
QUANTUM MECHANICAL APPROACHES
TOWARDS UNDERSTANDING

CHARGE TRANSFER IN CHEMICAL SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Srinath Ranya

May 2021



© 2021 Srinath Ranya

ALL RIGHTS RESERVED



QUANTUM MECHANICAL APPROACHES TOWARDS UNDERSTANDING

CHARGE TRANSFER IN CHEMICAL SYSTEMS

Srinath Ranya, Ph.D.

Cornell University 2021

The transfer of electrons from one entity to another, the former – the electron donor

and the latter – the electron acceptor, is one of the most fundamental processes

in nature. Important examples being that of electron transfer in photosynthesis,

respiration, chemical reactions, photocatalysts, and photovoltaic devices, to name

a few. The electron transfer (ET) rate and mechanism is dictated by the strength of

the interaction between the donor and acceptor, the temperature, and the external

environment.

An exact quantum mechanical description is precluded by the exponential scal-

ing of the computation with the number of particles in the system. The path in-

tegral formulation to solve the time-dependent Schrödinger equation ails from the

same problem; however, it is has been used to derive approximate, but rigorous

semiclassical theories in real and imaginary time which can incorporate dynamical

and statistical quantum mechanical effects such as zero point energy, tunneling,

and interference into classical molecular dynamics simulations.

For ET occurring at low temperatures, the dominant mechanism is quantum

tunneling. The determination of the optimal tunneling pathway – the instanton –

and its use in the computation of the ET rate for systems where the electron donor

and acceptor are strongly coupled has been extensively studied. Recently, a ring

polymer instanton (RPI) – a discrete approximation to the continuous instanton

path – was proposed; the difficult trajectory search encountered in semiclassical



instanton theory was reformulated as a multidimensional optimization problem.

The work presented in this dissertation is geared towards understanding ET at

low temperatures, but for systems where the coupling between the electron donor

and acceptor is weak, i.e., in the nonadiabatic limit. It elaborates on extending the

RPI formulation to multi-state systems, and demonstrates the utility of the multi-

state ring polymer instanton (MS-RPI) in the computation of nonadiabatic ET

rates. Furthermore, the effects of an external bath on the RPI is investigated and

its use in the determination of a reaction rate in model systems is demonstrated

via both system-bath and reduced dimensional formulations. It is shown that

the optimal tunneling path for molecular systems containing conical intersections

(accidental degeneracies of the adiabatic eigenstates) can be obtained using the

MS-RPI formulation. The discussion of the experimentally observed conductivity

of two-dimensional Fe and Cr metal-organic frameworks, and the efforts to explain

the them is presented next. This is followed by preliminary results obtained for the

extension of the RPI method to multi-dimensional systems, and the use of path

sampling methods for RPMD. The thesis concludes with a summary and notes on

future directions.
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CHAPTER 1

INTRODUCTION

1.1 Charge transfer phenomena

Charge transfer (CT) lies at the heart of some of the most important chemical

and biological processes: respiration [1], photosynthesis [2]; molecular catalysis [3].

The technological advances towards making efficient batteries [4], solar energy

conversion [5], depend on a sound understanding of these processes. Refs. [6–10]

provide an overview of the theoretical approaches developed towards the study of

charge transfer processes.

One of the most common approaches to the modeling of CT processes is to

construct system-bath models. A key reason for the development of these system-

bath models is that only a few modes, of the many present in chemical systems,

typically contribute directly to CT. The reduction in dimensionality allows for a

more convenient and accurate theoretical analysis. The CT system is divided into

two sub-parts: the ‘system’ and ‘bath’, followed by the identification of the units

that donate and accept the charge – called the donor and acceptor, hereon. The

description of the ‘system’ is complete once the modes coupled to CT from donor

to acceptor occurs, are identified; the identification of the modes is a hard problem,

in and of itself, for large chemical systems. The modes excluded from the ‘system’

description are classified as the external bath that interacts with the CT ‘system’

modes.

Considering the specific case of bimolecular ET in solution, the ‘system’ com-

prises of two molecules, one of which is the donor and the other, the acceptor. The

1



ET reaction is described using a solvent coordinate and the system potentials are

defined along it; the other solvent modes constitute the bath.

The rate and mechanism of electron transfer (ET) is dependent on: (1) the

strength of coupling between the electron donor and the electron acceptor –

whether ET is adiabatic or nonadiabatic; (2) the temperature of the system –

whether it is a thermally activated process or does ET occur via tunneling; (3)

the strength of the coupling of the ET coordinate to the bath degrees of freedom

(dofs). A rich variety of behaviors arise due to the interplay of these parameters.

Some parameter regimes are easier to study theoretically than experimentally;

especially, systems where ET occurs via quantum mechanical tunneling, which oc-

curs at low temperatures. The development of theoretical methods to accurately

describe tunneling in ET systems is, thus, of interest to the theoretical chemistry

community.

1.2 Real and imaginary time path integrals

Feynman’s path integral (PI) approach to QM provides an alternate approach to

the computation of the wavefunction [11]. The final wavefunction ψt(xN) can be

obtained by the propagation of the initial wavefunction ψ0(x0) as:

ψt(xN) = ⟨xN |ψt⟩ = ⟨xN |e−Ĥt/ℏ|ψ0⟩ =
∫

dx0⟨xN |e−iĤt/ℏ|x0⟩⟨x0|ψ0⟩. (1.1)

The matrix element ⟨xN |e−iĤt/ℏ|x0⟩ is called the ‘kernel’ and is the probability am-

plitude associated with a particle starting at x0 at time 0, reaching xN at time t.

The kernel can be computed by writing the propagator as a product of N short-

time propagators – each propagating the wavefunction for ∆t = t/N, and evaluating

them in the position basis, effectively integrating over all possible positions of the
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particle at intermediate times:

⟨xN |e−iĤt/ℏ|x0⟩ =
∫

d{xi}
N−1∏
i=0

⟨xi+1|e−iĤ∆t/ℏ|xi⟩, (1.2)

where
∫

d{xi} ≡
∫

dx1

∫
dx2 . . .

∫
dxN Consider a one-dimensional Hamiltonian,

Ĥ =
p̂2

2M
+ V(x̂). (1.3)

Upon evaluating the short-time propagators using Trotter splitting, the matrix

element can be rewritten as an integral over all the possible paths, x(t), connecting

xN and x0:

⟨xN |e−iĤt/ℏ|x0⟩ =
∫
{dxi}eiS ({xi})/ℏ where, (1.4)

S ({xi}) =
N−1∑
i=0

[ M
2∆t2 (xi+1 − xi)2 − V(xi)

]
(1.5)

In the limit N → ∞, this can be written as a path integral:

⟨xN |e−iĤt/ℏ|x0⟩ =
∫
D[x(t)]eiS[x(t)]/ℏ where, (1.6)

S[x(t)] =
∫ t

0
dt′

M
2

(
dx(t′)

dt′

)2

− V(x(t′))
 (1.7)

The weight associated with each path is eiS[x(t)]/ℏ, where S[x(t)] is the classical ac-

tion of the path – the time integral of the Lagrangian. Exact quantum [12] and

semiclassical methods [13] based on real-time PIs, have been proposed. Semiclas-

sical methods rely on the fact that for large systems the action associated with

a path, in systems of chemical interest, is large compared to ℏ, making eiS[x(t)]/ℏ

high oscillatory. The destructive interference due to the phase cancels out the

contributions from most paths and the major contributors to the integral are clas-

sical paths that extremize the action δS[xcl(t)] = 0, and that are governed by the

familiar Euler-Lagrange equation:

M
(
d2x(t)

dt2

)
= −dV

dx
. (1.8)
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The quantum fluctuations about this classical path can be included using a Taylor

expansion of the action S[x(t)], upto second order, about this extremum, followed

by integration of the resulting gaussian terms, effectively ‘sewing quantum flesh

on classical bones’ [14]. This is one way to approximately include QM effects

such as zero point energy, tunneling, and interference effects in classical molecular

dynamics (MD) simulations.

The study of real time dynamics of a molecular systems using exact quantum

methods is made difficult by the exponential scaling of the quantum mechani-

cal wavefunction. Thus, the systems studied are, typically, low dimensional or

model systems; however, extensions to realistic systems have been attempted re-

cently [15]; semiclassical methods based on the initial value representation (IVR)

show promise towards the study of large-scale molecular systems [16]. The IVR

trick converts a boundary value problem – the search for trajectories starting at x0

and ending at xN – into a more convenient initial value problem, where one prop-

agates classical trajectories given initial phase space points. Unfortunately, these

tricks do not alleviate the problems posed by the dynamical sign. The computa-

tion of correlation functions instead of propagators themselves along with the use

of the Filinov filtration technique, makes this slightly more manageable. The Fili-

nov filter excludes paths with highly oscillatory phase which contribute, in effect,

negligibly to the computation of the correlation function. Recent advances provide

hope for the accurate long time simulation of realistic molecular systems [17].

When only the equilibrium statistical properties of a quantum system, de-

scribed by Eq. 1.3, are of interest, the imaginary time PI formalism proves more

useful. This is obtained by performing a Wick rotation; equivalently, setting

β ≡ −it/ℏ in the propagator in Eq. 1.1 to get the quantum Boltzmann opera-
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tor. The canonical partition function Z can be obtained as its trace, evaluated it

in the position basis:

Z = Tr[e−βĤ] =
∫

dx⟨x|
(
e−βĤ/N

)N
|x⟩ (1.9)

Z = lim
N→∞
ZRP = lim

N→∞

(
MN
2πβ

)N/2 ∫
{dxα}e−βNVRP({xα}) where, (1.10)

VRP({xα}) =
N∑
α=1

[
MN2

2β2 (xα+1 − xα)2 + V(xα)
]
, (1.11)

and βN ≡ β/N. The equilibrium statistics of a quantum particle is equivalent to

that of a classical ring polymer (RP) governed by the potential VRP({xα}). In the

limit of an infinite number of beads (imaginary time slices), this reduces to a PI

expression for Z:

Z =

∫
D[x(τ)]e−S[x(τ)], (1.12)

S [x(τ)] =
∫ β

0
dτ

M
2

(
dx(τ)

dτ

)2

+ V[x(τ)]
 (1.13)

Here, the integral is over circular paths (periodic orbits) that begin at x at τ = 0

and end at x at τ = β, and whose contribution to the integral is determined by

an exponentially decaying function of the Euclidean action. The Euler-Lagrange

equations take the form:

M
(
d2x(τ)

dτ2

)
=

dV
dx
. (1.14)

In Eq. 1.14, we see that the particle moves on the inverted potential. To illustrate

its utility, consider the harmonic potential defined by:

VQHO =
1
2

mω2x2, (1.15)

which in the imaginary time formalism becomes a harmonic barrier. The classical

path is just the particle at the top of the barrier xcl(τ) = 0. Expanding the euclidean
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action about this stationary path upto second order and integrating, the canonical

partition function for the quantum harmonic oscillator is obtained:

ZQHO =
1

2 sinh(βω/2)
(1.16)

The canonical partition in Eq. 1.10 can be written as a phase space integral by

the introduction of momentum integrals:

ZRP = lim
N→∞

∫
d{pα}d{xα}e−βN HRP({xα,pα}) where, (1.17)

HRP({xα, pα}) =
N∑
α=1

[
p2
α

2M
+

MN2

2β2 (xα+1 − xα)2 + V(xα)
]
. (1.18)

The positions and momenta of the RP can be propagated in time using Hamilton’s

equations:

dxα
dt

=
∂HRP

∂pα
=

pα
M
, (1.19)

dpα
dt

= −∂HRP

∂xα
= −M

β2
N

(2xα − xα+1 − xα−1). (1.20)

Path integral molecular dynamics (PIMD) uses the fictitious dynamics generated

by this RP hamiltonian, HRP to sample the phase space of the ring polymer. Kubo-

transformed quantum correlation functions (QCF),

C̃AB(t) =
1
βZ

∫ β

0
Tr

[
e−(β−λ)Ĥ Â(0)e−λĤ B̂(t)

]
dλ, (1.21)

can be computed using the RPMD approximation:

C̃AB(t) ≈ 1
(2π)N

∫
d{pα,0}d{xα,0}e−βN HRP({xα,0,pα,0})AN({xα,0})BN({xα,t}) (1.22)

where

AN({xα,0}) =
1
N

N∑
α=1

A(xα,0) (1.23)

BN({xα,t}) =
1
N

N∑
α=1

B(xα,t) (1.24)
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and it is assumed that operators Â and B̂ depend only on position [18]. Here, the

time-evolved positions are obtained from the trajectories generated by HRP. The

method neglects real-time quantum coherence, yet can compute QCFs for short

times, accurately. RPMD is, thus, most useful in the study of condensed phase

systems, where quantum decoherence occurs rapidly.

Nuclear quantum effects are accurately captured by RPMD [19]. The non-zero

spread of the RP incorporates zero point energy (ZPE) and delocalization effects of

quantum particles; it has been shown that it accurately predicts the rate constant

in the shallow and deep tunneling limits. It can also reproduce exact QM results

in the high temperature, short time, and harmonic oscillator limits, making it an

attractive and easy option towards the inclusion of quantum effects in classical MD

simulations of molecular systems. This has led to a surge in the development of

RPMD methods for the study of both adiabatic and nonadiabatic systems [18,20].

1.3 Quantum mechanical tunneling and instantons

The radioactive decay of heavy nuclei into lighter nuclei by the emission of alpha

particles was explained using the concept of quantum mechanical (QM) tunneling

by Gamow [21]. This phenomenon is quite common in nature and not restricted

to radioactivity. Recently, the ‘quantum tunneling state’ of the water molecule

was discovered [22]. Experimentally, chemical reaction rates had been observed

to reach a constant value as the temperature of the reactive system was lowered,

deviating from Arrhenius behavior; it was posited that at these low temperatures,

the reaction proceeds via QM tunneling. Thus, the study of tunneling effects in

chemical systems at low temperatures has been of interest [23]. As an aside, it is
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noted that technological advances based on QM tunneling have been made: tunnel

diode and scanning tunneling microscope, for example; and, that the accurate

reproduction of this thesis and the work described in it, relies on the absence of

quantum tunneling in transistors.

Wigner suggested that quantum effects need to be included in classical tran-

sition state theory (TST) to get better estimates for the rate constants [24]. A

SC theory for the computation of reaction rates was proposed by Miller, using

the flux-side correlation function. In the SC limit, the approximation of matrix

elements of the Boltzmann operator gives rise to the idea of ‘instantons’ – classi-

cal periodic orbits that exist in the barrier, which are solutions of Eq. 1.14. The

simplest approach to understand instantons is by considering a harmonic barrier;

in the imaginary time formalism, the dynamics of the particle would then be gov-

erned by a harmonic well (c.f. the discussion on imaginary time PI in Sec. 1.2).

Thus, at low temperatures, there exists a stationary periodic orbit of period β,

in the well; it represents the optimal tunneling pathway for the quantum particle

traversing through the classically forbidden barrier. In the high temperature limit,

β → 0, the instanton shrinks and collapses to the top of the barrier becoming

the classical transition state. The temperature at which the dominant reaction

mechanism changes from classical thermal activation regime to QM tunneling (the

deep-tunneling regime), i.e., the first temperature at which the instanton has a

finite spread, is the crossover temperature Tc.

The semiclassical instanton (SCI) rate constant, kSCI, obtained from the exact

QM flux-side correlation function is:

kSCI =

√
1

2π

∣∣∣∣∣∂2S[xSCI(τ)]
∂β2

∣∣∣∣∣e−S[xSCI(τ)]

Zr
. (1.25)

Here, xSCI(τ) is the SCI and S[xSCI(τ)] is its action; the prefactor is obtained by
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performing a steepest descent approximation in the energy space; more details can

be found in Ref. [25]. SCIs had been used previously in the computation of the

rate of escape from metastable wells, in conjunction with the “Im F” approach by

Coleman [26], Affleck [27] and others [28, 29].

The “Im F” premise relates the tunneling rate to the quantum Boltzmann oper-

ator computed in the vicinity of the barrier. Consider the analytical continuation

of the Hamiltonian of the system to the complex plane, its eigenvalues are neces-

sarily complex E j − iΓ j/2, where E j is the energy of the jth bound state and Γ j,

its lifetime. The canonical partition function ZAC, for the analytically continued

Hamiltonian, in the energy basis [30]:

ZAC =
∑

j

e−β(Ek−iΓ j/2 ≈
∑

j

e−βE j

(
1 + i

βΓ j

2

)
, (1.26)

ZAC = Zr

1 + i
β

2Zr

∑
j

Γ je−βE j

 (1.27)

This can be rewritten as:

Im ZAC

Zr
=

β

2
×

∑
j Γ je−βE j

Zr
. (1.28)

The last term on the right hand side of Eq. 1.28 is just the tunneling rate written

as a sum of thermally weighted decay rates of each bound state j of the reactant,

through the barrier; this yields:

k(β) =
2
βZr

ImZAC ≈
2
β

Zb

Zr
, (1.29)

which is the “Im F” approximation [31]. Here, Zb and Zr are the barrier and re-

actant partition functions, respectively. Discrete approximations to the SCI have

been proposed [32–39] to study both adiabatic and nonadiabatic model and re-

alistic systems; the ring polymer instanton (RPI) is more amenable to numerical

computation [40], and its determination and utility in the computation of the rate

is described in the next section.
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1.4 Ring polymer instanton and reaction rates

The canonical rate constant kRPI can be obtained using the ‘Im F’ model as de-

scribed in Eq. 1.29. Considering the system described by a 1D Hamiltonian, the

canonical partition function and the ring polymer potential are given by Eqs. 1.10

and 1.11, respectively. The barrier partition function Zb in Eq. 1.29, is computed

using the RPI – a first order saddle point on the RP potential. The N beads of

the RP must satisfy the stationarity condition:

M
β2

N

(2xα − xα−1 − xα+1) + V ′RP(xα) = 0, α = 1, 2, . . . ,N , (1.30)

and the diagonalization of the hessian of the RP potential,

∂2VRP

∂xµ∂xν
=

M
β2

N

(2δµ,ν − δµ,ν−1 − δµ,ν+1) + V ′′RPδµ,ν µ, ν = 1, . . . ,N, (1.31)

evaluated at the RPI configuration (x̄ ≡ {x̄1, x̄2, . . . , x̄N}) must yield one negative

eigenvalue. The invariance of the RP potential to the permutation of the RPI

beads, indicates that one of the eigenvalues must be zero. The barrier partition can

be evaluated via a steepest descent approximation by expanding the RP potential

about the RPI configuration:

Zb = lim
N→∞

(
MN
2πβ

)N/2

e−βNVRP(x̄)
∫
{dxα} exp

[
−βN (x − x̄)T V ′′RP(x̄)

2
(x − x̄)

]
,(1.32)

Zb = lim
N→∞

(
MN
2πβ

)N/2

e−βNVRP(x̄)
∫
{dyα} exp

−MβN

2

N∑
α=1

λ2
αy2

α

 . (1.33)

where Eq. 1.33 is obtained from Eq. 1.32 upon diagonalization; λα is the eigen-

value, and yα the corresponding eigenvector. The integration of y1 – the unstable

mode corresponding to the negative eigenvalue λ1, is carried out along the positive

half of the imaginary axis; y2 – the zero eigenvalue mode is integrated out analyt-

ically; the rest are standard gaussian integrals. The rate constant is determined
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by substituting this approximation to Zb:

kRPI(β) ≈ 2
β

Zb

Zr
=

1
βN

√
MzN

2πβN

e−βNVRP(x̄)

Zr

N∏
α=1

′ 1
βN |λα|

. (1.34)

Here, the ′ indicates that λ2 is excluded from the product, and zN =
∑
α(x̄α− x̄α+1)2

is obtained by the integration of the zero mode. It is noted that in the limit of

infinite beads, βN → dτ; therefore, the ring polymer potential at the instanton

configuration is the same as the classical action associated with the SCI:

lim
N→∞

βNVRP =

N∑
α=1

βN

[
M
2

(xα+1 − xα)2

β2
N

+ V(xα)
]

(1.35)

=

∫ β

0
dτ

M
2

(
dx[τ]

dτ

)2

+ V[x(τ)]
 (1.36)

⇒ lim
N→∞

βNVRP(x̄) = SSCI[x(τ)] (1.37)

1.5 Outline for the thesis

This dissertation primarily deals with the study of charge transfer in model, and

molecular systems. In Chapter 2, an extension of the ring polymer instanton

to systems with multiple electronic states and its utility in the computation of

nonadiabatic reaction rates is presented; Chapter 3 discusses its extension to con-

densed phase systems via full dimensional system-bath, and reduced system ring

polymer representations. In Chapter 4, preliminary results geared towards the

study of multi-dimensional systems are presented: multi-state ring polymer in-

stantons for multi-state systems near a conical intersection, and the combination

of transition path sampling with ring polymer molecular dynamics to determine

ring polymer transition states. Finally, transitioning to the study of molecular sys-

tems, preliminary results from a collaborative work characterizing conductivities

of 2D metal-organic frameworks are outlined in Chapter 5. The thesis concludes
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with a summary of key results and discussion of future directions.
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CHAPTER 2

MULTI-STATE SYSTEMS AND NONADIABATIC REACTION

RATES

The semiclassical instanton approach has been extended to the multi-state

case and the rates determined in both the adiabatic and nonadiabatic coupling

limits [36, 41, 42]. Others have developed rate theories specifically geared towards

the computation of rates in the nonadiabatic limit [35,36,42–44]. Two multi-state

ring polymer instanton methods are presented in this chapter: the mean-field, and

mapping variable flavors. The latter reports on the electronic populations of each

bead and both the methods can be used to accurately determine the nuclear RPI;

the MF-RPI is used determine the rates [45].

2.1 Classically isomorphic multi-state ring polymers

The potential for a multi-state system with K electronic states and f nuclear dofs

in the diabatic representation is,

V(R̂) =
K∑

n,m=1

|ψn⟩Vnm(R̂)⟨ψm|, (2.1)

where {|ψn⟩} are the diabatic electronic states, the diagonal matrix elements Vnn(R̂)

are the potentials corresponding to the nth state, and the off-diagonal matrix el-

ements Vnm(R̂) describe the electronic couplings between states n and m. The

canonical partition function is expressed as a trace over the Boltzmann operator,

Z = Trne[e−βĤ] ∝ lim
N→∞

∫
d{Rα}e−βU({Rα})Tre

 N∏
α=1

e−βNV(Rα)

 and, (2.2)

U({Rα}) =
1
N

N∑
α=1

M
2β2

N

(Rα − Rα+1)T (Rα − Rα+1), (2.3)
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where the subscripts n and e indicate that the trace is evaluated over the nuclear

and electronic dofs respectively, and U({Rα}) is the inter-bead potential. Eq. 2.2 is

obtained by evaluating the trace over the nuclear dofs in the position basis. The

trace over electronic dofs can be evaluated in a number of ways [46–50]; here, the

MF and one MV formulation with explicit electronic state variables, are explored.

2.1.1 Mean field representation

The MF representation of the canonical partition function [35, 41, 47, 49, 51, 52] is

obtained by introducing N copies of the identity,

1 =
∑

n

|ψn⟩⟨ψn|, (2.4)

in Eq. 2.2 and evaluating the trace to obtain [53]

Tre

 N∏
α=1

e−βNV(Rα)

 = Tr

 N∏
α=1

M(Rα,Rα+1)

 ≡ ΓMF,

(2.5)

where the matrix elements M(Rα,Rα+1) are

Mnn = e−βN/2[Vnn(Rα)+Vnn(Rα)],

Mnm = −βN/4
[
Vnm(Rα) + Vnm(Rα+1)

] 
e−βN/2[Vnn(Rα)+Vnn(Rα+1)]

+e−βN/2[Vmm(Rα)+Vmm(Rα+1)]

 . (2.6)

The quantum canonical partition function in the MF representation is then

ZMF ∝ lim
N→∞

∫
d{Rα}e−βVMF({Rα})sgn(ΓMF) (2.7)

where sgn(ΓMF) ensures that the partition function is positive definite, and the

pre-multiplicative constants have been omitted. The effective MF ring polymer
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potential is

VMF({Rα}) = U({Rα}) −
1
β

ln |(ΓMF)|, (2.8)

where ΓMF, given in Eq. 2.5, averages over the electronic state configurations of the

ring polymer making this a ‘mean-field’ formulation.

2.1.2 Mapping variable representation

Continuous Cartesian variables for the electronic states are introduced using the

MMST mapping protocol [54–56]. Specifically, the K diabatic electronic states are

mapped to a singly excited oscillator (SEO) basis where K−1 harmonic oscillators

are in the ground state and one oscillator (the nth) is in the first excited state,

|ψn⟩⟨ψm| → â†nâm

|ψn⟩ → |01, . . . , 1n, . . . , 0K⟩ ≡ |n⟩ (2.9)

The resolution of identity in the electronic variables (x) is [46]

1 =

∫
dx |x⟩⟨x|P, (2.10)

where the projection operator P = ∑
n |n⟩⟨n| constrains the electronic coordinates

to the SEO subspace.

Introducing multiple copies of this identity and evaluating the electronic trace

in Eq. 2.2, an expression for the partition function is obtained [46]:

ZMV ∝ lim
N→∞

∫
d{Rα}

∫
d{xα}e−βVMVsgn(ΓMV), (2.11)

where

ΓMV = Tr

 N∏
α=1

XαM(Rα,Rα+1)

 , (2.12)
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the matrix Xα = xα ⊗ xT
α , and the MV ring polymer potential is,

VMV({Rα}) = U({Rα}) +
1
β

∑
α

xT
αxα −

1
β

ln |(ΓMV)|. (2.13)

2.2 Two-state model systems

The MS-RPI is determined for model systems with two electronic states (K = 2)

coupled to one nuclear dof ( f = 1), and with three different driving forces; all

model systems are in the normal regime of Marcus theory. All parameters are in

atomic units, unless specified otherwise. The diagonal elements of the diabatic

potential energy matrix, V(R), are

Vii(R) =
1
2

Mω2(R − Ri)2 + ϵδ1i, (2.14)

where i = {1, 2}, the nuclear mass M = 2 a.u., and the oscillator frequency ω = 1

a.u. In Eq. 2.14, the Kronecker delta, (δ1i), indicates that a driving-force ϵ =

0.0, 10.0, 20.0 a.u. is added to the donor state (left curve), as shown in Fig. 2.1.

β is chosen such that it is greater than βc, such that an instanton solution exists

in the adiabatic limit; there is no clear analytical expression for the nonadiabatic

crossover temperature [42]. For the systems considered here, in the adiabatic limit

(∆ = 5 a.u.), the barrier frequency ωb ≈ 3 a.u. is obtained by fitting to an inverted

parabola, and this yields βc = 2π/ωb ≈ 2 a.u. for all models [23]. The electronic

coupling and inverse temperature (β) values used here are reported in Table. 2.1.
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Figure 2.1: Red (dashed) and grey (continuous) lines show the donor and acceptor
states in model I (symmetric system); the green (dotted) and black (dot-dashed)
lines represent the donor state in models II and III which are asymmetric sys-
tems with ϵ = 10.0 and 20.0 a.u., respectively. R1 and R2 indicate the minima of
the donor and acceptor states. Figure has been reproduced from Ref. [45] with
permission from the authors.

β Adiabatic ∆ Nonadiabatic ∆
4.0 5.0 6.25E-3
3.75 5.33 6.67E-3
3.5 5.71 7.14E-3
3.25 6.15 7.70E-3

Table 2.1: Coupling parameters for models I, II, and III, chosen such that β∆
remains constant. All values are in atomic units. Table has been reproduced from
Ref. [45] with permission from the authors.

2.3 The multi-state ring polymer instanton

2.3.1 The numerical determination of the MS-RPI

The multi-state (MS) RPI (both the MF and MV) is a first order saddle point

on the corresponding potential energy surface. In the MF-RP formulation, it is
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obtained by the simultaneous solution of the f N equations:

∂VMF

∂[Rα]i
= 0 (2.15)

where α is the bead number index and index i runs over the nuclear dofs. Similarly,

the MV-RPI is obtained by solving ( f +K)N equations:

∂VMV

∂[Rα]i
= 0 and (2.16)

∂VMV

∂[xα] j
= 0, (2.17)

where the index j runs over the electronic states.

The L-BFGS-B algorithm [57] – an algorithm to perform optimization with

bounds on the variables – is used to compute the MS-RPI. A prescription for the

initial guess of the nuclear coordinates is provided below:

R j = R0 + (R2 − R0) cos
(

πi
N2 + 3

)
where i = 1, ⌊N2

2
⌋ + 1, j = 1, ⌊N2

2
⌋ + 1

R⌊N2/2⌋+2 = R0 (2.18)

R j = R0 −
∣∣∣∣∣∣(R0 − R1) cos

(
π

2
+

πi
N1 + 1

)∣∣∣∣∣∣ where i = 1,N1, j = ⌊N2

2
⌋ + 3, ⌊N2

2
⌋ + N1 + 2

R⌊N2/2⌋+N1+3 = R0

R j = R0 + (R2 − R0) cos
(

πi
N2 + 3

)
where i = ⌊N2

2
⌋ + 4,N2 + 2, j = ⌊N2

2
⌋ + N1 + 4,N

Note that in the equations above, ⌊N
2 ⌋ represents the floor function acting on N

2 .

The MV-RPI calculation also requires initial guesses for the electronic coordinates,

which are obtained using the nuclear coordinates:

[xα]n =

√
e−βVnn(Rα)∑
n e−βVnn(Rα) (2.19)

Though the optimization must be independent of the initial guess, a good initial

guess speeds up the calculation significantly, as does the inclusion of the gradient

of the ring polymer potential in the optimization. Furthermore, to identify the
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MS-RPI, multiple optimizations are performed with N1 beads initialized to the left

(donor state) and N2 beads to the right (acceptor state) of the crossing, while two

bead constrained to the crossing; the total number of beads of the ring polymer

is N = N1 + N2 + 2. The MS-RPI configuration extremizes the corresponding ring

polymer potential; in Fig. 2.2, this is demonstrated for the symmetric model system

(Model I).

67.3

67.325

67.35

125 126 127 128 129 130 131

MV−RPI

V
M

V
 (

a.
u.

)

N1

Figure 2.2: The effective mapping variable ring polymer potential energy for a
256-bead ring polymer as a function of the number of beads to the left of the
crossing (N1). The system shown here is symmetric model I with β = 3.25 a.u.
in the nonadiabatic regime, ∆ = 0.0077 a.u. The RPI configurations corresponds
to the maximum where N1 = N2 = 127 beads (2 beads are fixed at the crossing).
Figure has been reproduced from Ref. [45] with permission from the authors.

In order to improve computational efficiency is to follow the algorithm in

Fig. 2.3. Here, for each model, the single surface RPI is determined on the lower

adiabatic surface. This result serves as the initial guess to the MF-RPI optimiza-

tion in the adiabatic limit, and that result is, in turn, used as the initial guess

for the nuclear coordinates for the MV-RPI optimization. The initial guess for

the electronic coordinates are obtained using Eq. 2.19. In all cases, the adiabatic
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MS-RPI result is the initial guess for the nonadiabatic MS-RPI calculation. The

Initial guess
for nuclear
coordinates
from Eq. 2.18

Initial guess
for electronic
coordinates
from Eq. 2.19

Adiabatic
RPI on lower

adiabat

Adiabatic
MF-RPI

Adiabatic
MV-RPI

Nonadiabatic
MV-RPI

Figure 2.3: The initial nuclear configuration generated according to Eq. 2.18 is used
to find the single surface RPI on the lower adiabatic state. The initial electronic
configurations are generated according to Eq. 2.19. The arrows connect initial guess
configurations with optimized RPI configurations. Figure has been reproduced
from Ref. [45] with permission from the authors.

MS-RPI in the nonadiabatic limit has a larger spread than in the adiabatic limit.

This is a consequence of the higher curvature of the barrier in the nonadiabatic

limit as shown in Fig. 2.4.

2.3.2 Multi-state RPIs for two-state model systems

The effect of the driving force

The effect of the driving force on the MS-RPI is shown in Fig. 2.5. MV-RPI for

models I, II, and III, was converged using 256 beads for the parameters: β = 3.25

a.u , ∆ = 0.0077 a.u.. The number of beads to the left of the crossing increases

with the driving force, as shown by the nuclear MV-RPI in Fig. 2.5. The electronic

MV-RPI is used to compute the population of the nth state in the αth bead, via the
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Figure 2.4: The adiabatic potential energy surfaces in the adiabatic (black line)
and nonadiabatic (red dashed line) coupling limits for model I at β = 3.25 a.u.
are shown here. A cartoon repsentation of the extent of spread in the nuclear
instanton for both the nonadiabatic (red outer ellipse) and adiabatic (black inner
ellipse) limits is also shown. Figure has been reproduced from Ref. [45] with
permission from the authors.

normalized Wigner population estimator:

Pαn = [xα]2
n . (2.20)

Table. 2.2 summarizes the key results of the effect of the driving force on the

MV-RPI: the ratio N1/N2 grows as a function of the driving force, and is seen to

be independent of the coupling strength.

The effect of electronic coupling and temperature

The MV-RPI for model I in the adiabatic (∆ = 6.15 a.u.) and nonadiabatic

(∆ = 0.0077 a.u.) regimes with β = 3.25 a.u. is shown in Fig. 2.6. In keeping

with findings from other multistate instanton calculations [36], it was found that

the spread of the nonadiabatic nuclear MV-RPI is wider than the corresponding

adiabatic MV-RPI. The electronic MV-RPI (donor state populations) are shown to

21



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 50  100  150  200  250

R
α 

(a
.u

.)

α

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250

P
α1

α
Figure 2.5: Nuclear bead positions (left) as a function of bead number for model
I (red dashed line), model II (green dotted line), and model III (blue dot-dashed
line) at β = 3.25 a.u. with ∆ = 0.0077 a.u. (nonadiabatic). The horizontal black
line indicates the position at which donor and acceptor states cross. Note that
bead positions for models II and III have all been shifted by 0.5 a.u. and 1.0 a.u.,
respectively, so that the crossing of all the three models coincide. The number
of beads to the left of the crossing increases as the driving force increases. The
associated donor state populations are shown on the right, which are in keeping
with the nuclear position changes along the instanton path. Figures have been
reproduced from Ref. [45] with permission from the authors.

Adiabatic Nonadiabatic

ϵ N1 N2 R0 R̄ P1 P2 R̄ P1 P2

0.0 127 127 0.0 10−5 0.50 0.50 10−5 0.50 0.50

10.0 146 108 -0.5 -0.71 0.57 0.43 -0.74 0.57 0.43

20.0 163 91 -1.0 -1.34 0.63 0.37 -1.45 0.65 0.35

Table 2.2: 256-bead MV-RPI for models I, II and III with β = 3.25 a.u. for ∆ = 6.15
a.u. (adiabatic) and ∆ = 0.0077 a.u. (nonadiabatic). The number of beads on the
donor (N1) and acceptor (N2) surfaces excluding the two beads constrained to the
crossing is reported along with the position of the nuclear centroid (R̄) and bead-
averaged donor and acceptor state populations, P1 and P2, respectively. The values
of the nuclear variables, and the energies are given in atomic units. Table has been
reproduced from Ref. [45] with permission from the authors.

follow the nuclear coordinates, as before. The two beads at the crossing have equal

population in the donor and acceptor electronic states in both the adiabatic and

nonadiabatic models. However, as shown in the inset, the donor state populations
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exhibit oscillatory features near the crossing in the adiabatic limit, a feature arising

from the use of a diabatic state representation. While the golden-rule instanton

places individual beads on one or the other surface [58], the MV-RPI allows for

beads with partial populations in keeping with the quantum mechanical probabil-

ity of the system being in a particular electronic state along the instanton path.

Fig. 2.7 shows the effect of temperature on the nuclear MV-RPI. Specifically, for
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Figure 2.6: MV-RPI nuclear bead positions as a function of bead number for
model I with β = 3.25 a.u. and ∆ = 6.15 a.u. (adiabatic, blue line), and ∆ = 0.0077
a.u. (nonadiabatic, red dashed line) . The nonadiabatic instanton exhibits a wider
spread than the adiabatic instanton in keeeping with lower curvature of the barrier
in the latter case. The black horizontal line marks the position at which donor
and acceptor state diabats cross.electronic MV-RPI donor state populations as
a function of bead number for model I with β = 3.25 a.u. and ∆ = 6.15 a.u.
(adiabatic, blue line), and ∆ = 0.0077 a.u. (nonadiabatic, red dashed line). The
inset illustrates electronic state populations vary gradually in the nonadiabatic
case but exhibit some oscillatory structure in the adiabatic regime. Figure has
been reproduced from Ref. [45] with permission from the authors.

model I with ∆ = 0.00625 a.u., β is varied from 3.25 a.u. to 4.0 a.u. in steps of

0.25 a.u. The nuclear MV-RPI spread increases as temperature decreases; as the

system is cooled, a shift towards deep tunneling with a corresponding increase in

the extent of the instanton is expected. The electronic MV-RPI does not change

significantly over the range of temperatures considered here.
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Figure 2.7: Nucelar bead positions as a function of bead number for a 256-
bead MV-RPI for model I with ∆ = 0.00625 a.u. (nonadiabatic) and β =
3.25, 3.5, 3.75, 4.0 a.u. represented by red dashed, blue continuous, black dotted,
and green dot-dashed lines, respectively. The horizontal line is the crossing of
the donor and acceptor diabats. Figure has been reproduced from Ref. [45] with
permission from the authors.

Comparison of MF-RPI and MV-RPI

Both the MF and MV formulations are derived from equivalent, exact representa-

tions of the quantum canonical partition function; thus, the two nuclear instantons

are expected to be nearly indistinguishable as shown in Fig. 2.8.

Although the MF-RPI does not include explicit electronic variables, it is pos-

sible to estimate the electronic state populations from the nuclear bead positions

along the nuclear instanton path. In keeping with previous work [41], the donor

state population of each bead is estimated using the following ad hoc expression,

Pα1 =
e−βV11(Rα)

e−βV11(Rα) + e−βV22(Rα) (2.21)

This MF-RPI result is compared against the electronic MV-RPI populations in

Fig. 2.9(a) for nonadiabatic model I with ∆ = 0.001 a.u and β = 3.25 a.u.. Exam-

ining beads in the vicinity of the crossing, shown in Fig. 2.9(b) and Fig. 2.9(c), it is
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Figure 2.8: Nuclear bead positions as a function of bead number for a 256-bead
MV-RPI determined for model I at β = 3.25 a.u. in the nonadiabatic limit
(∆ = 0.0077 a.u.). The MF-RPI nuclear positions are represented using the blue
line while those obtained from the MV-RPI using the red dotted lines. The inset
highlights nuclear positions for the first 20 beads where the small numerical differ-
ence between the two instantons is most noticeable. Figure has been reproduced
from Ref. [45] with permission from the authors.

evident that the populations obtained from the nuclear MF-RPI fail to distinguish

between the adiabatic and nonadiabatic regimes over three orders of magnitude.

However, the electronic MV-RPI populations show a smooth transition from beads

on one state to the other along the instanton path in the nonadiabatic case and

an oscillatory structure in the adiabatic case (as expected when working in the di-

abatic representation). In the adiabatic regime, beads away from the crossing are

not fully in one or the other diabatic state in keeping with the underlying model.
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Figure 2.9: (a) Comparing donor state populations obtained from the nuclear MF-
RPI instanton (blue line with circles) against the electronic MV-RPI populations
(red dashed line with triangles) for model I with ∆ = 0.001 a.u. and β = 3.25
a.u. (b) Populations for beads in the vicinity of the crossing obtained from the
nuclear MF-RPI instanton for model I with β = 3.25 a.u. shown for three different
coupling strengths, ∆ = 6.15 a.u (red line with squares), ∆ = 2.5 a.u (black dashed
line with triangles), and ∆ = 0.001 a.u (blue dot-dashed line with circles). (c)
Electronic MV-RPI populations for beads in the vicinity of the crossing for model
I with β = 3.25 a.u. for three different coupling strengths, ∆ = 6.15 a.u (red line
with squares), ∆ = 2.5 a.u (green dashed line with circles), and ∆ = 0.001 a.u
(blue dot-dashed line with triangles). For comparison, the MF-RPI populations
are shown for ∆ = 2.5 a.u. (black dashed line). Figure has been reproduced from
Ref. [45] with permission from the authors.
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2.4 Nonadiabatic reaction rates

The rate constant in the MF framework is the multi-state extension to the RPI

rate constant [23, 59, 60]

kMF−RPI ≈
2
β

Zb

Zr
=

2e−βNVMF(R̃α)

Zrβ

(
M

2πβN

) N
2
∫

d{Rα}e−β2NV′′MF(R̃α) (Rα−R̃α)2
, (2.22)

where {R̃α} represents the MF-RPI configuration, Zb is the barrier partition func-

tion, Zr is the reactant partition function, and the second derivative V ′′MF is evalu-

ated at the MF-RPI configuration. Eq. 2.22 is obtained by expanding the MF-RP

potential in a Taylor series evaluated at the MF-RPI solution and truncating to

second order. The diagonalization of the hessian V ′′MF({R̃α}) yields N eigenvalues

(Mλ2
α):

kMF−RPI =
2e−βNVMF(R̃α)

Zrβ

(
M

2πβN

) N
2
∫

d{sα}e−β2N
∑
α Mλ2

αs2
α (2.23)

The Hessian evaluated at the MF-RPI configuration yields one negative eigenvalue,

λ1 < 0, and a zero eigenvalue, λ2 ≈ 0, for a bead-converged calculation. The

mode s1 – corresponding to the negative eigenvalue – is integrated by analytically

continuing the Gaussian and performing the integral over the positive part of the

imaginary axis; mode s2 is integrated out analytically as are the remaining (N − 2)

Gaussian integrals. The resulting expression for the MF-RPI rate constant is then,

kMF−RPI ≈
e−βNVMF(R̃α)

ZrβN

(
MzN

2πβN

) 1
2 N∏
α=1

′ 1
βN |λα|

, (2.24)

where the ′ on the product indicates that α = 2 is excluded, and zN =
∑
α(R̃α −

R̃α+1)2. This expression follows a previously derived nonadiabatic instanton rate,

with the primary difference being the method used to find the instanton. [41]

In Fig. 2.10, rate constants for model I, computed as a function of the electronic

coupling, ∆, are presented. In the nonadiabatic regime, the MF-RPI rate constants
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Figure 2.10: MF-RPI rate constants (red circles) as a function of the coupling
strength for model I at β = 4.0 a.u. In the nonadiabatic regime, there is good
agreement with the FGR rate constants (dashed black line) and in the adiabatic
regime, MF-RPI results are within a factor of 2 of the single surface RPI rate
constants (blue line). Figure has been reproduced from Ref. [45] with permission
from the authors.

∆ log10 kMF−RPI log10 kFGR log10 kRP

0.01 -37.398 -37.395 -
0.1 -35.397 -35.395 -
0.25 -34.598 -34.599 -
1.0 -33.327 -33.395 -32.182
2.5 -32.153 -32.599 -31.628
5.0 -30.269 -31.997 -29.966
10.0 -24.836 -31.395 -24.444

Table 2.3: Comparing rate constants for model I at β = 4.0 a.u. with different
coupling strengths. kMF−RPI is the MF-RPI rate constant, kFGR is the rate constant
obtained using Fermi’s Golden Rule, and kRP is the rate constant computed using
single surface RPI determined on the lower adiabatic surface. Note that kRP is only
calculated for cases where the RPI has a numerical zero mode. Table has been
reproduced from Ref. [45] with permission from the authors.
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Model ϵ log10 kMF−RPI log10 kFGR

I 0.0 -37.805 -37.803
II 10.0 -29.913 -29.913
III 20.0 -23.485 -23.508

Table 2.4: MF-RPI rates compared with FGR rates for nonadiabatic models I, II
and III with β = 4.0 a.u., ∆ = 0.0625 a.u. Table has been reproduced from Ref. [45]
with permission from the authors.

are in good agreement with Fermi’s Golden Rule (FGR) rate constants. In the adi-

abatic regime the rate constant is computed using the single surface RPI on the

lower adiabatic surface; they agree well with the MF-RPI rates, as reported in

Table 2.3. In the intermediate coupling regime, the MF-RPI rate expression inter-

polates smoothly and accurately between the nonadiabatic and adiabatic coupling

regimes. The agreement between the MF-RPI and FGR rates for models I, II, and

III in the nonadiabatic regime with ∆ = 0.0625 a.u. where driving force is varied

is found to be good, and is reported in Table 2.4.
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CHAPTER 3

THE COMPUTATION OF CONDENSED PHASE REACTION

RATES

The computation of condensed phase reaction rates has been of interest to the

chemistry community. Classical and quantum rate theories have been developed,

which build on Kramers’ theory [61]. The connection between the generalized

Langevin equations and the Hamiltonian with linear system-bath coupling was

established by Zwanzig [62]. Canonical quantization extends the same Hamilto-

nian to the study of dissipative quantum systems. The rate of tunneling from a

metastable state was obtained using the instanton method within the influence

functional formulation [11]; it was concluded that dissipation suppressed QM tun-

neling [63]. In this chapter, the dissipative tunneling problem is formulated using

RPs for the system-bath Hamiltonian of both adiabatic and multi-state quantum

systems. Reduced dimensional RP formulations are obtained for both the adia-

batic and multi-state systems, by integrating out the bath degrees of freedom in

the normal mode representation; the computed dissipative tunneling rates are in

keeping with the expectation that tunneling rates decrease with increasing system-

bath coupling.

3.1 Single surface system-bath Hamiltonians

In general, a system-bath Hamiltonian is made up of three terms – the system

Hamiltonian, Ĥs; the Hamiltonian for the bath dofs, Ĥb; and the system-bath

interaction Hamiltonian, Ĥsb:

Ĥ = Ĥs + Ĥb + Ĥsb where, (3.1)

Ĥs(r̂, p̂) =
p̂2

2M
+ V(r̂) +

f∑
k=1

c2
k

2Mbω
2
k

r̂2 (3.2)
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Ĥb(R̂, P̂) =
f∑

k=1

 P̂2
k

2Mb
+

Mbω
2
kR̂2

k

2

 (3.3)

Ĥsb(r̂, R̂) =
f∑

k=1

ckR̂kr̂ (3.4)

where r̂, p̂, M represent the positions, momenta, and mass of the system dof;

P̂k, R̂k,Mb represent the position, momentum and mass of the kth bath dof; ωk is its

frequency and ck, its coupling to the system dof. The spectral density of the bath

is Ohmic,

J(ω) = ηωe−ω/ωc , (3.5)

where ωc is the cutoff frequency and η is the friction coefficient. The continuous

spectral density is discretized using f quantum harmonic oscillators:

J(ω) =
π

2

f∑
k=1

c2
k

Mbωk
δ(ω − ωk) (3.6)

with frequencies ωk and coupling ck:

ωk = −ωc log10

(
k − 0.5

f

)
, (3.7)

ck = −ωk

(
2ηMωc

fπ

)1/2

. (3.8)

For simplicity of presentation, the system dof is assumed to be one dimensional;

extension to the case of a multidimensional system is straightforward.

3.1.1 System-bath ring polymers

The canonical partition function, Z, is obtained by evaluating the trace, now over

both the system and bath dofs, of the Boltzmann operator using a mixed-time

splitting:

Zsb = Trsb

[
e−βĤ

]
(3.9)

= Trsb

[({
e−βs[Ĥs+Ĥsb]

}Ns/Nb
e−βbĤb

)Nb
]
. (3.10)
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where Ns and Nb are the number of imaginary time slices (beads) corresponding

to the system and bath dofs, respectively, with Ns ≥ Nb, and βs ≡ β/Ns, βb ≡ β/Nb.

The trace is evaluated in the position basis by the introduction of Ns and Nb

resolutions of identity:

1s =

∫
dr|r⟩⟨r|, (3.11)

1b =

∫
dR|R⟩⟨R|, (3.12)

in the system and bath dofs, respectively. The resulting configurational integral

for Z is:

Zsb = lim
Ns,Nb→∞

Asb

∫
d{rα}

∫
d{Rγ}e−βVsb({rα},{Rγ}). (3.13)

The premultiplicative constant is:

Asb =

(
MNs

2πβ

)Ns/2 (
MbNb

2πβ

) f Nb/2

, (3.14)

and the full dimensional system-bath ring polymer potential is:

Vsb = Us +Ub +Usb. (3.15)

The contributions to Vsb can be separated as system, bath, and system-bath cou-

pling terms:

Us =

Ns∑
α=1

M (rα − rα+1)2

2β2
s Ns

+
V(rα)

Ns
+

f∑
k=1

c2
kr2
α

2Mbω
2
kNs

 , (3.16)

Ub =

Nb∑
γ=1

f∑
k=1

Mbω
2
kR2

γ,k

2Nb
+

Mb(Rγ,k − Rγ+1,k)2

2β2
bNb

 , (3.17)

Usb =
1
Ns

f∑
k=1

Nb∑
γ=1

Ns/Nb∑
µ=1

ckRγ,k r(γ−1) Ns
Nb
+µ. (3.18)

This is an exact expression for the canonical partition function, in the limit that Ns

and Nb – the number of system and bath beads – go to infinity. When performing

numerical calculations, Ns and Nb must be chosen such that the ratio Ns/Nb is an

integer.
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3.1.2 Reduced dimensional ring polymers

The description of the bath using QHOs allows for the formulation of a reduced

dimensional representation of the system, where the partition function is written as

a configurational integral of the reduced dimensional ring polymer potential which

is dependent on the system bead coordinates alone. In Eq. 3.15, Nb and Ns are both

set to N, i.e., the number of beads of the system and bath ring polymers is the same.

This is followed by a transformation from the ring polymer bead representation

(r) into the normal mode representation (r̃) using the transformation matrix C:

r̃ = CT r, (3.19)

whose matrix elements Cαν are given by:

Cαν =

√
1
N , ν = 0

=

√
2
N cos

(
2παν

N

)
, 1 ≤ ν ≤ N

2
− 1

=

√
1
N (−1)α, ν =

N
2

=

√
2
N sin

(
2παν

N

)
,

N
2
+ 1 ≤ ν ≤ N − 1 (3.20)

where α = 1, . . . ,N and ν = 0, . . . ,N − 1, and the frequency of the νth ring polymer

normal mode is:

ων =
2
βN

sin
(
νπ

N

)
. (3.21)

The completion of squares in the normal mode representation yields:

Ṽsb =

N−1∑
ν=0

Mω2
ν r̃

2
ν

2N
+

V(r̃ν)
N
+

f∑
k=1

c2
k r̃2
ν

2Mbω
2
kN

 − N−1∑
ν=0

f∑
k=1

c2
k r̃2
ν

2Mb(ω2
ν + ω

2
k)N

+

N−1∑
ν=0

f∑
k=1

Mb(ω2
ν + ω

2
k)

2N

{
R̃k,ν +

ckr̃ν
Mb(ω2

ν + ω
2
k)

}2

. (3.22)

Here, ων is the frequency of the νth normal mode, r̃ν and R̃k,ν are the positions of

the system and bath beads in the normal mode coordinates. The bath variables
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in Eq. 3.22 can be integrated analytically using properties of gaussian integrals.

The resulting reduced dimensional potential is transformed back into the bead

representation:

Vred({rα}) =
N∑
α=1

M(rα − rα+1)2

2β2
s N

+
V(rα)

N
+

f∑
k=1

c2
kr2
α

2Mbω
2
kN


−

N∑
α,γ=1

rα

N−1∑
ν=0

f∑
k=1

c2
kCανCνγ

2Mb(ω2
ν + ω

2
k)N

 rγ (3.23)

where Cαγ are elements of the transformation matrix. The effect of the bath dofs

on the system dof is encapsulated in the last term (Eq. 3.23). The integration over

the bath variables modifies the premultiplicative constants as follows:

Ab =

N−1∏
ν=0

f∏
k=1

 2πN
Mbβ(ω2

f + ω
2
ν)

1/2

(3.24)

As = Asb ×Ab

=

(
MN
2πβ

)N/2 N−1∏
ν=0

f∏
k=1

1

βN

√
ω2

k + ω
2
ν

(3.25)

The canonical partition function in the reduced representation is:

Zred = lim
Ns→∞

As

∫
d{rα}e−βVred({rα}). (3.26)

3.2 Multi-state system-bath Hamiltonians

Akin to the Hamiltonian described in Eq. 3.1 for a single surface reaction, a multi-

state system coupled to a bath can be described using the following Hamiltonian:

ĤMS = ĤMS,s + Ĥb + Ĥsb (3.27)

ĤMS,s(r̂, p̂) =
p̂2

2M
+

K∑
n,m=1

|ψn⟩V(r̂)⟨ψm| (3.28)

Ĥb(R̂, P̂) =
f∑

k=1

 P̂2
k

2Mb
+

Mbω
2
kR̂2

k

2

 (3.29)

Ĥsb(r̂, R̂) =
f∑

k=1

ckR̂kr̂ (3.30)
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where r̂ and p̂ represent the positions and momenta of the nuclear dof; |ψn⟩ is the

nth diabatic state. P̂k, R̂k, ωk, ck represent the position, momentum, frequency and

coupling to the nuclear dof of the kth bath dof; the external bath is modeled as a

collection of quantum harmonic oscillators.

3.2.1 System-bath multi-state ring polymers

The canonical partition function, Z, is obtained by evaluating the trace – now

over both the nuclear, electronic, and bath dofs; indicated by the subscript neb –

of the Boltzmann operator using a mixed-time splitting procedure:

Z = Trneb

[
e−βĤMS

]
= Trneb

[({
e−βs[ĤMS,s+Ĥsb]

}Ns/Nb
e−βbĤb

)Nb
]
, (3.31)

where Ns and Nb are the number of imaginary time slices (beads) corresponding

to the system and bath dofs, respectively, with Ns ≥ Nb, and βs ≡ β/Ns, βb ≡ β/Nb.

The trace over the nuclear and bath dofs is evaluated in the position basis; and,

as before, the trace in the electronic dofs can be evaluated in a number of ways,

resulting in different representations of Z. The MF and MV partition functions

are provided below.

Mean Field Partition Function

Here, the trace over the system coordinates can be evaluated using the following

completeness relation:

1ne =

∫
dr|r⟩⟨r|P where, (3.32)

P =

K∑
n=1

|ψn⟩⟨ψn| (3.33)
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is the completeness relation in the diabatic state basis. Thus, the partition function

for the mean-field case is:

ZMF,sb = lim
Ns,Nb→∞

Asb

∫
d{Rγ}

∫
d{rα}e−βVMF,sbsgn(ΓMF,sb) (3.34)

VMF,sb =

f∑
k=1

Nb∑
γ=1

Mbω
2
kR2

γ,k

2Nb
+

Mb(Rγ,k − Rγ+1,k)2

2β2
bNb


+

Ns∑
α=1

M(rα − rα+1)2

2β2
s Ns

+

f∑
k=1

c2
kr2
α

2NsMbω
2
k

 − 1
β

ln |ΓMF,sb| (3.35)

and Asb =

(
MNs

2πβ

)Ns/2 (
MbNb

2πβ

) f Nb/2

. (3.36)

Here,

ΓMF,sb = Tr


Nb∏
γ=1


Ns
Nb∏
µ=1

M
(
Rγ; r(γ−1) Ns

Nb
+µ

)
 , (3.37)

and, Rγ ≡ {Rγ,1,Rγ,2, . . . ,Rγ, f } – the coordinates of the γth bead for the f bath

QHOs; the matrix elements of M(Rγ; r) are:

Mnn = exp

−βs

Vnn(r) +
f∑

k=1

ckRγ,kr




Mnm = −βsVnm(r)Mnn for n , m (3.38)

Mapping Variable Partition Function

Continuous variables for the electronic dofs can be introduced using the Stock-

Thoss mapping protocol described in Sec. 2.1.2 using the following completeness

relation:

1ne =

∫
dr dx |r x⟩⟨r x| P where, (3.39)

P =

K∑
n=1

|n⟩⟨n| (3.40)

is the completeness relation in the SEO space. The mapping variable representation

of the canonical partition function for the multi-state system-bath Hamiltonian is
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given by:

ZMV,sb = lim
Ns,Nb→∞

Asb

∫
d{Rγ}

∫
d{rα}

∫
d{xα}e−βVMV,sbsgn(ΓMV)

VMV,sb =

f∑
k=1

Nb∑
j=1

Mbω
2
kR2

γ,k

2Nb
+

Mb(Rγ,k − Rγ+1,k)2

2β2
bNb

 + 1
β

Ns∑
α=1

K∑
n=1

x2
α,n

+

Ns∑
α=1

M(rα − rα+1)2

2β2
s Ns

+

f∑
k=1

c2
kr2
α

2NsMbω
2
k

 − 1
β

ln |ΓMV,sb| (3.41)

AMV,sb = Asb ×
(

2M
βsπK+1

) Ns
2

where the ΓMV is given by:

ΓMV,sb = Tr


Nb∏
γ=1


Ns
Nb∏
µ=1

X(γ−1) Ns
Nb
+µM

(
Rγ; r(γ−1) Ns

Nb
+µ

)
 . (3.42)

The elements of the M(Rγ; r) matrix are as given in Eq. 3.38 and Xµ = xµ ⊗ xT
µ .

3.2.2 Reduced dimensional multi-state ring polymers

Beginning with Eqs. 3.35 and 3.41 and following the procedure outlined in

Sec. 3.1.2, the reduced dimensional representations of the canonical partition for

the multi-state systems in the MF and MV formulations, can be determined. Fol-

lowing the previous derivation, final expressions for ZMF,red – the reduced dimen-

sional MF partition function, andZMV,red – the reduced mapping variable partition

function, are derived.

Reduced dimensional mean field ring polymers

The canonical partition function is expressed as an integral over just the nuclear

bead coordinates:

ZMF,red = lim
Ns→∞

As

∫
d{rα}e−βVMF,red({rα})sgn(ΓMF,red), (3.43)
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and the reduced dimensional mean field potential is:

VMF,red({rα}) =
N∑
α=1

M(rα − rα+1)2

2β2
s N

+

f∑
k=1

c2
kr2
α

2Mbω
2
kN


−

N∑
α,γ=1

rα

N−1∑
ν=0

f∑
k=1

c2
kCανCνγ

2Mb(ω2
ν + ω

2
k)N

 rγ −
1
β

ln |ΓMF,red|. (3.44)

It is to be noted that in this formulation, the asymmetric Trotter splitting is used,

the matrix elements of M(r) are, now, given by:

Mnn(r) = e−βsVnn(r), Mnm(r) = −βsVnm(r)Mnn(r) (3.45)

Reduced dimensional mapping variable ring polymers

Upon integration of the bath dofs, the reduced dimensional canonical partition

function can be written as an integral over the continuous nuclear and electronic

variables:

ZMV,red = lim
Ns→∞

AMV,red

∫
d{rα}

∫
d{xα}e−βVMV,red({rα},{xα})sgn(ΓMV,red), (3.46)

giving us the effective MV ring polymer potential:

VMV,red({rα}) =
N∑
α=1

M(rα − rα+1)2

2β2
s N

+

f∑
k=1

c2
kr2
α

2Mbω
2
kN

 + 1
β

N∑
α=1

K∑
n=1

x2
α,n

−
N∑

α,γ=1

rα

N−1∑
ν=0

f∑
k=1

c2
kCανCνγ

2Mb(ω2
ν + ω

2
k)N

 rγ −
1
β

ln |ΓMV,red| (3.47)

where

ΓMV,red = Tr

 N∏
α=1

XαM(rα)

 , (3.48)

and Xα = xα ⊗ xT
α , as defined before.
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3.3 Rate constants in the condense phase

3.3.1 Reduced dimensional formulation of the system-bath

rate

The rate expressions for both the reduced dimensional (RD) single surface and

multi-state partition functions are obtained using a procedure similar to the one

in Sec. 2.4; thus, only the final expressions provided here. The single surface rate

constant is:

kred ≈
2
β

Zred,b

Zred,r
(3.49)

where Zred,b and Zred,r are the RD barrier and reactant partition functions. The

barrier partition function is written in terms of the reduced RPI and the eigenvalues

of the Hessian computed at the RPI configuration:

Zb =
N
√

zNAs

2
e−βNVsb(r̄α)

(
2π

MβN

) N−1
2 N∏

α=1

′ 1
|λα|

, (3.50)

where {λα} are the eigenvalues of the hessian obtained from Eq. 3.23. The rate

constant is given by:

kred =

N−1∏
ν=0

f∏
k=1

1

βN

√
ω2

k + ω
2
ν

× 1
βNZr

√
MzN

2πβN
e−βNVred(r̄α)

N∏
α=1

′ 1
βN |λα|

(3.51)

where the ′ indicates that the zero mode has been analytically integrated out. The

negative eigenvalue mode is integrated over the positive half of the imaginary axis,

by analytic continuation. The reactant partition function is:

Zr =
1

2 sinh
(
βω

2

) f∏
k=1

1

2 sinh
(
βωk

2

) , (3.52)

where it is assumed the reactant well is harmonic with frequency ω.
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3.3.2 Reduced dimensional mean-field formulation of the

rate

Following the derivation outlined in Sec. 3.3.1, the rate constant expression for

multi-state systems in the condensed phase can be obtained. It only differs from

Eq. 3.51, in the ring polymer potential used; the eigenvalues are, accordingly,

obtained by diagonalizing the Hessian derived from Eq. 3.44.

kMF,red =

N−1∏
ν=0

f∏
k=1

1

βN

√
ω2

k + ω
2
ν

× 1
βNZr

√
MzN

2πβN
e−βNVMF,red(r̄α)

N∏
α=1

′ 1
βN |λα|

(3.53)

3.4 Model systems

3.4.1 Adiabatic condensed phase model

The double well system coupled to an Ohmic bath (DW1), modeling proton tun-

neling, serves as a good test case for the reduced dimensional RPI method [64]:

V(x) = −
mω2

b

2
x2 +

m2ω4
b

16Eb
x4 + Eb. (3.54)

It is coupled an external bath modeled using harmonic oscillators. The parameters

for the double well are given in Table 3.1. Here, Eb is the barrier height; ωb, the

Eb ωb ω0 ωc

DW1 2085 500 707 500

Table 3.1: Parameters of the double well potential. Values are in units of cm−1

frequency of the barrier; ω0, the frequency of the reactant well; and ωc is the cutoff

frequency for the bath. All the parameters are given in cm−1.
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3.4.2 Nonadiabatic condensed phase model

Proton tunneling modeled using a system with two diabatic states coupled to a

dissipative bath is considered. The diabatic surfaces are assumed to be harmonic

with frequency ω0, constant electronic coupling ∆ and driving force ∆V. The

mass of the proton coordinate is m0 = 1836 a.u. The parameters are provided in

Table. 3.2

ω0 Eb ∆ ∆V

500 1500 50 0

Table 3.2: Parameters of the dissipative nonadiabatic proton tunneling model.
Values are in units of cm−1
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Figure 3.1: Adiabatic proton transfer model (left) described in Ref. [65] – a dou-
ble well potential coupled to a bath; nonadiabatic (right) proton transfer model
described in Ref. [64] describing the transfer of a proton from a donor (red) to
acceptor (blue).
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3.5 Simulation details

The numerical determination of the RPI requires an initial guess. For the sys-

tem DoF, the procedure outlined in Sec. 2.3.1 is followed here, and for the full

system-bath RPI calculations, the bath beads are initialized for each bath mode

are initialized using:

xbath,α = sin
(
2πα
Nb

)
α = 1, 2, . . . ,Nb. (3.55)

The system bath RPIs are obtained by determining the first order saddle point

on the extended RP potentials given by Eq. 3.18 – for the adiabatic system; and,

Eqs. 3.35 and 3.41 for the multi-state system. Similarly, the reduced dimensional

RPIs are obtained by solving Eq. 3.23, and Eqs. 3.44 and 3.47 for the adiabatic,

and multi-state systems, respectively. In all calculations, the L-BFGS-B algorithm

is used, as before.

3.6 Results and discussion

3.6.1 Adiabatic system-bath and reduced dimensional

RPIs

System-bath RPIs (sbRPIs) and reduced dimensional RPIs (rRPIs) were deter-

mined for the double well model system described by Eq. 3.54, for dimensionless

friction values η/Mωb = 0.05, 0.1 at T = 50, 75, 100 K. The crossover temperature

Tc ≈ 114K; thus, QM tunneling is observed for all the temperatures studied here.

Fig. 3.2 compares the rRPI and sbRPI at high (50 K) and low (100 K) temper-

atures; 256 beads were used for the system DoF in both cases, while 32 beads

were used for each bath mode in the sbRPI calculation; the rRPI is shown as a
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continuous black line and the sbRPI is plotted using red dots. They agree exactly

with each other at low temperatures, but at high temperature the rRPI predicts a

smaller spread than the sbRPI.
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Figure 3.2: Plots comparing the rRPI (continuous black line) and the system sbRPI
(red dots) at 50 K (left) and 100 K (right), for the dimensionless friction value of
η/Mωb = 0.05; 256 beads were used for the determination of the rRPI, and the
system DoF in sbRPI, while 32 beads were used for each bath RP in the sbRPI
calculation.

The proton tunneling DoF is plotted in Fig. 3.3 for the cases where it interacts

with a classical and quantum bath; 1 bead and 32 beads are used to represent each

bath DoF, respectively. The sbRPI has a larger spread in the latter case; this is

because: the RP beads of a quantum bath DoF has a finite spread and can take up

energy from the system DoF thereby reducing the population of higher vibrational

levels in the donor and acceptor wells, thereby increasing the spread of the sbRPI

which connects lower vibrational states.

The effect of the variation of dimensionless friction and the temperature on

the reduced dimensional RPI is shown in Fig. 3.4. The results are in keeping

with expectations: at lower temperatures, only the low-lying vibrational states

are populated resulting in a larger spread for the rRPI; and, in the weak system-
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Figure 3.3: The system sbRPI determined at 50K and η/Mωb = 0.05 for a quantum
(continuous black line) and classical (red dots) bath. 256 beads were used to
represent the system RP, whereas 32 beads were used for each bath DoF in the
quantum limit, and 1 bead was used in the classical limit.

bath coupling regime considered here, the spread of the rRPI increases due to the

reduction in the population of the higher vibrational levels.

The rRPI can be used to determine the rate using Eq. 3.51. The reduced

dimensional rate constant kred is compared with benchmark QUAPI rate constants

kQUAPI for the model system in Table. 3.3. They agree with each other to within

a factor of 3 or 4, indicating that the rRPI approximation can be used reliably

to compute reaction rates at temperatures below the crossover temperature of the

system. The classical rate constants, computed using the expression:

kcl =
ω0

2π
e−βEb , (3.56)

are also tabulated, to emphasize that QM tunneling effects are important at low
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Figure 3.4: A comparison of the rRPI for η/Mωb = 0, 0.05, 0.1 (blue, red) and RPI
(black) for the system DoF (η/Mωb = 0) at T = 50 K is shown on the left; the
rRPIs determined for the adiabatic model with η/Mωb = 0.05 at a temperature of
100 K (black), 75 K (blue), and 50 K (red), is shown on the right; 256 beads are
used to represent the RP in both cases. The bead positions xα are in a.u.

η T Ns log10 kQUAPI log10 kred log10 kcl

0.05 100 128 -13.175 -13.371 -16.643
0.05 75 256 -13.786 -14.210 -20.070
0.05 50 512 -13.744 -14.141 -29.402
0.1 100 128 -13.426 -13.463 -16.643
0.1 75 256 -14.198 -14.523 -20.070
0.1 50 512 -14.305 -14.820 -29.402

Table 3.3: Rate constants for DW1 at temperatures 100, 75, 50 K. The number
of beads Ns needed to converge kred is provided. The QUAPI rate constants kQUAPI

were obtained from Table II in Ref. [65]. kred differs only by a factor of 2 or 3 from
kQUAPI.

temperatures and must be included for an accurate determination of the rate.
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3.6.2 Multi-state system-bath and reduced dimensional

RPIs

The two reduced dimensional RPI formulations for multi-state systems are dis-

cussed here: the reduced dimensoinal MF-RPI (rMFRPI) and the reduced dimen-

sional MV-RPI (rMVRPI). The temperature at which the reduced dimensional

multi-state RPIs (rMSRPIs) are determined is 118 K (β = 2743.43 a.u.); the di-

mensionless friction η/Mω0 is varied over two orders of magnitude, from 0.01 to

1.0.

0 50 100 150 200 250
α

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

r α

system
0.01
0.1
0.5
1.0

0 50 100 150 200 250
α

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

r α

system
0.01
0.1
0.5
1.0

Figure 3.5: The rMFRPI (left) and rMVRPI (right) are compared with the system
MF-RPI for the nonadiabatic model. The dimensionless friction η/Mω0 is varied
as 0.01 (black), 0.1 (red), 0.5 (red), and 1.0 (green) in both plots at T = 118 K.
The MF-RPI for the system, i.e., for the case with zero coupling to the bath is
show in pink; 256 beads are used to represent the RPs in all cases.

Fig. 3.5 plots the rMFRPI (left subplot) and rMVRPI (right subplot) whose

spread decreases with increasing system-bath coupling. This is in keeping with

the observations made for adiabatic systems. The two rMSRPI formulations are

compared in Fig. 3.6: the rMVRPI is shown to have a larger spread than the

rMFRPI.
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Figure 3.6: The plot on the left is that of the rMFRPI (continuous black line)
and rMVRPI (red dots) determined using 256 RP beads, for nonadiabatic model
system, with η/Mω0 = 0.01 and T = 118 K.

Rate constants kred,MF were computed for different values of the dimensionless

friction using Eq. 3.53 obtained via the reduced dimensional formulation described

in Sec. 3.3.2; Fig. 3.7 compares them to the QUAPI rate constants kQUAPI. The

two agree with each other to within a factor of 2 to 4; the results are consistent

with the expectation that the tunneling rate decays with increase of the system-

bath coupling. It is to be noted that these are preliminary results, and that the

discrepancies between the benchmark QUAPI rates and the reduced system ring

polymer rates could be due to the inability of the RP formulation to capture

coherence and dynamical recrossing effects, and is under current investigation.
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Figure 3.7: Plot of rate constants computed for the symmetric proton tunneling
model system as a function of the dimensionless friction parameter η/Mω0; kred,MF

– the rate constant obtained using the reduced dimensional MF-RPI formalism is
depicted with black dots and a continuous line; 256 RP beads were used for each
case. QUAPI rate constants kQUAPI are plotted using red dots and a dotted line;
they were obtained from the authors of Ref. [64]. The two rates agree with each
other within a factor of 2 to 4.

48



CHAPTER 4

TOWARDS THE SIMULATION OF MULTIDIMENSIONAL

SYSTEMS

The simulation and modeling of complex molecular systems remains a challenge

despite the increase in computational capability. The central problem is the devel-

opment of efficient methods in the simulation of large scale reactive systems over

long time scales. This, therefore, is dependent on advances made in the model-

ing of potential energy surfaces, in their sampling techniques, and in the accurate

description of the dynamics – classical and quantum mechanical.

The oft-used molecular dynamics (MD) models are based on empirical poten-

tials describing the intramolecular and intermolecular interactions; they are unable

to describe changes in the electronic structure of the system being studied. ‘Ab

initio’ MD methods compute the potential on the fly, but are computationally

demanding [66]. The bottleneck being the computation of the electronic struc-

ture at each time step, which restricts the system under investigation to a few

hundred atoms, though progress has been made to improve the computational ef-

ficiency [67]. QM/MM methods have been used extensively towards the study of

biological enzymes successfully; however, the optimal treatment of the boundary

between the QM and MM region is an open question [68]. Mixed quantum-classical

methods introduce uncontrolled approximations in the feedback forces between the

modes described using QM and those described using MD [69]. Recent develop-

ments in IVR based methods show that ZPE, tunneling and quantum coherence

effects can be captured while ensuring all the modes in the system are treated at

the same level of theory [16].

Path integral based methods such as PIMD, RPMD, and its nonadiabatic ver-

sions allow for the inclusion of nuclear quantum effects in molecular simulation,
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while neglecting long time coherence effects [18, 19]. The advantages of path in-

tegrals is the ease of extension to multi-dimensional systems; this, coupled with

the algorithmic improvements, has led to the development of ‘ab initio’ PIMD,

which shows immense potential for the simulation of condensed phase systems in-

corporating nuclear quantum effects [70–72]. The SCI and RPI methods discussed

previously have been extended to compute reaction rates and tunneling splittings

for complex molecular systems [33,34,37,38,73]. This section presents preliminary

results for the extension of the MS-RPI method to multidimensional multi-state

systems, and the combination of transition path sampling methods with RPMD

to determine ring polymer transition states in quantum systems.

4.1 MF-RPIs for systems with conical intersections

Conical intersections (CIs) are ubiquitous in polyatomic molecules and play a

significant role in the dynamics of multi-dimensional nonadiabatic systems. The

nonadiabatic couplings (NACs), ignored in the Born-Oppenheimer approximation,

are responsible for electronic and nuclear coupling. In such systems, the adiabatic

description of the electronic and nuclear wavefunctions is insufficient, as the elec-

tronic wavefunction changes sign when it traverses around a CI – popularly termed

as the geometric phase (GP) effect, or Berry’s phase effect – making it double-

valued. As the total wavefunction must be a single-valued function, the nuclear

wavefunction must also be double-valued in nature. The influence of the GP on

the nuclear dynamics suggests that the reaction rates computed in the two repre-

sentations will differ; it has been demonstrated that the neglect of GP can lead to

an overestimation of the rate by two orders of magnitude at low temperatures [74].

Thus, at low temperatures, the nuclear tunneling pathway is influenced by the CI.

The RPI method has been used in the computation of tunneling splittings and
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reaction rates for realistic systems [73, 75]. Its extensions to the case of multiple

electronic states is an active area of research [45, 76, 77]. This section presents

preliminary results obtained in the extension of the MF-RPI formalism – based

on the diabatic representation of electronic state as described in Sec. 2.1.1 – to

multi-dimensional nonadiabatic systems with conical intersections.

4.1.1 Model systems

Two nonadiabatic model systems with conical intersections (CIs) are studied. The

plots for the potential energy surfaces are provided in Fig. 4.1 and the correspond-

ing equations for the diabatic potentials and couplings are given below [78].

2D Jahn-Teller system

The 2D Jahn-Teller model system consists of two harmonic diabatic potentials

with linear coupling along the y mode:

V11(x, y) =
Mω2

1

2

(
x +

a
2

)2
+

Mω2
2

2
y2, (4.1)

V22(x, y) =
Mω2

1

2

(
x − a

2

)2
+

Mω2
2

2
y2, (4.2)

V12(x, y) = cy, (4.3)

where a = 6.0,M = 1.0, ω1 = ω2 = 1.0, and c = 1.0.

Phenol photodissociation

The phenol photodissociation model is used to describe dissociative tunneling of

the S 1 state:

S 1 ≡ V11(x, y) =
Mω2

1

2

(
x +

a
2

)2
+

Mω2
2

2
y2, (4.4)

S 2 ≡ V22(x, y) = Ae−α(x+b) +
Mω2

2

2
y2, (4.5)

V12(x, y) = cye−(x−xCI)2/2σ2
xe−(y−yCI)2/2σ2

y . (4.6)
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The phenoxyl ring is photoexcited to the S 1 state, which dissociates to produce an

H atom and a phenoxyl radical. The dissociation of the low-lying vibrational levels

of the first excited state (S 1) proceeds via nonadiabatic tunneling and is governed

by the CI generated by the interaction of the S 1 and S 2 states.
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Figure 4.1: Plots of the adiabatic potentials for the Jahn-Teller model system (left);
and phenol photodissociation model system (right) obtained by diagonalizing the
corresponding diabatic potential energy matrix. All values are in atomic units.

Parameter a b c α A ω1 ω2 xCI yCI σx σy

Value (a.u.) 4.0 -11.0 2.0 5.0 0.1 1.0 1.0 0.0 0.0 1.274 0.849

Table 4.1: Parameters for the phenol photodissociation system

4.1.2 Results and discussion

The diabatic representation implicitly incorporates GP phase effects; the MF-RPIs

shown in Fig. 4.2 depict the nonadiabatic tunneling pathway. The MF-RPI capture

the expected trends: lowering of the system temperature connects the low-lying

vibrational states of the two wells in the JT system, and suggest dissociative tun-

neling from the low-lying vibrational states in the phenol photodissociation model.
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Figure 4.2: Plot of the MF-RPI on the contours of the lower adiabatic potential
surface for the Jahn-Teller model system (left) for β = 5.0, 7.5, 10.0, 20.0 a.u. are
shown as black, green, red, and white points; and the phenol photodissociation
model system (right) for β = 8.0, 9.0, 10.0, 13.0 a.u. are depicted using black,
green, red, and white points, respectively. All values are in atomic units.

Figure 4.3: Plot of the RPI determined at β = 50.0 a.u. on the lower adiabat
(black) and MF-RPI (red) on the contours of the lower adiabatic eigenstate of
the Jahn-Teller model system (left); RPIs determined on the lower adiabat for
β = 25.0, 35.0, 50.0 a.u. are shown in red, blue and black, respectively (right); the
CI at (0, 0) is shown as a white dot in both cases. All values are in atomic units.

In Fig. 4.3, a comparison between the RPI determined on the lower adiabatic

surface and the MF-RPI is made, by plotting them on the contour of the lower
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adiabatic eigenstate. The RPI is shown in red and the MF-RPI is in black, while

the CI at (0, 0) is depicted as a white dot. This illustrates that the single surface

RPI does not capture the accurate tunneling pathway, whereas the MF-RPI does

so, because it includes the effect of the excited electronic state. The plot on the

right in the same figure depicts the RPIs determined on the lower adiabatic eigen-

state at β = 25.0, 30.0, 50.0 a.u.; this shows that tunneling effects are only seen

at much lower temperatures when only the single surface is considered. This is

in keeping with the observation that the crossover temperature for nonadiabatic

systems, though not clearly defined, must be higher than that of the adiabatic

crossover temperature.

4.2 Reaction coordinates in quantum systems

Transition state theory and it’s quantum mechanical analogues assume a reaction

coordinate and transition state – a first order saddle point on the potential energy

surface. This allows for the computation of the reaction rate and extraction of

mechanistic insight from the dynamics. In complex molecular systems, there are

multiple dynamical pathways along which the reaction can occur; this indicates

that there are many transition states that lead to the product and the identification

of all such transition states is difficult. A popular example is that of protein folding

where the collective variables determining the folding pathway depend on both the

protein and solvent DoFs.

TPS overcomes these problems by sampling the transition path ensemble (TPE)

– a weighted set of reactive trajectories that connect the reactant and product

configurations [79,80]. It has the advantage that no assumptions about the reaction

coordinate are made. The TPE is an ensemble of reactive trajectories x(t) which

begins in the reactant well (R) and ends in the product well (P). It is represented
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using a sequence of states x(t) ≡ {x0, x∆t, . . . , xt}, where ∆t = t/N. If this is a

dynamical trajectory, the variable x corresponds to the set of phase space variables

r, p; for a stochastic trajectory, it is just the configuration of the system. The

contribution of a given path to the TPE is determined by its statistical weight

PRP[x(t)] which is dependent on the initial conditions and the propagation rules

for the time evolution. For a stochastic trajectory x(t), it is a product of the short

time transition probabilities and the initial distribution of states ρ(x) [79, 81]:

PRP[x(t)] ≡ hR(x0)

[
ρ(x0)

∏N−1
i=0 p(xi∆t → x(i+1)∆t)

]
ZRP(t)

hP(xt). (4.7)

Here, hR(x0) and hP(xt) are the population functions for the reactant and product

wells. They are equal to one if the time point x0 and xt are in the defined reactant

and product states, and zero otherwise. This restricts the paths considered to

those that are reactive. ZRP(t) is the normalization factor for the distribution:

ZRP(t) =
∫
D[x(t)]hR(x0)

ρ(x0)
N−1∏
i=0

p(xi∆t → x(i+1)∆t

 hP(xt), (4.8)

and is obtained by summing over all paths that make up TPE – a subset of reactive

trajectories selected from the set of all trajectories produced by the dynamics.

The sampling of the TPE is an importance sampling of reactive trajectories and

is accomplished as follows: starting with a reactive trajectory xold(t) with weight

PRP[xo(t)], a new trajectory xnew(t)is generated and accepted with a probability.

The detailed balance criterion must be satisfied:

PRP[xold(t)]π[xold(t)→ xnew(t)] = PRP[xnew(t)]π[xnew(t)→ xold(t)], (4.9)

where π[xold(t) → xnew(t)] is the conditional probability of moving to the new tra-

jectory xnew(t) from the old trajectory xold(t). This has two contributions: The

probability of generation of the new trajectory Pgen[xold(t)→ xnew(t)] and the prob-

ability of its acceptance Pacc[xold(t)→ xnew(t)]. Using the Metropolis algorithm, the
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acceptance probability is defined as:

Pacc[xold(t)→ xnew(t)] = hR(xnew
0 )hP(xnew

t )min
{

1,
PRP[xnew(t)]
PRP[xold(t)]

Pgen[xnew(t)→ xold(t)]
Pgen[xold(t)→ xnew(t)]

}
(4.10)

Shooting moves and shifting moves can be employed to generate new trajectories

xnew(t) [81].

The statistical analysis of the transition paths can be used to identify reaction

coordinates and transition states. In complex systems, the transition states (TSs)

are defined as configurations that can relax to either the reactant well or the

product well with equal probability. The set of all such TSs is the separatrix which

separates the stable reactant and product wells from each other. The committor

function:

pP(x, ts) ≡
∫
D[x(t)]P[x(ts)]δ(x0 − x)hP(xts)∫
D[x(t)]P[x(ts)]δ(x0 − x)

, (4.11)

is used to determine the probability that the system configuration x will reside in

the product well at time ts. Here, P[x(ts)] is the statistical weight of the trajectory

x(ts) in the ensemble of trajectories initialized at x and propagated for time ts. The

hP(xts) in the numerator selects trajectories that reach the the product well at time

ts. An analogous committor function can be defined for the reactant well, pR(x, ts);

if these committor functions are equal for for a configuration x, then is a part of

the separatrix.

This chapter demonstrates that the TPS method can be extended reliably to the

study of quantum mechanical systems, and to determine TSs. Some preliminary

results for 1D systems are presented here, extensions to multi-dimensional systems

will require algorithmic improvements.
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4.2.1 Model systems and simulation details

The 1D Eckart barrier is used to demonstrate the use of TPS whose potential is

given as:

V(x) = b sech2 x
a

(4.12)

with parameters, b = 13.5/π and a = 0.66 [59]. The inverse temperature β = 3.5

a.u. and 16 RP beads were used to model the quantum particle with mass M = 1

a.u. The reactant and product configurations were defined as configurations with

the centroid x̄ =
∑N
α=1 xα to the left of x = −4 a.u., and to the right of x = 4.0 a.u.,

respectively. RPMD trajectories [18] were propagated for a total of 550 time steps

using the velocity verlet algorithm with each time step ∆t = 0.01 a.u. Hamilton’s

equations for the system were obtained from Eq. 1.18:

ẋα =
∂HRP

∂pα
=

pα
M

(4.13)

ṗα = −
∂HRP

∂xα
= −M

β2
N

(2xα − xα−1 − xα+1) − V ′(xα) (4.14)

The TPE was sampled by performing shooting and shifting moves of the RP cen-

troid.

4.2.2 Results and discussion

The committors for 1D symmetric Eckart barrier were determined and the sta-

tistical analysis yielded an ensemble of ring polymer transition states, as shown

in Fig. 4.4. It is seen that the committor probability for a RP configuration ini-

tialized at values closer to the reactant region has a low probability of reaching

the products, but for those initialized near the barrier, it attains values around

0.5 indicating that we are near the separatrix. Its value is close to or equal to 1

for points initialized to the right of the barrier reflecting that the probability of

reaching the product state is higher, which is in keeping with physical intuition. A
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representative TS is also shown in Fig. 4.4 which drapes over the barrier and has

an extended configuration of the RP beads.
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Figure 4.4: Representative plots for the committor (left) and ring polymer transi-
tion states (right) for the 1D Eckart barrier.
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CHAPTER 5

ELECTRICAL CONDUCTIVITY IN METAL-ORGANIC

FRAMEWORKS

The field of metal-organic frameworks (MOFs) has seen intense activity since its

inception in the last decade of the 20th century. It utilizes the vast knowledge of

organic and inorganic chemistry developed during the last two hundred years. The

multiple oxidation states of transition metal (TM) ions and the ease of synthesis of

diverse organic linkers, and the possibility of post-synthetic modification allows for

the facile tuning of chemical and physical properties of the synthesized materials

with applications in gas storage, separation, drug delivery, molecular magnetism,

and catalysis [82]. The electrical conductivity of porous MOFs is, typically, low,

due to the use or redox-inactive organic ligands that bind to the metal ions, but

there has been a recent surge in interest towards the design of MOFs that exhibit

porosity and high charge mobility and electrical conductivity [83]. Specifically,

the incorporation of mixed-valency in MOFs by a judicious choice of redox-non-

innocent metal ions and ligands, shows promise towards the development of highly

conductive MOFs [84].

Intervalence charge transfer (IVCT) is the delocalization of charge due to elec-

tronic coupling between two or more moieties in a mixed-valence compound [85].

The Robin Day scheme categorizes mixed-valence compounds into three classes,

based on the extent of charge delocalization between two sites: (1) class I – elec-

trons localized at the two sites; (2) class II – thermally/optically accessible IVCT;

(3) class III – electrons are delocalized between the two sites. MOFs can be per-

ceived as a collection of such molecular moieties and this classification can be used

to predict charge transport mechanisms: In MOFs with extensive charge delocal-

ization (class III compounds), the charge transport will be band-like; whereas, for
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systems similar to class II compounds, charge hopping is the predominant trans-

port mechanism.

The dominant mechanism governing the electrical conductivity can be deter-

mined by examining its temperature dependence. Hopping transport is prevalent

in materials with localized charge carriers which are transferred from one site to the

other when external (thermal) energy is provided; thus, the electrical conductivity

increases with increasing temperature:

σ = σ0e−(T0/T )1/d
, (5.1)

where σ is the electrical conductivity at temperature T ; T0, σ0 are constants specific

to the sample, and d is its dimensionality. Band transport, however, can be either

thermally activated or deactivated. For metallic systems, the back scattering of

the conduction band electrons from the lattice sites becomes significant at higher

temperatures reducing the conductivity; for semiconductors, however, electrons

are promoted to the conduction band as the temperature increases resulting in

an increase of the electrical conductivity. This chapter describes the preliminary

results of the theoretical approaches taken to explain the observed conductivities.

5.1 The electronic structure of 2D metal-semiquinoid

MOFs

Recent studies have focused on a systematic study of the electronic structure of

these materials, in the hope that general design principles can be formulated

for the synthesis of highly conductive MOFs [86, 87]. 2D metal-semiquinoid

MOFs show immense promise as energy storage materials due to their excep-

tionally high electrochemical capacities. These frameworks incorporate the 2,5-

dihydroxybenzoquinone (H2dhbq) and its analogues as the organic linkers, as
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shown in Fig. 5.1. These linkers can exist in three different redox states in molec-

ular complexes and extended solids as shown in Fig. 5.2 – there are no unpaired

electrons on dhbq2− and thb4− (1,2,4,5-tetrahydroxybenzene), whereas dhbq3− has

one unpaired electron. They mediate the electronic coupling between the TM ions
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O

O

O
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Figure 5.1: A cartoon representation of the building unit of the 2D and 3D material
with metal atom flanked by two dhbq3− linkers and one dhbq2− linker.

allowing for electron transport and long range magnetic ordering. Experimentally,
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Figure 5.2: The possible redox states of the ligand H2dhbq upon deprotonation.
The frequencies of the carbonyl stretches are also provided in cm−1.

both 2D and 3D materials were synthesized by combining these ligands with first

row transition metals: Ti, V, Cr, and Fe. The general formula for these materi-

als is given by (cation)2M2(X2dhbq)3, where X can be a proton or a halide; the

61



cation for the Fe system is NBu+4 (tetra-n-butyl ammonium) and for the Ti, V and

Cr systems, it is H2NMe+2 (dimethyl ammonium). The frequency of the carbonyl

stretching mode νC=O determined using infrared spectroscopy is an indicator of the

redox state of the ligands in these materials. As the ligands are reduced by post-

synthetic modification, the vibrational frequency of the carbonyl bond reduces;

for instance, in the Cr system, the two features are observed: one at 1540cm−1

corresponding to the dianion, dhbq2−, and another at 1450cm−1 corresponding to

the trianion, dhbq3−. The broad absorption in the V system is indicative of a

delocalized system and the material is classified as belonging to class III in the

Robin-Day scheme. The infrared spectra is inconclusive for the Fe system, and

the results of UV-Vis-NIR reflectance spectroscopy were provided as evidence to

classify it as belonging to the Robin-Day Class II/III mixed-valency [88].

Figure 5.3: Infrared spectra for the Ti, V, and Cr materials (left); this figure is
reprinted with permission from J. Am. Chem. Soc. 2018, 140, 8, 3040–3051.
Copyright (2018) American Chemical Society. Spectra for the Fe MOF (right) are
reprinted with permission from J. Am. Chem. Soc. 2015, 137, 50, 15703–15711.
Copyright (2015) American Chemical Society.

Results of the variable-temperature two-point electronic conductivity measure-

ments for the materials considered are presented in Fig. 5.4 and their conductivities

at 298 K are tabulated in Table. 5.1. It is seen that the conductivity increases with

increasing temperature. It is suspected that the mixed-valence states in Cr and Ti
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Figure 5.4: Variable temperature conductivity measurements for the Ti, V, and Cr
materials (left); this figure is reprinted with permission from J. Am. Chem. Soc.
2018, 140, 8, 3040–3051. Copyright (2018) American Chemical Society. Results
for the Fe MOF (right) are reprinted with permission from J. Am. Chem. Soc.
2015, 137, 50, 15703–15711. Copyright (2015) American Chemical Society.

TM σ (S cm−1)
Ti 2.7 × 10−3

V 0.45
Cr 1.2 × 10−4

Fe 0.16

Table 5.1: Electrical conductivity (σ) for the different TM materials. Data for Ti,
V, and Cr based MOFs was obtained from Ref. [86] and for the Fe based MOF
was obtained from Ref. [88]

are localized, whereas that of Fe and V are delocalized [86, 88].

5.2 Simulation details

The Cr and Fe based MOFs are discussed in this section. The first step in the

study of the MOFs is the selection of the appropriate molecular fragment from

the extended structure that can capture all the relevant electronic properties [89].

Six metal center complexes were chosen as a representative molecular fragment;

they are depicted in Fig. 5.5. These fragments were obtained from the geometry
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optimizations of the extended MOF. The optimization was carried out with the

VASP electronic structure package using the PBE exchange-correlation functional;

both atomic positions and lattice parameters were allowed to relax [90].

Figure 5.5: The six-center molecular fragment for the Fe system obtained from
the extended MOF. The ligand has Cl atoms (green) instead of hydrogens at the
2 and 5 positions and the ends of the uncoordinated hydroxyl groups were capped
using protons.

The uncoordinated hydroxyl groups are protonated to ensure that the net

charge on the molecular fragments is zero. Single point energy calculations were

performed using the DFT hybrid functionals ωB97 and M11; the 6-31G(df,p) basis

was used for all the atoms. The charges of these molecular fragments are chosen to

be 0, -2, -4, and -6; this allows for the study of the localization of charge in these

systems and the determination of single point energies determined. Restricting

the total number of electrons to an even number ensures the spin multiplicity of

fragment is 1. Furthermore, atomic charges was determined using the CHELPG

scheme.
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n CωB97,n ∆ωB97,n CM11,n ∆M11,n

0 7.70 0 8.18 0
-2 7.76 0.06 8.23 0.05
-4 7.68 -0.02 8.52 0.34
-6 8.03 0.33 8.48 0.3

Table 5.2: The sum of the atomic charges (CωB97,n) at the six Cr centers com-
puted for the fragments with total charge n = 0,−2,−4 and −6. ∆ωB97,n and ∆M11,n

represent the change with respect to the n = 0 fragment.

5.3 Results and discussion

The sum of the atomic charges at the metal centers in fragments with zero net

charge (CωB97,0) and in fragments with a net negative charge is tabulated in Ta-

bles 5.2 and 5.3. The change in the total atomic charges at the six metal centers,

∆ωB97,n = CωB97,n − CωB97,0, upon addition of electrons to the fragment in steps

of two is determined. This is a measure of the electrons accepted by the metal

centers and the qualitative trend is found to be the same for both the ωB97 and

M11 hybrid functionals. For the Cr system, the change in the atomic charges is

a negligible fraction of the electrons added to the fragment; the excess electrons

primarily reduce the ligands. However, in the Fe molecular fragment, both the Fe

centers and the ligands are reduced.

n CωB97,n ∆ωB97,n CM11,n ∆M11,n

0 7.62 0 7.88 0
-2 7.12 -0.50 7.65 -0.23
-4 6.40 -1.22 6.93 -0.95
-6 5.85 -1.77 6.23 -1.55

Table 5.3: The sum of the atomic charges (CωB97,n) at the six Fe centers com-
puted for the fragments with total charge n = 0,−2,−4 and −6. ∆ωB97,n and ∆M11,n

represent the change with respect to the n = 0 fragment.

These results suggest that the probable mechanism of electron transport in the
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Cr and Fe systems is via thermally activated hopping. The computation of the

relative electrical conductivities of these systems is a work in progress.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

The dissertation is primarily focused on the study of charge transport in nonadi-

abatic systems using the path integral formalism. It relies on the equivalence of

the statistical properties of a classical ring polymer and that of a quantum par-

ticle. The multi-state ring polymer instanton was introduced in Chapter 2 and

shown to compute nonadiabatic rates accurately in the coherent tunneling regime.

The method accurately predicts the electron transfer rates for over three orders

of magnitude of electronic coupling, ranging from the weak to strong coupling

between the donor and acceptor states. Chapter 3 extends the RPI formulation

to the condensed phase via system-bath and reduced dimensional RP formula-

tions. The two formalisms were developed for both adiabatic and multi-state

condensed phase systems; it was demonstrated that the sbRPIs and rRPIs agreed

with each other. The incoherent tunneling rate was determined using the reduced

dimensional formulation of the RP and the “Im F” approximation to it and the

results obtained agreed with the benchmark QUAPI rate constants, to within a

factor of order unity. Chapter 4 presents preliminary results towards the study

of multidimensional multi-state systems. In particular, nonadiabatic systems with

conical intersections were studied; the MF-RPI captures the accurate tunneling

pathway as opposed to the SS-RPI which excludes the excited state. Also, pre-

liminary results combining transition path sampling methods with RPMD were

explored. Chapter 5 describes the electronic structure of Fe and Cr based metal-

organic frameworks. It explores the localization properties of electrons added to

a representative six-center molecular fragment of the MOF; the prediction of the

conductivity trends is a work in progress.

In the context of the multi-state RPI methods discussed in this thesis, two beads
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are constrained to the crossing of the diabatic states. Algorithmic improvements

that obviate this constraint, and that which would allow for the determination

of the instanton without performing multiple calculations would prove extremely

useful in extending the method to the study of realistic molecular systems. An-

other avenue that is of considerable interest is the development of a multi-state

microcanonical instanton rate theory that works in both the adiabatic and nona-

diabatic limits. The combination of TPS with RPMD and MF-RPMD will be

particularly useful in the identification of reaction coordinates of adiabatic and

multi-state quantum systems. The centroid coordinate alone was used to compute

the committor here; next steps to study the Eckart barrier would be include the

low frequency normal modes of the RP in the analysis to determine more accurate

committors and RP TSs.
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APPENDIX A

ZERO MODE OF THE MEAN-FIELD RING POLYMER

INSTANTONS

The MF action from the continuous (N → ∞) limit of the effective MF ring polymer

potential

SMF = lim
N→∞

βNVMF

= lim
N→∞

βN

 M
2β2

N

∑
α

(Rα − Rα+1)2 − 1
βN

lnΓMF


=

∫ β

0
dτ

M
2

(
dR(τ)

dτ

)2

− d ln |ΓMF[R(τ)]|
dτ


=

∫ β

0
dτ

M
2

(
dR(τ)

dτ

)2

+VMF

 (A.1)

Here, −d ln |ΓMF[R(τ)]|
dτ is defined as VMF for clarity of presentation. Note that in

obtaining Eq. A.1, the finite difference definition of a derivative for the nuclear

term is used, and the integral of a differential operator in τ for the ln |ΓMF| term is

introduced. Setting the first variation of the action to zero, Newton’s equations in

imaginary time on the inverted potential is obtained,

δSMF = −M
d2R(τ)

dτ2 + ∇RVMF = 0. (A.2)

The MF instanton is the solution to these N × f equations.

The instanton is an unstable periodic orbit, and this is established by calculat-

ing the eigenvalues of the stability matrix. The stability matrix from the second

variation of the action δ2SMF is,

ΛMF ≡ −M
d2

dτ2 + ∇R∇T
RVMF. (A.3)

Differentiating Eq. A.2 with respect to imaginary time, it is easy to see

d
dτ

[
−M

d2R(τ)
dτ2 + ∇RVMF

]
= 0[

−M
d2

dτ2 + ∇R∇T
RVMF

]
Ṙ(τ) = 0 × Ṙ(τ). (A.4)
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It is clear that Eq. A.4 is the eigenvalue equation corresponding to operator ΛMF

and the zero-mode is the velocity mode, Ṙ(τ), with a zero eigenvalue. This anal-

ysis can be extended in a straightforward manner to MV-RPI and the reduced

dimensional single surface and multi-state RPIs.
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APPENDIX B

ATOMIC COORDINATES FOR THE FE AND CR MOLECULAR

FRAGMENTS

The coordinates for the symmetry unique atoms alone are provided below for the Fe

and Cr systems. Both the fragments considered here contain a C3 axis of symmetry

passing through the center of the ring, perpendicular to it.

C 6.0 -6.13047 0.60269 1.26231
C 6.0 1.81696 11.75210 1.26107
C 6.0 -0.41036 -11.88191 1.25621
C 6.0 7.53708 -0.73251 1.25497
C 6.0 -7.52801 0.73144 -1.26028
C 6.0 0.41942 11.88084 -1.26152
C 6.0 -1.81138 -11.75303 -1.26415
C 6.0 6.13606 -0.60363 -1.26539
C 6.0 -11.76632 -5.72081 -0.61814
C 6.0 -3.81889 5.42859 -0.61938
C 6.0 1.89738 -7.05611 -0.62229
C 6.0 9.84481 4.09328 -0.62353
C 6.0 -9.84825 -4.08732 0.61689
C 6.0 -1.90082 7.06209 0.61565
C 6.0 3.81590 -5.42152 0.61272
C 6.0 11.76333 5.72789 0.61148
C 6.0 -8.91323 5.90960 0.61643
C 6.0 10.46641 -7.90470 0.60796
C 6.0 -3.19620 -6.56877 0.61205
C 6.0 4.75123 4.58063 0.61081
C 6.0 -4.75246 -4.58104 -0.61440
C 6.0 3.19498 6.56837 -0.61564
C 6.0 -10.47113 7.89522 -0.61075
C 6.0 8.90851 -5.91907 -0.61922

Table B.1: Coordinates of symmetry unique Carbon atoms for the Fe molecular
fragment
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Cl 17.0 -8.34911 0.80788 -2.72105
Cl 17.0 -0.40167 11.95728 -2.72229
Cl 17.0 -2.63417 -11.67696 -2.72427
Cl 17.0 5.31327 -0.52755 -2.72551
Cl 17.0 -5.31086 0.52494 2.72353
Cl 17.0 2.63658 11.67434 2.72229
Cl 17.0 0.40575 -11.96054 2.71957
Cl 17.0 8.35318 -0.81115 2.71833
Fe 26.0 7.20756 3.37574 -0.00064
Fe 26.0 6.45511 -4.71057 -0.00594
O 8.0 -12.72180 -6.43535 -1.05588
O 8.0 -4.77437 4.71405 -1.05712
O 8.0 0.94100 -7.76886 -1.05985
O 8.0 8.88844 3.38053 -1.06109
O 8.0 -8.89129 -3.37642 1.05678
O 8.0 -0.94385 7.77298 1.05554
O 8.0 4.77248 -4.70909 1.05108
O 8.0 12.71992 6.44032 1.04984
O 8.0 -8.11223 5.02544 1.05370
O 8.0 11.26740 -8.78885 1.04523
O 8.0 -2.39766 -7.45609 1.04838
O 8.0 5.54977 3.69331 1.04714
O 8.0 -5.55034 -3.69288 -1.04970
O 8.0 2.39709 7.45652 -1.05094
O 8.0 -11.26849 8.78376 -1.04656
O 8.0 8.11115 -5.03054 -1.05503
H 1.0 -11.51350 9.48590 -0.23602
H 1.0 10.95665 -9.09843 2.05398

Table B.2: Coordinates of symmetry unique Chrloein, Iron, Oxygen and Hydrogen
atoms for the Fe molecular fragment
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C 6.0 -0.45504 5.97816 1.16144
C 6.0 11.84556 0.07222 1.16144
C 6.0 -11.72002 -1.72150 1.16144
C 6.0 0.58057 -7.62743 1.16144
C 6.0 -0.58057 7.62744 -1.15975
C 6.0 11.72002 1.72150 -1.15975
C 6.0 -11.84556 -0.07222 -1.15975
C 6.0 0.45504 -5.97815 -1.15975
C 6.0 -7.70662 10.52935 -0.59750
C 6.0 4.59397 4.62341 -0.59750
C 6.0 -6.67102 -3.07624 -0.59750
C 6.0 5.62957 -8.98218 -0.59750
C 6.0 -5.62957 8.98218 0.59919
C 6.0 6.67101 3.07624 0.59919
C 6.0 -4.59397 -4.62341 0.59919
C 6.0 7.70662 -10.52934 0.59919
C 6.0 4.20521 9.73076 0.59919
C 6.0 -7.05977 2.03111 0.59919
C 6.0 5.24082 -3.87483 0.59919
C 6.0 -6.02417 -11.57448 0.59919
C 6.0 6.02416 11.57448 -0.59750
C 6.0 -5.24083 3.87483 -0.59750
C 6.0 7.05977 -2.03111 -0.59750
C 6.0 -4.20522 -9.73076 -0.59750

Table B.3: Coordinates of symmetry unique Carbon atoms for the Cr molecular
fragment
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Cr 24.0 4.44540 -6.50385 0.00084
Cr 24.0 -3.40979 -7.10175 0.00084
O 8.0 -8.64485 11.31462 -1.08834
O 8.0 3.65574 5.40868 -1.08834
O 8.0 -7.60925 -2.29098 -1.08834
O 8.0 4.69134 -8.19691 -1.08834
O 8.0 -4.69134 8.19691 1.09003
O 8.0 7.60925 2.29098 1.09003
O 8.0 -3.65574 -5.40868 1.09003
O 8.0 8.64485 -11.31461 1.09003
O 8.0 3.39664 8.81254 1.09003
O 8.0 -7.86834 1.11289 1.09003
O 8.0 4.43225 -4.79305 1.09003
O 8.0 -6.83273 -12.49270 1.09003
O 8.0 6.83273 12.49271 -1.08834
O 8.0 -4.43226 4.79305 -1.08834
O 8.0 7.86834 -1.11288 -1.08834
O 8.0 -3.39665 -8.81254 -1.08834
H 1.0 -0.62872 8.26005 -2.04855
H 1.0 11.67187 2.35411 -2.04855
H 1.0 -11.89371 0.56039 -2.04855
H 1.0 0.40688 -5.34555 -2.04855
H 1.0 -0.40688 5.34555 2.05024
H 1.0 11.89371 -0.56038 2.05024
H 1.0 -11.67187 -2.35411 2.05024
H 1.0 0.62872 -8.26004 2.05024
H 1.0 7.21638 13.11902 -0.26947
H 1.0 -9.05928 11.93855 -0.28275

Table B.4: Coordinates of symmetry unique Cr, Oxygen, and Hydrogen atoms for
the Cr molecular fragment
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