over a more compli-

cated model such as the simulation. First, they provide a computable metric

that can be used for several different operations: in Section 4.2 we show how to

optimize over them for reallocated capacity and in Section 4.5 we use them to

evaluate the improvement from already reallocated capacity. In Chapter 5 we

use them to study an incentive program operated by Citi Bike in New York City,

and they have been used extensively for motorized rebalancing (cf. Chapters

2 and 6). As such, the user dissatisfaction functions provide a single metric on

which to evaluate different operational efforts to improve service quality, which

adds value in itself. Second, for the particular example of reallocating dock

capacity that we study in Chapter 4, they yield a tractable optimization problem

which we prove in Section 4.2. Third, for the reallocation of dock capacity, the

discrete convexity properties we prove imply that a partial implementation of

the changes suggested by the optimization (cf. Section 4.4) is still guaranteed to

yield improvement. Finally, given a solution to the optimization problem, it is

easy to track the partial contribution to the objective from changed capacity at

each station, making solutions interpretable.

34

CHAPTER 4

ALLOCATION OF DOCK CAPACITY

”The first step in solving any problem is recognizing there is one.”

— W. McAvoy

While similar in spirit to the literature on rebalancing (for which the UDF

was developed), in this chapter we use a different control to increase customer

satisfaction. Specifically, we answer the question how should bike-sharing systems

allocate dock capacity to stations within the system so as to minimize the number of

dissatisfied customers? To answer this question, we consider two optimization

models, both based on the underlying metric that system performance is captured

by the expected number of customers that do not receive service. In the first

model, we focus on planning for one day, say 6AM-midnight, where for each

station we determine its allocation of bikes and docks; this framework assumes

that there is sufficient rebalancing capacity to restore the desired bike allocation

by 6am the next morning. Since in practice this turns out to be quite difficult, the

second model considers a set-up induced by a long-run average that assumes that

no rebalancing is done overnight. Through extensive computational experiments

on real data-sets we found that there are dock allocations that simultaneously

perform well with respect to both models, yielding huge improvements to both

(in comparison to the current allocation). This section is based on a paper by

Freund, Henderson, and Shmoys 2017.

35

Contribution

Our goal is to find an allocation of bikes and docks in the system that minimizes

the total expected number of out-of-stock events within a system of n stations, i.e.,∑n
i=1 ci(di, bi). Here, we assume that we are given the UDFs ci(·, ·) ∀i (cf. Section

3) to measure the expected number of out-of-stock events at an individual bike-

share station over the course of some time interval as a function of the initial

number of bikes and the capacity at the station. Since the number of bikes and

docks is limited, we need to accommodate a budget constraint B on the number

of bikes in the system and another on the number of docks D + B in the system.

Other constraints are often important, such as lower and upper bounds on the

allocation for a particular station; furthermore, through our collaboration with

Citi Bike in NYC, it also became apparent that operational constraints limit the

number of docks moved from the current system configuration. Thus, we aim

to minimize the objective among solutions that require at most some number of

docks moved. Via standard dynamic programming approaches, our methods

also generalize to other practically motivated constraints, such as lower bounds

on the allocation within particular neighborhoods (e.g., in Brooklyn).

We first design a discrete gradient-descent algorithm that provably solves the

minimization problem with O(n + B + D) oracle calls to evaluate cost functions

and an overhead of O((n + B + D) log(n)) elementary list operations (which, in

practice, is negligible). Using scaling techniques and a subtle extension of our

gradient-descent analysis, we improve the bound on oracle calls to O(n log(B+D)),

which still dominate an O(log(B + D)(n log(n)) term for elementary list operations.

The primary motivation of this analysis is to investigate whether the number

of out-of-stock events in bike-sharing systems can be significantly reduced by a

36

data-driven approach. In Section 4.4, we apply the algorithms to data-sets from

Boston, NYC, and Chicago to evaluate the impact on out-of-stock events. One

shortcoming of that optimization problem is its assumption that we can perfectly

restore the system overnight to the desired initial bike allocation. Through our

ongoing collaboration with the operators of systems across the country, it has

become evident that current rebalancing efforts overnight are vastly insufficient

to realize such an optimal (or even near-optimal) allocation of bikes for the

current allocation of docks. Thus, we consider in Section 4.4.1 the opposite

regime, in which no overnight rebalancing occurs at all. To model this, we define

an extension of the UDF under a long-run average regime. In this regime, the

assumed allocation of bikes at each station is a function of only the number of

docks and the estimated demand at that station. Interestingly, our empirical

results reveal that operators of bike-sharing systems can have their cake and eat it

too: optimizing dock allocations for one of the objectives (optimally rebalanced

or long-run average) yields most of the obtainable improvement for the other.

Changes implemented by operators based on our recommendations, allow

us to evaluate the impact of our analysis. In Section 4.5 we prove that observing

rentals and returns after capacity has been added provides a natural way to

estimate the reduction in out-of-stock events (due to dock capacity added) that

can be computed in a very simple manner. Applying that approach to a small set

of stations with added capacity in New York City, we derive estimates for the

impact that changes to the system design have had. We discuss the computational

efficiency of our algorithms in Section 4.6.

37

Relation to Multimodularity

Our algorithms and analyses crucially exploit that the user dissatisfaction func-

tions ci(·, ·) at each station are multimodular (cf. Definition 1). This provides an

interesting connection to the literature on discrete convex analysis. In concurrent

work by Kaspi et al. [2017] it was shown that the number of out-of-stock events

F(b,U − d − b) at a bike-share station with fixed capacity U, b bikes, and U − d − b

unusable bikes is M-natural convex in b and U − d − b (see the book by Murota

[2003] and the references therein). Unusable bikes effectively reduce the capacity

at the station, since they are assumed to remain in the station over the entire time

horizon. A station with capacity U, b bikes, and U − b − d unusable bikes, must

then have d empty docks; hence, c(d, b) = F(b,U − d − b) for d + b ≤ U, which

parallels our result that c(·, ·) is multimodular. Though this would suggest that

algorithms to minimize M-convex functions could solve our problem optimally,

one can show that M-convexity is not preserved, even in the version with only

budget constraints.1 In fact, when including the operational constraints even dis-

crete midpoint convexity, a strict generalization of multimodularity (Moriguchi

et al. [2017]) which is in turn much weaker than M-natural convexity, breaks

down.2 Surprisingly, we are nevertheless able to design fast algorithms; these

exploit not only the multimodularity of each individual ci, but also the separa-

bility of the objective function (w.r.t. the stations); that is, the fact that each ci

is a function of only di and bi. This not only extends ideas from the realm of

unconstrained discrete convex minimization to the constrained setting, but also

yields algorithms that (for our special case) have significantly faster running

1In Appendix 12.1 we provide an example in which a M-convex function restricted to an
M-convex set is not M-convex; the example also shows that Murota’s algorithm for M-convex
function minimization can be suboptimal in our setting.

2In Appendix 12.2 we show that this holds true even in the simplest cases.

38

times than those that would usually arise in the context of multimodular function

minization.

4.1 Notation

Recall from Section 3 that the user dissatisfaction function takes, for each station

i ∈ [n], a distribution, which we call demand-profile pi over {(±1)s, s ∈ N0}, to map

the number of docks and bikes to the expected number of out-of-stock events

at a station, i.e., we can write ci(d, b) = EX∼pi[c
X(d, b)] for the expected number of

out-of-stock events at station i and c(~d, ~b) =
∑

i ci(di, bi). In this section, we want

to solve, given budgets B on the number of bikes and D + B on the number of

docks, a current allocation (~̄d, ~̄b), a constraint z on the number of docks that may

be moved, and lower/upper bounds li, ui on the capacity of each station i, the

following minimization problem

minimize(~d,~b) c(~d, ~b)

s.t.
∑

i di + bi ≤ D + B,∑
i bi ≤ B,∑

i |(d̄i + b̄i) − (di + bi)| ≤ 2z,

∀i ∈ [n] : li ≤ di + bi ≤ ui.

Here, the first constraint corresponds to a budget on the number of docks, the

second to a budget on the number of bikes, the third to the operational constraints

and the fourth to the lower and upper bound on the number of docks at each

station. We assume without loss of generality that there exists an optimal solution

in which the first two constraints hold with equality; to ensure this, we may

add a dummy (”depot”) stationD that has cD(·, ·) = 0, lD = uD = B, and run the

39

algorithm with a dock-budget of D + 2B. Here, D may include docks that are

currently part of the system as well as inventory that is meant to be added to the

system. In fact, in Appendix 12.3 we show that we can also efficiently solve an

optimization problem that involves an additional trade-off between the value of

D and the value of z.

4.2 A Discrete Gradient-Descent Algorithm

We begin this section by proving that cX(·, ·) fulfills the following inequalities and

is thus multimodular; while we are motivated by the UDFs defined in the last

chapter, our algorithm only relies on these inequalities being satisfied.

Definition 1 (Hajek [1985], Altman et al. [2000]). A function f : N2
0 → R with

f (d + 1, b + 1) − f (d + 1, b) ≥ f (d, b + 1) − f (d, b); (1)

f (d − 1, b + 1) − f (d − 1, b) ≥ f (d, b) − f (d, b − 1); (2)

f (d + 1, b − 1) − f (d, b − 1) ≥ f (d, b) − f (d − 1, b); (2)

for all d, b such that all terms are well-defined, is called multimodular. For future

reference, we also define the following implied3 additional inequalities:

f (d + 2, b) − f (d + 1, b) ≥ f (d + 1, b) − f (d, b); (4)

f (d, b + 2) − f (d, b + 1) ≥ f (d, b + 1) − f (d, b); (5)

f (d + 1, b + 1) − f (d, b + 1) ≥ f (d + 1, b) − f (d, b). (6)

After proving that the user dissatisfaction functions are multimodular, we

define a natural neighborhood structure on the set of feasible allocations and
3(6) and (1) are equivalent, (1) and (2) imply (5), and (3) and (6) imply (4).

40

define a discrete gradient-descent algorithm on this neighborhood structure.

We prove that solutions to the problem without operational constraints that

are locally optimal with respect to the neighborhood structure are also globally

optimal; since the algorithm only terminates when finding a local optimum, this

proves that it returns a globally optimal solution. Finally, we prove that the

algorithm takes z iterations to find the best allocation obtainable by moving at

most z docks; this not only proves that the gradient-descent algorithm solves

the minimization problem when including operational constraints, but also

guarantees that doing so requires at most O(D + B) iterations.

4.2.1 Multimodular

Lemma 2. The function cX(·, ·) is multimodular for all X.

Proof. We prove the lemma by induction, showing that X(t) is multimodular

for all t. With t = 0, by definition, cX(t)(·, ·) = 0 and thus there is nothing to show.

Suppose that cX(0)(·, ·) through cX(t−1)(·, ·) are all multimodular. We prove that

cX(t)(·, ·) is then multimodular as well.

We begin by proving inequality (1). Notice first that if

max{cX(1)(d + 1, b + 1), cX(1)(d + 1, b), cX(1)(d, b + 1), cX(1)(d, b)} = 0,

we can use that inequality (1), by the inductive assumption, holds after t − 1

customers. Else, we use the inductive assumption on inequalities (4) and (5) to

prove inequality (1). If X1 = 1 (and d = 0), then both sides of the inequality are 0

and δX(1)(d + 1, b + 1) = 0, δX(1)(d + 1, b) = 0, δX(1)(d, b + 1) = 0, and δX(1)(d, b) = 0. In

that case, we may use the inductive assumption on inequality (5) applied to the

41

remaining t − 1 customers. If instead X1 = −1 (and b = 0), then both sides of the

inequality are −1 and we have δX(1)(d + 1, b + 1) = d + b + 2, δX(1)(d + 1, b) = d + b + 1,

δX(1)(d, b + 1) = d + b + 1, and δX(1)(d, b) = d + b, so we may apply inequality (4)

inductively to the remaining t − 1 customers.

It remains to prove inequalities (2) and (3). We restrict ourselves to inequality

(2) as the proof for inequality (3) is symmetric with each Xi replaced by −Xi and

the coordinates of each term exchanged. As before, if

max{cX(1)(d − 1, b + 1), cX(1)(d − 1, b), cX(1)(d, b), cX(1)(d, b − 1)} = 0,

the inductive assumption applies. If instead X1 = 1 and the maximum is positive,

then the LHS and the RHS are both 0 and we have δX(1)(d − 1, b + 1) = 0, δX(1)(d −

1, b) = 0, δX(1)(d, b) = 0, δX(1)(d, b − 1) = 0. In that case, both sides of the inequality

are subsequently coupled and the inequality holds with equality.

In contrast, if X1 = −1 and the maximum is positive, then b = 1, the RHS is

-1, and the LHS is 0. In this case we have δX(1)(d − 1, b + 1) = d, δX(1)(d − 1, b) = d,

δX(1)(d, b) = d + 1, δX(1)(d, b − 1) = d. Let t̂ denote the next customer such that one

of the four terms changes.

If Xt̂ = 1, then both terms on the LHS increase by 1, so it remains 0, whereas

only the negative term on the RHS increases, so the inequality holds with 0 ≥ −2.

Moreover, since δX(t̂)(d−1, b+1) = δX(t̂)(d, b) = 0, and δX(t̂)(d−1, b) = δX(t̂)(d, b−1) = 0;

subsequently both sides of the inequality are again coupled.

Finally, if Xt̂ = −1, then both terms on the RHS, but only the negative term

on the LHS, increase by 1 with customer t̂. Thus, thereafter both sides are again

equal. In this case as well, both sides remain coupled thereafter since we have

δX(t̂)(d − 1, b + 1) = δX(t̂)(d, b) = d + b, and δX(t̂)(d − 1, b) = δX(t̂)(d, b − 1) = d + b − 1.

42

Corollary 3. The user dissatisfaction function ci(·, ·) is multimodular for any demand-

profile pi.

Proof. The proof is immediate from Lemma 2 and linearity of expectation.

4.2.2 Algorithm

We now present our algorithm before analyzing it for settings without the opera-

tional constraints. Intuitively, in each iteration the algorithm picks one dock and

at most one bike within the system and moves them from one station to another.

It chooses the dock, and the bike so as to maximize the reduction in objective

value. To formalize this notion, we define the movement of a dock via the following

transformations.

Definition 4. We shall use the notation (~v−i, v̂i) := (v1 . . . vi−1, v̂i, vi+1 . . . vn). Similarly,

(~v−i,− j, v̂i, v̂ j) := (v1 . . . v̂i . . . v̂ j . . . vn). Then a dock-move from i to j corresponds to one

of the following transformations of feasible solutions:

1. oi j(~d, ~b) =
(
(~d−i,− j, di − 1, d j + 1), ~b

)
– Moving one open dock from i to j;

2. ei j
(~d, ~b) =

(~d, (~b−i,− j, bi − 1, b j + 1)
)

– Moving a dock & a bike from i to j;

3. Ei jh(~d, ~b) =
(
(~d−i,−h, di − 1, dh + 1), (~b− j,−h, b j + 1, bh − 1)

)
– Moving a dock from i

to j and one bike from h to j;

4. Oi jh(~d, ~b) =
(
(~d− j,−h, d j + 1, dh − 1), (~b−i,−h, bi − 1, bh + 1)

)
– Moving one bike from

i to h and one open dock from i to j (equivalently, one full dock from i to j).

Further, we define the neighborhood N(~d, ~b) of (~d, ~b) as the set of allocations that are one

43

dock-move away from (~d, ~b). Formally,

N(~d, ~b) := {oi j(~d, ~b), ei j(~d, ~b), Ei jh(~d, ~b),Oi jh(~d, ~b) : i, j, h ∈ [n]}.

Finally, define the dock-move distance between (~d, ~b) and (~d′, ~b′) as
∑

i |(di + bi)− (d′i +

b′i)|.

This gives rise to a very simple algorithm: we first find the optimal allocation

of bikes for the current allocation of docks; the convexity of each ci in the number

of bikes, with fixed number of docks, implies that this can be done greedily by

taking out all the bikes and then adding them one by one. Then, while there

exists a dock-move that improves the objective, we find the best possible such

dock-move and update the allocation accordingly. Once no improving move

exists, we return the current solution.

REMARK. A fast implementation of the above algorithm involves six binary

heaps for the six possible ways in which the objective at each station can be

affected by a dock-move: an added bike, a removed bike, an added empty dock,

a removed empty dock, an added full dock, or a removed full dock. In each

iteration, we use the heaps to find the best-possible move (in O(1) time) and up-

date only the values in the heaps that correspond to stations involved. The latter

requires a constant number of oracle calls to evaluate the cost functions locally as

well as heap-operations that can be implemented in amortized O(n log(n)) time.

4.2.3 Optimality without Operational Constraints

We prove that the algorithm returns an optimal solution by showing that an

allocation (~d, ~b) that is locally optimal with respect to N(·, ·) must also be globally

44

optimal. Thus, when the algorithm terminates, the solution output is optimal.

Before we prove Lemma 7 to establish this, we first define an allocation of bikes

and docks as bike-optimal if it minimizes the objective among allocations with

the same number of docks at each station and prove that bike-optimality is an

invariant of the algorithm.

Definition 5. Define an allocation (~d, ~b) as bike-optimal if

(~d, ~b) ∈ arg min
(~̂d,~̂b):∀i,di+bi=d̂i+b̂i,

∑
i b̂i=B
{c(~̂d, ~̂b)}.

Lemma 6. Suppose (~d, ~b) is bike-optimal. Given i and j, one of the possible dock-moves

from i to j, i.e., ei j(~d, ~b), oi j(~d, ~b), Ei jh(~d, ~b), or Oi jh(~d, ~b), is bike-optimal. Equivalently,

when moving a dock from i to j, one has to move at most one bike within the system to

maintain bike-optimality.

Proof. It is known that multimodular functions fulfill certain convexity

properties (see e.g., Murota [2003], Raviv and Kolka [2013]); in particular, for

fixed d and b it is known that ci(k, d +b−k) is a convex function of k ∈ {0, . . . , d +b}.

Thus, if the best allocation out of ei j(~d, ~b), oi j(~d, ~b), Ei jh(~d, ~b), and Oi jh(~d, ~b), was not

bike-optimal, there would have to be two stations such that moving a bike from

one to the other improves the objective. By the bike-optimality of (~d, ~b), at least

one of these two stations must have been involved in the move. We prove that the

result holds if ei j was the best of the set of possible moves {ei j, oi j, Ei jh,Oi, j,h}i, j,h∈[n]

– the other three cases are essentially symmetric. Let ` denote a generic third

station. Then a bike improving the objective could correspond to one being

moved from ` to j, from i to j, from i to `, from ` to i, from j to ` or from j to

i. In this case, moves from ` to j, i to j and i to ` yield the allocations Ei j`(~d, ~b),

oi j(~d, ~b) and Oi j`(~d, ~b), respectively. Since ei j is assumed to be the minimizer

among the possible dock-moves, none of these have objective smaller than that

45

of ei j(~d, ~b). It remains to show that moving a bike from ` to i, j to ` or j to

i yields no improvement. These all follow from bike-optimality of (~d, ~b) and

the multimodular inequalities. Specifically, an additional bike at i yields less

improvement and a bike fewer at j has greater cost in ei j(~d, ~b) than in (~d, ~b), since

ci(di − 1, bi) − ci(di − 2, bi + 1) ≤ ci(di, bi) − ci(di − 1, bi + 1)

c j(d j + 2, b j − 1) − c j(d j + 1, b j) ≥ c j(d j + 1, b j − 1) − c j(d j, b j).

Both of the above inequalities follow from inequality (3).

By Lemma 6, to prove optimality of the algorithm, it now suffices to prove

that bike-optimal solutions that are locally optimal w.r.t. our neighborhood

structure are also global optimal.

Lemma 7. Suppose (~d, ~b) is bike-optimal, but does not minimize c(·, ·) subject to budget

constraints. Let (~d?, ~b?) denote a better (feasible) solution at minimum dock-distance

from (~d, ~b). Since (~d, ~b) is bike-optimal, there exist j and k such that b j + d j < b?j + d?j

and bk + dk > b?k + d?k . Pick any such j and k; then either there exists a dock-move to j or

one from k that improves the objective.

Proof. The proof of the lemma follows a a case-by-case analysis, each of which

resembles the same idea: (~d?, ~b?) minimizes the dock-move distance to (~d, ~b)

among solutions with lower function value than (~d, ~b), i.e., among all (~d?, ~b?)

such that
∑

i di + bi =
∑

i d?i + b?i ,
∑

i bi =
∑

i b?i , and c(~d?, ~b?) < c(~d, ~b), (~d?, ~b?) has

minimum dock-move distance to (~d, ~b). We show that with j and k as in the

statement of the lemma, either there exists a dock-move to j, or one from k that

improves the objective, or there exists a solution (~d??, ~b??) with objective value

lower than (~d, ~b),
∑

i di + bi =
∑

i d??i + b??i , and
∑

i bi =
∑

i b??i , such that (~d??, ~b??)

has smaller dock-move distance to (~d, ~b). Since the latter contradicts our choice

46

of (~d?, ~b?), this proves, that in (~d, ~b) there must be a dock-move to j or one from k

that yields a lower objective. We distinguish among the following cases:

1. d j < d?j and dk > d?k ;

2. b j < b?j and bk > b?k ;

3. d j < d?j , bk > b?k , and b j ≥ b?j

(a) and there exists ` with dl + bl ≥ d?l + b?l , bl < b?l ;

(b) and there exists ` with dl + bl < d?l + b?l , bl < b?l ;

(c) for all ` < { j, k}, we have bl ≥ b?l , so
∑

i bi >
∑

i b?i ;

4. b j < b?j , d j ≥ d?j , bk ≤ b?k and dk > d?k ,

(a) and there exists ` with d` + b` > d?` + b?` and b` > b?` ;

(b) and there exists ` with d` + b` ≤ d?` + b?` and b` > b?` ;

(c) for all ` < { j, k}, we have b` ≤ b?` , so
∑

i bi <
∑

i b?i .

We show that in case (1) a move from k to j yields improvement. The proof for

case (2) is symmetric. Thus, in cases (3a) and (4a) there exists a move from k to `,

respectively from ` to j, that yields improvement. Since the proofs for cases (3b)

and (4b) are also symmetric, we present only the proofs for (3b). Cases (3c) and

(4c) contradict our assumption that
∑

i bi =
∑

i b?i and can thus be excluded. For

case (1), we define (~d??, ~b??) = e jk(~d?, ~b?), so

c((~d??, ~b??)) − c((~d?, ~b?)) = (c j(d?j − 1, b?j) − c j(d?j , b
?
j) + ck(d?k + 1, b?k) − ck(d?k , b

?
k).

47

Given that
∑

i |di − d?i | + |bi − b?i | >
∑

i |di − d??i | + |bi − b??i |, the definition of (~d?, ~b?)

implies that this difference must be positive. Setting (~d′, ~b′) = ek j(~d, ~b), we bound

c((~d, ~b)) − c((~d′, ~b′)) =
(
c j(d j, b j) − c j(d j + 1, b j)

)
+

(
ck(dk, bk) − ck(dk − 1, bk)

)
≥

(
c j(d?j − 1, b?j) − c j(d?j , b

?
j)
)

+
(
ck(d?k + 1, b?k) − ck(d?k , b

?
k)

)
= c(~d??, ~b??) − c(~d?, ~b?) > 0.

We prove the inequality between the second and third expression by first showing

that c j(d j, b j) − c j(d j + 1, b j) ≥ c j(d?j − 1, b?j) − c j(d?j , b
?
j).

Applying inequality (3) given in the definition of multimodularity, t times (where

t ≥ 0) allows us to bound the RHS by c j(d?j − 1− t, b?j + t)− c j(d?j − t, b?j + t). Setting

t = d?j − d j − 1 ≥ 0, we then find that the RHS is bounded above by

c j(d j, b?j + d?j − d j − 1) − c j(d j + 1, b?j + d?j − d j − 1).

On the other hand, applying inequality (6) repeatedly to the LHS shows that

∀s ≥ 0, the LHS is at least c j(d j, b j + s) − c j(d j + 1, b j + s). Hence, by setting

s = b?j + d?j − d j − b j − 1, which is non-negative since b j + d j < b?j + d?j , we bound

the LHS from below by

c j(d j, b j + b?j + d?j − d j − b j − 1) − c j(d j + 1, b j + b?j + d?j − d j − b j − 1).

This equals the upper bound on the RHS and thus proves the desired inequality.

Similarly, to show
ck(dk − 1, bk) − ck(dk, bk) ≤ ck(d?k , b

?
k) − ck(d?k + 1, b?k), (4.1)

we apply inequality (3) dk − d?k − 1 times to bound the LHS in (4.1) by ck(d?k , bk +

dk − d?k + 1) − ck(d?k + 1, bk + dk − d?k + 1). Thereafter, we apply inequality (5)

bk + dk − d′k + 1 − b′k ≥ 0 times to obtain the desired bound.

In case (3b), we define (~d??, ~b??) = E jk`(~d?, ~b?) and (~d′, ~b′) = Ok j`(~d, ~b). As in

the first case, we need to show that c((~d, ~b)) − c((~d′, ~b′)) ≥ c(~d??, ~b??) − c(~d?, ~b?).

48

Since all terms not involving j, k, and ` cancel out and the terms involving j and

k can be bounded the same way as before, deriving that

c`(d`, b`) − c`(d` − 1, b` + 1) ≥ c`(d?` + 1, b?` − 1) − c`(d?` , b
?
`)

suffices. We obtain this by repeatedly applying inequalities (3) and (4) to the

LHS.

4.2.4 Operational Constraints & Running Time

In this section, we show that the allocation algorithm is optimal for the oper-

ational constraints introduced in Section 4.1 by proving that in z iterations it

finds the best allocation obtainable by moving at most z docks. We thereby also

provide an upper bound on the running-time of the algorithm, since any two

feasible dock-allocations can be at most D + B dock-moves apart. We begin by

first formally defining the set of feasible solutions with respect to the operational

constraints.

Definition 8. Define the z-ball S z(~d, ~b) around (~d, ~b) as the set of allocations with

dock-move distance at most 2z, i.e., S 0(~d, ~b) = {(~d, ~b)} and

S z(~d, ~b) = S z−1(~d, ~b) ∪
(⋃

(~d′,~b′)∈S z−1(~d,~b)

N(~d′, ~b′)}
)
.

We now want to prove that Lemma 7 continues to hold in the constrained

setting; in particular, we show that with the operational constraints as well, local

optima are global optima.

Lemma 9. With (~d+, ~b+) ∈ S z(~d, ~b) \ S z−1(~d, ~b) bike-optimal and c(~d?, ~b?) < c(~d+, ~b+)

for some (~d?, ~b?) ∈ S z(~d, ~b) \ S z−1(~d, ~b), there exists (~d′, ~b′) ∈ S z(~d, ~b) ∩ N(~d+, ~b+) such

that c(~d′, ~b′) < c(~d+, ~b+).

49

Proof. Notice that this lemma closely resembles Lemma 7: the sole difference

lies in Lemma 7 not enforcing the dock-move to maintain a bound on the distance

to some allocation (~d, ~b).

Define (~d?, ~b?) as in Lemma 7 with the additional restriction that (~d?, ~b?) be

in S z(~d, ~b), i.e., pick a solution in S z(~d, ~b) that minimizes the dock-move distance

to (~d+, ~b+) among solutions with strictly smaller objective value. We argue again

that bike-optimality of (~d+, ~b+) implies that there exist j and k, such that d+
j + b+

j <

d?j + b?j , and d+
k + b+

k > d?k + b?k . Further, for any such j and k, we can apply the

proof of Lemma 7 to find a move involving at least one of the two that decreases

both the objective value and the dock-move distance to (~d?, ~b?).

We aim to find j and k such that the move identified, say from ` to m, is

guaranteed to remain within S z(~d, ~b). Notice that |{ j} ∩ {m}| + |{k} ∩ {`}| ≥ 1. We

know that d?m + b?m > d+
m + b+

m and d?` + b?` < d+
` + b+

` . Suppose the move from `

to m yields a solution outside of S z(~d, ~b). It follows that d+
m + b+

m ≥ dm + bm and

d+
` + b+

` ≤ d` + b`, so in particular either d+
j + b+

j ≥ d j + b j or d+
k + b+

k ≤ dk + bk.

Thus, if we can identify j and k such that those two inequalities do not hold,

we are guaranteed that the identified move remains within S z(~d, ~b). Define

k := arg maxi{d+
i + b+

i −max{di + bi, d?i + b?i }}. We can then write

max
i

{
d+

i + b+
i −max{di + bi, d?i + b?i }

}
≥ mini

{
1,maxi:d+

i +b+
i >di+bi{(d

+
i + b+

i) − (d?i + b?i)}
}
.

The minimum is at least 1 unless it is the case for all i that if d+
i + b+

i > di + bi then

d+
i + b+

i ≤ d?i + b?i . Thus, unless the above condition fails, we have identified a k

with the required properties. Suppose the condition does fail. Then
∑

i di + bi =∑
i d?i + b?i =

∑
i d+

i + b+
i and

2z =
∑

i

|(di + bi) − (d?i + b?i)| =
∑

i

|(di + bi) − (d+
i + b+

i)|

50

imply that for all i with max{d+
i + b+

i , d
?
i + b?i } > di + bi, we have d+

i + b+
i = d?i + b?i .

Thus, it must be the case that m fulfills d+
m + b+

m < dm + bm. The argument for j is

symmetric.

By Lemma 9, it suffices to show that the solution found in the zth iteration is

locally optimal among solutions in S z(~d, ~b) to prove the following theorem.

Theorem 10. Starting with a bike-optimal allocation (~d, ~b), in the z-th iteration, the

discrete gradient-descent algorithm finds an optimal allocation among those in S z(~d, ~b).

Hence, the discrete gradient-descent algorithm terminates in at most D + B iterations.

Proof. We prove the theorem by induction on z. The base-case z = 0 holds

trivially. Suppose in the zth iteration, the discrete gradient-descent algorithm has

found the allocation (~dz, ~bz) ∈ arg min(~d?,~b?)∈S z(~d,~b) c(~d?, ~b?). We need to show that

(~dz+1, ~bz+1) minimizes the objective among solutions in S z+1(~d, ~b), where

(~dz+1, ~bz+1) := arg min
(~dz+1,~bz+1)∈N(~dz,~bz))

{c(~dz+1, ~bz+1)}.

We first observe that by Lemma 9, it suffices to show that there is no better

solution in S z+1(~d, ~b) that is just one dock-move away from (~dz+1, ~bz+1). Further,

by Lemma 6 and the choice of dock-moves in the discrete gradient-descent

algorithm we know that (~dz+1, ~bz+1) must be bike-optimal. Let i be the station

from which a dock was moved and let j be the station to which it was moved in

the z + 1st iteration. We denote a third station by h if the z + 1st move involved a

third one (recall that a dock-move from i to j can take an additional bike from i

to a third station h or take one from h to j). We can then immediately exclude the

following cases:

51

1. Any dock-move in which i receives a dock from some station `, including

possibly ` = j or ` = h, can be excluded since the discrete gradient-descent

algorithm could have chosen to take a dock from ` instead of i and found a

bike-optimal allocation (by Lemma 6).

2. The same holds for any dock-move in which a dock is taken from j.

3. A dock-move not involving either of i, j, and h yields the same improve-

ment as it would have prior to the z + 1st iteration. Furthermore, if such

a dock-move yields a solution within S z+1(~d, ~b), then prior to the z + 1st

iteration it would have yielded a solution within S z(~d, ~b). Hence, by the

induction assumption, it cannot yield any improvement.

4. A dock-move from station i (or to j), as is implied by the fourth, fifth, and

sixth inequality in the definition of multimodularity increases the objective

at i more (decreases the objective at j less) than it would have prior to the

z + 1st iteration.

We are left with dock-moves either from or to h as well as dock-moves that

involve one of the three stations only via a bike being moved. Suppose that the

dock-move in iteration z + 1 was Ei jh; the case of Oi jh is symmetric. In this case,

by inequality (2), a subsequent move of a dock and a bike from h, i.e., oh` or Oh`m

for some m, increases the objective at h by at least as much as it did before and

can thus be excluded. The same holds for the move of an empty dock to h (by

inequality (3)).

However, subsequent moves of an empty dock from h (or a full dock to h)

have a lower cost (greater improvement) and require a more careful argument.

Suppose eh` yielded an improvement – the cases for Eh`m, o`h, and E`hm are similar.

Notice first that if it were the case that dz
h + bz

h > dh + bh and dz
` + bz

` < d` +

52

b`, then eh`(Ei jh(~dz, ~bz)) ∈ S z(~d, ~b) and has a lower objective than (~dz, ~bz) which

contradicts the inductive assumption. Furthermore, since it must be the case

that eh`(Ei jh(~dz, ~bz)) is an element of S z+1(~d, ~b) but not of S z(~d, ~b), it must also follow

that either

1. dz
h + bz

h > dh + bh and dz
` + bz

` ≥ d` + b` or

2. dz
h + bz

h ≤ dh + bh and dz
` + bz

` < d` + b`,

since otherwise a dock-move from h to ` would either yield a solution in S z

or one not in S z+1. Notice further that the inductive assumption implies that

(~dz+1, ~bz+1) < S z(~d, ~b). Thus, we know that dz+1
i +bz+1

i < di +bi and dz+1
j +bz+1

j < d j +b j.

We can thus argue in the following way about

c(eh`(~dz+1, ~bz+1)) − c(~dz+1, ~bz+1) = ch(dz
h, b

z
h − 1) − ch(dz

h + 1, bz
h − 1) + cl(dz

` + 1, bz
`) − cl(dz

`, b
z
`).

In the first case, since oh`(~dz, ~bz) ∈ S z(~d, ~b), the inductive assumption implies

that ch(dz
h, b

z
h − 1) + c j(dz

j, b
z
j + 1) ≥ ch(dz

h, b
z
h) + c j(dz

j, b
z
j). Further, by the choice of the

discrete gradient-descent algorithm, an additional empty dock at ` has no more

improvement than an additional dock and an additional bike at j minus the cost

of taking the bike from h; otherwise, the discrete gradient-descent algorithm

would have moved an empty dock from h to ` in the z + 1st iteration. Thus,

c`(dz
` + 1, bz

`) − c`(dz
`, b

z
`) ≤ c j(dz

j, b
z
j) − c j(dz

j, b
z
j + 1) − ch(dz

h + 1, bz
h − 1) + ch(dz

h, b
z
h)

≤ ch(dz
h, b

z
h − 1) − ch(dz

h, b
z
h) − ch(dz

h + 1, bz
h − 1) + ch(dz

h, b
z
h) ≤ ch(dz

h, b
z
h − 1) − ch(dz

h + 1, bz
h − 1),

implying that c(eh`(~dz+1, ~bz+1)) − c(~dz+1, ~bz+1) ≥ 0.

In the second case, since we know that ei`(~dz, ~bz) ∈ S z(~d, ~b), the inductive

assumption implies c`(dz
` + 1, bz

`) + ci(dz
i − 1, bz

i) ≥ c`(dz
`, b

z
`) + ci(dz

i , b
z
i). Further, the

53

choice of the discrete gradient-descent algorithm to take the dock from i, not h,

implies that ci(dz
i , b

z
i) − ci(dz

i − 1, bz
i) ≤ ch(dz

h, b
z
h − 1) − ch(dz

h + 1, bz
h − 1). Combining

these two inequalities again, we again see that eh` does not yield an improvement.

The remaining cases are ones in which a move involves only i, j, or h as the

third station that a bike is taken from/added to. Suppose that the transformation

in iteration z + 1 was Ei jh – the other cases are similar. A subsequent move of a

bike to i (by inequality (3)) or j (by inequality (2)) yields at most the improvement

that it would have had prior to iteration z + 1. The same holds for taking a bike

from h (by combining inequalities (2) and (3)). Thus, the remaining cases are

those in which a bike is taken from i or j as well as the ones in which a bike is

added to h.

For a bike taken from i, notice that the algorithm’s choice was to take a bike

from h rather than from i, so the increase in objective in taking it from i now

is at least what it was at h in the z + 1st iteration. Similarly, since the discrete

gradient-descent algorithm chose Ei jh over ei j, taking the bike from j has cost

at least the cost it had prior to the z + 1st iteration at h. But since E`mh, for some

` and m for which it was feasible before the z + 1st iteration, did not yield an

improvement then, it follows that E`mi and E`m j do not yield an improvement

after the z + 1st iteration.

For a bike added to h, the argument is similar to the one about a dock taken

from h after a bike was taken from h. For O`mh to be feasible, for some `,m within

S z+1, it must be the case that either dz
m + bz

m < dm + bm or dz
` + bz

` > d` + b`.

In the former case, eim(~dz, ~bz) ∈ S z(~d, ~b), so the inductive assumption implies

that the increase in cost of taking a dock from i in the z + 1st iteration is at least

54

the decrease realized by moving a dock to m. But the increase in objective in

taking a dock and a bike from ` is at least the increase at i and h in the z + 1st

iteration, since otherwise the discrete gradient-descent algorithm would have

taken the bike and dock from `. Hence, the decrease in objective at h and at m is

bounded above by the increase in objective at `.

In the latter case, the inductive assumption implies that an increase in objec-

tive at ` due to O`mh is bounded below by the increase in objective prior to the

z + 1st iteration due to o` j (since o` j(~dz, ~bz) ∈ S z(~d, ~b)). That improvement however

is greater than or equal to the decrease O`mh yields at m and at h combined by the

choice of the discrete gradient-descent algorithm in iteration z + 1. Thus, O`mh

cannot yield an improvement.

4.3 Scaling Algorithm

We now extend our analysis in Section 4.2 to adapt our algorithm to a scaling

algorithm that finds the optimal allocation of bikes and docks in O
(
n log(B + D)

)
iterations. The idea underlying the scaling algorithm is to proceed in blog2(B +

D)c + 1 phases, where in the kth phase each move involves αk = 2blog2(B+D)c+1−k

bikes/docks rather than just one. The kth phase begins by finding the bike-

optimal allocation of bikes (given the constraints of only moving αk bikes at a

time) and terminates when no move of αk docks yields improvement. Notice

first that the multimodularity of c(d, b) implies multimodularity of c(αkd, αkb) for

all k. Thus, our analysis in the last two sections implies that in the kth phase, the

scaling algorithm finds the optimal allocation among all that differ in a multiple

of αk in each coordinate from (~̄d, ~̄b). Further, since αblog2(B+D)c+1 = 1, it finds the

55

globally optimal allocation in phase blog2(B + D)c + 1. What remains to be shown,

is a bound on the number of iterations in each phase. Lemma 12 shows that that

number is bounded by O(n) and thus proves Theorem 11.

Theorem 11. The scaling algorithm finds an optimal allocation in O
(
n log(B + D)

)
iterations.

Lemma 12. The number of iterations in each phase is no more than 5n.

Proof. By Theorem 10, the number of dock-moves required in each iteration

is the minimum number of dock-moves with which an optimal allocation (for

that phase) could be obtained. We argue that the dock-move distance between

optimal allocations in two subsequent phases cannot be too large. Notice first

that if a phase requires L > 4n dock-moves, then the pigeonhole principle implies

that there must exist a sequence of dock-moves of length L that leads to the same

allocation and involves the exact same dock-move twice. For example, if the

moves ei j, ek j and ei` occur, then the moves ei j, ei j, and ek` yield the same changes,

but involve ei j twice. The same argument holds for the other kinds of moves. By

Theorem 10, carrying out all of the L moves except for the two ei j cannot yield

the optimal objective for this phase. Thus, beginning the phase with all but those

two moves, we find a suboptimal allocation such that doing the ei j does yield an

optimal allocation; this implies in particular that the ei j yield improvement at that

point. Now, notice that beginning the phase (before moving to a bike-optimal

allocation) with the two ei j moves cannot yield improvement since it gives an

allocation that would have been feasible in the previous phase.

We now want to bound the improvement of the two moves at the end in

terms of the improvement at the beginning. While multimodularity implies

diminishing returns in each iteration of the gradient-descent algorithm, this relies

56

on the allocations being bike-optimal. Though the allocation at the beginning

of the phase might not be bike-optimal (for the permitted number of bikes to be

moved in each iteration of this phase), it cannot be more than n bike-moves away

from being bike-optimal. This allows us to count each dock-move occurring in

that phase as either one of the at most 4n moves with no duplicates or as one of

the at most n moves before improvements of subsequent moves are at most what

they were prior to moving to bike-optimal. Combining the two bounds, we can

derive a contradiction from L > 5n and thus prove the lemma.

4.4 Case Studies

In this Section we present the results of case studies based on data from three

different bike-sharing systems: Citi Bike in NYC, Hubway in Boston, and Divvy

in Chicago. Some of our results are based on an extension of the user dissatisfac-

tion function which we first define in Section 4.4.1. Thereafter, in Section 4.4.2

we describe the data-sets underlying our computation. Finally, in Section 4.4.3

we describe the insights obtained from our analysis.

4.4.1 Long-Run-Average Cost

A topic that has come up repeatedly in discussions with operators of bike-share

systems is the fact that their means to rebalance overnight does not usually

suffice to begin the day with the bike-optimal allocation. In some cities, like

Boston, no rebalancing at all happens overnight. As such, it is desirable to

optimize for reallocations that are robust with respect to the amount of overnight

57

rebalancing. To capture such an objective, we define the long-run average of the

user dissatisfaction function. Rather than mapping an initial condition in bikes

and empty docks to the expected number of out-of-stock events over the course

of one day, the long-run average maps to the average number of out-of-stock

events over the course of infinitely many days. Formally, denoting by X ⊕ Y the

concatenation of arrival sequences X and Y , i.e., (X1, . . . , Xt,Y1, . . . ,Ys), we define

the long-run average of a station i with demand profile pi as follows.

Definition 13. The long-run-average of the user dissatisfaction function at station i

with demand profile pi is

cπi (d, b) = lim
T→∞

EY j∼pi[c
Y1⊕Y2⊕...⊕YT (d, b)]

T
.

We can compute cπ(d, b) by computing, for a given demand profile pi, the

transition probabilities ρxy :=
∑

X pi(X)1δX(di+bi−x,x)=y; in other words, ρxy is the

probability of station i having y bikes at the end of a day, given that it had x at

the beginning, and given that each sequence of arrivals X occurs with probability

pi(X). Given the resulting transition probabilities, we define a discrete Markov

chain on {0, . . . , di + bi} and denote its stationary distribution by πdi+bi
pi . This

permits us to compute cπ(d, b) =
∑d+b

k=0 π
d+b
pi

(k)ci(d + b − k, k). Furthermore, from

the definition of cπ(·, ·) it is immediately clear that cπ(·, ·) is also multimodular; as

such, all results proven in the previous sections about c(·, ·) also extend to cπ(·, ·).

In fact, we observe that cπ(·, ·) depends only on the sum of its two arguments

but not on the value of each. Before comparing the results of optimizing over

cπ(·, ·) and over c(·, ·), we now give some intuition for why the long-run average

provides a contrasting regime.

58

Intuition for the Long-run Average.

It is instructive to consider examples to illustrate where optimizing over the long-

run average deviates from optimizing over a single day. To simplify manners,

we restrict ourselves to demand profiles that only have point mass for a single

sequence of arrivals. A station at which the sequence of arrivals consists of k

rentals followed by k returns has the long-run average of its user dissatisfaction

decrease by 2 for each of the first k docks allocated; similarly, the user dissatis-

faction function over a single day decreases by 2 for each full dock added (and

by 1 for each empty dock added). At a station at which only k rentals occur, the

user dissatisfaction function also decreases by 1 for each of the first k full docks

added; however, its long-run average remains unchanged: no matter how many

docks and bikes are added, the long-run average of the station is to be empty at

the beginning of the day and therefore all k customers experience out-of-stock

events.

Two lessons can be derived from these examples. First, stations at which

demand is antipodal (rentals in the morning, returns in the afternoon or vice-

versa) tend to make better use of additional capacity in the long-run average

regime. Second, optimizing over one regime can, in principle, return solutions

that are very bad in the other.

4.4.2 Data Sets

We use data-sets from the bike-sharing systems of three major American cities to

investigate the effect different allocations of docks might have in each city. The

three cities, New York City, Boston, and Chicago, vary widely in the sizes of their

59

systems. When the data was collected (summer 2016), Boston had 1300 bikes and

2700 docks across 160 stations, Chicago had 4700 bikes and 9500 docks across 582

stations, and NYC had 6750 bikes and 14840 docks across 447 stations.4

For each station (in each system), we compute piece-wise constant Poisson

arrival rates to inform our demand profiles. To be precise, we take all weeekday

rentals/returns in the month of June 2016, bucket them in the 30-minute interval

of the day at which they occur, and divide the number of rentals/returns at

each station within each half-hour interval by the number of minutes at which

the station was non-empty/non-full. We compute the user dissatisfaction func-

tions assuming that the demand profiles stem from these Poisson arrivals (cf.

O’Mahony et al. [2016] and Parikh and Ukkusuri [2014]). Some of our results in

this section rely on the same procedure with data collected from other months.

Given that (in practice) we do not usually know the lower and upper bounds

on the size of each station, we set the lower bound to be the current minimum

capacity within the system and the upper bound to be the maximum one. Fur-

thermore, we assume that D + B is equal to the current allocated capacity in the

system, i.e., we only reallocate existing docks.

4.4.3 Impact on Objective.

We summarize our results in Table 4.1. The columns Present, OPT, and 150-

moved compare the objective with (i) the allocation before any docks were

moved, (ii) the optimal allocation of bikes and docks, and (iii) the best allocation

4We remark that these numbers were obtained using the respective JSON feed of each system
and do not necessarily capture the entire fleet size, e.g., in New York City a significant number of
bikes is kept in depots over night.

60

of bikes and docks that can be achieved by moving at most 150 docks from the

current allocation. The columns headed c contain the bike-optimal objective for a

given allocation of docks, the columns headed cπ the long-run-average objective

(for the same allocation). Two interesting observations can be made. First, though

the optimizations are done over bike-optimal allocations without regard to the

long-run average, the latter improves significantly in all cases. Second, in each of

the cities, moving 150 docks yields a significant portion of the total improvement

feasible to obtain the optimum. This stands in contrast to the large number of

moves needed to find the actual optimum (displayed in the column Moves to

OPT) and is due to the diminishing returns of the moves.

Present OPT 150-moved Moves to OPT
City c cπ c cπ c cπ

Boston 854 1118 640 943 700 984 407
Chicago 1460 2340 759 1846 1224 2123 1553

NYC 6416 9475 4829 8180 6150 9192 2721

Table 4.1: Summary of main computational results with c denoting bike-
optimal, cπ the long-run-average cost.

A more complete picture of these insights is given in Figure 4.1. The x-axis

shows the number of docks moved starting from the present allocation, the y-axis

shows the improvement in objective, i.e., the difference between the initial objective

and the objective after moving x docks. Each of the solid lines corresponds to

different demand estimates being used to evaluate the same allocation of docks.

The dotted lines (in the same colors) represent the maximum improvement, for

each of the demand estimates, that can be achieved by reallocating docks; while

these are not achieved through the dock moves suggested by the estimates based

on June 2016 data, significant improvement is made towards them in every case.

In particular, the initial moves yield approximately the same improvement for

the different objectives/demand estimates. Thereafter, the various improvements

61

diverge, especially for the NYC data from August 2016. This may be partially

due to the system expansion in NYC that occurred in the summer of 2016, but

does not contradict that all allocations corresponding to values on the x-axis are

optimal in the sense of Theorem 10.

Figure 4.1: Improvement in objective for moves to bike-optimal allocation
for June ’16 data.

62

June 2016 March 2017 November 2017
New York City 358.7 260.3 294.6

Table 4.2: Improvement of 200 docks moved based on long-run average
evaluated with demand estimates June 2016, evaluated with
demand estimates from 2017.

Seasonal Effects.

As we mentioned in Section 4.1 we also consider the impact of seasonal effects. In

Table 4.2 we show the improvement in objective when optimizing the movement

of 200 docks in New York City based on demand estimates in June 2016 and

evaluate the objective with the long-run average based on demand estimates

based on March and November 2017. The estimated improvements show that

optimizing with respect to any one season yields significant improvement with

respect to any other.

Operational Considerations.

We conclude this part of our analysis with two remarks to contextualize the oper-

ational impact our suggestions can have. First, it is instructive to compare the

estimated improvement realized through reallocating docks to the estimated im-

provement realized through current rebalancing efforts: according to its monthly

report, Citi Bike rebalanced an average 3,452 bikes per day in June 2016 (monthly

report, NYCBS [2016]). A simple coupling argument implies that a single bike

yields at most a change of 1 in the user dissatisfaction function; thus, rebalanc-

ing reduced out-of-stock events by at most 3,452 per day (assuming that each

rebalanced bike actually has that much impact is extremely conservative). Con-

trasting that to the estimated impact of strategically moving, for example, 500

63

docks diminishes the estimated number of out-of-stock events by about as much

as a fifth of Citi Bike’s (daily) rebalancing efforts.

Second, discussions with operators uncovered an additional operational

constraint that can arise due to the physical design of the docks. Since these

usually come in triples or quadruples, the exact moves suggested may not be

feasible; e.g., it may be necessary to move docks in multiples of 4. By running

the scaling algorithm without the last two iterations, we can find an allocation in

which docks are only moved in multiples of 4. With that allocation, the objective

of the bike-optimal allocation is 673, 847, and 4896 in Boston, Chicago, and NYC

respectively, showing that despite this additional constraint almost all of the

improvements can be realized.

4.5 A Posteriori Evaluation of Impact

In this section we apply the user dissatisfaction function to estimate the impact

implemented changes in the system have had on out-of-stock events. One way to

do so would be to estimate new demand rates after docks have been reallocated,

compute new user dissatisfaction functions for stations with added (decreased)

capacity, and evaluate for those stations and the new demand rates the decrease

(increase) between the old and the new number of docks. A drawback of such

an approach is the heavy reliance on the assumed underlying stochastic process.

Instead, we present here a data-driven approach with only little reliance on

assumed underlying demand profiles.

Throughout this section, we denote by d and b the number of empty docks

and bikes at a station after docks were reallocated, whereas d′ and b′ denote the

64

respective numbers before docks were reallocated. Notice that while d + b and

d′ + b′ are known (capacity before and after docks were moved) and b can be

found on any given morning (number of bikes in the station at 6AM), we rely on

some assumed value for b′ — for that, in our implementation, we picked both

min{d′ + b′, b} and b × (d′+b′)
d+b , that is, either the same number of bikes (unless that

would be larger than the old capacity before docks were added) or the same

proportion of docks filled with bikes.

4.5.1 Arrivals at Stations with Increased Capacity

In earlier sections, we assumed a known distribution for the sequence of arrivals

based on which we compute the user dissatisfaction functions. In contrast, in this

section we rely exclusively on observed arrivals (without any assumed knowl-

edge of the underlying stochastic process) to analyze stations with increased

capacity. This is motivated by a rigorous argument to justify that censoring

need not be taken care of explicitly in this case. To formalize our argument, we

need to introduce some additional notation for the arrival sequences. Recall

from Section 4.1 that a sequence of customers arriving at a bike-share station to

either rent or return a bike was denoted by X = (X1, . . . , XS) and that X included

failed rentals and returns, which in practice would not be observed because

they are censored. Which Xi are censored, of course, depends on the (initial)

number of bikes and docks at the station. Let us denote by X̂(d,b) the subsequence

of X that only includes those customers whose rentals/returns are successful

(hence, non-censored) at a station initialized with d empty docks and b bikes, i.e.,

the ones that do not experience out-of-stock events. Given the notation cX(·, ·)

used in Section 4.1 for a particular sequence for arrivals, we can then compute

65

cX̂(d,b)
(·, ·). In particular, denoting the number of empty docks and bikes without

the added capacity by d′, b′, we may compute cX̂(d,b)
(d′, b′). The following proposi-

tion then motivates the notion that censoring may be ignored at stations with

added capacity.

Proposition 14. For any X, d′ ≤ d and b′ ≤ b, we have

cX(d′, b′) − cX(d, b) = cX̂(d,b)
(d′, b′) − cX̂(d,b)

(d, b) = cX̂(d,b)
(d′, b′).

Proof. The proof of the second equality follows immediately from X̂(d,b)

including exactly those customers among X that are not censored, when a station

is initialized with d empty docks and b bikes, so cX̂(d,b)
(d, b) = 0. Now, on the

left-hand side, we can inductively go through all customers among X that are

out-of-stock events when the station is initialized with d empty docks and b bikes.

Since d ≥ d′ and b ≥ b′, each one of those increases both terms in the difference

by 1. Thus, taking them out of X does not affect the value of the difference. But

then, we are left with only X̂(d,b).

Extension to Rebalancing

Based on our reasoning in Section 3.2, our analysis of the user dissatisfaction

functions and the resulting dock allocation optimization problems (cf. Sections

4.1 and 4.2) did not consider the rebalancing of bikes. In contrast, in the a posteriori

analysis, we are able to take rebalancing into account.

To simplify the exposition, we restrict ourselves here to rebalancing that adds

bikes to a station, though the reasoning extends to rebalancing that removes bikes.

The simplest approach to treat bikes added through rebalancing is to treat them

66

simply as returns and thus include them (as virtual customers) in the sequence

of arrivals X. However, this may cause an unreasonable increase to the value

of cX(d,b)(d′, b′) (when the number of bikes added is greater than the number of

empty docks would have been at that point in time if the station had initially had

d′ empty docks). In that case, the virtual customers (corresponding to rebalanced

bikes) would incur out-of-stock events and thereby increase the value of the user

dissatisfaction function. A more optimistic way that also treats rebalanced bikes

as virtual customers would be to redefine the user dissatisfaction function in such

a way so that out-of-stock events are only incurred by returns that correspond

to non-rebalanced bikes. This, in essence, decouples the user dissatisfaction

functions into subsequences, each of which is evaluated independently.

Extension to Stations with Decreased Capacity.

Theorem 14 does not apply to stations with decreased capacity: suppose d <

d′ and b = b′; once the station (initialized with d empty docks and b bikes)

becomes full, X̂(d,b) observe no further returns even though these would be part

of X̂(d′,b′). To account for out-of-stock events occurring in that way, we fill in

the censored periods with demand estimates. Noticeably, this does not usually

require knowledge of the full demand-profile; for example, for a station that is

non-empty and non-full over the course of the day, no estimates are needed at all.

Further, for periods of time in which the station is full, we only need to estimate

the number of intended returns – rentals over that period of time would not be

censored.

67

4.5.2 Measured Impact

We consider 3 stations at which capacity was increased and 3 stations at which it

was decreased based on our recommendations. For two of the stations at which

capacity was increased 12 docks were added, for one of them the capacity was

increased by 10; the decreases were by the same amounts, so in total this involved

reallocating 34 docks. In Figure 4.2 we present the impact for each weekday

in April 2018 (without the extension to rebalancing). For stations with added

capacity we set d and b according to the number of bikes at 6AM. We evaluated

Figure 4.2: Evaluation of impact at stations with increased and decreased
capacity.

cX̂(d,b)
(d′, b′) for stations with docks added (cf. Proposition 14) using the observed

arrivals X̂(d,b) for each day. For the stations with docks taken away we estimated

X̂ by assuming a fluid number of rentals (returns) whenever the station was

empty (full), where the rate is based on decensored estimated demand from the

same month. We use that to compute cX̂(d,b)
(d′, b′) − cX̂(d,b)

(d, b) for these stations.

The resulting values for different implementations are summarized in Table 4.3;

aggregated over the entire month, the net reduction in out-of-stock events varies

between 831 and 1062.

68

N
o

R
eb

al
an

ci
ng

R
eb

al
an

ci
ng

m
in
{b
,d
′
+

b′
}

b
×

(d′ +b′ d+
b

) m
in
{b
,d
′
+

b′
}

b
×

(d′ +b′ d+
b

)
D

ec
re

as
e

w
he

re
ca

pa
ci

ty
w

as
ad

de
d

83
1.

0
11

21
.0

88
2.

0
10

27
.0

In
cr

ea
se

w
he

re
ca

pa
ci

ty
w

as
ta

ke
n

0
58

.7
0

59
.7

N
et

R
ed

uc
ti

on
83

1.
0

10
62

.3
88

2.
0

96
7.

3

Ta
bl

e
4.

3:
Es

ti
m

at
ed

im
pa

ct
of

re
al

lo
ca

te
d

ca
pa

ci
ty

on
ou

t-
of

-s
to

ck
ev

en
ts

.

69

4.6 Running Time

Even though the reallocation of docks is a strategic question, the time to solve

the associated optimization models is not irrelevant for practical considerations.

Given the expensive computation of each user dissatisfaction value, an early

approach to compute the LP-relaxation of the optimization problem took a whole

weekend to solve — noticeably, this was due to the time to set up the LP; once it

was set up, the LP could be solved quickly. While this is acceptable for a one-off

analysis, in practice system operators care about regularly running different

analyses that include different demand patterns, different bounds on number

of docks moved, and even different bounds on station sizes. Having a fast

algorithm allows system operators to run the analysis without our support: we

provided them with a Jupyter notebook (Kluyver et al. [2016]) that includes the

entire workflow from estimating the demand profiles to computing the user

dissatisfaction functions to running the optimization problem to creating map-

based visualizations of the resulting solutions (cf. Figure 4.3) and does not rely on

specialized optimization software like Gurobi or CPLEX. Crucially, this workflow

happens in a matter of minutes rather than hours or days (cf. Table 4.4).

To complete our analysis, we now compare the measured running times of

the algorithm with and without scaling techniques. Given that the running-

time of each algorithm is dominated by the computational effort to compute

values of the user dissatisfaction functions (the effort for which grows as a cubic

function of the capacity), we only computed values that the respective algorithm

needed. In Figure 4.4, we plot the number of user dissatisfaction functions that

are computed by each algorithm. It is noticeable in Chicago that the scaling

algorithm created unnecessary overhead by requiring values for large capacities

70

Figure 4.3: Visualization of docks moved by optimal solution for z ∈
{500, 1500}; red circles correspond to docks being taken, blue
circles to docks being added.

at many stations that were not required without scaling. This illustrates why

the algorithm without scaling outperforms the scaling algorithm in both Boston

and Chicago (cf. Table 4.1). In NYC on the other hand, the scaling algorithm

performed significantly better. Motivated by this contrast, we implemented a

hybrid algorithm that only iterates over 8, 4, and 1, rather than all powers of

2. The hybrid outperforms both the algorithm without scaling and the scaling

algorithm on all three data-sets. All three algorithms vastly outperform the linear

programming based approach that needs to evaluate every value of the user

dissatisfaction functions at all stations before solving.

71

Running Time (Minutes)
No scaling Hybrid Scaling

New York City 18.08 14.02 12.27
Chicago 7.03 5.67 8.78
Boston 1.44 1.37 1.83

Table 4.4: Comparison of the running times of each of the three algorithms
in each of the three cities

Figure 4.4: Number of UDF evaluations by each algorithm in each city.

72

CHAPTER 5

TRADEOFFS FOR INCENTIVES IN NEW YORK’S CITI BIKE SYSTEM

”Never Doubt That A Small Group Of Thoughtful Committed Citi-

zens Can Change The World.” – President Bartlet

In this chapter, based on Chung, Freund, and Shmoys [2018], we study the

impact of Bike Angels, an incentive program we set up with New York City’s Citi

Bike system in 2015 to crowdsource some of the operational challenges related to

imbalance. We develop a performance metric for both online- and offline-policies

to set incentives within the system; our results indicate that though Citi Bike’s

original offline policy performed well in a regime in which incentives given to

customers are not associated to costs, there is ample space for improvement

when the costs of the incentives are taken into consideration. Motivated by

these findings, we develop several online- and offline- policies to investigate

the trade-offs between real-time and offline decision-making; one of our online

policies has since been adopted by Citi Bike.

When the Bike Angels incentive scheme was first set up, we identified pairs

of stations that (i) were close to each other, and (ii) had asymmetric demand

patterns: we chose pairs of stations that were nearby to each other but over a

certain time interval had the property that one station (A) overwhelmingly had

bikes returned whereas the other (B) overwhelmingly had bikes rented. We then

invited users that often used one of the two and asked them to switch to the

other, i.e., we asked a small number of customers likely to return bikes at A in

such intervals to become Bike Angels by instead returning bikes at B.

While the pilot showed that customer behavior could be significantly affected

73

through gamification (Bikeshare [2016]), it also posed questions about how to

optimally design such an incentive scheme, in particular with respect to when

and where to incentivize. A second version of Bike Angels, at a much larger scale,

statically incentivized a sizeable fraction of stations within the system either

to enourage rentals or returns throughout each rush hour. This program was

viewed as a great success, in spite of the fact that the pre-determined incentives

made no use of the vast amounts of historic and real-time data available. At

worst, this sometimes led to incentives encouraging customers to rent (return)

bikes at empty (full) stations.

In this chapter, we evaluate the efficiency of this incentive scheme with

regard to its goal to reduce out-of-stock events. We apply the user dissatisfaction

functions to evaluate, for every rental/return rewarded by the program, an

estimate of its reduction in future out-of-stock events. Further, we design a range

of different policies, dictating the times at which each station is incentivized. The

design of these policies involves trade-offs between their efficiency and simplicity.

Below, we explain what we mean by those two terms:

Efficiency. The main goal of Bike Angels is to help rebalance the system, i.e., to

reduce the number of out-of-stock events. We explain in this chapter how the user

dissatisfaction functions introduced by Raviv and Kolka [2013] (cf. Chapter 3) can

be used to evaluate the impact of each individual rental/return on the expected

number of future out-of-stock events. Combining these with a cost for each

point awarded in the incentive scheme, we obtain a score for each incentivized

rental/return that can be interpreted as an offline evaluation of the efficiency

of the incentive. In that sense, a perfectly efficient scheme would incentivize

exactly those rentals/returns that net a positive score when accounting for both

74

the impact on out-of-stock events and the cost of incentives.

Simplicity. Perfect efficiency, with respect to the score described above, is

attainable in such an incentive scheme, but it requires the operator to decide in

real-time whether or not to incentivize at each location. This is undesirable from

the users’ perspective as it reduces predictability on where incentives will be

given in the future, i.e., when customers prepare their trip, they do not know

whether or not their origin and, even more so, their destination has rentals and

respectively, returns, incentivized. This raises the bar for participation. Further,

from an operator’s perspective, the IT set-up for a dynamic scheme requires

more maintenance than, say, the completely static version.

We show that even though there exist natural trade-offs between simplicity

and efficiency, there are a variety of incentive policies that span the continuum

from maximally efficient and maximally dynamic to less efficient and entirely

static. Our results employ a data-driven methodology to design such policies,

one of which is now in place at Citi Bike.

5.1 The Incentive Scheme

Before outlining the structure of our exposition, it is worthwhile to give a high-

level description of the Bike Angel program.

Bike angels accrue points by doing rides that benefit the balance of the system.

Although the way in which stations are chosen for incentives has changed over

time, the following accounting has been the guiding principle since the original

pilot ended: the program awards 1 point for a trip from an incentivized rental

75

station to a neutral station or from a neutral station to an incentivized return

station and 2 points for a trip from an incentivized rental to an incentivized return

station. The exact reward structure of the incentive scheme has also changed

over time, yet the basic idea that more points translate into higher rewards has

remained the same. For example, in February 2018, the program rewarded users

as follows NYCBS [2018]:

• For 10 points accrued, bike angels receive a 24-hour day pass;

• For every 20 points, up to 80, bike angels receive a free membership exten-

sion of 1 week;

• For every 10 points above 80, bike angels receive $1 as a gift card;

• The 5 angels with the most points receive gift cards worth $100, $75, $50,

$25, and $25 respectively.

It is worthwhile to mention that bike angels occasionally get bonuses for

beneficial trips on days with special conditions (e.g., due to weather); however,

since our analysis mostly focuses on the choice of stations/times to incentivize,

we ignore such bonuses.

We present our results as follows: in the next section we describe the data-

sets used in our analysis and formally define the models developed to evaluate

the incentive scheme. Thereafter, we define the various policies before giving

a detailed comparison of the different policies, analyzing the inherent trade-

offs between simplicity and efficiency. Finally, we conclude by reporting on

the changes Citi Bike implemented for the Bike Angel program based on our

analysis.

76

5.2 Data Analysis and Definitions

In this section, we describe the data-sets at our disposal, the system parameters

we derive from them, and the models by which we evaluate the different policies

for the incentive scheme.

Data-Sets

Our analysis relies on three different data-sets. First, we have a list of all trips in

the system with origin location, destination location, and respective times of the

start and the end of the trip (from NYCBS [2017a]). Second, we have a list that

indicates which of the above trips were rewarded with points by the existing

offline incentive policy (from Bikeshare [2016]); the list also indicates for each

trip whether the point was awarded for the rental, the return, or both. Finally,

for each minute and each station in the system, we have the number of bikes

reported to be at the station at that time as well as the total number of docks

available (from NYCBS [2017b]).

We use data collected over three different time periods in 2016 in our analysis:

04/01–05/13 (base), 10/03–10/30 (training) and 10/31–12/14 (testing). The base

and training periods are used to help calculate the system parameters, such as

the rental/return rates and the stochastic interpretation of the incentives’ effect

explained later in this section, and also serve as the training period for some

of our incentive policy algorithms. The testing period is used to evaluate and

compare our suite of policies.

77

Data Censoring

In our data, censoring proves to be a challenge, since the data does not accurately

reflect the true demand within the system. For example, a rider wanting to

rent or return a bike to a station, with all docks empty or full respectively,

cannot do so; thus, the corresponding demand would not be reflected in our

data sets. To account for this problem of demand-censoring, when estimating

average rental/return demand, we follow the methodology of O’Mahony and

Shmoys [2015] and examine station behavior on a minute-by-minute basis, only

considering ”active rental/return minutes”, that is, minutes when a station has

non-empty or non-full docks, respectively.

Rental and Return Rates

Our analysis relies on three types of rental and return rates: regular-angel,

incentive-angel, and non-angel rates. Regular-angel rates are the natural

rental/return rates into a station for all angel riders combined, when no in-

centive is provided. The incentive-angel rates are the rates for the same set of

customers when incentives are given. The non-angel rates are the rates for all

other customers and are assumed to be unaffected by the incentive program. In

our calculation of rates, we follow the work by O’Mahony and Shmoys [2015]

in assuming that the rates are independent across stations and calculate rates

for every half-hour interval of the day starting from 12AM in the units bikes per

minute.

To calculate the incentive-angel and non-angel rates, we take the data for a

station’s previous q weekdays, and divide the total number of all rentals/returns

78

by the specified riders by the total ”active rental/return minutes” for each half-

hour interval. In the results we present, q is set to 20.

Formally, for each day d, station s, and time index t, let (m−d,s,t, m+
d,s,t) denote the

active rental/return minutes, (ra,+
d,s,t,r

a,−
d,s,t), (rn,+

d,s,t, rn,−
d,s,t) the number of returns/rentals

for angel and non-angel riders respectively, and D(d) be the set of the preceding

q weekdays before day d. Then the incentive-angel return rates λi,+
d,s,t for day d,

station s and time index t, where t ∈ {0, 1, 2, ..., 47} for the 48 half-hour intervals

of the day (e.g. t=12 is 6 a.m.) are calculated as the rate per minute normalized

to account for only active minutes, as follows (similar for rental rates λi,−
d,s,t and

non-angel return/rental rates λn,+
d,s,t and λn,−

d,s,t):

λi,+
d,s,t =

1
q

∑
d′∈D(d) ra,+

d′,s,t∑
d′∈D(d) m+

d′,s,t

(5.1)

To estimate the regular-angel rates, we used data from the base period when

no incentive program was offered. The regular-angel rates are assumed to be

identical across days, and are calculated by dividing the angel rider’s total

number of all rentals/returns by the total ”active minutes” in the base period for

each half-hour interval, and applying a correction factor. The correction factor

accounts for any general change in system usage from the base time period to our

testing time period. The correction factor is calculated by dividing the average

daily total number of trips by non-angel riders during the training period by

their average daily total number of trips during the base time period. Finally, to

reflect our prior beliefs that incentivization actually helps our system, we capped

the regular-angel rates to be at most the incentive-angel rates. If we define D to

be the set of weekdays in the base time period, the regular-angel return rates are

79

calculated as follows (similarly for rental rates):

λr,+
d,s,t = min(

U
|D|

∑
d′∈D ra,+

d′,s,t∑
d′∈D m+

d′,s,t

, λi,+
d,s,t) (5.2)

Stochastic View of Incentives

Our analysis also relies on the probability that an incentivized rental/return

would not have occurred if it had not been for the incentive; in particular, the

rebalancing due to a rental/return that happens regardless of the incentives

should not be attributed to the incentive scheme. We compute these probabilities

for each day, station and half-hour interval by dividing the difference of the

incentive-angel and regular-angel rates by the incentive-angel rate. Formally,

with p+
d,s,t denoting the probability that a rental was triggered by the incentives,

we compute this probabilities as

p+
d,s,t =

λi,+
d,s,t − λ

r,+
d,s,t

λi,+
d,s,t

. (5.3)

The probability of a return having been triggered by incentives is defined sym-

metrically and denoted as p−d,s,t.

User Dissatisfaction Function

Given the non-angel rental and return rates, we can compute, for a given station

s with ` bikes at time-index t, the user dissatisfaction function for an interval

starting at time t, which is the expected number of intended returns when the

station is at capacity plus the expected number of intended rentals when the

station is empty. We denote this expectation by cs,t(`) (cf. Chapter 3).

80

Figure 5.1: On the left-hand side, we display the user dissatisfaction func-
tion for four stations with different demand patterns as in Figure
3.1. On the right-hand side, we show the respective discrete
derivatives.

Performance Metrics and Policies

For each incentivized return, we can estimate the reduction in out-of-stock events

by computing the discrete derivative of the user dissatisfaction function with

respect to one additional bike, evaluated as a function of the number of bikes

present in the station before the arrival. Similarly, for incentivized rentals, the

estimated reduction in out-of-stock events equals the difference in the value

of the user dissatisfaction function evaluated with one bike less and the actual

number of bikes in the station. In Figure 5.1, we display the respective user

dissatisfaction functions and the value of the derivatives for three different

stations at 6AM. Evaluating the user dissatisfaction functions for every half-

hour interval, we estimate the impact of each rental/return on future out-of-

stock events by evaluating the derivative of the user dissatisfaction function

for that time-interval at the number of bikes present at the time of the return

81

(and similarly for rentals). If we let δr denote the estimated reduction on future

out-of-stock events for trip r, let ` denote the bike-level at the station before the

trip completed, and let s and t denote the station and time-index associated with

the trip, we find that we may compute δr for a return as follows (and similarly

for rentals):

δr = cs,t(`) − cs,t(` + 1) (5.4)

Although δr captures the impact of a return (rental) on the estimated number

of out-of-stock events, it lacks two important aspects for our analysis. First, it

lacks the cost associated with the incentive itself. To capture the operator’s cost of

the incentive scheme in the form of electronic gift cards, membership extensions,

and other rewards (cf. NYCBS [2018]), we include a constant cost parameter β

for every point awarded by an incentive scheme. Second, for every incentivized

rental (return), we can incorporate the probability pd,s,t that the rental (return)

would not have occurred without an incentive given; here, d, s, t is the date,

station and time index respectively in which the rental (return) occurred. This

gives a stochastic perspective of the causal effects of incentives, in contrast to the

deterministic assumption that incentivized rentals (returns) are always caused

by the incentive. Using the above, we can define for every single incentivized

return (rental) the performance of incentivizing it with both the deterministic

and the stochastic perspective as

∆r =


δr − β if deterministic

δr · pd,s,t − β if stochastic.
(5.5)

82

Given ∆r as a performance measure for incentivizing a single return (rental)

r, we define the performance of a policy as the sum of all ∆r corresponding to

incentivized rentals (returns) r. Formally, denoting by τ the set of all rentals

(returns) in the testing period, we define a policy P as a function P : τ → {0, 1}

identifying for each rental (return) r whether or not P incentivizes it. Then, to

compute the overall performance H(P) of a policy P we compute

H(P) =
∑
r∈τ

P(r) · ∆r (5.6)

5.3 Policies

In this section, we define a number of incentive policies and identify the funda-

mental differences between offline and online policies. During the time periods

from which our data is drawn, two 6-hour time periods were incentivized in

the Citi Bike system: 6AM-12PM and 4PM-10PM – we refer to them as the AM

and PM periods, respectively. Since all of the incentivized trip data comes from

only these two periods (cf. Figure 5.2), we test/apply our policies only for these

periods. Furthermore, each policy treats the two time periods independently,

and calculates an incentive scheme for each time period and station. From the

figure, we see a generally equal distribution of rental/returns in the PM period,

but a return-skewed distribution in the AM period.

Offline Policies

We first describe the offline policies. Offline policies are characterized by the

fact that the decision, for each AM/PM period, as to which interval will be

83

Figure 5.2: Total number of incentivized rentals/returns in the test period.

incentivized for each station is made (irrevocably) at the beginning of that time

interval (6AM and 4PM for AM and PM, respectively); in doing so, these policies

have access to past data and the number of bikes at that time, i.e., 6AM and 4PM,

respectively. (Note that this use of term offline is different from its use in other

contexts, where offline often means that the algorithm has access to all of the

data for the input to be optimized before needing to commit to any decision.)

Static

The Static model is the simplest offline policy and was also the policy employed

in Citi Bike at the time that this research project initiated. This policy determines

a subset of stations to incentivize for which the entire AM period is incentivized

on every day, and similar subset is determined for the PM period. This model

serves as a baseline against which all other policies are compared.

84

Static Hindsight

The Static Hindsight model is an offline policy that chooses, for each station,

the optimal continuous incentive period when looking back in hindsight for

the past q′ weekdays. More precisely, the model assumes an incentive interval

can start/stop every 30-minutes, starting from the beginning of the time period

(e.g., 06:00 – 07:30 or 07:00 – 12:00 for the AM period), and chooses the incentive

interval that achieves the highest performance when constrained on the past q′

weekdays of trip data. Throughout, we will use the term incentive interval to

refer to such a continuous time period with these discrete start/end times. In

our results, q′ is set to be 10. Thus, we let D(d) denote the set of dates which are

q′ days in hindsight; we let τ(D(d), s) denote the possible morning incentive trips

belonging to those dates and station s, and let Id,s to be the incentive interval

for station s on day d. Furthermore, let us say trip r ∈ I if and only if the trip

occurred during the interval I. The interval I?d,s chosen by Static Hindsight for

the morning period is

arg max
I

∑
r∈τ(D(d),s)

∆r · 1r∈I , (5.7)

where the notation 1r∈I means the indicator function that is equal to 1 if r ∈ I, and

is 0, otherwise.

Cluster Hindsight

This offline policy uses a clustering of the stations to help make incentive deci-

sions. As we describe in more detail below, the model first groups the stations

by station dock-capacity, clusters each group by bike-level behavior, and finally

chooses the optimal incentive interval for each cluster when looking back in

85

hindsight (similar to Static Hindsight).

We compute groups of stations by sorting them from smallest to largest

capacity, and dividing them into g roughly equal-size groups. The intuition for

the grouping is our prior belief that station activity level is highly correlated

with station capacity size and it is unwise, for example, to compare stations

with bike-capacity 5 with stations of bike-capacity 60. The actual data-points

used to cluster are 12-dimensional vectors consisting of the 12 half-hour interval

bike-level percentages (bike-level divided by station dock capacity) for a station

and date. The data points were obtained from our training data period, and

bike-level percentages, rather than absolute values, were used to normalize the

data points. To cluster each group of stations, we run the k-means clustering

algorithm (k-centroids) with the objective of minimizing the distortion, which is

defined to be the sum of the squared Euclidean distances between each vector

and its centroid. Finally, our model uses a hard labeling system to associate

each station with a single cluster (since for each station we have multiple points

corresponding to distinct dates), and labels a station as belonging to the cluster

for which its data points are most prevalent.

To calculate the actual incentive intervals for each cluster, the model finds the

optimal single, continuous incentive interval when looking back in hindsight

of q′ weekdays for the stations in the cluster. Then let us define C(s) to be the

cluster of stations which s belongs to. The interval that the model chooses is as

follows:

I?d,s = arg max
I

∑
s′∈C(s)

∑
r∈τ(D(d),s′)

∆r · 1r∈I (5.8)

The number of groups and the number of clusters are hyper-parameters of

the model. To fit these parameters and avoid high bias/variance problems, k-fold

86

cross-validation was used with our training data, and the parameters with the

best average scores were chosen. Due to the temporal aspect of the data (e.g.,

weather plays a big role in system behavior) the k-folds were also divided to

maintain the temporal order. The final parameters used in our results are g = 10,

k = 3 and q′ = 10.

Fluid Model

A natural way to use the incentive-angel and non-angel rates to define an offline

policy is by defining a so-called fluid model, in which it is assumed that exactly

the expected number of rentals and returns occurs continuously per unit of time.

Within such a model, it is easy to find the interval during which incentivizing

minimizes the (fluid) number of out-of-stock events. In fact, one can show that

under mild assumptions on the data, it is guaranteed that incentivizing over a

single interval is optimal in such a model.

Though fluid models have successfully been applied to operational questions

in bike-sharing, e.g., in Jian et al. [2016], we found in our analysis that the fluid

model was vastly dominated by all other models; thus, we omit both its formal

definition here and its performance in the results section.

Offline Benchmark

Offline policies are constrained in two ways: first, by the fact that we allow

them to incentivize only during subintervals, as opposed to incentivizing, say,

from 6-8AM and then again from 9-10AM but not in between; second, since the

87

decision is based solely on the number of bikes at each station at 6AM, they

lack information about demand later in the course of the rush hour period. To

distinguish between the lack of information and the constraint of incentivizing

only during a subinterval, we define the following static optimal benchmark that

has access to full information, but is constrained to incentivize only during a

subinterval.

Static Optimal

The static optimal model is not a feasible policy since it assumes future knowl-

edge that is not given in practice; instead, it is a model built in hindsight to

benchmark offline policies. More specifically, for each week, station and AM/PM

period, the Static Optimal model considers in hindsight, with complete knowl-

edge, the best possible single continuous incentive period in which to incentivize.

Online Policies

In contrast to the offline policies described above, online policies gain information

over the course of the rush hour period and thus are able to adopt whether or

not to incentivize at a given station at a given time. We define only a very simple

set of online policies.

Dynamic

The Dynamic model is a completely online policy that chooses in real-time for

each trip whether or not it is incentivized which immediately implies perfect

88

efficiency. Formally, the model incentivizes all trips with ∆r > 0 (cf. Equation

5), i.e., the performance is exactly the sum of all trips that contribute positively

to the objective. This policy serves as an upper-bound on what any policy can

possibly achieve within our analysis.

Dynamic CC (X)

Beyond the fully dynamic model, we define a parameterized family of policies,

wherein each policy breaks up the incentive period into intervals and the param-

eter X dictates the length of the intervals. For a given X, Dynamic CC starts at

the beginning of each AM/PM period and decides every X minutes whether or

not to incentivize trips for the next X minutes. To decide whether to incentivize

the next X minutes, the model simulates the occurrence of one incentivized trip

with the current number of bikes and empty docks at the station. If the simulated

value of ∆r is positive, Dynamic CC chooses to incentivize trips at the station

for the next X minutes. For example, the Dynamic CC 15 policy at 6 AM will

check the station’s current number of available bikes and docks, and simulate

an incentivized trip for that user dissatisfaction function and that number of

bikes and docks available. If the ∆r value for this trip is positive, it will choose to

incentivize the station from 06:00–06:15. Then, at 06:15 it simulates a new trip,

based on updated information, to determine whether or not to incentivize from

06:15–06:30.

We consider the Dynamic CC policy for X ∈ {15, 30, 60, 120}. Furthermore,

one could also view the Dynamic model as Dynamic CC with X = 0.

89

5.4 Results

In this section, we present the performance of a number of policies when run

with varying cost-parameter for both the AM and PM periods. The data-set for

the test period, on which our analysis relies, consists of a total of 4944 trips in the

AM and 2800 trips in the PM, across 147 stations. We focus our analysis on the

deterministic regime in which we assume that an incentivized rental/return is

always triggered by the incentive given and would not have occurred otherwise.

Thereafter, we contrast those results with the ones in the stochastic regime. The

scores for the former are displayed in Table 5.1 and for the latter in Table 5.2. All

scores are given as the fraction of improvement of the optimal dynamic policy

(i.e., each policy’s absolute score is divided by the dynamic policy’s absolute

score). We begin by giving a high-level summary of our most interesting findings

before providing more details for each of them.

Key Observations of Deterministic Results

Considering the rows indexed by Static for both AM and PM periods and both

tables, it is noticeable that the static policy performs quite well, especially in

the regime with low cost parameters, which is strong evidence of the operator’s

domain expertise in the initial choice of incentivized stations. Next, we observe

the near-optimal performance of the Static Optimal benchmark across all cost

parameters; this supports our decision to restrict the offline policies to incentivize

each rush hour only over one sub-interval tailored for that station. For the

dynamic policies, we observe a smooth decrease in performance as we transition

from the maximally dynamic to more static policies, which highlights the trade-

90

Time Policies Cost Parameter
0.0 0.1 0.2 0.3 0.4

AM

Dynamic 1.0 1.0 1.0 1.0 1.0
Stat. Opt. 0.985 0.981 0.976 0.97 0.961
Static 0.939 0.911 0.870 0.809 0.715
Stat. HS 0.960 0.947 0.929 0.905 0.873
Clus. HS 0.961 0.944 0.918 0.887 0.845
Dyn 15 1.0 1.0 1.0 1.0 1.0
Dyn 30 0.995 0.994 0.993 0.992 0.990
Dyn 60 0.989 0.984 0.980 0.977 0.969
Dyn 120 0.967 0.953 0.944 0.940 0.924

PM

Dynamic 1.0 1.0 1.0 1.0 1.0
Stat. Opt. 0.980 0.977 0.974 0.972 0.967
Static 0.844 0.777 0.680 0.538 0.318
Stat. HS 0.943 0.934 0.917 0.891 0.858
Clus. HS 0.932 0.917 0.897 0.866 0.830
Dyn 15 1.0 1.0 1.0 1.0 1.0
Dyn 30 0.986 0.984 0.982 0.983 0.980
Dyn 60 0.975 0.965 0.956 0.958 0.951
Dyn 120 0.949 0.926 0.909 0.919 0.904

Table 5.1: Relative performances of each policy during AM and PM periods
compared to the completely online policy under the deterministic
performance evaluation.

offs between efficiency and simplicity in the policies. Noticeably, none of the

offline policies handle high cost-parameters well. Finally, we observe a general

decrease in performance from the AM to PM period, indicating that the system

behavior is more erratic in the afternoon.

Static Performance

At first glance, the strong performance of the Static policy in Table 5.1 (0.939

in the AM without costs) may seem surprising. It is explained, however, by

the operator’s domain expertise when deciding which stations to include in the

incentive scheme. Its degrading performance with increased costs is explained by

91

Period Policies Cost Parameter
0.0 0.01 0.1 0.2

AM

Dynamic 1.0 1.0 1.0 1.0
Stat. Opt. 0.979 0.973 0.945 0.912
Static 0.928 0.916 0.771 0.479
Static HS 0.957 0.944 0.878 0.796
Clus. HS 0.958 0.931 0.831 0.699
Dyn 15 1.0 1.0 1.0 1.0
Dyn 30 0.995 0.995 0.993 0.991
Dyn 60 0.985 0.870 0.832 0.773
Dyn 120 0.966 0.68 0.612 0.514

PM

Dynamic 1.0 1.0 1.0 1.0
Stat. Opt. 0.978 0.971 0.943 0.917
Static 0.923 0.903 0.646 0.15
Stat. HS 0.967 0.948 0.883 0.784
Clus. HS 0.958 0.935 0.839 0.682
Dyn 15 1.0 1.0 1.0 1.0
Dyn 30 0.992 0.990 0.992 0.99
Dyn 60 0.982 0.889 0.850 0.807
Dyn 120 0.960 0.823 0.756 0.702

Table 5.2: Relative performance of each policy during AM and PM periods
compared to the completely online policy under the probabilistic
performance evaluation.

the fact that the policy does not adapt to the shrinking set of trips with positive

impact as costs increase.

Despite its reasonable performance in the AM in the regime without costs,

the Static policy is still dominated by all policies across all cost parameters.

This is especially prominent in the PM period, where differences range from 9%

(Stat. HS) up to 15% (Dyn 15) even without cost parameters; the differences are

even higher when accounting for costs. All of the incentivized trips in the PM,

grouped by their improvement on the objective, δr, are visualized in Figure 5.3.

Though the vast majority of incentivized trips have positive-impact, the other

policies are able to accurately exclude those trips that do not, thus achieving

92

Figure 5.3: Static Policy’s total number of incentivized trips, grouped by
impact on objective (δr) for the PM period.

better performance. These results exemplify the importance of a data-driven

approach to improve the Bike Angels program. For example, even a rather

simple policy with minimal overhead, such as Static Hindsight, significantly

improves the efficiency of the incentives.

Static Optimal Benchmark Performance

The online policies have two advantages over the offline policies: the flexibility

to adapt decisions with updated information and the flexibility to incentivize

over periods that are not sub-intervals. Comparing the performance of the

Static Optimal to the Dynamic policy helps us distinguish between these two

effects. More specifically, the benchmark operates with perfect information but

is constrained to only incentivize over sub-intervals.

93

In Table 5.1 we do indeed observe Static Opt achieving a near optimal score

of 0.98, which only slightly degrades with increased costs. This supports our

assumption that it suffices to incentivize over a single sub-interval. However,

Static Opt assumes perfect knowledge and still only matches the performance of

Dynamic CC (60). In that sense, it also demonstrates the limitations of the best

feasible offline policies.

Online to Offline Policies

Unsurprisingly, we find that the online policies outperform offline policies. As

we transition from the maximally dynamic and online policy to the entirely static

and offline policy, the decrease in performance occurs in a somewhat smooth

way.

An interesting result in this context is the performance of the Dynamic CC (15)

policy in Tables 5.1 and 5.2, as it achieves optimal scores for all sets of parameters;

this demonstrates that making decisions completely online/in real time is not

necessary to obtain perfect efficiency.

On the other end of the spectrum from online to offline, the results of Table

5.1 demonstrate that the offline policies Static Hindsight and Cluster Hindsight

perform almost on par with the online Dynamic CC (120) policy, especially in

the regime with low cost parameters; this points to the limited advantage of the

simple online policies as the cost parameter increases.

94

The Cost Parameter

In considering the relative performance change of policies with increasing cost

parameters, we find that the offline policies are comparatively much worse at

handling high cost parameters than the online policies. Intuitively, it might seem

that the interval incentive restrictions of offline policies leads to this result. For

example, imagine taking the original incentive interval with no cost parameter,

and changing some of the positive-impact trips within the interval to become

negative-impact trips (due to increase in cost). Then unless these trips all exist at

the outer limits of the interval, these trips will ”shatter” the incentive interval:

either the offline policies give up on the positive-impact trips at the beginning or

they give up on the positive-impact trips at the end or they include the negative-

impact trips in the middle. Online policies on the other hand can avoid this

conundrum since they are not restricted to a single sub-interval.

However, the performance of the Static Optimal benchmark in Table 5.1 does

not significantly degrade with high cost parameters. Thus, despite the interval

restriction, the offline policies still have room to have better predictions yield

improved performance.

In contrast, Figure 5.4 displays for the Dynamic CC (60) all incentivized trips

with their time of day, their expected impact on future out-of-stock events, and

for each one, the decision whether or not it is incentivized when run with 2

different cost parameters.The cost parameter is specified in each plot by the

y-value of the horizontal line dividing the positive-impact trips (above the line)

and negative-impact trips (below the line). As the cost parameter increases from

0.0 to 0.3, the policy excludes most trips having a δr value between that range,

that it had previously included. Thereby, it manages to retain its near-optimal

95

performance.

AM and PM Periods

Comparing the policy performances from the AM to PM period, we find there

is a significant performance difference (i.e., all policies perform worse in the

PM). However, in light of the results in Table 1, we see the relative performance

order of the policies with each other is consistent. This indicates that the system

behavior of Citi Bike is fundamentally more erratic in the afternoon, leading to

all policies having a harder time predicting when to incentivize.

Stochastic Evaluation

In this section we highlight four noticeable differences between the results in

Tables 5.1 and 5.2.

Limiting Cost Parameters

When evaluating stochastic performances we limit the cost parameters to only go

as high as 0.2. This is because when incorporating the likelihood of trips into the

δr calculations, the expected impact of a trip before subtracting the cost is much

lower; in particular, it is easy to show that the impact of a single incentivized

rental/return is at best a reduction of 1 in the number of out-of-stock events. But

then, if for example the probability of a particular rental having been triggered

by an incentive was 0.5, then even with an impact of 0.8, there would be no

improvement with cost parameter 0.4.

96

Figure 5.4: Scatter plots of incentivized trips indicating which trips are
included/excluded in Dynamic CC (60) incentivization policy,
when cost parameter is 0.0 (top) and 0.3 (bottom).

97

Relative Order

The results in Table 5.2 show that the same general trends in relative performance

order (most dynamic to most static) that hold for the deterministic results, also

hold for the stochastic results. Likewise, the results indicate that the Static

Optimal benchmark still performs near optimally in the stochastic setting.

A key difference between the deterministic and stochastic results is the sen-

sitivity to cost parameters. In particular, except for the Dynamic CC policies

parameterized with 15 and 30, all policies decrease significantly in performance

with even small increases in the cost parameter. Intuitively, due to the newly

introduced stochasticity, the expected impacts of all rides are reduced, and small

changes in cost are still large, relative to the reduced impacts.

Advantage of Hindsight Policies

Another interesting difference found between the deterministic and stochastic

results is the relative performances of the Dynamic CC 60 and 120 policies com-

pared to the Static Hindsight and Cluster Hindsight policies. Without stochastic-

ity, the online policies dominated the offline policies in performance. However,

when introducing stochasticity and for higher cost parameter regimes, the oppo-

site seems to be true. Intuitively this makes sense. The Dynamic CC X policies

consider only the status of the station at the beginning of each X-minute interval,

which includes the probability of an incentivized rental/return having occurred

due to the incentive at that time (thus ignoring the differing probabilities existing

within the X-minute interval). In contrast, the Static Hindsight and Cluster Hind-

sight policies actually incorporate all probabilities when computing the optimal

98

incentive intervals retrospectively.

Static Policy

Finally, from the stochastic results we see an even greater difference in perfor-

mance between the baseline Static policy and all other policies (especially with

increasing costs). The large differences again underline the performance im-

provements that can be obtained by transitioning from the Static policy to a

data-driven policy.

5.5 Conclusion

We have proposed a number of data-driven policies to guide incentives for rebal-

ancing in bike-sharing systems via crowdsourcing. While our analysis clearly

displays the performance differences between these policies, the superior perfor-

mance of the more dynamic policies comes with the cost of greater complexity

for users and operators alike.

There are other important considerations beyond their simplicity and perfor-

mance. For example, when comparing the performance of the Static and Cluster

Hindsight policies, it seems unclear at first glance what additional value the

Cluster Hindsight policy provides, given that it relies on heavier machinery –

after all, they perform very similarly. However, the Static Hindsight policy can

only be defined for stations for which the Static policy had been in place, whereas

the Cluster Hindsight policy can be defined for other stations as well. Thus, in a

way, each of the policies presented has its own advantage.

99

Most importantly, our analysis shows that slightly limiting the online fashion

of decision-making only causes limited decreases in performance. This adds a

data-driven analysis to a recent stream of literature in operations management

that compares dynamic and static decision-making in similar applications.

100

CHAPTER 6

REBALANCING

”No, I make nerds look good.” — S. Sabbith

In this chapter, we report on a collaborative effort with Citi Bike to develop

and implement data-driven tools to guide their rebalancing efforts. In particular,

we provide new models to guide truck routing for overnight rebalancing and

new optimization problems for non-motorized rebalancing efforts during the day.

Finally, we evaluate how our practical methods have had an impact on Citi Bike’s

rebalancing in New York City. The chapter is based on [Freund, Norouzi-Fard,

Paul, Henderson, and Shmoys, 2016].

6.1 Motivation

In the past few years, bike-share systems have developed different approaches

to rebalancing. The most common approach employs trucks to move bikes

to high-demand areas (cf. Chapter 2). This is particularly effective overnight,

when both traffic and demand are low. During the day, vehicular traffic impairs

these efforts, and operators supplement their motorized rebalancing through

non-motorized rebalancing means such as trikes and corrals. A trike is a trailer

that typically holds at most eighteen bikes and is towed by a cyclist to relocate

bikes between a station A, with high supply, and a station B, with low supply

(cf. Figure 6.1). A corral, on the other hand, artificially increases the capacity of a

popular station by having an employee store bikes in between docks, thereby

using all of the available space (cf. Figure 6.1).

101

This section is based on work by Freund, Norouzi-Fard, Paul, Henderson,

and Shmoys 2016; we provide data-driven methods to help New York City Bike-

share (NYCBS) improve overall utilization of their system and reduce customer

dissatisfaction. We formulate and attack the underlying optimization problems

that arise in truck-based rebalancing overnight, trike-based rebalancing during

the day, and the placement of a limited number of seasonal corrals. For each of

these settings we describe the methods developed and their impact for NYCBS.

First, we consider optimally routing trucks to relocate bikes overnight. This

is called the overnight rebalancing problem. Our objective in this problem is to

minimize expected customer dissatisfaction over the next day as measured by

the user dissatisfaction function (cf. Chapter 3). We present an integer program

(IP) that constructs routes for a given number of trucks and show how to find

good solutions when given limited computation time in practice. Next, we

consider the mid-rush rebalancing problem, studying how to optimally assign trikes

to circulate between pairs of stations. Here, we use a maximum-weight k-edge

matching to assign trike routes and maximize the impact on customer satisfaction.

Finally, we consider how to optimally place corrals at stations where our goal

is to minimize the number of customers who cannot find an open dock within

a quarter mile of their preferred destination. We model this question as as a

maximum coverage problem that we solve within seconds using a simple integer

programming formulation.

The methods in this chapter made it to different stages of development at Citi

Bike. We have completed trial runs using our overnight rebalancing schedules,

routing three to four of their trucks over an eight-hour period. In the trials that

we ran, our routes were able to improve the efficiency of NYCBS’s truck fleet, as

102

measured by reduction in the user dissatisfaction function, by 12% on average –

offline, the improvement we found was as high as 20%. NYCBS has also used

our proposed placement of corrals during the 2016 summer season. Further, our

method to match trikes to stations have suggested station pairs that inform their

operational schedule.

This chapter thus summarizes our methodological contributions and their

impact on day-to-day operations in New York City. The work described dis-

tinguishes itself from the existing literature in that it was conducted in close

cooperation with NYCBS and already impacts their day-to-day operations. This

stands in contrast to the findings of de Chardon et al. [2016], which conclude

that very little of the existing work on rebalancing has had an impact in practice.

Additionally, while there has been extensive work on overnight rebalancing, very

little research has been conducted on non-motorized rebalancing efforts, which

form a crucial part of NYCBS’s operations. One such work is O’Mahony et al.

[2016], which studies the routing of trikes; this paper partitions the set of stations

into producers, which are stations likely to fill up, and consumers, likely to empty

out. In investigating the problem of setting trike routes, the model proposed in

O’Mahony et al. [2016] aims to minimize the distance of any consumer (producer)

to another consumer (producer) that is rebalanced by one of the trikes. While

our work on trikes is driven by the same application, our objective is again to

minimize the user dissatisfaction function.

103

Figure 6.1: Pictures of a corral and a trike being used in NYC.

6.2 Overnight Rebalancing

Similar to the earlier work on overnight rebalancing, we use an IP formulation

to model this optimization problem. The main distinguishing feature of our

approach is that we greedily partition the problem into subproblems, thereby

controlling the size of the IP. In particular, we find routes for subintervals of the

entire time horizon, subsets of trucks, and subsets of stations. Our choice of

stations is based on carefully weighing the potential benefits of rebalancing at

each station and the distance of the station from the location of the truck at the

beginning of the interval.

Integer Programming Formulation

We begin by introducing our integer program. The formulation is time-indexed,

and we assume the given time for overnight rebalancing has been broken into

T identical time steps. In each time step, a truck will either pick up/drop off

bikes or move to an adjacent station. In that way, the edges between the stations

are unweighted and traversing any edge takes one time step. In order to make

104

Figure 6.2: Truck routes for three trucks on August 8, 2016. Each circle
corresponds to a station at which at least one of the trucks stops.
A white outer circle corresponds to a pick-up, a black outer
circle to a drop-off. Initially, all trucks start at a NYCBS depot in
the East Village.

this assumption reasonable, we add dummy stations to break long distances into

individual time steps. More precisely, if the travel time between two stations s1

and s2 is ` time steps, we add a path of `−1 (dummy) stations between them, that

allows us to move between such two stations in exactly ` time steps by traversing

one edge in each step. This technique significantly reduces the dimension of the

IP and distinguishes our formulation previous ones.

Notation.

After adding all dummy stations, let S be the set of stations, T be the number

of time steps, and K be the number of trucks. For s ∈ S , t ∈ [T], and k ∈ [K], the

variable xstk represents whether or not truck k is at station s at time t. Similarly,

105

the variable ystk represents the number of bikes at station s at time t to which

truck k has access. This prevents multiple trucks from moving the same bikes.

Lastly, the variable btk represents the number of bikes in truck k at time t.

We use the following notation:

• N(s) denotes the neighborhood of s, that is, the stations to which a truck

can move from s in a single time step.

• γ is the number of bikes that can be picked up or dropped off in one time

step.

• start(s) is the number of bikes in station s at time t = 1.

• min(s) is the minimizer of the user dissatisfaction function at station s. That

is, the number of bikes at station s that minimizes the expected number of

dissatisfied customers.

• cs =
cs(start(s))−cs(min(s))
|start(s)−min(s)| is a linear approximation of the slope of cs and gives

the improvement per bike moved at s (see Figure 6.3, Chapter 3).

• S + is the set of stations s for which start(s) > min(s). For example, the state

in Figure 6.3 is in S +.

• S − is the set of stations s for which start(s) ≤ min(s).

For ease of presentation, we state here only the main constraints of the IP before

we explain the effect of each. The reader is advised to read the IP in parallel with

the explanations below.

106

maximize x,y,b

∑
s∈S ,k∈[K]

(ys1k − ysTk)cs

subject to:

xstk ≤ xs(t−1)k +
∑

s′:s∈N(s′)

xs′(t−1)k, ∀s, t, k; (6.1)

∑
s∈S

xstk = 1, ∀t, k; (6.2)

∑
k∈[K]

ys1k = start(s), ∀s; (6.3)

start(s) ≤
∑
k∈[K]

ystk ≤ min(s), ∀s ∈ S −, t; (6.4)

min(s) ≤
∑
k∈[K]

ystk ≤ start(s), ∀s ∈ S +, t; (6.5)

∑
s∈S

ystk + btk =
∑
s∈S

ys1k + b1k, ∀t, k (6.6)

|ystk − ys(t−1)k| ≤ γxstk, ∀s, t, k; (6.7)

|ystk − ys(t−1)k| + γ|xstk − xs(t−1)k| ≤ γ, ∀s, t, k. (6.8)

Below we explain the function of each part of the IP.

• The objective function is the summation of changes in the linearized user

dissatisfaction functions at each station, i.e. the reduction in expected

number of dissatisfied customers due to the relocation of bikes.

• Constraint (6.1) allows each truck to move only to a station adjacent to the

one at which it currently is.

• Constraint (6.2) indicates that at each time step, each truck must be in

exactly one station.

• Constraint (6.3) initiates the number of bikes at every station. Notice that

at this point already, the bikes are distributed among the K trucks.

107

• Constraints (6.4) and (6.5) guarantee that the number of bikes in each sta-

tion s remains between start(s) and the minimizer min(s). In other words, we

enforce that moving a bike only improves the setup (cf. Pareto Constraints

and Optimal Fleet Size).

• Constraint (6.6) enforces that the total number of bikes in the system does

not change over time.

• Constraint (6.7) makes sure that we pick/drop bikes at a station from a

truck only if the truck is at that station and that the number of bikes moved

is bounded by γ, the number of bikes rebalancers are able to move within

one period.

• Constraint (6.8) ensures the truck either moves or picks/drops bikes in one

time step but not both. In most of the previous works, researchers have

omitted this constraint. This constraint makes the IP significantly harder

to solve but makes the resulting path viable in practice. Notice that the

absolute values in the constraints can be linearized.

Moreover, we add capacities to the truck by bounding btk. In practice, we extend

this IP to fix the starting/finishing stations for each truck, as well as the number

of bikes in each truck at the beginning of the night.

Pareto Constraints and Optimal Fleet Size

Notice that the extension of the linearization of cs(·) beyond the point min(s) does

not capture the actual behavior of the UDF. In particular, at that point the latter

sees more dissatisfied customers while the former sees fewer. This, however, is

not the reason we impose the Pareto constraints (6.4) and (6.5), since optimizing

108

min(s) start(s)
x

y
cs(x)

Figure 6.3: Linearization of cs(·).

over the linear envelope of cs(·) is not significantly harder than over the lineariza-

tion; instead, the constraints are imposed to ensure that service for customers at

one station is not sacrificed for improved service for customers elsewhere. This is

particularly true when, as is the case in NYC,
∑

s start(s) <<
∑

s min(s). At the time

we started the pilots, the bike fleet size was about 7.000 whereas the minimizers

summed to about 10.000. In such a setting, not having fairness constraints can

yield undesirable outcomes. For instance, without fairness constraints we might

find solutions in which bikes can be picked up from a station far away that has

more bikes than needed but are instead picked up from a station nearby that has

fewer than needed. While this may lead to fewer dissatisfied customers in total,

NYCBS aims for rebalancing to be a Pareto improvement to the system (i.e., no

station is worse off, some are improved); thus, we include constraints (6.4) and

(6.5).

Solution Methods

As presented, state-of-the-art IP solvers are too slow to solve this formulation

within the limited time window between when the operator receives the data

and when the trucks must start their routes a few minutes later. The follow-

109

ing heuristic methods help decrease the computation time to solve this IP and

improve the quality of the solution returned.

Reducing the number of edges. To avoid adding too many dummy stations

and inflating the size of the IP, we choose a threshold d on the distance

between two stations and only add a path between stations s1 and s2 if they

are at most d time steps apart.

Dividing T into smaller time intervals. At the start of the rebalancing period,

there is little time (typically about 20 minutes) between the time all the

data (state of the system, number of bikes on each truck, etc.) becomes

available and the time when trucks are meant to begin their routes. To

gain computation time, we break T into smaller intervals and only route

trucks for the first few hours of the route. While this part of the route is

being executed, we then use the time to solve for the next interval. This

segmentation of the computation time greatly improved the quality of our

overall routes.

Greedily selecting stations. For each time interval, we further reduce the size

of the IP by removing stations where the room for improvement is low. We

rank stations based on a combination of cs, the potential benefit of each bike

picked or dropped, and |min(s)− start(s)|, the number of available/required

bikes, and run the IP with roughly 40 stations, further refined by excluding

stations too far away from the starting point of the truck.

Splitting trucks. Instead of solving one IP for all K trucks, we break the com-

putation time into K equal pieces and solve for the route of the first truck,

then the second truck, and so forth. For example, if we have two trucks

and two hours of computation time, we would solve for the route of each

110

truck in one hour.

To further decrease the size of the IP, we only add stations in reasonable

proximity to the current position of the truck. We then compute the path over

one time interval and update the set of stations. On the one hand, our IP can

find very good solutions for the smaller instances on which we solve. On the

other hand, by picking stations in the described greedy fashion, we ensure that

the combination of the solutions to the small instances has objective close to the

global optimum. The routes we construct for each truck and time interval are

compatible in that they can be pieced together to form one coherent route. We

show in our results that these heuristics still yield good solutions to the original

IP.

Results

In this section, we summarize our results. First, we report the gap between

the solution we return using the techniques above and an optimal solution of

a valid LP relaxation. Second, we compare our solutions to the current routes

employed by NYCBS, as guided by tools based on our earlier work. On average,

our solutions reduce customer dissatisfaction by 20% compared to this previous

computationally informed approach. All results were produced using Gurobi

v6.5 on a machine with 8GB RAM and an Intel i7-2600 processor with 3.4GHZ.

111

IP gap

360 Stations
of Trucks Avg Objective Function Avg Gap

1 148 28.1%
2 232 22.1%
3 301 12.3%
4 330 9.5%

Figure 6.4: A posteriori optimization for overnight truck rebalancing in Man-
hattan.

When solving the IP, we assume the number of time steps is 60, each time step

corresponds to 6 minutes, and that workers can load/unload up to 7 bikes in each

time step. These numbers are based on discussions with NYCBS. To evaluate

the performance of our IP, we used our IP to route various numbers of trucks

in Manhattan, which has around 360 stations. As inputs for start(s), we used the

number of bikes at each station at midnight over the course of a week. In Figure

6.4, we report the average impact on the number of dissatisfied customers and

the average integrality gap over the week. The worst integrality gap occurred

Sunday night when the distribution of bikes was furthest from the commuter

demand during the week. We emphasize that this gap is computed with respect

to the LP-relaxation on all 360 stations, all trucks, and all time-steps, i.e. the LP-

relaxation of the provided integer program; hence, it includes the gap between

the solution we find for the smaller problem instances (on 30-40 stations) and the

optimum of these smaller instances.

The average integrality gap decreases as the number of trucks grows. This

seems to be a consequence of the Pareto constraints, since there are fewer bikes

available to be moved (per truck). With more trucks, it is easier to achieve the

best possible solution. We remark that a much smaller integrality gap can be

112

obtained without constraints (6.7) and (6.8) as has been done in Raviv et al. [2013],

Ho and Szeto [2014], and Forma et al. [2015]. The solutions obtained this way,

however, allow for as many stops (with loading/unloading of few bikes at each)

as there are time periods; in discussions with NYCBS we found that in many

cases that the time required to find a place to park the truck is not sufficiently

dominated by driving/(un)loading time that it could be ignored. We thus had to

add these constraints, even though it makes the IP much harder to solve.

Practical Results

Dispatchers at NYCBS currently use a myopic decision aid to route trucks. This

aid is based on user dissatisfaction functions and was developed in close coop-

eration with our group. While this decision aid shows dispatchers the optimal

fill level at stations and indicates stations where rebalancing could yield large

improvements, it does not provide optimized routes. In contrast, our IP solutions

look to globally optimize routes. We formulated our model with feedback from

NYCBS; their expertise led, for example, to the refinement that in each time step a

truck can either move or pick/drop bikes but not both. Over the course of a week

in July 2016, we then compared our proposed routes with the manual routes

executed by the dispatchers at NYCBS. On average our results showed objectives

about 20% higher. Together with the NYCBS management, we reviewed our

proposed routes and are now running pilots to route between 2 and 5 of their

trucks overnight.

113

Pilot Experiences

Despite the improvements, the pilots conducted with NYCBS proved to be more

difficult than expected, as we quickly describe here.

Unknown constraints. In an aborted first attempt at a pilot, we routed a truck

into a narrow street, in which it did not fit. While this is a rare event, it

can happen and significantly complicates the routing problem. To deal

with this problem, we included in subsequent pilots alternative stations

(non-optimized) at which each truck could stop without interfering with

the routes of the other trucks.

Cost of solving offline. Solving the system offline can have detrimental conse-

quences when unexpected demand occurs late at night. While the system

significantly slows down at night, we have encountered cases where our

route dictated picking up some number of bikes from a station and by

the time the truck had arrived there, fewer than that were left. Similarly,

it may occur that the Pareto constraint is violated in the execution of the

route because the number of bikes at a station changes between the time

we solve and the time the truck arrives. To avoid this occurring regularly,

we excluded certain areas that tend to slow down later than others (e.g.,

East Village) in the first part of the route.

Evaluating results. In evaluating our results, we found that certain system

conditions greatly influence the efficiency of rebalancing. On nights when

the system is in great imbalance, it is not uncommon for each truck to move

enough bikes to reduce the expected number of dissatisfied customers by

> 100 users. In contrast, on nights where the system is already reasonably

114

balanced, it is often not feasible for a truck to move bikes to reduce the

objective by > 50.

Although the final point indicates that evaluating results is difficult, the

improvements through rebalancing on the nights during which we ran this pilot

were on average 12% higher than in the rest of that month.

6.3 Trikes

In this section, we study the impact of trikes on the expected number of dissatis-

fied users and solve a corresponding optimization problem. Recall that a trike is

a trailer towed by a cyclist that holds at most 18 bikes at a time (cf. Figure 6.1),

though, when we did this work with Citi Bike they could hold at most 5. Citi

Bike uses trikes between fixed pairs of stations to move bikes from high-demand,

low-supply stations to low-demand, high-supply stations. NYCBS considers

trikes a preferred choice of rebalancing during rush hour when trucks are slowed

down by traffic. We first assume that every station may have only one trike route

incident to it. In this regime, the problem of finding the optimal m trike routes

can be formulated as a bipartite maximum m-edge matching, where the weight of

an edge between two stations corresponds to the reduction in user dissatisfaction

with a trike added between them. Next, we generalize these ideas to the case

where a station can utilize multiple trikes. With a slight variation, we show that

this as well as can be formulated as a matching problem and efficiently solved.

115

Model

Similar to the user dissatisfaction function defined in Chapter 3, we model the

user dissatisfaction function with a trike between stations A and B as follows: Poisson

processes with rates λA, µA, λB, µB correspond to arrivals and departures of users

at station A and B, respectively. We use the random variable Ys(t) ∈ {0, . . . , ks}

to represent the number of bikes at station s ∈ {A, B} at time t, where ks is the

capacity of station s ∈ {A, B}. As before, a dissatisfied customer at s corresponds

to an arrival (resp. departure) when s is full (resp. empty), i.e., Ys(t) = ks (resp.

Ys(t) = 0).

In addition to arrivals and departures of users, we also have a trike with

capacity kR that moves as many bikes as possible from A to B. We assume that at

times t1, . . . , tr the trike stops at one of the stations. Without loss of generality, the

stop at ti is at A if i is odd and at B if it is even. In other words, the trike cycles

back and forth between A and B. When the trike arrives at station A it picks up as

many bikes as possible given the number of bikes at A and the number of bikes

already in the trike; similarly, when the trike arrives at station B it drops off as

many bikes as possible given the number of available docks at B and the number

of bikes already in the trike. We use the random variable YR(t) ∈ {0, . . . , kR} to

represent the number of bikes in the trike at time t.

We are interested in the expected number of dissatisfied users at A and B over

the time horizon from t0 to tr+1. We can write the expected number of dissatisfied

116

users at stations A and B as follows:

cA→B =

r∑
i=0

kA∑
j=0

Pr(YA(t+
i) = j)ci

A(j)

+

r∑
i=0

kB∑
j=0

Pr(YB(t+
i) = j)ci

B(j)

The two terms correspond to the expected number of dissatisfied users at each

station; to obtain them, notice that at the beginning of time-interval i with

probability Pr(Ys(t+
i) = j) there are j bikes at station s and in that case an expected

ci
s(j) users will be dissatisfied in that interval. Thus, we need to find Pr(Ys(t+

i) =

j) ∀s, i, j. For ease of notation, we denote Pr(YA(t+
i) = α, XB(t+

i) = β, XR(t+
i) = ρ) as

πi(α, β, ρ) and remark that by setting YR(t+
0) = 0 with probability 1 and assuming

that XA(t0), XB(t0) are independent we obtain:

π0(α, β, ρ) =


0, if ρ > 0

Pr(XA(t+
0) = α) · Pr(XB(t+

0) = β), else.

This will represent the base case to recursively compute FA→B.

To calculate πi(α, β, ρ) in general we need to analyze the system changes in

each time interval. Specifically, given the Poisson process rates and the current

number of bikes x at a station s ∈ {A, B}, we can compute the expected number of

dissatisfied customers ci
s(·) in an interval (ti, ti+1). In doing so, we also obtain the

probability that there are y bikes in station s at the start of the next time interval.

More precisely, ∀s ∈ {A, B}, x, y ∈ {0, . . . , ks}we let

Ps,i
x,y := Pr(Ys(t−i+1) = y|Ys(t+

i) = x),

where Ys(t+) := limε→0+ Ys(t + ε), i.e., Ys(t+
i) is the number of bikes at s just after the

trailer has stopped at the station and Ys(t−) := limε→0+ Ys(t − ε) is the number of

bikes at s just before the trailer has stopped at the station.

117

Thus, for even i, we have πi+1(α, β, ρ) = 0 if α > 0 and ρ < kR, as otherwise the

trike would pick up more bikes. Otherwise, we obtain

πi+1(α, β, ρ) =

kA∑
x=0

kB∑
y=0

ρ∑
z=0

πi(x, y, z)PA,i
x,α+ρ−zP

B,i
y,β,

where we define Ps,i
x,y = 0 for y < {0, . . . , ks}. This is because, with YR(t+

i) = z, the

event that {YA(t+
i+1) = α and YR(t+

i+1) = ρ} happens if and only if the number of

bikes at A before the pick-up at ti+1 is α + ρ − z.

Similarly, for odd i, we have πi+1(α, β, ρ) = 0 if β < kB and ρ > 0. Otherwise,

πi+1(α, β, ρ) =

kA∑
x=0

kB∑
y=0

kR∑
z=ρ

πi(x, y, z)PA,i
x,αPB,i

y,β+ρ−z.

Recognizing that

Pr(YA(t+
i) = j) =

∑kB
y=0

∑kR
z=0 π

i(j, y, z) and

Pr(YB(t+
i) = j) =

∑kA
x=0

∑kR
z=0 π

i(x, j, z),

we can now compute all Pr(Ys(t+
i) = j) and πi(α, β, ρ) recursively starting with the

base cases for i = 0 and incrementing i. Thus, we can efficiently compute cA→B.

Given cA→B for each pair of stations, we use these values to assign the trike

routes. To formulate the problem as a maximum m-edge matching problem, we

create a bipartite graph G = (X ∪ Y, E) where X = Y is the set of stations. We

set the weight of edge (A, B) equal to the difference of the expected number of

dissatisfied users at stations A and B without the trike, given by

kA∑
j=0

Pr(YA(t0) = j)FA(j) +

kB∑
j=0

Pr(YB(t0) = j)FB(j),

and the expected number with the trike, FA→B. Thus, the weight of any matching

is equal to the reduction in the expected number of dissatisfied customers from

118

the corresponding trike routes and vice versa. Further, there is a well-known and

efficient algorithm for finding the maximum m-edge matching for any bipartite

graph.

Relaxed Assumptions

If we allowed more than one trike incident to a particular station, the dimension-

ality of the dynamic program explodes, yielding it infeasible. A slight variation

of the model, however, allows us to model this problem as a maximum-weight

matching as well. Instead of coupling the random variables of numerous stations

and trikes, we estimate for each station how many bikes trikes can pick up/drop

off bikes over the time horizon in which they operate. To find a solution for k

trikes we then create for each station s nodes s1, . . . sk and create an edge (Ai, B j)

with weight set to be the improvement at station A through the ith additional

trike and at B through the jth additional trike. Notice that, in contrast to the

earlier formulation, this does not incorporate the chance that a trike incident

to station A does not have an effect because there are no bikes to pick up at the

adjacent station B.

Results

Setting kR = 5 and eight trike stops between 7:30 AM and 9:15 AM (thus moving

a total of at most 20 bikes per station pair), we use the above dynamic program

to compute the weight of the maximum matchings of various sizes; in Figure

6.5 we display the maximum matching of size 8, in Figure 6.6 the weight of all

maximum matchings of size 1 through 20. Notice that for up to 5 trailers, there is

119

Figure 6.5: Trike routes identified by the maximum-weight matching for-
mulation. Red lines indicate trikes that pick up bikes at white
circles and drop them off at black ones. (Map data: Google
Maps)

an improvement of about 20 (fewer dissatisfied customers). While these numbers

can be viewed in comparison to the numbers in Figure 6.4, the costs of operating

a truck are significantly higher than those of a trailer. The relative cost of trucks

and trailers thus affect which of the two (truck/trailer/both) is more efficient to

improve service quality.

6.4 Corrals

Our work on corrals is motivated by studies on the correlation between distance

to transportation modes and willingness to use these modes. A study in Regional

120

Figure 6.6: Total improvement (red) of trikes and corresponding diminish-
ing returns (blue).

Plan Association [1997], for example, claims that commuters are much more

likely to use public transportation when living within a quarter mile of a station

than when further away. Furthermore, Kabra et al. [2015] shows that shorter

distances to available stations correlates with increased demand for bike-share

systems.

Model

Based on the findings described before, we say a station has a shortage if no

station within a quarter mile has at least 15% of its docks available. In other

words, a station is in shortage if a user intending to end their trip at that station

will likely have to search more than a quarter mile away to find an available

dock. Thus, stations in shortage significantly impact customer utilization.

We define a shortage measure for the system given by the total time stations

are in shortage. Formally, let N(s) ⊆ S be the set of neighboring stations within

a quarter mile of s, including s itself, and let As,t the indicator of the event that

121

station s has at least 15% of its docks available at time t. For a set of stations S

and a set of points in time T , we define the shortage measure as

w(S ,T) =
∑
s∈S

∑
t∈T

max{0, 1 −
∑

j∈N(s)

A j,t}.

It is possible to extend this measure to a weighted version that associates a

time-dependent coefficient based on dock demand to each station. Since the

unweighted version was the one that informed decision-making for NYCBS, we

restrict ourselves to that.

By placing a corral at a station s, the amount of time that stations in N(s) are

in shortage is significantly reduced. Given a budget B, the goal is to place at

most B corrals to minimize the shortage measure. For a set of past time points in

T ′, let

ws =
∑
t∈T ′

max{0, 1 −
∑

j∈N(s)

A j,t}.

This represents the amount of time that station s is in shortage and is equivalent

to the reduction in the shortage measure for s if a station in N(s) is assigned

a corral. It is then natural to model corral placement as a maximum coverage

problem via the following IP:

maximize x,y

∑
s∈S

wsxs

subject to: xs ≤
∑

s′∈N(s)

ys′ ∀s

∑
s∈S

ys ≤ B

xs, ys ∈ {0, 1} ∀s.

In the given IP, the variable ys represents whether or not a corral is placed at

122

station s and the variable xs represents whether or not there is a corral placed

within a quarter mile from station s. The first constraint sets xs to be 0 if no corral

is assigned in N(s), and the second constraint corresponds to the constraint that

we can assign at most B corrals.

Results

The evaluation of our work in this section is two-fold. Given the real implemen-

tation of our suggested corrals by Citi Bike, we are able to observe the change in

shortages from 2015 (without corrals) to 2016 (with corrals). However, we cannot

be certain this corresponds 1-to-1 with a decrease in unsatisfied customers. Since

the presence/absence of these is in general difficult to measure, we also use

a discrete-event simulation to estimate the reduction in dissatisfied customers

through our choice of corrals.

Our discrete-event simulation is based on Poisson arrivals with fixed destina-

tions at each station. In contrast to the user dissatisfaction function described

in Chapter 3, the discrete-event simulation captures interdependencies between

stations. For instance, customers who do not find a dock at a particular station,

roam around to nearby stations until eventually they do. For details of the im-

plementation, we refer the reader to Jian et al. [2016] and O’Mahony [2015]; we

use the same simulation with the addition of allowing for some stations to have

temporarily increased capacity between 7.30AM and 5.30PM.

123

Simulated Impact on Unsatisfied Customers

To compare the performance of our coverage formulation, we consider several

allocations of corrals (cf. Figure 6.7):

1. coverage ’15/’16 are the allocations of corrals obtained by solving the cover-

age problem using data from 10 days in June 2015, and June 2016 respec-

tively.

2. k-median is based only on the biking distance between separate stations.

Using the Google Maps API, we obtained pairwise distances and then

solved the resulting k-median instance.

3. max minutes relies only on the number of minutes a station had no docks

available in the month of May 2016.

4. None allocates no corrals at all.

Our results are visualized in Figure 6.7. Based on data from June 2016, we simu-

lated 40 realizations of demand and computed, using common random numbers,

for each realization and each allocation of corrals, the number of unsatisfied

customers. Notice first that adding corrals generally improves the objective

(though corrals can also increase the expected number of dissatisfied customers

and sometimes do, as the plot shows). Moreover, the solutions obtained from the

coverage formulation (run both with data from 2015 and with more current data

from 2016) outperforms the solutions that are based only on geography (k-median)

or only on the number of full minutes (max minutes): on average the two coverage

solutions observe 304 and 162 fewer unsatisfied customers, compared to just 4

fewer for the k-median solution.; the max minutes solutions ranks in the middle

with an average reduction of 77.

124

Figure 6.7: Results of 40 simulated days with different sets of corrals; ×
denotes the average performance.

Observed Real Impact

Six corrals identified by the maximum coverage formulation (see Figure 6.8)

with B = 6 have been in place for most of Summer 2016. To evaluate the benefit

of these corrals, we first consider the value of the shortage measure in July

2016 (with the corrals) and in July 2015 (without). As the size of the system

has expanded significantly, we restricted the shortage measure to include only

stations S in Manhattan that were in use for most of July 2015 and July 2016. For

reference, |S | = 277. We find a 31.6% reduction in the time that stations were in

shortage. Further, to show that the majority of the improvement is indeed due

to the effects of the corrals, we also calculate the shortage measure in July 2015

and July 2016 for S̄ which excludes the stations with corrals from S . This should

give an idea as to how much the shortage measure has decreased through other

rebalancing efforts. Here, we only find a 14.6% improvement which shows that

125

the majority of the improvement was due to the added corrals. Results of these

analyses are summarized in Figure 6.9.

Figure 6.8: Corral stations in NYC with 1
4-mile radius (Map data: Google

Maps).

S S̄
July 2015 49435 56989
July 2016 33804 48657

Percent Reduction 31.6% 14.6%

Figure 6.9: Shortage measure for July 2015 and July 2016.

126

CHAPTER 7

SCHEDULING MAINTENANCE

Nina: Now you seem lonely and broken to me.

Will: I do?

Nina: But don’t worry I can fix you.

Most modern bike-sharing systems have mobile apps that allow users to observe

the current system state, i.e., number of bikes and number of available empty

docks, at each station. The information on these apps, however, can be mislead-

ing when maintenance issues arise. In particular, empty docks are sometimes

reported as available even though, in fact, maintenance issues cause them to

be unavailable. This can cause great customer dissatisfaction when all empty

dock(s) at a station are not usable. For example, Figure 7.1 displays a station

with one available dock – if that dock was broken, arriving customers would not

be able to return their bikes, despite the app reporting that a dock is available.1

The effect of a broken dock is thus amplified at a station where it is particularly

likely that this dock would be the last empty dock at the station. It is thus

natural to ask two questions to improve the operations of bike-sharing systems:

first, can we identify which docks are broken and second, how should the

operator schedule maintenance given knowledge of the location of broken docks.

We answered the first question by implementing a system for New York City

Bikeshare that automatically identifies broken docks based on data, similar to

Kaspi et al. [2016]. In response to the second question, we consider in this chapter

1The data at that station on that day, clearly indicates that the dock was not in fact broken, as
it saw repeated use.

127

[h]

Figure 7.1: Screenshot from the Citi Bike app, taken on December 19th,
2017, indicating that the station at E 33 St & 5 Ave had one
empty dock available at the time.

a stylized version that models the routing question as a variation of the traveling

salesman problem. In this version, the goal is to maximize the reduction in

dissatisfied customers caused by broken docks by appropriately scheduling a

repairman over a finite time horizon to fix docks. The work in this chapter

appeared as part of a paper by Paul, Freund, Ferber, Shmoys, and Williamson

[2017].

128

7.1 Problem Definition

In the classical traveling salesman problem, we are given an undirected graph

G = (V, E) with an edge cost ce ≥ 0 for each e ∈ E. The goal is to construct a tour

visiting each vertex in the graph while minimizing the cost of edges in the tour.

If, however, we are given a bound on the cost of the tour, then we might not be

able to visit all vertices. In particular, suppose that we are given a budget D ≥ 0

and a weight wv for each v ∈ V . In the budgeted prize-collecting traveling salesman

problem, a valid tour is a multiset of edges F such that (a) F specifies a tour on a

subset S ⊆ V and (b) the cost of the edges in F is at most D. The goal is to find

a valid tour F that maximizes
∑

v∈S wv, the weight of all vertices visited. Here,

we do not require the graph to be complete and allow a tour to visit nodes more

than once. Similarly, in the budgeted prize-collecting minimum spanning tree problem,

a valid tree is a set of edges T such that (a) T specifies a spanning tree on a subset

S ⊆ V and (b) the cost of the edges in T is at most D. Again, the goal is to find a

valid tree T that maximizes
∑

v∈S wv.

The budgeted version of the traveling salesman problem arises naturally in

many routing problems that have a distance or time constraint. For example, in

the maintenance application we consider here, D corresponds to the duration

of the repairman’s shift, whereas wv corresponds to the decrease in out-of-stock

events due to a dock being repaired. For example, a natural such weight would

correspond to the increase in the long-run average cost at the station when the

station size is reduced by 1. Throughout most of this chapter, we focus on the

tour version in a setting in which wv = 1 for all v ∈ V . In Section 7.6 we extend

our algorithm to handle settings in which vertices have weights and the goal is

to maximize the weight of vertices visited; in that section we also explain how

129

the analysis extends to the tree version. In Section 7.7, we apply our algorithm to

instances using Citi Bike data in New York City.

Our algorithm provides a 2-approximation guarantee for both problems. It

is based on a primal-dual subroutine which uses a linear programming relax-

ation of this problem. First, we search for a “good” value for the dual variable

corresponding to the budget constraint in the primal. Having set this variable,

we can then increase the other dual variables and form a forest of edges whose

corresponding dual constraint is tight. For the tour problem, we then choose a

tree in this forest and carefully prune it so that doubling this tree forms a tour

that will be just within budget. For the tree problem, we prune edges such that

the tree itself is just within budget. Lastly, we show that either our constructed

tour/tree is within a factor of 2 of optimal or we can identify a subgraph that

contains the optimal solution and that we can recurse on.

Literature Review

Before we delve into the technical details of this section, we give a brief overview

of the existing work in combinatorial optimization related to the budgeted prize-

collecting minimum spanning tree/tour problems. Many prize-collecting vari-

ants of both the traveling salesman problem (TSP) and the minimum spanning

tree problem (MST) seek to balance the number of vertices in the tree or tour with

the cost of edges used. Johnson et al. [2000] characterize four main variants of

prize-collecting MST problems: the Goemans-Williamson Minimization problem

that minimizes the cost of edges plus a penalty for vertices not in the tree, the Net

Worth Maximization problem that maximizes the weight of vertices in the tree

minus the cost of used edges, the Quota problem that minimizes the cost of a tree

130

containing at least Q vertices, and, finally, the Budget problem that maximizes

the number of vertices in the tree subject to the cost of the tree being at most D.

All of the variants above can be extended to a corresponding TSP version that

constructs a tour rather than a tree.

Our algorithm is most similar to that of Garg [2005], who presents a 2-

approximation algorithm for the Quota problem for MST, improving upon the

previous results of Garg [1996], Arya and Ramesh [1998], and Blum et al. [1996].

Johnson et al. [2000] observe that a 2-approximation algorithm to the Quota

problem yields a (3 + ε)-approximation algorithm to the corresponding Budget

problem. To our knowledge this was the previously best-known guarantee for

the MST variant. Prior to this result, Levin [2004] proved a (4 + ε)-approximation

algorithm. Our 2-approximation algorithm for the budgeted prize-collecting

MST thus improves upon the best known approximation ratio. While our algo-

rithm is similar to that of Garg [2005], our analysis differs in how we find the

threshold value for the dual variable; further, our overall proof relies on more

precise accounting.

For the Goemans-Williamson Minimization problem for MST, Archer et al.

[2011] obtain a (2 − ε)-approximation guarantee, improving upon the long-

standing bound of 2 obtained by Goemans and Williamson [1995]. Further,

Archer et al. [2011] successfully applied this algorithm to telecommunication

network problems. Lastly, Feigenbaum et al. [2001] show the Net Worth Maxi-

mization problem for MST is NP-hard to approximate within any constant.

To the best of our knowledge, the previous best approximation guarantee

for the budgeted prize-collecting TSP arises from a special case of a result by

Chekuri et al. [2012]. Their work provides a (2 + ε)-approximation algorithm for

131

the more general orienteering problem, where the goal is to find an s − t path,

where s and t are given, with bounded cost that maximizes the number of vertices

visited on the path. By setting s = t and iterating over all vertices, this yields

a (2 + ε)-approximation algorithm for the budgeted prize-collecting TSP. The

orienteering problem itself has attracted much attention within the combinatorial

optimization community, with other variants studied by Vidyarthi and Shukla

[2015], Chekuri and Korula [2007], Chen and Har-Peled [2006], Chekuri and Pal

[2005], and Gupta et al. [2012].

There exist other adaptations of prize-collecting problems not discussed

above. Specifically, Ausiello et al. [2004] present a 2-approximation algorithm for

an on-line variant of the Quota problem for the TSP. Frederickson and Wittman

[2012] study the so-called traveling repairmen problem, in which each vertex can

only be visited within a specific time window and the goal is to either maximize

the number of vertices visited within a certain time period or to minimize the

time visiting all vertices; they give constant-factor approximation algorithms

for both variations of this problem. Lastly, Nagarajan and Ravi [2012] study the

problem of minimizing the number of tours to cover all vertices subject to each

tour having bounded distance. They give a 2-approximation algorithm for tree

metric distances.

The remainder of the chapter is structured as follows. In Section 7.2, we

present the linear programming (LP) relaxation for the budgeted prize-collecting

traveling salesman problem. In Section 7.3, we use this LP to develop the primal-

dual subroutine that will inform our decisions. In Section 7.4, we use this sub-

routine to present an outline of the entire parameterized primal-dual algorithm

and the proof of its approximation ratio, providing some intuition behind what

132

types of tours will be near optimal. In Section 7.5, we prove an upper bound

on the size of an optimal solution. Next, we show how to set the dual variable

corresponding to the budget constraint and how to construct our proposed tour

that is within a factor of 2 of optimal. For ease of presentation, we present these

results for the budgeted prize-collecting traveling salesman problem with unit

weights and show how the analysis extends to the weighted case and the MST

version in Section 7.6. Last, we present computational experiments in Section 7.7.

7.2 LP Formulation

For each S ⊆ V , we denote by δ(S) the edges in the cut of S and by zS ∈ {0, 1} a

variable representing whether or not the vertices in S are the ones on which the

tour is constructed; for each edge e ∈ E, we let xe ∈ Z+ be a variable representing

how many copies of e to include in the tour. Then, the following is a linear

programming relaxation for the budgeted prize-collecting traveling salesman

problem.

maximize
∑
S⊆V

|S |zS

subject to
∑

e:e∈δ(S)

xe ≥ 2
∑

T :S(T

zT ∀S (V

∑
e∈E

cexe ≤ D

∑
S⊆V

zS ≤ 1

zS , xe ≥ 0

133

The first constraint states that if the tour visits the vertices in a subset T and

S (T then we must have at least two edges across the cut S . The dual of this

linear program is given by the following.

minimize Λ1D + Λ2

subject to (2
∑

T :T(S

yT) + Λ2 ≥ |S | ∀S ⊆ V

∑
S :e∈δ(S)

yS ≤ Λ1ce ∀e ∈ E

Λ1,Λ2, yS ≥ 0

In order to construct a tour, we rely on a primal-dual subroutine. We first note

that if we find Λ1 ≥ 0 and yS ≥ 0 that satisfy the dual constraint for each edge, then

we can always set Λ2 to be the maximum of 0 and λ2 := maxS⊆V

[
|S | − (2

∑
T :T(S yT)

]
so that we have a feasible dual solution. Suppose that we first set the value of

Λ1. The primal-dual subroutine uses this value to construct a full dual solution

and corresponding potential tours. These tours might or might not be feasible

with respect to the budget constraint. Therefore, we need to adjust Λ1 to find a

feasible solution with bounded approximation ratio.

7.3 Primal-Dual Subroutine

The primal-dual subroutine for a fixed Λ1 is similar to the 2-approximation

algorithm for the prize-collecting traveling salesman problem without a budget

constraint presented by Goemans and Williamson [1995]. Similar to Goemans

and Williamson, we define a potential of a set S as a function of the dual variables

134

of the strict subsets of S .

Definition 15. For any subset S ⊆ V , we define the potential of S to be

π(S) := |S | − (2
∑

T :T(S

yT).

Definition 16. A subset S ⊆ V is neutral if 2
∑

T :T⊆S

yT = |S |. In other words, if

yS = 1
2π(S).

At the beginning of the primal-dual subroutine, we set each yS to be 0 and set

the collection of active sets to be all singleton nodes. Further, we set T = ∅. Then,

in each iteration, we increase yS corresponding to each S ⊆ V in the collection of

active sets until either a dual constraint for an edge between two sets becomes

tight, or a set becomes neutral. If an edge becomes tight between two subsets

S 1 and S 2, we add the edge to T and replace both S 1 and S 2 in the collection of

active sets by S 1 ∪ S 2. We remark that the potential of this new set S is then equal

to

π(S) = π(S 1) + π(S 2) − 2yS 1 − 2yS 2 .

If instead a set becomes neutral, we mark it inactive and remove it from the

collection of active sets. Once there are no more active sets, we prune inactive

sets of degree 1 (cf. Algorithm 1).

Since sets are removed from the set of active subsets when an incident edge

becomes tight, the dual constraint for every edge will remain satisfied throughout

the subroutine. Thus, λ1 and the yS satisfy the dual constraints for every edge and

we can extend them to a feasible dual solution (y, λ1, λ2). Further, by construction,

the dual constraint of every e ∈ T is tight and the edges in the set T , and thus also

those in T ′, form a forest throughout the subroutine. Finally, beyond being part of

135

a feasible solution, the construction of y also guarantees that S = {S : yS > 0}, the

collection of all sets active at some point throughout the subroutine, is laminar.

Indeed, each set in S, other than singletons, is the union of two disjoint other

sets in S. We denote by S+ = S ∪ {V}, which is also laminar.2

Algorithm 1: Primal-Dual Algorithm (PD(λ1))

1: ∀S ⊆ VyS ← 0, Λ1 ← λ1, T ← {}.

2: mark each i ∈ V as active.

3: while there exists an active subset do

4: raise yS uniformly for all active subsets S until either

5: if an active set S becomes neutral then

6: mark S as inactive.

7: else if the dual constraint for edge e between S 1 and S 2 becomes tight

then

8: T ← T ∪ {e}.

9: mark S = S 1 ∪ S 2 as active, remove S 1 and S 2 from the active subsets.

10: end if

11: end while

12: T ′ ← T .

13: while there exists a set S marked inactive such that |δ(S) ∩ T ′| = 1 do

14: remove all edges with at least one endpoint in S from T ′.

15: end while

16: return two of each edge in T ′.

2A collection of sets is called laminar if any two sets in the collection are either disjoint or
subsets of each other.

136

7.4 Main Result

In this section, we give an outline of how the parameterized primal-dual al-

gorithm uses the primal-dual subroutine described in the previous section to

construct a feasible tour with bounded approximation guarantee. Assume that

we have run the primal-dual subroutine with Λ1 = λ1 to find a feasible dual

solution (y, λ1, λ2), where we may not know the actual value of λ2, along with an

accompanying forest of tight edges. The corresponding potentials will help us

give an upper bound on the size of an optimal solution and a lower bound on

the size of our returned solution in order to provide an overall approximation

guarantee. Let O? be the subset of vertices visited by an optimal tour and F?

be the edges in that tour. Further, let O be the minimal set in S+ that contains

O?. Since V ∈ S+, such a set always exists. In Section 7.5 we prove the following

bound on the size of O?.

Theorem 17.

|O?| ≤ λ1D + π(O).

Next, we show how to set λ1 so that we can construct a tree TA of tight edges

on a subset S A with cost
∑

e∈TA
ce ≤

1
2 D. Doubling the edges in TA and shortcutting

produces a tour on S A that has length at most D. Further, if the cost of TA is < 1
2 D,

we show that we can find an incident edge ē such that adding ē to TA creates a

tree T̄ on a subset S̄ with cost
∑

e∈T̄ ce >
1
2 D. In other words, adding one more

edge to TA makes doubling it infeasible. If instead the cost of TA is equal to 1
2 D,

then we simply let T̄ = TA and S̄ = S A. Let Q be the maximum potential set in S+

containing S̄ . Then, we prove the following bound on |S A|.

137

Theorem 18.

|S A| >
1
2
λ1D + π(Q) − 1.

Thus, the parameterized primal-dual algorithm can find a feasible tour on

a subset S A where |S A| is bounded using the potential π(Q). If π(Q) is large, this

implies that we have found a large subset our tour can visit. In particular, if

π(Q) ≥ π(O), then

|S A| + 1 >
1
2

[λ1D + π(O)] ≥
1
2
|O?|.

We may assume without loss of generality that |O?| is even, since we can always

make a copy of each vertex that has an edge of cost zero incident to the original.

Hence, the above implies that if π(Q) ≥ π(O), then |S A| ≥
1
2 |O

?|.

However, it may be that π(Q) < π(O). Therefore, the parameterized primal-

dual algorithm finds all maximal sets in S+ with potential strictly greater than

π(Q) and recurses on the graph induced by each such set, returning the largest

feasible tour found. If π(Q) < π(O), then O must be a subset of one of the sets on

which we recurse. In other words, one of the subgraphs we recurse on contains

the optimal solution. Since none of the subsets on which we recurse contains S̄ ,

by definition of Q as the maximum potential set containing S̄ , we recurse only on

strict subgraphs of G, implying that we eventually reach the case that π(O) ≤ π(Q)

and |S A| ≥
1
2O?, yielding the 2-approximation guarantee.

Finally, since S is a laminar family, we recurse on disjoint sets of vertices, so

the set of graphs on which we recurse is also a laminar family and we call the

subroutine O(n) times.

138

Theorem 19. The parameterized primal-dual algorithm is a 2-approximation for the

budgeted prize-collecting traveling salesman problem.

7.5 Upper Bound

In this section, we provide the proof of Theorem 17. Recall that O is the minimal

set in S+ that contains the optimal subset O? and F? is an optimal tour on O?.

Assume that we have run the primal-dual subroutine with Λ1 = λ1 to obtain a

dual solution (y, λ1, λ2). Theorem 17 states that |O∗| ≤ λ1D + π(O). The proof relies

on the feasibility of the dual solution along with the following lemma.

Lemma 20. For each S ⊆ V , (2
∑

T :T⊆S

yT) ≤ |S |.

Proof. Any set S can be partitioned into maximal disjoint laminar subsets

S 1, S 2, . . . , S c ∈ S. Therefore,

2
∑

T :T⊆S

yT = 2
c∑

i=1

∑
T :T⊆S i

yT ≤

c∑
i=1

|S i| = |S |,

where the inequality holds since neutral subsets are marked inactive.

Proof of Theorem 17. We first note that we can partition the powerset of O into

subsets of O − O? and subsets that contain vertices in O?.

2
∑

T :T(O

yT = 2
∑

T :T⊆O−O?

yT + 2
∑

T :T(O
T∩O?,∅

yT . (7.1)

139

Thus,

|O| = 2
∑

T :T(O

yT + π(O)

= 2
∑

T :T⊆O−O?

yT + 2
∑

T :T(O
T∩O?,∅

yT + π(O)

≤ |O − O?| + 2
∑

T :T(O
T∩O?,∅

yT + π(O),

where the first line holds by the definition of potentials, the second by Equa-

tion (7.1), and the last line by Lemma 20. Rearranging, we get

|O?| ≤ 2
∑

T :T(O
T∩O?,∅

yT + π(O)

≤
∑
e∈F?

∑
T :e∈δ(T)

yT + π(O)

≤ λ1

∑
e∈F?

ce + π(O)

≤ λ1D + π(O).

The second line holds since F? is a tour on O? and so, by the minimality of O,

each subset T with yT > 0 that contains a subset of O? has at least two edges in

its cut δ(T). The third line holds by the dual feasibility of (y, λ1, λ2), and the last

line holds by the primal feasibility of F?.

Setting Λ1

We now turn our attention to finding λ1 and constructing a feasible tour. Our

goal is to set Λ1 for the primal-dual subroutine so as to find a tree with cost very

close to 1
2 D and such that the set of spanned vertices has high potential. Note that

140

Λ1 controls the cost of the edges, and as Λ1 increases, edges become more expen-

sive yielding smaller connected components in the primal-dual subroutine. In

particular, for Λ1 = 0 all edges go tight immediately and for Λ1 > n/(2 mine:ce>0 ce)

all vertices go neutral before a single non-zero edge goes tight. When edges go

tight and subsets go neutral at the same time, we may assume that subset events

are considered first. Further, we assume that we break edge/subset ties using

some known ordering (e.g., lexicographical).

If a minimum spanning tree on G has cost ≤ 1
2 D, then we double this tree to

get a feasible and optimal tour. Otherwise, suppose that we have found values l

and r (l < r) such that when we run PD(l+) the largest component in T ′ has cost

≥ 1
2 D and when we run PD(r−) the largest component in T ′ has cost < 1

2 D. Here,

x− = x − ε and x+ = x + ε, where ε is infinitesimally small.

Lemma 21. In polynomial time, we can find a threshold value λ1 such that when we

run PD(λ−1) the largest component in T ′ has cost ≥ 1
2 D and when we run PD(λ+

1) the

largest component in T ′ has cost < 1
2 D.

Proof. We refer to an edge going tight during the primal-dual subroutine as an

edge event and we refer to a subset going neutral as a subset event. Assume

we have values l and r such that the first k events are the same when running

the subroutine for any Λ1 between l+ and r−. Further, assume that for each

subset S we can find values αS and βS such that at the end of the first k events

yS = Λ1αS + βS for any Λ1 between l+ and r−. Note that this is trivially true for

the base case with l and r defined above and k = 0 since all y values will be zero.

To find the next event to occur, we need to find the time after the kth event

that each subset will go neutral and each edge will go tight. Observe that an

141

l r Λ1

Ti
m

e
ev

en
to

cc
ur

s

subintervals

Figure 7.2: Finding the subintervals between l and r where the time of the
next event is in bold.

active set S will go neutral at time

1
2
|S | −

∑
T⊆S

yT =
1
2
|S | −

∑
T⊆S

[Λ1αT + βT],

an edge with exactly one endpoint in an active component will go tight at time

Λ1ce −
∑

T :e∈δ(T)

yT = Λ1ce −
∑

T :e∈δ(T)

[Λ1αT + βT],

and an edge with both endpoints in different active components will go tight

at time 1
2 the above amount. The minimum of these values determines the next

event to occur. Since all of these times are affine in Λ1, we can divide the interval

between l+ and r− into smaller subintervals such that the first k + 1 events are

identical on these subintervals. See Figure 7.2.

Considering these subintervals, we either identify a threshold point λ1 or we

identify a subinterval between l+new and r−new such that when we run PD(l+new) the

largest component in T ′ has cost ≥ 1
2 D and when we run PD(r−new) the largest

component in T ′ has cost < 1
2 D. Further, since the time of the (k + 1)th event is an

affine function in Λ1, we can add this function to the affine function y(S) for each

active set S to get the new affine function for this y value, updating the α’s and

β’s accordingly. Thus, the inductive hypothesis holds and eventually we find a

threshold point λ1.

142

We use this threshold point λ1 to understand the subroutine for PD(λ1). Con-

sider running the subroutine for λ+
1 and λ−1 and comparing event by event. We let

y+ correspond to the y variables when running PD(λ+
1) and let y− correspond to

the y variables when running PD(λ−1).

Lemma 22. Throughout the two subroutines, the following two properties hold:

• All active components in (V,T) are the same.

• For all S ⊆ V , the difference between y+
S and y−S is infinitesimally small.

Proof. At the start of the subroutines this is true since all y+ and y− variables are

zero. Now assume that it is true at some time t into the subroutines. As argued

above, the next event to occur depends on the minimum of functions linear in Λ1.

Further, since the current active components are the same, the possible subset

and edge events are the same.

In particular, the time for each subset to go neutral in PD(λ+
1) is 1

2 |S | −
∑

T⊆S y+
T ,

which is infinitesimally different from the time for that subset to go neutral in

PD(λ−1). Similarly, the time for each edge to go tight is at most infinitesimally

different between the two subroutines. Therefore, the next event to occur is only

different between the two subroutines if two events occur at the same time for

PD(λ1).

If the next event is the same for the two subroutines, then the active compo-

nents remain the same and we raise all active components by amounts differing

by an infinitesimally different amount. Therefore, the inductive properties con-

tinues to hold. Otherwise, suppose the next event is different. We consider four

cases:

143

1. Subset X goes neutral for PD(λ−1) and subset Y goes neutral for PD(λ+
1).

2. Edge e goes tight for PD(λ−1) and edge f goes tight for PD(λ+
1).

3. Edge e goes tight for PD(λ−1) and subset X goes neutral for PD(λ+
1).

4. Subset X goes neutral for PD(λ−1) and edge e goes tight for PD(λ+
1).

In the first case, the times for both X and Y to go neutral must be infinitesimally

different and the other subset goes neutral immediately after the first. Therefore,

once both X and Y are neutral, the difference of the amounts by which we have

raised the y variables in PD(λ−1) and in PD(λ+
1) is infinitesimally small and the

current active components are the same. Thus, the two inductive properties

continue to hold.

Similarly for the second case, if e and f are not between the same two compo-

nents, the other edge goes tight immediately after, and the inductive properties

continue to hold. Otherwise, e and f are between the same components. Thus,

when e goes tight, f is no longer eligible to go tight but the newly merged active

component is the same for both subroutines. Again, the inductive properties

continue to hold.

In the third case, if edge e has an endpoint in an active component that is

not X, then e goes tight immediately after X goes neutral for PD(λ+
1) and the

components remain the same, maintaining the inductive properties. Otherwise,

one endpoint of e must be in X and the other endpoint of e is in an inactive

component, and right after e goes tight for PD(λ−1), the newly merged subset

has infinitesimally little potential left and goes inactive immediately thereafter.

Again, this maintains the inductive properties.

Lastly, note that the time for a subset to go neutral has a negative slope in Λ1

144

and the time for an edge to go tight has a positive slope in Λ1. Since λ+
1 > λ

−
1 and

the y variables vary by an infinitesimally small amount, the fourth case cannot

occur. In all cases, the inductive properties continue to hold, which concludes

the proof of the lemma.

The proof of Lemma 22 exactly exhibits the differences between the two

subroutines. First, there may be subsets that are neutral and marked inactive

in PD(λ+
1) but have infinitesimally small potential in PD(λ−1). Second, there may

be pairs of edges that went tight between the same components. Lastly, there

may be edges in PD(λ−1) that do not exist in PD(λ+
1). However, these edges

are between inactive components and components with infinitesimally small

potential. Therefore, these edges are pruned in PD(λ−1) and do not contribute to

the component of size ≥ 1
2 D.

Assume that we run PD(λ1) breaking event ties to behave the same as PD(λ+
1).

Then, the largest component in T ′ when running PD(λ1) has cost < 1
2 D. However,

we can think about reversing these ties one by one. In particular, consider

breaking the first i ties according to PD(λ−1) and then the rest by PD(λ+
1). By the

analysis in Lemma 22, reversing these ties changes the y variables only by an

infinitesimally small amount and does not at all affect the active components.

The only difference occurs when entering the pruning phrase.

Thus, eventually we find the smallest k such that breaking the first k ties

according to PD(λ−1) yields a component of size ≥ 1
2 D. In other words, we have

either identified a neutral subset S such that marking S active rather than inactive

changes the largest component to have size ≥ 1
2 D or we have identified two edges

e and f that tie such that adding e instead of f changes the largest component to

have size ≥ 1
2 D. From here on, we assume that we always run PD(λ1) according

145

to these tie-breaking rules.

Constructing a Tour

Continuing from the previous section, let y be the dual variables at the end

of running PD(λ1), let T ′ be the set of edges after the pruning phase, and let

S = {S : yS > 0} be defined as before. Lastly, let π(S) be the potential of S ⊆ V

given y. By construction, the largest component returned by PD(λ1) has size ≥ 1
2 D.

Recall that either

1. there exists a neutral subset X ∈ S such that if X is marked inactive then

the largest component in T ′ has cost < 1
2 D or

2. there exist tight edges e ∈ T and f < T such that if we swap e with f in T

then the largest component has size < 1
2 D.

In the first case, when X is marked inactive, then a path of neutral subsets

N1,N2, . . . ,Nr = X is pruned yielding a component S 1 with cost < 1
2 D. Similarly,

in the second case, edge e prevented some neutral subsets N1,N2, . . . ,Nr from

being pruned that had degree > 1. However, by removing e and replacing it with

f , these subsets are pruned and we are left with component S 1 with cost < 1
2 D.

See Figures 7.3 and 7.4.

For both cases, we use this threshold event to produce a tree TA on a subset of

vertices S A of cost ≤ 1
2 D. In doing so, we also find another tree T̄ on a subset of

vertices S̄ of cost ≥ 1
2 D such that |S A| ≥ |S̄ | − 1. Then, doubling TA yields a feasible

tour FA that visits at most one node less than there are in S̄ . The tree T̄ will be

helpful in obtaining a lower bound for |S A|.

146

2.5in
(a) b

S 1

N1 N2 Nr = X
. . .

Figure 7.3: Case 1: Marking X as inactive.

1.5in
(a) b

S 1f

e

N1 N2 . . . Nr−1 Nr

Figure 7.4: Case 2: Replacing e with f .

Figure 7.5: Neutral subsets pruned in each case to yield component S 1 with
cost < 1

2 D.

We start by setting TA to be the edges in T ′ that span S 1. By construction,

these edges have cost < 1
2 D. We then try to grow TA as much as possible along the

path from S 1 to N1,N2, . . . ,Nr. First, suppose that we can add this full path and

the edges that span each Ni to TA without exceeding cost 1
2 D. Then, we set TA to

be this expanded tree and S A = S 1∪N1∪ . . .∪Nr. Further, we set T̄ to be the edges

in T ′ in the corresponding component at the end of PD(λ1). By construction, the

cost of T̄ is ≥ 1
2 D and |S A| ≥ |S̄ |.

Otherwise, we continue to add N1, N2, . . . to our tree until we reach a com-

ponent X̄ ∈ {N1,N2, . . . ,Nr} such that adding the edges that span X̄ to TA implies

that
∑

e∈TA
ce >

1
2 D. In other words, we cannot add this whole subset to our tree

without going over budget. Let e = (u, v) be the edge that connects X̄ to TA in

T ′. If adding e to TA already brings the cost of TA strictly over 1
2 D, then we stop

147

u vw

T ′1 T ′2

X̄

Figure 7.6: Illustration of the pick procedure.

growing TA and set T̄ = TA ∪ {e}. Otherwise, we add e to TA and run a procedure

pick(X̄, v,TA) that picks a subset of the edges spanning X̄ including v.

Specifically, the procedure pick(X,w,TA) adds to TA a set of edges in T ′ that

span a subset of component X including w. We denote by X1, X2 ∈ S the two

components that merged to form X and by e′ = (u, v) the edge that connects X1

and X2 in T ′. Without loss of generality, u ∈ X1, v ∈ X2. Further, let T ′1 and T ′2 be

the edges in T ′ with both endpoints in X1 and X2, respectively. See Figure 7.6.

If the total cost of edges in TA∪T ′1 is greater than 1
2 D, then we know we should

only add edges in this subtree to TA and we recursively invoke pick(X1,w,TA). If

instead the total cost of edges in TA∪T ′1∪ {e
′} is less than 1

2 D, then we can feasibly

add e′ and all edges in T ′1 without violating the budget. Thus, the procedure adds

all these edges to TA and recursively invokes pick(X2, v,TA) to pick the remaining

edges in T ′2. Finally, if the cost of edges in TA ∪ T ′1 is less than or equal to 1
2 D,

but greater than 1
2 D − ce′ , then we cannot quite make it to T ′2 without going over

budget. In this case, the procedure adds all edges in T ′1 to TA and sets T̄ = TA∪{e′}.

At the end of the procedure, we produce a tree TA of cost ≤ 1
2 D that spans a

subset S A along with a tree T̄ of cost ≥ 1
2 D that spans a subset S̄ where |S̄ | ≤ |S A|+1.

Further, if |S̄ | = |S A| + 1, then T̄ has cost > 1
2 D. We will use T̄ to prove a bound on

148

|S̄ |, which in turn will give a bound on |S A|.

Let Q ∈ S+ be the maximum potential subset containing S̄ . Our goal is to

prove Theorem 18, which states that

|S A| ≥
1
2
λ1D + π(Q) − 1.

Our proof relies, informally speaking, on the vertex v̄ at which the pick

routine stopped. We define v̄ as the (unique) vertex in S̄ that has fewer edges

incident in T̄ than it does in T ; though many vertices in the graph have fewer

incident edges in T̄ than in T , the definition of the pick routine, combined with

the characterization in Figures 7.3 and 7.4 guarantees that only one of them is

in S̄ . Further, if |S̄ | > |S A|, then v̄ is exactly the one node in S̄ that is not in S A.

Before proving Theorem 18, we first state the following useful lemma, the proof

of which we delay to the end of the section as it closely closely resembles that of

Goemans and Williamson [1995] for the Prize-Collecting Steiner Tree Problem.

Lemma 23. ∑
e∈T̄

∑
S :e∈δ(S)

yS ≤ 2
∑

T :T∩S̄,∅
v̄<T

yT . (7.2)

Proof of Theorem 18. By construction of T̄ , vertices in Q − S̄ are either (i) in a

single set N ⊂ Q− S̄ that denotes the union of pruned subsets and sets Ni in Q that

were not reached by the pick procedure or (ii) in the set X̄ ∈ {N1,N2, . . . ,Np} set on

which we started our pick routine. Thus, we may partition Q = N ∪ (X̄ − S̄) ∪ S̄ .

Notice that N is a union of neutral subsets and thus itself neutral, that is,

|N| = 2
∑

T :T∈SN

yT .

Similarly, let SX be all subsets in S that are subsets of X̄ and contain vertices

in X̄ − S̄ . We may partition the subsets of X̄ into sets that contain nodes in X̄ − S̄

149

and sets that do not; we then find (since X̄ is neutral)

|X̄| = 2
∑

T :T∈SX

yT + 2
∑

T :T⊆X̄∩S̄

yT ≤ 2
∑

T :T∈SX

yT + |X̄ ∩ S̄ |

where the inequality follows by Lemma 20. Thus, |X̄ − S̄ | ≤ 2
∑

T :T∈SX
yT .

The definition of v̄ guarantees that any subset in S that contains vertices in S̄

and X̄ − S̄ also contains v̄. Therefore, subsets T that intersect with S̄ but do not

contain v̄ are neither in SN nor in SX. It follows that

|Q| = 2
∑

T :T⊆Q

yT + π(Q)

≥ 2
∑

T :T∩S̄,∅
v̄<T

yT + 2
∑

T :T∈SN

yT + 2
∑

T :T∈SX

yT + π(Q)

≥ 2
∑

T :T∩S̄,∅
v̄<T

yT + |N| + |X̄ − S̄ | + π(Q)

= 2
∑

T :T∩S̄,∅
v̄<T

yT + |Q − S̄ | + π(Q)

Rearranging,

|S̄ | ≥ 2
∑

T :T∩S̄,∅
v̄<T

yT + π(Q) ≥
∑
e∈T̄

∑
S :e∈δ(S)

yS + π(Q) = λ1 ·
∑
e∈T̄

ce + π(Q).

The second inequality follows from Lemma 23, whereas the final equality is

due to the fact that the dual constraints are tight for all edges obtained by the

primal-dual subroutine. If |S̄ | = |S A|, this completes the proof of the theorem.

Else, suppose that |S̄ | = |S A| + 1. Then,
∑

e∈T̄ ce >
1
2 D, and the asserted inequality

still holds.

Proof of Lemma 23. Consider a single iteration of the algorithm, and let C be the

current set of components C such that |δ(C)∩ T̄ | ≥ 1. In other words, these are the

components incident to edges in T̄ . We can partition C into active components

150

CA and inactive components CI . Further, let Cv̄ be the component that contains v̄.

We first show that active components are not incident to too many edges in T̄ on

average.

Starting with the graph (V, T̄), we consider the graph obtained by shrink-

ing each component in C to a single vertex and removing all vertices not in a

component in C. The remaining edges are a subset of T̄ and form a tree on C.

Further, the degree of each vertex v in this tree is dv = |δ(C) ∩ T̄ |, where C is the

corresponding component. We set R to be the set of vertices corresponding to

components in CA and set B be the set of vertices corresponding to components

in CI . Since the edges in T̄ form a tree on C,

∑
v∈R

dv +
∑
v∈B

dv ≤ 2|R| + 2|B| − 2.

Let C be an inactive component such that |δ(C)∩T̄ | = 1. Note that |δ(C)∩T ′| > 1,

where T ′ is the set of all tight edges returned by the subroutine, since otherwise C

would have been pruned. Therefore, the other component incident to C was not

chosen to be part of T̄ . This implies that either C is X̄ or C is some X1 encountered

during the picking procedure such that we only chose vertices in X1 and not X2.

In either case, v̄ ∈ C.

If Cv̄ ∈ CI , then this is the only component in B of degree 1 and
∑

v∈B dv ≥ 2|B|−1.

In other words,

∑
C∈CA

|δ(C) ∩ T̄ | =
∑
v∈R

dv ≤ 2|R| − 1 = 2|CA| − 1 (7.3)

Otherwise, Cv̄ ∈ CA and all vertices in B have degree at least 2. Thus,
∑

v∈B dv ≥ 2|B|.

This implies that ∑
C∈CA

|δ(C) ∩ T̄ | ≤ 2|R| − 2 = 2|CA| − 2. (7.4)

151

We now prove the main claim in Equation (7.2) using a proof by induction.

At the start of the algorithm, the LHS and RHS are both equal to 0. On each

iteration, let CA be the set of active components C such that |δ(C) ∩ T̄ | ≥ 1 and let

Cv̄ be the component containing v̄. Suppose that we raise yCi by ε for every active

component Ci. The LHS of the claim is raised by
∑

C∈CA
|δ(C) ∩ T̄ |ε. If Cv̄ ∈ CI,

then the RHS is raised by exactly 2|CA|ε. By Equation (7.3), the LHS < RHS. If,

on the other hand, Cv̄ ∈ CA, then the RHS is raised by exactly 2(|CA| − 1)ε. By

Equation (7.4), the LHS < RHS. In both cases, the inductive statement continues

to hold.

7.6 Extensions

In this section, we show that the parameterized primal-dual algorithm extends to

the weighted version and the minimum spanning tree problem. For the weighted

case, we assume that each vertex v is associated with an integer weight pv ≥ 0

and the goal is to find a feasible tour F that visits a subset S ⊆ V to maximize∑
v∈S pv. We can imagine transforming this problem to an equivalent unweighted

version by creating copies of each vertex v with zero cost edges to v. Then in the

primal-dual subroutine, all these added edges go tight instantaneously, yielding

a weighted “cluster” with potential equal to pv. Thus, we don’t even need to

perform the transformation and can actually just begin the algorithm with these

weighted clusters as our initial active sets with potential equal to the weight of v.

All proofs continue to hold through the equivalence to the unweighted version.

Theorem 24. The parameterized primal-dual algorithm is a 2-approximation for the

budgeted prize-collecting traveling salesman problem with weights.

152

Second, we discuss the extension of the algorithm to the budgeted prize-

collecting minimum spanning tree problem. The corresponding linear pro-

gramming relaxation for the budgeted prize-collecting minimum spanning tree

problem is given below.

maximize
∑
S⊆V

|S |zS

subject to
∑

e:e∈δ(S)

xe ≥
∑

T :S(T

zT ∀S (V

∑
e∈E

cexe ≤ D

∑
S⊆V

zS ≤ 1

zS , xe ≥ 0

The only difference is the removal of the factor of 2 from the first constraint

which changes the dual constraint associated with each subset S to become

∑
T :T(S

yT + Λ2 ≥ |S | ∀S ⊆ V.

Based on this change, we redefine the potential of a set to be

π(S) = |S | −
∑

T :T(S

yT

and a set to be neutral if
∑

T :T⊆S yT = |S |. Given these new definitions, the primal-

dual subroutine runs exactly as it did before. Finally, we set the threshold value

λ1 such that the largest component in T ′ after running PD(λ−1) has cost ≥ D and

the largest component in T ′ after running PD(λ+
1) has cost < D. We then run the

pick procedure to find a tree just within budget D. It is easily verified that all

proofs continue to hold for this variant.

153

Theorem 25. The parameterized primal-dual algorithm is a 2-approximation for the

budgeted prize-collecting minimum spanning tree problem.

7.7 Computational Experiments

In this section, we complete computational experiments in order to better under-

stand the performance of our algorithm in practice. The primal-dual algorithm

as detailed in this section was implemented in C++11 using binary search to

find λ1. The experiments were conducted on a Dell R620 with two Intel 2.70GHz

8-core processors and 96GB of RAM.

The first set of graphs we used for the experiments are the 37 symmetric TSP

instances with at most 400 nodes in the TSPLIB data set (Reinelt [1991]). The

second set of graphs are 37 weighted instances constructed using the Citi Bike

network of bikesharing stations in New York City. Each instance corresponds to

a week of usage data at these stations, and the weight of a vertex corresponds

to the number of broken docks at that station during that week. The number of

broken docks was estimated from usage data with a probabilistic method similar

to that of Kaspi et al. [2016]. Details about both types of constructed instances

are given in Table 7.1.

For each test graph G, we first found an upper bound on the cost of a tour

by computing 2 times the cost of a minimum spanning tree in G. We then set

the budget for our tour to be f = 25%, 50%, or 75% of this upper bound. W

denotes the total weight of the vertices; for TSPLIB instances, this is the number

of vertices. After finding our solution of weight A, we compute an upper bound

on the weight of visited vertices U = min(λ1D + maxS∈S π(S),W) and record the

154

Instance |V | |E| Total Vertex Weight
TSPLIB 158.14 15658.43 158.14

Bike 319.54 4634.77 1302.51

Table 7.1: Graph statistics for each group of graphs averaged over all in-
stances.

Instance f Time (s) Recursions % Opt. Gap % Weight % Budget

TSPLIB 0.25 74.16 0.59 46.67 33.06 77.38

TSPLIB 0.5 72.61 0.14 41.89 58.08 69.89

TSPLIB 0.75 71.24 0.22 18.62 81.38 68.80

Bike 0.25 25.15 0.28 45.74 43.37 66.90

Bike 0.5 33.21 0.28 25.89 74.01 67.13

Bike 0.75 30.46 0.05 8.29 91.68 67.37

Table 7.2: Computational results of the primal-dual algorithm for each
group of graphs and budget with results averaged over all in-
stances.

percent optimality gap as 100 × (U − A)/U. Results are given in Table 7.2. The

column headed % Weight gives the percentage of the total weight W captured by

the constructed tour, and the one headed % Budget gives the percentage of the

distance budget used after shortcutting the tree.

We report several interesting structural results. First, the average time seems

to be heavily influenced by the number of edges; the bike instances were quicker

to complete even though the average number of nodes was higher. However,

the average time does not seem to grow with the budget (and hence with the

size of the computed solution) since most of the time is spent finding λ1. The

average optimality gap, on the other hand, does improve with the budget. This

is likely due to the fact that for larger budgets the upper bound is given by W

rather than λ1D + maxS∈S π(S). Also of interest is that maxS∈S π(S) contributed

155

f 0.25 0.5 0.75
% Opt. Gap without Virtual Budgets 45.74% 25.89% 8.29%

% Opt. Gap with Virtual Budgets 27.96% 11.87% 0.17%

Table 7.3: Improvement of Optimality Gap using Virtual Budgets.

little to our upper bound U. As a result, our optimality gaps depend mostly on

the value of λ1, rather than the potentials, and might be far from tight. However,

the fact that on average we only use around 2/3 of the distance budget implies

that the solutions could be improved as well. To ensure that we use a larger part

of the budget, we ran further experiments on the Citi Bike instances; in these, we

ran binary search over possible virtual budgets in the input until finding one for

which the resulting tour uses at least 90% of the actual budget. This significantly

reduced our optimality gaps as shown in Table 7.3.

156

CHAPTER 8

INDUSTRY IMPACT

Will: How much of what you’re saying do you believe right now?

Charlie: 60%

Will: I thought it was in the mid-80s. You pulled it off.

Charlie: Experience.

The work in this part has seen widespread use in bike-sharing systems across

the United States. Here, we briefly summarize aspects that have been imple-

mented and ones that have not – for the latter, we highlight some of the obstacles

we faced in implementing them.

Allocation of Capacity. The analysis we introduced in Chapter 4 has affected

the design of several BSSs operated by Motivate. As described in Section 4.5, a

pilot in New York City involved the movement of 34 docks. Since then, the Divvy

system in Chicago moved a total of 200 docks. Further, all systems operated

by Motivate, including D.C. and Boston, now run the analyses biannually to

ensure they capture the potential of underutilized docks as a sustainable way

to improve service delivery. Motivate’s own analysis, based on the cost of

reallocating capacity, the cost of rebalancing bikes, and the reduction in out-of-

stock events due to reallocated capacity, indicates that the cost of reallocating

amortizes within just 2 weeks! It thereby exemplifies the value of a data-driven

system design in practice.

Incentive Scheme. The scope of the Bike Angels program in New York City

has continuously increased since we first piloted it in October 2015. As of early

2017 it accounted for 10% of Citi Bike’s rebalancing (Grabar [2017]) at a much

157

lower cost than other forms of rebalancing. In fact, its success has since also led

to its adoption by Ford GoBike in the San Francisco Bay Area. In practice, the

program is more complicated than the focus of Chapter 5, allowing participants to

earn duplicate points etc. Nevertheless, the UDFs drive the underlying analytics

based on essentially the exact logic described in the chapter. Furthermore, it was

our analysis that drove the decision to adopt a dynamic incentive scheme.

Rebalancing. In chapter 6, we provided models and solutions for three

different optimization problems that arise when rebalancing bike-share systems.

Of the three methods discussed, only the corral plan was implemented in its

entirety:it was in place during the summer of 2016. The trailer formulation was

never fully implemented, but it did identify pairs of stations that had trailers

added after discussions with Citi Bike. Furthermore, our corral analysis demon-

strated that even just a few corrals can have significant improvement for users’

ability to access the system. The overnight rebalancing failed to become a part of

Citi Bike’s operations (beyond the pilots), mostly due to the complexity of the

real-world operations discussed in Section 6.2. In a subsequent research project,

two Cornell undergraduates (Shangdi Yu and Ellen Chen) built a web-tool that

might yet be adopted for operations. The main reason this has not yet occurred

is due to the existing decision aid, based on O’Mahony [2015] that is already

in place. In this case, one could claim that good was the enemy of great: the

existence of a well-working decision aid hindered the adoption of a more sophis-

ticated routing tool. This is despite the routing formulation improving 20% on

average.

Maintenance. The contribution of Chapter 7 is mostly of theoretical nature.

In practice, maintenance scheduling involves more than one repairman and

158

would require solving a rooted version for each one; also, rather than only

focusing on dissatisfied users, service-level agreements between operators and

cities force high priority on docks that have been explicitly reported by customers.

That being said, the model was originally inspired by the development of the

analytics we developed for Citi Bike to identify broken docks (cf. Figure 1.4).

These are still in use with an accuracy of more than 90% in identifying docks that

are either defective or about to break.

159

Part II

Queuing Network Models for

Shared Vehicle Systems

160

Far outpacing bike-sharing systems, ride-sharing systems, such as Uber and

Lyft, are fast becoming essential components of the urban transit infrastructure.

In such systems, passengers can request rides (subject to vehicle availability)

between a large number of source-destination locations. In contrast to bike-

sharing systems, vehicles in ride-sharing systems are operated by independent

drivers (units).

Similar to bike-sharing systems, ride-sharing systems experience inefficiencies

due to limited supply (drivers) and demand heterogeneity across time and space.

These inefficiencies, however, can often be greatly reduced through operational

controls. Pricing has traditionally been the main tool to balance demand and

supply in settings with limited supply and heterogeneous demand: for instance,

in limited-item auctions or airplane/hotel reservations, see Hartline [2016] and

Gallego and Van Ryzin [1994]. In contrast to bike-sharing systems, ride-sharing

platforms have also long utilized dynamic pricing. Ride-sharing systems can

also balance demand and supply through other controls, such as repositioning

empty vehicles (idle drivers), or redirecting customers to nearby locations (cf.

Sections 9.1, 10.1). Moreover, these tools can be used towards achieving different

objectives – examples include revenue/welfare/throughput maximization, and

multi-objective settings such as Ramsey pricing.

In contrast to other limited supply settings, however, shared vehicle settings

are more challenging due to two unique features. The first is the presence of spa-

tial and temporal supply externalities: whenever a customer engages a vehicle, this

not only decreases the instantaneous availability at the source location, but also

affects the future availability at all other locations in the system. The other dis-

tinguishing feature is the high frequency of events (passenger arrivals/rides) in

161

such settings: in New York City, 10017 Citi Bikes were used for an average 62,605

trips/day in September 2017 (NYCBS [2017c]), whereas in October 2016, Uber av-

eraged 226,046 rides per day delivered by 46,000 drivers (Hu [2017]) – with each

driver working at most 12 consecutive hours (Hawkins [2016]). These distinc-

tions necessitate treating the problem as an infinite-horizon control problem, as

opposed to finite-horizon dynamic programming approaches used in traditional

transportation and revenue management settings (Gallego and Van Ryzin [1994],

Adelman [2007]). The high frequency of events tends to drive such systems into

operating under a dynamic equilibrium state, jointly determined by the demand

and supply characteristics as well as the chosen controls; the performance of any

pricing/control policy is determined by this equilibrium.

All the above features (limited supply, demand heterogeneity, supply ex-

ternalities and fast operational timescales) are well captured by closed queueing

network models (cf. Serfozo [1999], Kelly [2011]), which are thus widely adopted

in recent research on ride-sharing systems (George [2012], Zhang and Pavone

[2016], Waserhole and Jost [2014], Braverman et al. [2016], Ozkan and Ward

[2016]). These models use a Markov chain to track the number of vehicles across

locations. Each location experiences a stream of arriving customers, who engage

available vehicles and take them to their desired destination. For example, in-

creasing the price for a ride between a pair of stations decreases the number of

customers willing to take that ride, which over time affects the distribution of

vehicles across all stations. Even though such models can be well-calibrated,

based on demand rates and price elasticities estimated from historical data, the

problem of designing good pricing/control policies under such a model is com-

plex due to a combination of high dimensionality and intrinsic non-concavity

of the optimization problem (cf. Section 9.2.1). Consequently, previous work

162

has focused only on a narrow set of objectives (typically, weighted throughput)

and is largely based on heuristics or simulation/numerical techniques, with few

provable guarantees (cf. Section 9.1 for a discussion). Algorithms for other objec-

tives (e.g. revenue and welfare) as well as more complex constrained settings,

have yet to be addressed.

In this context, our work develops the first efficient algorithms for designing

pricing and control policies in closed queueing networks, with approximation guarantees

for a large class of objectives. More generally, we provide a unified framework

for designing rebalancing policies, which can incorporate a variety of controls

and constraints, including multi-objective settings and incorporating travel time

distributions. In all settings, we obtain parameterized performance guarantees,

which improve with the number of vehicles in the system, and are near-optimal in

the parameter regimes of real systems. Moreover, our guarantees also provide an

elementary proof of the asymptotic optimality of our policies under the so-called

large-market scaling (see Braverman et al. [2016] and Ozkan and Ward [2016]),

without necessitating the derivation of the associated fluid limits. Our main

guarantee (cf. Section 9.3) leverages techniques from convex optimization and

approximation algorithms, and combines these with a novel infinite projection

and pullback technique. Given the widespread use of closed queueing models

for a variety of other applications, we anticipate that our framework will prove

useful in other areas as well.

Outline

In Section 9.1 we begin with a detailed review of recent research involving

stochastic models of ride-sharing systems. Next, we formally define the basic

163

version of our model in Section 9.2: there, pricing is the only control available and

rides experience no transit delays. As a primary example, we focus in Section 9.3

on this basic version with the objective given by throughput; this allows us to

highlight our main technical contribution (cf. Section 9.3).

Throughout, we model a shared vehicle system with m vehicles and n stations

as a continuous-time finite-state Markov chain (CTMC) that tracks the number

of drivers (units) at each station (node), and use this to study a variety of pricing

and control problems. A high-level description of our most basic model is as

follows (cf. Section 9.2 for details). Each station in the system observes a Poisson

arrival of customers. Arriving customers draw a value and a destination from

some known distribution. Upon arrival at a station, the customer is quoted a

price and one of three scenarios occurs: i) the customer is not willing to pay

the price, i.e., the price exceeds her value, and she leaves the system; ii) the

customer is willing to pay the price, but no unit is available at the node; therefore

she again leaves the system; or iii) the customer is willing to pay the price,

and a vehicle is available. A ride occurs only in the final case with the vehicle

moving to the customer’s destination; the number of vehicles at the origin is

decremented instantaneously, while the state at the destination is incremented

either instantaneously (cf. Section 9.3), or more generally, after some random time

interval (cf. Section 10.2). This describes the basic dynamics under which we aim

to maximize the long-run average performance, measured by the throughput,

the social welfare, or the revenue obtained in steady-state. The prices can, in

general, depend on the instantaneous state of the system. Thus, the resulting

optimization problem is high-dimensional, and moreover, it is non-convex even

in basic settings (cf. Section 9.2.1).

164

In Section 9.3, we propose a simple pricing policy, based on optimizing over a

novel convex relaxation, which we term the elevated flow relaxation. We adapt the

objective by identifying a concave pointwise upper bound which we call elevated

objective. Furthermore, we introduce additional flow-conservation constraints to

capture the network externalities. As the elevated objective is bounded below by

the original objective, optimal solutions in the elevated optimization problem

are bounded below in value by optimal solutions in the original optimization

problem.

In Section 9.3.2, we present our approximation guarantee: we show that

the elevated flow relaxation can be efficiently solved to derive a pricing policy

which has an approximation ratio of 1 + (n − 1)/m. Even though we consider

general state-dependent pricing policies, the policy that achieves our guarantee

surprisingly turns out to be state-independent, i.e. the prices do not differ based

on the configuration of units across nodes. The idea of the proof is based on the

following three steps:

1. First, we notice that, for any state-dependent policy in the m-unit system

(and therefore also for the optimal policy), there exists a feasible solution in

our relaxation that upper bounds its value. Hence, the elevated value of our

policy upper bounds the original objective of the optimal state-dependent

policy in the m-unit system.

2. Next, we observe that the elevated objective of our policy is equal to the

original objective under an appropriately defined infinite-supply setting. In

particular, we consider a restricted subset of state-independent pricing policies,

under which the resulting CTMC has the structure of a so-called closed

Jackson network, and prove that as the number of vehicles grows to infinity,

165

the elevated objective collapses to the original objective.

3. Last, we show that the performance of any policy in the m-unit setting

approximates its performance in the infinite-supply setting within a factor

of 1 + (n − 1)/m. Though the intuition behind this pull-back step can be

seen via simple stochastic coupling arguments, we provide a fully algebraic

proof based on a combinatorial construction of a biregular graph that relates

the state spaces of the m- and (m − 1)-unit systems.

After formalizing these ideas for the simplest of settings in Section 9.3.2, we

show in Chapter 10 how the above framework, comprising of a policy derived

via an appropriate elevated flow relaxation, and the three-step process to prove

its guarantees, can be applied in a number of related settings:

• We first turn our attention to objectives beyond throughput like social

welfare and revenue. Next, we consider multiobjective settings in which

the goal is to maximize one objective subject to a lower bound on another,

the so-called Ramsey pricing problem (Ramsey [1927]): designing a pricing

policy to maximize system revenue subject to a lower bound on the system

welfare. This is particularly relevant when systems are operated by private

companies in close partnership with city governments. For instance, the

Citi Bike system in New York City is run by Motivate, a private company,

under service-level agreements with the NYC Department of Transporta-

tion. Note that the complementary problem (maximizing welfare subject

to revenue constraints) is of interest when such systems are managed by

non-profit organizations and is considered in other paradigms such as

the FCC spectrum auction (Milgrom and Segal [2014]). In this context we

demonstrate how our approach can be used to obtain a (γ, γ) bicriteria

166

approximation guarantee with γ = (1 + n−1
m).

• Next, we study two other rebalancing controls considered in the literature,

and obtain 1 + (n − 1)/m approximation guarantees for the respective op-

timization problems. In the first, units can be directed to a new location

after ending a trip; in the second, customers can be matched to units at

neighboring nodes. In both cases, we recover and strengthen the previous

results.

• We conclude Chapter 10 with the study of settings in which rides do not

occur instantaneously but instead require some delay (travel time). Our

results in this section provide an elementary proof of the so-called large-

market optimality (Braverman et al. [2016]) of our algorithms. Further, they

characterize an interesting dichotomy between settings in which conver-

gence can happen at a rate no more than the square-root of the vehicles on

the one hand and settings in which convergence happens can happen at a

linear rate.

This part is based on Banerjee, Freund, and Lykouris 2017; our results recover

and unify many existing results in this area, and provide a general framework

for deriving approximation algorithms for many other settings. Moreover, the

guarantees we obtain are close to 1 for realistic system parameters. For instance,

for the parameters (m = 10000, n = 600) of New York City’s Citi Bike system in

summer 2016, we obtain an approximation ratio of 1.06.

167

CHAPTER 9

A BASIC MODEL

”I left my purse up at the office. And I’ll need some cash for the cab.

And for the cab tomorrow morning.” — MacKenzie McHale

9.1 Related work

There is a large literature on characterizing open and closed queueing network

models, building on seminal work of Jackson [1963], Gordon and Newell [1967],

and al. Baskett et al. [1975]; the books by Kelly [2011] and Serfozo [1999] provide

an excellent summary. Optimal resource allocation in open queueing networks

also has a long history, going back to the work of Whittle [1985]. However,

there is much less work for closed networks, in part due to the presence of a

normalization constant for which there is no closed-form (though it is computable

in O(nm) time via iterative techniques Buzen [1973], Reiser and Lavenberg [1980]).

Most existing work on optimizing closed queueing networks use heuristics, with

limited or no guarantees. In contrast, our work focuses on obtaining algorithms

with provable guarantees for a wide range of problems.

Three popular approaches for closed queueing network optimization in the

literature are: (i) using open queueing network approximations, (ii) heuristically

imposing a ‘fairness’ property, which we refer to as the demand circulation

constraint (cf. Section 9.3.1), and (iii) characterizing the fluid limits of closed

queueing networks, and obtaining solutions that are optimal in these scaling

regimes. We now briefly describe each approach.

168

The first approach was formalized by Whitt [1984], via the fixed-population-

mean (FPM) method, where exogenous arrival rates are chosen to ensure the

mean population is m. It has since been used in many applications; for example,

Brooks et al. [2013] use it to derive policies for matching debris removal vehicles

to routes following natural disasters. Performance guarantees however are

available only in restricted settings.

Another line of work is based on heuristics that enforce the demand circu-

lation property (variously referred to as the demand rebalancing, the fairness,

or the bottleneck property). In transportation settings, George [2012] used these

to optimize weighted throughput, Zhang and Pavone [2016] to minimize rebal-

ancing costs . Most works typically only provide asymptotic guarantees (George

et al. [2012]).

More recently, Ozkan and Ward [2016] and Braverman et al. [2016] charac-

terized appropriate fluid (or large-market) limits for closed queueing networks,

and used it to study the operations of ride-sharing systems. In contrast to our

work, which focuses on optimizing a given finite-m system, these works consider

a regime where m and the arrival rates of passengers together scale to ∞, and

characterize the optimal policy in the limit. Within this limit, the former studied

the assignment of customers to nearby drivers, whereas the latter considered

directing drivers at the end of each trip to under-served locations. Our exten-

sions to settings beyond pricing (cf. Section 10.1) are inspired by these works;

in particular, we show that similar scaling results can be derived within our

framework. Moreover, our work provides guarantees for the resulting policies in

the finite case (i.e., before taking the limit), and also against a much more general

class of state-dependent policies.

169

The closest work to ours is that of Waserhole and Jost [2014], who provide

a pricing policy for maximizing throughput in closed queueing networks, with

the same approximation ratio we obtain. They do this via a different argument

wherein they observe that, under the demand circulation property, the Markov

chain is doubly stochastic, and hence has a uniform distribution (this was also

noted earlier by Whitt [1984]). A simple counting argument then implies that

the probability of a station having a vehicle is m/(m + n − 1). Moreover, since the

maximum throughput under any policy is bounded by the maximum demand

circulation, the maximum throughput under demand circulation is within a

m/(m+n−1) factor of the optimum. This argument is finely tuned to this particular

setting (maximizing throughput via pricing with no delays). In contrast, our

approach can accommodate several objectives and rebalancing controls as well

as delays.

Finally, we note that there is a parallel line of work which tackles settings

with dynamic arrivals and pricing, using techniques from approximate dynamic

programming (Adelman [2007], Hampshire et al. [2009]). These typically can deal

only with small systems, as their dimensionality scales rapidly with the number

of stations; moreover, many of the techniques have no provable guarantees.

In contrast, the flavor of results of Levi and Radovanovic [2010] are somewhat

similar to ours: they study a setting in which a knapsack constraint exists on used

resources, contrasting our network constraints. Similar to our results, they also

use a LP relaxation to obtain approximation guarantees for parameter regimes of

interest and optimal results for asymptotic regimes.

170

9.2 Preliminaries

In this section, we first formally define our model of shared vehicle systems

and formulate the optimal pricing problem. To capture the complex network

externalities of the system, we define a probabilistic model of customer arrivals,

which we analyze in steady state. Subsequently, we introduce known results

from the queuing literature that provide the technical background upon which

our analysis relies. Finally, we present an example that shows that even in

the restricted sets of pricing policies, that are independent of the configuration

of vehicles across the system, the optimization problems we consider are non-

convex.

9.2.1 Basic setting

We consider a system with m units (corresponding to vehicles) and n nodes

(corresponding to stations). Customers traveling between nodes i and j arrive at

node i according to a Poisson process of rate φi j. Each customer traveling from

i to j has a value drawn independently from a distribution Fi j(·). We assume

that Fi j has a density and that all values are positive with some probability, i.e.

Fi j(0) < 1. Upon arrival at i, a customer is quoted a price pi j, and engages a unit

if her value exceeds this price, i.e. with probability 1 − Fi j(pi j), and at least one

unit is available at node i; else she leaves the system.

As is common with pricing, the related optimization problems are often more

easily framed in terms of the inverse demand (or quantile) function associated

with the user as qi j = 1 − Fi j(pi j). For ease of presentation we assume that the

171

density of Fi j is positive everywhere in its domain, implying that there is a 1-1

mapping between prices and quantiles. As Fi j is therefore invertible, we can

write pi j = F−1
i j (1 − qi j). This allows us to abuse notation throughout the paper by

using prices and quantiles interchangeably.

A continuous-time Markov chain tracks the number of units across nodes.

At time t ≥ 0, the state of the Markov chain X(t) = (X1(t), . . . , Xn(t)) contains the

number of units Xi(t) present at each node i. The state space of the system is

denoted by Sn,m =
{
(x1, x2, . . . , xn) ∈ Nn

0|
∑

i xi = m
}
. Throughout the paper we use

X(t), Xi(t) to indicate random variables, and x, xi to denote specific elements of

the state space. Note that the state-space is finite; moreover, |Sn,m| =
(

m+n−1
n−1

)
=

Ω(mn). Since our focus is on the long-run average performance, i.e. system

performance under the steady state of the Markov chain, we henceforth suppress

the dependence on t for ease of notation.

For ease of presentation, we assume that rides between nodes occur without

delay. In the context of our model, this translates into an instantaneous state

transition from X to X− ei + e j when a customer engages a unit to travel from i to

j (where ei denotes the ith canonical unit vector). We relax this assumption in

Section 10.2.

Pricing Policies and Objectives

We consider pricing policies that select point-to-point prices pi j as a function of

the overall state X. Formally, given arrival rates and demand elasticities {φi j, Fi j(·)},

we want to design a pricing policy p(·) = {pi j(·)}, where each pi j : Sn,m → R∪{±∞}

maps the state to a price for a ride between i and j. Equivalently, we want to

172

select quantiles q(·) = {qi j} where each qi j : Sn,m → [0, 1]. For a fixed pricing

policy p with corresponding quantiles q, the effective demand stream from i to j

(i.e. customers traveling from node i to j with value exceeding pi j) thus follows

a state-dependent Poisson process with rate φi jqi j(X). This follows from the

notion of probabilistic thinning of a Poisson process – the rate of customers

wanting to travel from i to j is a Poisson process of rate φi j, and each customer

is independently willing to pay pi j with probability qi j = 1 − Fi j(pi j). State-

dependent prices also allow us to capture unavailability by defining qi j(x) =

0 if xi = 0 (i.e. a customer with origin i is always turned away if there are

no units at that station; recall we defined Fi j(∞) = 1). Thus, a pricing policy

p, along with arrival rates and demand elasticities {φi j, Fi j(·)}, determines the

transitions of the Markov chain. Note that this is a finite-state Markov chain,

and furthermore, is irreducible under weak assumptions on the prices and the

demand (cf. Appendix 13.1); hence, it has a unique steady-state distribution π(·)

with π(x) ≥ 0∀ x ∈ Sn,m and
∑

x∈Sn,m
π(x) = 1.

Our goal is to design a pricing policy p to maximize the steady-state perfor-

mance under various objectives. In particular, we consider objective functions

that decompose into per-ride reward functions Ii j : R→ R, which correspond to

the reward obtained from a customer engaging a ride between stations i and j

at price p. The per-ride rewards corresponding to the three canonical objective

functions are:

• Throughput: the total rate of rides in the system; for this, we set IT
i j(p) = 1.

• Social welfare: the per-ride contribution to welfare is given by IW
i j (p) =

EV∼Fi j

[
V |V ≥ p

]
.

• Revenue: to find the system’s revenue rate, we can set IR
i j(p) = p.

173

We abuse notation to define Ii j(q) , Ii j(F−1
i j (1 − q)) as a function of the quantile

instead of the price. We also define the reward curves Ri j(q) B q·Ii j(q) (analogous to

the notion of revenue curves; cf. Hartline [2016]). Our results require the technical

condition that Ri j(q) are concave in q, which implies that Ii j(q) are non-increasing

in q (equivalently Ii j(p) are non-decreasing in p). We note that this assumption

holds for throughput and welfare under all considered distributions, and revenue

for regular distributions. For completeness, we prove these observations in

Appendix 13.2.

For a given objective, our aim is to select a pricing policy p, equivalently

quantiles q, that maximizes the steady-state rate of reward accumulation, given

by

OBJm(q) =
∑

x∈Sn,m

π(x)·
(∑

i, j

φi j·qi j(x)·Ii j
(
qi j(x)

))
=

∑
x∈Sn,m

π(x)·
(∑

i, j

φi j·Ri j
(
qi j(x)

))
. (9.1)

Intuitively, Equation (9.1) captures that at any node i, customers destined for j

arrive via a Poisson process with rate φi j, and find the system in state x ∈ Sn,m

with probability π(x). They are then quoted a price pi j(x) (corresponding to

quantile qi j(x)), and engage a ride with probability qi j(x). The resulting ride

then contributes in expectation Ii j(qi j(x)) to the objective function. Recall that

unavailability of units is captured by our assumption that qi j(x) = 0 whenever

xi = 0.

State-Independent Pricing and Closed Queueing Models

The Markov chain described in Section 9.2.1 has the structure of a closed queueing

network (cf. Serfozo [1999], Kelly [2011]), a well-studied class of models in applied

probability (closed refers to the fact that the number of units remains constant;

174

in open networks, units may arrive and depart from the system). Our analysis

crucially relies on some classical results from the queuing theory literature, which

we review in this section. Our presentation here closely resembles that of Serfozo

Serfozo [1999]. One particular class of pricing policies is that of state-independent

policies, wherein we set point-to-point prices {pi j} which do not react to the state

of the system. As a consequence, the rate of units departing from any node i at

any time t when Xi(t) > 0 is a constant, independent of the state of the network.

The resulting model is a special case of a closed queueing model proposed by

Gordon and Newell [1967].

Definition 26. A Gordon-Newell network is a continuous-time Markov chain on

states x ∈ Sn,m, in which for any state x and any i, j ∈ [n], the chain transitions from x

to x − ei + e j at a rate λi jµi1{xi(t)>0}, where µi > 0 is referred to as the service rate at node

i, and λi j ≥ 0 as the routing probabilities satisfying
∑

j λi j = 1.

In other words, if units are present at a node i in state x, then departures from

that node occur according to a Poisson distribution with rate µi > 0; conditioning

on a departure, the destination j is chosen according to state-independent routing

probabilities λi j.

The Markovian dynamics resulting from state-independent pricing policies

fulfill the conditions of Gordon-Newell networks: fixing a price pi j (with corre-

sponding qi j) results in a Poisson process with rate φi jqi j of arriving customers

willing to pay price pi j. These customers engage a unit only if one is available, else

leave the system. Thus, given quantiles q, the time to a departure from node i

is distributed exponentially with rate µi =
∑

j φi jqi j when Xi > 0 and with rate 0

otherwise. Further, conditioned on an arriving customer having value at least

equal to the quoted price, the probability that the customer’s destination is j, is

175

λi j = φi jqi j/
∑

k φikqik, independent of system state.

One advantage of considering state-independent policies (and drawing con-

nections with Gordon-Newell networks) is that the resulting steady-state dis-

tribution
{
πp,m(x)

}
x∈Sn,m

can be expressed in product form, as established by the

Gordon-Newell theorem.

Theorem 27 (Gordon-Newell Theorem 1967). Consider an m-unit n-node Gordon-

Newell network with transition rates µi and routing probabilities λi j. Let {wi}i∈[n] denote

the invariant distribution associated with the routing probability matrix
{
λi j

}
i, j∈[n]

, and

define the traffic intensity at node i as ri = wi/
∑

j φi j. Then the stationary distribution

is given by:

π(x) =
1

Gm

n∏
j=1

(
r j

)x j
, (9.2)

where the Gordon-Newell normalization constant is given by Gm =
∑

x∈Sn,m

∏n
j=1

(
r j

)x j
.

We now show how the Gordon-Newell theorem can be used to simplify

the objective function in Equation (9.1). Recall that for an m-unit system

with state-independent policy p (with corresponding quantiles q), we obtain

a Gordon-Newell network with service rate
∑

j φi jqi j and routing probabilities

φi jqi j/
∑

k φikqik at node i. Let {π(x)}x∈Sn,m
be the corresponding steady-state distri-

bution. Since q is no longer a function of the system state, we can no longer set

qi = 0 when Xi = 0. Instead, we define Ai,m(q) =
∑

x∈Sn,m
π(x)1{xi>0} as the steady-

state availability of units at node i (i.e. the probability in steady-state that at least

one unit is present at node i), and fi j,m(q) = Ai,m(q) · φi jqi j to be the steady-state rate

of units moving from node i to j. Then, from Equation (9.2), one can derive (see

e.g. Proposition 1.33 and Equation 1.31 in Serfozo [1999])

Ai,m(q) = (Gm−1(q)/Gm(q)) · ri(q). (9.3)

176

Notice that ri(q) denotes the traffic intensity as defined above. Now, the objective

in Equation (9.1) can be written as

OBJm(q) =
∑

i

Ai,m(q) ·

∑
j

φi jqi j · Ii j(qi j)

 =
∑

i

fi j,m(q)Ii j(q). (9.4)

For ease of notation, we omit the explicit dependence on m when clear from

context.

The infinite-unit limit: The stationary distribution described above (for state-

independent pricing policies) holds for any finite m; moreover, it can also be used

to obtain the limiting distribution when the number of units tends to infinity.

This infinite-unit limit is described in detail in Section 3.7 in Serfozo [1999] (and

we provide more details in Appendix 13.3). For the purposes of our results, we

rely on one particular fact, which we state in the proposition below. Recall first

that given p = {pi j}, the quantities wi(p) and ri(p) are independent of m.

Proposition 28. Given a policy with quantiles q, in the infinite-unit limit, the steady-

state availability of each node i is given by ri(q)/max j r j(q); in particular, there exists at

least one node i with Ai(q) = 1.

The existence of a node with availability 1 essentially captures the fact that in

an infinite-unit system, at least one node must have an infinite number of units.

For a formal proof of this result, cf. Section 3.7 in Serfozo [1999].

Non-concavity of objective under state-independent pricing

Directly optimizing the finite-unit system is non-trivial as the objective function

is not concave in prices (or quantiles); we now demonstrate this in a simple

177

network (m = 1 and n = 3), using throughput as the objective. Our example is

presented in Figure 9.1. The network comprises of three nodes (A, B,C); the labels

on the edges show the effective demand rate φi j(q) with which people wanting to

move from node i to node j arrive for the corresponding pricing policies p (and

corresponding quantiles q). In particular, the first figure corresponds to setting

all prices to 0 (quantiles to 1), while in the second and third figures, we increase

the price between B and C to set quantile qBC = (1 + ε)/2 in figure II, and qBC = ε

in figure III. Note that the demand in network II is the average of the demands in

networks I and III. To prove that this is non-concave with respect to the demand

rates we now demonstrate that the throughput in network II is less than half of

the sum of its value in networks I and III. To compute the throughput in each

network, note that the expected waiting time at a node is inversely proportional

to the total effective demand at each node. Furthermore, the unit makes exactly

two rides between consecutive visits to node B. Thus, the expected throughput is

twice the expected rate of return to node B. This holds because, starting from

node B, the expected time for the first 2k rides (for any positive integer k) is k

times the expected return time to node B. The expected return-time to B in the

three networks can be computed as follows, where we use that the total expected

waiting time can be computed as the sum of the expected waiting time at B, the

probability of waiting at A times the expected waiting time at A (1), plus the

probability of waiting at C times the expected waiting time at C (ε).

Network I : 1 ·
1
2

+
1
2
· 1 +

1
2
·

1
ε

=
1 + 2ε

2ε
= Ω

(
1
ε

)
Network II : 1 ·

1
1 + 1+ε

2

+

(
2

3 + ε

)
· 1 +

1 + ε

3 + ε
·

1
ε

=
5ε + 1

ε · (3 + ε)
= Ω

(
1
ε

)
Network III : 1 ·

1
1 + ε

+

(
1

1 + ε

)
· 1 +

(
ε

1 + ε

)
·

1
ε

=
3

1 + ε
= O(1).

178

I II III

A

B

C

A

B

C

A

B

C

1

1 ε

1 1

1+ε
2 ε

1 1

ε ε

1

Figure 9.1: Example for non-concavity of throughput for finite units (m =

1, n = 3)

Thus, the throughput in I and II is O(ε), whereas it is constant in III, so the

throughput is non-concave in the demand-rates (quantiles).

9.3 Pricing in the Vanilla Case

In this section, we present our algorithm for the simplest pricing problem in

which the objective is throughput, i.e., IT
i j(p) = 1∀p. Section 9.2.1 demonstrates

that the state-independent pricing problem is non-convex; moreover, this non-

convexity appears in both the objective and the constraints. We circumvent

this via a novel convex relaxation, based on two separate interventions, that

alleviates the technical hurdles. Surprisingly, the resulting pricing policy, which

we derive in Section 9.3.1, has strong performance guarantees even with respect

to state-dependent policies, as we prove in Section 9.3.2.

We develop our pricing policy in this section by first dealing with the non-

convexity in the objective, then with ones in the constraints. Then, at the end of

the section, we formally state the algorithm.

179

Elevated Objective Function

Recall from Equation (9.4) that our objective can be written as

OBJm(q) =
∑

i, j

(
fi j,m(q) · Ii j(qi j)

)
.

Let q̂i j = fi j,m(q)/φi j = Ai,m(q) · qi j; note that q̂i j ≤ qi j, and moreover, unlike

the quantiles qi j which are in one-to-one correspondence to prices, there is no

straightforward way to derive q̂i j from prices. Since we assume that the per-ride

rewards Ii j(·) are non-increasing on the quantile space, we have Ii j(qi j) ≤ Ii j(̂qi j).

We now define the elevated objective function as

ÔBJ(̂q) =
∑

i, j

φi ĵqi jIi j(̂qi j) =
∑

i, j

φi jRi j(̂qi j). (9.5)

The elevated objective has two useful properties: i) for all m and q, the elevated

objective upper bounds the true objective function, i.e. ÔBJ(q) ≥ OBJm(q), and

ii) it is a concave function of q̂ (since we focus on objectives corresponding to

concave reward curves Ri j(·)).

The Flow Polytope

We now turn our attention to the constraints of our pricing problem. As we

discussed above, each pricing policy (with corresponding quantiles q) realizes

steady-state flows (steady-state rates of units) fi j,m(q) = Ai,m(q)φi jqi j. As before,

we define the change of variables q̂i j = fi j,m(q)/φi j. Note that while it is not the

case that all flows obeying natural flow constraints can be realized as steady-

state flows
{
fi j,m(q)

}
under some policy q, all realized flows do have to obey flow

conservation and capacity constraints. This motivates the following relaxation

180

{̂
qi j

}
of the set of possible steady-state flows under any policy q and for any

number of units m.

A natural capacity constraint arises since prices only decrease demand; the

steady-state flow of units between a pair of nodes is thus bounded above by the

rate of customers wanting to travel between the nodes. We refer to this constraint

as demand bounding. Formally, for every pair (i, j), we have fi j,m(q) ≤ φi j and hence

q̂i j ∈ [0, 1].

Next, any steady-state flow must obey a natural flow conservation constraint,

wherein the rate of incoming units at each node must equal the rate of outgoing

units. We refer to this constraint as supply circulation. Formally, at any node i, we

have
∑

k fki,m(q) =
∑

j fi j,m(q), and hence

∑
k

φkîqki =
∑

j

φi ĵqi j.

Note that the above two constraints hold for every finite m and every q; indeed,

if they did not hold and the rate of incoming units to node i was larger than

the rate of outgoing units then after letting the system run in steady-state for

long enough, the number of units in i would be larger than m. Moreover, the

constraints are also true for the infinite-unit limit (cf. Appendix 13.3). We refer to

the set of flows defined by the above (linear) constraints as the flow polytope.

9.3.1 Pricing via the Elevated Flow Relaxation

Combining the elevated objective and the flow polytope, we obtain the elevated

flow relaxation program (cf. Algorithm 2). Note that this is a convex optimization

181

problem since the objective function is concave while the polytope is linear; hence

it can be efficiently maximized.

Algorithm 2: The Elevated Flow Relaxation Program

Require: arrival rates φi j, value distributions Fi j, reward curves Ri j.

1: Find
{
qi j

}
that solves the following relaxation:

Maximize
∑

(i, j) φi jRi j(̂qi j)∑
k φkîqki =

∑
j φi ĵqi j ∀ i

q̂i j ∈ [0, 1] ∀ i, j.

2: Output state-independent prices pi j = F−1
i j (1 − qi j).

Note that the prices (quantiles) returned by Algorithm 2 impose the flow

conservation not only on the units (supply) but also on the customers (demand);

we henceforth refer to this property as demand circulation.

9.3.2 Approximation Framework

In this section, we provide the main approximation framework of the paper

to bounds the performance of Algorithm 2 with respect to the optimal state-

dependent pricing policy. This is formalized in the following theorem

Theorem 29. Consider optimizing throughput for the m-unit system and let p̃ be the

pricing policy returned by Algorithm 2 and OPTm be the value of the objective of the

optimal state-dependent pricing policy in the m-unit system. Then

OBJm(̃p) ≥
m

m + n − 1
OPTm. (9.6)

182

The proof is based on the following three lemmas. First (Lemma 30), we show

that the objective of the optimal state-independent policy is upper bounded by

the elevated objective of the policy p̃ returned by the Elevated Flow relaxation

(Algorithm 2). Next (Lemma 31), we show that the elevated objective of p̃ is

equal to its objective in the infinite-unit system. Finally (Lemma 32), we show

that for any pricing policy (and so in particular for p̃), the objective in the m-unit

system is within a factor of m
m+n−1 of the objective in the infinite-unit system.

Lemma 30. For throughput, the value of the objective function of the optimal state-

dependent policy is upper bounded by the value of the elevated objective function of the

pricing policy p̃ returned by Algorithm 2

ÔBJ(̃p) ≥ OPTm.

Lemma 31. The value of the elevated objective function of the pricing policy p̃ returned

by Algorithm 2 is equal to the value of its objective function in the infinite-unit system

OBJ∞(̃p) = ÔBJ(̃p).

Lemma 32. For any state-independent pricing policy p, the value of the objective of the

policy p in the m-unit system is at least m/(m + n − 1) times the value of the objective of

the same policy in the infinite-unit system.

OBJm(p) ≥
m

m + n − 1
OBJ∞(p).

We remark that one could prove Theorem 29 more easily by showing that Lemma

32 holds when p is a demand circulation. This has been known since the 1980s

Whitt [1984] and, in fact, this is exactly the main theorem (and proof) of Waserhole

and Jost [2014]. However, in later section we consider scenarios under which

no demand circulation is optimal/feasible. For these, the stronger statement of

183

Lemma 32 is required. In the remainder of this section, we prove these three

lemmas.

From finite-unit state-dependent to the elevated flow relaxation

Lemma 33 (Lemma 30 restated). For throughput, the value of the objective function of

the optimal state-dependent policy is upper bounded by the value of the elevated objective

function of the pricing policy p̃ returned by Algorithm 2

ÔBJ(̃p) ≥ OPTm.

Proof. Let q?(X) denote the quantiles of the optimal state dependent policy and

π?(X) denote the steady-state distribution it induces. Then, since throughput is

our objective, OPTm can be written as∑
X∈Sn,m

π?(X)
∑

i, j

φi jq?i j(X).

We define q̂ via

q̂i j =
∑

X∈Sn,m

π?(X)q?i j(X).

Then OPTm =
∑

i, j φi ĵqi j.Note that, by definition, q?i j(X) = 0 when Xi = 0. Therefore,

q̂ satisfies the demand circulation and demand bounding constraints in the

elevated flow relaxation program; this is due to (i) the state-dependent supply

circulation property and (ii) q?i j(X) ≤ 1∀X, i, j. Hence q̂ is a feasible solution to the

elevated flow relaxation program and the result follows.

From the elevated flow relaxation to infinite-unit state-independent

Lemma 34 (Lemma 31 restated). The value of the elevated objective function of the

pricing policy p̃ returned by Algorithm 2 is equal to the value of its objective function in

184

the infinite-unit system

OBJ∞(̃p) = ÔBJ(̃p).

Proof. The pricing policy p̃ satisfies the demand circulation property since it is

a feasible solution to the elevated flow relaxation program. By Lemmas 35 and

Proposition 28, the availabilities at all nodes is equal to 1. This means that (i)

the value of the objective function in the infinite-unit limit for pricing policy p̃

is equal to its elevated value (since no term was increased), and (ii) the flow of

customers on each edge is equal to φi jq̃i j.

Lemma 35. For any m (including ∞) if state-independent quantiles q satisfies the

demand circulation property then, at all nodes i, the availabilities Ai,m(q) are equal.

Proof. Consider i∗ ∈ argmax Ai,m(q). Then the demand circulation and supply

circulation properties imply

Ai∗,m(q)
∑

j

φ ji∗q ji∗ = Ai∗,m(q)
∑

j

φi∗ jqi∗ j =
∑

j

A j,m(q)φ ji∗q ji∗

and thus
∑

j
(
Ai∗,m(q) − A j,m(q)

)
φ ji∗q ji∗ = 0. By choice of i∗, each summand is

nonnegative, so for each j such that φ ji∗ > 0 we obtain A j,m(q) = Ai∗,m(q). All

availabilities being equal then follows inductively using connectivity of the

underlying graph.

From finite-unit to infinite-unit state-independent

Lemma 36 (Lemma 32 restated). For any state-independent pricing policy p, the

value of the objective of the policy p in the m-unit system is at least m/(m + n − 1) times

the value of the objective of the same policy in the infinite-unit system.

OBJm(p) ≥
m

m + n − 1
OBJ∞(p).

185

Proof. By Lemma 37, we have:

OBJm(p)
OBJ∞(p)

= rmax(p) ·
Gm−1(p)
Gm(p)

.

In order to uniformly bound the above expression, the essential ingredient is

the construction of a particular weighted biregular graph between the states in

Sn,m−1 and the states in Sn,m. In this graph, non-zero edges only exist between

neighboring states, i.e. between states y ∈ Sn,m−1 and y+ei ∈ Sn,m; further, the total

weight of edges incident to any state in Sn,m is equal to 1, and the total weight of

edges incident to any state in Sn,m−1 is equal to m+n−1
m . We construct such a graph

in Lemma 38.

Throughout this proof, we use s for a state in Sn,m−1 and t for one in Sn,m.

The weight of the edge (s, t) in the bipartite graph constructed in Lemma 38 is

denoted by ωst.

OBJm(p)
OBJ∞(p)

= rmax(p) ·
Gm−1(p)
Gm(p)

= rmax(p)

∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j

∑
t∈Sn,m

∏n
j=1

(
r j(p)

)t j

= rmax(p) ·

∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j

∑
t∈Sn,m

(∑
s∈Sn,m−1

ωst

)∏n
j=1

(
r j(p)

)t j

= rmax(p) ·

∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j

∑
(s,t)∈Sn,m−1×Sn,m

ωst
∏n

j=1

(
r j(p)

)s j+(t j−s j)

≥

∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j∑
s∈Sn,m−1

(∑
t∈Sn,m

ωst

)∏n
j=1

(
r j(p)

)s j

=

∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j(
m+n−1

m

)∑
s∈Sn,m−1

∏n
j=1

(
r j(p)

)s j
=

m
m + n − 1

The third equality holds as
∑

s ωst = 1, while the second-to-last follows from∑
t ωst = m+n−1

m . Crucially, ωst > 0 only holds for neighboring states s and t, which

implies the inequality.

186

Lemma 37. For any state-independent pricing policy p, let Am(p) = maxi
(
Ai,m(p)

)
denote the maximum steady-state availability across all nodes. Then the objective function

of p in the m-unit system is related to the infinite-limit objective as

OBJm(p)
OBJ∞(p)

= rmax(p) ·
Gm−1(p)
Gm(p)

= Am(p).

Proof. Let Bi(p) =
∑

j φi jqi j · Ii j(qi j) denote the contribution of node i to the

objective per unit of time in which station i is available. By substituting

Ai,m(p) = (Gm−1(p)/Gm(p)) · ri(p), Ai,∞(p) = ri(p)/rmax(p), and Bi into the definition

of the objectives in Equation 9.4, we obtain

OBJm(p)
OBJ∞(p)

=

∑
i Ai,m(p)Bi(p)∑
i Ai,∞(p)Bi(p)

=

Gm−1(p)
Gm(p) ·

∑
i ri(p)Bi(p)

1
rmax(p) ·

∑
i ri(p)Bi(p)

= rmax(p) ·
Gm−1(p)
Gm(p)

= Am(p),

where the last equality follows from the characterization of the availabilities in

Equation (9.3). Note that the argument relies on OBJ∞(p) > 0 which is the case

for all policies/settings we consider.

Lemma 38. We call y ∈ Sn,m−1 a neighbor of y + ei ∈ Sn,m∀i. There exists a weighted

biregular graph on Sn,m−1 ∪ Sn,m such that i) an edge has non-zero weight only if it is

connecting neighboring states, ii) for any vertex corresponding to a state in Sn,m−1 the

total weight of incident edges is equal to m+n−1
m , and iii) for any vertex corresponding to a

state in Sn,m the total weight of incident edges is equal to 1.

Proof. Our construction is shown in figure 9.2. Each state x ∈ Sn,m is adjacent to

x − ei ∈ Sn,m−1 for all i with xi > 0. On these edges, the weight is xi
m . Thus, the

total weight incident to x is
∑

i
xi
m = 1. On the other hand, each state y ∈ Sn,m−1

is adjacent to the states y + ei ∀i ∈ [n]. The respective weight on these edges is∑
i

yi+1
m = m−1+n

m . Finally, there is only weight on edges between neighboring states.

This concludes the proof of the lemma.

187

(a) Graph between S2,3,S2,2 and
S2,1

(b) Construction for general n,m

Figure 9.2: Biregular graph construction as described in Lemma 38. Fig.
9.2(a) shows the construction for (S2,3,S2,2) and (S2,2,S2,1). Fig.
9.2(b) shows the general construction. Note that the sum of
weights of incident edges for any node on the left (i.e. any state
in Sn,m) is 1, while it is (m + n − 1)/m for nodes on the right (i.e.
states in Sn,m−1).

9.3.3 Multi-objective Pricing

We begin this Section by extending the result of Theorem 29 to objectives other

than throughput.

Theorem 39. Consider optimizing any objective with concave reward curves Ri j(·) for

the m-unit system and let p̃ be the pricing policy returned by Algorithm 2 and OPTm

be the value of the objective of the optimal state-dependent pricing policy in the m-unit

system. Then

OBJm(̃p) ≥
m

m + n − 1
OPTm. (9.7)

The proof only requires replacing Lemma 30 by a Lemma that holds for all

objectives with concave reward curves.

Lemma 40. For objectives with concave reward curves Ri j(·), the value of the objective

function of the optimal state-dependent policy is upper bounded by the value of the

elevated objective function of the pricing policy p̃ returned by Algorithm 2

ÔBJ(̃p) ≥ OPTm.

188

Proof. Our proof applies Jensen’s inequality to show that OPTm is bounded above

by the elevated objective value of some quantiles q̂ that form a feasible solution

of the elevated flow relaxation program. Since the pricing policy p̃ maximizes

this mathematical program, the lemma follows.

Let q?(X) denote the quantiles of the optimal state dependent policy and

π?(X) denote the steady-state distribution it induces. Then OPTm can be written

as ∑
X∈Sn,m

π?(X)
∑

i, j

φi jRi j

(
q?i j(X)

)
.

We define q̂ via

q̂i j =
∑

X∈Sn,m

π?(X)q?i j(X).

Since the price-setting reward curve is concave, Jensen’s inequality implies that

OPTm ≤
∑

i, j

φi jRi j

(̂
qi j

)
.

By the same argument as in Lemma 30, q̂ is a feasible solution to the elevated

flow relaxation program and the result follows.

Bicriterion Approximations

We now discuss how to derive bicriterion approximations in multi-objective

optimization settings, in which one objective is maximized subject to a lower

bound on another. For ease of presentation, we restrict ourselves to pricing.

Formally, the problem is as follows: we are given a m-unit system, a requirement

c ≥ 0, and objectives Φm(·) and Ψm(·); the goal is to maximize Φm(q) subject to

Ψm(q) ≥ c. We again assume that both objectives can be decomposed into per-ride

rewards with associated concave reward curves
{
RΨ

i j

}
and

{
RΦ

i j

}
.

189

Similarly to Equation (9.5), we first elevate both objectives to obtain Φ̂(̂q) =∑
i, j φi jRΦ

i j (̂qi j) and Ψ̂(̂q) =
∑

i, j φi jRΨ
i j (̂qi j). Since per-ride rewards are non-increasing

on the quantiles, this can only increase the values of the objectives. We then

impose the supply circulation and demand bounding constraints to create the

flow polytope constraints. This mathematical program (Algorithm 3) is the

elevated flow relaxation for our multi-objective setting; we argue below that

this is indeed a relaxation. It can be efficiently optimized since the objective

is concave while the polytope is convex: the convex combination of any two

feasible quantiles is feasible since Ψ̂(·) is concave.

Algorithm 3: The Elevated Flow Relaxation for the Multi-objective Pricing
Problem

Require: arrival rates φi j, value distributions Fi j, reward curves RΦ
i j and RΨ

i j,

requirement c.

1: Find
{
qi j

}
that solves the following relaxation:

Maximize Φ̂(̂q)∑
k φkîqki =

∑
j φi ĵqi j ∀ i

q̂i j ∈ [0, 1] ∀ i, j.

Ψ̂(̂q) ≥ c

2: Output state-independent prices pi j = F−1
i j (1 − qi j).

Theorem 41. Let Φm and Ψm be objectives for the m-unit system with concave reward

curves. Then the solution q̃ returned by Algorithm 3 is a (γ, γ) bicriterion approximation

for the multi-objective pricing problem where γ = m/(m + n − 1), i.e. Φm(q?) ≥ γOPTm

and Ψm(q?) ≥ γ · c.

Proof. Let q′ denote the optimal solution of an auxiliary program where we only

190

elevate objective Φ, i.e. we maximize Φ̂(·) subject to Ψm(·) ≥ c as well as the

demand circulation and demand bounding constraints. Moreover, let q? denote

the optimal solution of the original (non-elevated) program. Then, for the first

guarantee, we have:

Φm(̃q) ≥ γΦ̂(̃q) ≥ γΦ̂(q′) ≥ γΦ̂(q?) ≥ γΦ(q?) = γOPTm

The first inequality is a simple application of Theorem 39. The second inequality

holds since any solution of the auxiliary program is a feasible solution of the

elevated flow relaxation. In particular, since the elevated objective Ψ̂m(·) is point-

wise no less than the original objective Ψm(·), the corresponding constraint in

the auxiliary program is tighter. The third inequality holds as q′ is the optimal

solution for the auxiliary program. The last inequality holds as the elevated

objective Φ̂(·) is pointwise no less than the original objective Φ(·).

Regarding the second guarantee, we have:

Ψm(̃q) ≥ γΨ̂(̃q) ≥ γc

The first inequality is again a simple application of Theorem 39 while the second

holds since q̃ is a feasible solution of the elevated flow relaxation and therefore

satisfies its last constraint.

We note that the same approach yields multicriterion approximation algo-

rithms for settings in which more than one constraint of the form Ψm(·) ≥ c is

given.

191

CHAPTER 10

ADVANCED EXTENSIONS

In this chapter, we relax the restrictions we previously imposed. All of the algo-

rithms and proofs for these extensions make use of our elevated flow relaxation

framework of Section 9.3, demonstrating its generality. First, in Section 10.1, we

allow the designer to have additional rebalancing controls beyond pricing by

redirecting supply and demand. Next, in Section 10.2, we relax our assumption

that changes in the state should be instantaneous by allowing travel-times for the

trips. Last, in Section 10.3, we consider settings where prices can only depend

on the source and where the prices are constrained to come from a discrete set.

For all of these results, the proof follows from the same three steps as in Section

9.3.2.

10.1 Other Controls

Pricing is just one of several control levers in shared vehicle systems for balancing

supply and demand; we now investigate two other levers, which we refer to

as supply redirection and demand redirection, and show how they fit into our

approximation framework. In the former we make a decision at the end of every

trip on whether the unit remains at the destination of the trip or moves elsewhere

whilst incurring a cost. In the latter, we redirect passengers arriving at a node

to take units from nearby nodes. In practice, this would be achieved by pulling

units from nearby nodes; for example in ridesharing services, the platform can

dispatch a driver from a nearby node. Mathematically, the two are equivalent.

192

Supply Redirection

We consider a state-dependent policy r(X) which, for each trip ending at a node

i, chooses to redirect the unit to some other node j (leading to state X − ei + e j),

else allows the unit to stay at i. For a state-independent policy, let ri j ∈ [0, 1]

be the probability that an arriving unit at i is redirected to j. We assume that

each redirection from i to j has associated cost ci j, and that units arriving empty

(redirected) are not redirected again.

With m units, a fixed pricing policy p (with corresponding quantiles q), and

a fixed redirection policy r, we observe a rate fi j,m(q, r) of customers traveling

from i to j, and a rate of redirected vehicles zi j,m(q, r) from i to j, i.e. trips with

destination i which are redirected to j. For a state-independent policy, since each

unit arriving at i is redirected to j with probability ri j, it holds that

zi j,m(q, r) = ri j

∑
k

fki,m(q, r).

Similarly to the correspondence between qi j and fi j,m, we observe a correspon-

dence between ri j and zi j,m, wherein the former are the controls and induce the

latter in the objective via the steady-state dynamics. As a result, the objective can

be written as

OBJm(q, r) =
∑

i, j

fi j,m(q, r)Ii j(q) − ci jzi j,m(q, r).

In order to define the constraints of the elevated flow relaxation, we write (as in

Section 9.3) q̂i j = fi j,m(q, r)/φi j and ẑi j = zi j,m(q, r). We can now write the following

relaxed flow polytope:

(1) q̂i j ∈ [0, 1], (2)
∑

k

(
φkîqki + ẑki

)
=

∑
j

(
φi ĵqi j + ẑi j

)
, (3)

∑
k

ẑik ≤
∑

j

φ jîq ji ∀ i.

The first constraint is demand bounding, exactly as explained in Section 9.3.

The second is a variant of the supply circulation in Section 9.3 to incorporate

193

redirected vehicles. Finally, the third reflects that only units that are dropping

off customers at a node, but not empty ones, can be redirected. Note that these

constraints hold for any state-dependent policy as any policy induces such rates

fi j,m and zi j,m.

Using the reward curves Ri j(·) defined in Section 9.3, we obtain an upper

bound ÔBJ(q, r) on our desired objective via the Elevated Flow Relaxation with

the above constraints; through this, we obtain prices and redirection probabil-

ities in Algorithm 4. Note that the redirection probabilities ri j returned by the

algorithm correspond to the rate of redirected units zi j returned by the relaxation

over the total incoming rate of (non-empty) units at node i, i.e.
∑

k φk jqk j. We now

derive the equivalent of Theorem 39 to bound the performance of this algorithm.

Theorem 42. Consider any objective function OBJm for the m-unit system with concave

reward curves Ri j(·). Let p̃ and r̃ be the pricing and redirection policies returned by

Algorithm 4, and OPTm be the objective of the optimal state-dependent policies in the

m-unit system. Then

OBJm(̃p, r̃) ≥
m

m + n − 1
OPTm.

Proof. The proof closely resembles that of Theorem 39. As before, we show the

inequality through three intermediate steps: (i) ÔBJ(̃p, r̃) ≥ OPTm, (ii) ÔBJ(̃p, r̃) =

OBJ∞(̃p, r̃), and (iii) OBJm(̃p, r̃) ≥ m
m+n−1 OBJ∞(̃p, r̃). The proof of the first inequality

is the same as in Lemma 40, with the relaxation defined in Algorithm 2 replaced

by the relaxation defined in Algorithm 4. The second step relies on Lemma 43,

which uses Lemma 35 to prove that in the infinite-unit system all availabilities

are 1. Based on this claim, similarly to the proof of Lemma 31, we observe that

the flow of customers on each edge is φi jq̃i j. The definition of the redirection

probabilities in Algorithm 4 then immediately implies that zi j,∞(̃p, r̃) = zi j, i.e. the

194

Algorithm 4: The Elevated Flow Relaxation Program with Supply Redirec-
tion

Require: arrival rates φi j, value distributions Fi j, reward curves Ri j, rerouting

costs ci j.

1: Find {qi j, zi j} that solves the the following relaxation:

Maximize
∑

i, j

(
φi jRi j(̂qi j) − ci ĵzi j

)
∑

k
(
φkîqki + ẑki

)
=

∑
j

(
φi ĵqi j + ẑi j

)
∀i∑

k ẑik ≤
∑

j φ jîq ji ∀i

q̂i j ∈ [0, 1] ∀i, j

2: Output state-independent prices pi j = F−1
i j (1 − qi j) and redirection probabilities

ri j = zi j/
∑

k φkiqki

flow of redirected units from i to j is also equal to the value of zi j in the solution of

the relaxation. Finally, for the third step, we apply the same proof as in Lemma 32

with just one small modification. In Lemma 32, Bi(p) denotes the contribution of

node i per unit of time in which a unit is present at i. Previously, this just captured

rides leaving node i. Now, we also charge Bi(p) for the cost incurred through

the possible redirection of vehicles traveling from i to j that are redirected to k.

Replacing Bi(p) by
∑

j φi jqi j

(
Ii j

(
qi j

)
−

∑
k r jk p jk

)
formalizes this charging argument

– the remainder of the proof is equivalent to that of the Lemma 32. This concludes

the proof of the theorem.

Lemma 43. With p̃ and r̃ as returned by Algorithm 2, all availabilities are equal to one

in the infinite-unit system.

Proof. Denote by q̃ the quantiles corresponding to p̃. We consider a closed

queueing network with the same transition probabilities between states as the one

195

resulting from q̃ and r̃. In our hypothetical network, quantiles are all one, there is

no redirection, and the demand circulation property holds. Since the hypothetical

network does not have redirection and satisfies the demand circulation property,

Lemma 35 implies that there the availabilities at all nodes are equal. However, the

two networks have the same transition probabilities so they also have the same

steady-state distribution. As a result, in the original network all availabilities are

also equal and thus, equal to 1 in the infinite-unit limit. We define the demand in

the hypothetical network as

φ̄i j = φi jq̃i j(1 −
∑

k

r̃ jk) +
∑

k

φikq̃ik̃rk j.

Observe that transitions occur at the same rate in this network as in the one with

q̃ and r̃. Since quantiles are equal to 1, the demand circulation property says that∑
j φ̄i j =

∑
k φ̄ki. To show this property, notice first that the demand at node i is

∑
j

φ̄i j =
∑

j

φi jq̃i j −
∑

j

φi jq̃i j

∑
k

r̃ jk

 +
∑

j

∑
k

φikq̃ik̃rk j =
∑

j

φi jq̃i j.

On the other hand, due to the definition of φ̄i j (first equality), the definition

of r̃i j in Algorithm 4 (third equality), and the supply circulation constraint in

Algorithm 4 (last equality), the demand of customers traveling to i is

∑
k

φ̄ki =
∑

k

φkiq̃ki −
∑

j,k

φkiq̃kĩri j +
∑

j,k

φk jq̃k j̃r ji

=
∑

k

φkiq̃ki −
∑

j

r̃i j
(∑

k

φkiq̃ki
)

+
∑

j

r̃ ji
(∑

k

φk jq̃k j
)

=
∑

k

φkiq̃ki −
∑

j

zi j∑
k φkiq̃ki

(∑
k

φkiq̃ki
)

+
∑

j

z ji∑
k φk jq̃k j

(∑
k

φk jq̃k j
)

=
∑

k

φkiq̃ki +
∑

j

(
z ji − zi j

)
=

∑
j

φi jq̃i j.

196

Demand Redirection

For the control defined in this section, we assume that there exists a graph

G = (V, E) on the set of nodes with edges between nodes that are so close that a

customer arriving at one node can be served through a vehicle at an adjacent

node. We consider a state-dependent policy µ(X) which, for each customer

arriving at node i willing to pay the price quoted, decides from which node in

{i} ∪ { j : (i, j) ∈ E}, the customer is served. With m units, fixed quantiles q(X), and

a fixed matching policy µ(X), we observe a rate fi j,m(q, µ) of customers arriving at

i that travel to j, potentially after being matched to a unit at k, and a rate zik,m(q, µ)

of customers that arrived to travel from i but have been matched to a unit at k.

We can write the objective in this setting as OBJm(q, µ) =
∑

i, j fi j,m(q, µ)Ii j(q). We

again write q̂i j = fi j,m(q, r)/φi j and ẑi j = zi j,m(q, r) to define the following relaxed

flow polytope:

(1) q̂i j ∈ [0, 1], (2)
∑

k

q̂kiφki+̂zik =
∑

j

q̂i jφi j+̂z ji ∀ i, (3)
∑

k

ẑki ≤
∑

j

q̂ jiφ ji ∀ i.

The first constraint is again demand bounding. The second is a variant of the

supply circulation to incorporate matchings to nearby nodes. In particular, the

left hand side accounts for the total number of units arriving at node i, which

equals all users arriving at i together with all units arriving due to matching from

nearby nodes k. Similarly, the right hand side accounts for the total number of

units leaving i, which are the users leaving from i together with users from other

nodes j that use supply at i. Finally, the third ensures that customers are matched

only to units arriving at nearby nodes. Maximizing the elevated objectives over

these constraints again yields a m/(m + n − 1) approximation algorithm. We omit

the proof, because of its similarity to the one of Theorem 42.

Theorem 44. Solving for the elevated objective under the constraints defined above

197

Algorithm 5: The Elevated Flow Relaxation Program With Matching

Require: arrival rates φi j, value distributions Fi j, reward-curves Ri j, edges E.

1: Find {qi j, zi j} that solves the the following relaxation:

Maximize
∑

i, j φi jRi j(̂qi j)∑
k
(
φkîqki + ẑik

)
=

∑
j

(
φi ĵqi j + ẑ ji

)
∀i ∈ [n]∑

k ẑki ≤
∑

j φ jîq ji ∀i ∈ [n]

q̂i j ∈ [0, 1] ∀i, j ∈ [n]

ẑi j = 0 ∀(i, j) < E

2: Output state-independent prices pi j = F−1
i j (1 − qi j) and matching probabilities

µi j = zi j/
∑

k φikqik

yields a m/(m + n − 1) approximation algorithm for pricing and matching.

In Appendix 13.4 we show that the results obtained in this section continue to

hold in settings, in which matching and/or redirecting is allowed, but pricing is

not. In such scenarios, the optimal solution may not have the demand circulation

property. Nevertheless, the same techniques yield m/(m + n − 1) approximation

algorithms.

10.2 Incorporating travel-times between nodes

We now discuss how to remove the assumption that units move instantaneously

by adding travel-times between nodes. We state our result only for pricing;

however, our arguments below only depend on properties of the Markov chain,

and hence can incorporate the other controls we consider.

198

A standard way to model travel-times is to assume that each unit takes an i.i.d.

random time to travel from node i to j. Formally, we expand the network state

to X =
{
Xi(t), Xi j(t)

}
, where node queues Xi(t) track the number of available units

at node i, and link queues Xi j(t) track the number of units in transition between

nodes i and j. When a customer engages a unit to travel from i to j, the state

changes to X − ei + ei j (i.e., Xi → Xi − 1 and Xi j → Xi j + 1). The unit remains in

transit for an i.i.d. random time, distributed exponentially with mean τi j (this is

primarily for ease of notation; our results extend if the travel time is distributed

according to some general Gi j(·)). When the unit reaches its destination, the state

changes to X−ei j +e j. Finally, we assume that pricing policies and passenger-side

dynamics remain the same as before; in particular, we assume that the demand

characteristics
{
φi j, Fi j

}
and reward-functions

{
Ii j

}
are independent of the actual

transit times (dependence on average transit times τi j can be embedded in the

functions).

The system described above is a generalization of the Gordon-Newell network

(Definition 26) referred to as a BCMP network (introduced by Baskett et al. [1975];

cf. Serfozo [1999], Section 3.3; also see Zhang and Pavone [2016] for the use of

such a model for vehicle sharing). It is also a special case of a closed migration

process; our presentation here follows Kelly and Yudovina Kelly and Yudovina

[2014] (Chapter 2).

Definition 45. A closed migration process on states Sn2,m is a continuous-time Markov

chain in which transitions from state X to state X − ei + e j occur at rate λi jµi(Xi)

when Xi > 0 and at rate 0 otherwise. The λi j again form routing probabilities with∑
k λik = 1, λi j ≥ 0 ∀i, j. Notice that µi(Xi) is a function of Xi only, whereas λi j are

independent of the state alltogether.

199

Given quantiles q, the above-described process is a closed migration process

with λi,i j = φi jqi j/
∑

k φikqik and λi j, j = 1 for every i and j. Further, the service

rate µi(Xi) =
∑

k φikqik when Xi > 0 for node queues and µi j(Xi j) = Xi j/τi j for link

queues. Intuitively, the latter captures the idea that each of the Xi j units has an

exponential rate of 1/τi j and therefore the rate until the first is removed from the

link queue is Xi j/τi j. The stationary distribution can then be obtained as follows.

Theorem 46 (Theorem 2.4 in Kelly and Yudovina [2014]). For a closed migration

process as described in Definition 45, let {wi}i∈[n2] denote the invariant distribution asso-

ciated with the routing probability matrix
{
λi j

}
i, j∈[n]

. Then the equilibrium distribution

for a closed migration process is

π(x) =
1

Gm

n2∏
i=1

wxi
i∏xi

y=1 φi(y)
,

where Gm =
∑

x
∏n2

i=1
wxi

i∏xi
y=1 φi(y)

is a normalizing constant.

This implies for our setting, with w denoting again the invariant distribution

of the routing matrix.

πx,m(q) =
1

Gm(q)

∏
i∈[n]

(
wi(q)∑
k φikqik

)xi

 ∏

i, j∈[n]2

(
τi jwi j(q)

)xi j

xi j!

. (10.1)

We remark that in comparison to the invariant distribution wI when rides

occur instantaneously, wD with delays would be wD
i = wI

i/2 for node queues and

wD
i j =

wD
i φi jqi j∑
k φikqik

for link queues.

One consequence of the above characterization is that the resulting flows

fi j,m(q) continue to satisfy demand bounding and supply circulation – conse-

quently, the Elevated Flow Relaxation (cf. Algorithm 2) continues to provide an

upper bound. Moreover, adding link queues does not affect the optimization

200

problems we consider in the infinite-unit system; in particular, Lemma 31 also

continues to hold in this setting. Finally, from Lemma 37, we know that the

ratio of objectives between the infinite-unit system and the finite-unit system

equals the maximum availability, among all nodes, in the finite-unit system, i.e.
OBJm(q)
OBJ∞(q) = maxi Ai,m(q). In order to obtain an approximation ratio, we now need to

understand how maxi Ai,m(q) changes when link queues are added.

Let M denote the random variable corresponding to the steady-state number

of available (i.e. not in transit) units across all nodes, and define Am(q|M) ,

maxi∈[n] P
[
1{Xi>0}|M

]
, Am(q) = maxi∈[n] Ai,m(q). Now we have the following

Lemma 47. Conditioned on M, the distribution of {Xi}i∈[n] in the network with travel-

times is identical to an n-node M-unit Gordon-Newell network with the same quantiles

and arrival rates.

This follows directly from the product-form nature of the steady-state distri-

bution in Equation (10.1). Using this, we now obtain the following bound for the

m-unit system availability.

Lemma 48. For any network with parameters
{
φi j, Fi j(·), τi j

}
if m ≥ 100 and quantiles

q satisfy
∑

i j φi jτi jqi j ≤ m − 2
√

m ln(m) then

Am(q) ≥
(
1 −

3
√

m

) √
m ln m

√
m ln m + n − 1

.
Note that the above converges to 1 as m→ ∞.

Proof. First, for any given policy q, as before we have the realized flows fi j,m(q) =

qi jφi jAi,m(q); moreover, this is the expected rate of units entering link queue Xi j.

Let D = m − M be the number of units which are in transit. Now, by Little’s law

201

(cf. Kelly [2011] or Serfozo [1999]), we have that the expected number of units in

link queues is given by
∑

i, j Ai,m(q)φi jqi jτi j.

Note that the link queues {Xi j} are stochastically dominated by independent

M/M/∞ queues with input rate φi jqi j and average transition time τi j. This follows

from a simple coupling argument, where incoming customers follow an inde-

pendent Poisson process of rate φi jqi j and enter the link queue with a virtual unit,

irrespective of whether the customer engages a unit or not in the real system.

Thus D is stochastically dominated by D̃ = Poi(
∑

i, j φi jqi jτi j). Further, since D is

bounded above by m, D is also stochastically dominated by D̂ = min{D̃,m}.

Next, from Lemma 47, we know that conditioned on there being M avail-

able units in the steady-state system, the distribution of units in node queues

is identical to that of an n-node M-unit Gordon-Newell network; moreover,

from Lemma 32, we have that for any n-node, m-unit Gordon-Newell network,

Am(q|M) ≥ M/(M + n− 1). Since M = m−D and (m− x)/(m + n− 1− x) is decreasing

in x for x ≤ m, it follows that

Am(q) ≥ E
[m − D
m + n − 1 − D

]
≥ E

 m − D̂

m + n − 1 − D̂

 . (10.2)

Further, by definition of D̂ we observe that P
[
D̂ > m

(
1 −

√
ln m
m

)]
=

P
[
D̃ > m

(
1 −

√
ln m
m

)]
. We can now apply a standard Chernoff bound for the

Poisson random variable D̃ (cf. from Lemma 70 in Appendix 13.6), using the

assumption that m−2
√

m ln(m) ≥
∑

i j φi jτi jqi j = E[D̃]. In particular, we may bound

202

P
[
D̂ > m

(
1 −

√
ln m
m

)]
by

P
D̃ > m

1 −
√

ln m
m

 ≤ exp

−m ln m
(
m − 3

√
m ln m

)
2(m − 2

√
m ln m)2

 (10.3)

= exp

 − ln m ·
(
1 − 3

√
ln m/m

)
2
(
1 − 4

√
ln m/m

(
1 −
√

ln m/m
))

≤ exp

− ln m
(
1 − 3

√
ln m/m

)
2
(
1 − 1.5

√
ln m/m

)  (10.4)

= exp

− ln m
2

1 − 3
√

ln m/m(
2 − 3

√
ln m/m

)


(Since ln m/m ≤ 1/e, and 4 · (1 − 1/
√

e) > 1.5)

=
1
√

m
exp

(
3 ln m

4
√

m/ ln m − 6

)
≤

3
√

m
for m ≥ 100.

We can use the above to bound the availability in Inequality (10.2) as

Am(q) ≥
(
1 −

3
√

m

) m − (m −
√

m ln m)

m − (m −
√

m ln m) + n − 1

 +
3
√

m
· 0.

Simplifying, we obtain the result.

We are now ready to extend our pricing/control policies to the setting with

transit delays. In order to do so, we need to first extend the elevated flow

relaxation by adding an extra constraint. The main observation is that in an

m-unit system with transit delays, there is an additional conservation constraint

induced by the fact that the number of units in the link queue can not exceed

m. As before, let f m
i j (q) = q̂i jφi j denote the expected rate of units entering link

queue Xi j; then by Little’s law (cf. Kelly [2011] or Serfozo [1999]), we have that

the expected number of units in link queues is given by
∑

i, j φi ĵqi jτi j, which, in

an m-unit system, must be bounded by m. To incorporate this, we need to add

an additional rate-limiting constraint to the elevated flow relaxation wherein we

203

ensure that
∑

i, j φi ĵqi jτi j ≤ m. This gives us the Rate-Limited Elevated Flow Relaxation

Program in Algorithm 6.

Algorithm 6: The Rate-Limited Elevated Flow Relaxation Program

Require: arrival rates φi j, value distributions Fi j, reward curves Ri j, scaling

parameter εm, travel-times τi j.

1: Find
{
qi j

}
that solves the following relaxation:

Maximize
∑

(i, j) φi jRi j(̂qi j)∑
k φkîqki =

∑
j φi ĵqi j ∀ i∑

i, j φi jτi ĵqi j ≤ m

q̂i j ∈ [0, 1] ∀ i, j.

2: Set q̃i j = qi j · (1 − εm)

3: Output state-independent prices p̃i j = F−1
i j (1 − q̃i j).

Theorem 49. For any objective function OBJm with concave reward curves Ri j(·) in the

m-unit system, let quantiles q̃ be the output of Algorithm 6 with input εm B 2
√

ln m/m,

OPTm be the value of the objective function for the optimal state-dependent pricing policy,

and m ≥ 100. Then

OBJm(̃q)
OPTm

≥ (1 − εm)
 √

m ln m
√

m ln m + n − 1
−

3
√

m ln m

.
Proof. The proof follows a similar roadmap as that of Theorem 39. In particular,

we argue that

1. the rate-limited elevated flow relaxation provides an upper bound for any

state-dependent policy,

204

2. the rate-limited elevated flow relaxation solution is achieved by a state-

independent policy in the infinite-unit system, and

3. the ratio of the performance of any state-independent policy q in the infinite-

unit and m-unit system is equal to the maximum availability Am(q).

First, similar to Lemma 40, note that since the realized flows in the m unit

system must obey the conservation laws encoded by the rate-limited elevated

flow relaxation, hence OPTm is bounded by the solution to the rate-limited ele-

vated flow relaxation
∑

(i, j) φi jRi j(qi j). Moreover, since per-ride rewards Ii j(·) are

non-increasing in q, therefore scaling the qi j by (1 − εm) results in an elevated

objective value that obeys

(1 − εm)
∑
(i, j)

φi jRi j(qi j) ≤
∑
(i, j)

φi jRi j(̃qi j),

and moreover,
∑

i, j φi jq̃i jτi j ≤ m · (1 − εm). Now, using similar arguments as in

Lemma 31, we can show that using a state-independent policy q̃ in the infinite-

unit limit gives OBJ∞(̃q) =
∑

(i, j) φi jRi j(̃qi j) (note that we use the same q̃ as derived

from the m unit rate-limited elevated flow relaxation in the infinite unit limit; in

other words, we scale the number of units to infinite, but retain the constraint∑
i, j φi jτi ĵqi j ≤ m for a fixed m). Next, from Lemma 37, we get that OBJm(̃q) =

Am(̃q)OBJ∞(̃q). Finally, using Lemma 48, we get the desired bound

OBJm(̃q)
OPTm

≥ (1 − εm)
 √

m ln m
√

m ln m + n − 1
−

3
√

m

.

Note that for any fixed n, the theorem shows that the policy returned by the

rate-limited elevated flow relaxation is asymptotically optimal as m→ ∞ for any

demand rates and transit delays
{
φi j, τi j

}
. In Appendix 13.4 we use this to recover

205

and give a finite-m characterization for the asymptotic results in Braverman et al.

[2016], Ozkan and Ward [2016].

It is now natural to wonder whether the guarantee in Theorem 49 is tight. In

particular, the rate of convergence is only in the square-root of m and as such

it converges an order of magnitude slower than our guarantees without travel-

times. It turns out that there are two answers to that question: in general, it

is not possible to converge to the upper bound provided by the elevated flow

relaxation faster than in the square-root of m – this holds for any policy. On the

other hand, if the optimal solution ~q found in Algorithm 6 is not constrained

by the rate-limitation, that is, it fulfills
∑

i j φi jτi ĵqi j = (1 − c)m for some c > 0,

then an asymptotically linear rate of convergence is recovered. We now first

give an example in which no solution achieves a convergence faster than in the

square-root of the number of vehicles and then prove that if the rate constraint is

not tight, a linear rate of convergence is recovered.

Example 50. Consider a system consisting of just a single node i, in which customers

travel from i to itself and τii = 1. Suppose our objective is to maximize throughput; in

this case, it is easy to see that setting qii = 1 is the optimal policy. Further, suppose that

φii = m, i.e., the rate of demand is exactly equal to, and scales with, the supply available.

In fact, using Equation 10.1 we can write the objective as follows:

OBJm = mAi,m(q) = m

1 −


(
1
2
m

)0((1
2)m

m!

)
∑m

xi=0

(
1
2
m

)xi
(
(1

2)m−xi

(m−xi)!

)

 = m

1 −


(
1

m!

)
∑m

xi=0

(
1
m

)xi
(

1
(m−xi)!

).


In order to prove our claim that no policy can obtain a rate of convergence that is

faster than in the square-root of m, we need to bound the subtrahend by Ω(1
√

m):(
1

m!

)
∑m

xi=0

(
1
m

)xi−m(
1

(m−xi)!

) 1
mm =

mm

m!
1∑m

i=0
mxi

xi!

≥
mm

m!
1∑∞

i=0
mxi

xi!

=
e−mmm

m!
∈ Ω

(
1
√

m

)
.

206

Here, the final bound follows from Sterling’s approximation since m! scales as mm+ 1
2 e−m.

Corollary 51. Suppose that the optimal solution q? to the flow relaxation in Algorithm 6

is not constrained by the rate-limited constraint, that is,
∑

i j φi jτi jq?i j = (1 − 2c)m for

some c > 0. Then, the rate of convergence to the upper bound is linear. Specifically, for

m ≥ 100,
OBJm(q?)

OPTm
≥

(
1 − e−

c2
2 m

)(cm
cm + n − 1

)
.

Proof. By Lemma 70, we know that, with D̂ and D̃ defined as in the proof of

Lemma 48, we have

P
[
D̂ > m(1 − c)m

]
= P

[
D̃ > m(1 − c)m

]
≤ e

(
−

(cm)2
2(1−2c)m

(
1− cm

(1−2c)m

))
= e

(
− c2m

2(1−c) (1− c
1−2c)

)

Simplifying, we find that
(

c2

2(1−c)

(
1 − c

1−2c

))
≥ c2

2 . Thus, with probability at least(
1 − e−

c2
2 m

)
, there are at least cm units not in transit. The rest of the proof is

equivalent to that in Lemma 48 and Theorem 49.

10.3 Constrained point pricing

In this section, we focus on a special case of the vanilla pricing problem wherein

the platform is only allowed to set point prices, i.e. prices based on the origin

node, and the value distributions of all customers arriving at a node are identical

(i.e. pi j = pi, respectively qi j = qi, and Fi j(·) = Fi(·) for all i, j). We provide

a simple optimal pricing policy for the infinite-unit system, which involves

just one eigenvector computation (for throughput/social welfare) or a concave

maximization over a single variable (for revenue).

We then consider the additional constraint that prices are only allowed to

come from a discrete price set. Using our infinite-to-finite unit reduction, all

207

our results are then translated back to the finite unit setting. We emphasize that

in the latter restricted settings, there may not be a feasible solution satisfying

demand circulation.

Unrestricted price set: We begin by providing the point pricing equivalent to

Algorithm 2 and Theorem 39.

Algorithm 7: The Point Pricing Elevated Flow Relaxation Program

Require: arrival rates φi j, value distributions Fi, reward curves Ri j.

1: Find {qi} that solves the following point price relaxation:

Maximize
∑

(i, j) φi jRi j(̂qi)∑
k φkîqk =

∑
j φi ĵqi ∀ i

q̂i ∈ [0, 1] ∀ i.

2: Output state-independent prices pi = F−1
i (1 − qi).

Theorem 52. Consider any objective function OBJm for the m-unit system with concave

reward curves Ri j(·). Let p̃ be the pricing policy returned by Algorithm 7, OPTm be the

value of the objective function for the optimal state-dependent point pricing policy in the

m-unit system. Then

OBJm(̃p) ≥
m

m + n − 1
OPTm (10.5)

Proof. The proof is again based on three steps that compare OBJm(̃p) with OBJ∞(̃p),

OBJ∞(̃p) with ÔBJ(̃p), and ÔBJ(̃p) with OPTm. The application of Jensen’s inequal-

ity to prove ÔBJ(̃p) ≥ OPTm is the same as in Lemma 40, with the polytope in

Algorithm 2 replaced by the one in Algorithm 7. Lemma 31 applies since its

proof only relies on p̃ fulfilling the demand circulation property, which it does

208

(cf. Algorithm 7). Thus, OBJ∞(̃p) ≥ ÔBJ(̃p). Finally, Lemma 32 implies that

OBJm(̃p) ≥ m
m+n−1 OBJ∞(̃p), which concludes the proof of the theorem.

Notice that the optimization problem in Algorithm 7 has the demand cir-

culation property as a constraint; thus, with the resulting pricing policy, the

availability is equal at every node (cf. Lemma 35). Recall from Section 9.2.1 that

the availability at each node in the infinite-unit system depends on the traffic

intensity at that particular node and the maximum traffic intensity among all

nodes. Further, the traffic intensity at each node i depends on (i) the ith coordi-

nate of the eigenvector w(q) of the routing matrix {φi j(qi)/
∑

k φik(qi)}i, j∈[n]2 , and (ii)

the rate of arrivals
∑

k φik at i. In particular, ri(q) = wi(q)/
∑

j φi jqi j. In the setting of

point prices however, w is unaffected by the prices and ri(q) = r j(q)∀i, j implies

that wi
∑

k φ jkq j = w j
∑

k φikqi for all i, j. Substituting in the optimization problem

for every j

q j = w j
∑

k φikqi/wi
∑

k φ jk,

we find that the convex optimization problem can actually be written in just one

variable. Further, in the case of social welfare, and revenue, it is always the case

that maxi qi = 1 for an optimal solution in the infinite-unit system. Hence, in

these cases only one eigenvector computation is needed.

Discrete price set: We now show how the pricing policy from Algorithm 7 can

be modified when there is a discrete set of available prices for each node. We

handle this case with an extra loss in the objective that depends on how well the

prices represent each part of the distribution. In particular, we obtain the pricing

policy p̂ by solving for the unconstrained case as in Algorithm 7 to obtain prices

209

p and then setting each p̂i to be the lowest available price greater or equal to pi.

We now prove the performance guarantee for p̂.

Theorem 53. Let
{
p1

i , . . . , pki
i

}
be the set of available prices for node i in increasing order,{

q1
i , . . . , q

ki
i

}
be the corresponding quantiles (in decreasing order), and p, p̂ be defined as

above. Suppose that for all i there exists an available price p`i such that q`i ≤ qi, and that

there exists α such that for all i and all s, α · qs
i ≥ qs+1

i . Then,

αOBJm(̂p) ≥
m

m + n − 1
OPTm,

where OPTm is the objective of the optimal state-dependent policy for discrete prices in

the m-unit system.

Proof. Since ÔBJ(p) is an upper bound on the unrestricted point pricing problem

(cf. Theorem 52), it is also an upper bound on OPTm. Lemma 31 implies that

ÔBJ(p) = OBJ∞(p), since p fulfills the demand circulation property (cf. Algorithm

7). Further, by Lemma 32, OBJm(̂p) ≥ m
m+n−1 OBJ∞(̂p). Thus, what remains is to

bound OBJ∞(̂p) with respect to OBJ∞(p). Since q̂i ≤ qi for all i and the per-ride

rewards Ii j(·) are assumed to be non-decreasing in the quantiles, we only need

to bound the changes in the availabilities of the infinite-unit system for each i.

Since the wi are constant under point-pricing, the availabilities are only affected

by prices in the denominator, where the change is equal to q̂i/qi. Thus, no traffic

intensity changes by more than a factor of α and the result follows.

The assumption that the value distributions at each node are identical may

seem too restrictive. Notice though that the same analysis also applies to the fol-

lowing setting: for each i, j there exists a base price di j (e.g., based on geographic

distance). This price is multiplied by the (state-dependent) control pi, which is

210

the same for all j. The behavioral assumption is now that customers react the

same way to the control, regardless of their destination.

211

CHAPTER 11

CONCLUSION

”What’s Next?” – President Bartlet

This thesis began with a description of revolutionary changes that the per-

sonal transportation space has experienced in recent years. Associated with this

revolution is a plethora of interesting operations research problems related to

(i) new kinds of operational requirements and (ii) new opportunities enabled

by data that previously had not been available. A few of these problems were

tackled in this thesis, but many others are yet unsolved. Below, we list a number

of open questions, some of theoretical interest, some of practical interest, that

remain unanswered.

11.1 Open Questions

Dock Allocation. The optimization problem tackled in Chapter 4 relies on the

user dissatisfaction functions (cf. Chapter 3) and their underlying assumption

that demand is exogenous. Though our analysis in Section 4.5 partially moves

beyond that assumption, we have yet to develop a formally sufficient condition

that guarantees good solutions. Such a condition would provide interesting

theoretical underpinnings for our optimization.

Further on the theoretical side, the construction we propose in Appendix 12.2

(to prove that our constrained optimization problem is not multimodular) poses

an interesting question about constrained optimization for discrete convex sets.

It turns out that, for this particular example, a relabeling of the stations (make

212

the first station the third and vice versa in ~̄z) yields a multimodular problem

even with the proposed constraints. Given that one would (intuitively) expect

convexity properties to be invariant under a permutation of the ordering of the

coordinates, this exhibits a fascinating property of the constrained set; further

investigations of these properties, along the lines of Moriguchi and Murota [2018],

will likely give rise to fascinating results.

Incentives. The use of incentives to rebalance bike-sharing system is a

novel way of rebalancing that has shown great promise in New York City and

San Francisco. Our results investigated, in a data-driven fashion, the tradeoffs

between online and offline decision-making for such schemes, but many related

questions remain. In the context of loyalty programs, there is a long line of

research in the operations management literature studying the optimal reward

structure of rewards: given the somewhat orthogonal goals of incentives in

bike-sharing systems, it would be of interest to investigate whether the reward

structure should be designed in a similar or an orthogonal fashion. A similar

connection to the operations management literature on loyalty programs may

exist in the context of cannibalization: given that Bike Angels are awarded either

1 or 2 points for rentals/returns at incentivized stations, it is natural to ask how

stations with 2 points should be chosen and what the downside is of an approach

that treats stations as independent of each other (as the user dissatisfaction

functions do).

Rebalancing. There has been a tremendous amount of work on motorized

rebalancing in the last several years. Nevertheless, it seems like none of the

dock-based bike-sharing systems make use of specialized routing software that

include demand characteristics in a non-trivial fashion (cf. de Chardon et al.

213

[2016]). This begs the question: what would it take to develop a tool that really

works?

Budgeted Prize-Collecting TSP. In Chapter 7 we provided a 2-

approximation algorithm for the budgeted prize-collecting traveling salesman

problem that has at its base a classic primal-dual approach. An obvious open

question seeks to improve the approximation guarantee or prove the current

guarantee is the best possible. Another interesting extension asks to what extend

our approach extends to the rooted case; since Paul et al. [2017] appeared, the

authors have extended the same algorithm/analysis to the rooted case, in which

a feasible solution is forced to include a particular (root) vertex. Compared to

the orienteering literature, this would be the special case of the s − s orienteering

problem; an interesting question is whether a similar technique can also be used

for the s − t orienteering problem.

Queueing Models. The use of the elevated flow relaxation poses interest-

ing questions about the relationship between combinatorial optimization and

stochastic control; though we show how to obtain parameterized approximation

guarantees (and thereby asymptotic optimality) for a large class of controls in

closed queueing networks, it may be possible to apply similar techniques in

other stochastic models.

11.2 Thoughts on Industry and Academia

This thesis would have been a very different document if it had not been for

the longstanding collaboration between Cornell’s bike-sharing research group

and Motivate. Having such a collaboration allowed us to be certain that the

214

questions we were asking were not only of theoretical interest, but also of practi-

cal relevance. While not all research needs to fill both of these boxes, the data

and the transportation revolutions that we currently experience provide plenty

of problems that do; for academia, this yields a huge opportunity to play an

important role in shaping the societal changes caused by these new technologies.

215

Part III

Appendices

216

CHAPTER 12

APPENDIX TO CHAPTER 1

12.1 Connections to M-Convex Functions

In this appendix we first provide the definitions of M-convex sets and functions,

and then show that our objective with budget constraints is not M-convex. For

the definitions, it is useful to denote supp+(~x − ~y) = {i : xi > yi}, supp−(~x − ~y) = {i :

xi < yi}, and ~ei as the canonical unit vector.

Definition 54 (M-convex set). A nonempty set of integer points B ⊆ Z2n is defined

to be an M-convex set if it satisfies ∀~x, ~y ∈ B, i ∈ supp+(~x − ~y),∃ j ∈ supp−(~x − ~y) :

~x − ~ei + ~e j ∈ B.

Definition 55 (M-convex function). A function f is M-convex if for all x, y ∈

dom(f), i ∈ supp+(x− y),∃ j ∈ supp−(x− y) : f (x) + f (y) ≥ f (x− ei + e j) + f (y + ei− e j).

Kaspi et al. [2017] prove a statement equivalent to c(·, ·) being M-convex.

Murota [2004] characterized the minimum of a M convex function as follows to

show that Algorithm 8 minimizes M-convex functions:

Lemma 56. Murota [2003] For an M-convex function f and x ∈ dom(f) we have

f (x) ≤ f (y) ∀y if and only if f (x) ≤ f (x − ei + e j)∀i, j.

As our example shows, the restriction of c to the feasible set (with budget

constraints) does not guarantee M-convexity, despite both the set and c being

M-convex.

217

Algorithm 8: M-convex function minimization, cf. Murota [2004]

0: Find a vector x ∈ dom(f)

1: Find i, j that minimize f (x − ei + e j)

2: If f (x) > f (x − ei + e j), set x := x − ei + e j and go to 2

3: Else, return x

Example 57. Our example consists of three stations i, j, and k with demand-profiles:

pi(−1) =
1
2
, pi(+1,−1) =

1
2

; p j(+1) = 1
2 ; pk(+1,−1,−1) = 1.

We consider two solutions. In the first, i, j, and k each have a dock allocated

with i also having a bike allocated, i.e., b′i = d′j = d′k = 1, whereas d′i = b′j = b′k = 0

and our budget constraint is D = 2, B = 1. Then ci(d′i , b
′
i) = 1

2 , c j(d′j, b
′
j) = 0, and

ck(d′k, b
′
k) = 1. In the second solution, d∗i = b∗k = d∗k = 1, whereas b∗i = d∗j = b∗j = 0.

Thus, we have ci(d∗i , b
∗
i) = 1

2 , c j(d∗j , b
∗
j) = 1

2 , and ck(d∗k , b
∗
k) = 0, giving that 1 =

c(~d∗, ~b∗) < c(~d′, ~b′) = 3
2 . But then the statement of Lemma 56 with y = (~d∗, ~b∗) and

x = (~d, ~b) implies that, if c is M-convex one of c((~d′
−i, d

′
i +1), c(~d′, (~b′

−i,−k, b
′
i−1, b′k+1)),

or c((~d′
−i,− j, d

′
i + 1, d′j − 1), ~b′) must be strictly smaller than c(~d′, ~b′). Since this is not

the case, we find that c restricted to the feasible set is not M-convex, even though

the underlying feasible set is M-convex.

12.2 Connections to Discrete Midpoint Convex Functions

In this appendix we show that the constrained optimization problem formulated

in Section 4.1 is not multimodular. To do so, we apply an equivalence proven

in Murota [2005] that characterizes a function f as multimodular if and only if

218

there exists a L-natural convex function g such that f (x1, x2, . . . , xn) = g(x1, x1 +

x2, . . . ,
∑n

i=1 xi). While we do not state the explicit definition of L-natural convex

functions here, it was shown by Fujishige and Murota [2000] that L-natural

convex functions fulfill the following discrete midpoint convexity property.

Definition 58. A function g : Zn → Rn ∪ {+∞} is called discrete midpoint convex if

g(x) + g(y) ≥ g
(
d

x + y
2
e
)

+ g
(
b

x + y
2
c
)
.

Here, the floor and ceiling refer to component-wise floor and ceiling.

We now argue that the function g corresponding to our (constrained) objective

c is not discrete midpoint convex. Consider the current allocation (cf. Section

4.1) ~̄d = (0, 1, 0, 1) and ~̄b = (0, 0, 0, 0). As all values for ~b are 0 throughout this

construction, we do not restate it from now on. Suppose z = 1, that is, only

one dock is allowed to be moved. Then the vector ~̄d = (1, 0, 1, 0) is not feasible

given the constraint (as it would involve moving 2 docks). Now, if g was discrete

midpoint convex, then the inequality would state that:

f (1, 0, 0, 1) + f (0, 1, 1, 0) = g(1, 1, 1, 2) + g(0, 1, 2, 2) ≥

g(1, 1, 2, 2) + g(0, 1, 1, 2) = f (1, 0, 1, 0) + f (0, 1, 0, 1).

However, both terms on the left-hand side are feasible whereas the first term on

the right-hand side is not. Thus, the inequality does not hold, g is not discrete

midpoint convex, and therefore f is not multimodular.

12.3 Tradeoff between number of reallocated and new docks

In this appendix, we show that the discrete gradient-descent algorithm can be

applied, with little overhead, to solve the following adaptation of the earlier

219

optimization problem: rather than having fixed budgets D + B and 2z, we have

a parameter M that bounds (via an additional parameter k > 1) the joint cost of

reallocating docks and acquiring new docks.

minimize(~d,~b),z,D̄ c(~d, ~b)

s.t.
∑

i di + bi ≤ D + B + D̄,∑
i bi ≤ B,∑

i |(d̄i + b̄i) − (di + bi)| ≤ 2z + D̄,

∀i ∈ [n] : li ≤ di + bi ≤ ui

z + kD̄ ≤ M.

For each fixed pair of values of z and D̄, the discrete-gradient descent algo-

rithm finds an optimal solution by the analysis in Section 4.2. Furthermore, it is

easily observed that for each value of D̄, it is optimal to set z = M − kD̄. Hence,

one way of finding an optimal solution would be to try all bM
k c feasible values of

D̄ (and corresponding values of z) and solve optimally with the corresponding

value of z.

A better algorithm to find the optimal solution is based on the following

observation: by Theorem 10, the dock-move distance between the optimal alloca-

tion for D̄ and z = M − kD̄ on the one hand and the one for D̄ and z = M − k(D̄ + 1)

on the other is at most D̄. Hence, we only need to bound the distance to an

optimal solution that has an additional empty dock at its disposal. It is a simple

corollary of the analysis in Section 4.2.4 that the dock-move distance from an

optimal solution for a given budget to an optimal solution with one additional

dock available is in fact bounded by 1.

220

The reasoning above implies that the gradient-descent algorithm with a

minimal adaptation can be used to solve the optimization problem that includes

a tradeoff between the cost of new docks and the cost of reallocating docks;

however, in practice this tradeoff barely ever arises, since the relative cost of new

inventory greatly outweighs that of reallocating existing industry.

221

CHAPTER 13

APPENDIX TO CHAPTER 2

13.1 Irreducibility of the Priced System

We justify here our assumption from Section 9.2 that the infinite-unit solutions

we obtain induce a connected graph; to do so, we first need to assume that the

graph created by edges (i, j) on which φi j > 0 is strongly connected. We then

prove that given any solution to the infinite-unit pricing problem, there exists

a solution with arbitrarily close objective that also induces a connected graph.

Throughout this section we work with the flow fi j,∞(p) induced by the demands

in the infinite-unit system, but suppress all dependencies on∞ in the notation.

Theorem 59. Let ε > 0. For any non-decreasing objective and any pricing policy p that

induces a supply circulation fi j on k components in the infinite-unit system, there exists

a policy p′ inducing a supply circulation f ′i j in the infinite-unit system such that the

graph with edge-set E = {(i, j) : f ′i j > 0} is strongly connected and the objective with p′

is at least (1 − ε) times that of p.

Proof. To prove the theorem we repeatedly add flow to edges (i, j) with fi j = 0,

but also take flow away from edges (ī, j̄) with fī j̄ > 0. To ensure that edges of the

second kind do not have their flow reduced by too much, we set

δ =
ε

k
×min

{
min

i, j

{
fi j : fi j > 0

}
,min

i, j

{
φi j : φi j > 0

}}
.

Whenever we decrease flow on an edge, this is done by an additive δ amount.

Reducing flow at most k times to obtain f ′i j we guarantee that f ′i j ≥ (1− ε) fi j holds.

222

As we assume our underlying graph with edge-set {(i, j) : φi j > 0} to be

strongly connected, it must be the case that there exists a minimal sequence of

components C1,C2, . . . ,Cd = C1, d > 2, and nodes u`, v` ∈ C` such that λu`v`+1 > 0,

but fu`v`+1 = 0. In particular, it being minimal implies that no component other

than the first appears repeatedly.

Since each u`, v` are in the same strongly connected component of the graph

with edge-set E, we know that for each ` there exists a simple path from u` to v`

with positive flow on it. We change flows as follows: for all pairs (u`, v`+1) we

increase flow by δ and for each edge along the path from u` to v` we decrease

flow by δ. At all other edges the flow remains unchanged.

We need to first argue that the new circulation is feasible. Each node along a

path within a component has its in-flow and out-flow reduced by δ, whereas at

the nodes ui, vi both the sum of in-flows and the sum of out-flows has remained

the same. At all other nodes, nothing is altered. Thus, flow conservation contin-

ues to hold. By choice of δ none of the edge-capacities are violated. Thus, the

resulting flow is a circulation with at most k − 1 distinct components. Applying

this procedure k − 1 times, we obtain a single strongly connected component.

Finally, since Ii j(·) are nondecreasing with price and decreasing flow is equiv-

alent to increasing prices, the choice of δ guarantees that the objective on paths

from u` to v` has been reduced by at most a factor of (1 − ε). Since Ii j(·) are

non-negative, the additional flow on edges from u` to v`+1 only increases the

total objective. Thus, the pricing policy p′ that induces the circulation f ′i j has the

desired properties.

223

13.2 Concave Reward Curves

In this section, we investigate conditions under which throughput, social welfare

and revenue satisfy the conditions of theorem 39. In particular, we first show

that the respective reward curves R(q) = qI(q) are concave. We then prove that

the concave reward curves assumption implies the non-increasing (quantiles)

per-ride rewards assumption.

Lemma 60. Revenue (i) satisfies the assumptions of Theorem 39 under regular value

distributions, Throughput (ii) and Social Welfare (iii) satisfy the assumptions under any

value distribution.

Proof. We drop the subscripts throughout this proof to simplify notation. We

begin by considering (i) revenue, for which the result holds due to the fact that the

reward curve is concave if and only if the distribution is regular (cf. Proposition

3.10 in Hartline [2016]). For (ii) throughput, R(q) = q · I(q) = q is a linear function

of q for any value distribution and thus concave.

Lastly, for (iii) social welfare, we use the so-called hazard rate h(y) =
f (y)

1−F(y) of

a distribution F with density f . Given F, denote by p(q) and q(p) a price as a

function of its corresponding quantile and vice-versa. Then, by the definition of

hazard rate:

q(p) = exp
(
−

∫ p(q)

0
h(y)dy

)
(13.1)

Taking logarithms and differentiating, we obtain:

−
1

q(p)
= h(p(q))

dp(q)
dq

(13.2)

Hence, as R(q(p)) = q(p) · I(q(p)) and f (p) = (1 − F(p))h(p) = q(p)h(p) we have

R(q) =

∫ ∞

p(q)
v f (v)dv =

∫ ∞

p(q)
vh(v) exp

(
−

∫ v

0
h(y)dy

)
dv

224

The first derivative dR(q)
dq of R(q) is equal to

−p(q)h(p(q)) exp
(
−

∫ p(q)

y=0
h(y)dy

)
dp(q)

dq
=

p(q) exp
(
−

∫ p(q)

y=0
h(y)dy

)
q(p)

= p(q),

where the first equality comes from Equation (13.2), the second from (13.1).

The second derivative is then given by

d2R(q)
dq2 =

dp(q)
dq

= −
1

qh(p(q))
= −

1 − F(p(q))
f (p(q))q(p)

< 0,

which concludes the proof of the Lemma.

Lemma 61. If some objective satisfies the concave reward curves assumption, it also

satisfies the non-increasing (in quantiles) per-ride rewards assumption.

Proof. Suppose an objective has concave reward curves, but does not have non-

increasing (in quantiles) per-ride reards. Then there must exist i, j, q1, q2 with

0 < q1 < q2 such that Ii j(q1) < Ii j(q2). Let A =
q1
q2

. Then

q1Ii j(q2) = A · q2Ii j(q2) = A · q2Ii j(q2) + (1 − A) · 0 · Ii j(0)

≤ (A · q2 + (1 − A) · 0)I(A · q2 + (1 − A) · 0) = q1Ii j(q1),

where the inequality follows from Jensen’s inequality on since the rewards curve

qIi j(q) is a concave function. As q1 > 0, it follows that Ii j(q2) ≤ Ii j(q1) and we

therefore arrive at a contradiction.

13.3 Infinite-unit Limit

In Section 9.2.1 we briefly introduced the infinite-unit limit of the Gordon-Newell

network, i.e., the characterization of the limiting Markov chain wherein we

225

keep all system parameters (φi j, Fi j, etc.) constant, and scale m → ∞. We also

mentioned that the primary result we use from this characterization is that the

steady-state availability of each node i is given by Aii,∞(p) = ri(p)/max j r j(p),

and that there exists at least one node i with Ai,∞(p) = 1 (cf. Proposition 28). We

now describe this limit in a little more detail. Our presentation follows closely

that of Serfozo [1999], Section 3.7, which we refer the reader to for more details.

Recall first that given p = {pi j}, we can compute quantities wi(p) and ri(p),

which are independent of m. We define rmax = maxi ri(p) and r̂i(p) = ri(p)/rmax. We

also define J = {i ∈ [n] | r̂i(p) = 1} to be the set of bottleneck nodes in the network

(note that J has at least one element), and K = [n] \ J be the remaining nodes.

Then as m → ∞, the stationary distribution of the m-unit system (as specified

in Equation (9.2)) converges to a limiting distribution (cf. Serfozo [1999] for the

specific technical sense in which the steady-state distributions converge to the

limit) as m→ ∞, with the following properties:

• The bottleneck nodes, i.e., nodes in set J with r̂i(p) = 1, all have Ai(p) = 1.

• The bottleneck nodes feed the non-bottleneck nodes in set K, which together

form an open Jackson network, with each node behaving as a stable M/M/1

queue.

• For all i ∈ K, we have Ai(p) = r̂i(p) < 1.

The above description has the following physical interpretation: in the infinite-

unit limit, the bottleneck nodes have an infinite queue of units, and hence always

have availability 1. Moreover, the rate of units traveling from one of these nodes

i to a non-bottleneck node j is exactly φi j(p). Thus from the perspective of a

non-bottleneck node j, it appears as if a steady-stream of units (with total rate

226

< φ j(p)) arrive from (and depart to), an external node; the number of units in

node j therefore behaves according to the dynamics of a stable M/M/1 queue.

Lemma 62. The objective of the elevated flow relaxation for the policy returned by

Algorithm 2 upper bounds the objective of any state-independent policy p in the infinite-

unit system.

Proof. This follows if we show that the flows in the infinite-unit limit satisfy

supply circulation and demand bounding. The latter is clear from the dynamics of

the system (the flow out of a node can not exceed the rate of arriving customers).

To see that the former follows from the above listed properties, note that wi(p) is

defined to be the leading left eigenvector of {λi j(p)}i, j, where λi j(p) = φi j(p)/φi(p).

From this we get for all i:

∑
j

w j
φ ji(p)
φ j(p)

= wi = wi

∑
k

φik(p)
φi(p)

⇒∑
j

r j(p)φ ji(p) =
∑

k

ri(p)φik(p)

Dividing both sides by rmax(p) we get that for all nodes i, we have
∑

j r̂ j(p)φ ji(p) =∑
k r̂i(p)φik(p). However, as we noted above, Ai,∞(p) = r̂i(p), and hence f∞i j (p) =

r̂i(p)φi j(p). Thus the f∞i j (p) satisfy flow conservation.

Combining with Lemma 31, we get that the elevated flow relaxation solution

is tight in the infinite-unit limit.

Lemma 63. The objective of the elevated flow relaxation for the policy returned by

Algorithm 2 is equal to the objective of the optimal state-independent policy in the

infinite-unit system.

227

13.4 Settings without Prices

In Section 10.1 we discussed how two control levers, redirection of supply and

of demand, can be combined with pricing to obtain the same guarantees we

obtain for the pure pricing problem. We now show that our technique extends to

settings in which only redirection of supply/demand is allowed, but pricing is

not. Because demand cannot be modulated in these settings, one may assume

that Ii j is constant for each i and j, because Ii j is not a function of prices. Thus,

the elevated objective, defined analogously to Section 9.3, is always equal to the

objective now. Further, the interpretation of our results changes slightly.

Similarly to Algorithm 7, we introduce quantiles qi; unlike Section 10.3 how-

ever, we cannot change prices to modulate demand according to these quantiles.

We adopt the same notation as in Section 10.1, with the exception that we do not

allow for pricing policies and thus everything is just a function of r. The quantiles

q now correspond to the induced availabilities, i.e., qi = Ai,m(r). Observe that the

resulting flows are within the following polytope (as in Sections 10.1 and 10.3):

(1) q̂i ∈ [0, 1], (2)
∑

k

(
φkîqk + ẑki

)
=

∑
j

(
φi ĵqi + ẑi j

)
, (3)

∑
k

ẑik ≤
∑

j

φ jîq j ∀ i.

As in Section 10.1, these constraints stem from demand bounding, supply circula-

tion, and the limitation that only non-empty arriving vehicles may be rebalanced.

Optimizing the elevated objective over the polytope given by these constraints is

a linear program and yields an upper bound on the objective. Consider the redi-

rection policy r̃ obtained from the solution of the linear program (cf. Algorithm

9). In the next Lemma, we bound the infinite unit performance of this policy

compared to the value of the elevated flow relaxation.

Lemma 64. Denote by q̂ the quantiles solved for in the relaxation of Algorithm 9 and

228

Algorithm 9: The Elevated Flow Relaxation Program for Redirection with-
out Prices

Require: arrival rates φi j, per-ride rewards Ii j, rerouting costs ci j.

1: Find {qi, zi j} that solves the the following relaxation:

Maximize
∑

i, j

(
φi ĵqiIi j − ci ĵzi j

)
∑

k
(
φkîqk + ẑki

)
=

∑
j

(
φi ĵqi + ẑi j

)
∀i∑

k ẑik ≤
∑

j φ jîq j ∀i

q̂i ∈ [0, 1] ∀i

2: Output redirection probabilities ri j = zi j/
∑

k φkiqki

by r̃ the redirection probabilities returned. Then OBJ∞(̃r) ≥ ÔBJ(̂q, r̃).

Proof. Consider first OBJ∞(̂q, r̃), the objective obtained when implementing both

the redirection policy r̃ and the quantiles q̂ that Algorithm 9 solves for. By the

same argument as in Lemma 43, all availabilities are equal to 1 (and all traffic

intensities are equal) in this system, and thus its objective matches ÔBJ(̂q, r̃). In

order for us to compare OBJ∞(̂q, r̃) with OBJ∞(̃r), consider a node v ∈ arg max j q̂ j.

Increasing each quantile by a factor of 1/̂qv, we obtain quantiles q̄. Notice that in

the system with quantiles q̄, the traffic intensity at each node is changed by the

same factor, so the traffic intensities are still equal and the availabilities are still

equal at every node. In fact, for the relaxation in Algorithm 9, there exists at least

one i such that qi = 1, so no quantile changes. Allowing for delays and scaling

demand with the number of units, this would not necessarily be the case. Thus,

OBJ∞(q̄, r̃) ≥ ÔBJ(̂q, r̃). Thereafter, for each node j , v, we increase its quantile

to 1. Notice that each such change only decreases the traffic intensity at j, so

the maximum traffic intensity remains unchanged. The lemma follows because

the decrease in the traffic intensity (and thus availability) at each node j , v is

229

exactly balanced by the increased rate of arrivals at j. Formally, we have that

f jk,∞(q̄, r̃) remains unchanged when the jth coordinate of the quantiles is set to 1.

Therefore, OBJ∞(̃r) = OBJ∞(q̄, r̃) ≥ ÔBJ(̂q, r̃).

Now, using Lemma 64 in place of Lemma 43 in the proof of Theorem 42, we

get the following.

Theorem 65. With r̃ defined as above, OBJm(̃r) ≥ m
m+n−1 OPTm.

13.4.1 Delays without prices

Accommodating settings in which we are not allowed pricing, but do have delays,

requires an additional idea. This is because the argument in Section 10.2 explicitly

relied on pricing to ensure that (on average) not too many units are in transit

simultaneously, thereby enabling a lower bound on the maximum availability.

Without prices to regulate demand, we can no longer control the maximum

availability. Instead, we use the following stochastic dominance characterization

for closed-queueing networks.

Lemma 66 (cf. Theorem 3.8 in Chen and Yao Chen and Yao [2013]). In a closed Jack-

son network, with state-independent service rates, increasing the service rate functions,

in a pointwise sense, at any subset of nodes will increase throughput.

In our context, this is equivalent to saying that increasing quantiles at a subset

of nodes only increases throughput. In fact, one can show that throughput also

increases locally, i.e., increasing quantiles at one node (which we henceforth refer

to as point quantiles) does not decrease the rate of units on any edge.

230

Lemma 67. Let q = {qi} be a vector of point quantiles, and q̃ be a vector of point

quantiles with q̃k ≥ qk ∀ k. Then for any pair (i, j), we have fi j,m(q) ≤ fi j,m(̃q), i.e. the

rate of realized trips from i to j does not decrease when point quantiles are increased.

Proof. The proof relies on two observations. Note first for q and q̃, we have

φi jqi∑
k φikqi

=
φi jq̃i∑
k φikq̃i

∀ i, j,

and therefore, letting w(q′) denote the eigenvector of the routing matrix

{φi j(q′i)/
∑

k φik(q′i)}i, j∈[n]2 (cf. Section 10.3), we obtain wi(̃q) = wi(q). Define

Γm(q) , Gm(q)/Gm−1(q). We now have that the ratio of the rates fi j,m(q)/ fi j,m(̃q) is

equal to

fi j,m(q)
fi j,m(̃q)

=
Ai,m(q)qiφi j

Ai,m(̃q)̃qiφi j
=

Γm(q)ri(q)qi

Γm(̃q)ri(̃q)̃qi
=

Γm(q) wi(q)∑
k φikqi

qi

Γm(̃q) wi (̃q)∑
k φik q̃i

q̃i

=
Γm(q)
Γm(̃q)

.

Note that the ratio of fi j,m(q) and fi j,m(̃q) does not depend on i and j. Moreover,

from Theorem 66 we have
∑

i, j fi j,m(q) ≤
∑

i, j fi j,m(̃q). Combining the two, we get

fi j,m(q) ≤ fi j,m(̃q).

This allows us to prove the guarantee of Theorem 49 for settings in which

prices cannot be used to provide a lower on the maximum availability within the

system.

Theorem 68. Let r̃ denote the output of Algorithm 10 with εm B 2
√

ln m/m, OPTm be

the value of the objective function for the optimal state-dependent pricing policy, and

m ≥ 100. Then

OBJm(̃r)
OPTm

≥ (1 − εm)
 √

m ln m
√

m ln m + n − 1
−

3
√

m ln m

.
Proof. The same proof as in Theorem 49 guarantees that using point prices as

given by q(1−εm), where q comes from the solution of the relaxation in Algorithm

231

Algorithm 10: The Rate-Limited Elevated Flow Relaxation Program for
Redirection w/o Prices

Require: scaling paramter εm, arrival rates φi j, rewards Ii j, rerouting costs ci j,

travel-times τi j.

1: Find {qi, zi j} that solves the the following relaxation:

Maximize
∑

i, j

(
φi ĵqiIi j − ci ĵzi j

)
∑

i, j φi jτi jqi + ẑi j ≤ m∑
k
(
φkiqk + ẑki

)
=

∑
j

(
φi ĵqi + ẑi j

)
∀i∑

k ẑik ≤
∑

j φ jîq j ∀i

q̂i ∈ [0, 1] ∀i

2: Output redirection probabilities ri j = zi j/
∑

k φkiqki

10 yields the required guarantee. Lemma 67 then guarantees that increasing all

quantiles to one yields a solution no worse.

We remark that with m→ ∞, the above theorem recovers the result of Braverman

et al Braverman et al. [2016].

Finally, we note that Lemma 67 also yields an alternate proof of Lemma 32:

given quantiles q that do not induce a demand circulation, we consider a system

with rates φ̃i j = φi j
maxk rk(q)

ri(q) . We observe that (i) the objectives with rates φ̃i j and

rates φi j are the same in an infinite unit system and (ii) that the system with rates

φ̃i j obeys the demand circulation property. Thus, the counting argument of Whitt

[1984] guarantees an objective within m/(m + n − 1) of the infinite unit system

in a system with rates φ̃i j. However, by (i) the latter was equal to the upper

bound on OPTm. Since Lemma 67 implies that the m-unit system with rates φi j

has objective no worse than the m-unit system with rates φ̃i j, the statement of the

232

lemma follows.

13.5 Tightness Of Our Guarantees

In this section, we discuss an example of Waserhole and Jost [2014], that proves

that the guarantees we prove for our algorithms are tight. Interestingly, this

does not require the distinction between state-dependent and state-independent

policies, i.e. the objectives obtained through our algorithms can be as far away

from the optimal state-independent policy as from the optimal state-dependent

polcy.

Proposition 69. (Waserhole and Jost [2014]) For any number m of units and n of nodes,

the objective of the solution returned in Algorithm 2 and the optimal objective may be

arbitrarily close to the approximation guarantee m
m+n−1 .

Proof. Consider a system of n nodes {1, . . . , n} with demand only occurring from

nodes i to i + 1 and from node n to node 1. In particular, suppose that for some

k that is yet to be set, we have φ12 = φ23 = . . . = φn−1 n = k, and φn1 = 1. Further,

suppose we are maximizing throughput, though the same construction works

for revenue and social welfare. The policy returned by Algorithm 2 sets quantiles

q12 = q23 = . . . = qn−1 n = 1
k and qn1 = 1. Given that the availability of each node is

then m
m+n−1 (cf. Lemma 32 with all inequalities holding tightly) and that there are

n nodes from which a ride can occur (at rate 1), the throughput is nm
m+n−1 . On the

other hand, for the solution that sets all quantiles to 1, the throughput converges

to n as k → ∞. Intuitively, this is because the expected time between an arrival at

node n (triggering that unit to move to node 1) and the expected return time of

that unit to node n converges to 0. Thus, for each arrival at node n, occurring at

233

rate 1, the system observes m rides. The details of this argument can be found in

Proposition 3 of Waserhole and Jost [2014].

13.6 Auxiliary lemma

We present a basic Chernoff tail bound for Poisson random variables, which we

use in Section 10.2

Lemma 70. For X ∼Poisson(λ), we have for any 0 ≤ x ≤ λ:

P[X > λ + x] ≤ exp
(
−

x2

2λ

(
1 −

x
λ

))

Proof. Using a standard Chernoff bound argument, we have for any θ ≥ 0:

P[X > λ + x] = P[eθX > eθ(λ+x)] ≤ e−θ(λ+x)E
[
eθX

]
= e−θ(λ+x) · eλ(eθ−1)

Now, optimizing over the choice of θ, we get

P[X > λ + x] ≤ exp
(
inf
θ

(
λ
(
eθ − 1 − θ

)
− xθ

))
= exp

(
x − (x + λ) log(1 + x/λ)

)
(Setting θ = log(1 + x/λ))

≤ exp
(
x − (x + λ)

(
x
λ
−

x2

2λ2

))
= exp

(
−

x2

2λ

(
1 −

x
λ

))

234

BIBLIOGRAPHY

Daniel Adelman. Price-directed control of a closed logistics queueing network.

Operations Research, 55(6):1022–1038, 2007.

Eitan Altman, Bruno Gaujal, and Arie Hordijk. Multimodularity, convexity,

and optimization properties. Mathematics of Operations Research, 25(2):324–347,

2000.

Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and

Howard Karloff. Improved approximation algorithms for prize-collecting

Steiner tree and TSP. SIAM Journal on Computing, 40(2):309–332, 2011.

Sunil Arya and Hariharan Ramesh. A 2.5-factor approximation algorithm for the

k-MST problem. Information Processing Letters, 65(3):117–118, 1998.

G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line

quota traveling salesman problem. Information Processing Letters, 92(2):89–94,

2004.

Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and opti-

mization in shared vehicle systems: An approximation framework. In Proceed-

ings of the 2017 ACM Conference on Economics and Computation, pages 517–517.

ACM, 2017.

Siddhartha Banerjee, Yash Kanoria, and Pengyu Qian. The value of state depen-

dent control in ridesharing systems. arXiv preprint arXiv:1803.04959, 2018.

Forest Baskett, K Mani Chandy, Richard R Muntz, and Fernando G Palacios.

Open, closed, and mixed networks of queues with different classes of cus-

tomers. Journal of the ACM (JACM), 22(2):248–260, 1975.

235

Mike Benchimol, Pascal Benchimol, Benoı̂t Chappert, Arnaud De La Taille, Fabien

Laroche, Frédéric Meunier, and Ludovic Robinet. Balancing the stations of a

self service bike hire system. RAIRO-Operations Research, 45(1):37–61, 2011.

New York City Bikeshare, 2016.

Bird. Charger – bird, 2018. URL https://www.bird.co/charger.

Avrim Blum, Ramamurthy Ravi, and Santosh Vempala. A constant-factor approx-

imation algorithm for the k-MST problem. In Proceedings of the Twenty-Eighth

Annual ACM Symposium on Theory of Computing (STOC), pages 442–448. ACM,

1996.

Anton Braverman, JG Dai, Xin Liu, and Lei Ying. Empty-car routing in rideshar-

ing systems. arXiv preprint arXiv:1609.07219, 2016.

James D. Brooks, Koushik Kar, and David Mendona. Dynamic allocation of

entities in closed queueing networks: An application to debris removal. In

Proceedings of the 2013 IEEE International Conference on Technologies for Homeland

Security, pages 504–510, 2013.

Teobaldo Bulhões, Anand Subramanian, Güneş Erdoğan, and Gilbert Laporte.

The static bike relocation problem with multiple vehicles and visits. European

Journal of Operational Research, 264:508–523, 2018.

Jeffrey P Buzen. Computational algorithms for closed queueing networks with

exponential servers. Communications of the ACM, 16(9):527–531, 1973.

Capital Bikeshare. 2014 capital bikeshare member survey report, 2014.

Chandra Chekuri and Nitish Korula. Approximation algorithms for orienteering

with time windows. arXiv preprint arXiv:0711.4825, 2007.

236

Chandra Chekuri and Martin Pal. A recursive greedy algorithm for walks in

directed graphs. In 46th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), pages 245–253. IEEE, 2005.

Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for

orienteering and related problems. ACM Transactions on Algorithms (TALG), 8

(3):23, 2012.

Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo. Bike sharing

systems: Solving the static rebalancing problem. Discrete Optimization, 10(2):

120–146, 2013.

Hong Chen and David D Yao. Fundamentals of queueing networks: Performance,

asymptotics, and optimization, volume 46. Springer Science & Business Media,

2013.

Ke Chen and Sariel Har-Peled. The orienteering problem in the plane revisited. In

Proceedings of the Twenty-Second Annual Symposium on Computational Geometry,

pages 247–254. ACM, 2006.

Longbiao Chen, Daqing Zhang, Leye Wang, Dingqi Yang, Xiaojuan Ma, Shijian

Li, Zhaohui Wu, Gang Pan, and Jérémie Jakubowicz Thi-Mai-Trang Nguyen.

Dynamic cluster-based over-demand prediction in bike sharing systems. In

Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiq-

uitous Computing, pages 841–852. ACM, 2016.

Hangil Chung, Daniel Freund, and David B. Shmoys. Bike Angels: An Analysis

of Citi Bike’s Incentive Program . In Proceedings of the 2018 Conference on

Computing and Sustainable Societies. ACM, 2018.

237

Claudio Contardo, Catherine Morency, and Louis-Martin Rousseau. Balancing a

dynamic public bike-sharing system, volume 4. Cirrelt, 2012.

Sharon Datner, Tal Raviv, Michal Tzur, and Daniel Chemla. Setting inventory

levels in a bike sharing network. Transportation Science, 2017.

Cyrille Médard de Chardon, Geoffrey Caruso, and Isabelle Thomas. Bike-share

rebalancing strategies, patterns, and purpose. Journal of Transport Geography,

55:22–39, 2016.

Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novel-

lani. The bike sharing rebalancing problem: Mathematical formulations and

benchmark instances. Omega, 45:7–19, 2014.

Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. Constraint-based ap-

proaches for balancing bike sharing systems. In International Conference on

Principles and Practice of Constraint Programming, pages 758–773. Springer, 2013.

Güneş Erdoğan, Gilbert Laporte, and Roberto Wolfler Calvo. The static bicycle

relocation problem with demand intervals. European Journal of Operational

Research, 238(2):451–457, 2014.

Güneş Erdoğan, Maria Battarra, and Roberto Wolfler Calvo. An exact algorithm

for the static rebalancing problem arising in bicycle sharing systems. European

Journal of Operational Research, 245(3):667–679, 2015.

Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the

cost of multicast transmissions. Journal of Computer and System Sciences, 63(1):

21 – 41, 2001. ISSN 0022-0000.

Iris A Forma, Tal Raviv, and Michal Tzur. A 3-step math heuristic for the static

238

repositioning problem in bike-sharing systems. Transportation Research Part B:

Methodological, 71:230–247, 2015.

Greg N. Frederickson and Barry Wittman. Approximation algorithms for the

traveling repairman and speeding deliveryman problems. Algorithmica, 62

(3-4):1198–1221, 2012.

Daniel Freund, Ashkan Norouzi-Fard, Alice Paul, Shane G. Henderson, and

David B. Shmoys. Data-driven rebalancing methods for bike-share systems.

Working paper, 2016.

Daniel Freund, Shane G. Henderson, and David B. Shmoys. Minimizing multi-

modular functions and allocating capacity in bike-sharing systems. In F. Eisen-

brand and J. Koenemann, editors, Integer Programming and Combinatorial Opti-

mization Proceedings, volume 10328 of Lecture Notes in Computer Science, pages

186–198. Springer, 2017. arXiv preprint arXiv:1611.09304.

Satoru Fujishige and Kazuo Murota. Notes on l-/m-convex functions and the

separation theorems. Mathematical Programming, 88(1):129–146, 2000.

Guillermo Gallego and Garrett Van Ryzin. Optimal dynamic pricing of inven-

tories with stochastic demand over finite horizons. Management science, 40(8):

999–1020, 1994.

N. Garg. A 3-approximation for the minimum tree spanning k vertices. In

Proceedings of the 37th Annual Symposium on Foundations of Computer Science,

FOCS ’96, pages 302–, Washington, DC, USA, 1996. IEEE Computer Society.

Naveen Garg. Saving an epsilon: a 2-approximation for the k-MST problem in

graphs. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory

of Computing (STOC), pages 396–402. ACM, 2005.

239

David K George. Stochastic Modeling and Decentralized Control Policies for Large-

Scale Vehicle Sharing Systems via Closed Queueing Networks. PhD thesis, The

Ohio State University, 2012.

David K George, Cathy H Xia, and Mark S Squillante. Exact-order asymptotic

analysis for closed queueing networks. Journal of Applied Probability, pages

503–520, 2012.

Supriyo Ghosh, Michael Trick, and Pradeep Varakantham. Robust repositioning

to counter unpredictable demand in bike sharing systems. In Proceedings of

the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages

3096–3102. AAAI Press, 2016.

Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jaillet.

Dynamic repositioning to reduce lost demand in bike sharing systems. Journal

of Artificial Intelligence Research, 58:387–430, 2017.

Michel X. Goemans and David P. Williamson. A general approximation technique

for constrained forest problems. SIAM Journal on Computing, 24(2):296–317,

1995.

William J Gordon and Gordon F Newell. Closed queuing systems with exponen-

tial servers. Operations research, 15(2):254–265, 1967.

Henry Grabar. How new yorks bike-share system pays riders to make it run

better, 2017. URL http://www.slate.com/blogs/moneybox/2017/

02/09/new_york_s_citi_bike_pays_riders_to_make_it_run_

better.html.

Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi.

Approximation algorithms for stochastic orienteering. In Proceedings of the

240

Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1522–1538. SIAM, 2012.

Bruce Hajek. Extremal splittings of point processes. Mathematics of operations

research, 10(4):543–556, 1985.

Robert C Hampshire, William A Massey, and Qiong Wang. Dynamic pricing to

control loss systems with quality of service targets. Probability in the Engineering

and Informational Sciences, 23(02):357–383, 2009.

Jason D Hartline. Mechanism Design and Approximation. Manuscript, 2016.

URL http://jasonhartline.com/MDnA/.

Andrew J. Hawkins. Uber limits drivers in nyc to 12 hour shifts. The

Verge, 2016. URL https://www.theverge.com/2016/2/12/10979730/

uber-driver-fatigue-deactivation-nyc-twelve-hours.

Sin C Ho and WY Szeto. Solving a static repositioning problem in bike-sharing

systems using iterated tabu search. Transportation Research Part E: Logistics and

Transportation Review, 69:180–198, 2014.

Yu-Ting Hsu, Lei Kang, and Yi-Hsuan Wu. User Behavior of Bikesharing Systems

Under Demand–Supply Imbalance. Transportation Research Record: Journal of

the Transportation Research Board, pages 117–124, 2016.

Winnie Hu. Yellow Cab, Long a Fixture of City Life, Is for Many a Thing of the

Past. New York Times, 2017. URL {https://www.nytimes.com/2017/10/

12/nyregion/uber-taxis-new-york-city.html}.

James R Jackson. Jobshop-like queueing systems. Management science, 10(1):

131–142, 1963.

241

Nanjing Jian and Shane G Henderson. An introduction to simulation optimiza-

tion. In Proceedings of the 2015 Winter Simulation Conference, pages 1780–1794.

IEEE Press, 2015.

Nanjing Jian, Daniel Freund, Holly Wiberg, and Shane G. Henderson. Simulation

optimization for a large-scale bike-sharing system. In T. M. K. Roeder, P. I.

Frazier, R. Szechtman, and E. Zhou, editors, Proceedings of the 2016 Winter

Simulation Conference, pages 602–613, Piscataway NJ, 2016. IEEE.

David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting

Steiner tree problem: theory and practice. In Proceedings of the Eleventh Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 760–769. Society

for Industrial and Applied Mathematics, 2000.

Ashish Kabra, Karan Girotra, and Elena Belavina. Bike-share systems: accessibil-

ity and availability. Working paper, 2015.

Mor Kaspi, Tal Raviv, and Michal Tzur. Detection of unusable bicycles in bike-

sharing systems. Omega, 65:10 – 16, 2016. ISSN 0305-0483.

Mor Kaspi, Tal Raviv, and Michal Tzur. Bike-sharing systems: User dissatisfaction

in the presence of unusable bicycles. IISE Transactions, 49(2):144–158, 2017.

doi: 10.1080/0740817X.2016.1224960. URL http://dx.doi.org/10.1080/

0740817X.2016.1224960.

Frank Kelly and Elena Yudovina. Stochastic networks, volume 2. Cambridge

University Press, 2014.

Frank P Kelly. Reversibility and Stochastic Networks. Cambridge University Press,

2011.

242

Christian Kloimüllner, Petrina Papazek, Bin Hu, and Günther R Raidl. Balancing

bicycle sharing systems: an approach for the dynamic case. In European

Conference on Evolutionary Computation in Combinatorial Optimization, pages

73–84. Springer, 2014.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,

Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason

Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol

Willing. Jupyter notebooks – a publishing format for reproducible computa-

tional workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power

in Academic Publishing: Players, Agents and Agendas, pages 87 – 90. IOS Press,

2016.

Retsef Levi and Ana Radovanovic. Provably near-optimal lp-based policies for

revenue management in systems with reusable resources. Operations Research,

58(2):503–507, 2010.

Asaf Levin. A better approximation algorithm for the budget prize collecting

tree problem. Operations Research Letters, 32(4):316–319, 2004.

Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. Traffic prediction in a bike-

sharing system. In Proceedings of the 23rd SIGSPATIAL International Conference

on Advances in Geographic Information Systems, page 33. ACM, 2015.

LimeBike. Limebike juicer, 2018. URL https://web.limebike.com/

juicer?TrucksFoT.

Meghna Lowalekar, Pradeep Varakantham, Supriyo Ghosh, Sanjay Dominik

Jena, and Patrick Jaillet. Online Repositioning in Bike Sharing Sys-

243

tems. Manuscript, 2017. URL http://web.mit.edu/˜jaillet/www/

general/icaps17-bikeshare.pdf.

Paul Milgrom and Ilya Segal. Deferred-acceptance auctions and radio spectrum

reallocation. In Proceedings of the fifteenth ACM conference on Economics and

computation, pages 185–186. ACM, 2014.

Satoko Moriguchi and Kazuo Murota. On fundamental operations for multimod-

ular functions. arXiv preprint arXiv:1805.04245, 2018.

Satoko Moriguchi, Kazuo Murota, Akihisa Tamura, and Fabio Tardella. Discrete

midpoint convexity. arXiv preprint arXiv:1708.04579, 2017.

Kazuo Murota. Discrete convex analysis. SIAM, 2003.

Kazuo Murota. On steepest descent algorithms for discrete convex functions.

SIAM Journal on Optimization, 14(3):699–707, 2004.

Kazuo Murota. Note on multimodularity and l-convexity. Mathematics of Opera-

tions Research, 30(3):658–661, 2005.

Viswanath Nagarajan and R. Ravi. Approximation algorithms for distance

constrained vehicle routing problems. Networks, 59(2):209–214, 2012.

Rahul Nair, Elise Miller-Hooks, Robert C Hampshire, and Ana Bušić. Large-scale

vehicle sharing systems: analysis of vélib’. International Journal of Sustainable

Transportation, 7(1):85–106, 2013.

NYCBS. June 2016 monthly report, 2016. URL https://d21xlh2maitm24.

cloudfront.net/nyc/June-2016-Citi-Bike-Monthly-Report.

pdf?mtime=20160803201017.

244

NYCBS. Citi bike system data, 2017a. URL https://www.citibikenyc.

com/system-data.

NYCBS. Citi bike json feed, 2017b. URL https://gbfs.citibikenyc.com/

gbfs/en/station_status.json.

NYCBS. September 2017 monthly report, 2017c. URL

https://d21xlh2maitm24.cloudfront.net/nyc/

September-2017-Citi-Bike-Monthly-Report.pdf?mtime=

20171018154130.

NYCBS. Bike angel program, 2018. URL https://bikeangels.

citibikenyc.com.

Eoin O’Mahony. Smarter Tools For (Citi) Bike Sharing. PhD thesis, Cornell Univer-

sity, 2015.

Eoin O’Mahony and David B Shmoys. Data analysis and optimization for (citi)

bike sharing. In Twenty-Ninth AAAI Conference on Artificial Intelligence, pages

687–694, 2015.

Eoin O’Mahony, Shane G. Henderson, and David B. Shmoys. (Citi)Bike sharing.

working paper, 2016.

Erhun Ozkan and Amy R Ward. Dynamic matching for real-time ridesharing.

Submitted, 2016.

Pulkit Parikh and Satish Ukkusuri. Estimation of optimal inventory levels at

stations of a bicycle sharing system. In Transportation Research Board Annual

Meeting, 2014.

245

Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P.

Williamson. Prize-Collecting TSP with a Budget Constraint. In Kirk Pruhs and

Christian Sohler, editors, 25th Annual European Symposium on Algorithms (ESA

2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages

62:1–62:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik. ISBN 978-3-95977-049-1. doi: 10.4230/LIPIcs.ESA.2017.62. URL

http://drops.dagstuhl.de/opus/volltexte/2017/7837.

Günther R Raidl, Bin Hu, Marian Rainer-Harbach, and Petrina Papazek. Bal-

ancing bicycle sharing systems: Improving a VNS by efficiently determining

optimal loading operations. In International Workshop on Hybrid Metaheuristics,

pages 130–143. Springer, 2013.

Marian Rainer-Harbach, Petrina Papazek, Bin Hu, and Günther R Raidl. Bal-

ancing bicycle sharing systems: A variable neighborhood search approach. In

European Conference on Evolutionary Computation in Combinatorial Optimization,

pages 121–132. Springer, 2013.

Frank P Ramsey. A contribution to the theory of taxation. The Economic Journal,

37(145):47–61, 1927.

Tal Raviv and Ofer Kolka. Optimal inventory management of a bike-sharing

station. IIE Transactions, 45(10):1077–1093, 2013.

Tal Raviv, Michal Tzur, and Iris A Forma. Static repositioning in a bike-sharing

system: models and solution approaches. EURO Journal on Transportation and

Logistics, 2(3):187–229, 2013.

Regional Plan Association. Building transit-friendly communities a design and

development strategy for the tri-state metropolitan region, 1997.

246

Gerhard Reinelt. TSPLIB – a traveling salesman problem library. ORSA Journal

on Computing, pages 376–384, 1991.

Martin Reiser and Stephen S Lavenberg. Mean-value analysis of closed multi-

chain queuing networks. Journal of the ACM (JACM), 27(2):313–322, 1980.

Carlos Riquelme, Ramesh Johari, and Baosen Zhang. Online Active Linear

Regression via Thresholding. In AAAI, pages 2506–2512, 2017.

Christian Rudloff and Bettina Lackner. Modeling demand for Bikesharing Sys-

tems: Neighboring Stations as Source for Demand and Reason for Structural

Breaks. Transportation Research Record: Journal of the Transportation Research

Board, pages 1–11, 2014.

Syed Moshfeq Salaken, Mohammad Anwar Hosen, Abbas Khosravi, and Saeid

Nahavandi. Forecasting Bike Sharing Demand Using Fuzzy Inference Mecha-

nism. In ICONIP 2015: Proceedings of the 22nd International Conference on Neural

Information Processing, pages 567–574. Springer, 2015.

Robert M Saltzman and Richard M Bradford. Simulating a More Efficient Bike

Sharing System. Journal of Supply Chain and Operations Management, 14(2):36,

2016.

J. Schuijbroek, R.C. Hampshire, and W.-J. van Hoeve. Inventory rebalanc-

ing and vehicle routing in bike sharing systems. European Journal of Op-

erational Research, 257(3):992 – 1004, 2017. ISSN 0377-2217. doi: https:

//doi.org/10.1016/j.ejor.2016.08.029. URL http://www.sciencedirect.

com/science/article/pii/S0377221716306658.

Richard Serfozo. Introduction to stochastic networks, 1999.

247

Julie Sherman. How divvy rebalancing problems can make commuting

less safe for women. https://chi.streetsblog.org/2017/04/27/

how-divvy-rebalancing-problems-can-make-commuting-less-safe-for-women/,

2017.

Jia Shu, Mabel C Chou, Qizhang Liu, Chung-Piaw Teo, and I-Lin Wang. Models

for effective deployment and redistribution of bicycles within public bicycle-

sharing systems. Operations Research, 61(6):1346–1359, 2013.

Divya Singhvi, Somya Singhvi, Peter I Frazier, Shane G Henderson, Eoin

O’Mahony, David B Shmoys, and Dawn B Woodard. Predicting Bike Usage

for New York City’s Bike Sharing System. In AAAI Workshop: Computational

Sustainability, 2015.

WY Szeto, Ying Liu, and Sin C Ho. Chemical reaction optimization for solving a

static bike repositioning problem. Transportation research part D: transport and

environment, 47:104–135, 2016.

Shalabh Vidyarthi and Kaushal K. Shukla. Approximation algorithms for

P2P orienteering and stochastic vehicle routing problem. arXiv preprint

arXiv:1501.06515, 2015.

Patrick Vogel, Bruno A Neumann Saavedra, and Dirk C Mattfeld. A hybrid

metaheuristic to solve the resource allocation problem in bike sharing systems.

In International Workshop on Hybrid Metaheuristics, pages 16–29. Springer, 2014.

Jay Walder. Rolling along: Bicycles, mobility, and the future of

cities. http://www.mckinsey.com/business-functions/

sustainability-and-resource-productivity/our-insights/

248

rolling-along-bicycles-mobility-and-the-future-of-cities,

2016.

Ariel Waserhole and Vincent Jost. Pricing in vehicle sharing systems: optimiza-

tion in queuing networks with product forms. EURO Journal on Transportation

and Logistics, pages 1–28, 2014.

Ward Whitt. Open and closed models for networks of queues. AT&T Bell

Laboratories Technical Journal, 63(9):1911–1979, 1984.

Peter Whittle. Scheduling and characterization problems for stochastic networks.

Journal of the Royal Statistical Society. Series B (Methodological), pages 407–428,

1985.

Jiawei Zhang, Xiao Pan, Moyin Li, and Philip S Yu. Bicycle-sharing system

analysis and trip prediction. arXiv preprint arXiv:1604.00664, 2016.

Rick Zhang and Marco Pavone. Control of robotic mobility-on-demand systems:

a queueing-theoretical perspective. The International Journal of Robotics Research,

35(1-3):186–203, 2016.

249

