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The increased sensitivity and spatial resolution of the ALFALFA HI survey has

resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These

objects are good candidates to represent low mass gas-rich galaxies in the Local

Group and Local Volume with stellar populations that are too faint to be detected

in extant optical surveys. This idea is referred to as the “minihalo hypothesis”.

We identify the UCHVCs within the ALFALFA dataset via the use of a 3D

matched filtering signal identification algorithm. UCHVCs are selected based on

a compact size (< 30′), separation from Galactic HI (| vLSR| > 120 km s−1) and iso-

lation. Within the 40% complete ALFALFA survey (α.40), 59 UCHVCs are identi-

fied; 19 are in a most-isolated subset and are the best galaxy candidates.

Due to the presence of large HVC complexes in the fall sky, most notably the

Magellanic Stream, the association of UCHVCs with existing structure cannot be

ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs

is consistent with simulations of dark matter halos within the Local Group. In

addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent

with both theoretical and observational predictions for low mass gas-rich galax-

ies. Importantly, the HI properties of the UCHVCs are consistent with those of

two recently discovered low mass gas-rich galaxies in the Local Group and Local

Volume, Leo T and Leo P.

Detailed follow-up observations are key for addressing the minihalo hypothe-



sis. High resolution HI observations can constrain the environment of a UCHVC

and offer evidence for a hosting dark matter halo through evidence of rotation

support and comparison to theoretical models. Observations of one UCHVC at

high resolution (15′′) reveal the presence of a clumpy HI distribution, similar to

both low mass galaxies and circumgalactic compact HVCs. An extended enve-

lope containing ∼ 50% of the HI flux is resolved out by the array configuration;

observations at lower spatial resolution can recover this envelope and constrain

the overall morphology and environment.

The most direct way to address the minihalo hypothesis is by detection of a

stellar counterpart, immediately identifying a UCHVC as a galaxy and allowing

a distance to be measured. We have selected a sample of best galaxy candidates

from the UCHVCs based on isolation, compactness, surface brightness, and kine-

matics. We are undertaking targeted optical observations of these systems in two

filters to conduct a focused search for a coherent stellar population. Observations

are in-hand for 29 systems, and an analysis of a single system is presented as a

test case. These data were obtained via “shared-risk” observing, and analysis for

all systems is awaiting further pipeline development.

If (some of) the UCHVCs represent nearby low mass galaxies, they will help us

understand the evolution of the lowest mass galaxies and address the small scale

crisis in cosmology. Understanding the nature of the UCHVCs is a complicated

and ongoing project. Both optical and HI synthesis imaging data will continue

to be acquired and analyzed in order to address the minihalo hypothesis. Future

HI surveys of nearby galaxy groups will be able to robustly address the minihalo

hypothesis by being sensitive to UCHVCs in other galaxy groups.
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CHAPTER 1

INTRODUCTION

The concordance ΛCDM cosmology does an excellent job of matching obser-

vations of the Universe on large scales, including large scale structure of galaxies

and fluctuations in the cosmic microwave background. However, on small scales

there exist discrepancies between predictions based on ΛCDM and observations

of low mass galaxies. These discrepancies can be studied in depth in the Local

Group (LG).

The LG is a unique observational environment due to its proximity – intrinsi-

cally faint galaxies can be studied in great detail, including resolved stellar pop-

ulation studies. This has led to the development of “near field cosmology” – the

study of the LG and its galaxies in great detail as a test of cosmological models on

small scales.

The classical dwarf galaxies of the LG, discovered before the advent of wide-

field optical surveys using CCDs, consist of 38 systems [Mateo, 1998]. The dwarf

galaxies are either a satellite galaxy bound to the Milky Way (MW) or M31 or

a general member of the LG isolated from the massive spiral galaxies. There is

clear morphological segregation in the LG with the bound satellites being gas-

poor dwarf spheroidals (dSphs) and dwarf ellipticals (dEs) while the isolated LG

dwarfs are generally gas-rich dwarf irregulars (dIs) [Grebel and Gallagher, 2004].
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1.1 The Small Scale Crisis

The first N-body simulations of the LG revealed a factor of ∼100 more satellite

galaxies than observed in the LG [Klypin et al., 1999, Moore et al., 1999]; this mis-

match in numbers is often referred to as the “missing satellites problem” from the

title of one of the early papers. This discrepancy was also universally predicted

by semi-analytic galaxy formation models as a mismatch between the dark mat-

ter halo mass function and the galaxy luminosity function at the low mass end

[Kauffmann et al., 1993]. Recent surveys in the optical and radio and continue

to see this discrepancy as a difference between the predicted slope for the mass

function of dark matter halos versus the observed slopes of the luminosity func-

tion [Blanton et al., 2005], the neutral hydrogen (HI) mass function [Martin et al.,

2010], and the velocity width function [Papastergis et al., 2011].

In addition to the lack of observed low mass galaxies, there are outstanding

challenges in matching the observed properties of low mass galaxies to dark mat-

ter halos from simulations. The rotation curves in dwarf and low surface bright-

ness (LSB) galaxies do not rise as fast as predicted for dark matter halos [e.g.

Moore, 1994, McGaugh et al., 2001, de Blok et al., 2001b, Blais-Ouellette et al.,

2001, de Blok and Bosma, 2002, Marchesini et al., 2002]. When rotation curves are

converted to density profiles of galaxies, the result is that dwarf and LSB galaxies

show the presence of a ∼kpc-sized constant density core while dark matter sim-

ulations predict that dark matter halos have a cuspy core [de Blok et al., 2001a,

de Blok and Bosma, 2002]. de Blok et al. [2003] definitively examined the obser-

vational biases that could affect the determination of rotation curves for galaxies

and find that the differences between the observed and predicted rotation curves
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for dwarf galaxies are real.

The most recent mismatch between simulations and observations is the “too

big to fail” problem. The naive expectation is that the most massive subhalos

would host the luminous satellites of the MW. However, high resolution simu-

lations of MW analogs find that the properties of the most massive subhalos are

inconsistent with the luminous dSphs of the MW. For example, the most massive

subhalos in simulations are too dense to match observations of dSphs [Boylan-

Kolchin et al., 2011] and have larger maximum circular velocities (i.e., total mass)

than the observed dSphs [Boylan-Kolchin et al., 2012]. Generally it appears that

the most massive subhalos of simulations are more massive than the observed

luminous satellite galaxies.

1.2 Solving the Problem

The discrepancies outlined in the previous section are collectively referred to as

the “small scale crisis” in cosmology. In the case of the missing satellites prob-

lem, there are two clear ways to solve the problem: find the missing galaxies or

motivate a modification to simulations that produces fewer low mass galaxies.

Modifications to simulations should also address the other aspects of the small

scale crisis, and this serves as a constraint for any new or modified physics. The

two main ways to produce fewer luminous galaxies in simulations are to change

the behavior of dark matter to be “warm”, avoiding clustering on small scales, or

to incorporate baryonic physics and feedback to more accurately trace the evolu-

tion and location of baryons, with the net result of substantial baryon loss in the
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lowest mass halos. Generally, the second approach to modifying simulations is

accepted as the solution to the “small scale crisis”. There are (at least) three major

effects to consider when accurately modeling baryons.

1.2.1 Relative Velocity of Dark Matter and Baryons

Recently, Tseliakhovich and Hirata [2010] pointed out that there is a relative ve-

locity offset between baryons and dark matter early in the Universe and that this

relative motion leads to a suppression of the first bound objects. Subsequent work

has expanded on this to find that the bulk motion of the baryons suppresses the

low mass halos that can host luminous galaxies [Fialkov et al., 2012, Bovy and

Dvorkin, 2013], helping to bring predictions for low mass halos into agreement

with observations of low mass galaxies. In addition, this bulk motion can delay

reionization in some parts of the Universe as the low mass halos that are the sites

of first star formation are not able to accrete baryons [Maio et al., 2011].

1.2.2 Reionization

After the formation of the first stars and galaxies, UV radiation floods the Uni-

verse, ionizing and heating the intergalactic medium (IGM) to a temperature of

∼ 104 K. Reionization impacts small scale structure by preventing low mass halos

from becoming luminous through photoevaporation of gas and by preventing the

collapse of gas onto halos. Barkana and Loeb [2007] show that halos with circu-

lar velocities less than 10 km s−1 can lose all their gas to photoevaporation while

halos with circular velocities up to 30 km s−1 can have substantial gas loss from
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photoevaporation. In addition, heating the gas raises the Jeans mass and halos

with circular velocities less than 30 km s−1 can no longer accrete fresh gas after

reionization. Hoeft and Gottlöber [2010] find a characteristic mass of 6 × 109 h−1

M⊙ for the transition between halos that are not affected by reionization and those

with substantial baryon loss (but their simulations show that these halos may still

contain some observable baryons).

1.2.3 Star Formation Feedback

Star formation feedback, including supernova (SN) explosion and winds from star

formation, can play an important role in determining the baryon content of low

mass galaxies. Ferrara and Tolstoy [2000] find that dwarfs with total masses .

5 × 106 M⊙ have all their gas blown away while dwarfs with masses up to ≃ 109

M⊙ lose mass in outflows. In addition to resulting in depleted baryon content (and

contributing metals to the intergalactic medium), SN feedback plays an important

role in determining the mass profile of dwarf galaxies.

Navarro et al. [1996] and Mashchenko et al. [2008] initially showed that SN-

driven winds expel large amounts of gas from low mass galaxies, resulting in a

reduced central density, helping to explain the observed density profiles. More

recently, Zolotov et al. [2012], Governato et al. [2012] and Teyssier et al. [2013]

have shown that a bursty star formation history (SFH) can create substantial cores

in low mass dark matter halos. However, these simulations do find that extremely

low mass halos (Mvir < 109 or Mstar < 104.5 M⊙) do not have a cored profile as they

cannot host the bursty SFH necessary to drive the density profile change.
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A cored density profile affects the evolution of low mass halos as they become

more susceptible to tidal stripping. Brooks et al. [2013] modified the density pro-

files of subhalos in simulations based on the results of the aforementioned work.

This correction enhances tidal stripping of the subhalos, and they find agreement

in the total number of luminous satellite galaxies with observations of the dSphs

of the MW. However, Peñarrubia et al. [2010] find that the dSphs have interacted

substantially with the MW in the past, and that they need a cuspy profile to have

avoided substantial tidal stripping, and Boylan-Kolchin et al. [2012] find that the

masses of the dSphs are too low for the SN-driven processes to have a substan-

tial effect on the density profile. Simulating the processes that drive and affect

baryon evolution is an active area of work, aided by observations that can place

constraints on the simulations.

1.3 Constraining the Problem by Finding New Galaxies

One way to resolve the missing satellites problem is to find some of the missing

galaxies. Newly discovered systems missed by previous observations will pre-

sumably inhabit a parameter space of extremely low luminosities, surface bright-

nesses and masses. These systems provide laboratories for testing and constrain-

ing simulations as they are strongly affected by baryon loss and redistribution.
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1.3.1 Ultra-faint Dwarf Galaxies

The census of classical LG dwarf galaxies was limited by sensitivity to low sur-

face brightness galaxies. The advent of wide-field optical surveys, specifically the

Sloan Digital Sky Survey (SDSS), increased the number of known MW satellites

with the discovery of the ultra-faint dwarf galaxies (UFDs). The UFDs have lumi-

nosities from 102 − 105 L⊙, half-light radii from 20-350 pc and M/L ratios of 100

to over 1000, total masses within the baryon extent of 106 − 107 M⊙, generally old

stellar populations, and are located at distances of tens to a few hundred kpc from

the MW [Martin et al., 2008, Simon and Geha, 2007]. The name ultra-faint is well

earned – the total luminosities of these objects are comparable to those of globular

clusters, but they are clearly galaxies as their kinematics indicate they are dark

matter dominated [Simon and Geha, 2007].

The discovery of UFDs is exciting and opens many possibilities into address-

ing the fundamental questions of how marginal galaxies form. Brown et al. [2012]

present deep color magnitude diagrams (CMDs) from the Hubble Space Telescope

(HST) for three UFDs. Their preliminary analysis of the SFH of these systems indi-

cates that there is no intermediate-aged population and the stellar ages are within

∼ 1 Gyr for all three systems, indicating that a global event, such as reionization,

terminated the star formation.

Unfortunately, the vast majority of UFDs are located within the virial radius of

the MW, making it difficult to understand which of their properties are intrinsic

and which are the result of interaction with the MW. Bovill and Ricotti [2011] pre-

dict based on simulations that the vast majority of UFDs have been modified by

tides; this is supported by observational evidence of tidal disruption [Simon and
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Geha, 2007, Muñoz et al., 2010, Sand et al., 2012]. This makes it nearly impossible

to determine which of the UFD properties, such as sizes and kinematics, are the re-

sult of evolution and which are result of environmental influence from interaction

with the MW. Bovill and Ricotti [2011] predict the existence of ∼100 fossil galaxies

with luminosities less than 106 L⊙ that have remained isolated from the MW at

distances of 400 kpc to 1 Mpc. A fossil galaxy is a system that formed a stellar

population before reionization and has not merged with other galaxies since then;

it is a relic of the first galaxies that formed. The properties of these systems would

be the result of isolated evolution and could be used to constrain the astrophysical

processes that impact baryon content in low mass halos.

1.3.2 Leo T: A Gas-Rich Ultra-faint Dwarf

One UFD discovered in SDSS is of particular note as it may represent a fossil

galaxy. Leo T lies at distance of 420 kpc, safely outside the virial radius of the MW

and was, until recently, the only gas-rich UFD discovered. Leo T is a star-forming

galaxy with a HI mass of 2.8 × 105 M⊙, an HI diameter of 600 pc, an indicative

dynamical mass within the HI extent of ∼3.3× 106 M⊙, a total-mass-to-light ratio

within the HI extent of 56, and a stellar mass of ∼1.2 × 105 M⊙ [Ryan-Weber et al.,

2008]. Given its gas content and distance, Leo T likely represents an unperturbed

UFD, allowing environmental effects to be disentangled from the evolution of the

lowest-mass galaxies. Indeed, Rocha et al. [2012] argue that Leo T is on its first

infall to the MW. Leo T is on the edge of detectability for SDSS; were it located fur-

ther away, its stellar population would not have been detected [Kravtsov, 2010].

UFDs with properties similar to Leo T but located further from the MW or with
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fainter stellar populations would have been overlooked in the automated searches

of SDSS. However, the HI content of Leo T would be detectable in a sensitive, wide

area HI survey, raising the possibility that more isolated, gas-rich UFDs await dis-

covery.

1.4 High Velocity Clouds as Dark Galaxies

The idea that galaxies can exist with HI as the only easily detectable component is

not a new one; high velocity clouds (HVCs) have been considered many times as

possible tracers of dark matter halos. HVCs are associations of neutral hydrogen

with anomalous velocities compared to those expected for a differentially rotating

Galactic disk. Since their discovery by Muller et al. [1963], much thought has been

given to understanding the origin of the HVCs. Oort [1966] was among the first

to critically consider different origins, and Wakker and van Woerden [1997] offer

a thorough review. Possible origins include cold gas accretion, a Galactic fountain

model and gas in dark matter halos. As HI phenomena, HVCs range from rela-

tively isolated clumps less than a degree to vast complexes spanning hundreds of

degrees; it is clear that they likely arise from a variety of origins. Determining the

nature of HVCs is hampered by the lack of direct distance information.

One intriguing hypothesis has been that HVCs represent dark matter domi-

nated “dark” galaxies. Considered by Oort [1966], this scenario was originally

ruled out as it could not explain a majority of the observed HVCs at the time. In

their review, Wakker and van Woerden [1997] summarize the objections against

the galaxy hypothesis for HVCs. The HVCs considered at the time were rela-
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tively bright and hence would correspond to relatively massive objects if at LG

distances. As massive objects, the lack of detection of similar HI clouds in other

galaxy groups and narrow linewidths (low dynamical masses) are difficult to ex-

plain. In addition, the velocity distribution of the HVCs considered was offset

from the velocity distribution of the LG galaxies, pointing to a different dynami-

cal origin.

With the advent of large-scale, sensitive, blind HI surveys, interested was re-

vived in HVCs as tracers of dark matter halos. Blitz et al. [1999] and Braun and

Burton [1999] both postulated a LG origin for HVCS; Braun and Burton [1999]

specifically proposed that compact HVCs (CHVCs), identified by their isolation

and undisturbed spatial structure, were good candidates to represent dark matter

halos throughout the LG. Further work since the discovery of the CHVC popu-

lation suggests that they most likely represent a circumgalactic population; the

HI masses and diameters of these objects are larger than theoretical and observa-

tional predictions. Section 3.4.1 contains an in-depth discussion on the nature of

CHVCs.

1.5 Ultra-compact High Velocity Clouds as Gas-Rich UFDs

The Arecibo Legacy Fast ALFA (ALFALFA) HI line survey is the first blind HI

survey capable of robustly surveying the LG for gas-rich low mass dark matter

halos. Exploiting the huge collecting area of the Arecibo 305m telescope1, AL-

FALFA has the sensitivity to detect 105 M⊙ of HI with a linewidth of 20 km s−1 at

1The Arecibo Observatory is operated by SRI International under a cooperative agreement with
the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad
Metropolitana, and the Universities Space Research Association.
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1 Mpc. This sensitivity limit represents the ability to detect objects with HI and

dynamical masses comparable to Leo T throughout the volume of the LG.

1.5.1 Ultra-compact High Velocity Clouds in ALFALFA

The increased sensitivity and resolution of ALFALFA has resulted in the detection

of ultra-compact high velocity clouds (UCHVCs). Giovanelli et al. [2010, hereafter

G10] originally discussed a set of UCHVCs that were consistent with being gas-

bearing low mass dark matter halos at ∼1 Mpc; this interpretation of the UCHVCs

was referred to as the minihalo hypothesis. In this thesis, I expand on this work

and present a catalog of UCHVCs for the current 40% ALFALFA data release,

termed α.40 [Haynes et al., 2011]. These objects have HI diameters of 4′ − 20′,

HI integrated flux densities of 0.1 Jy km s−1−8 Jy km s−1, and velocity widths of

15−70 km s−1. If located at distances of ∼1 Mpc, they have HI masses of ∼ 105−106

M⊙, diameters of ∼ 2− 3 kpc and indicative dynamical masses of ∼ 107− 108 M⊙.

I offer further details on the minihalo hypothesis for this class of objects, drawing

special attention to the properties of Leo T and Leo P (see below). The small

angular diameters and low integrated flux densities allow the UCHVCs presented

here to overcome objections raised against previous HVC samples proposed to

represent gas-rich galaxies in the LG.

1.5.2 Proof of Concept: Leo P

The recent discovery of the star forming dwarf galaxy Leo P from ALFALFA sur-

vey data shows that galaxies similar to Leo T in the Local Volume may be identi-
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fied via their 21cm line emission [Giovanelli et al., 2013, Rhode et al., 2013, Skill-

man et al., 2013]. Leo P was discovered during the normal course of identifying

HI detections within the ALFALFA survey when it was noticed that one UCHVC

could be associated with an irregular, lumpy light distribution in the SDSS images

[Giovanelli et al., 2013]. Follow-up optical observations resolved a stellar popu-

lation and a single HII region, confirming that the UCHVC is in fact a low mass

galaxy, Leo P. It is important to note that Leo P was confirmed to be a galaxy be-

cause its young, blue stellar population was barely visible in the SDSS images;

without recent star formation, the underlying older population of Leo P would

not have been visible at all in the SDSS images. Leo P was discovered by its HI

signature, and its existence strongly argues that other very low mass and (nearly)

starless objects are included among the ALFALFA UCHVCs.

1.6 Overview of the Thesis

This dissertation takes advantage of the sky coverage, increased sensitivity, and

angular and spectral resolution of the ALFALFA HI survey to search for candidate

optically faint gas-rich low mass galaxies in the nearby Universe that have been

missed by extant optical surveys.

In Chapter 2, I present the signal extraction algorithm used to identify the

UCHVCs and discuss the completeness of the resulting source detections. Chap-

ter 3 presents a catalog of UCHVCs from the α.40 footprint and discusses these

objects as a class in the context of the minihalo hypothesis.

The focus then turns to further exploration of the minihalo hypothesis for the
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UCHVCs via detailed follow-up observations. In Chapter 4 I present the results

of high resolution HI synthesis imaging with the Karl G. Jansky Very Large Array

(VLA). In Chapter 5 I motivate the selection of a subset of UCHVCs for follow-up

optical imaging and present preliminary results for one system.

I summarize my findings and suggest future directions for understanding the

UCHVCs in the Conclusion (Chapter 6).

The Appendices include the signal extraction code discussed in Chapter 2 and

full details on the data calibration and reduction for the VLA observations pre-

sented in Chapter 4 and the WIYN/pODI observations presented in Chapter 5.
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CHAPTER 2

AUTOMATED SIGNAL IDENTIFICATION OF ULTRA-COMPACT HIGH

VELOCITY CLOUDS IN THE ALFALFA HI SURVEY

The first step to building a catalog and examining the minihalo hypothesis

for the UCHVCs is to identify the UCHVCs within the ALFALFA dataset. The

UCHVCs are distinguished from typical extragalactic HI detections by narrow

linewidths and extended spatial sizes, motivating the development of a special-

ized signal extraction algorithm optimized for UCHVC identification. In this

Chapter, I present a 3D matched filtering algorithm designed and implemented

specifically for UCHVC identification. The standard ALFALFA source identifica-

tion scheme is described, and the necessity of this algorithm is motivated. A brief

summary of the methodology and implementation of the algorithm is given. The

effectiveness of the algorithm is tested with the insertion of simulated sources. In

addition, the simulated sources serve as a test of the accuracy of measured source

parameters reported in the catalog in Chapter 3 and the impacts of the isolation

criteria on the selection of UCHVCs.

2.1 ALFALFA, Source Identification, and UCHVCs

Before designing a specialized scheme for the UCHVCs, it is important to under-

stand the ALFALFA dataset, the standard source identification scheme and what

the motivates the need for a separate procedure for the UCHVCs.
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2.1.1 The ALFALFA HI Data

ALFALFA surveys the sky using a seven–feed multi-beam receiver (ALFA) in

“drift” mode: the telescope is normally parked along the local meridian and 7

tracks (2 polarizations each) of spectral data of 4096 channels are acquired con-

tinuously and recorded at a 1 Hz rate as the sky drifts by. All regions of the sky

are visited twice with the two visits typically a few months apart in time. Upon

completion of data taking of a region of the sky, data cubes of 2◦.4 × 2◦.4 in spatial

coordinates are produced and sampled over a regular grid of 1′ spacing in R.A.

and Dec. After Hanning smoothing to 11 km s−1 resolution, the rms noise per

channel of the data is typically 2 to 2.5 mJy per beam. The data cubes are stored

in IDL structures referred to as grids; generally speaking, the data is separated

into four different grids based on velocity range, and the lowest velocity grids (of

interest for the UCHVCs) cover the velocity range [-2000, 3000] km s−1. The main

component of the grid structure is the data array which contains a flux value (in

mJy) for each polarization at every sampled (R.A., Dec., velocity) point. The spac-

ing between adjacent grids (in both R.A. and Dec.) is 2◦ so that each grid overlaps

with its contiguous neighbors by 0.2◦ (12′).

2.1.2 Source Identification in the ALFALFA Dataset

Saintonge [2007, hereafter S07] developed an automated signal extractor for the

ALFALFA dataset. The algorithm of S07 is a one-dimensional matched filtering

scheme; the philosophy of matched filtering is discussed in Section 2.2.1. The

spectrum in each pixel of an ALFALFA grid is matched to a series of Hermite

15



polynomial templates. The detection of a galaxy requires the detection of spec-

tra of similar velocity widths with a high significance in 5 or more contiguous

pixels. After the generation of a preliminary source catalog from the automated

algorithm, each source in the catalog is visually inspected and remeasured. The

measurement tool fits ellipses to contours of constant flux density level and de-

livers a source position, given by the center of the ellipse encircling half of the

total flux density of the source, source sizes (as the major and minor axes of said

ellipse), flux density, velocity and linewidth.

2.1.3 Motivation for a Specialized Algorithm

In comparison with the extragalactic sources identified in the α.40 catalog, the

UCHVCs are typically spatially extended and have narrow velocity widths. Fig-

ure 2.1 illustrates this by showing the distribution of HI angular diameters (θHI )

and velocity full width half maximums (FWHM; W50) for the α.40 extragalactic

sources, α.40 HVCs and the UCHVCs of this work. The UCHVCs are spatially

extended compared to the extragalactic sources but generally small compared to

the full HVC population of the α.40 survey. The minimum velocity width used in

the templates of the S07 identification algorithm is 30 km s−1, the typical maximum

width of the UCHVCs. For these reasons, a special source identification algorithm

was developed for the UCHVCs in addition to the standard ALFALFA pipeline.
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Figure 2.1: The distribution of HI angular diameters and full width half maximum
of the HI line (W50) for the UCHVCs (filled histograms), α.40 sources classified
as reliable extragalactic detections (unfilled histograms), and α.40 HVCs (hashed
histograms). The UCHVCs and HVCs occupy a small range of narrow veloc-
ity widths while the majority of extragalactic detections have broad lines.. The
UCHVCs are spatially large compared to the extragalactic detections but gener-
ally small compared to the α.40 HVCs.
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2.2 Methodology of the Algorithm

The UCHVC signal extractor is based on the philosophy of S07 but optimized for

UCHVCs with three main differences: a limited velocity range, three-dimensional

matched filtering, and the use of Gaussian templates. Only a limited velocity

range of the ALFALFA data set, -500 < v⊙ < 1000 km s−1, is selected as this is

the expected velocity range for objects within the Local Volume. Because only

a limited velocity range is examined, it is reasonable to perform a full three-

dimensional matched filtering, matching both the spectrum of the source and the

spatial position and size simultaneously. Gaussian templates are used to describe

both the spatial extent and the velocity profile of the UCHVCs. The velocity pro-

files of the UCHVCs arise mostly from thermal support and are observed to gen-

erally be Gaussian in shape. The spatial profile of the UCHVCs is unknown, but a

Gaussian captures the important behavior: an exponential decrease in the profile

and a well-defined half-light radius.

2.2.1 Matched Filtering

In a matched filtering algorithm, the form of the signal is assumed. The unknown

signal is then convolved with a series of templates; the highest convolution values

corresponds to the best-matched template.

We are assuming sources that are 3D Gaussians, described by a velocity distri-

bution of σvel and spatially symmetric with a size described by σsp. Our assumed
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signal has the form

s(x, y, z) = As exp(−(x− x0)
2/2σ2

s,sp) exp(−(y − y0)
2/2σ2

s,sp) exp(−(z − z0)
2/2σ2

s,vel),

(2.1)

where (x0, y0, z0) describe the location of the signal within a data cube and σs,sp

and σs,vel represent the spatial and velocity extent of the signal, respectively. The

templates have a similar form with a normalization of 1/
√

π1/2σt for each Gaus-

sian component. Explicitly, the templates have the form of

t(x, y, z) =
1

√

π3/2σ2
t,spσt,vel

exp(−x2/2σ2
t,sp) exp(−y2/2σ2

t,sp) exp(−z2/2σ2
t,vel) (2.2)

for various values of σt,sp and σt,vel. We wish to convolve the templates with the

unknown signal to find the best-matched template. As a convolution corresponds

to a multiplication in the Fourier domain (via the convolution theorem), we first

look at the Fourier transforms (FT) of the signal and templates.

S(k, l,m) = As

√

(2π)3σ4
s,spσ

2
s,vel exp(−π2k2(2σ2

s,sp))×

exp(−π2l2(2σ2
s,sp)) exp(−π2m2(2σ2

s,vel))×

e−2πikx0e−2πiky0e−2πikz0 (2.3)

T (k, l,m) =
√

(2/
√
π)3σ2

t,spσt,vel exp(−π2k2(2σ2
t,sp))×

exp(−π2l2(2σ2
t,sp)) exp(−π2m2(2σ2

t,vel)) (2.4)

Then the product of the FTs of the signal and template are:

S × T = As

√

(22
√
π)3σ4

s,spσ
2
t,spσ

2
s,velσt,vel exp(−π2k2(2σ2

s,sp + 2σ2
t,sp))×

exp(−π2l2(2σ2
s,sp + 2σ2

t,sp)) exp(−π2m2(2σ2
s,vel + 2σ2

t,vel))×

e−2πikx0e−2πiky0e−2πikz0 (2.5)
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And the inverse FT gives the convolution of the signal and template:

s⊗ t = As

√

2σ2
s,spσt,sp

σ2
s,sp + σ2

t,sp

√

2σ2
s,spσt,sp

σ2
s,sp + σ2

t,sp

√

2σ2
s,velσt,vel

σ2
s,vel + σ2

t,vel

×

exp[−(x− x0)
2/2(σ2

s,sp + σ2
t,sp)] exp[−(y − y0)

2/2(σ2
s,sp + σ2

t,sp)]×

exp[−(z − z0)
2/2(σ2

s,vel + σ2
t,vel)]. (2.6)

Clearly, for any given template the maximum value of the convolution of the

template with the signal occurs at (x0, y0, z0) - the location of the signal. Then the

question is, for what template is the convolution value the greatest? This can be

checked by looking for extremum values of

Atempl =

√

2σ2
s,spσt,sp

σ2
s,sp + σ2

t,sp

√

2σ2
s,spσt,sp

σ2
s,sp + σ2

t,sp

√

2σ2
s,velσt,vel

σ2
s,vel + σ2

t,vel

(2.7)

with respect to both σt,sp and σt,vel.

Looking first to σt,sp, we have:

∂Atempl

∂σt,sp
=

2σ2
s,sp

σ2
s,sp + σ2

t,sp

−
4σ2

s,spσ
2
t,sp

(σ2
s,sp + σ2

t,sp)
2

(2.8)

By setting the above equation equal to zero and solving for σt,sp, we find σt,sp =

σs,sp for the maximum convolution value. Similarly for σt,vel, we have:

∂Atempl

∂σt,vel
=

1

2

√

σ2
s,vel + σ2

t,vel

2σ2
s,velσt,vel

(

2σ2
s,vel

σ2
s,vel + σ2

t,vel

−
4σ2

s,velσ
2
t,vel

(σ2
s,vel + σ2

t,vel)
2

)

(2.9)

which results in σt,vel = σs,vel for the maximum value.

Then, the maximum convolution value occurs when the template parameters

exactly match those of the signal and has a value of Asσs,spσ
1/2
s,vel.
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2.3 Implementation

This section details the implementation of the matched filtering algorithm for the

ALFALFA HI data. First the chosen templates are justified. Then there is an expla-

nation of how the presence of Galactic hydrogen and galaxies is handled. Finally,

this section ends with a description of how sources are identified within the AL-

FALFA data using the automated algorithm and how the final source properties

are arrived at through visual inspection and measurement.

2.3.1 The Templates

Gaussian templates are used to describe both the spatial extent and the velocity

profile of the UCHVCs. The templates range from a spatial FWHM (θHI ) of 4′

to 12′ in steps of 2′ and velocity FWHM (W50) of 10 km s−1 to 40 km s−1 in steps

of 6 km s−1. The lower bound of the spatial templates is set by the beam size of

Arecibo. The upper size bound is near the median size value of the UCHVCs

and represents our emphasis on detecting ultra-compact clouds. UCHVCs can be

larger in size than 12′ and the matched filtering of the 12′ template to a UCHVC

with HI diameter greater than 12′ is robust (see Section 2.5). A W50 of 10 km s−1

represents the narrowest source that can be spectroscopically resolved in the AL-

FALFA data. The warm neutral medium is thought to be the dominant phase of

the ISM in minihalos [e.g. Sternberg et al., 2002]; for a reasonable range of tem-

peratures (6000 − 10000 K) for the warm neutral medium in the UCHVCs, ther-

mal broadening results in linewidths of ∼ 16 − 21 km s−1. Thus for a cloud of

40 km s−1 linewidth, we would expect the large scale motion to be ∼34 km s−1
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for the warmest clouds, after subtracting the thermal broadening contribution in

quadrature. For a typical size of 10′ at an indicative distance of 1 Mpc, the dynam-

ical mass based on this unbroadened linewidth is ∼ 108 M⊙. This is a reasonable

upper limit to the dynamical mass we may expect to be traced out for a more mas-

sive dark matter halo of . 1010 M⊙, and matches the dynamical mass traced by

the baryon extent of the presumably more massive galaxies in the Survey of HI in

Extremely Low-mass Dwarfs (SHIELD) sample [Cannon et al., 2011].

2.3.2 Galactic Hydrogen

The Galactic hydrogen is extremely bright and contains many small substructures.

ALFALFA was designed as an extragalactic HI survey and is not geared towards

dealing with the vast amounts of structure and high dynamic ranges present in

the Galactic HI. The simplified approach taken here is to identify and blank the

Galactic hydrogen before running the matched filter routine as otherwise the sig-

nal extraction algorithm would become bogged down by the bright structure in

the Galactic HI. Future work will involve using a methodology developed for the

GALFA-HI survey (a complementary ALFA survey designed to study the Galactic

HI) by Saul et al. [2012] to search the Galactic HI within the ALFALFA survey for

UCHVCs.

The Galactic hydrogen is identified by totaling the absolute value of each ve-

locity slice in a data cube. The median value for all slices is identified, and any

slice with a value greater than (median + 0.15*median) is identified as being Galac-

tic hydrogen. Each data point of this velocity slice is then replaced with the value

0.00. It should be noted that this methodology will occasionally identify slices of
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the data cube with extremely large and bright galaxies or HVCs as being Galac-

tic hydrogen. Generally, this is not of concern both because any clouds identified

near bright galaxies or HVCs would be considered associated rather than isolated

structures and because, as discussed below in Section 2.3.5, the data is visually in-

spected as source properties are measured by hand, allowing overlooked sources

to be identified. This also allows bright isolated clouds within the Galactic hydro-

gen to be identified as potential minihalo candidates.

2.3.3 Detection of Galaxies

This algorithm does not distinguish between galaxies and the UCHVCs of interest.

The templates used to identify (and then subtract) sources within the data cubes

are designed to be well matched to the UCHVCs. Specifically, they have narrow

velocity widths compared to what is typical for galaxies. As a result, galaxies typi-

cally show up as multiple detections as multiple templates are fit (and subtracted)

across the width of the galaxy. While this impacts the run time of the code slightly,

it does not affect the detection of UCHVCs and is typically a minor consideration

as the volume searched for the UCHVCs is small and so few galaxies fall within

it.

2.3.4 Identifying a Source

The methodology behind the signal extraction algorithm is described above in

Section 2.2. The practical implementation of the code is that a 2◦.4 × 2◦.4 data cube

is loaded. The cube is restricted to the [-524,1020] km s−1 range, and the Galactic
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hydrogen is identified and masked to zero. Then a loop begins to do the matched

filtering and identify the sources within the data. The loop is continued as long

as the last identified source is above the S/N threshold set with the initial call to

the algorithm; this threshold is typically set to 4.3. Briefly, the signal identification

loop undertakes the following steps (the full code is located in Appendix A):

• The convolution of the data cube with each of the 25 templates is done via

the fast Fourier transform (FFT)

• The location of a signal is identified as being the highest convolution value

for all templates.

• The best matched source properties are determined by interpolating the con-

volution values of all the templates at the location of the signal using a two-

dimensional four-degree polynomial.

• The peak and integrated flux of the source are derived from the data.

• It is checked that the source is strongly detected in at least 5 pixels.

• The S/N of the detected source is calculated.

• The difference between the two polarizations is checked.

• The source is subtracted from the data.

• If the source is above the S/N threshold and strongly detected in at least 5

pixels, it is added to the source catalog and the loop continues. If the source

has a polarization difference or is in a low weights region, a flag is activated

in the source catalog.

• If the source is below the S/N threshold, the algorithm writes the current

source catalog to file and exits.
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2.3.5 Measuring Source Properties

As in the standard ALFALFA pipeline, the automated signal identification algo-

rithm is first run over each data cube, producing a preliminary source catalog.

Then each source in the catalog is visually inspected and remeasured. The mea-

surement tool returns a source position, source sizes , flux density, velocity and

linewidth. During this stage, the data cubes are stepped through in velocity, and

the Galactic hydrogen is examined for any clearly isolated small clouds.

2.4 Creation of Test Data

In order to test the performance of the signal extraction algorithm, 100 random

grids were selected. These 100 grids all had 3 random artificial sources added to

them. The details of how the artificial sources were simulated are below. After

seeding the sources in the various grids, both the signal extraction algorithm de-

scribed here and that presented in S07 were run over the grids. The found sources

were recorded and automatically compared to the known simulated sources for

the analysis in the following sections.

2.4.1 Simulating Artificial Sources

The location of the artificial source is randomly selected. The sources are restricted

to the velocity range [-524, 1020] km s−1 and to lie within the central 2◦ of the data

cube. The velocity restriction corresponds to the expected range of velocities for

objects within the Local Volume and is the range of velocities considered in the
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signal extraction algorithm. The sources are restricted to the central 2◦ of the data

structure as sources that lie closer to the edge would be detected and measured in

the contiguous grid where the source lies closer to the center of the grid.

After determining the location of the source, the source properties are ran-

domly selected. Both the velocity and spatial extent are modeled as Gaussians.

The W50 value is randomly selected from the range [10, 40] km s−1and θHI is se-

lected from the range [4′, 30′], with up to a 5% difference in extent between the

R.A. and Dec. directions. The W50 range corresponds to the range of templates

used by the signal extractor; see Section 2.3.1 for a discussion of why this range of

W50 values is considered. The range of θHI is set by the beam size of Arecibo on

the lower end and by the maximum size of a cloud considered to be a UCHVC on

the upper end. The amplitude of the source is randomly selected from the range

[0.5, 16] mJy as testing indicates this a good range to have both strong sources and

sources at the noise level.

After determining all the properties of the source, it is added to the data cube.

The integrated and peak fluxes and the S/N of the source are then calculated from

the data. These calculated values and the chosen properties of the source (location,

W50, θHI ) are then recorded in an IDL structure for later comparative use.

2.5 The Completeness of the Algorithm

By comparing the properties of the detected sources to the non-detected sources,

we can understand the limitations of the signal extraction algorithm and the com-

pleteness of the catalog of UCHVCs. Figure 2.2 shows the fraction of sources
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detected (solid line) after running the signal extraction algorithm and the total

number of sources (dashed line) as a function of various source properties. The

S/N and recessional velocity of a source clearly have the strongest effect on the

detection. One important result to note is that the fraction of sources detected is

constant with spatial size; the maximum spatial size of the templates is θHI= 12′

but the sources with θHI up to 30′ are still robustly detected. The W50, θHI , and

cz plots show the uniform distribution of the simulated sources. The S/N plot

shows many more low signal than high signal sources. While the amplitudes

were drawn from a uniform distribution, the total signal of the source depends on

the integrated flux density which depends on the size and velocity width of the

source.

In Figure 2.3 the detections (solid circles) and non-detections (open squares)

are plotted together as a function of two different source parameters. This allows

us to examine how the ability to detect a source depends on related source param-

eters. The clearest trend is to see is that there is a dependency between W50 and

S/N. Generally, sources with smaller W50 values are detected at lower S/N values

than sources with larger W50 values. This is a well known effect in spectral line

data, where the sensitivity depends upon the velocity width of the source. Nar-

rower signals have more flux per channel and hence are easier to detect. There is

a second effect also visible in this plot – there are more narrow width sources at

low S/N than broader sources. This is a result of drawing the peak flux from a

uniform distribution rather than the integrated flux density; the narrower sources

have systematically lower integrated flux densities and hence lower S/N.
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Figure 2.2: The solid lines show the fraction of simulated sources detected as a
function of various simulated source properties; the dashed line indicates the total
number of simulated sources. The fraction of sources detected falls off quickly
for low signal sources and detection is relatively flat as function of W50 and θHI .
Importantly, sources with θHI > 12′ (the maximum template size) are robustly
detected. The effects of disregarding the Galactic hydrogen are evident in the
strong dip in detected sources at 0 km s−1.

28



0 2 4 6 8 10 12 14
S/N

0

10

20

30

40

50

W
50

 [
km

/s
]

0 2 4 6 8 10 12 14
S/N

0

5

10

15

20

25

30

35

θ H
I [

ar
cm

in
]

0 2 4 6 8 10 12 14
S/N

-500

0

500

1000

cz
 [

km
/s

]

0 10 20 30 40 50
W50 [km/s]

0

5

10

15

20

25

30

35

θ H
I [

ar
cm

in
]

Figure 2.3: Plots comparing the detections (solid circles) to non-detections (open
squares) as function of two different source parameters for simulated sources. The
S/N of a source is the primary determinant in whether a source will be detected.
In addition, the effect of linewidth on sensitivity is evident in the detection of
more narrow linewidth sources with low signal.

29



2.6 Comparison to the Standard ALFALFA Scheme

There is a clear motivation in the expected properties of the UCHVCs for develop-

ing a specialized signal extraction algorithm; in this section we show directly that

this algorithm detects sources missed by the standard ALFALFA data identifica-

tion scheme. Figure 2.4 compares the fraction of sources detected by the algorithm

presented here (solid line) and the fraction of sources detected by the algorithm

of S07 (dashed line). Generally, the algorithm presented here outperforms that of

S07 for all source parameter values. The exception is that the algorithm of S07

occasionally detects a source within the Galactic HI as result of the different han-

dling of Galactic hydrogen emission. Figure 2.5 compares the detected sources for

the two algorithms as a function of two source parameters. The algorithm of this

work does a better job of detecting the extended sources, especially for narrow

velocity widths and low S/N values. The algorithm of S07 can still detect some

narrow velocity width sources as the matched filtering identification scheme is

fairly robust. If there is enough signal, a source will be detected even if it is not

matched perfectly to a template; this is how the algorithm presented here is ro-

bust to UCHVCs > 12′ in extent. However, in cases where source properties lie

outside the range of templates used, the estimates of source parameters will not

be accurate.

While visual inspection and interactive source measurement occurs after

source identification by both algorithms, it is still useful to examine the reported

sources properties of the two algorithms and see how they compare to the sim-

ulated source parameters. In Figure 2.6, the reported source properties of the

algorithm of this work (crosses) and that of S07 (squares) are shown as a function
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Figure 2.4: Fraction of simulated sources detected by this work (solid line) and
that of S07 (dashed line) as a function of the simulated source properties. Gener-
ally this work outperforms that of S07, although S07 is able detect a few sources
within the Galactic HI.
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Figure 2.5: Detections of the algorithm presented here (crosses) and by the algo-
rithm of S07 (open squares) as a function of two different input source parameters.
This work is more sensitive to low S/N sources than S07 and is especially more
sensitive to sources with low S/N that have θHI > 20′.
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of the simulated source properties. The algorithm of this work does a good job of

determining the linewidths and spatial extents of the UCHVCs, up to the maxi-

mum spatial template considered. The algorithm of S07 is either hit or miss; it is

able to assign sources sizes larger than 12′ but often reports an extended source as

a point source. While the algorithm of S07 is able to detect some narrow linewidth

sources, the reported W50 is too large as it is limited to the smallest template used

by S07. The algorithm presented here is able to outperform that of S07 for cen-

troiding the sources.

2.7 Comparison to Visual Inspection

After running the signal extraction algorithm, data cubes are visually inspected

and source properties are measured by hand. At this stage, sources missed by the

signal extraction algorithm can be added to the catalog. I completed the detec-

tion scheme for the simulated sources by visually inspecting the data cubes and

measuring their properties. Figure 2.7 shows the fraction of sources detected by

visual inspection in comparison to the fraction detected solely by the automated

algorithm. Visual inspection results in the slightly increased detection of lower

S/N sources. Notably, the fraction of sources with W50 less than 20 km s−1 is sub-

stantially increased upon visual inspection; these sources often show strongly in

only a single channel. The fraction of detected sources increases for all spatial

sizes. There is a slight increase for the fraction of sources detected near the Galac-

tic HI, but in general the presence of the Galactic HI still masks any sources that
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Figure 2.6: Detected versus simulated properties for sources for this work
(crosses) and that of S07 (squares). Sources detected by S07 have a minimum W50

of 30 km s−1 as a result of the templates used, and sources detected by this work
have a maximum θHI of 12′ as that is the maximum spatial extent of the templates
used. Within the range of templates used, the algorithm presented here does a
good job of recovering the true source parameters.
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lie at similar velocities.

It should be noted that there is one source which registered as an automated

detection but is not considered a detection upon visual inspection; this source

serendipitiously lies at the same location as an actual UCHVC, and the automated

algorithm detects the actual UCHVC; visual inspection of the data set does not

reveal a noticeable second (simulated) source. The impacts of the isolation criteria

(see Section 3.1.4) on the simulated sources are considered below in Section 2.9.

2.8 Accuracy of Reported Source Values

Since the simulated sources have been measured as part of testing the extraction

algorithm, the measured properties can be compared to input properties in order

to understand how well measured the source properties are. Figure 2.8 compares

the measured source properties to the input simulated properties. The biggest

difference is between the recorded S/N of the simulated source and the measured

S/N; there is a monotonic relation between the measured and recorded S/N and

the measured S/N is larger in all cases. This is a result of the differences in how

the S/N of the source is calculated in the input data cube and how the measured

S/N is computed. The measured S/N calculation is more sophisticated and uses

the ellipse fitting to more accurately determine the peak flux of the source, as

opposed to a rough estimate of the peak flux undertaken when simulating the

source. This results in the measured S/N being systematically higher than the

computed S/N. The other source properties lie on a one-to-one relation with some

scatter. In the upper right corner, the comparison of measured to input W50 values
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Figure 2.7: Fraction of sources detected after visual inspection (solid line) and
those detected by the algorithm alone (dashed line) as a function of simulated
source parameters. The inspection of the data reveals sources missed by the algo-
rithm, including at Galactic velocities.
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are shown along with the error bars recorded during measurement. Most sources

have measured widths that match the input widths within the errors. Typically,

the wider sources have larger error bars; these sources generally have lower S/N

values and it is more difficult to determine where the edge of the line profile is.

For θHI , the scatter between measured and simulated source properties increases

with size.

The upper left panel of Figure 2.9 examines the difference between the input

and measured axial ratios of the simulated sources. The simulated sources are

near circular with axial ratios ranging from 0.95 − 1; this range of axial ratios is

set by the 5% difference permitted in the extent of the source in the R.A. and Dec.

directions. The measured axial ratios portray the sources as much more elliptical

than they truly are with axial ratios distributed fairly evenly from 0.6−1 (and a few

smaller axial ratios). The other three panels of Figure 2.9 show the dependence of

the measured axial ratio on other measured source properties. The axial ratio

shows no dependence on the size or width of the source but does show a slight

dependence on the S/N of the source. The higher S/N sources typically have

axial ratios closer to one (the true axial ratio value), and the range of measured

axial ratios is much larger for lower S/N sources. Thus it appears that the highest

S/N sources have measured axial ratios closest to the true values.

Given that the average measured θHI is well matched to the true input size, as

can be seen in Figure 2.8, this tells us that the measured size of the sources is an

accurate reflection of their true size but that the measured ellipticity values from

the ALFALFA data should be treated carefully. A true understanding of source

ellipticity will require follow-up observations. Since the measured axial ratio does

depend upon S/N, deeper mapping observations with Arecibo could be used to
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Figure 2.8: Comparison of measured to simulated source properties for S/N, W50

θFWHM, and cz. Dotted lines indicate a one-to-one relationship in all cases. The
large difference in S/N is a result of a more sophisticated calculation used by the
measurement tool. The W50, θHI , and cz values are in good agreement, indicating
that the measured source parameters are an accurate representation of the true
source properties.
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place more accurate constraints on the ellipticity. Alternatively, higher resolution

observations would also allow more accurate axial ratios to be measured.

Figure 2.10 examines the offset between the measured and expected position

of the sources as a function of various source properties. The top row examines

the spatial offset as a function of the size of the source and the S/N. Final posi-

tions of sources reported by the measurement tool include a pointing correction

[Giovanelli et al., 2007, Kent et al., 2008]. The input position of the source does not

have a pointing corrections applied, so some offset (on the order of .30′′) is natu-

rally expected. Typically, the centroiding of the source is accurate to ∼1′ with 70%

of sources having this accuracy. Measured recessional velocities are extremely ac-

curate with a maximum offset of 10 km s−1 and 80% of sources having accurracies

within 2 km s−1.

2.9 The Effects of the Isolation Criteria

As discussed in the presentation of the catalog of UCHVCs in Chapter 3, one of the

defining criteria for a UCHVC is its isolation from other existing HVC structure.

We discuss the importance of the isolation criteria and its definition in detail in

Section 3.1.4. Here, we examine the simulated sources in the context of the isola-

tion criteria to understand how many potential minihalo candidates are excluded

based on the isolation criteria and chance alignment.

The isolation of a UCHVC from existing structure depends both on its spatial

and kinematic separation. For this reason, when considering the isolation of the

simulated sources, we wish to account for their velocity distribution relative to
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Figure 2.9: Comparison of the measured axial ratio to the simulated axial ratio
(upper left). Simulated sources are nearly circular while measured sources have
a range of ellipticities. The other three panels show the measured axial ratio as
a function of different source parameters. High S/N sources come closest to the
true axial ratio, but the measured axial ratios do not reflect the true source shape
as a general rule.
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Figure 2.10: Offset of the expected source position both spatially (top row) and
kinematically (bottom row) as a function of measured source parameters. Gen-
erally, the measured positions and velocities are accurate although in a few cases
the offset of spatial centroid is significant.
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that of HVC structure. Figure 2.11 shows the distribution of velocities for HVCs

in the spring and fall sky of ALFALFA (see Section 3.1 for a discussion of what

constitutes the spring and fall sky and the differences in the HVC population be-

tween the two parts of the survey). There is a clear difference in the velocity

distribution between the two parts of the ALFALFA survey and from the velocity

distribution of the simulated sources (see Figure 2.2 for example). For this rea-

son, we wish to highlight the isolation of the simulated sources that lie within the

velocity range of HVCs separately from the full set of simulated sources. Figure

2.11 shows the distribution of velocities for all HVCs within the spring (top panel)

and fall (bottom panel) ALFALFA sky. Examining this figure, we can determine

the velocity range [-500, 200] km s−1 to be the “HVC Velocity Range” for the fall

sky, and for the spring sky we consider the velocities [-200, 400] km s−1 to be the

“HVC Velocity Range”. Of the 300 simulated sources, 127 fall within the HVC

velocity range.

First we consider the isolation of the simulated sources from the large com-

plexes of Wakker and van Woerden [1991, WvW]. Figure 2.12 shows the isolation

of the simulated sources from the large complexes; the x-axis shows the distance

to the nearest WvW cloud in a complex and the y-axis shows the fraction of ob-

jects whose closest neighbor is at that distance or closer (cumulative fraction). The

dotted vertical line indicates the isolation criteria defined in Chapter 3; sources to

the left of this line are not considered isolated. The solid line indicate all simulated

sources while the dashed line indicates the simulated sources that fall within the

range of HVC velocities. The vast majority of simulated sources pass the criterion

for isolation from the large HVC complexes. In fact, only 12 of the 300 simulated

sources fail this criterion.
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Figure 2.11: Distribution of recessional velocities for fall and spring HVCs within
the ALFALFA survey. The fall HVCs occupy the velocity range [-500, 200] km s−1,
and the spring HVCs the range [-200, 400] km s−1.
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Figure 2.12: Distance of simulated sources from the nearest cloud in a WvW com-
plex. The majority of simulated sources pass this isolation criterion.
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Next we consider the isolation of simulated sources from smaller HVC struc-

ture uncovered within the ALFALFA survey. Figure 2.13 shows the isolation of

the simulated sources from HVC structure within the ALFALFA survey; in the

upper panel the x-axis shows the number of HVC neighbors within D = 3◦ and

the y-axis is the cumulative fraction of the number of simulated sources with that

many neighbors or fewer. As in the previous figure, the solid line indicates all

simulated sources and the dashed line indicates the simulated sources within the

range of HVC velocities. The ALFALFA isolation criterion requires no more than

three neighbors within D = 3◦; the vast majority of simulated sources pass this cri-

terion. In fact, only two simulated sources fail this criterion, and they also fail the

earlier WvW isolation criterion. We can conclude that very few potential minihalo

candidates are excluded from our UCHVC catalog on the basis of the isolation cri-

teria and chance placement near HVC structure.

In the bottom panel of Figure 2.13, we examine the simulated sources in the

context of the most-isolated criterion for the UCHVCs; this criterion requires

sources to have no more than four neighbors out to D = 10◦ within the ALFALFA

survey. As discussed in Chapter 3, this criterion selects a subsample of UCHVCs

that are the most isolated and hence may represent the best minihalo candidates.

As can be seen in the bottom panel of Figure 2.13, the majority of the simulated

sources also pass this criterion; only 29 of the 300 simulated sources do not meet

the extra criterion. This indicates that the sources that meet this extra isolation

criterion are the objects independent of large-scale HVC structure and represent

the best minihalo candidates.
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Figure 2.13: Number of ALFALFA HVC neighbors within D = 3◦ (top panel) and
D = 10◦ (bottom panel). Very few sources fail the basic isolation criterion in the
top panel, and the majority pass the secondary most isolated (MIS) criterion in
the bottom panel, indicating that the MIS UCHVCs represent the best minihalo
candidates.
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2.10 Summary

I developed a 3D matched filter signal extraction algorithm designed for the nar-

row velocity widths and extended spatial sizes of the UCHVCs. Artificial sources

in the ALFALFA data are used to test the performance of this algorithm. Gener-

ally, and as designed, this algorithm outperforms that of S07, especially for nar-

row velocity widths and low S/N values. While source properties reported in

the catalog are measured interactively, this algorithm does return accurate source

parameters within the range of templates used. Visual inspection as part of the

source identification scheme increases the fraction of sources identified, especially

for the narrowest velocity widths and allows sources within the Galactic hydro-

gen to be considered. Measured source properties (θHI , W50, cz) are consistent

with the simulated source values, lending credence to the catalog presented in

Chapter 3. However, it should be noted that while the measured θHI values are

consistent with the input source angular diameter, the ellipticity values are far

from accurate; the simulated sources are nearly circular but often have measured

axial ratios from 0.6 − 1. Hence, the average sizes of the UCHVCs are well con-

strained but not the individual axis measurements. Very few simulated sources

fail the isolation criteria of Chapter 3 or the more restrictive most isolated (MIS)

criterion indicating the MIS UCHVCs are indeed the best minihalo candidates.
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CHAPTER 3

CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS WITHIN

THE α.40 FOOTPRINT

This chapter presents a catalog of UCHVCs from the α.40 footprint and addressed

the minihalo hypothesis for these objects as a class. In Section 3.1 we discuss the

α.40 data and selection of UCHVCs. In Section 3.2 we present the UCHVC catalog

and overview the observed properties of the UCHVCs. In Section 3.3 we examine

the UCHVC population in the context of the known high velocity cloud (HVC)

populations, and in Section 3.4 we present evidence supporting the LG origin and

minihalo hypothesis for the UCHVCs. In Section 3.5, we summarize our findings.

3.1 Data

The sources presented here are found within the footprint of the α.40 release of the

ALFALFA survey [Haynes et al., 2011] but correspond to a separate analysis of the

same spectral data cubes. We briefly describe the ALFALFA survey below, with

an emphasis on its relevance to UCHVCs, followed by a description of how the

UCHVCs are identified and measured. The ALFALFA sky is divided into two re-

gions, termed the “spring” and “fall” as a result of our nighttime observing in the

Northern Hemisphere. The “spring” ALFALFA sky covers a range of 7.5h− 16.5h

in RA; the “fall” sky is 22h − 3h in RA. The α.40 footprint covers approximately

2800 square degrees and includes the declination ranges 4◦-16◦ and 24◦-28◦ in the

spring, and 14◦-16◦ and 24◦-32◦ in the fall. We note here that Leo P is located at

∗This chapter is published in Adams et al. (2013)

48



+18◦ and is not in the α.40 footprint, and hence is not included in the UCHVC

sample. The footprint of the α.40 survey can be seen in Figure 3.1; the top panel

is the spring sky and the bottom panel is the fall sky. The relative sizes of the

panels indicate the different RA coverage of the separate survey areas. The open

diamonds in the figure show the general HVC population of the α.40 survey and

the filled symbols are the UCHVCs of this work with the color scale indicating the

velocities of the clouds. The fall sky shows a prevalence of HVCs; in comparison,

the spring sky is relatively clean, making this a better location to look for low mass

gas-bearing dark matter halos.
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Figure 3.1: UCHVCs (filled circles) plotted in R.A.-Dec. coordinates; color cor-
responds to the velocity of the cloud. The solid squares are the most-isolated
subsample of UCHVCs (see Section 3.1.4). The open diamonds are the α.40 HVCs
shown for reference. The size of the symbols is proportional to the angular sizes of
the HVCs in all cases but not to scale. The top panel is the spring R.A. region; the
bottom panel the fall R.A. region. The hashed region corresponds to declination
ranges not covered by α.40. The fall sky shows prevalent HVC structure while the
spring sky is relatively clear of HVCs.
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3.1.1 The ALFALFA Survey

ALFALFA is an extragalactic spectral line survey making use of the Arecibo 305m

telescope. The survey maps 7000 square degrees of sky in the HI 21cm line, cov-

ering the spectral range between 1335 and 1435 MHz (roughly -2500 km s−1 to

17500 km s−1 for the HI line), with a spectral resolution of 25 kHz, or ∼ 5.5 km s−1

(at z = 0). ALFALFA is designed to outperform previous blind HI surveys. With

an angular resolution of ∼ 3′.5, ALFALFA can resolve structures 1/4 the angu-

lar size possible with the HI Parkes All Sky Survey [HIPASS; Meyer et al., 2004]

and 1/9 that possible with the Leiden Dwingeloo Survey [LDS; Hartmann and

Burton, 1997]. Its flux density sensitivity is nearly one order of magnitude higher

than that of HIPASS and more than two orders of magnitude better than that of

the LDS. ALFALFA can detect a ∼ 5 × 104 M⊙ cloud of 20 km s−1 linewidth at

a distance of 1 Mpc. A full description of the observational mode of ALFALFA

is given in Giovanelli et al. [2007], while the definition and goals of the survey

are described in Giovanelli et al. [2005]. The data taking mode of ALFALFA is

described briefly in §2.1.1.

3.1.2 Source Identification

As mentioned in Chapter 2, the standard source identification and measurement

in ALFALFA uses the algorithm developed by Saintonge [2007] to identify sources

and is then followed by measurement of the source by hand. As discussed in

§2.1.3, the UCHVCs are fundamentally different from extragalactic sources due to

their narrow velocity widths and spatial extent. Many of the UCHVCs are missed
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by the standard identification algorithm, and a special algorithm was developed

to identify the UCHVCs (presented in Chapter 2. Since the ALFALFA pipeline also

involves visual inspection of the dataset, most of these sources are identified by

eye and included in the α.40 catalog as HVC detections. The specialized UCHVC

identification algorithm does find sources that are missed by the standard AL-

FALFA pipeline; of the 59 UCHVCs identified here, 5 sources are not included in

the α.40 catalog. Three of these are in the spring sky and two in the fall sky. Figure

3.2 shows the measured properties of all the UCHVCs compared to the 5 sources

not included in the α.40 catalog. The additional sources tend to have low inte-

grated flux densities and narrow linewidths (W50). While they have a range of HI

diameters, they are not the most compact clouds. Most strikingly, the UCHVCs

not included in the α.40 catalog are the sources with the lowest average column

densities, suggesting that these sources are the tip of the iceberg for further clouds

to be detected.

3.1.3 Criteria for UCHVC Identification

To be included as a UCHVC in the catalog, a source must have |vLSR|> 120 km s−1,

have a HI major axis less than 30′ in size, and have a S/N ≥ 8 to ensure reliability.

The vLSR limit is imposed to focus on a class of clouds that are well separated from

Galactic emission and that could trace dark matter halos within the LG. Some dark

matter halos would be expected to have |vLSR| < 120 km s−1 (Leo T, for example)

but disentangling their emission from Galactic hydrogen is challenging and left to

future work. The 30′ size limit corresponds to a physical size of 2 kpc at a distance

of 250 kpc. The distance of 250 kpc is a reasonable minimum distance for an
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Figure 3.2: The measured properties for the full sample of UCHVCs (unfilled his-
tograms) compared to the UCHVCs found specifically by the separate analysis
presented in this work (hashed histograms). Generally, the new UCHVCs have
narrow velocity widths and low fluxes. They also have low N̄HI values.
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unperturbed object at the edge of the MW; Grcevich and Putman [2009] find that

LG dwarf galaxies with neutral gas content 270 kpc away from either the MW or

M311. We would not expect to detect low mass galaxies with large gas reservoirs

nearer to the MW due to interaction with the hot Galactic corona [Fukugita and

Peebles, 2006]. Note that Leo T has an HI diameter of 0.6 kpc, and Leo P has an HI

diameter of 1.2 kpc. The models of Sternberg et al. [2002] for gas in dark matter

minihalos predict HI diameters up to 3 kpc with diameters less than 2 kpc a more

common outcome. It should be noted that most UCHVCs are smaller than this

criterion, with only six clouds having average HI diameters larger than 16′ (see

Figure 3.2). The S/N limit of 8 ensures reliability. This limit is higher than the

general reliability limit of the ALFALFA survey data due to the different nature

of the UCHVCs, including the strong potential for radio frequency interference

(RFI) to masquerade as narrow-line sources. Confirmation observations of low

S/N sources are ongoing, and in future work we will examine the reliability and

completeness of the ALFALFA UCHVC catalog.

3.1.4 Isolation

Given the abundance of HVC structures in the sky, the most important criterion

for determining if a cloud is a good minihalo candidate is its isolation. Most of the

known HVC structure is associated with Galactic processes, including accretion

onto the Milky Way; when considering clouds that could represent gas associated

with dark matter halos, we wish to find objects distinct from existing HVC struc-

1The Magellanic Clouds do have a substantial neutral gas content and are much closer to the
MW than 250 kpc. However, they are more massive than the general population of dwarfs in the
LG and are actively losing their HI via interactions with the MW.
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tures. In order to be considered a UCHVC, visual inspection must ensure that the

cloud does not appear to be associated with a larger HI structure.

Our second isolation criterion is that the UCHVCs must be well separated from

previously known HVC complexes. We compare the UCHVCs to the updated cat-

alog of Wakker and van Woerden [1991, B. Wakker, private communication 2012;

hereafter WvW]. The WvW catalog includes 617 clouds, of which 393 are classi-

fied as belonging to 20 large complexes; the other clouds are classified into popu-

lations based on their spatial coordinates and velocity. For defining isolation, we

only consider the WvW clouds which are part of a larger complex. The distance

of a UCHVC from another cloud in degrees can be quantified via:

D =
√

θ2 + (fδv)2, (3.1)

where θ is the angular separation in degrees, δv is the velocity difference in km s−1

between two clouds, and f is a conversion factor that parameterizes the signifi-

cance we ascribe to the angular separation between two clouds versus their dif-

ference in velocity in determining whether they are associated with each other.

Following Saul et al. [2012] and Peek et al. [2008], we adopt f = 0.5◦/km s−1 as

the weighting for the velocity separation for large scale HVC structure. Figure 3.3

illustrates our determination of the isolation criterion for deciding if the UCHVCs

are separated from the WvW complexes. The isolation criterion was determined

by comparing the separation of clouds within WvW complexes to the separation

of LG galaxies from the nearest WvW cloud in a complex. The x-axis shows the

distance to the nearest WvW cloud in a complex and the y-axis shows the fraction

of objects whose closest neighbor is at that distance or closer (cumulative fraction).

Ninety percent of WvW clouds in complexes are closer than 15◦ to their nearest

neighbor in the complex; more than eighty percent of LG galaxies are located fur-
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Figure 3.3: The relative isolation of LG galaxies and α.40 HVCs from the large
HVC complexes of WvW. The x-axis is the distance to the closest WvW cloud in
a complex calculated using Equation 3.1. The y-axis shows the fraction of objects
that have their nearest neighbor at that distance or nearer. The separation of WvW
clouds within complexes from each other is shown by the dashed red line. The iso-
lation of the LG galaxies is shown by the solid black line, and the α.40 HVCs are
shown for reference with the dotted blue line. The dot-dash line indicates our cho-
sen isolation criterion of D = 15◦. The majority of clouds in complexes are within
15◦ of their nearest neighbor, although there is a smaller tail extending to 25◦. The
majority of LG galaxies are located further than 15◦ from a cloud in a complex,
making this a good isolation criterion. This isolation criterion removes ∼30% of
the α.40 HVCs from consideration as UCHVCs, but further isolation criteria are
clearly necessary.
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ther than 15◦ from the nearest WvW cloud in a complex. Hence we determine to

use this value as our cutoff, shown by the dot-dash line in Figure 3.3. We note that

is a more generous criteria than that of Saul et al. [2012] and Peek et al. [2008] who

adopt D = 25◦ as an isolation criterion; in Section 3.3.1 we examine this interme-

diate distance and determine it does not substantially affect our catalog.

In addition, we institute a third isolation criterion based on HVC structure un-

covered by ALFALFA. This structure is generally much smaller than previously

known HVC structure; as can be seen in Figure 2.1 most α.40 HVCs are less than

one degree in size while the sizes of the HVCs in the WvW catalog are several to

tens of degrees2. For this reason, we use f = 0.2◦/km s−1 in Equation 3.1 when cal-

culating isolation from HVC structure within the ALFALFA survey. The top panel

of Figure 3.4 shows the final isolation criterion for UCHVCs and compares the

UCHVCs to LG galaxies and the general HVC detections within the α.40 survey.

We require that the UCHVCs have no more than three neighbors within D = 3◦.

This is a generous criterion as the LG galaxies have at most one neighbor within

this distance. We wish to include all potential minihalo candidates and inspec-

tion indicates that allowing three neighbors includes all the sources that would

be classified by eye as isolated. In the bottom panel of Figure 3.4 we explore the

differences between the spring and fall populations of the UCHVCs. The fall sky

appears to show more isolation on this scale with the UCHVCs having either one

or no neighbors; in fact, this is a result of the prominent HVC structure in the

fall sky. Clouds in the fall sky are either part of a larger structure or have no (or

one) neighbors within D = 3◦. Comparing to the general α.40 HVC population

2As an extragalactic survey, ALFALFA was not designed to detect sources with sizes & 1
◦; the

commensal GALFA-HI survey which processes the signal independently does that [e.g. Peek et al.,
2011].
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shows the prevalence of HVC structure in the fall sky with the fall HVCs generally

having more neighbors than the spring HVCs.

We note that with this criterion, only clouds with central velocities within 15

km s−1 of the UCHVC can be considered as neighbors. Given that the median ve-

locity width of the UCHVCS is 23 km s−1, there is a possibility that this isolation

criterion could leave our sources kinematically confused. Our first isolation cri-

terion accounts for this through the examination of the UCHVCs for association

with other clouds. In order to verify this, we examine the effect of changing the

velocity weighting factor to f = 0.05◦/km s−1. This expands the velocity selection

to 60 km s−1, almost three times the median FWHM of the clouds. We examine

the number of clouds within 3◦ of the UCHVCs using this different value of f

and find that the UCHVCs still have very few neighbors with this modified dis-

tance estimate. In fact, seventy-five percent of the UCHVCs still meet the criterion

of three or fewer neighbors even when the expanded velocity space is considered.

We examined the nine UCHVCs with more than five neighbors and note that three

of them may possibly be kinematically associated with larger structure.

HVC structure often exists on scales much larger than 3◦; while the UCHVCs

are examined for obvious connection to larger structure and excluded in that

case, we still wish to define a more isolated subsample. As the best subsample

to represent HI sources associated with minihalo candidates, we define a “most-

isolated” subsample (MIS) of UCHVCs with no more than than 4 neighbors within

D = 10◦. The top panel of Figure 3.5 shows the number of neighboring clouds

within D = 10◦ for the UCHVCs, the MIS UCHVCs, LG galaxies and α.40 HVCs.

On this large scale, the MIS UCHVCs are generally more isolated than even the

LG galaxies. We do note that the α.40 footprint means that we are not generally
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Figure 3.4: The x-axis is the number of α.40 HVCs within D = 3◦, where the
distance is calculated from Equation 3.1 with f = 0.2 ◦/km s−1, and the y-axis is
the fraction of UCHVCs with that number of neighbors or fewer. The top panel
shows the relative isolation of LG galaxies (solid black line), UCHVCs (dashed
blue line), MIS UCHVCs (dot-dash green line), and general α.40 HVCs (dotted red
line). The LG galaxies have no more than one α.40 HVC within D = 3◦; the criteria
for the UCHVCs is slightly relaxed to not more than 3 neighbors. The α.40 HVCs
are shown for reference; a majority of the α.40 HVCs fail this isolation criteria.
In the bottom panel, we compare the spring (dashed line) and fall populations
(dotted line) of the UCHVCs (blue), with the α.40 HVCs shown for references
(red).

58



probing to a full 10◦ in all directions around a given cloud; increasing coverage

of the ALFALFA survey may change the classification of a cloud in the future. In

fact, two sources in the fall δ = +15◦ strip meet the MIS criteria but we exclude

them from this subsample as determining isolation out to 10◦ for sources in an

isolated 2◦ wide strip is problematic. We will revisit these two specific sources

and the classification of the MIS UCHVCs in general with increased ALFALFA

coverage in future work. In the bottom panel of Figure 3.5, we again examine

the difference between the fall and spring population. Here, the prominent HVC

structure in the fall sky is apparent with many of the fall UCHVCs having a large

number of neighbors out to a distance of 10◦. There is also a strong difference

evident between the UCHVC and α.40 HVC population with over half of the α.40

HVCs having more than 20 neighbors at D = 10◦; this indicates the utility of our

first isolation criterion of inspecting sources for connection to large scale structure.

3.2 Catalog

3.2.1 Presentation of Catalog

In Table 3.1 we present the UCHVCs; there are 59 sources total: 40 in the spring

α.40 sky and 19 in the fall sky. Of the 59 UCHVCs, 17 are identified as being in the

most-isolated subsample, all of which are in the spring sky. The spring sky sam-

ples the outer regions of the LG where the expected density for dark matter halos

may be lower but the environment is safer for gas-bearing minihalos than near

the MW or M31. The fall sky samples the LG near M31 and includes the pres-

ence of a large amount of HVC structure, including the Magellanic Stream (see
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Figure 3.5: The x-axis is the number of α.40 HVCs within D = 10◦, where the dis-
tance is calculated from Equation 3.1 with f = 0.2 ◦/km s−1, and the y-axis is the
fraction of UCHVCs with that number of neighbors or fewer. The top panel shows
the relative isolation at this larger distance scale of LG galaxies (solid black line),
UCHVCs (dashed blue line), MIS UCHVCs (dot-dash green line), and general α.40
HVCs (dotted red line). At this distance scale, the UCHVCs and LG galaxies have
similar behavior. We define a most-isolated subsample (MIS) of UCHVCs which
are still isolated with no more than 3 neighbors on this larger scale. The MIS
UCHVCs are even more isolated than the LG galaxies on this larger scale. In the
bottom panel, we compare the spring (dashed line) and fall populations (dotted
line) of the UCHVCs (blue), with the α.40 HVCs shown for references (red).
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Section 3.3.1 for a further discussion). We indicate those UCHVCs that are part

of the original sample of UCHVCs discussed by G10 with a G10 in the notes col-

umn and those UCHVCs that lie outside the area considered by G10 with an ‘O’.

Figure 3.6 shows maps of all the UCHVCs with contours in units of column den-

sity of HI (NHI in atoms cm−2), representing the sum total of HI content along the

line of sight; these plots represent the data from which all the parameters listed

in Table 3.1 are derived. The minimum contour level is given in the figure and

subsequent contour levels increase by factors of
√
2. We plot the contours in val-

ues of NHI to demonstrate that the peak column density value is higher than the

average value calculated later (see Section 3.2.4). However, we emphasize, that

since these clouds are barely resolved by the Arecibo beam, the column density

contour values are only approximate and the average values are more robust; to

accurately map the distribution of HI will require synthesis observations that pro-

vide a smaller beam. Column density values can be derived from the brightness

temperature via:

NHI = 1.823× 1018
∫

TB dv [cm−2]. (3.2)

In simple cases, the brightness temperature is related to the flux density at 21cm

via:

TB =
606

θ2
S (3.3)

where θ is the (circular) beam in arcseconds and S the flux in mJy/beam.

The columns of the tables are as follows:

• Col. 1: Source name, in the traditional form for HVCs, obtained from the

galactic coordinates at the nominal cloud center and the vLSR of the cloud,

e.g. HVC111.65-30.53-124 has l =111.65◦, b =-30.53◦, and vLSR= -124 km s−1.
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Figure 3.6: Maps of the HI column density of the UCHVCs derived from AL-
FALFA spectral grids. Starred figures indicate membership in the most-isolated
subsample. Ellipses (red) represent the measured half-power level. The 3′.5 circu-
lar beam is shown in the lower left corner of all plots. The lowest contour level is
listed in the upper left corner of each plot; subsequent contours increase by factors
of

√
2.
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Figure 3.6: Continued
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Figure 3.6: Continued

64



• Col. 2: Identification number in the Arecibo General Catalog (AGC), an in-

ternal database maintained by MH and RG, included to ease cross–reference

with our archival system and the α.40 catalog.

• Col. 3: Equatorial coordinates of the centroid, epoch J2000. Typical errors

are less than 1′.

• Col. 4: Sequentially, we list heliocentric velocity, velocity in the local

standard of rest frame (LSR; assumed solar motion of 20 km s−1 towards

l = 57◦, b = 25◦), velocity in the Galactic standard of rest frame (GSR;

Vgsr = Vlsr + 225 sin l cos b, with both velocities in km s−1), and the veloc-

ity with respect to the LG reference frame from Karachentsev and Makarov

[1996].

• Col. 5: HI line full width at half maximum (W50), with estimated measure-

ment error in brackets. The notes column indicates the method of measure-

ment: a gaussian fit or linear single peaks fit to the sides of the profile.

• Col. 6: Estimate of the cloud major and minor diameters, in arcminutes.

Sizes are measured at approximately the level encircling half the total flux

density. In many cases, the outer contours are more elongated than indicated

by the ratio a × b. The half-power ellipses are also shown in the HI column

density contour plots in Figure 3.6.

• Col. 7: Flux density integral (S21), in Jy km s−1.

• Col. 8: Signal–to-noise ratio (S/N) of the line, defined as

S/N = (
1000S21

W50
)
w

1/2
smo

σrms
, (3.4)

where S21 is the integrated flux density in Jy km s−1, as listed in Column

7; the ratio 1000S21/W50 is the mean flux density across the feature in mJy;
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wsmo is W50/(2 × 10), a smoothing width, and σrms is the rms noise figure

across the spectrum measured in mJy. More details on the S/N calculation

are available in Haynes et al. [2011].

• Col. 9: The number of α.40 HVC neighbors within D = 3◦ (for f =

0.2◦/km s−1)

• Col. 10: The number of α.40 HVC neighbors within D = 10◦ (for f =

0.2◦/km s−1)

• Col. 11: Notes column. For each source there is either a ‘g’ or ‘p’ indicat-

ing the method used (gaussian or single peaks fit) to measure W50. Sources

considered by G10 are indicated with a ‘G10’ in the notes column. Sources

that are outside the footprint considered in G10 are marked with a ‘O’. The

UCHVCs that are also in the GALFA compact cloud catalog of Saul et al.

[2012] are indicated with a ‘S12’.
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Table 3.1. ALFALFA UCHVCs in the α40 Survey

Source AGC R.A.+Dec. cz⊙ Vlsr Vgsr VLG W50(ǫw) a × b S21 S/N N3 N10 Notes

J2000 km s−1 km s−1 ′ Jy km s−1

HVC111.65-30.53-124a 103417 000554.3+312014 -128 -124 55 139 21 ( 8) 27 × 15 2.31 12 0 9 g, O

HVC123.11-33.67-176 102992 005206.2+291204 -177 -176 -19 61 21 ( 3) 24 × 10 1.28 9 0 5 g, O

HVC123.74-33.47-289c 102994 005431.6+292402 -290 -289 -133 -52 21 ( 1) 6 × 5 0.67 15 0 13 g, O

HVC126.85-46.66-310 749141 010237.8+160752 -308 -310 -186 -112 23 ( 6) 10 × 8 0.81 9 1 21 g, O

HVC131.90-46.50-276a,c 114574 011703.4+155548 -273 -276 -160 -88 27 ( 4) 10 × 6 0.71 9 1 22 g, O

HVC137.90-31.73-327 114116 014952.1+292600 -325 -327 -199 -124 34 ( 8) 29 × 16 3.93 13 1 9 g, O

HVC138.39-32.71-320 114117 015031.4+282259 -317 -320 -194 -119 22 ( 2) 19 × 13 4.41 30 1 7 g, O, S12

HVC154.00-29.03-141 122836 025229.7+262630 -135 -141 -55 8 27 ( 3) 29 × 15 6.90 31 0 15 g, O

HVC205.28+18.70+150⋆ 174540 074559.9+145837 162 150 59 42 23 ( 4) 10 × 6 2.06 28 0 2 g, S12, O

HVC196.50+24.42+146 174763 075527.1+244143 156 146 88 79 20 ( 2) 16 × 11 2.80 20 3 11 g, S12, O

HVC196.09+24.74+166 174764 075614.8+250900 175 166 110 101 24 ( 6) 10 × 5 0.66 9 3 10 p, O

HVC198.48+31.09+165 189054 082546.7+251128 173 165 104 90 26 ( 1) 19 × 13 1.77 13 0 8 g, O

HVC204.88+44.86+147⋆ 198511 093013.2+241217 152 147 80 53 15 ( 1) 8 × 6 0.73 14 0 0 g, S12, O

HVC234.33+51.28+143 208315 102701.1+084708 148 143 29 -22 20 ( 2) 15 × 10 4.96 35 0 16 g, S12

HVC250.16+57.45+139 219214 110929.8+052601 142 139 25 -32 20 ( 5) 7 × 4 0.56 10 0 9 g, G10, S12

HVC252.98+60.17+142 219274 112119.6+062132 143 142 35 -22 27 ( 5) 28 × 15 8.55 37 1 10 g, S12

HVC253.04+61.98+148 219276 112624.8+073915 149 148 47 -8 36 ( 1) 14 × 12 2.06 14 1 11 g

HVC255.76+61.49+181 219278 112855.6+062529 182 181 77 19 18 ( 2) 11 × 6 0.90 13 0 7 g, S12

HVC256.34+61.37+166c 219279 112928.6+060923 167 166 61 3 24 ( 1) 12 × 11 1.49 14 2 11 g

HVC245.26+69.53+217⋆ 215417 114008.1+150644 216 217 146 97 17 ( 4) 10 × 9 0.70 9 0 1 g, G10

HVC277.25+65.14-140⋆ 227977 120920.0+042330 -142 -140 -234 -294 23 ( 1) 7 × 4 0.46 8 0 1 g, G10

HVC274.68+74.70-123⋆ 226067 122154.7+132810 -128 -123 -182 -232 54 (13) 5 × 4 0.92 11 0 0 p, G10

HVC290.19+70.86+204 226165 123440.2+082408 200 204 135 80 21 ( 1) 10 × 6 0.90 11 1 15 g

HVC292.94+70.42+159a 229344 123758.5+074849 154 159 89 34 15 ( 4) 17 × 14 1.67 13 0 18 g

HVC295.19+72.63+225 226170 124204.6+095405 220 225 164 112 28 ( 7) 14 × 12 1.17 10 3 16 p, G10

HVC298.95+68.17+270⋆ 227987 124529.8+052023 265 270 196 139 26 ( 1) 16 × 9 5.58 44 0 4 g, G10

HVC324.03+75.51+135 233763 131242.3+133046 127 135 102 56 29 ( 1) 7 × 5 0.94 18 1 12 g
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Table 3.1 (cont’d)

Source AGC R.A.+Dec. cz⊙ Vlsr Vgsr VLG W50(ǫw) a× b S21 S/N N3 N10 Notes

J2000 km s−1 km s−1 ′ Jy km s−1

HVC320.95+72.32+185 233830 131321.5+101257 177 185 141 92 23 ( 9) 21 × 16 1.70 9 0 15 g, G10

HVC330.13+73.07+132 233831 132241.6+115231 124 132 100 53 16 ( 1) 6 × 3 0.63 11 0 11 g, G10

HVC326.91+65.25+316⋆ 238713 133043.8+041338 308 316 264 210 26 ( 4) 12 × 10 1.25 11 0 0 p, G10

HVC 28.09+71.86-144⋆ 249393 141058.1+241204 -157 -144 -111 -136 43 ( 6) 15 × 9 1.12 8 0 0 g, O

HVC353.41+61.07+257⋆ 249323 141948.6+071115 246 257 244 201 20 ( 4) 13 × 9 1.34 13 3 4 g, G10

HVC351.17+58.56+214⋆,b249282 142321.2+043437 203 214 196 151 40 ( 8) 7 × 5 1.45 17 0 4 p, G10, S12

HVC352.45+59.06+263⋆ 249283 142357.7+052340 252 263 248 203 32 ( 9) 16 × 11 1.11 8 3 4 g, G10

HVC356.81+58.51+148⋆ 249326 143158.8+063520 136 148 141 100 38 (11) 6 × 5 0.70 10 0 1 p

HVC 5.58+52.07+163⋆ 258459 150441.3+061259 149 163 176 141 24 ( 8) 11 × 10 1.33 13 0 4 g

HVC 13.59+54.52+169⋆ 258237 150723.0+113256 155 169 200 170 23 ( 3) 10 × 5 1.34 17 1 3 g

HVC 13.60+54.23+179⋆ 258241 150824.4+112422 164 179 210 180 17 ( 1) 15 × 7 0.99 11 1 4 g

HVC 13.63+53.78+222⋆ 258242 151000.6+111127 207 222 253 224 21 ( 2) 9 × 6 0.71 9 0 1 g, G10

HVC 26.11+45.88+163 257994 155354.0+144148 146 163 232 217 23 ( 3) 12 × 7 2.04 22 2 8 g

HVC 26.01+45.52+161 257956 155507.5+142929 144 161 230 215 25 ( 6) 8 × 6 1.54 14 2 8 g

HVC 29.55+43.88+175 268067 160529.4+160912 158 175 255 244 37 (11) 10 × 6 1.91 20 2 6 g, G10

HVC 28.07+43.42+150 268069 160532.6+145920 132 150 227 214 29 ( 4) 10 × 5 1.15 11 0 10 g, G10

HVC 28.47+43.13+177 268070 160707.0+150831 160 177 255 243 20 ( 3) 17 × 9 1.48 11 2 6 g, G10

HVC 28.03+41.54+127 268071 161236.8+141226 109 127 206 194 62 (15) 12 × 7 2.67 18 1 8 g

HVC 28.66+40.38+125 268072 161745.3+141036 108 125 208 197 42 ( 5) 16 × 9 3.17 21 3 7 g

HVC 19.13+35.24-123 268213 162235.7+050848 -139 -123 -63 -81 17 ( 1) 12 × 10 2.83 22 0 7 g, G10, S12

HVC 27.86+38.25+124⋆ 268074 162443.4+124412 107 124 207 197 23 ( 4) 11 × 9 1.28 13 2 4 g

HVC 84.01-17.95-311 310851 215406.2+311249 -324 -311 -98 -21 21 ( 4) 26 × 14 2.60 17 0 5 g

HVC 82.91-20.46-426 310865 215802.9+283735 -439 -426 -217 140 22 ( 1) 12 × 6 0.99 10 0 17 g, S12

HVC 80.69-23.84-334 321318 220100.7+244404 -345 -334 -131 -55 23 ( 1) 18 × 9 1.47 13 0 5 g

HVC 86.18-21.32-277 321455 221121.8+295402 -288 -277 -68 10 17 ( 1) 13 × 7 1.76 15 0 5 g, O

HVC 82.91-25.55-291 321320 221238.6+244311 -302 -291 -90 -13 24 ( 2) 15 × 6 1.31 13 0 7 g, O

HVC 84.61-26.89-330 321351 222134.4+243638 -341 -330 -130 -53 21 ( 4) 13 × 11 1.03 9 0 8 g, O
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3.2.2 Comparison to G10

For completeness, we include in Table 3.2 the UCHVCs that were considered by

G10 but do not meet the stricter selection criteria used here. The clouds from G10

can fail any of the criteria: S/N, isolation or vLSR limits. The notes column in-

dicates the reason a G10 cloud is not included here. The sources with S/N < 8

will be considered in future work when we extend the UCHVC catalog to lower

S/N values after assessing reliability and completeness. In addition, we will ex-

tend the catalog to velocities including the Galactic hydrogen. It should be noted

that the three sources that do not meet the isolation criteria only barely fail. Two

sources have one and two more neighbors than allowed, respectively, and the

third sources is excluded based on examination of large scale structure. These

sources could still be good minihalo candidates.

3.2.3 Properties of the UCHVCs

Figure 3.7 shows the distribution of measured properties for the α.40 UCHVCs

and the most-isolated subsample: integrated flux density (S21), average angu-

lar diameter (ā =
√
ab), velocity FWHM (W50), and vLSR. The UCHVCs have

integrated flux densities of ∼0.66-8.55 Jy km s−1, with the vast majority having

integrated flux densities below 3.5 Jy km s−1 and a median flux density of 1.34

Jy km s−1. The singly hatched histograms are the UCHVCs in the most-isolated

subsample. Note that the range of values for the MIS UCHVCs is similar to the

larger UCHVC population, and the median values are essentially identical. The

UCHVCs range in average diameter from essentially unresolved (∼4′) to just over
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Table 3.1 (cont’d)

Source AGC R.A.+Dec. cz⊙ Vlsr Vgsr VLG W50(ǫw) a× b S21 S/N N3 N10 Notes

J2000 km s−1 km s−1 ′ Jy km s−1

HVC 92.53-23.02-311 321457 223823.4+315257 -321 -311 -104 -23 28 ( 2) 19 × 9 1.68 12 0 5 g, O

HVC 87.35-39.78-454a 334256 230056.4+152014 -461 -454 -282 -206 26 ( 4) 11 × 8 1.57 16 0 1 g, O

HVC 88.15-39.37-445a 334257 230211.3+160048 -452 -445 -271 -195 22 (11) 12 × 4 0.68 10 0 4 g, O

HVC108.98-31.85-328 333613 235658.8+293235 -333 -328 -147 -64 19 ( 2) 13 × 5 0.55 8 1 19 g, O

HVC109.07-31.59-324 333494 235702.1+294846 -329 -324 -143 -60 17 ( 5) 12 × 7 1.80 23 1 19 g, O

⋆Part of the extremely isolated MIS subsample

aNot included in the α.40 catalog

bAlso included in the compact cloud catalog of Saul et al. [2012]

cPossible kinematic association with larger structure
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Table 3.2. UCHVCs from G10 that Fail UCHVC Criteria

Source AGC R.A.+ Dec. cz⊙ Vlsr Vgsr VLG W50(ǫw) a× b S21 S/N N3 N10 Reason

J2000 km s−1 km s−1 ′ Jy km s−1

HVC244.51+53.41+160 208424 104850.1+050419 164 160 39 -18 19 ( 3) 16 × 12 1.03 7 0 9 S/N

HVC249.03+57.58+178 219213 110813.6+055725 179 176 64 5 19 ( 2) 12 × 9 0.67 7 0 8 S/N

HVC247.19+70.29+247 215418 114418.2+150509 246 247 177 129 30 (10) 10 × 8 0.54 7 0 1 S/N

HVC290.37+66.23-115 227983 123116.7+035044 -118 -114 -199 -259 20 (5) 6× 4 0.44 9 0 3 Velocity

HVC298.30+72.91+185 226171 124557.2+100518 180 185 127 75 25 (3) 5 × 4 0.57 9 5 21 Isolation

HVC299.62+67.65+326 227988 124619.1+044923 323 327 253 195 39 (13) 14 × 7 0.76 6 0 0 S/N

HVC314.57+74.80+218 238626 130351.1+121223 211 218 176 127 36 (13) 5 × 3 0.35 5 0 17 S/N

HVC 8.88+62.16+281 249538 143531.7+133126 269 282 298 264 18 ( 6) 4 × 3 0.22 4 0 4 S/N

HVC 7.64+57.83-128 249248 144844.6+103510 -142 -128 -112 -147 22 (1) 25× 5 1.83 16 0 42 Isolation

HVC 15.11+45.54-148 258474 154035.2+074334 -163 -147 -106 -132 27 (1) 7 × 5 0.68 9 4 19 Isolation71



20′ in size, with the vast majority less than 16′ in size and a median size of 10′.

We note that there does appear to be a break in population based on size with

UCHVCs clustered with HI diameters < 16′ in size and a tail of a population ex-

tending to larger sizes (including objects with HI diameters > 30′ not included

in this work). We will explore this break in HI size in the HVC population in

future work with a larger survey area. The W50 values are centered around 15-30

km s−1 with a few UCHVCs having widths extending up to 70 km s−1; the median

linewidth is 23 km s−1. There are clouds whose velocities cluster near both vLSR

±120 km s−1, with a much stronger clustering of positive velocity clouds. How-

ever, when the MIS UCHVCs are considered, this clustering disappears. The vast

majority of negative velocity clouds are also excluded from the MIS UCHVCs; the

negative velocity clouds are predominantly in the fall sky, where large scale HI

structure is much more prevalent, preventing the inclusion of any UCHVCs into

the most-isolated subsample.

3.2.4 Inferred Cloud Parameters

Given the observed properties of the UCHVCs, integrated flux density (S21, Jy

km s−1), average angular diameter (ā =
√
ab, arcminutes) and velocity width (W50,

km s−1), it is straightforward to derive some simple properties of the UCHVCs,

modulo the unknown distance d (in Mpc), with the assumption that the clouds

are optically thin. Sequentially, below we derive the mean atomic density, mean

column density, HI mass, indicative dynamical mass within the HI extent, and HI
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Figure 3.7: Histograms of measured properties for the UCHVCs. Hashed his-
tograms indicate the most-isolated subsample. The measured values for Leo T
and Leo P from the ALFALFA data are indicated with rd arrows. The dashed
lines are the median values of the UCHVCs; the most-isolated subsample has a
slightly lower median flux density value and identical median values for the HI
size and W50. The dotted lines indicate observational boundaries. In the upper
right panel, the dotted line indicates the smallest structure that can be resolved by
Arecibo, and in the the bottom right panel the dotted lines indicate the velocity
selection criterion.
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diameter.

n̄HI [atoms cm−2] = 0.74 S21 ā
−3 d−1 cm−3 (3.5)

N̄HI [atoms cm−2] = 4.4× 1020 ā−2 S21 cm−2 (3.6)

MHI [M⊙] = 2.356× 105 S21 d
2 (3.7)

Mdyn[M⊙] = 6.2× 103 ā W 2
50 d (3.8)

DHI [kpc] = 0.29 ā d (3.9)

(3.10)

Of these derived properties, N̄HI is especially noteworthy as it does not depend on

the distance. It should be noted that the column density values derived here are

average values based on the global properties of the UCHVCs, in contrast to the

approximation of spatially-resolved column density contours in Figure 3.6. Due to

the large beam size of Arecibo, these values represent underestimates of the peak

values of the clouds. We note that the dynamical mass is an indicative mass dy-

namical mass only. In addition to the uncertainty in the distance of the UCHVCs,

the contribution to the linewidths of the UCHVCs from thermal broadening is

unknown. For a range of reasonable temperatures, the thermal broadening can

range from 16-21 km s−1. For the clouds with the largest linewidths, the thermal

broadening contribution (when accounted for in quadrature) may be negligible,

while the narrowest clouds may be fully thermally supported. However, they

could still have large-scale motions on the order of the thermal broadening, or

less. For example, Leo P has a linewidth of 24 km s−1 and a rotational velocity of

9 km s−1, uncorrected for disk inclination [Giovanelli et al., 2013]. To derive accu-

rate dynamical masses will require higher resolution HI images in which evidence

of large scale motions can be discerned (and, of course, distance information).
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In Table 3.3, we summarize the inferred properties of the UCHVCs. The

columns of the table are as follows:

• Col. 1 and 2: source id as in Table 3.1

• Col 3: HI diameter in kpc at d = 1 Mpc (Eqn. 3.9)

• Col 4: log of the mean atomic HI density at d = 1 Mpc, in cm−3 (Eqn. 3.5)

• Col 5: log of the mean HI column density, in cm−2 (Eqn. 3.6)

• Col 6: log of the HI mass at d = 1 Mpc, in solar units (Eqn. 3.7)

• Col 7: log of the indicative dynamical mass within DHI at d = 1 Mpc, in

solar units (Eqn. 3.8)
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Table 3.3. Inferred Cloud Properties

Source AGC DHI nHI log N̄HI logMHI logMdyn

kpc d cm−3d−1 cm−2 M⊙d2 M⊙d

HVC111.65-30.53-124 103417 5.8 -3.68 18.40 5.74 7.74

HVC123.11-33.67-176 102992 4.6 -3.62 18.35 5.48 7.64

HVC123.74-33.47-289 102994 1.6 -2.54 18.98 5.20 7.18

HVC126.85-46.66-310 749141 2.7 -3.12 18.62 5.28 7.48

HVC131.90-46.50-276 114574 2.2 -2.95 18.72 5.22 7.54

HVC137.90-31.73-327 114116 6.2 -3.53 18.58 5.97 8.19

HVC138.39-32.71-320 114117 4.5 -3.07 18.90 6.02 7.67

HVC154.00-29.03-141 122836 6.0 -3.25 18.85 6.21 7.97

HVC205.28+18.70+150⋆ 174540 2.2 -2.46 19.19 5.69 7.40

HVC196.50+24.42+146 174763 3.8 -3.02 18.87 5.82 7.51

HVC196.09+24.74+166 174764 2.2 -2.94 18.71 5.19 7.43

HVC198.48+31.09+165 189054 4.6 -3.49 18.49 5.62 7.82

HVC204.88+44.86+147⋆ 198511 2.0 -2.81 18.81 5.24 6.99

HVC234.33+51.28+143 208315 3.6 -2.72 19.15 6.07 7.49

HVC250.16+57.45+139 219214 1.6 -2.58 18.93 5.12 7.13

HVC252.98+60.17+142 219274 5.8 -3.11 18.97 6.30 7.96

HVC253.04+61.98+148 219276 3.7 -3.14 18.74 5.69 8.01

HVC255.76+61.49+181 219278 2.4 -2.91 18.78 5.33 7.21

HVC256.34+61.37+166 219279 3.2 -3.10 18.72 5.55 7.60

HVC245.26+69.53+217⋆ 215417 2.8 -3.24 18.52 5.22 7.24

HVC277.25+65.14-140⋆ 227977 1.5 -2.64 18.86 5.03 7.24

HVC274.68+74.70-123⋆ 226067 1.3 -2.14 19.29 5.34 7.91

HVC290.19+70.86+204 226165 2.2 -2.83 18.83 5.33 7.32

HVC292.94+70.42+159 229344 4.4 -3.46 18.50 5.59 7.33

HVC295.19+72.63+225 226170 3.8 -3.41 18.48 5.44 7.80
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Table 3.3 (cont’d)

Source AGC DHI nHI log N̄HI logMHI logMdyn

kpc d cm−3d−1 cm−2 M⊙d2 M⊙d

HVC298.95+68.17+270⋆ 227987 3.5 -2.62 19.23 6.12 7.70

HVC324.03+75.51+135 233763 1.8 -2.51 19.05 5.35 7.50

HVC320.95+72.32+185 233830 5.3 -3.69 18.35 5.60 7.78

HVC330.13+73.07+132 233831 1.2 -2.23 19.17 5.17 6.83

HVC326.91+65.25+316⋆ 238713 3.1 -3.12 18.68 5.47 7.65

HVC 28.09+71.86-144⋆ 249393 3.3 -3.25 18.58 5.42 8.11

HVC353.41+61.07+257⋆ 249323 3.2 -3.12 18.69 5.50 7.43

HVC351.17+58.56+214⋆ 249282 1.7 -2.29 19.26 5.53 7.77

HVC352.45+59.06+263⋆ 249283 3.9 -3.46 18.44 5.42 7.92

HVC356.81+58.51+148⋆ 249326 1.6 -2.54 18.99 5.22 7.70

HVC 5.58+52.07+163⋆ 258459 3.0 -3.05 18.74 5.50 7.57

HVC 13.59+54.52+169⋆ 258237 2.0 -2.55 19.08 5.50 7.36

HVC 13.60+54.23+179⋆ 258241 2.9 -3.12 18.65 5.37 7.25

HVC 13.63+53.78+222⋆ 258242 2.1 -2.84 18.79 5.22 7.29

HVC 26.11+45.88+163 257994 2.7 -2.72 19.02 5.68 7.48

HVC 26.01+45.52+161 257956 1.9 -2.40 19.19 5.56 7.41

HVC 29.55+43.88+175 268067 2.2 -2.51 19.15 5.65 7.81

HVC 28.07+43.42+150 268069 2.1 -2.62 19.00 5.43 7.57

HVC 28.47+43.13+177 268070 3.5 -3.22 18.64 5.54 7.48

HVC 28.03+41.54+127 268071 2.7 -2.62 19.13 5.80 8.35

HVC 28.66+40.38+125 268072 3.4 -2.85 19.00 5.87 8.11

HVC 19.13+35.24-123 268213 3.1 -2.77 19.04 5.82 7.28

HVC 27.86+38.25+124⋆ 268074 2.8 -3.00 18.77 5.48 7.51

HVC 84.01-17.95-311 310851 5.4 -3.54 18.51 5.79 7.71

HVC 82.91-20.46-426 310865 2.4 -2.91 18.79 5.37 7.40
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Table 3.3 (cont’d)

Source AGC DHI nHI log N̄HI logMHI logMdyn

kpc d cm−3d−1 cm−2 M⊙d2 M⊙d

HVC 80.69-23.84-334 321318 3.7 -3.27 18.61 5.54 7.62

HVC 86.18-21.32-277 321455 2.8 -2.82 18.93 5.62 7.23

HVC 82.91-25.55-291 321320 2.7 -2.93 18.81 5.49 7.52

HVC 84.61-26.89-330 321351 3.5 -3.37 18.49 5.39 7.52

HVC 92.53-23.02-311 321457 3.8 -3.27 18.63 5.60 7.81

HVC 87.35-39.78-454 334256 2.7 -2.85 18.89 5.57 7.59

HVC 88.15-39.37-445 334257 2.0 -2.80 18.81 5.20 7.31

HVC108.98-31.85-328 333613 2.2 -3.02 18.63 5.11 7.23

HVC109.07-31.59-324 333494 2.7 -2.77 18.97 5.63 7.22

⋆Part of the extremely isolated MIS subsample

The HI masses, dynamical masses, mean atomic densities and mean column

densities of the UCHVCs and the MIS UCHVCs are shown in Figure 3.8. At a

distance of 1 Mpc, the HI masses are around ∼ 105 − 106 M⊙ and the dynamical

masses are ∼ 107 − 108 M⊙. This would require the UCHVCs to have an ionized

envelope of hydrogen or a substantial amount of dark matter in order to be self-

gravitating. As discussed in Section 3.4, these median properties are a good match

to the minihalo models of Sternberg et al. [2002]. The median dynamical mass is

107.5 dMpc M⊙; this is close to the common mass scale of ∼ 107M⊙ for the UFDs of

Strigari et al. [2008].

3.3 The UCHVCs as a Distinct Population

While the minihalo hypothesis is intriguing for the UCHVCs, we must carefully

consider other possible explanations. In this section we examine the possibility

of associating the UCHVCs with other cloud populations, including large HVC
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Figure 3.8: The distribution of inferred properties for the UCHVCs. Shading and
symbols are the same as in Figure 3.7. The most-isolated subsample has a slightly
lower median mass than the full UCHVC sample; for other properties the median
values are equivalent between the two samples. Leo T and Leo P are shown for
comparison.
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complexes, the Magellanic Stream, Galactic halo clouds, and the small cloud pop-

ulations of the GALFA-HI survey.

3.3.1 The UCHVCs in the Context of Large HVC Complexes

The HVC sky contains many large extended structures composed of multiple

clouds. We explicitly require the UCHVCs to be isolated from the known large

scale HVC structure of the WvW catalog. However, our isolation criterion for

separation from WvW complexes is slightly relaxed in order to avoid excluding

potential minihalo candidates. As can be seen in Figure 3.3, the distance to the

nearest cloud within a WvW complex can extend to D = 25◦. As we set our

isolation criterion for UCHVCs to a separation of 15◦ from WvW clouds in com-

plexes, we wish here to consider the possible association of the UCHVCs with

WvW complexes. In Table 3.4 we list the UCHVCs that are less than 25◦ from a

WvW complex. We note that only two UCHVCs in the fall sky (HVC86.18-21.32-

277 and HVC87.35-39.78-454) are more than 25◦ from a complex in the WvW cat-

alog; the other fall HVCs not listed in Table 3.4 are separated by less than 25◦

from clouds associated with the Magellanic Stream in the WvW catalog. Of the 40

spring UCHVCs, seven are potentially associated with known large complexes,

the majority of those being with the WA complex. While a few of the UCHVCs

may be associated with known large complexes, the vast majority are not, as de-

fined by our isolation criterion.
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Table 3.4. UCHVCs within D = 25◦ of a WvW complex

Complex UCHVC Distance to closest cloud

degrees

Complex G HVC111.65-30.53-124 20.1

Complex H HVC123.11-33.67-176 17.9

Complex ACVHV HVC137.90-31.73-327 23.8

HVC138.39-32.71-320 20.9

Complex ACHV HVC154.00-29.03-141 15.1

Complex WC HVC205.28+18.70+150 24.6

Complex WA HVC234.33+51.28+143 16.3

HVC250.16+57.45+139 19.3

HVC252.98+60.17+142 21.9

HVC253.04+61.98+148 24.6

HVC256.34+61.37+166 24.7

Complex C HVC 19.13+35.24-123 19.4

Magellanic Stream

The Magellanic Stream (MS) is an extended HI structure first noted by Dieter

[1965] and first associated with the Magellanic Clouds by Mathewson et al. [1974].

The MS is generally associated with the disruption of the Magellanic Clouds as

they interact with the Milky Way, although the exact mechanisms responsible for

the MS are an open area of research. The two main parts of the MS are the Lead-

ing Arm (LA), which consists of gas ahead of the Large Magellanic Cloud (LMC)

and Small Magellanic Cloud (SMC) in their presumed orbits, and the tail, which

consists of the trailing material. Recently, Nidever et al. [2010, hereafter N10]

presented an extension of the Magellanic Stream (MS), bringing it to over a 200◦

length in total. Given the extent of the MS, possible association with the MS must

be considered when attempting to understand HVCs of any sort.

For the α.40 footprint, the fall sky overlaps the tail of the MS and the spring

sky is near the known edge of the LA but not contiguous to it. N10 extended
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the known tail of the MS and pointed out its complexity (see their Figure 4), so we

must be especially careful with UCHVCs in the fall sky. In Figure 3.9, we show the

UCHVCs plotted on the 200◦ MS presented in N10. The coordinates are the MS-

coordinate system of Nidever et al. [2008] based on fitting a great circle to the MS,

where LMS is the longitude along the MS and BMS is the latitude above/below

the MS. The UCHVCs are shown as large red symbols to increase their visibility;

they are not shown to physical scale nor do their colors match the shading of the

MS. The top panel shows the HI column density of the MS (logNHI in cm−2). The

bottom panel is the total intensity of the MS integrated along BMS (K deg).

In the spring sky, the α.40 footprint approaches but does not overlap the LA of

the MS. This lack of direct coverage of the MS makes it a challenge to answer the

question: could the UCHVCs be connected to the LA? Future surveys directed

at determining any possible continuation of the LA will be able to directly an-

swer this question. Until then, the key to answering this question is determining

whether the UCHVCs have compatible velocities to be an extension of the LA.

Clearly, the large velocity spread of UCHVCs seen in the bottom panel of Fig-

ure 3.9 appears to be incompatible with all of the UCHVCs being associated with

the LA. Examining models of the MS can provide insight into these questions.

Connors et al. [2006] model the MS as a tidal structure via interaction with the

MW and LMC; they predict that the LA extends to LMS ∼150◦ with a velocity

turn over starting from LMS∼60◦ at vLSR∼300 km s−1 extending to ∼-150 km s−1.

In contrast, Besla et al. [2010] simulate a first passage of the Magellanic Clouds

and find a MS that extends to LMS∼50◦ with a velocity increasing with LMS from

vLSR∼200 to 400 km s−1. If the Connors et al. [2006] model correctly represents

the history of the MS, then the clouds located at vLSR < 0 km s−1 could be asso-
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ciated with the LA of the MS. If the Besla et al. [2010] model is accurate, then the

UCHVCs are generally at higher LMS values than predicted by the model but a

few of the positive velocity clouds with LMS < 100◦ and the highest vLSR values

may be associated with the MS. For whichever model of the MS is chosen, some of

the UCHVCs could be associated with the LA, but given the large spread in vLSR

of the UCHVCs, it is impossible to associate all of the UCHVCs with the LA.

In the fall sky, the α.40 footprint overlaps the extension of the MS detailed

in N10. In Figure 3.10 we offer a zoomed in view focusing on the fall UCHVCs

compared to the MS from N10. Here, there clearly appears to be strong overlap

between the UCHVCs and the known MS system. The three clouds in the fall

sky at vLSR > -200 km s−1 appear to be kinematically separated from the MS. Two

other clouds at LMS ∼-100◦ appear to potentially be spatially separated from the

MS but the apparent separation could easily be a result of the coverage of ob-

servations of the MS. However, it is still possible that some of these UCHVCs do

indeed represent galaxies. Many of the UCHVCs that overlap with the MS are also

in the direction of the M31 subgroup. Disentangling the gas of known galaxies at

a similar velocity from the MS is a long standing problem; see Grcevich and Put-

man [2009] for illustrative examples. This is also illustrated in Figure 3.10, where

several LG galaxies are spatially and kinematically coincident with the MS.

3.3.2 UCHVCs in the Context of Galactic Halo Clouds

Previous studies have uncovered a population of compact clouds associated with

the Galactic halo [e.g. Lockman, 2002, Lockman and Pidopryhora, 2005, Stil et al.,

2006, Stanimirović et al., 2006, Ford et al., 2010, Dedes and Kalberla, 2010]. While
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Figure 3.9: The distribution of UCHVCs relative to the MS from N10. Coordinates
are those of the MS-centric system from Nidever et al. [2008]. The top panel is
the spatial distribution of the MS; the x-axis is LMS and the y-axis BMS . Color
coding of the MS indicates the column density, matching N10. The α.40 footprint
is shown in the top panel by the dashed lines. The red circles are the UCHVCs,
the most-isolated subsample is indicated by the squares, and the white stars rep-
resent LG galaxies. The bottom panel is the total intensity of the Magellanic HI
integrated along BMS (in units of K deg) and shows the kinematics of the MS.
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Figure 3.10: A zoomed in view of the fall UCHVCs relative to the MS from Nide-
ver et al. [2010]. Symbols, shading, and panels are the same as in previous figure.
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well separated from the Galactic hydrogen, these clouds typically have low vLSR

values, and they generally appear to be consistent with Galactic rotation. The

Galactic halo clouds with the most extreme velocities of Stil et al. [2006] have vLSR

ranging from .100 km s−1 to 165 km s−1. The compact halo clouds also tend to

be cold clouds, with the vast majority of reported clouds having W50 < 10 km s−1.

Given these characteristics of the halo clouds, the UCHVCs appear as a distinct

population. The UCHVCs appear to universally be warm clouds with linewidths

greater than 15 km s−1. In addition, many of the UCHVCs have substantial ve-

locities (|vLSR| > 200 km s−1) that are difficult to account for in a Galactic halo

model.

3.3.3 UCHVCs in the Context of the Small Cloud Population of

GALFA-HI

GALFA-HI is a survey of neutral hydrogen in the Galaxy which, like ALFALFA,

uses the ALFA multi beam receiver on the Arecibo 305m antenna. For GALFA-

HI, the IF signal is sent to a different spectrometer than that used by ALFALFA

and is restricted to a ∼7 MHz bandpass centered on 1420 MHz. As a result, the

GALFA-HI survey has a velocity resolution of 0.184 km s−1 and covers a velocity

range of ±700 km s−1. It should be noted that much of the GALFA data is taken

commensally with the ALFALFA data through the TOGS program. Hence com-

parison of the results of the two surveys provides a check on our signal processing

approach. Begum et al. [2010] presented an initial catalog of compact clouds from

the GALFA-HI survey, and Saul et al. [2012, hereafter S12] recently released a cat-

alog of compact clouds for the full initial data release of the GALFA-HI survey.
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Herein we focus on the compact clouds of S12 as the most extensive catalog of the

compact cloud population discovered in the GALFA-HI survey and examine how

the UCHVCs of this work are related.

The initial major differences to note between the catalog of S12 and the

UCHVCs are additional selection criteria for the UCHVCs: the limited range of

velocities considered and the strong isolation criteria. A vast majority of the com-

pact clouds from S12 do not meet these additional criteria. S12 note several pop-

ulations of clouds in their catalog which they classify by velocity, linewidth and

isolation. They split between warm and cold clouds at a linewidth of 15 km s−1,

or a temperature of ∼5000 K. It should be noted that while ALFALFA does not

have the velocity resolution of the GALFA-HI survey, the velocity resolution of

∼10 km s−1 is sufficient to distinguish warm from cold clouds; as can be seen

in Figure 3.7, the UCHVCs are all warm clouds with linewidths greater than 15

km s−1. S12 also split their clouds into low velocity and high velocity populations

at |vLSR| =90 km s−1. They find a few cold clouds with vLSR > 90 km s−1, but the

vast majority of their cold clouds are at lower velocities and associated with the

Galactic disk, a very distinct population from the ALFALFA UCHVCs. The popu-

lations from S12 of most relevance to this work are their HVC population (|vLSR|>

90 km s−1) and galaxy candidate population; both of these populations are gener-

ally composed of warm clouds. The difference between the HVC population and

galaxy candidate population of S12 is that the galaxy candidates have an addi-

tional stringent isolation criterion (different from the isolation criteria used here)

and hence are the population most directly comparable to the UCHVCs. In Figure

3.11, we compare the distribution of the UCHVCs to the compact clouds of S12

in galactic longitude versus vLSR. In the second Galactic quadrant, the UCHVCs
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overlap with the HVCs of S12. This corresponds to the fall sky, and, as noted in

the previous section, when considering a stricter isolation criterion for separation

from larger HVC complexes akin to that used by S12, the fall UCHVCs cannot

be considered isolated structures. In the first and fourth Galactic quadrants, the

UCHVCs as a population appear separated from the compact clouds of S12. The

positive velocity clouds in the first quadrant and the clouds (at both positive and

negative velocities) in the fourth quadrant have no HVC population counterpart

in the GALFA compact cloud catalog. Especially in the fourth quadrant, there

are multiple clouds at substantial velocites (vLSR > 200 km s−1) that appear well

separated from other clouds populations.

As a check of our methodology and dataset, we also perform a direct compar-

ison of the ALFALFA UCHVCs to the catalog of S12. First, we examine which

of the S12 galaxy candidates appear in the α.40 catalog. S12 find 28 HVCs that

they consider extremely isolated and which they classify as galaxy candidates. Of

these, 10 are within the α.40 footprint. Two of the GALFA galaxy candidates are

classified as extragalactic sources in α.40 (AGC191803 and AGC227874) and are

clearly associated with optical counterparts; a third S12 galaxy candidate is asso-

ciated with UGC 7753, a large barred spiral galaxy. Four of their galaxy candidates

are within the ALFALFA data but have |vLSR| < 120 km s−1 and are not included

in this work (one is included in they α.40 catalog, AGC238801). One of the galaxy

candidates is also included here in the UCHVC catalog – HVC351.17+58.56+214.

Two of the S12 galaxy candidates are not seen in the ALFALFA data; these are

both lower S/N sources (S/N < 7) and one is extremely narrow velocity width

(W50 = 3.9 km s−1).

Secondly, we can examine the UCHVCs for counterparts in the S12 catalog. 11
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Figure 3.11: The distribution of UCHVCs in vLSR−l space compared to the com-
pact cloud populations of GALFA. Symbols and coloring follow those used in
S12: blue Xs are the cold low velocity clouds, pink squares are warm low veloc-
ity clouds, green squares are the warm low velocity clouds in the third Galactic
quadrant, black triangles are the high velocity clouds, and dark red diamonds are
the galaxy candidates. The UCHVCs of this work are shown as bright red circles.
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of the 59 UCHVCs are included in the GALFA compact cloud catalog, of which

one (HVC351.17+58.56+214) is classified by S12 as a galaxy candidate; the other

ten are included in their HVC sample. Seventeen of the UCHVCs are not included

in the data coverage of the GALFA DR1 release (D. Saul, private communication);

these sources are in the spring sky region of δ = 8 − 16◦, where GALFA DR1

has limited coverage because GALFA-HI observations started one year after the

commencement of ALFALFA data taking and hence commensal data for that time

period are missing. Of the thirty-one UCHVCs with GALFA coverage not con-

tained within the catalog of S12, eight of these sources are found by the algorithm

but discarded due to either failing the S12 criteria or data quality issues, such

as noise spikes. Five are seen in the data but not found by the signal identifi-

cation algorithm of S12. The last eighteen are not visible in the GALFA-HI data

(D. Saul, private communication 2013). In Figure 3.12, we explore the differences

in properties between the UCHVCs found in the dataset of GALFA-HI by the

signal identification algorithm of the S12 (including sources discarded from the

final catalog), the UCHVCs visible in the GALFA data but not identified by their

automated algorithm, and the UCHVCs not visible in the GALFA data. Most

strikingly, there is a bimodal distribution in the average column density with the

UCHVCs not visible in the GALFA-HI data having the lowest average column

densities. In addition, there is a velocity width effect; generally the UCHVCs

identified within the GALFA dataset are the narrowest velocity width sources.

In the bottom right panel of Figure 3.12, we focus on UCHVCs with integrated

flux densities less than 3 Jy km s−1 as the higher flux sources are all detected in

the GALFA-HI data. Then, there are 18 UCHVCs with linewidths greater than 23

km s−1, the median W50 of the full sample. Of these, only three are identified in

the GALFA-HI dataset and those still tend to be among the highest flux objects
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with integrated flux densities greater than 1.45 Jy km s−1, above the median value

of 1.34 Jy km s−1. The UCHVCs that are identified within the GALFA dataset

that have flux densities below the median value of the UCHVC sample also have

linewidths narrower than the median value of the UCHVCs. This is a straight-

forward result of the different focus of the two surveys; the GALFA-HI data are

designed to detect narrow velocity width HI features associated with Galactic hy-

drogen while the ALFALFA dataset is designed to detect extragalactic HI sources

with wider linewidths. While we will address the completeness and reliability of

the UCHVC catalog in future work, we note that six UCHVCs not included in the

GALFA catalog have all been confirmed as real HI signals via confirmation obser-

vations with the Arecibo L-Band Wide receiver (Adams et al. in prep). In addition,

the UCHVCs presented here have strict S/N criteria so the likelihood that many

of the UCHVCs are false detections is small. This demonstrates the utility of the

ALFALFA dataset, detection algorithm presented here, and the source inspection.

3.4 UCHVCs as Minihalo Candidates

The mismatch between observations of low mass galaxies and simulations of dark

matter halos remains an outstanding question in understanding both the cosmo-

logical paradigm and galaxy formation and evolution. Is the ΛCDM paradigm

incorrect? How does star formation and gas accretion proceed in the lowest mass

halos? Finding the lowest mass dark matter halos with baryons can help address

these question. In this section, we discuss the possibility that the UCHVCs pre-

sented in this paper could represent gas-bearing minihalos. In this context, a mini-

halo is dark matter halo below the critical mass of ∼ 1010 M⊙ where astrophysical
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Figure 3.12: Properties for the UCHVCs not seen in the GALFA-HI dataset (solid
black lines/squares), UCHVCs included in the GALFA compact cloud catalog
(CCC) of S12 and those found by the identification algorithm but discarded from
the final catalog (dashed lines/diamonds, red), and UCHVCs seen in the GALFA-
HI dataset but missed by the cloud finding algorithm of S12 (dotted lines/tri-
anges, blue). The dotted line in the bottom right panel indicates the median ve-
locity width of the UCHVCs.
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processes begin to strongly affect the baryon content [e.g. Hoeft and Gottlöber,

2010, Hoeft et al., 2006]

Sternberg et al. [2002] examined in detail how neutral hydrogen could exist

in minihalos. They found that the neutral gas would be surrounded by an enve-

lope of ionized gas, with the specifics depending upon the pressure of the ionized

medium the halo is immersed in. They examined both cuspy (NFW) and con-

stant density (Burkert) cores. Cuspy cores are predicted by simulations, while

observations of dwarf galaxies indicates that low mass dark matter halos have

constant density cores. The UCHVCs appear to match well the Sternberg et al.

[2002] minihalo models with a median Burkert density profile, DHI ≃ 1.4 kpc,

MHI ≃ 3× 105 M⊙, total to neutral gas mass ratio of 15, peak NHI ≃ 4× 1019 cm−2,

total halo mass Mvir ≃ 3× 108 M⊙, surrounded by a hot, ionized IGM of pressure

PHIM = 10 cm−3 K. The measured column densities are averaged over the size of

the cloud and smeared by the 3′.5 beam of the Arecibo telescope and hence repre-

sent a lower limit to the true peak column density, and so they are consistent with

the higher peak NHI values of the model. The measured Mdyn is an estimate of

the total mass within the HI extent; the total size of the dark matter halo exceeds

the HI size by a factor of several, explaining the discrepancy between the total

halo mass of the model and the inferred dynamical mass from ALFALFA. Work is

ongoing to match the individual UCHVC detections to specific individual models

(Y. Faerman et al., submitted).
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3.4.1 Previous Searches for Minihalos

A LG origin for HVCs, or at least a subset of the HVC population has been con-

sidered before. With the advent of large-scale, sensitive, blind HI surveys, interest

was revived in HVCs as tracers of dark matter halos. Blitz et al. [1999] and Braun

and Burton [1999] both postulated a LG origin for HVCs; Braun and Burton [1999]

specifically proposed that compact HVCs (CHVCs), identified by their isolation

and undisturbed spatial structure, were good candidates to represent dark matter

halos throughout the LG. de Heij et al. [2002a] extracted a set of CHVCs from the

Leiden/Dwingeloo Survey (LDS), and Putman et al. [2002] similarly presented a

set of CHVCs from the HI Parkes All-Sky Survey (HIPASS). Further work, both

observational and theoretical, since the discovery of the CHVC population sug-

gests that they most likely represent a circumgalactic population. The properties

of the CHVC population from the two catalogs are summarized in Table 3.5. Se-

quentially, this table lists: object class, distance (in kpc), HI angular diameter (in

arcmin), HI diameter (in kpc), peak column density, W50, integrated flux density,

HI mass, and dynamical mass within the HI extent. de Heij et al. [2002b] showed

that the properties of the CHVCs for the two datasets are the same when account-

ing for the better spatial resolution and sensitivity of HIPASS and the better ve-

locity resolution of LDS.

Sternberg et al. [2002] and Maloney and Putman [2003] independently mod-

eled gas in dark matter halos to understand the CHVC population. Based on con-

siderations of their astrophysical properties, both groups concluded that the best

interpretation of the CHVCs was as circumgalactic objects at d . 200 kpc. Stern-

berg et al. [2002] found that if the CHVCs were at d > 750 kpc, their dark matter
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halos were extremely underconcentrated. They found that at d . 150 kpc, the

CHVCs were consistent with being gas pressure confined in dark matter halos.

In this scenario, the CHVCs represent the subhalos surrounding the Milky Way

from its hierarchical formation. Both pointed out that the gas of the CHVCs must

be largely ionized, implying that the total mass of gas is much greater than the

observed mass. If the CHVCs were at distances of 0.7-1 Mpc, extremely low dark-

matter-to-gas ratios would then be required to match the observed linewidths of

the CHVCs, and they would violate the ΛCDM mass-concentration relation. They

argued that the CHVCs must be at d . 200 kpc to match size and total dark mat-

ter constraints. More recent observational evidence also indicates that the CHVCs

must be at circumgalactic distances. The HI masses of the CHVCs at LG distances

of ∼1 Mpc are a few times 107 M⊙, large enough that they should have been de-

tected in surveys of other galaxy groups but have not [e.g. Pisano et al., 2007,

Chynoweth et al., 2011a, Zwaan, 2001, Braun and Burton, 2001, Pisano et al., 2004].

In addition, higher resolution observations of CHVCs show clear ram pressure

indicators in many cases, indicating that the CHVCs are located at circumgalac-

tic distances [Westmeier et al., 2005b]. Observations of potential CHVC analogs

around M31 also point to a circumgalactic origin. Westmeier et al. [2005a] stud-

ied HVCs associated with M31 in high resolution; importantly, the association of

these HVCs with M31 allows a distance constraint to be derived. As outlined in

Table 3.5, the properties of the M31 HVCs are a good match to the properties of

the CHVCs at d ∼ 150 kpc, indicating that the two samples are likely a similar

population.

Multiple searches have been undertaken for minihalos around nearby galaxy

groups [e.g. Zwaan, 2001, Braun and Burton, 2001, de Blok et al., 2002, Minchin
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Table 3.5. HI Content in the LG - HVCs and Galaxies

Class d θ DHI NHI W50 S21 MHI Mtot Refsa

kpc ′ kpc atoms cm2 km s−1 Jy km s−1 M⊙ M⊙

UCHVCs d = 1000 10 2.9d & 0.6× 1019 23 1.26 1.8× 105 d2 3.3× 107 d 1

CHVCs (LDS) 150 60 2.6 1.3× 1019 25 102 5.4× 105 3.5× 107 2

CHVCs (HIPASS) 150 24 0.52 1.4× 1019 35 19.9 1.1× 105 2.7× 107 3

M31 HVCs 780 4.6 1.04 3.9× 1019 24 2.1 3.0× 105 4.5× 107 4

Leo T 420 5 0.6 70× 1019 16 6.7 2.8× 105 .33× 107 5

Leo P 1750 2.0 1.0 20× 1019 24 1.31 9.5× 105 1.3× 107 6,7,8

aReferences: 1: this work, 2: de Heij et al. [2002a], 3: Putman et al. [2002], 4:Westmeier et al. [2005a], 5: Ryan-Weber et al. [2008],

6: Giovanelli et al. [2013], 7: Rhode et al. [2013], 8:Skillman et al. [2013]
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et al., 2003, Barnes and de Blok, 2004, Pisano et al., 2004, 2007, 2011, Chynoweth

et al., 2009, Kovač et al., 2009, Irwin et al., 2009, Chynoweth et al., 2011a,b, Mihos

et al., 2012]. Generally, these surveys must choose between sensitivity and cover-

age area. Irwin et al. [2009] undertook a deep survey of the nearby isolated galaxy

NGC 2903 sensitive to an HI mass of 2× 105 M⊙ and covering 150 kpc × 260 kpc.

This survey was sensitive enough to (barely) detect a Leo T analog but given that

the survey footprint only extends to ∼100 kpc in projected radius from the galaxy

center, detection of an object at &400 kpc from the galaxy center would depend

strongly on orientation. Irwin et al. [2009] did detect one minihalo with an HI

mass of 2.6 × 106 M⊙, a comparable stellar stellar mass and a dynamical mass of

& 108 M⊙. Chynoweth et al. [2011b] undertook a large (480 kpc × 1.2 Mpc; 8◦.7 ×

21◦.3) survey centered on the region between the M81/M82 and NGC 2403 galaxy

groups. Their survey had a mass detection limit of 3.2× 106 M⊙which is not deep

enough to detect a Leo T analog. While their survey covers a large footprint, it is

focused on the region between two connected galaxy groups and coverage of the

outskirts of the galaxy groups is limited. They detect several massive HI clouds

(M > 106 M⊙) and determine that these clouds likely arise from tidal processes

given their clustering near M81. Mihos et al. [2012] surveyed the M101 group

over 1050 × 825 kpc (8◦.5 × 6◦.7) to a mass senstivity of varying from 2 to 10

×106 M⊙ over their footprint. This footprint includes all objects out to ∼400 kpc

from the central galaxy, regardless of orientation, but the survey is not sensitive

enough to detect a Leo T analog. They do identify a new low surface brightness

dwarf galaxy through an HI detection and a starless HI cloud with an HI mass of

1.2× 107 M⊙.
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3.4.2 Known Minihalos in the LG

In considering the UCHVCs as gas-bearing minihalos in the LG, we first want to

examine the context of the LG and ask what we may empirically expect a mini-

halo to look like. The population of the LG has increased substantially in the

last few years with the discovery of the UFD satellites of the Milky Way from

automated stellar searches of the Sloan Digital Sky Survey [Willman, 2010] and

targeted searches for satellites of M31 [e.g. Ibata et al., 2007, McConnachie et al.,

2009]. The UFDs have indicative dynamical masses within the baryon extent of

106 − 107 M⊙ and most likely inhabit dark matter halos that qualify them as mini-

halos. With the exception of Leo T and the recently discovered Leo P, the UFDs

are located within the virial radius of the MW or M31 and have no detectable gas

content.

Surveys of low mass galaxies in the field indicate that, with large scatter, dwarf

galaxies tend to be gas-rich and can have atomic gas as their dominant baryon

component [e.g. Geha et al., 2006, Schombert et al., 2001]. Modulo the uncertain-

ties in how astrophysical processes affect the baryon content of the lowest mass

halos, one would naively expect the trend of high gas fraction to continue as lower

mass galaxies are discovered. Leo T is the only UFD discovered through optical

surveys that has neutral gas content; it is also the UFD that is most distant from

the MW. The other UFDs are located within the virial radius of the MW or M31

and many show signs of tidal interaction with the MW [e.g. Sand et al., 2012].Grce-

vich and Putman [2009] find that morphological segregation is strong in the LG

with dwarf galaxies within 270 kpc of the Milky Way or Andromeda showing no

evidence of neutral gas content. Leo T is on the edge of detectability for SDSS;

98



were it located further away, its stellar population would not have been detected

[Kravtsov, 2010]. Taken together, these facts raise the possibility that more gas-

rich UFDs are lurking in the LG with distances and stellar populations that would

leave them undetected in SDSS.

Leo T serves as our prototype of what a gas-rich minihalo will look like; it has

motivated our search for more minihalos and the discovery of Leo P. In Figure 3.13

we examine the HI properties of the LG galaxies and neighboring dwarf galaxies

within 3 Mpc in comparison to Leo T and Leo P to infer what we may expect for

future minihalo detections. The top panel of Figure 3.13 shows a histogram of the

HI masses of dwarf galaxies within the LG and neighboring systems, taken from

McConnachie [2012]. Leo P and Leo T have some of the lowest HI masses in the

LG and Local Volume (LV); we would expect previously undetected systems to

have low HI masses. The bottom panel of Figure 3.13 illustrates the parameter

space occupied by Leo T and Leo P in the LG and LV; they have low HI masses

and low dynamical masses.

3.4.3 Evidence for the UCHVCs as Minihalo Candidates

In assessing the UCHVCs as minihalo candidates, we first consider if their as-

trophysical properties are consistent with the scenario. As mentioned above, the

UCHVCs are a good match to the models of Sternberg et al. [2002]. Importantly,

the UCHVCs also overcome the objections that ruled out the CHVCs as minihalo

candidates throughout the LG. As summarized in Table 3.5, the UCHVCs have

HI masses typical of ∼ 105 d2 M⊙ and HI diameters of ∼ 2.9 d kpc. These smaller

sizes and lower fluxes suggest that at distances of 1 Mpc, the physical properties
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Figure 3.13: The top panel is a histogram of HI mass in the LG and nearby dwarf
galaxies in the Local Volume (indicated by the hashed histogram), including Leo
T (its contribution indicated by the red filled square), from the catalog of Mc-
Connachie [2012]. The location of Leo P is also indicated. The bottom panel is HI
mass as a function of dynamical mass within the baryon extent. The diamonds are
LG galaxies with HI content, the triangles Local Volume dwarfs, the filled square
is Leo T and the filled star is Leo P. The dynamical masses are compiled from the
literature and are calculated using a variety of different methods and at differ-
ent extents of the galaxies; in all cases the dynamical masses are underestimates
of the true dynamical mass [Łokas, 2009, De Rijcke et al., 2006, Geha et al., 2010,
Shostak and Skillman, 1989, Cook et al., 1999, Hoffman et al., 1996, Mateo, 1998,
Ryan-Weber et al., 2008, Kepley et al., 2007, Begum and Chengalur, 2004, Kirby
et al., 2012, Skillman et al., 1988, Begum et al., 2005, 2006]. The dotted line indi-
cates where Mdyn equals MHI . In addition to having low HI masses, Leo T and
Leo P also have low dynamical masses.
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of the UCHVCs are good matches to the CHVC properties at distances of ∼250

kpc. In this scenario, the CHVCs could represent subhalos within the MW and

the UCHVCs represent isolated structures within the LG.

The LG is a bound group of galaxies, hence studying the kinematics of the

UCHVCs can help constrain their association with the LG. In Figure 3.14 we com-

pare the motions of the UCHVCs to the LG. Following Courteau and van den

Bergh [1999], we plot v⊙ versus the cosine of the angle from the LG apex. In gen-

eral the UCHVCs show similar behavior to the motions of the LG galaxies, lending

credence to the possibility that they trace LG dark matter halos. They do appear to

have a higher velocity dispersion, similar to the nearby neighbor galaxies that are

not bound to the LG. This may suggest that the UCHVCs are outlying systems,

marginally bound to the LG.

Finally, we offer a preliminary comparison of the UCHVCs to the Via Lactea II

(VL) simulation of Diemand et al. [2008], a high resolution cosmological N-body

simulation of a Milky Way analog. We compare the spatial and kinematic dis-

tribution of the UCHVCs to the dark matter halos of the VL simulation to see if

the hypothesis of UCHVCS as minihalos is consistent with theoretical predictions.

We utilize the full volume of the simulation, which includes 20,048 halos that ex-

tend to more than 3 Mpc from the central MW analog halo. In addition to the

central massive halo, there is a second massive halo which is a fortuitous analog

to M31 [Teyssier et al., 2012]. In our favored model, we place this second massive

halo at the approximate location of M31 in order to most closely match the LG.

We also use the original simulation coordinates plus five random orientations of

the subhalos to demonstrate the importance of structure within the LG. After the

coordinate transformations, we only consider the halos within the simulation that
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Figure 3.14: Cosine of the angle from the Solar apex versus heliocentric velocity.
The solid line shows the relation of Courteau and van den Bergh [1999] and the
dashed lines are their stated error. The dotted lines indicate inaccessible velocity
space due to the UCHVC velocity selection criterion. The filled red circles are
the UCHVCs with the outlined filled red squares indicating the MIS UCHVCs.
The diamonds are the LG galaxies from McConnachie [2012] and the triangles are
neighboring galaxies within 3 Mpc that are not bound to the LG.
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lie within the boundaries of the α.40 coverage and meet our velocity criterion.

In Figure 3.15 we show the distribution of galactic latitude and vLSR for the

UCHVCs and the VL subhalos. Due to the presence of large and complex HVC

structure in the fall sky, we focus on the spring sky for our comparison. In the

left column we show all the halos that match our selection criteria; in the right

column we show only those halos located further than 250 kpc from the central

massive halo to more closely approximate the halos we expect to be gas-bearing.

The effects of structure are much more noticeable when only the most distant ha-

los are considered; the different orientations show a much wider spread in the

distribution of |b| in this case. The galactic latitude plot is especially important as

it provides a quick test of whether the distribution of clouds is within the Galac-

tic disk or a circumgalactic distribution. If the UCHVCs are associated with the

Galactic disk, a flattened distribution of |b| values is expected compared to the

case if the UCHVCs are distributed around the Galaxy. The UCHVCs and MIS

UCHVCs have similar distributions for |b| and |vLSR|. The favored orientation of

the VL simulation appears to match well the distribution of |b| for the UCHVCs.

The large differences in the cumulative distribution function (CDF) of |b| for the

random orientations shows the importance of structure. The kinematics of the

UCHVCs appear to be consistent with the VL simulation in all cases with the CDF

of |vLSR| matching well in all cases. While it is beyond the scope of this paper to

do a full halo-population analysis, the rough analysis presented here shows that

the UCHVCs agree reasonably well with the VL simulation.

We can also use the VL simulations to provide a rough check of the numbers of

halos expected. There are 40 UCHVCs in the spring sky, including 17 in the most-

isolated subsample. We compare to our favored orientation of the VL simulation,
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noting that it matches the spring sky in that we are looking into the outskirts of

the simulation as the spring region of ALFALFA probes the outskirts of the LG.

There are a total of 168 VL halos that meet our velocity criterion in the region of

the simulation that matches the α.40 spring footprint. When limited to halos with

distances from the central MW analog halo greater than 250 kpc, there are a total

of 44 halos; 27 of these halos have Mtidal > 107 M⊙. Given the roughness of our

numbers the two populations appear to be consistent.

3.4.4 The UCHVCs as Galaxies

As galaxies, the UCHVCs would favor the outskirts of the LG, rather than the

central regions, with distances of ∼500 kpc – 1 Mpc. They would have HI masses

of ∼ 105 M⊙ with envelopes of warm ionized hydrogen with masses of ∼ 106 M⊙.

The indicative dynamical masses within the HI extent are ∼ 107 − 108 M⊙, and

the total hosting halo masses are likely & 109 M⊙. While this hypothesis is attrac-

tive, it cannot be definitively proven until distance constraints are in place for the

UCHVCs. Further work is necessary in order to constrain their distances as the

ALFALFA HI detection carries no direct distance information. The kinematics of

the UCHVCs are dominated by LG interactions, so the velocity cannot offer any

insights to the distance. The detection of an optical counterpart can constrain the

distance through studies of the stellar population. It is also possible to constrain

the distance solely through HI by using synthesis imaging to determine the rota-

tional velocity of the UCHVCs and constrain the distance through the baryonic

Tully-Fisher relation [e.g. Giovanelli et al., 2013, McGaugh, 2012]. An alternative

to confirming the distance of the UCHVCs directly is to detect UCHVC analogs
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Figure 3.15: The distribution of subhalos from the Via Lactea II simulation com-
pared to the UCHVCs (solid red line) and the most-isolated subsample (dashed
red line). The dot-dash blue line represents the subhalos in the original simula-
tion coordinate system; the dashed line (blue) is our favored orientation where
the simulation rotated to place the second massive halo at the approximate loca-
tion of M31. The dotted lines represent five random rotations of the simulation
coordinates. The left-hand column shows the distribution of all the VL subhalos
in the spring footprint that meet our velocity criterion, and the right-hand column
shows the VL subhalos that are located further than 250 kpc from the central mas-
sive halo. Overall, the UCHVCs appear consistent with the distribution of halos
from the simulation, especially for our favored orientation. Given the large dif-
ferences between halo distribution depending on the rotation of the simulation
coordinates, it is clear that accounting for structure is crucial.
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around other nearby galaxy groups and use the association with the group to con-

strain the distance and properties of the clouds. Planned future HI surveys using

phased-array-feeds will be able to robustly detect these objects.

Confirming that a subset of the UCHVCs are galaxies will offer many insights.

The UCHVCs will increase the number of low-mass galaxies known in the Local

Volume, decreasing the discrepancy between simulations and observations. In

addition, the UCHVCs will trace the outskirts of the LG allowing the comparison

between simulations and observations to be extended to a larger volume. The

UCHVCs will also serve as isolated examples of the lowest mass galaxies, hav-

ing not yet interacted substantially with the MW. The UCHVCs offer the potential

to study star formation in extreme, low metallicity environments as the presence

of gas means there is a possibility of star formation. In fact, Leo T has recently

formed stars and Leo P has ongoing star formation with one HII region. Abun-

dance measurements of the HII region in Leo P indicate that it is among the lowest

metallicity systems known and blind HI surveys may prove to be a promising way

to detect low luminosity, extremely metal deficient galaxies [Skillman et al., 2013].

The two confirmed low mass gas-rich galaxies in the Local Volume, Leo T

and Leo P, both have high average column densities and small HI angular di-

ameters, as can be seen in Figures 3.7 and 3.8. It may be reasonable to ex-

pect then that the most compact and highest column density UCHVCs are the

best candidates to represent low-mass gas-rich galaxies. HVC274.68+74.70-123,

HVC351.17+58.56+214, and HVC13.59+54.52+169 are in the most-isolated sub-

sample, have average angular diameters < 7′, and have N̄HI > 1019 cm−2; we

suggest that these are the best galaxy candidates in our sample. One of these can-

didates, HVC351.17+58.56+214 is also identified by the GALFA-HI survey as a
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good galaxy candidate. Notably, it is among the most compact clouds included in

this catalog (7′ × 5′) and has one of the highest column densities (log N̄HI = 19.3).

If we adopt a representative distance of 1 Mpc, it has a HI mass of 3.9 × 105 M⊙

and an indicative dynamical mass within the HI extent of 2.1× 107M⊙.

3.5 Conclusion

We present a set of 59 ultra-compact high velocity clouds which are of interest

as speculative minihalo candidates. In brief, the properties of the UCHVCs are

summarized below.

• They have HI integrated flux densities from 0.66–8.55 Jy km s−1 with a me-

dian of 1.34 Jy km s−1, linewidths of 15–70 km s−1 with a median of 23

km s−1, and angular diameters of 4–20′ with a median of 10′.

• They are selected according to strict isolation criteria. As a result, they are

distinct from known HVC populations.

• Their HI sizes and HI fluxes allow them to overcome previous objections

leveled against CHVCs as LG minihalos.

• They are consistent with the minihalo models of Sternberg et al. [2002]. At

a distance of ∼1 Mpc, they have HI masses of 105 − 106 M⊙ and dynamical

masses within the HI extent of 107−108 M⊙. Their total gas masses, including

the surrounding ionized envelope, would be ∼ 106 − 107M⊙ and the total

hosting halo masses would be . 109 M⊙.

• As galaxies, they would allow us to probe the outskirts of the LG, study
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low mass systems that have remained isolated from the MW, and provide

an avenue for indentifying extremely metal deficient galaxies.
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CHAPTER 4

HIGH SPATIAL RESOLUTION STUDIES OF THE HI DISTRIBUTION OF

ULTRA-COMPACT HIGH VELOCITY CLOUDS

The ALFALFA HI detection of a UCHVC provides the global measurements of

the integrated flux density and the linewidth, plus an estimate of the angular di-

ameter. However, no other spatial information is available from the ALFALFA

data. As shown in Chapter 2, even as coarse a parameter as the elongation of

the HI distribution (i.e., the measured axial ratio of a UCHVC) is not able to be

measured accurately from the ALFALFA dataset. Higher spatial resolution ob-

servations with a radio interferometer are necessary for the HI distribution to be

constrained in any meaningful way. This chapter discusses how spatially resolved

HI studies can inform the minihalo hypothesis for the UCHVCs. Imaging and

analysis of one early target, AGC268069, acquired with the VLA via shared risk

observing are presented as a case study for what interferometric observations can

reveal about the UCHVCs. Acquisition and analysis of high resolution HI data

is an ongoing project with sources currently being observed (June–August 2013)

and another proposal submitted in July 2013 for observations in 2014.

4.1 The Importance of the HI Distribution

Spatially resolved studies of the HI content of the UCHVCs via interferometric

observations are a powerful tool for understanding the nature of the UCHVCs.

Spatially resolved HI intensity maps can be used to search for signs of interaction

with the MW and to constrain models of the hosting dark matter halos. Spatially
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resolved velocity fields can uncover evidence of rotation and place stricter con-

straints on dark matter content.

4.1.1 Evidence for Interaction

If the UCHVCs are at Galactic or circumgalactic distances, they are susceptible

to processes such as ram pressure disruption and tidal stripping that will leave

signatures in the HI distribution. Observations of the HI distribution of CHVCs

were used to help constrain the hypothesis that they represent objects located at

distances of ∼100-300 kpc. Westmeier et al. [2005b] mapped CHVCs with Ef-

felsberg and found that a majority of their sample showed evidence for head-

tail structures, bow-shock shapes and irregular structures. These all indicate that

the CHVCs are interacting with an ambient medium and argues for distances of

∼100 kpc for the CHVC population. Uncovering similar HI morphology in the

UCHVCs would indicate that they are also nearby objects at distances of a few

hundred kpc. Conversely, if the UCHVCs show a smooth undisturbed HI mor-

phology, that is a strong piece of evidence in favor of the minihalo hypothesis.

4.1.2 Evidence for Rotation

Higher resolution HI observations allow a velocity field to be produced for a

UCHVC, revealing the kinematics of the gas as a function of spatial position. An

ordered velocity field is evidence of rotation, and a tilted-ring model can be fit

to such a velocity field to derive a rotation curve. Gas-rich dwarf galaxies are

generally rotationally-supported structures. Specifically, Leo P shows evidence of
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rotation on the order of ∼11 km s−1 [inclination corrected; Giovanelli et al., 2013].

Leo T shows evidence for a gradient across its velocity field but is a dispersion-

supported structure [Ryan-Weber et al., 2008]. The presence of clear rotation in

a UCHVC would be considered fairly conclusive evidence that it is dark matter

dominated structure.

In addition, the presence of a velocity gradient and/or rotation curve allows

the determination of an accurate dynamical mass, modulo uncertainties in the in-

clination of the disk and distance to the UCHVC. Even for a dispersion-supported

structure, higher resolution HI observations allow an improved estimate of the

dynamical mass from improved constraints on the size of the HI disk.

4.1.3 Comparison to Models

Observations of the UCHVCs with higher spatial resolution can constrain the ra-

dial HI density profile and peak column densities of the UCHVCs. These obser-

vations can be used to compare the observed HI in the UCHVCs to models of

gas in low mass dark matter halos, constraining the nature of the UCHVCs and

their hosting dark matter halos (if they exist). Sternberg et al. [2002] used their

models to argue that the CHVCs must be at circumgalactic distances. Recently,

Faerman et al. [2013] use a radial HI profile of Leo T to constrain the properties of

the hosting dark matter halo.

The presence of multiphase cores with both cold neutral medium (CNM) and

warm neutral medium (WNM) is predicted for some gas-bearing low mass dark

matter halos in the models of Sternberg et al. [2002]. The size of these cores is much
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smaller than the Arecibo beam size and so the spectral signature of the CNM (if

it is present) would not be visible in the ALFALFA data or L-band Wide (LBW)

confirmation observations (higher spectral resolution). Higher spatial resolution

HI observations allow the multiphase core to be spatially isolated and identified.

Identifying the presence or lack of a multi-phase core can allow constraints to be

placed on models of the UCHVCs.

4.2 A Case Study: AGC268069

Observations of AGC268069 (HVC 28.07+43.42+150) with the Karl G. Jansky Very

Large Array (VLA) in the C-configuration are presented as a case study for the

utility of high resolution HI observations. These data were taken as part of a

shared-risk observing program during commissioning of the new VLA correlator,

WIDAR. This source is among the high N̄HI and compact groups of sources dis-

cussed in Chapter 5. Specifically, it has cz =132 km s−1, W50=29 km s−1, θHI=7′,

and Sint =1.15 Jy km s−1. Figure 4.1 shows the ALFALFA HI contours of this

source along with the ALFALFA spectrum.

In addition, there are observations with the Cosmic Origins Spectrograph (COS)

on the Hubble Space Telescope (HST) of a background quasar located 10′ from the

source center. The quasar lies outside the extent of the observed HI but may pro-

vide a line of sight through an extended envelope of ionized hydrogen (HII). The

central HI (of any UCHVC) is presumably surrounded by an ionized envelope

that shields the inner material from the metagalactic UV radiation field, allow-

ing it to remain neutral [Sternberg et al., 2002]. Comparisons of different ion-
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Figure 4.1: Upper Panel: The HI contours of AGC268069 from the ALFALFA data
at levels of [5, 7.5, 10] ×1018 atoms cm−2. The field of view is 30′ and the beam
is shown in the lower right corner. Lower Panel: The ALFALFA spectrum of
AGC268069; it is clearly distinct from Galactic HI emission.
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ization levels of atoms within the interstellar medium (ISM) of the UCHVC can

allow strict constraints on the hosting dark matter halo and bounding pressure

of the surrounding medium. There was no detection of absorption lines from

AGC268069 in the spectrum of the background quasar, indicating that the outer

envelope of ionized material is truncated at a smaller radius. This implies that the

environment of AGC268069 has a bounding pressure greater than PHIM ∼ 10 cm3

K [Gnat et al., 2013]. The VLA observations presented here are designed to con-

strain the HI distribution and peak column density to allow more accurate model-

based results to be derived from the HST-COS observations.

4.3 The Observations

A total of 26 hours was awarded for this study. The observations of AGC268069

were broken into five different blocks in order to accommodate both the amount of

time for which AGC268069 was visible and the dynamic scheduling of the VLA.

These five blocks ranged from 4.5-6.5 hours in length; see Table 4.1 for a brief

summary of the observing blocks. In all cases, a flux calibrator (J1331+303/3C286)

was observed for ∼15 minutes at the start of the observing block and ∼7 minutes

at the end of the observing block to constrain the flux scale and the bandpass

response of the observations. The source is observed in ∼ 20 − 21 minute blocks

sandwiched by ∼3 minute observations of a phase calibrator (J1553+1256) used to

calibrate the phase of the source.

114



Table 4.1. Summary of VLA/C Observations of AGC268069

Block Date Block Time On-source Time

Block 1 2012 Mar 13 6.5 hrs ∼5 hrs

Block 2 2012 Mar 22 5 hrs ∼3.75 hrs

Block 3 2012 Apr 3 5 hrs ∼3.75 hrs

Block 4 2012 Apr 7 5 hrs ∼3.75 hrs

Block 5 2012 Apr 18 4.5 hrs ∼3.5 hrs

Table 4.2. Observational Set-up

Parameter Value

Spectral windows 16

Spectral window bandwidth 250 kHz

Channel width 1.953125 kHz (0.41 km s−1)

Polarizations RR, LL

Total bandpass ∼2 MHz (∼400 km s−1)

4.4 Data Preparation

This section provides a brief description of the calibration of the VLA data; a com-

plete reduction log of a single scheduling block (including CASA commands) is

available in Appendix B. Each scheduling block of data is calibrated individually

and the scheduling blocks are combined in the imaging stage (Section 4.5). All

calibration was carried out within CASA1.

1Common Astronomy Software Application
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4.4.1 Calibration

The first step of calibration is to flag the data. Using the viewer in CASA, the

data is first examined for bad baselines and antennas by looking at amplitudes as

a function of baseline pair (sorted by antenna) and time for a single channel. Any

bad antennas or baselines are flagged. In addition, amplitudes are examined as

function of channel and time for a set of baselines to quantify the presence of any

RFI. For these data, the RFI is minimal2, and the flagging of any RFI occurs in the

next stage with the use of plotms. First, amplitudes are plotted as function of

time in plotms to identify bad times. Then phases are plotted as function of time

(for the calibrators only) to ensure that all antennas are properly recording phase.

Finally, the amplitudes are examined as a function of frequency to allow RFI to be

identified and flagged.

After flagging the data is split by polarization before calibration. This is

because in dual-polarization datasets, CASA requires both polarizations to be

present to calibrate the antenna. Often, an antenna will be flagged in a single

polarization but not the second so splitting the dataset allows as much data as

possible to be retained. The flux scale is then set by using a stored model for

the flux calibrator. The data is bandpass corrected and then the complex gains

(phases and amplitudes) are calibrated. The flux scale is then transferred from

the flux to the phase calibrator. Finally, the calibration is applied to the data. The

calibrated data is examined in plotms to ensure that the calibration looks reason-

able. Typically this is done by plotting the calibrated phases against the calibrated

amplitudes for the flux and phase calibrators; the calibrated data should cluster

in a circle as the calibration sources are point sources. If necessary, further data is

2As expected since the 21cm line is a protected frequency band
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flagged and the calibration is redone. The final corrected source data is split into

its own file. Continuum sources are then subtracted from the final calibrated uv

data. The two separate polarizations are recombined in the imaging stage.

4.4.2 Dealing with Overlapping Passbands

Before imaging the data it is necessary to determine how to deal with the over-

lapping passbands of the data that are a result of our correlator setup. These data

were taken during commissioning of the VLA in a shared-risk mode, meaning the

correlator had limited setups available. In order to cover our full frequency range

at the desired spectral resolution, we had to use multiple frequency windows in

conjunction with each other. A total of 8 spectral windows (SPWs) of 250 kHz

each were used to cover the full frequency range of 2 MHz (see Table 4.2). In or-

der to account for the decrease in sensitivity due to bandpass shape at the edge

of the individual SPWs, a second set of SPWs were observed offset in frequency

by half the frequency width of a single SPW. This ensured good coverage at all

frequencies. Figure 4.2 shows the bandpasses of the different SPWs for a single

antenna demonstrating the overlapping coverage.

Given the overlapping SPWs of our dataset, we must determine the best way

to combine the different SPWs to produce the best data cube. There are three ways

that one could think of combining the data:

• Average all channels together

• Average all the channels with good throughput together

• “Glue” the different SPWs together to create uniform frequency coverage
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Figure 4.2: The bandpass response of all the spectral windows as function of fre-
quency. Each SPW is colored separately. The overlapping nature of the SPWs is
clearly visible.

In the first method, we are assuming that the increase in noise due to fall-off

in the bandpass shape is small and that simply combining all data will produce a

good data cube. In the second method we are avoiding the noisy edge channels

and keeping all other data. In the third method we are attempting to create the

most uniform data cube possible. For the third method, it should be noted that we

cannot do a simple combination of different SPWs and channels as our channels

are narrow enough that signal moves from one channel to another during the

course of our observations as a result of the Earth’s motion. Instead, the creation

of a single bandpass for the data is done with cvel which accounts for the shift

in signal due to the Earth’s motion.

Figure 4.3 shows the noise for a single block of observations as function of fre-

quency. Examining the figure, it is clear that the most uniform noise properties

come by “gluing” the frequency coverage together with cvel. For the remain-
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Figure 4.3: The noise as a function of frequency for the three different methods
for combining the spectral window (SPW) frequency coverage. “Gluing” the fre-
quency coverage together produces the most uniform data cubes, although it does
come at a cost of slightly higher noise.

der of this work, data cubes are created from visibilities that have been “glued”

together.

4.5 Imaging

Radio interferometer arrays sample the spacing of a single radio dish of the size

of the largest baseline separation between two antennas. Fundamentally, the data

are sampled points in the uv plane of the Fourier transform (FT) of the true sky

image of the source, and there is no unique way to create an image of the source.

The most common way to create an image from interferometric data is ”cleaning”.

A “dirty” cube is created by taking the FT of the measured uv data, typically via

the fast Fourier transform (FFT). This results in a cube that contains the source

convolved with the dirty beam of the telescope (the FT of the uv sampling). To

create a clean cube, a clean component list (initialized to empty) and a residual
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map (initialized to the dirty cube) are created. Then a loop process is started until

a threshold or set number of iterations is reached. The loop is as follows:

• The strongest feature in the residual map is identified as a point source.

• A fraction of this source (gain, typically 0.2) is added to the clean component

list.

• The fraction of the source is subtracted from the residual map.

• Identify the strongest feature in the new residual map and continue.

When the stopping point is reached, the clean component list is convolved with

an estimate of the main lobe of the dirty beam and added to the residual map to

create the “clean” image. Miraculously this methodology works extremely well,

even for extended low surface brightness sources, although alternative methods

have been developed that are specifically optimized for extended emission.

One such alternative is msclean (multi-scale clean) which operates similarly

to clean but fundamentally assumes that sources in the sky are extended struc-

tures of different spatial scales [Cornwell, 2008]. msclean operates more effi-

ciently than clean by reducing the number of iterations needed, both by allowing

extended sources to be modeled more efficiently with spatially extended functions

and because the gain for subtracting a source can be set to a higher value without

divergence. It has been demonstrated that msclean returns images with few ar-

tifacts [Rich et al., 2008]. For these reasons, we will use msclean to produce clean

images in this work.
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4.5.1 Robustness and Tapering

One important parameter to consider when imaging interferometric data is how

the uv data is gridded and weighted for the FFT. It is possible to weight the data

and baseline spacings in different manners which can result in significantly dif-

ferent resolutions as the synthesized beam of the telescope (the FT of the uv sam-

pling) changes. In this section we explore two different parameters that affect the

resolution and other properties of the final data cubes: robustness and tapering.

The two extremes for weighting uv data are natural and uniform weighting.

Natural weighting gives more weight to short baselines and maximizes point

source sensitivity while degrading resolution. Uniform weighting gives more

weight to longer baselines and fills the uv plane more evenly, resulting in lower

outer sidelobes and higher resolution but it also decreases the point source sensi-

tivity. The “robustness” parameter was originally proposed by Briggs and intro-

duces a range of weighting schemes ranging between the two extremes. In CASA,

the robustness parameter can range between [-2, 2] where -2 is close to uniform

weighting and 2 is close to natural weighting. A robustness of 0 is typically a

happy medium in the trade-off between sensitivity and resolution.

In order to choose the best set of robustness parameters to use, a single block

of observations was imaged with the full range of robustness values from [-2, 2]

in steps of 0.1, plus natural and uniform weighting. Figure 4.4 shows the beam

size and rms (averaged over the channels imaged) as function of robustness. The

natural weighting has the lowest RMS of 1.45 mJy/beam which is important for

the low surface brightness emission of the UCHVCs. In addition, at a robustness

of 0.2 the average beam size has decreased by 25% to 13′′ from 17′′ while the noise
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Figure 4.4: The RMS (solid line), major beam axis (dashed line) and average beam
size (dotted line) as a function of different robustness values for a single observ-
ing block. RMS values for natural and uniform weighting are indicated by down-
ward triangles, and upward triangles indicate beam sizes for the two weighting
schemes.

has only increased by 20% to 1.73 mJy/beam. Subsequent imaging and analysis

will include two cubes, one produced with natural weighting and the other with

a robustness value of 0.2.

In addition to weighting the grid of uv data, a taper can be applied. A taper

multiplies the gridded data by a 2D gaussian with specified dimensions, increas-

ing the effect of the shortest baselines (longest spatial scales). This results in a

much larger beam which is much more sensitive to extended emission. This is

akin to smoothing in the image plane (convolution by a Gaussian) but happens in

the uv plane during the imaging process. We image a third data cube with natural

weighting and a symmetric taper of 6 kλ.
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Table 4.3. Properties of VLA Data Cubes with Different Imaging Schemes

Weighting Taper Beam δv RMSa Scaleb Fint
c Fint

d

kλ ′′× ′′ km s−1 mJy/bm pixels Jy km s−1 Jy km s−1

Rob=0.2 − 14.3 × 13.5 3.34 0.84 [0,3,12] 0.63 0.39

Natural − 18.8 × 16.2 3.34 0.71 [0,4,16] 0.52 0.41

Natural 6 26.5 × 25.3 3.34 0.85 [0,5,20] 0.52 0.40

aRMS per channel in the dirty cube.

bScales used for multiscale clean in pixels; in all cases pixels are 5′′.

cIntegrated flux density for the velocity range [113.7, 153.8] km s−1.

cIntegrated flux density for the velocity range [120.4, 143.7] km s−1.

4.5.2 Imaging AGC268069

AGC268069 is imaged in the three different weighting schemes discussed over

the frequency range 1419.5− 1420.0 MHz (87− 190.5 km s−1) with three different

frequency resolution: 7.9125 kHz, 15.825 kHz, and 31.65 kHz (1.67, 3.34 and 6.68

km s−1). The pixel size is 5′′ and images are 512×512 pixels. All cubes are cleaned

to the 1 sigma level using a multiscale clean; the scales used depend on the beam

size for that imaging scheme and are listed in Table 4.3 in pixel units. Table 4.3

also lists the final beam sizes for the three differently imaged data cubes.

After creating all the image cubes, a universal mask to isolate the source is

created from the tapered data cube with a resolution of 15.825 kHz. Full details of

the masking procedure are given in Appendix B.2.2.
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Figure 4.5: The spectra for all three imaging schemes and all three velocity res-
olutions. Horizontal dashed lines indicated the fitted pedestal flux level and the
range of velocities used to fit for it.
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Spectra of AGC268069 and Evidence of Pedestaling

The mask was applied to all nine data cubes, and Figure 4.5 shows the resulting

spectra. The 16 kHz and 32 kHz spectra show very similar behavior while the

8kHz spectra are much noisier. It is also evident that the baseline of the spectra are

elevated, and the amount of elevation depends upon the imaging scheme used to

produce the data cube. This is most likely the result of deep cleaning resulting in

an artificially elevated (“pedestal”-ed) flux level. In order to compensate for this,

the regions of the spectra with no signal ([87.0, 103.7] and [167, 190.5] km s−1) were

used to fit the pedestaled flux level; full details are available in Appendix B.2.3. As

the 16kHz cubes appear to be the best trade-off between sensitivity and spectral

resolution, they are the only cubes for which the pedestal effect is removed from,

and they are the cubes that will be used in the rest of this chapter. Figure 4.6 shows

the spectra extracted from data cubes that have had the pedestal effect removed.

Creation of Integrated Flux Density Maps

Two different velocity ranges are used to create moment zero (integrated flux den-

sity) maps: [113.7, 153.8] km s−1 and [120.4, 143.7] km s−1. The larger velocity

range is obtained by examining the spectra in Figure 4.6 to determine where there

appears to be emission. The smaller velocity range is the range of velocities where

inspection indicates there is real signal that is contiguous across channels; these

are the channels that were used to help create the mask (Appendix B.2.2). Both ve-

locity ranges can be seen in Figure 4.6. Figure 4.7 shows the moment zero maps for

the (pedestal corrected) 16kHz cubes for both velocity ranges. Generally all maps

show the same structure (discussed in detail in §4.6.1) with the restricted velocity
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Figure 4.6: The spectra for the 16kHz data cubes after removing the pedestal
level.The outermost set of vertical lines indicate the furthest spectral extent to
which there appears to be signal; the innermost set of vertical lines indicate the
frequency range over which inspection (during the creation of the mask) indicates
that there is real signal contiguous across channels.
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maps having less intense peaks of emission, both positive and negative. There

appears to be a main component composed of three bright cores plus a fainter

extended emission to the north. The robustly-weighted map reveals the highest

column density peaks (as is expected since it has the smallest beam) of ∼ 6× 1020

atoms cm−2 over the full velocity range and ∼ 4× 1020 over the restricted velocity

range. The tapered cube produces the cleanest map that clearly shows the pres-

ence of three cores of HI plus a northern extension of emission; this cube will be

used as the focus for discussion in Section 4.6.

4.5.3 Flux Recovery

A well-known problem with interferometric data is the difficulty of recovering

all the flux observed in single-dish observations. Objects with extended emission

(like the UCHVCs) tend to have flux “resolved out” by interferometers. First we

offer some brief commentary on the single-dish flux value(s) for this source and

then detail the flux recovery from the VLA observations presented here.

Single Dish Flux

Generally, the ALFALFA reported fluxes of extragalactic HI detections are consis-

tent with pointed single-dish observations, indicating that the ALFALFA fluxes

are accurate [Haynes et al., 2011]. However, the UCHVCs are extended sources

and the measured flux is sensitive to the size of the box used during source mea-

surement. AGC268069 is especially sensitive to the source box used for flux mea-

surement as it is located in a region with only a single pass coverage and hence
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Figure 4.7: Moment zero maps for the robust cube (top row), naturally-weighted
cube (middle row), and the tapered cube (bottom row). The left column is the
contour maps produced over the widest channel range, and the right column the
narrower channel range. In all cases, contours are [5, 10, 20, 40] ×1019 atoms cm−2

but color scales differ. The effective beam is shown in the lower left of each panel.
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higher noise. In fact the flux reported for AGC268069 in the α.40 catalog is 0.82 Jy

km s−1, differing from the independent flux measurement for the UCHVC catalog

of 1.15 Jy km s−1 by almost 30%. This difference in total flux can be seen in Figure

4.8 where the ALFALFA spectrum from α.40 is clearly depressed relative to that

measured for the UCHVC catalog.

A lower limit to the flux of AGC268069 can be obtained from a single pointed

observation with L-band Wide (LBW) at Arecibo, a single pixel receiver. Figure

4.8 also shows the spectrum from the LBW observation. The flux recovered in the

LBW observation is 0.62-0.75 Jy km s−1, depending upon whether the small red

wing of emission is included. The difference in including this red wing of emis-

sion may account for a substantial fraction of the difference in flux between the

two ALFALFA measurements. As a representative total flux of AGC268069, we

will use the value of 1 Jy km s−1 for comparative purposes to the fluxes detected

in the VLA image.

Comparing the LBW observation to the ALFALFA measurement can also pro-

vide some gross constraints on the structural parameters of AGC268069. The LBW

observation recovers ∼ 60 − 70% of the ALFALFA flux, indicating that the source

is relatively compact with the majority of its emission within the central ∼4′. The

LBW spectrum shows similar flux levels to the ALFALFA spectrum at the red

end of the line, depressed emission in the center of the line, and no emission for

the blue end of the line. This may indicate the presence of a large scale velocity

gradient from the central pointing of the LBW observation to the outskirts of the

source.
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Figure 4.8: The single-dish spectra of AGC268069 for two independent ALFALFA
measurements and a single pointed LBW observation.
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Recovered VLA Flux

The observed integrated flux densities for the VLA images are calculated by sum-

ming all the flux in the final moment zero maps (after correcting for the pedestal

level), and the fluxes for both velocity ranges are reported in Table 4.3. As dis-

cussed in the section above, the representative single dish integrated flux density

for AGC268069 is 1 Jy km s−1. The amount of flux recovered is ∼ 50% for all data

cubes. The robust cubes report more flux recovered but are clearly noisier and

the extra flux is likely noise that is correlated over the channels used for flux cal-

culation (see Figure 4.6). The flux over the more restrictive channel range is only

reduced by ∼ 20% relative to the full channel range. Figure 4.9 shows the robust

and natural VLA spectra compared to the ALFALFA and LBW spectra. The VLA

spectra are a good match to the LBW spectrum, missing a little bit of the wings

of emission. In addition, the blue emission seen in the ALFALFA spectrum that is

missed in the LBW observation is also not visible in the VLA observations. This

indicates that this emission is not only offset from the center of AGC268069 but

also spatially extended or of extremely low surface brightness.

4.5.4 The Velocity Field

The tapered moment zero map for the limited velocity range is clipped at 4× 1019

atoms cm−2 and used a mask for producing the moment one map, or velocity field,

which is also constructed over the limited velocity range. This clipping highlights

the three cores in the main component of AGC268069 and the northern extension.

Figure 4.10 shows the velocity field of AGC268069 based on the tapered data cube.
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Figure 4.9: The spectrum of AGC268069 from the natural and tapered VLA data
cubes. The ALFALFA and LBW spectra are shown for reference.

Two of the cores appear to show tentative evidence for velocity gradients on the

order of 4−5 km s−1, and the northern extension also shows evidence for a velocity

gradient.

4.6 Discussion

Based on the exploration above, the tapered data cube at 16kHz resolution is used

for exploring the HI structure of AGC268069 and providing constraints on its en-

vironment, unless otherwise specifically mentioned.

4.6.1 HI Morphology: Three Cores and the Northern Extension

All the moment zero maps show evidence of three individual cores plus extended

northern emission, although these features are seen most clearly in the moment
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Figure 4.10: The velocity field for the tapered data cube over the velocity range
[120.4, 143.7] km s−1, using the moment zero map clipped at 4 × 1019 atoms cm−2

as a mask. Velocity contours are separated by 2 km s−1 from 128 to 136 km s−1.

zero maps produced from the tapered data cubes. We refer to these cores by their

position throughout this section: the north core, the southeast core, and the south-

west core.

The cores are isolated by fitting Gaussian functions using the imfit task in

CASA. Since the cores are barely resolved and not necessarily well described by

a Gaussian, the fits are used to set the central location of each core only. Then,

a circular aperture with a radius of 26.5′′ (twice the beam size) is used to extract

core properties. The positions and apertures used for the cores are recorded in

Table 4.4. The furthest two cores are separated by ∼60 ′′. The northern extended

emission is an irregular shape; it is defined interactively using a polygon region in

CASA. The central coordinates come from the center of the region, and the extent

from the longest axis of the region. It is located ∼ 115′′ (∼ 2′) from the northern
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Table 4.4. Properties of the HI Cores and Envelope

Name RA Dec Aperturea F f
int

b F i
int

c Peak NHI

J2000 ′′ Jy km s−1 Jy km s−1 atoms cm−2

North Core 16:05:29.8 +14:58:32 26.5 0.10 0.082 1.7× 1020

Southeast Core 16:05:31.5 +14:57:56 26.5 0.061 0.048 1.2× 1020

Southwest Core 16:05:27.6 +14:57:53 26.5 0.094 0.062 1.2× 1020

Northern Extension 16:05:25.8 +15:00:11 37.5 0.12 0.083 1.0× 1020

Envelope 16:05:28.9 +14:59:14 > 30 0.66 − −

aRadius of the aperture used to measure source properties. For the Northern Extension, this is an

estimate of the largest extent of the irregular mask. For the extended envelope it is a lower limit to the

size scale that would be visible in the VLA/C data.

bIntegrated flux density across the full velocity range [113.7, 153.8] km s−1.

cIntegrated flux density across the limited velocity range [120.4, 143.7] km s−1.

core. The size and separation of these features is such that they are not resolved by

Arecibo 3.5′ beam. This can be clearly seen in Figure 4.11, which shows the HI dis-

tribution as measured by the VLA compared to the bulk distribution measurable

in the ALFALFA HI data.

Table 4.4 also reports the peak column density for the cores and the extension

in the tapered data cube. The northern core is the brightest and the two south-

ern cores have identical peak column densities. The northern extension has the

lowest peak column density. It is worth noting that the peak column densities of

AGC268069 are similar to those seen in C configuration data of Leo P [Giovanelli

et al., 2013].

Figure 4.12 shows the spectra of the four features, extracted with the apertures

listed in Table 4.4. The north and southeast cores are well detected. The southwest

core and northern extension both appear to have elevated baselines. It may be that

the pedestaling has spatial variation, or that the elevated flux level seen originally
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Figure 4.11: Approximate ALFALFA HI contours are shown in white at levels of
[5, 7.5, 10] ×1018 atoms cm−2. The VLA contours for the three cores and northern
extension are shown in green; contours are [5, 10, 20] ×1019 atoms cm−2. The field
of view is ∼13.5′, or about 4 ALFALFA beams (3.5′ beam). The clumpy emission
uncovered by the VLA data is contained within a single ALFALFA beam.
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was instead the result of poorly cleaned continuum sources. In either case, the

total flux for these two structures is likely an overestimate of the true flux. The

north core appears to have a velocity width matching the width of the full source

while the southeast core is narrower and concentrated toward the blue side of the

total spectra extent. The southwest core is relatively flat spectrally and needs to

be examined much more closely for pedestaling issues. The northern extension

also appears to be about half the velocity width of the full source, and in this case

is concentrated toward the red side of emission.

The fluxes for all four structures are measured from moment zero maps as

in the previous section except that the apertures defined in Table 4.4 are used.

The four structures are relatively comparable in total flux, although as mentioned

above, the fluxes for the southwest core and northern extension are probably ele-

vated relative to their true flux. Together, these four structures recover ∼ 70% of

the total flux measured in the tapered data cubes.

There is very little total flux in the emission connecting the four structures,

and most of it is on the level of noise. Indeed, about 50% of the total flux for

AGC268069 is not recovered in these observations, indicating that there is an ex-

tended envelope (on scales >30′′) containing this missing emission. By assuming

that any flux that is not in the four structures discussed is contained in the enve-

lope, limits on the envelope can be placed, and these are discussed in Table 4.4
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Figure 4.12: The spectra for all three individual cores, plus the northern extension.
The vertical lines indicate the velocity range used for creating the moments maps.
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4.6.2 The Nature of AGC268069

A clumpy HI structure as seen here is present in both CHVCs [e.g., Brüns and

Westmeier, 2004] and in galaxies [e.g., the FIGGS sample of Begum et al., 2006].

Indeed, Leo P shows evidence for a clumpy HI distribution [Bernstein-Cooper

et al., 2013]. The presence of cores alone cannot be used to constrain the distance

or nature of AGC268069.

Observations of the envelope could help constrain the nature of AGC268069

by being sensitive to the overall morphology and environment. Is the envelope

smooth and undisturbed? Or does it show evidence for disruption and interaction

with the MW? Is the northern extension of emission potential evidence for inter-

action? Measuring the spatial extent and kinematics of the envelope is necessary

to constrain the total dynamical mass of the system. Understanding the envelope

of HI is also necessary for understanding the environment the cores are located

in. While we cannot currently constrain the nature of AGC268069, we offer some

brief commentary for the circumgalactic and extragalactic possibilities.

AGC268069 as a Circumgalactic Object

At a distance of ∼ 250 kpc, AGC268069 would be a circumgalactic object with a

total HI mass of 1.5 × 104 M⊙. The individual core masses would be ∼ 103 M⊙

and the mass of the surrounding envelope ∼ 104 M⊙. Assuming the cores have

angular diameters on the order of the beam size, they would be ∼ 30 pc in extent.
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AGC268069 as an Extragalactic Object

At a distance of ∼ 1 Mpc, AGC268069 would be a true extragalactic object separate

from the Milky Way. Its HI mass would be 2.4× 105 M⊙ with 1.6 × 105 M⊙ in the

extended envelope. The cores would have individual masses of 1.4−2.4×104 M⊙

and sizes of 130 pc.

4.7 Improving Constraints

Understanding AGC268069 can be improved by attempting different cleaning and

continuum subtraction methodologies to help address the elevated flux level is-

sues. Specifically, I plan to tinker with the parameters of uvcontsub and to try

continuum subtraction in the image plane using imcontsub. I will also produce

data cubes with a larger spectral axis and try cleaning to different levels and us-

ing a larger clean box to see if that affects the elevated flux level. I will produce

spectra over the entire cleaned region and the central box containing the source

to constrain any pedestaled flux level before creating a mask for the source, as

the elevated flux level affects the clipping used to isolate emission in creating the

mask.

Further observations can also help constrain the nature of AGC268069. We

have proposed to observe this source (and nine others) at the VLA in the D-

configuration. These observations will be sensitive to the extended envelope, al-

lowing us to place more stringent constraints on the environment of AGC268069

and its nature through its HI morphology.
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4.8 Summary

High resolution HI observations can be used to indirectly address the hypothesis

that UCHVCs are low mass galaxies by using clues in both the HI morphology and

kinematics. In addition, high resolution observations are critical for comparison to

models, both for the radial distribution of HI and for isolating a CNM component,

if any exists.

As a demonstration of how synthesis data can be applied to the study of

UCHVCs, once case study is presented here. High resolution observations of

AGC268069 reveal the presence of three separate unresolved cores plus extended

northern emission. These four individual components recover ∼ 40% of the total

flux of AGC268069. Only about 50% of the total flux of AGC268069 is recovered in

the VLA data cubes; the missing emission resides in a spatially extended envelope

that is resolved out by the array. Observations in a lower resolution configuration

(VLA/D) will help recover the missing flux and give clues to its origins by con-

straining overall HI morphology.
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CHAPTER 5

OPTICAL OBSERVATIONS OF ULTRA-COMPACT HIGH VELOCITY

CLOUDS

Because Hubble’s Law cannot be used to predict distance from redshift locally, the

HI detection of a UCHVC carries no direct distance information. While the mini-

halo hypothesis for the UCHVCs is intriguing, without a distance constraint it is

only a hypothesis. This chapter presents a first report and preliminary discussion

of optical follow-up observations of the UCHVCs to search for stellar counterparts

and directly address the minihalo hypothesis. The detection of a stellar counter-

part immediately confirms that a UCHVC is a galaxy and allows a distance to be

constrained via the stellar properties. I first discuss the selection of UCHVCs for

optical observations. The observing strategy is then discussed and justified; ob-

servations were taken with pODI and DECam, two newly commissioned instru-

ments in shared-risk observing mode. I end by presenting a preliminary reduction

and analysis of one target, AGC198606, a compact, high surface brightness source

located near Leo T. This work is part of an ongoing project to analyze optical data

of twenty-nine systems.

5.1 Target Selection

Follow-up observations require the dedication of large amounts of telescope time,

and we wish to select the best sample of galaxy candidates for the optical follow-

up work. In order to do this, an expanded search space (spatially and spectrally)

was considered for the UCHVCs and a set of criteria were defined for selecting the
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best sources based on isolation, compactness, column density, recessional velocity,

and association with known galaxies.

5.1.1 The Sky Searched

As ALFALFA data continue to be processed, more and more of the “ALFALFA

sky” becomes available. At the time of the optical observations (spring 2013), the

available low velocity ALFALFA spring sky (R.A.: 7.5h− 16.5h; cz < 3000 km s−1)

was 0◦−32◦ in declination, an increase of ∼100% in spring coverage from the α.40

footprint considered in Chapter 3. In addition, the velocity constraints are relaxed

so that the full velocity space between [-500, 1000] km s−1, including velocities

of Galactic HI, is considered, although the isolation of these sources is difficult to

determine and most of them were identified through visual inspection rather than

in any automated way.

5.1.2 Selecting the Best Galaxy Candidates

All the targets for optical observations meet the criteria of UCHVCs presented in

Chapter 3 (except for the allowance of Galactic velocities); however, we wish to

select subsamples that are the most likely to be galaxy candidates. Several criteria

are used to select the best candidates.

Both Leo T and Leo P have high column densities compared to the general

population of UCHVCs (and HVCs). A high column density of HI is also ex-

pected as a requisite for star formation. Therefore, we wish to target the clouds
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Figure 5.1: The distribution of N̄HI for the α.40 UCHVCs (solid line), the UCHVCs
with the highest N̄HI values (N̄HI ≥ 1019.2; filled histogram) and the UCHVCs with
high N̄HI values (1019 ≤ N̄HI < 1019.2; hashed histogram). The median value of
the α.40 UCHVCs is shown by the dotted vertical line. The values of Leo P and
Leo T from the ALFALFA data are shown for comparison.

with the highest N̄HI values as good minihalo candidates. Figure 5.1 compares a

selection of sources with extreme N̄HI values to the full distribution of the α.40

UCHVC catalog. Note that not all the UCHVCs considered here are part of the

α.40 catalog as a result of the expanded coverage (spatial and kinematic) consid-

ered. The highest N̄HI sources are shown in the solid histogram; they have N̄HI ≥

1019.2 atoms cm−2. Sources with N̄HI ≥ 1019 atoms cm−2 (and < 1019.2) are shown

by the hashed histogram. The highest N̄HI sources have values similar to that

measured for Leo P in the ALFALFA dataset and the high N̄HI sources lie above

the median value of N̄HI for the α.40 UCHVC catalog.

Leo T and Leo P are also both very compact objects and are unresolved in the

ALFALFA data. In addition, models for gas in low mass dark matter halos predict
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Figure 5.2: The distribution of angular diameters for the α.40 UCHVCs (solid
line), the “most compact” UCHVCs (θHI ≤ 6′; filled histogram) and the “com-
pact” UCHVCs (6′< θHI ≤ 10′; hashed histogram). The median value of the α.40
UCHVCs is shown by the dotted vertical line. The values of Leo P and Leo T from
the ALFALFA data are shown for comparison.

HI diameters on the order of 0.2 − 0.5 kpc, or ∼ 1 − 3′ for a range of reasonable

distances for the objects [Faerman et al., 2013]. Thus, the most compact clouds

are among the best galaxy candidates. Although the UCHVCs are selected, by

definition, to be compact, we wish to focus on the most compact subset as the best

candidates for detection of a stellar counterpart in optical observations. Figure

5.2 shows the distribution of HI angular diameters (θHI) for the α.40 UCHVCs.

UCHVCs with θHI ≤ 10′ are below the median size of the α.40 UCHVCs; we

refer to these objects as “compact” UCHVCs. In addition, UCHVCs with θHI ≤

6′ are defined as the “most compact” UCHVCs and are among the best galaxy

candidates.

Given the lack of distance information to the UCHVCs, it must always be con-
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Figure 5.3: The distribution of vLSR for the α.40 UCHVCs (solid line), the UCHVCs
with the highest vLSR values (vLSR ≥ 250 km s−1; filled histogram) and the
UCHVCs with high vLSR values (200 km s−1 ≤ vLSR < 250 km s−1; hashed his-
togram). The values of Leo P and Leo T from the ALFALFA data are shown for
comparison.

sidered that the UCHVCs arise from Galactic origins. As discussed in Chapter

3, it is hard to account for large recessional velocities in Galactic halo models of

UCHVCs. Hence, clouds with large recessional velocities are good candidates for

optical follow-up. Figure 5.3 compares the distribution of LSR velocities for the

α.40 UCHVCs to the sample of clouds with extreme positive velocities targeted for

optical follow-up. We note that the distribution of α.40 UCHVCs includes clouds

with large negative recessional velocities; these are velocities of clouds associated

with the Magellanic Stream (fall sky) and do not represent good extragalactic can-

didates. Clouds with vLSR ≥ 250 km s−1 (solid histogram) and those with 200

km s−1 ≤ vLSR < 250 km s−1 (hashed histogram) are unlikely to be explained by

Galactic processes. For reference, Figure 5.4 shows how the UCHVCs with ex-
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Figure 5.4: The distribution of vLSR for all UCHVCs considered as optical targets
(solid line), the UCHVCs with the highest vLSR values (vLSR ≥ 250 km s−1; filled
histogram) and the UCHVCs with high vLSR values (200 km s−1 ≤ vLSR < 250
km s−1; hashed histogram). Leo T and Leo P are shown for reference. The median
value of the full UCHVC optical sample is shown by the dotted line.

treme velocities compare to the full sample of UCHVCs considered for optical

follow-up. Here it is clear that the UCHVCs with extreme velocities represent a

tail-end of the distribution and lie well above the median recessional velocity of

the full sample.

UCHVCs that are the most likely to represent gas in dark matter halos are ex-

pected to be isolated from other HVC emission; UCHVCs near other HVC struc-

ture are likely associated with that structure and arise from a Galactic or cicum-

galactic phenomenon. For this reason, UCHVCs that meet the definition of being

in the most-isolated subsample (MIS) defined in Chapter 3 are considered to be

the best candidates for optical follow-up.
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We also give added weight to UCHVCs that have a location near known

galaxies (or star clusters), suggesting that they might arise from a similar ori-

gin. For example, HVC214.78+42.45+47 (AGC198606) is separated from Leo T

by 70′ and 13 km s−1 and has twice its HI flux density. HVC240.22+41.75+10

(AGC501816) is separated by 7′ and 40 km s−1 from Sextans C, a distant globular

cluster. HVC274.68+74.70-123 (AGC226067) is located near several galaxies that

are associated with subcluster A of the Virgo cluster [Binggeli et al., 1993]; it may

be a dark galaxy at the distance of Virgo. HVC314.57+74.80+218 (AGC238626) is

separated from the dwarf galaxy GR8 by 2.4◦ (a linear separation of 92 kpc at the

distance of GR8) and is at essentially the same velocity.

5.1.3 The Targets

In Table 5.1, we present the targets selected for optical follow-up on the basis of

the criteria discussed above. The columns of the table are as follows:

• Column 1: Source name in the traditional format for HVCs.

• Column 2: Identification number in the Arecibo General Catalog (AGC),

an internal database maintained by MH and RG, included to ease cross–

reference with our archival system and the α.40 catalog.

• Column 3: Velocity in the local standard of rest frame for an assumed solar

motion of 20 km s−1 towards l = 57◦, b = 25◦.

• Column 4: HI line full width at half maximum (W50).

• Column 5: Average HI angular diameter.

• Column 6: HI mass for an assumed distance of 1 Mpc.
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• Column 7: Average column density of the UCHVC from Equation 3.6 in

Chapter 3.

• Column 8: S/N of the detection.

• Column 9: Number of HVC neighbors within D = 3◦ from the definition in

Chapter 3 and for the expanded sky coverage considered in this chapter.

• Column 10: Number of HVC neighbors within D = 10◦ with the same qual-

ifications as above.

• Column 11: This column contains notes on the sources selected for opti-

cal imaging. ‘MIS’ refers to the sources that meet the MIS criteria defined

in Chapter 3 and are well separated from the Galactic HI with |vLSR| >120

km s−1. The UCHVCs with N̄HI ≥ 1019.2 atoms cm−2 are indicated by “high-

est N̄HI” and those with 1019 ≤ N̄HI < 1019.2 by “high N̄HI”. The sources

with θHI ≤ 6′ are labeled “most compact” and those with 6′ < θHI ≤ 10′

“compact”. Sources with vLSR ≥ 250 km s−1 are indicated with “highest

vLSR” and those with 200 km s−1 ≤ vLSR < 250 km s−1 with “high vLSR”.

There are four sources included in Table 5.1 which were selected as good can-

didates based on HI properties but were removed from consideration for optical

follow-up based on the presence of bright foreground stars that would contami-

nate any images. These four sources are marked with a note.
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Table 5.1. ALFALFA UCHVCs Targeted for Optical Observations

Source AGC vLSR W50 θ MHI
a N̄HI S/N N3 N10 Notes

km s−1 km s−1 ′ M⊙ cm−2

HVC205.28+18.70+150 174540 150 23 8 5.7 19.2 28.0 0 3 high N̄HI , compact, MIS

HVC193.11+28.88+174b 189177 174 22 9 5.3 18.7 9.3 1 23 compact

HVC214.78+42.45+ 47 198606 47 21 9 6.2 19.6 87.0 1 5 highest N̄HI , compact

HVC204.88+44.86+147 198511 147 15 7 5.2 18.8 14.0 0 3 compact, MIS

HVC205.83+45.14+173 198683 173 19 10 5.3 18.6 9.5 2 3 MIS

HVC215.28+49.73+ 79 198693 79 22 16 6.0 18.8 23.9 0 3

HVC240.22+41.75+101 501816 101 16 7 5.6 19.2 17.2 0 28 high N̄HI , compact

HVC215.57+55.63- 62 208752 -62 16 8 5.6 19.1 25.0 0 2 high N̄HI , compact

HVC217.77+58.67+ 96 208747 96 23 11 5.8 19.0 27.6 1 15 high N̄HI

HVC248.02+50.88+174 208524 174 14 5 5.2 19.1 11.6 0 12 high N̄HI , most compact

HVC212.68+62.39+ 64 208753 64 23 13 6.0 19.0 28.9 0 2 high N̄HI

HVC221.35+65.75+127b 219655 127 25 14 5.7 18.7 14.3 1 13

HVC197.61+70.83+ 93 219662 93 21 11 5.4 18.6 8.6 0 6

HVC230.27+71.10+ 76 219663 76 17 7 5.3 18.8 15.1 0 5 compact

HVC245.26+69.53+217 215417 217 17 10 5.2 18.5 8.8 0 3 high vLSR, compact, MIS

HVC235.38+74.79+195 219656 195 21 8 5.3 18.8 12.5 1 4 compact, MIS

HVC277.25+65.14-140 227977 -140 23 5 5.0 18.9 8.0 0 2 most compact, MIS

HVC274.68+74.70-123 226067 -123 54 5 5.3 19.3 11.0 0 0 highest N̄HI , most compact, MIS

HVC271.57+79.03+248 229326 248 23 8 5.3 18.7 9.6 1 6 high vLSR, compact

HVC276.53+79.84+255 229327 255 19 11 5.3 18.5 9.4 1 4 highest vLSR, MIS

HVC298.95+68.17+270 227987 270 26 12 6.1 19.2 44.2 0 4 highest vLSR, high N̄HI , MIS

HVC299.62+67.65+326 227988 326 41 5 5.1 18.9 6.4 0 0 highest vLSR, most compact, MIS

HVC314.57+74.80+218 238626 218 36 4 4.9 19.0 5.2 0 17 high vLSR, high N̄HI , most compact

HVC333.71+75.23+118 239116 118 24 7 5.2 18.7 9.7 2 11 compact

HVC330.13+73.07+132 233831 132 16 4 5.2 19.2 10.8 0 12 high N̄HI , most compact

149



5.2 The Observations

In order to search for a stellar counterpart, the UCHVCs in the optical sample

were observed in the g and i filters to depths of ∼25th magnitude. This approach

enables a two filter search for an underlying old population based on detection of

the red giant branch (RGB) out to distances of ∼1.5 Mpc. The i filter was chosen

for sensitivity to the RGB population. In addition, a third filter, r, was obtained

for a few sources to help with star-galaxy discrimination based on color. These

sources will be used to test if the increase in detection efficiency offsets the extra

observing time required. As all the spring UCHVC targets lie in SDSS coverage,

no standards were observed and photometry is bootstrapped from SDSS photom-

etry (see Section 5.4.1).

In the spring of 2013, three observing programs were dedicated to these ob-

servations. The first of these programs was four nights on the WIYN 3.5m tele-

scope with pODI (March 14-17) awarded to E. A. K. Adams through NOAO time

on the telescope. The second program was also four nights on the WIYN 3.5m

telescope with pODI (Apr 12-15) awarded to J. J. Salzer through the allocation at

Indiana University. The last program was 3 nights with DECam at CTIO (Apr 28-

30) awarded to R. Muñoz through the time granted to Chilean institutions. Since

both instruments were available through shared risk observing and the software

required to perform initial pipeline processing is not fully developed, here we

present only a few demonstrative results. Tables 5.2, 5.3 and 5.4 summarize the

sources observed as part of each program.
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Table 5.1 (cont’d)

Source AGC vLSR W50 θ MHI
a N̄HI S/N N3 N10 Notes

km s−1 km s−1 ′ M⊙ cm−2

HVC336.23+75.97+114b 232765 114 23 5 5.5 19.4 25.9 1 9 highest N̄HI , most compact

HVC326.91+65.25+316 238713 316 26 11 5.5 18.7 10.9 0 0 highest vLSR, MIS

HVC346.46+62.52+ 69 249320 69 24 5 5.3 19.1 11.2 0 2 high N̄HI , most compact

HVC340.05+57.54-122 249441 -122 16 8 5.2 18.7 9.7 0 4 compact, MIS

HVC 3.96+69.03+ 78 249000 78 31 9 5.6 19.0 20.8 0 4 high N̄HI , compact

HVC 28.09+71.87-142 249393 -142 38 13 5.4 18.4 7.6 0 0 MIS

HVC 11.76+67.89+ 60 249525 60 24 9 6.2 19.6 77.5 0 3 highest N̄HI , compact

HVC353.41+61.07+257 249323 257 20 11 5.5 18.7 13.0 3 4 highest vLSR, MIS

HVC353.89+61.13-135 249324 -135 21 8 5.4 18.9 15.0 0 16 compact

HVC351.17+58.56+214 249282 214 40 6 5.5 19.3 17.4 0 4 high vLSR, highest N̄HI , most compact, MIS

HVC 15.96+63.90+ 44 249565 44 18 8 5.6 19.1 23.5 0 1 high N̄HI , compact

HVC 25.54+59.19+ 42b 258682 42 25 9 5.6 19.0 14.5 0 0 high N̄HI , compact

HVC 5.58+52.07+163 258459 163 24 10 5.5 18.7 12.9 0 4 MIS

HVC 13.59+54.52+169 258237 169 23 7 5.5 19.1 17.1 1 4 high N̄HI , compact, MIS

HVC 13.60+54.23+179 258241 179 17 10 5.4 18.7 10.6 1 5 compact

HVC 13.63+53.78+222 258242 222 21 7 5.2 18.8 8.7 0 1 high vLSR, compact, MIS

HVC 24.33+53.49+ 21 258683 21 14 9 5.6 19.0 20.9 0 0 high N̄HI , compact

HVC 28.07+43.42+150 268069 150 29 7 5.4 19.0 10.8 0 11 high N̄HI , compact

HVC 28.03+41.54+127 268071 127 62 9 5.8 19.1 17.7 1 9 high N̄HI , compact

HVC 19.13+35.24-123 268213 -123 17 11 5.8 19.0 22.4 0 18 high N̄HI

HVC 27.86+38.25+124 268074 124 23 10 5.5 18.8 12.6 2 4 compact, MIS

aFor an assumed distance of 1 Mpc.

bSources removed from planned optical observations due to contamination by bright foreground stars.
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Table 5.2. ALFALFA UCHVCs Observed in March WIYN Run

Source Filters ttota Notes

sec

AGC174540 g, i 9×300 Seeing 0.7′′. First 15 minutes of i in twilight

AGC198606 g, i 9×300 Seeing 0.6− 0.7′′.

AGC198511 g, i 9×300 Seeing 0.8− 1′′.

AGC198683 g, i 9×300 Seeing 0.8− 1′′. Patchy clouds, lost guide star a few times in g.

AGC208747 g, i 9×300 Seeing 0.5′′. Clouds for first 10-15 minutes in i.

AGC215417 g, i 9×300 Seeing 0.7− 1′′.

AGC226067 g, i 9×300 Seeing 0.7′′.

AGC219656 g, i 9×300 Seeing 0.7′′.

AGC227987 i 9×300 Seeing > 1′′.

AGC238626 g, i 9×300 Seeing 0.5− 0.7′′.

AGC238713 g, i 9×300 Seeing 0.6− 1′′. Light clouds for last 10-15 minutes in g.

AGC249525 g, i 9×300 Seeing 0.5− 0.7′′.

AGC249282 g, i 9×300 Seeing 0.6− 0.8′′.

AGC258237 i 9×300 Picked up at end of nights

AGC258242 g, i 9×300 Seeing 0.7− 0.8′′.

AGC268069 i 9×300 Seeing 0.5− 0.7′′. Last 10 minutes in twilight

aTotal time spent on source; effective source time will be less due to the dither pattern to account for

cell and chip gaps.

Table 5.3. ALFALFA UCHVCs Observed in the April WIYN Run

Source Filter ttota Notes

sec

AGC198683 g 9×300 Seeing 1.0-1.2′′. Replacement for cloudy exposures from first night.

AGC208753 g, i 9×300 Seeing 0.9− 1.1′′.

AGC229326 g, i 9×300 Seeing 0.9− 1.2′′.

AGC249323 g, i 9×300 Seeing 0.9− 1.2′′.

AGC258237 g 9×300 Seeing 1.0− 1.1′′. i observed during previous run

AGC198606 r 9×300 Seeing 0.9′′and up. Third filter for color discrimination.

AGC229327 g, i 9×300 Seeing 0.5− 0.9′′for i; 1.1− 1.4′′and dubious focus for g.

AGC268069 g 9×300 Seeing 1.1− 1.4′′. i observed during previous run

AGC249393 g ,i 9×300 Seeing 0.9− 1.6′′.

AGC226067 r 9×300 Seeing 0.9− 1.4′′. Third filter for color discrimination.

AGC249565 g ,i 9×300 Seeing 1.4− 1.8′′.

AGC219663 g, i 9×300 Seeing 1.2− 1.6′′.

Leo P g, i 9×300 Seeing 1.0− 1.3′′. Comparison and test for methodology.

aTotal time spent on source; effective source time will be less due to the dither pattern to account for

cell and chip gaps.
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Table 5.4. ALFALFA UCHVCs Observed in the April CTIO Run

Source Filters ttot Notes

sec

AGC249324 g, i 3×600 Clouds in the area; i frames probably useless.

AGC258241 g, i 3×600 Slightly better conditions. Seeing 1”.4

AGC268071 g, i 3×600 Seeing 1”.8

AGC268213 g, i 3×600 Clouds in the area affect i frame significantly. Seeing 1”.6

AGC501816 g, i 3×600 Seeing 1”.5

AGC227988 g, i, r 3×600 Seeing 1”.5. Clouds near the area.

AGC249323 g, i 3×600 Seeing 1”.3. Clouds near the area

AGC258242 g, i, r 3×600 Seeing 1”.5. Clouds near the area

AGC268074 g, i 3×600 Seeing 2”.0. Clouds near the area

5.3 Data Reduction and Calibration

This section contains an overview of the reduction and calibration of the data

associated with one UCHVC, AGC198606. The data were obtained with pODI

during the March run. A full accounting of the reduction and calibration is given

in Appendix C. As detailed earlier in this chapter, AGC198606 is a compact source

and is among the highest N̄HI sources. In addition, it is located spatially and

kinematically near Leo T.

5.3.1 pODI: The “partially-filled” One Degree Imager

pODI is an early deployment of the One Degree Imager (ODI) for the WIYN 3.5m

telescope. It has a fraction of the orthogonal transfer arrays (OTAs) needed to fill

the full focal plane of ODI. pODI consists of an array of 3 × 3 OTAs providing a

24′ × 24′ field of view, plus an additional four outlying OTAs which sample the

full focal plane and are used for guiding. Due to gaps between the OTAs and
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gaps within the OTAs from the individual cells, there is a standard 9-point dither

pattern for observations with pODI. This dither pattern can be executed from a

single observation call; during the March run the dither pattern was broken into

three separate observing calls to allow for natural breaks to check focus and to

deal with any potential telescope problems.

The basic data product from pODI is the single OTA as these are independent

chips which are calibrated separately. Hence each exposure has nine science OTAs

(plus four ancillary OTAs), and a full nine-point dither pattern has, at a minimum,

81 OTAs that need to be calibrated and combined.

5.3.2 The Standard Calibration Procedure

pODI has a standard calibration procedure for obtaining calibration data at the

telescope in order to facilitate pipeline processing of the data. The standard cali-

bration data include afternoon calibrations consisting of biases, dark frames, and

dome flats in the Sloan griz filters, plus any additional filters the observer plans on

using. During evening twilight, short observations are taken of a SDSS calibration

field in the griz filters to monitor photometric and seeing quality at the site.

5.3.3 Pipeline Processing

The pODI data are processed by a pipeline being developed at NOAO. As of June

2013, the data is run through the pipeline at NOAO and 1 − 2 weeks after an ob-

serving run, the observer receives an email with directions on how to access the
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calibrated data at an FTP site and a brief description of the data products. The

pipeline is being transferred to Indiana University where it will soon be avail-

able to the observer to run through the ODI Portal, Pipeline and Archive (PPA)1

interface. Currently, only raw data is generally available through the PPA.

The current version of the pipeline does the bias and dark current subtraction

and the flat field correction. It does not perform a dark sky or fringe correction,

account for persistency from saturation, or remove cosmic rays. Ghost pupil cor-

rections are done for calibration flat images but not science images.

The pipeline does apply a world coordinate system to all frames and reprojects

all the individual OTAs onto a common frame. The pipeline both stacks all the

frames within a given observe command (can consist of multiple exposures from

a dither patter) and identifies exposures with a common pointing (and filter) and

stacks those objects. The final products produced by the pipeline include:

• sframes: single OTA frames with basic data reduction applied

• rframes: single OTA frames reprojected onto a common coordinate system

• dstacks: stacked images from a dither pattern executed within a single ob-

serving call

• pstacks: stacked images from a common pointing reference

Issues with the Pipeline

The pipeline is currently under development and hence does not perform per-

fectly. During the March run, twilight flats were obtained in addition to the stan-

1http://portal.odi.iu.edu/index/front
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dard dome flats; the intent was to use the twilight flats to improve the data cali-

bration if necessary. The pipeline did not distinguish between the dome and sky

flats and incorrectly chose to combine the two different types of flat field images.

A single night of data (the first night) was rerun through the pipeline at Indiana

University with only dome flats used for flat fielding.

In addition, there is concern about how the pipeline does scaling, especially

for the sky background when combining different images (D. Harbeck, private

communication 2013). For the preliminary analysis presented below, the com-

bined images produced by the pipeline were used for expediency but it should

be noted that a more careful combination and stacking by the observer (perhaps

using swarp) will be necessary for fully accurate results.

5.4 Post-Pipeline Processing

While the work presented here will need to be redone after the next pipeline re-

lease, the following sections illustrate the processing steps and their preliminary

results.

The pipeline-stacked images were manually edited to remove cosmic rays and

satellite trails, although many cosmic rays still escaped this step. In addition, the

images were shifted to be aligned with each other so that for following analysis

pixel coordinates were consistent between the two filters.
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5.4.1 Photometric Calibration

The pipeline does attempt to produce photometric calibration solutions for the

observed fields but there is not yet any documentation for how the photometry is

derived and the zero points recorded in the header are observed to be inaccurate.

Since all the fields observed for this project are within the SDSS footprint and

the UCHVCs were observed in Sloan filters, relative photometry for each field is

performed using SDSS stars in that field.

A list of SDSS stars within a 10’ radius of the field center and 17 < i < 20

and 17 < g < 20 was generated through the SDSS SkyServer Search Forum2.

These stars were then overlaid on the i broadband image in IRAF3. Approximately

20 stars were identified in the image that appeared to be relatively isolated and

neither saturated nor too faint. These stars were then overlaid on the g image and

those that passed visual inspection in both filters were used for photometry.

The magnitudes of the selected stars were measured with an aperture of 25

pixels (or 2.75′′) in radius, about 4 times the FWHM of the point spread function

(PSF) of the stars in the image. Comparing the measured magnitudes from the

images to the SDSS magnitudes, the photometric zero-point and color terms were

obtained. For i, the zero point is 25.83 with a color term of 0.0027 and a photo-

metric scatter of 0.015; for g these values are 26.23 and 0.11 with a scatter of 0.029.

These values are consistent with those found by S. Janowiecki for pODI data (pri-

vate communication 2013), verifying the photometric solutions. The color term

for g is as expected given that the filter is not completely identical to the Sloan

2http://cas.sdss.org/dr7/en/tools/search/form/form.asp
3IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the

Association of Universities for Research in Astronomy (AURA) under cooperative agreement with
the National Science Foundation.

157



filter. Full details of the photometric calibration are contained within Appendix

C.2.

5.5 Analysis of the Stellar Population

The general methodology for identifying stellar counterparts within the optical

data follows that of Walsh et al. [2009]. Briefly, the steps we follow are:

• Identify the stars within an image and obtain their magnitudes.

• Filter the stars based on the expected stellar population and a given distance.

• Spatially smooth the filtered stars to search for evidence of an overdensity.

• Repeat the two previous steps for a range of different distances.

5.5.1 Identify and Measure Stars

We identified the stars with an image and obtained their photometry using

daophot [Stetson, 1987]; the steps undertaken followed the daophot cookbook for

IRAF [Davis, 1994], and full details are available in Appendix C.3. Briefly, stars

were identified with daofind in a single filter (i). Due to the presence of cos-

mic rays, a relatively high detection threshold was set and the identified sources

were inspected by eye and many were removed from the source list. In addition,

the g image was examined to ensure that the sources were visible in both filters;

otherwise they were removed from the photometry list.
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After the stars were identified, aperture photometry with a small aperture (6.5

pixels or ∼0.7′′, approximately the FWHM) was performed. This served as a start-

ing point for the PSF-fitting based photometry and also allowed a determination

of sky levels since no sky subtraction was performed. The small aperture is nec-

essary to prevent blending of crowded objects. A model of the PSF was created

using a handful of isolated, well-behaved stars. The photometry of all the stars

was then obtained by running allstar in IRAF which fit a PSF to each identified

star and subtracted it from the image. No new stars were identified at this stage,

so the photometry list produced by this step was taken as the final catalog. As the

photometry for these stars was based on a small aperture, an aperture correction

of 0.3 magnitudes was calculated by comparing the photometry results from the

PSF-fitting method to large aperture photometry (25 pixels, the aperture used for

determining photometric solutions).

5.5.2 Filtering the Stars

Following Walsh et al. [2009], the stars in the field are filtered based on a two-

age, metal poor stellar population. The Girardi et al. [2004] isochrones for ages

of 8 and 13.5 Gyr and [Fe/H] of -1.5 and -2.27 are used to define a filter for the

stars based on a i vs g − i CMD. The filter is widened by adding an uncertainty

of 0.2 magnitudes in the color determination. As the minihalo hypothesis for the

UCHVCs places them at distances beyond the detection limits of SDSS, the dis-

tance range considered for the various filters is 300-1500 kpc; specifically we use

a range of distance moduli from 22.4 to 26 separated by 0.4. Figure 5.5 shows the

filter overlaid on the CMD of the full field of AGC198606, our test case, for the two

159



m - M = 22.4

-1 0 1 2 3 4
g-i

24

22

20

18

16

i

m - M = 26.0

-1 0 1 2 3 4
g-i

24

22

20

18

16

i
Figure 5.5: The filter for the two extremes of the distance range considered (300
kpc, left; 1500 kpc, right) overlaid on the CMD for all objects identified within the
AGC198606 frame.

bounding distance moduli of 22.4 and 26. Note that due to background issues and

the high threshold used in detecting sources that the true sensitivity of the images

is certainly much deeper than that seen in Figure 5.5.

5.5.3 Smoothing the Filtered Population

After the stars identified within the field are filtered, the stars are spatially

smoothed to scales of 1′, 2′, 3′, and 4′. Walsh et al. [2009] smoothed to scales of

4′ only based on observed sizes of Local Group dwarf galaxies. Given that the

search for a stellar overdensity is more focused here, it is computationally reason-

able to smooth to multiple scales. At presumed further distances than the UFDs of

SDSS, the stellar counterparts to the UCHVCs may have smaller angular sizes and

so smoothing on smaller scales may help reveal a stellar population. For example,
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Figure 5.6: An illustration of the source detection methodology used on the field
of AGC268069. First, all sources (ideally only stellar sources) within the field are
identified (upper left). The sources are then filtered based on the expected col-
ors and magnitudes for an old, metal poor stellar population at a given distance
(upper right; m-M=22.4 here). The sources remaining after filtering (bottom left)
are then smoothed (bottom right; 4′ spatial scale in this example) to search for an
overdensity. Note that no potential counterpart is detected in the example shown
here.
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the stellar population of Leo P is ∼90′′ in extent [Rhode et al., 2013].

The smoothing was performed by gridding the filtered stars onto an array with

a resolution of 1.1′′ (10 pixels), smaller than the separation between any two stars.

The FFT of this grid was then multiplied by the FFT of a 2D Gaussian with a

FWHM of the chosen spatial scale. The inverse of this multiplication was then

taken which, by the convolution theorem, is the convolution of the spatial grid of

the stars with the Gaussian kernel. Figure 5.6 shows the result of all the steps in

the analysis for a single distance modulus of 22.4.

5.6 Discussion

As a demonstration of the technique, Figure 5.7 shows the filtered population

of detected objects smoothed to 4′ for the full range of distance moduli explored.

There is an overdensity of sources at approximately 3.5′ to the south and 6.5′ to the

east of the field center, most prominent for a distance modulus of m −M = 24.4.

Figure 5.8 shows the distance modulus of 24.4 smoothed on the four different

scales considered. The overdensity is strongest for the scale of 1′ suggesting this is

a compact distant source, such as a galaxy cluster. This hypothesis is quickly con-

firmed by visual inspection which reveals that the identified sources are clearly

galaxies and not stars. The excellent image quality of the WIYN data will allow

stars to be distinguished from galaxies in most cases based on a shape or FWHM

criterion. In addition, for four systems, we have obtained a third filter (r) to be

used for helping to discriminate stars from background galaxies based on CMD
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Figure 5.7: The 4′ smoothed source distribution for all distance moduli considered.
Coordinates are given by the offset from the field center. There appears to be an
overdensity offset by 3.5′ to the south and 6.5′ to the east from the field center.
This overdensity is most prominent at m−M = 24.4.
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Figure 5.8: Filtered sources for a distance modulus of 24.4 filtered to four different
spatial scales. The scaling is the same in all panels. The overdensity is strongest for
the smallest scale, suggesting a compact, distant source such as a galaxy cluster.
This is verified by visual inspection of the data revealing that all the sources at the
location of the overdensity are galaxies.
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location.

5.7 Summary

Detecting an optical counterpart to the UCHVCs will definitively determine their

nature and constrain their properties via a distance estimate. A best sample of

UCHVCs for optical imaging has been selected based on considerations of size,

isolation, kinematics and surface brightness. We are undertaking an optical sur-

vey of this sample sensitive to the RGB to distances of ∼1.5 Mpc. Through three

different observing programs, we have obtained data for 28 objects in two fil-

ters (g and i) and 4 objects in three filters (g, i and r). These data will allow us

to perform a filtered search for old, metal-poor stellar populations at a variety

of distances. Further work is needed both on data calibration (especially image

stacking and cosmic ray removal) and analysis (especially star-galaxy separation)

but our initial results suggest that we will be able to detect stellar populations or

place significant limits on the stellar populations in the UCHVCs.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

The search for extremely low mass galaxies is a key way to address the “small

scale crisis” in cosmology. The discrepancies between predictions by simulations

and observations of low mass galaxies are generally accepted to result from var-

ious astrophysical processes, such as reionization and star formation feedback.

However, this is an ongoing area of research with many open questions. Is there

a minimum mass galaxy that can form? At what mass scales can SF feedback

drive density profile changes? Can galaxies with a cored profile survive interac-

tion with the MW? What observed galaxy properties are the result of evolution

versus environment?

In this dissertation, ultra-compact high velocity clouds discovered within the

ALFALFA HI survey are presented as good candidates to represent low mass gas-

rich galaxies within the Local Group. Importantly, if any of these systems do

indeed represent galaxies, their gas content argues that they have remained iso-

lated from the MW and M31, implying that any observed properties are intrinsic

and the result of quiet evolution. One of the biggest obstacles in understanding

the evolution of the lowest mass systems is that it is not clear which properties

are intrinsic and which are the result of interaction with a massive galaxy. Are

the UFDs so faint because they are intrinsically low mass galaxies or because they

have been stripped by the Milky Way? As galaxies, the UCHVCs would suffer

less from this ambiguity and allow the underlying evolutionary processes to be

probed more directly.
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6.1 Identification of UCHVCs

The UCHVCs are identified within the ALFALFA dataset via a customized 3D

matched filter signal identification algorithm presented in Chapter 2. Compared

to standard extragalactic HI detections within ALFALFA, the UCHVCs are spa-

tially extended and have narrow velocity widths, motivating the development of

the specialized algorithm. The efficiency of the algorithm was tested with the in-

sertion of simulated sources, and it outperforms the standard ALFALFA source

identification scheme for identifying UCHVCs. In addition, measuring the simu-

lated sources shows that the global properties of the UCHVCs (θHI , W50) are well

measured, but the axial ratios are not remotely accurate.

Chapter 3 presented the catalog of UCHVCs from the α.40 footprint. UCHVCs

are selected based on a compact size (θHI < 30′), separation from the Galactic

HI (|vLSR| ≥ 120 km s−1) and isolation from surrounding structure. UCHVCs are

required to be isolated from large scale HVC structure from the WvW catalog plus

small scale structure uncovered in the ALFALFA dataset. In addition, an extra

isolation criterion defines a set of most-isolated (MIS) UCHVCs. The isolation

tests in Chapter 2 indicate that the MIS UCHVCs are the best minihalo candidates.

The full catalog includes 59 UCHVCs and 19 MIS UCHVCs.

6.2 The UCHVCs as a Class

Chapter 3 also examines the properties of the UCHVCs as a class and argues for

the minihalo hypothesis. The presence of the Magellanic Stream and other HVC
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structure in the fall sky make it unreasonable to argue for any other origins for

those HI detections. However, in the spring sky the spatial and kinematic distri-

bution of the UCHVCs is consistent with simulations of dark matter halos within

the LG. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are

consistent with both theoretical and observational predictions for low mass gas-

rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with

those of two recently discovered low mass gas-rich galaxies in the Local Group

and Local Volume, Leo T and Leo P.

We do emphasize that while the galaxy hypothesis is a strong hypothesis and

likely true for at least some of the UCHVCs, we do not expect every UCHVC to

a gas-bearing dark matter halo. Just like with the general HVC population, we

expect the UCHVCs arise from a variety of origins.

6.3 Case Studies of UCHVCs

One way to address the hypothesis that the UCHVCs represent gas in low mass

dark matter halos is to study individual UCHVCs in more detail to search for evi-

dence that can discriminate between the opposing cases of either an extragalactic

distance (∼1 Mpc) or a nearby Galactic or circumgalactic origin (. 250 kpc). In

Chapters 4 and 5, detailed follow-up observations of specific UCHVCs were pre-

sented, in addition to the motivation behind these observations.
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6.3.1 High Spatial Resolution HI Studies

High resolution HI studies allow indirect commentary on the minihalo hypoth-

esis. Evidence of interaction of the HI with an ambient medium, such as ram

pressure stripping, bow-shock shape, etc., offers strong evidence for a nearby dis-

tance for the UCHVCs. Contrarily, a smooth spherical HI appearance is evidence

for a distant, undisturbed object. The velocity field of high resolution observa-

tions can also be used to address the minihalo hypothesis – does the system show

evidence for ordered rotation and velocity support? In that case, there is likely

a hosting dark matter halo. Finally, high resolution observation allow detailed

HI radial profiles to be derived and offer the resolution to spatially resolve multi-

phase cores, allowing close comparisons to models of gas in dark matter halos.

In Chapter 4, we examined high resolution (∼15′′) VLA/C HI observations of

AGC268609, a UCHVC with HST-COS observations of a background quasar. The

observations revealed the presence of a clumpy HI distribution with at least four

major components: three unresolved cores and an irregularly shaped extended

northern component. The VLA observations only recovered ∼ 50% of the total

flux of AGC268069, indicating that about half the mass is located in an extended

envelope. The presence of the northern extension may be extremely tentative

evidence for interaction. However, observations of the extended envelope and

its morphology are necessary to offer any real constraint on the environment of

AGC268069.
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6.3.2 Optical Searches for Stellar Counterparts

One direct way to address the minihalo hypothesis is by identification of a stellar

counterpart to a UCHVC. The detection of a stellar component would immedi-

ately confirm that a UCHVC is a galaxy and would also allow a determination of

the distance via the stellar properties.

Chapter 5 presented an ongoing program to search for stellar counterparts to

the UCHVCs. The best galaxy candidates from the current survey coverage were

selected based on compactness, isolation, high column density and large reces-

sional velocities. The systems were observed in two filters as a focused search for

a red giant branch population. A preliminary analysis of one target, AGC198606,

was undertaken to demonstrate the planned methodology. This first look at the

data did not show any evidence of a stellar counterpart but as discussed in Chap-

ter 5 and below in Section 6.4.2, further work with the data is necessary before any

definitive conclusion can be drawn on the stellar population.

6.4 Future Work

The galaxy hypothesis for the UCHVCs is very intriguing but requires much more

work to fully explore. As shown by the case studies in Chapters 4 and 5, detailed

follow-up observations of the UCHVCs can be used to address the galaxy hypoth-

esis but require substantial data. In addition, future deep HI surveys can address

the hypothesis by detecting UCHVCs in other galaxy groups.
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6.4.1 Expanding the UCHVC Catalog

A clear extension of this work is to produce a catalog of UCHVCs for the final

ALFALFA survey coverage. Importantly, expanded survey coverage affects the

isolation of sources already identified, especially those near current survey edges.

With expanded survey coverage, it will be worthwhile to return to the question of

setting isolation criteria for the UCHVCs. In addition to a criterion on the number

of neighbors within a given distance, nearest neighbor distances will be explored

for the utility of separating UCHVCs from the general HVC population in the AL-

FALFA dataset. The catalog will also be expanded to velocities including Galactic

hydrogen. Saul et al. [2012] developed a method for identifying compact clouds

within the GALFA-HI survey that searches Galactic and non-Galactic velocities;

this algorithm is being modified to run on other data sets, including the ALFALFA

data.

6.4.2 Optical Studies

One definitive way to address the minihalo hypothesis for the UCHVCs is through

detection of a stellar counterpart. In addition to our ongoing work imaging se-

lected UCHVCs, future large optical surveys will be able to detect these systems.

Targeted Optical Studies of UCHVCs

As outlined in Chapter 5, there are 25 UCHVCs with observations in 2 broadband

filters (g and i), and 4 with observations in 3 broadband filters (g, r, and i). We
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hope to detect stellar counterparts in at least one of these systems and to detect as

many as 5 would be significant. The non-detections will also provide informative

upper limits on the stellar population in the UCHVCs.

Chapter 5 presented a preliminary reduction and analysis of one target but

refinement is needed to the methodology presented there. Importantly, the ODI

pipeline is under development and analysis either needs to await an improved

version of the pipeline (anticipated fall 2013) or more interaction is required to re-

duce the pODI data. Currently, fringe corrections are not included in the pipeline

and are necessary for the i filter. In addition, the pipeline stacking does not deal

properly with the background and the individual OTAs need to be combined by

the user.

The identification of stellar sources can also be improved, with the key im-

provement being star-galaxy discrimination. The excellent image quality of the

WIYN pODI data will allow this to be done via constraints on the FWHM. In ad-

dition, four fields were observed in 3 filters so multiple CMD cuts can be applied

to help remove background galaxies. Identification of stellar sources will also

be improved by more accurate handling of the background, allowing for fainter

sources to be robustly detected. In order to place accurate limits on stellar popu-

lations, the detection limits of the images must be well understood. This will be

done by adding artificial stellar sources to the images and running them through

the analysis steps.
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Future Optical Surveys

Future optical surveys will also expand the search for UFDs to distances of 1 Mpc

or more. The Dark Energy Survey (DES) and PanSTARRS will be sensitive to

UFDs with total luminosities of a ∼few ×104 L⊙ out to distances of ∼ 1 Mpc while

LSST will be able to detect systems with total luminosities of a few ×103 L⊙ to

those distances [Tollerud et al., 2008]. In addition, there are targeted wide-field

surveys of nearby galaxies, such as NGC 253 and NGC 5128, to search for UFDs

in other systems [Sand, 2013].

6.4.3 High Resolution HI Imaging

Chapter 4 addresses how high spatial resolution HI observations can constrain the

minihalo hypothesis for the UCHVCs. Deep observations of AGC268069 with the

VLA in C-configuration were presented as a case study; similar observations exist

for a second system (AGC258242) that also has HST-COS data of a background

quasar. Together these datasets with the combination of absorption spectra and

high resolution HI imaging will allow stringent comparisons of the two UCHVCs

to models of gas in low mass dark matter halos.

However, the data for AGC268069 does need further work, most especially to

robustly test and deal with the elevated flux levels. Further data cubes will be cre-

ated with a longer spectral baseline (to higher recessional velocities), and cleaning

to different levels and over different sized boxes will be implemented to address

the pedestaling issue. Alternative continuum source subtraction strategies will

also be tested to see if the elevated flux issue lies instead in poor continuum sub-
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traction. Even after tweaking the calibration and imaging of this dataset, ∼50% of

the flux will still be missing from the observations. A proposal has been placed to

observe this source, AGC258242, and eight other UCHVCs that have optical imag-

ing with the VLA in D-configuration. As the most compact configuration, the D

array has the best column density sensitivity and does the best job of recovering

the flux on extended scales. These observations will be crucial to constraining the

environment of AGC268069 and other UCHVCs through the large scale morphol-

ogy of the envelope.

An ongoing program of 169 hours will map 7 UCHVCs with the Westerbork

Synthesis Radio Telescope (WSRT), providing spatial resolution of 30′′. This pro-

gram will produce a consistent and uniform dataset that can be used to examine

the HI morphology of UCHVCs as a class, searching for evidence of interaction

with the circumgalactic medium of the MW indicating that they are at distances

< 300 kpc or evidence that the UCHVCs are rotation-supported structures indi-

cating that they represent gas in low mass dark matter halos.

6.4.4 Future HI Surveys

One possibility is that the UCHVCs represent low mass dark matter halos which

have only recently (re)acquired neutral gas as the Universe expands and cools

[e.g., Ricotti, 2009]. In this scenario, there is a possibility that the UCHVCs do

truly represent dark matter halos but have no detectable stellar counterpart to

constrain the distance. In this case, optical observations will not reveal a stellar

counterpart, making it near impossible to directly prove the minihalo hypothesis

as the HI detection carries no direct distance information. One way around this
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is to undertake deep surveys of nearby (3-5 Mpc) galaxy groups. The spatial and

kinematic association of an HI detection with a galaxy group allows the group

distance estimate to be confidently applied to the HI detection. As discussed in

Chapter 3, extant HI surveys of nearby galaxy groups lack either the field of view

or depth necessary to systematically constrain the presence of 105 M⊙ HI clouds

at distances of 1 Mpc from the massive central galaxies.

A new generation of instruments under development, focal-plane phased-

array feeds, will provide the large field of views necessary for such surveys. In

general these instruments are being developed as pathfinders for the Square Kilo-

metre Array (SKA) but are being deployed on current telescopes or pathfinder

arrays for the SKA and will enable deep HI surveys in advance of the full SKA.

One such instrument is Apertif, which is currently being deployed at ASTRON for

WSRT. Apertif is a focal-plane array that will increase the field of view of WSRT

by a factor of 25. This increased field of view makes the mapping speed for deep

surveys reasonable, and planned projects for Apertif include deep HI surveys to

search for 105 M⊙ objects out to several Mpc.

6.5 Summary

The UCHVCs are good candidates to represent low mass galaxies within the Lo-

cal Group. As galaxies, the UCHVCs would be among the lowest mass gas-rich

objects known and would place important constraints on baryonic processes in

low mass dark matter halos. Exploring the minihalo hypothesis for the UCHVCs

is challenging but ongoing work to search for stellar counterparts and examine
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the HI morphology and kinematics of the UCHVCs will offer insight to the hy-

pothesis.

176



APPENDIX A

SOURCE CODE FOR THE 3D EXTRACTION ALGORITHM FOR UCHVCS

In this appendix, I present the 3D signal extraction code used to identify the

UCHVCs within the ALFALFA data set. The subprocedures called by the main

code uchvc ex3d are presented first, followed by the main code.

; =========================================================
; u c h v c e x 3 d : 3D e x t r a c t i o n o f UCHVC/ m i n i h a l o c a n d i a t e s
; Wr i t t en by BA t o i d e n t i f y UCHVCs w i t h i n t h e
; ALFALFA d a t a s e t
; =========================================================

; =========================================================
function twod 4degpoly , x , y , p
; i n d e p v a r i a b l e s x & y a r e s i g m a s p a t & s i g m a v e l ,
; r e s p e c t i v e l y
; p i s an a r r a y t h a t c o n t a i n s a l l t h e c o e f f i e c i e n t s f o r
; t h e v a r i o u s p o l y n o m i a l d e g r e e s

; t h i s i s a 4 th deg p o l y b e c a u s e h i g h e r o r d e r i s t o o
; c o m p l i c a t e d !

zmod=p[ 0 ] +p [ 1 ]∗ x+p [ 2 ]∗y+p [ 3 ]∗ x∗y+p [ 4 ]∗ x ˆ2+ $
p [ 5 ]∗yˆ2+p [ 6 ]∗ x ˆ2∗y+p [ 7 ]∗ x∗yˆ2+ $
p [ 8 ]∗ x ˆ3+p [ 9 ]∗yˆ3+p [ 1 0 ]∗ x ˆ3∗y+$
p [ 1 1 ]∗ x ˆ2∗yˆ2+p [ 1 2 ]∗ x∗yˆ3+p [ 1 3 ]∗ x ˆ4+p [ 1 4 ]∗y ˆ4

return , zmod
end
; =========================================================

; =========================================================
pro crea te cube , grid , cube , weights , pol0 , pol1
; c r e a t e a d a t a c ube t r u n c a t e d t o t h e d i m e n s i o n s needed
; f o r UCHVC s e a r c h

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g
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; manual ly s e t cube d i m e n s i o n s h e r e
cube=reform ( ( grid . d [ 4 3 5 : 7 3 4 , 0 ,∗ ,∗ ] + $

grid . d [ 4 3 5 : 7 3 4 , 1 , ∗ , ∗ ] ) / 2 . )
weights=reform ( ( grid .w[ 4 3 5 : 7 3 4 , 0 ,∗ ,∗ ] + $

grid .w[ 4 3 5 : 7 3 4 , 1 , ∗ , ∗ ] ) / 2 . )
pol0=reform ( grid . d [ 4 3 5 : 7 3 4 , 0 , ∗ , ∗ ] )
pol1=reform ( grid . d [ 4 3 5 : 7 3 4 , 1 , ∗ , ∗ ] )

; r e t u r n s z s p a t , s z v e l
s z s p a t =n elements ( cube [ 0 , ∗ , 0 ] )
s z v e l =n elements ( cube [ ∗ , 0 , 0 ] )

end
; =========================================================

; =========================================================
pro f i n d g a l h i , cube , galind , nogalind , s l i c e
; i d e n t i f y v e l o c i t y s l i c e s where G a l a c t i c HI i s p r e s e n t

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

s l i c e = f l t a r r ( s z v e l )
for i =0 , sz ve l −1 do s l i c e [ i ]= t o t a l ( abs ( cube [ i , ∗ , ∗ ] ) )
meanslice=mean( s l i c e )
mediansl ice=median ( s l i c e )
c u t o f f =mediansl ice +0.15∗ mediansl ice
nogalind=where ( s l i c e l t c u t o f f )
gal ind=where ( s l i c e ge c u t o f f )

end
; =========================================================

; =========================================================
pro remove galhi , cubein , galind , cubeout
; b l a n k t h e G a l a c t i c HI

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g
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cubeout=cubein
cubeout [ galind , ∗ , ∗ ] = 0 .

end
; =========================================================

; =========================================================
pro check ga lh i , cube , ga l reg
; c h e c k t h e a r e a s o n a b l e p a r t o f t h e d a t a cube i s
; i d e n t i f i e d as G a l a c t i c HI

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

f i n d g a l h i , cube , gal ind

; f i n d out how many r e g i o n s t h e r e a r e and what t h e y a r e

ngalreg =1
ga l reg = [ gal ind [ 0 ] ]
nelemgal=n elements ( gal ind )
for i =0 , nelemgal−2 do begin

i f gal ind [ i +1]−gal ind [ i ] gt 1 then begin
galreg =[ galreg , gal ind [ i ] , gal ind [ i + 1 ] ]
ngalreg =ngalreg +1

endif
endfor
i f ( gal ind [ nelemgal −1] ne galreg [ n elements ( ga l reg ) −1]) $
then galreg =[ galreg , gal ind [ nelemgal −1]]

print , ’Number of G a l a c t i c HI regions i s ’ , $
s t r t r i m ( s t r i n g ( ngalreg ) , 2 )

print , ’ They are : ’
for i =0 , ngalreg−1 do print , $

ga l reg [ i ∗2]+435 , ’ : ’ , ga l reg [ i ∗2+1]+435

end
; =========================================================

; =========================================================
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pro c a l c g l o b a l n o i s e , cube , nogalind , g l o b a l n o i s e
; c a l c u l a t e g l o b a l n o i s e o f cube in Galaxy− f r e e c h a n n e l s

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

nogalHI=cube ( nogalind )
s ize noga lHI=n elements ( nogalHI )
g l o b a l n o i s e= s q r t ( t o t a l ( nogalHI ˆ 2 ) / s ize noga lHI )

end
; =========================================================

; =========================================================
pro f ind source , cube , f f t d , template , narr , sources , cnt , $

p t s f l a g

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

; t a k e FFTed d a t a and t e m p l a t e s and do t h e c o n v o l u t i o n ,
; f i n d c o n v o l u t i o n maximum f o r e a c h t e m p l a t e
nt=n elements ( template )
cnvmax= f l t a r r ( nt )
cx= f l t a r r ( nt )
cy= f l t a r r ( nt )
cz= f l t a r r ( nt )
cnv= f l t a r r ( nt , sz ve l , sz spat , s z s p a t )
; l o o p through a l l t h e t e m p l a t e s and f i n d l o c a t i o n o f peak
; have t o m a n i p u l a t e i n d e x f o r e a c h d im ens i on
for i =0 , nt−1 do begin

cnv [ i , ∗ , ∗ , ∗ ] = $
r e a l p a r t ( FFT ( ( f f t d ∗ con j ( template [ i ] . f f t t ) ) , $

/INVERSE)/ s q r t (N) )
max=max( cnv [ i , ∗ , ∗ , ∗ ] , mind ) ; l o o k f o r a maximum
cnvmax [ i ]=max
cz [ i ]=mind mod s z v e l
cx [ i ]= ( mind/ s z v e l ) mod s z s p a t
cy [ i ]= mind/( s z v e l ∗ s z s p a t )

endfor
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; f i r s t s e t t h e l o c a t i o n o f t h e d e t e c t i o n
a=max( cnvmax , aind )
mx=cx [ aind ]
my=cy [ aind ]
mz=cz [ aind ]
tmp s = template [ aind ] . sigma spat
tmp v = template [ aind ] . sigma vel

; make s u r e t h a t t h e l i s t o f c o n v o l u t i o n v a l u e s
; I i n p u t t o t h e f i t t i n g f u n c t i o n
; a r e a l l t a k e n from t h e same l o c a t i o n
cnvvals =cnv [∗ ,mz,mx,my]

; r e s e t t h e cnv a r r a y t o z e r o t o f r e e up memory
cnv =0.

; now we want t o f i n d t h e p a r a m e t e r s o f t h e
; b e s t matched t e m p l a t e by
; i n t e r p o l a t i n g be tween t h e s e t o f f i x e d t e m p l a t e v a l u e s
; s e t up a r r a y s t h a t c o v e r t h e range o f t h e s igma v a l u e s
maxsigs=max( template . sigma spat )
minsigs=min ( template . sigma spat )
maxsigv=max( template . sigma vel )
minsigv=min ( template . sigma vel )

s i g s =dblarr ( 1 0 0 1 , 1 0 0 1 )
s igv =dblarr ( 1 0 0 1 , 1 0 0 1 )

for i =0 ,1000 do s i g s [ i ,∗ ] = minsigs+$
i /1000 .∗ ( maxsigs−minsigs )

for i =0 ,1000 do s igv [∗ , i ]= minsigv+$
i /1000 .∗ ( maxsigv−minsigv )

; now c a l c u l a t e t h e f i t cmax v a l u e s
e r r = f l t a r r ( nt ) + 0 . 0 1
s tar t params= f l t a r r ( 1 5 ) + 1 . 0

parms=mpfit2dfun ( ’ twod 4degpoly ’ , template . sigma spat , $
template . sigma vel , cnvvals , err , $
start params ,/ quie t )
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alpha=twod 4degpoly ( s igs , sigv , parms )

; t h e good cnv and sigma v a l u e s
alpha max=max( alpha , ind )
s i g s p = s i g s ( ind )
s i g v =sigv ( ind )
ampl=alpha max∗ s q r t (N)/ $

s q r t ( s q r t ( ! dpi ˆ 3 )∗ s i g s p ∗ s i g s p ∗ s i g v )
; and now I have my b e s t t e m p l a t e v a l u e s
; w h i l e i c o u l d use t h e c a l c u l a t e d peak v a l u e
; i ’ l l go ahead and
; go through t h e c a l c u l a t i o n o f peak f l u x
; and such be l ow t o e n s u r e t h e
; most a c c u r a c y s i n c e t h a t ’ s t h e peak
; c a l c u l a t e d from t h e d a t a

; s e t l i m i t s o f d e t e c t i o n b a s e d on s igm as o f d e t e c t i o n
cmin = f l o o r (mz−2∗ s i g v )
i f cmin l t 0 then cmin=0
cmax = c e i l (mz+2∗ s i g v )
i f cmax gt ( sz ve l −1) then cmax=sz ve l −1
ramin = f l o o r (mx−2∗ s i g s p )
i f ramin l t 0 then ramin=0
ramax= c e i l (mx+2∗ s i g s p )
i f ramax gt ( sz spat −1) then ramax=sz spat −1
decmin= f l o o r (my−2∗ s i g s p )
i f decmin l t 0 then decmin=0
decmax = c e i l (my+2∗ s i g s p )
i f decmax gt ( sz spat −1) then decmax=sz spat −1

; i s o l a t e t h e s o u r c e and c a l c u l a t e peak and t o t a l f l u x
source=cube [ cmin : cmax , ramin : ramax , decmin : decmax ]
peak=max( source )
indm=where ( source gt 0 .75∗ peak )
peakflux= t o t a l ( source [ indm] ) / n elements ( indm)
i n t f l u x =5.1∗ t o t a l ( t o t a l ( t o t a l ( source , 3 ) , 2 ) , 1 )

; c h e c k number o f p o i n t s in d e t e c t i o n
p t s f l a g =0
i f n elements ( indm) le 5 then p t s f l a g =1

print , ’ The source has s p a t i a l and v e l o c i t y s i z e s of : ’ , $
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2 .3548∗ s ig sp , 2 . 3 4 5 8 ∗ 5 . 1 ∗ s i g v

print , ’ The peak and f i t t e d amplitude are ’ , peakflux , ampl

end
; =========================================================

; =========================================================
function make source

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

a=max ( [ ampl , peakflux ] )

width = 2 . 3 5 4 8∗5 . 1∗ s i g v

sc=a∗$
psf gauss ian ( npixe l =[ sz ve l , sz spat , s z s p a t ] , $

fwhm=[2 .3548∗ s ig v , 2 . 3 5 4 8∗ s ig sp , $
2 .3548∗ s i g s p ] , $

centro id =[mz, mx,my] , $
ndimension=3 ,/ double )

return , sc

end
; =========================================================

; =========================================================
pro good sn , cube , weights
; do a good S /N c a l c u l a t i o n b a s e d on Amel ie ’ s c o d e

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

; do a good SN c a l c h e r e i g n o r i n g c o n t r i b u t i o n o f s o u r c e
w1=weights [ cmin : cmax , 0 : ramin ,my]
w2=weights [ cmin : cmax , ramax : sz spat −1,my]
sw1=n elements (w1)
sw2=n elements (w2)
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wrms= f l t a r r ( sw1+sw2 )
wrms [ 0 : sw1−1]=w1
wrms[ sw1 : ( sw1+sw2−1)]=w2

d1=cube [ cmin : cmax , 0 : ramin ,my]
d2=cube [ cmin : cmax , ramax : sz spat −1,my]
sd1=n elements ( d1 )
sd2=n elements ( d2 )
datarms= f l t a r r ( sd1+sd2 )
datarms [ 0 : sd1−1]=d1
datarms [ sd1 : ( sd1+sd2 −1)]= d2

nodatapts=where (wrms gt 0 . 0 )
i f ( n elements ( nodatapts ) eq 1) then begin

i f ( nodatapts l t 0) then goto , s k i p t h e n e x t l i n e 2
endif
datarms=datarms [ nodatapts ]
s k i p t h e n e x t l i n e 2 :
chanrms= s q r t ( t o t a l ( datarms ˆ 2 ) / n elements ( datarms ) )

wi th in3s ig=where ( abs ( datarms ) l t 3∗chanrms , nbrgood )
chanrms= s q r t ( t o t a l ( datarms [ wi th in3s ig ] ˆ 2 ) / nbrgood )

datarms=datarms [ wi th in3s ig ]
wi th in3s ig=where ( abs ( datarms ) l t 3∗chanrms , nbrgood )
chanrms= s q r t ( t o t a l ( datarms [ wi th in3s ig ] ˆ 2 ) / nbrgood )

noise=chanrms
sn=peakflux/noise

w= s i g v ∗5 . 1∗2 . 3 5 6 8
i f (w l t 2 0 . ) then sn=sn
i f (w ge 2 0 . ) then sn=sn∗ s q r t (w/ ( 2 ∗ 1 0 . ) )

; don ’ t have t o worry a b o u t t h e w>200 c o r r e c t i o n t o S /N
; as I don ’ t e x p e c t s o u r c e s t h a t l a r g e

print , ’ Noise , peak f lux , and SN values are : ’ , $
noise , peakflux , sn

end
; =========================================================
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; =========================================================
pro check pol , pol0 , pol1

common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $
mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

s t t = noise /( s q r t ( cmax−cmin +1)∗ s q r t ( decmax−decmin +1)∗ $
s q r t ( ramax−ramin + 1 ) )

p0= t o t a l ( pol0 [ cmin : cmax , ramin : ramax , decmin : decmax ] ) / $
( s q r t ( cmax−cmin +1)∗ s q r t ( decmax−decmin +1)∗ $

s q r t ( ramax−ramin + 1 ) )
p1= t o t a l ( pol1 [ cmin : cmax , ramin : ramax , decmin : decmax ] ) / $

( s q r t ( cmax−cmin +1)∗ s q r t ( decmax−decmin +1)∗ $
s q r t ( ramax−ramin + 1 ) )

sav =0.5∗ abs ( p0+p1 )
d i f f p o l =abs ( p0−p1)/ s t t

i f ( sav l t 50∗ s t t ) then begin
i f ( d i f f p o l gt ( 2 0 . ) ) then begin

; p o l a r i s a t i o n s a r e o b v i o u s l y d i f f e r e n t
p o l f l a g =1
c o l o r p o l = ’ 0000FF ’XL

endif
i f ( d i f f p o l gt ( 8 . ) and d i f f p o l le ( 2 0 . ) ) $
then begin

; m a r g i n a l d i f f e r e n c e be tween p o l s
p o l f l a g =7
c o l o r p o l = ’ 00FF00 ’XL

endif
i f ( d i f f p o l le ( 8 . ) ) then begin

; good d e t e c t i o n
c o l o r p o l = ’ 00FF00 ’XL
p o l f l a g =0

endif
endif e lse begin

i f ( d i f f p o l gt ( 0 . 3 ∗ sav/ s t t ) ) then begin
p o l f l a g =1
c o l o r p o l = ’ 0000FF ’XL

endif
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i f ( d i f f p o l gt ( 0 . 1 ∗ sav/ s t t ) and $
d i f f p o l le ( 0 . 3 ∗ sav/ s t t ) ) then begin

p o l f l a g =7
c o l o r p o l = ’ 00FF00 ’XL

endif
i f ( d i f f p o l le ( 0 . 1 ∗ sav/ s t t ) ) then begin

c o l o r p o l = ’ 00FF00 ’XL
p o l f l a g =0

endif
endelse

end
; =========================================================

; =========================================================
pro ex3d , grid , sources , res , snth=snth

; d e f i n e a common b l o c k f o r use in a l l t h e programs
; t o c a r r y v a l u e s s around
common uchvcvals , ampl , sz spat , sz ve l ,N, s ig sp , s ig v , $

mx,my,mz, peakflux , i n t f l u x , cmin , cmax , ramin , ramax , $
decmin , decmax , sn , noise , co lor pol , p o l f l a g

; c h e c k sn t h r e s h o l d
i f n elements ( snth ) eq 0 then snth =4.3

r e s= f l t a r r ( 1 0 2 4 , 1 4 4 , 1 4 4 )

; t r im d a t a t o cube
crea te cube , grid , cube , weights , pol0 , pol1

; f i n d and remove G a l a c t i c HI
print , ’ Finding and blanking the G a l a c t i c hydrogen ’
f i n d g a l h i , cube , galind , nogalind
tmp cube=cube
remove galhi , tmp cube , galind , cube
tmp cube =0.

; r e s t o r e t h e t e m p l a t e s t o e x t r a c t s o u r c e s
r e s t o r e , ’/home/humacao/humacao2/betsey/ c h v c e x t r a c t o r /$
i d l /template expanded . sav ’
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; s t a r t r e c o r d i n g t h e sys t em t im e
t0 =systime ( 1 )

; c r e a t e t h e s t r u c t u r e t h a t s o u r c e s w i l l b e s t o r e d in
; w i l l t r u n c a t e e x t r a e n t r i e s a t end
entry ={ch : 0 , ra : 0 , dec : 0 ,w: 0 . 0 , ara : 0 . 0 , adec : 0 . 0 , sn : 0 . 0 , $

i n t f l u x : 0 . 0 , peak f lux : 0 . 0 , rms : 0 . 0 , $
d i f f p o l : 0 . 0 , p o l f l a g : 0 , c o l o r p o l : ’ ’ , cz : 0 . 0 , $

agc : ’ ’ , comments : ’ ’ }
sources= r e p l i c a t e ( entry , 1 0 0 )

; s e t i n i t i a l v a l u e s b e f o r e b e g i n n i n g l o o p
s =15.
sn =10.
cnt =0
peak =10.
snloop =15.
cnt nd =0
N=n elements ( cube )
nt=n elements ( template )
loopn=0

print , ’ Beginning loop to f ind sources ’
while ( snloop ge snth ) do begin

loopn=loopn+1
print , ’On loop number ’ , loopn

print , ’ Taking the FFT of the data ’
f f t d =FFT ( cube )∗ s q r t (N)

; do t h e cnv and f i n d f i r s t s o u r c e
print , ’ Looking f o r a cnv peak ’
f ind source , cube , f f t d , template , narr , sources , cnt , p t s f l a g

; do a good SN c a l c h e r e i g n o r i n g c o n t r i b u t i o n o f s o u r c e
print , ’ Doing the good SN c a l c ’
good sn , cube , weights

; s e t t h e v a l u e in r e s a r r a y
r e s [mz+435 ,mx,my]= sn

print , ’ the source i s loca ted at ’ ,mz, mx,my
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; run a c h e c k on p o l a r i z a t i o n l e v e l s
; t h i s c o d e comes s t r a i g h t from a m e l i e ’ s e x t r a c t o r

print , ’ Checking pols ’
check pol , pol0 , pol1

print , ’ Subtrac t in g the matched source ’
; we s u b t r a c t from t h e cube f o r c a l c u l a t i n g

; s o u r c e p r o p e r t i e s

s r c =make source ( )
cube=cube−s r c

; r e s e t s o u r c e t o z e r o
s r c =0.

; c h e c k t h a t we ’ r e a b o v e t h e t h r e s h o l d v a l u e and
; add s o u r c e s t o c a t a l o g

i f ( sn ge snth ) then begin
print , ’ Updating source c a t a l o g ’
; updat e s o u r c e s
; am not c a l c u l a t i n g a l l t h e params y e t
; s o i don ’ t updat e a l l o f them
sources [ cnt ] . ch=mz+435

; c h a n n e l number in o r i g i n a l g r i d
sources [ cnt ] . ra=round (mx)
sources [ cnt ] . dec=round (my)
sources [ cnt ] .w=2.3568∗ s i g v ∗5 . 1
sources [ cnt ] . ara =2.3568∗ s i g s p
sources [ cnt ] . adec =2.3568∗ s i g s p
sources [ cnt ] . peak f lux=peakflux
sources [ cnt ] . i n t f l u x = i n t f l u x
sources [ cnt ] . sn=sn
sources [ cnt ] . cz=grid . v e l a r r [mz+435]
sources [ cnt ] . p o l f l a g = p o l f l a g
sources [ cnt ] . c o l o r p o l = c o l o r p o l
i f ( sources [ cnt ] . p o l f l a g eq 7) then $

sources [ cnt ] . comments= ’ pol . d i f f . ’
; updat e t h e count
cnt=cnt +1

endif
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snloop=sn

endwhile

t1 =systime ( 1 )
print , ’ I t took ’ , s t r t r i m ( s t r i n g ( ( t1−t0 ) / 6 0 . ) , 2 ) , $

’ minutes to f ind the sources ’

; t r u n c a t e t h e s o u r c e s c a t a l o g
i f cnt eq 0 then begin

print , ’No sources detected , ’ , $
’ c r e a t i n g an empty f i l e f o r ’ , gr id . name

sources=sources [ 0 : cnt ]
endif e lse begin

sources=sources [ 0 : cnt −1]
; w r i t e out t o a f i l e

print , ’ Saving sources f o r ’ , gr id . name
print , ’ There are ’ , cnt , ’ sources ’
save , sources , res , f i lename= ’ chvc ’+grid . name+ ’ . sav ’

endelse

end
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APPENDIX B

DETAILED REDUCTION AND IMAGING STEPS FOR VLA DATA

This appendix contains the full details on the calibration and imaging of the

VLA dataset discussed in Chapter 4. All calibration and imaging was done in

CASA unless otherwise noted.

B.1 Calibration

Measured visibilities consist of two quantities - an amplitude and a phase. The

amplitude contains information about the strength of the signal and the phase

contains information about the location of emission for the source observed. In

order to calibrate the observed visibilities of the source, calibrators are observed.

A flux calibrator is a source of known intensity; it allows the measured ampli-

tudes to be converted to a flux scale. A bandpass calibrator (typically the flux

calibrator for low frequency observations) is a strong source that is used to empir-

ically determine the response of the observing set-up as a function of frequency.

The phase calibrator is a point source located near the target used to calibrate the

phases. Observations of the phase calibrator occur through the same atmosphere

as the source and since it is a point source its expected phases are zero, allowing

the offsets in the phases of each antenna to be determined.
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B.1.1 Flagging

Before calibrating the data it is necessary to identify and flag bad data. The on-

line observing log is first checked to identify any bad antennas that need to be

removed. Then the viewer within CASA is used to examine the data interac-

tively, starting with the flux calibrator and looking at baselines as a function of

time. Bad baselines or antennas are identified and note for later flagging. Then

the phase calibrator and source are also checked. Next the data is examined for

RFI by inspecting channels as function of time for given baseline pairs. First a

few baseline pairs for the calibrators and source are checked. If there is strong RFI

present, all baselines and polarizations (for all SPWs) need to be examined and

flagged interactively using the flagging tools within the viewer.

once finished examining data with the viewer, plotms is used to examine

the dataset. Before viewing the data in plotms, the current flags are applied to

the data to enable the best autoscaling in plotms with the following command:

tflagdata(vis=vis5,mode=’list’,inpfile=’flag_5.list’)

This reads all the flags in the list and applies them; importantly it only requires

the visibility measurement set to be loaded a single time for all flags to be applied,

saving considerable computational time. A flag list may look like the following:

antenna=’4’

antenna=’22’ correlation=’LL’

antenna=’26’ timerange=’05:55:46˜05:56:09’

In plotms, the amplitudes are examined as a function of time for each field,

iterating by baseline, averaging all channels together and colorizing by SPW or
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polarization. Any bad baselines, antennas or timeranges are noted for flagging.

Then the phase is examined as a function of time for the flux and phase calibrators.

The phase should vary smoothly for the calibrators and have a small range of

values. Occasionally, the phases will vary wildly if there is a problem, such a

loose cable, in the system somewhere. Then the affected antenna will need to be

flagged. Any new flags are applied before the last check for RFI.

The presence of any RFI is hopefully minor, or taken care of previously in the

viewer. The presence of any minor RFI is checked for by plotting amplitude

as function of frequency and averaging over time (start by averaging scans sepa-

rately, then combine the scans). and iterating by baseline. Any channels affected

by RFI are noted and flagged. A list of flag commands may look like the following:

antenna=’ea09&ea16’ scan=’15˜18’ spw=’3:53˜58,11:117˜122’

antenna=’ea09&ea16’ spw=’3:55,11:119’

antenna=’ea09&ea22’ spw=’3:55,11:119’

antenna=’ea09&ea22’ scan=’6˜15’ spw=’3:54˜56,11:118˜119’

antenna=’ea16&ea19’ spw=’3:55,11:119’

B.1.2 Split the Data

Before proceeding with the data calibration, we split the dataset by polarization.

This is because CASA will not calibrate an antenna if a single polarization is

flagged and it expects there to be two polarizations. Splitting the data so that

only one polarization is expected provides a work around. The commands for

splitting the data and defining the new visibilities for further work are:

split(vis=vis5,outputvis=’sb9400530_LL.ms’,

correlation=’LL’,datacolumn=’data’)
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split(vis=vis5,outputvis=’sb9400530_RR.ms’,

correlation=’RR’,datacolumn=’data’)

visLL5=’sb9400530_LL.ms’

visRR5=’sb9400530_RR.ms’

B.1.3 Set the Flux Scale

We use stored models of the flux calibrators to determine the flux within our ob-

served frequency range of the flux calibrator and set the flux scale:

setjy(vis=visLL5,field=’0’,modimage=’3C286_L.im’)

setjy(vis=visRR5,field=’0’,modimage=’3C286_L.im’)

B.1.4 Bandpass Calibration

The next step is to calibrate the bandpass response of the observations. First, the

phases are calibrated with time since the bandpass scans (flux calibrator) are fairly

long (∼8 minutes) and are separated by the full length of the observing block. We

pick a few central channels to average over for the phase calibration so that there

is enough signal but bandpass effects are not important, since we have not done

that correction yet. The antenna ’ea02’ has been chosen as a reference antenna

as it appears well-behaved and is near the center of the array (use plotants to

determine antenna location), providing a good range of baselines. Calibrate the

phases:

gaincal(vis=visLL5,caltable=’bpphaseLL.gcal’,

field=’0’,spw=’*:55˜75’,
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refant=’ea02’,calmode=’p’,solint=’60s’,

minsnr=2.0,opacity=0.0,gaincurve=T)

gaincal(vis=visRR5,caltable=’bpphaseRR.gcal’,

field=’0’,spw=’*:55˜75’,

refant=’ea02’,calmode=’p’,solint=’60s’,

minsnr=2.0,opacity=0.0,gaincurve=T)

In general, we wish to examine our solutions to confirm that they look reason-

able. This can be done with the task plotcal:

plotcal(caltable=’bpphaseLL.gcal’,xaxis=’time’,

yaxis=’phase’,iteration=’antenna’,subplot=331)

plotcal(caltable=’bpphaseRR.gcal’,xaxis=’time’,

yaxis=’phase’,iteration=’antenna’,subplot=331)

The phases look reasonable so proceed to doing the bandpass calibration, ap-

plying the phase solutions derived above:

bandpass(vis=visLL5,caltable=’bandpassLL.bcal’,field=’0’,

refant=’ea02’,solint=’inf’,solnorm=T,

gaintable=[’bpphaseLL.gcal’],

opacity=0.0,gaincurve=T)

bandpass(vis=visRR5,caltable=’bandpassRR.bcal’,field=’0’,

refant=’ea02’,solint=’inf’,solnorm=T,

gaintable=[’bpphaseRR.gcal’],

opacity=0.0,gaincurve=T)

Once again, check the solutions. This time we want to examine both the phase

and amplitude solutions. In addition, we can choose to show the solutions as

function of frequency or channel (will overlap the SPWs).

plotcal(caltable=’bandpassLL.bcal’,yaxis=’phase’,

xaxis=’freq’,iteration=’antenna’,subplot=331)

plotcal(caltable=’bandpassLL.bcal’,yaxis=’amp’,
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xaxis=’freq’,iteration=’antenna’,subplot=331)

plotcal(caltable=’bandpassRR.bcal’,yaxis=’phase’,

xaxis=’chan’,iteration=’antenna’,subplot=331)

plotcal(caltable=’bandpassRR.bcal’,yaxis=’amp’,

xaxis=’chan’,iteration=’antenna’,subplot=331)

Note that the channels 30−100 have a near uniform response in all SPWs; these

channels will be the ones used for the upcoming calibration steps.

B.1.5 Gain Calibration

We are now ready to calibrate the complex gains of the calibrators. First we will

calibrate the phases on a 60 second time scale within a scan. The phases should be

relatively constant for low frequency L-band observations but this ensures that we

are accounting for variability within a scan. These phase solutions will be used

when deriving the amplitude solution for the calibrators. Calculate the phase

solutions, applying the bandpass calibration:

gaincal(vis=visLL5,caltable=’intphaseLL.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’p’,solint=’60s’,

minsnr=2.0,gaintable=[’bandpassLL.bcal’],

opacity=0.0,gaincurve=T)

gaincal(vis=visRR5,caltable=’intphaseRR.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’p’,solint=’60s’,

minsnr=2.0,gaintable=[’bandpassRR.bcal’],

opacity=0.0,gaincurve=T)

And check the solutions:

plotcal(caltable=’intphaseLL.gcal’,yaxis=’phase’,
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xaxis=’time’,iteration=’antenna’,subplot=331)

plotcal(caltable=’intphaseRR.gcal’,yaxis=’phase’,

xaxis=’time’,iteration=’antenna’,subplot=331)

We now wish to derive a single phase value for the entire scan for use when

applying to the source. It is helpful to record the number of possible solutions and

the number of good solutions to ensure that the data is well calibrated.

gaincal(vis=visLL5,caltable=’scanphaseLL.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’p’,solint=’inf’,

minsnr=2.0,gaintable=[’bandpassLL.bcal’],

opacity=0.0,gaincurve=T)

#256 solution intervals; 224 good solutions

gaincal(vis=visRR5,caltable=’scanphaseRR.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’p’,solint=’inf’,

minsnr=2.0,gaintable=[’bandpassRR.bcal’],

opacity=0.0,gaincurve=T)

#256 solution intervals; 224 good solutions

As always, check the solutions. Then calibrate the amplitude of the calibrators

over each scan, using the 60 second phase solutions from above:

gaincal(vis=visLL5,caltable=’ampLL.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’ap’,solint=’inf’,

minsnr=2.0,opacity=0.0,gaincurve=T,

gaintable=[’bandpassLL.bcal’,’intphaseLL.gcal’])

gaincal(vis=visRR5,caltable=’ampRR.gcal’,

field=’0,1’,spw=’*:30˜100’,

refant=’ea02’,calmode=’ap’,solint=’inf’,

minsnr=2.0,opacity=0.0,gaincurve=T,

gaintable=[’bandpassRR.bcal’,’intphaseRR.gcal’])

Check the solutions, noting that the phases should be zero as they have been

calibrated out at this point in time.
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B.1.6 Get the Flux Scale

We now wish to get the flux for the phase calibrator based on the known flux of

the flux calibrator. Essentially we are calibrating the amplitudes to an absolute

value; this calibration will be transferred to the source later, setting the flux scale

of the source also. Use the task fluxscale for this:

fluxscale(vis=visLL5,caltable=’ampLL.gcal’,

fluxtable=’fluxLL.cal’,reference=’0’)

fluxscale(vis=visLL5,caltable=’ampRR.gcal’,

fluxtable=’fluxRR.cal’,reference=’0’)

A list of flux values (one for each SPW) should print to the terminal. Record

these values and compare them to the listed flux value of the source in the VLA

Calibrator Manual. The values may vary somewhat as the phase calibrators are

variable sources, but they should be relatively the same. An example of the calcu-

lated fluxes for the phase calibrator use here, J1553+1256, are:

LL: ([ 1.16919878, 1.16840626, 1.16915217, 1.1692162,

1.17332324, 1.15152723, 1.16899301, 1.16832557,

1.16557518, 1.16657125, 1.16733276, 1.1661959 ,

1.16522234, 1.16834083, 1.16171913, 1.16739391])

RR: ([ 1.16983337, 1.17257224, 1.17309703, 1.17124434,

1.17113017, 1.15158464, 1.1722049, 1.17125246,

1.1713119, 1.17129231, 1.170885, 1.17104463,

1.17112099, 1.1717945, 1.1671281, 1.17334829])

These values compare well to the value in the manual of 1.10 Jy.

The calculated amplitudes can also be check with plotcal:

0http://www.vla.nrao.edu/astro/calib/manual/
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plotcal(caltable=’fluxLL.cal’,yaxis=’amp’,xaxis=’time’,

iteration=’antenna’,subplot=331)

plotcal(caltable=’fluxRR.cal’,yaxis=’amp’,xaxis=’time’,

iteration=’antenna’,subplot=331)

B.1.7 Apply the Calibration

We are now ready to apply the solutions to the source and calibrators. We will

apply the solutions to the sources one a time, paying special attention to which

gain tables are relevant to which source, and which source (gainfield) solu-

tions should be used. The bandpass solutions always use the flux calibrator

(field=’0’) as it is the only source for which a bandpass correction is calcu-

lated. For the flux calibrator, the reference field is always itself. For the phase

calibrator and source, the reference field is the phase calibrator, expect for the

bandpass correction. Note that the calibrators use the phase solutions on the 60

second timescale while the source uses the scan averaged phase solutions.

applycal(vis=visLL5,field=’0’,

gaintable=[’bandpassLL.bcal’,’intphaseLL.gcal’,

’fluxLL.cal’],

gainfield=[’0’,’0’,’0’],

opacity=0.0,gaincurve=T,calwt=F)

applycal(vis=visLL5,field=’1’,

gaintable=[’bandpassLL.bcal’,’intphaseLL.gcal’,

’fluxLL.cal’],

gainfield=[’0’,’1’,’1’],

opacity=0.0,gaincurve=T,calwt=F)

applycal(vis=visLL5,field=’2’,

gaintable=[’bandpassLL.bcal’,’scanphaseLL.gcal’,

’fluxLL.cal’],

gainfield=[’0’,’1’,’1’],

opacity=0.0,gaincurve=T,calwt=F)

applycal(vis=visRR5,field=’0’,
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gaintable=[’bandpassRR.bcal’,’intphaseRR.gcal’,

’fluxRR.cal’],

gainfield=[’0’,’0’,’0’],

opacity=0.0,gaincurve=T,calwt=F)

applycal(vis=visRR5,field=’1’,

gaintable=[’bandpassRR.bcal’,’intphaseRR.gcal’,

’fluxRR.cal’],

gainfield=[’0’,’1’,’1’],

opacity=0.0,gaincurve=T,calwt=F)

applycal(vis=visRR5,field=’2’,

gaintable=[’bandpassRR.bcal’,’scanphaseRR.gcal’,

’fluxRR.cal’],

gainfield=[’0’,’1’,’1’],

opacity=0.0,gaincurve=T,calwt=F)

B.1.8 Check Calibration and Redo as Necessary

At this stage we wish to check our calibration one last time. If we notice any bad

antennas or baselines, we can flag them and redo the steps above. Typically, the

easiest thing to do is to create new calibration tables that are named with redo

after flagging the data, and then to apply those new tables to the (flagged) source

data.

Many calibration issues will be noticed during the steps above when examin-

ing the solutions with plotcal. At this stage, the best way to examine the data

for calibration issues is to plot the calibrated phases and amplitudes against each

other in plotms. As the calibrator sources are point sources, the phases and am-

plitudes should occupy a smooth circular distribution centered at a phase of 0

and an amplitude that is the flux of the source. When displaying the data it is im-

portant to average either in time or spectrally (or both) in order to see the points

clustered enough that outliers are evident. As with previous work in plotms, iter-
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ating by baseline and/or antenna and colorizing by various properties (antenna2,

scan, SPW) will help identify systemically bad antennas/baselines/scans.

B.1.9 Split and “cvel” the Data

We want to split out just the calibrated source for further work. This produces a

smaller dataset and allows us to easily return to the current visibilities if a later

problem is noticed with data calibration (e.g. striping when imaging). Split the

calibrated source data into a new file:

split(vis=visLL5,field=’2’,datacolumn=’corrected’,

outputvis=’sourceLL.ms’)

split(vis=visRR5,field=’2’,datacolumn=’corrected’,

outputvis=’sourceRR.ms’)

We now wish to cvel the data. As discussed in §4.4.2, the data are observed in

overlapping spectral bands and we wish to create a single dataset with uniform

spectral coverage. This can be done by selecting the channels from all SPWs to

produce uniform full spectral coverage and then “gluing” them together. In this

case, we use cvel to do this as the channels used in this observational setup

are narrow enough that signal shifts from one channel to another during the full

scheduling block due to the Earth’s rotation; cvel accounts for this shift.

cvel(vis=’sourceLL.ms’,

spw=’0˜6:31˜94,7:31˜127,8:0˜94,9˜15:31˜94’,

restfreq=’1420.40575MHz’,veltype=’optical’,

outframe=’bary’,

mode=’frequency’,outputvis=’cvel_sourceLL.ms’)

cvel(vis=’sourceRR.ms’,

spw=’0˜6:31˜94,7:31˜127,8:0˜94,9˜15:31˜94’,
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restfreq=’1420.40575MHz’,veltype=’optical’,

outframe=’bary’,

mode=’frequency’,outputvis=’cvel_sourceRR.ms’)

B.1.10 Continuum Subtraction

Finally, we wish to subtract the continuum sources before proceeding to imaging.

The left panel of Figure B.1 shows a dirty image of the continuum sources in the

field that need to be subtracted. First we make dirty cubes that can be used to

identify line-free (both source and Galactic HI in this case) channels for use in the

continuum subtraction:

clean(vis=’cvel_sourceLL.ms’,imagename=’dirty_cvel_LL’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=512)

clean(vis=’cvel_sourceLL.ms’,imagename=’dirty_cvel_RR’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=512)

We examine the resulting images in viewer to determine that the channels

for continuum subtraction are: [30, 360] and [1025, 1060]. Then do the continuum

subtraction:

uvcontsub(vis=’cvel_sourceLL.ms’,

fitspw=’0:30˜360;1025˜1060’)

uvcontsub(vis=’cvel_sourceRR.ms’,

fitspw=’0:30˜360;1025˜1060’)

We make new dirty cubes to verify that the continuum subtraction worked;

examine the cubes in viewer after they are produced.
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Figure B.1: The dirty continuum image of a single scheduling block before
subtraction of continuum sources (left) and after continuum source subtraction
(right). Both images are shown to the same gray scale.

clean(vis=’cvel_sourceLL.ms.contsub’,

imagename=’dirty_cvel_LL_line’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=256)

clean(vis=’cvel_sourceLL.ms.contsub’,

imagename=’dirty_cvel_RR_line’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=256)

The right panel of Figure B.1 shows a continuum image of the field after the

continuum source subtraction, demonstrating that the continuum subtraction is

effective. However, there is some evidence for residuals left from the continuum

subtraction; the effects of this are discussed briefly in §B.2.3. Future work will

include testing different subtraction methods and perhaps smoothing spectrally

in the uv plane before subtraction.
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B.2 Imaging

This section describes in detail the procedures used to create the final moment

maps and spectra presented in Chapter 4. The creation of moment maps is, it-

self, straightforward. The challenging parts include creating a good mask and

accounting for pedestaling in the data cubes which artificially elevates the flux

level.

B.2.1 Obtaining Clean Image Cubes

Before creating cleaned data cubes, dirty cubes are created for all imaging schemes

and frequency resolutions. These cubes are used to obtain the cleaning level. As

an example, the naturally-weighted 8 kHz resolution dirty cube is created as fol-

lows:

clean(vis=[source1LL,source1RR,source2LL,source2RR,

source3LL,source3RR,source4LL,source4RR,

source5LL,source5RR],

imagename=’dirty_natural_8kHz’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

start=’1419.503165MHz’,nchan=64,

outframe=’bary’,cell=’5arcsec’,imsize=512,

width=’7.9125kHz’,weighting=’natural’,

uvtaper=False)

The noise level of the cube in the inner box where cleaning will occur is re-

trieved automatically and used to set the threshold for clean:

xstat=imstat(imagename=’dirty_natural_8kHz.image’,

chans=’2’,verbose=F,box=’204,204,304,304’)
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rms_nat_8 = xstat[’rms’][0]

thres_nat_8 = str(rms_nat_8) + ’Jy’

clean(vis=[source1LL,source1RR,source2LL,source2RR,

source3LL,source3RR,source4LL,source4RR,

source5LL,source5RR],

imagename=’clean_natural_8kHz’,

niter=10000,restfreq=’1420.40575MHz’,

mode=’frequency’,outframe=’bary’,cell=’5arcsec’,

imsize=512,width=’7.9125kHz’,weighting=’natural’,

uvtaper=False,nchan=64,start=’1419.503165MHz’,

mask=[204,204,304,304],multiscale=[0,4,16],

threshold=thres_nat_8)

B.2.2 Creating a Mask

In order to produce final spectra and moment maps, we wish to produce a mask

that can be used for all data cubes to only allow the region with real signal to be

considered but also allowing relevant noise to contribute. The tapered cube at 16

kHz resolution was determined to be the best cube for this through examination.

First, the cube was smoothed to about twice its resolution (60′′× 60′′) and

clipped at the 2 sigma level. Note that to be truly accurate the clipping should

occur after accounting for the elevated flux level (discussed in §B.2.3); this will be

done in future work to create a better mask.

imsmooth(imagename=’clean_taper_16kHz.image’,

kernel=’gauss’,major=’60arcsec’,

minor=’60arcsec’,targetres=True,

outfile=’smooth_16kHz.im’)

xstat=imstat(imagename=’smooth_16kHz.im’,chans=’1’,

verbose=F,box=’204,204,304,304’)

rms_16 = xstat[’rms’][0]

print 2*rms_16
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0.0037373355589807034

ia.open(’smooth_16kHz.im’)

ia.calcmask(mask=’smooth_16kHz.im >0.003737’,

name=’clipmask1’)

ia.done()

Then the clipped image was interactively masked using the masking tool in

imager toolkit (used for creating interactive masks when cleaning). In order to

be considered “real” emission, signal needed to be significant and connected con-

tiguously to signal in an adjacent channel. The channels that were interactively

selected to have signal were: [14, 21] (or [120.4, 143.7] km s−1). The masking tool

actually produces an image, so it was turned into a CASA mask and a master

mask was created.

im.drawmask(image=’smooth_16kHz.im’,mask=’blank16.mask’)

#page through the channels and highlight the signal

#when all emission is selected, quit the interaction and

#save mask by hitting the blue arrow

im.close()

ia.open(’blank16.mask’)

ia.calcmask(’"blank16.mask">0.5’)

ia.close()

#use immath to create master masked iamges

immath(imagename=’smooth_16kHz.im’,mode=’evalexpr’,

expr=’IM0’,outfile=’master16.im’,

mask=’mask(blank16.mask)’)

The mask created here (varying in shape for each channel) can be used to pro-

duce a very clean moment map. However, we wish to create a mask that is uni-

form in frequency so that noise is being properly included in final spectra and mo-

ment maps. We will apply the mask we have just created to the unsmoothed data,
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create a moment map, and use the produced moment map (potentially clipped) as

the final mask, propagating it to all channels of the data cube. Before applying the

mask to the unsmoothed data, we create a copy of the data to apply the mask to.

maskhandler should be able to handle any issues with masks, including mask-

ing and unmasking at will. However, logistically it is easier to track images if the

original data cubes are kept unmasked. CASA requires a mask to have the same

shape as the image it is applied to, so the mask produced by the moment zero

map will need to be expanded in frequency space for the three different resolu-

tion cubes. There is no straight-forward way to do this in CASA, so we export the

moment zero image and tapered data cubes (for size of the velocity axis) to fits file

and use IDL code provided by G. Hallenbeck to create 3D masks.

#copy the image

immath(imagename=’clean_taper_16kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’temp_taper_16kHz.im’)

#apply the mask

ia.open(’temp_taper_16kHz.im’)

ia.maskhandler(’copy’,[’master16.im:mask0’,’newmask’])

ia.maskhandler(’set’,’newmask’)

ia.done()

#make a moment zero map

#channel range doesn’t matter due to mask

immoments(imagename=’temp_taper_16kHz.im’,moments=[0],

axis=’spectral’,mask=’’,chans=’’,

outfile=’moment0_mask_16kHz’)

#export the files

exportfits(imagename=’moment0_mask_16kHz’,

fitsimage=’mom0_mask_16kHz.fits’)

#also need to export a data cube that will be used to

#propagate mask to the proper dimensions

exportfits(imagename=’clean_taper_8kHz.image’,

fitsimage=’8kHz_taper_cube.fits’)
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exportfits(imagename=’clean_taper_16kHz.image’,

fitsimage=’16kHz_taper_cube.fits’)

exportfits(imagename=’clean_taper_32kHz.image’,

fitsimage=’32kHz_taper_cube.fits’)

#in idl:

#.comp mask

#mask,’8kHz_taper_cube.fits’,’mom0_mask_16kHz.fits’,$

#’mask_8kHz.fits’,cutoff=0.0001

#mask,’16kHz_taper_cube.fits’,’mom0_mask_16kHz.fits’,$

#’mask_16kHz.fits’,cutoff=0.0001

#mask,’32kHz_taper_cube.fits’,’mom0_mask_16kHz.fits’,$

#’mask_32kHz.fits’,cutoff=0.0001

#now import the masks into CASA:

importfits(fitsimage=’mask_8kHz.fits’,

imagename=’master_mask_8kHz’)

importfits(fitsimage=’mask_16kHz.fits’,

imagename=’master_mask_16kHz’)

importfits(fitsimage=’mask_32kHz.fits’,

imagename=’master_mask_32kHz’)

#turn the master mask images into actual masks

ia.open(’master_mask_8kHz’)

ia.calcmask(’"master_mask_8kHz">0.5’)

ia.summary()

ia.close()

ia.open(’master_mask_16kHz’)

ia.calcmask(’"master_mask_16kHz">0.5’)

ia.summary()

ia.close()

ia.open(’master_mask_32kHz’)

ia.calcmask(’"master_mask_32kHz">0.5’)

ia.summary()

ia.close()

#copy data to new images and mask it at same time

immath(imagename=’clean_taper_8kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_taper_8kHz.im’,

mask=’mask(master_mask_8kHz)’)

immath(imagename=’clean_taper_16kHz.image’,

mode=’evalexpr’,expr=’IM0’,
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outfile=’mask_taper_16kHz.im’,

mask=’mask(master_mask_16kHz)’)

immath(imagename=’clean_taper_32kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_taper_32kHz.im’,

mask=’mask(master_mask_32kHz)’)

immath(imagename=’clean_natural_8kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_natural_8kHz.im’,

mask=’mask(master_mask_8kHz)’)

immath(imagename=’clean_natural_16kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_natural_16kHz.im’,

mask=’mask(master_mask_16kHz)’)

immath(imagename=’clean_natural_32kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_natural_32kHz.im’,

mask=’mask(master_mask_32kHz)’)

immath(imagename=’clean_robust_8kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_robust_8kHz.im’,

mask=’mask(master_mask_8kHz)’)

immath(imagename=’clean_robust_16kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_robust_16kHz.im’,

mask=’mask(master_mask_16kHz)’)

immath(imagename=’clean_robust_32kHz.image’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_robust_32kHz.im’,

mask=’mask(master_mask_32kHz)’)

B.2.3 Pedestal Effect

As seen in Figure 4.5 in Chapter 4, the initially produced spectra using the masked

data cubes created above clearly show that the spectra are not baselined properly.

Most likely, this is the result of the deep cleaning (to one sigma) resulting in a

“pedestal” to the flux level. Alternatively, it could be the result of a poorly sub-
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tracted continuum source and future work will involve revisiting the continuum

subtraction. The elevation of the pedestal was calculated for the cubes made with

different imaging schemes using channels [0, 7] and [26, 31] in the 16kHz cubes as

signal-free channels. The calculated pedestal levels for the three different cubes

are:

Tapered cube pedestal level: 0.000299139Jy/bm

Natural cube pedestal level: 0.000179078Jy/bm

Robust cube pedestal level: 2.91040e-05Jy/bm

These values were subtracted from the masked data cubes to create the data cubes

used for further analysis:

immath(imagename=’mask_taper_16kHz.im’,mode=’evalexpr’,

expr=’IM0-0.000299139’,

outfile=’mask_baselined_taper_16kHz.im’)

immath(imagename=’mask_natural_16kHz.im’,mode=’evalexpr’,

expr=’IM0-0.000179078’,

outfile=’mask_baselined_natural_16kHz.im’)

immath(imagename=’mask_robust_16kHz.im’,mode=’evalexpr’,

expr=’IM0-2.91040e-05’,

outfile=’mask_baselined_robust_16kHz.im’)

B.2.4 Final Products: Moment Maps and Spectra

Spectra were created from the data cubes using imstat to record the sum in each

channel. For each differently imaged cube, the conversion to flux (Jy) from the

sum (Jy/bm) was different as the number of beams contained within the mask

varied as a result of the different beam sizes. An example of how imstat was

called to get the spectra of a data cube:

imstat(imagename=’mask_baselined_taper_16kHz.im’,
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axes=[0,1,2],

logfile=’imstat_mask_baselined_taper_16kHz_freq.log’)

After creating the spectra, moment zero (integrated flux density) maps are cre-

ated for the 16kHz cubes for all three imaging schemes. The cubes were created

for two different velocity ranges: the larger channel range encompassing all signal

seen in the spectra and a more restricted velocity range encompassing the chan-

nels for which signal was selected during the masking step above:

immoments(imagename=’mask_baselined_taper_16kHz.im’,

moments=[0],axis=’spectral’,chans=’11˜23’,

outfile=’mom0_baselined_taper’)

immoments(imagename=’mask_baselined_taper_16kHz.im’,

moments=[0],axis=’spectral’,chans=’14˜21’,

outfile=’mom0_baselined_taper_restricted’)

The moment zero maps were converted to column density using the formula:

TB =
606S21

a× b
(B.1)

NHI = 1.823× 1018
∫

TBdv (B.2)

(B.3)

where S21 is the flux density in mJy, and a and b are the beam sizes. Explicitly this

done in CASA as:

immath(imagename=’mom0_baselined_taper’,mode=’evalexpr’,

expr=’1.823e18 * 606*1e3 / (26.5*25.3) * IM0’,

outfile=’mom0_baselined_nhi_taper’)

immath(imagename=’mom0_baselined_taper_restricted’,

mode=’evalexpr’,

expr=’1.823e18 * 606*1e3 / (26.5*25.3) * IM0’,

outfile=’mom0_baselined_nhi_taper_restricted’)
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A moment one map, or velocity field, was created for the tapered data cube

over the limited velocity range. The moment zero map clipped at the 4 × 1019

atoms cm−2 level was used a mask to isolated the most significant emission.

#create the velocity field

immoments(imagename=’mask_baselined_taper_16kHz.im’,

moments=[1],axis=’spectral’,chans=’14˜21’,

outfile=’velfield_baselined_restricted’)

#copy moment zero map to be used as a mask

immath(imagename=’mom0_baselined_nhi_taper_restricted’,

mode=’evalexpr’,expr=’IM0’,

outfile=’mask_velfield_restricted’)

#create the mask

ia.open(’mask_velfield_restricted’)

ia.calcmask(mask=’mask_velfield_restricted > 4e19’,

name=’clipmask’)

ia.done()

#copy the mask to the velocity field

ia.open(’velfield_baselined_restricted’)

ia.maskhandler(’copy’,

[’mask_velfield_restricted:clipmask’,

’newmask’])

ia.maskhandler(’set’,’newmask’)

ia.done()

B.3 Image Testing

Several test were performed to determine which imaging strategy to use for the

VLA data. Here, details on running some of those tests are discussed.
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B.3.1 Combining SPWs

In order to determine the best way to combine the overlapping SPWs, we imaged

a single scheduling block in three different ways: using all channels, using only

channels with good bandpass performance and by “gluing” channels together to

create a single bandpass.

First, “glue” the channels together:

cvel(vis=’sourceLL.ms’,

spw=’0˜6:31˜94,7:31˜127,8:0˜94,9˜15:31˜94’,

restfreq=’1420.40575MHz’,veltype=’optical’,

outframe=’bary’,

mode=’frequency’,outputvis=’cvel_sourceLL.ms’)

cvel(vis=’sourceRR.ms’,

spw=’0˜6:31˜94,7:31˜127,8:0˜94,9˜15:31˜94’,

restfreq=’1420.40575MHz’,veltype=’optical’,

outframe=’bary’,

mode=’frequency’,outputvis=’cvel_sourceRR.ms’)

Then image the original data with all channels and only the central channels

of each SPW, plus the glued data created above:

clean(vis=[sourceLL,sourceRR],

imagename=’dirty_allfreq’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=512)

clean(vis=[sourceLL,sourceRR],

imagename=’dirty_selfreq’,

spw=’*:30˜100’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=512)

clean(vis=[cvel_sourceLL,cvel_sourceRR],

imagename=’dirty_cvel’,

niter=0,restfreq=’1420.40575MHz’,mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=512)
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Finally, examine the noise as a function of channel for all the dirty images

produced above. Output the results to a text file that can be used to plot the

results, shown in Figure 4.2 in Chapter 4.

imstat(imagename=’dirty_good_allfreq.image’,

axes=[0,1,2],logfile=’imstat_good_allfreq.log’)

imstat(imagename=’dirty_good_selfreq.image’,

axes=[0,1,2],logfile=’imstat_good_selfreq.log’)

imstat(imagename=’dirty_good_cvel.image’,

axes=[0,1,2],logfile=’imstat_good_cvel.log’)

imstat(imagename=’dirty_bad_allfreq.image’,

axes=[0,1,2],logfile=’imstat_bad_allfreq.log’)

imstat(imagename=’dirty_bad_selfreq.image’,

axes=[0,1,2],logfile=’imstat_bad_selfreq.log’)

imstat(imagename=’dirty_bad_cvel.image’,

axes=[0,1,2],logfile=’imstat_bad_cvel.log’)

B.3.2 Robustness Levels

In order to test which robustness level to image the final data cubes at (Section

4.5.1), we produced dirty images for a single scheduling block for a variety of

robustness levels (-2 to 2, incremented by 0.1), plus pure natural and uniform

weighting. The dirty images were produced for only 300 channels to save com-

putational time. The visibilities are first defined globally and then the various

robust cubes are produced in a loop. The natural and uniform cubes are produced

outside the loop as special cases.

msLL = ’sb9400530/cvel_sourceLL.ms.contsub’

msRR = ’sb9400530/cvel_sourceRR.ms.contsub’

for i in range (0,41):

#set the robustness value

#will do natural and uniform weighting separately
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rob=i/10. -2.

#first make the dirty image

dirty=’dirty_rob’+str(rob)

clean(vis=[msLL,msRR],imagename=dirty,

niter=0,restfreq=’1420.40575MHz’,

mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=256,

weighting=’briggs’,robust=rob,spw=’0:200˜555’)

dirty=’dirty_natural’

clean(vis=[msLL,msRR],imagename=dirty,

niter=0,restfreq=’1420.40575MHz’,

mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=256,

weighting=’natural’,spw=’0:200˜555’)

dirty=’dirty_uniform’

clean(vis=[msLL,msRR],imagename=dirty,

niter=0,restfreq=’1420.40575MHz’,

mode=’frequency’,

outframe=’bary’,cell=’5arcsec’,imsize=256,

weighting=’uniform’,spw=’0:200˜555’)

After producing the dirty cubes, retrieve the noise and beam sizes and print to

screen. Copy the output to a text file and use it for producing a figure to choose

the best robustness values (Figure 4.4 in Chapter 4):

for i in range (0,41):

rob=i/10.-2.

dirty=’dirty_rob’+str(rob)

dirtyimage=dirty+’.image’

xstat=imstat(imagename=dirtyimage,verbose=F)

rms=xstat[’rms’][0]

bmaj = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beammajor’)

bmin = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beamminor’)

print rob,rms,bmaj[’value’],bmin[’value’]
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dirty=’dirty_natural’

dirtyimage=dirty+’.image’

xstat=imstat(imagename=dirtyimage,verbose=F)

rms=xstat[’rms’][0]

bmaj = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beammajor’)

bmin = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beamminor’)

print dirty,rms,bmaj[’value’],bmin[’value’]

dirty=’dirty_uniform’

dirtyimage=dirty+’.image’

xstat=imstat(imagename=dirtyimage,verbose=F)

rms=xstat[’rms’][0]

bmaj = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beammajor’)

bmin = imhead(imagename=dirtyimage,mode=’get’,

hdkey=’beamminor’)

print dirty,rms,bmaj[’value’],bmin[’value’]
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APPENDIX C

DETAILED REDUCTION AND ANALYSIS STEPS FOR WIYN/PODI

OPTICAL DATA

In this appendix, a detailed log of the reduction and analysis is presented for

the pODI data for AGC198606. Chapter 5 provides the context for this Appendix.

Typically, reduction occurred in IRAF (with a few minor exceptions) and analysis

was started in IRAF (star finding and magnitudes) and then switched to IDL (fil-

tering and smoothing). In addition, I point out places where it may be appropriate

to explore alternate methodologies.

The starting data products used for the work here are the pipeline-produced

pointing stack images, combined exposures based on a common pointing center

(and filter). As discussed in Chapter 5, these data are not yet of final science qual-

ity. Specifically, the background scaling is not handled properly in the stacking

(D. Harbeck, private communication 2013), fringe corrections are not applied, and

there is no cosmic ray removal. In order to have science ready data, it will be nec-

essary to either perform the early data reduction steps (e.g. fringe correction and

image combining) manually, or to wait for further development of the pipeline.

The pipeline is actively being developed and by the end of 2013 should produce

much higher quality data products (K. Rhode, private communication 2013). The

data reduction and analysis steps outlined here serve as a guide for the work to

be undertaken when final science data are available.
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C.1 Post-pipeline Processing

Given the dither pattern, the full 24′ × 24′ field of view does not have uniform

coverage. The images are trimmed to the central 20′ to focus on the area with the

best coverage and for ease of use (computing memory).

ecl> imcopy pstack_agc198606_g.fits[3000:14000,3000:14000]

trim_198606_g

ecl> imcopy pstack_agc198606_i.fits[3000:14000,3000:14000]

trim_198606_i

It should be noted that these image sizes are 11000 × 11000 pixels, which is

larger than IRAF can display; the maximum display size is 8192× 8192.

C.1.1 Cosmic Ray Removal

Before cleaning the image by hand, an automated cosmic ray removal was done

using the cosmicray task in IRAF. First, imstat was used to get a sense of the

background.

ecl> epar imstat

PACKAGE = imutil

TASK = imstatistics

images = trim* List of input images

(fields = image,midpt) Fields to be printed

(lower = 0.) Lower limit for pixel values

(upper = 60000.) Upper limit for pixel values

(nclip = 0) Number of clipping iterations

(lsigma = 3.) Lower side clipping factor

(usigma = 3.) Upper side clipping factor

(binwidt = 0.1) Bin width of histogram in sigma
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(format = yes) Format output and print labels

(cache = no) Cache image in memory ?

(mode = ql)

This outputs the following information to the screen:

IMAGE MIDPT

trim_198606_g.fits 245.

trim_198606_i.fits 622.4

We can use the midpoint values reported as approximate sky values for the images

and then calculate the expected variance in sky counts via:

σ =

√
SB ∗G+RN2

G
(C.1)

where SB is the sky background, RN the read noise and G the gain of the CCD

detector. Since we are dealing with stacks created by averaging nine exposures,

the read noise and gain need to be modified to account for the change in noise

statistics. The gain (1.36) is multiplied by 9 for an effective value of 12.24, and

the read noise (6.52) is multiplied by a factor of
√
9 for an effective value of 19.56.

With a sky background of 245, the variance for the g band image is 4.75, and with

a sky background of 622, the variance for the i band image is 7.31. We wish to set

a threshold of 4 times the variance, and so the thresholds for the g and i filters are,

respectively, 19 and 29.

Then we edit the parameters of the cosmicray task and run it. Unfortunately

running this task interactively results in a segmentation violation so there was no

adjustment or training from the entered parameters.

ecl> imred

ecl> crutil
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ecl> epar cosmic

PACKAGE = crutil

TASK = cosmicrays

input = trim_198606_g List of images in which to

detect cosmic rays

output = cr_198606_g List of cosmic ray replaced

output images (optional)

(crmasks= ) List of bad pixel masks

(optional)

(thresho= 19.) Detection threshold above mean

(fluxrat= 4.) Flux ratio threshold (in percent)

(npasses= 5) Number of detection passes

(window = 5) Size of detection window

(interac= no) Examine parameters interactively?

(train = no) Use training objects?

(objects= ) Cursor list of training objects

(savefil= ) File to save train objects

(plotfil= ) Plot file

(graphic= stdgraph) Interactive graphics output

device

(cursor = ) Graphics cursor input

answer = no Review parameters for image?

(mode = ql)

This task removed a few cosmic rays from the image but the vast majority re-

mained. Given this poor performance, and the difficulty of cleaning images by

hand (discussed below), an alternative method is preferable. One option is try the

lacosmic package from van Dokkum [2001]. This package is available for IRAF,

IDL and python. It utilizes a Laplacian cosmic ray identification. Alternatively,

if the individual images are stacked manually it would be possible to tweak the

combination to be an average with some sort of rejection criterion to aid in the

removal of cosmic rays, satellite trails, bright star residuals and other image arti-

facts.
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The majority of the image cleaning was done by hand using imedit. This task

allows a user to interactively select regions and replace the data located there. This

task was called in the following manner:

PACKAGE = tv

TASK = imedit

input = cr_198606_i Images to be edited

output = e_198606_i Output images

(cursor = ) Cursor input

(logfile= ) Logfile of cursor commands

(display= yes) Display images?

(autodis= no) Automatic image display?

(autosur= no) Automatic surface plots?

(apertur= circular) Aperture type

(radius = 3.) Substitution radius

(search = 2.) Search radius

(minvalu= INDEF) Minimum value to modify

(maxvalu= INDEF) Maximum value to modify

(buffer = 1.) Background buffer width

(width = 2.) Background width

(xorder = 2) Background x order

(yorder = 2) Background y order

(value = 0.) Constant value substitution

(sigma = INDEF) Added noise sigma

(angh = -33.) Horizontal viewing angle (degrees)

(angv = 25.) Vertical viewing angle (degrees)

(command= ) Display command

(graphic= stdgraph) Graphics device

(default= b) Default option for x-y input

(fixpix = no) Fixpix style input?

(mode = ql)

Note that the autodisplay option is set to no. This means the image only

reloads to display the specified changes upon command which saves substantial

time as the images are large and take tens of seconds to load. It should also be

noted that it was verified that the full extent of the image was loaded and dis-

played for editing even though the full image size exceeds the maximum IRAF
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display size; the imedit routine automatically applies some smoothing/binning

to allow a full image to be displayed.

The major commands used for the cleaning were:

• ’b’ to replace a circular region with noise based on the surrounding back-

ground.

• ’a’ to replace a rectangular region with noise based on the surrounding back-

ground.

• ’+’ to increase the radius of the aperture used by the ’b’ command

• ’-’ to decrease the radius of the aperture used by the ’b’ command

• ’r’ to reload the image

• ’:write’ to write the current image to a temporary name to protect against

system crashes and mistakes in editing.

C.1.2 Shifting the Images

The default mode for interacting with IRAF is pixel coordinates so before begin-

ning photometry it is convenient to shift the images to the same pixel units. This

makes matching the photometry outputs between different images much easier.

In order to align and shift the images, we rely on two routines from J. Salzer:

getshfts.cl and doalign.cl. First, load these tasks into IRAF, calling them

with the appropriate directory structure. Note also that the spaces around the ’=’

are important.
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ecl> task getshfts = ../getshfts.cl

ecl> task doalign = ../doalign.cl

After loading the tasks, setup the parameter file for getshfts and run the

task, giving it the list of images you wish to align:

ecl> epar getshfts

images = clean*
rootname= agc198606 Text file root name

(zscale = yes) Use zscale for display command?

(runimal= no) Run IMALIGN is test mode?

(verbose= yes) Verbose output?

(imageli= )

(imexlis= )

(mode = ql)

After running the task, the first image from the input list displays. Choose

an easy to identify reference star, move the cursor to that star, and hit ’r’. Make

sure to avoid choosing saturated stars as they are hard to centroid. Then choose

another 10 or so reference stars by moving the cursor to them and hitting ’r’. When

finished with the first image, hit ’q’ to go to the next image. In subsequent images,

mark only the location of the first reference star with ’r’; the location of this star in

the previous image will be marked with a green box as a reference.

Next we use doalign to apply the shifts calculated above. This task calls

imalign, so we first set those parameters:

ecl> epar imalign

input = Input images

referenc= Reference image

coords = Reference coordinates file

output = Output images

(shifts = ) Initial shifts file

222



(boxsize= 7) Size of the small centering box

(bigbox = 11) Size of the big centering box

(negativ= no) Are the features negative ?

(backgro= INDEF) Reference background level

(lower = INDEF) Lower threshold for data

(upper = INDEF) Upper threshold for data

(niterat= 3) Maximum number of iterations

(toleran= 0) Tolerance for convergence

(maxshif= INDEF) Maximum acceptable pixel shift

(shiftim= yes) Shift the images ?

(interp_= poly5) Interpolant

(boundar= constant) Boundary type

(constan= 0.) Constant for constant boundary

extension

(trimima= yes) Trim the shifted images ?

(verbose= yes) Print the centers, shifts,

and trim section ?

(list = )

(mode = ql)

After setting the parameters, quit this task and set the parameters in doalign:

images = clean*
rootname= agc198606 Text file root name

(prefix = sh) Prefix for shifted images

(applysh= no) Apply the shifts?

(verbose= yes) Verbose output?

(imageli= )

(mode = ql)

Make sure that the rootname parameter matches that used in getshfts. Set-

ting prefix to ’sh’ will append a ’sh’ to the front of the file names of the shifted

images. The first time we set applysh to ’no’ as we wish to check the results

before shifting the images. Make sure verbose is set to ’yes’ so that the output

is printed to the screen and run the task. Check the values to make sure they are

reasonable; especially check the values under ‘internal’ to make sure they are not
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more than .05 or so. If the shifts look reasonable, run do align:

ecl> doalign app+ > shiftvalues.

This tells doalign to change the parameter applysh to ‘yes’ and to print the ver-

bose output to a file called shiftvalues. You will have to hit enter a few times to

verify the input parameters.

C.2 Photometric Calibration

This section describes the photometric calibration performed upon the stacked

images to obtain zero points and color terms. As discussed in Chapter 5, relative

photometry is used as all observed fields are located within the SDSS footprint

and observations were in Sloan filters.

C.2.1 Obtaining “Standard” Stars

The first step is to obtain a list of stars from SDSS that can be used for the photo-

metric calibration. The SkyServer Search Forum was used to locate stars within

a 10′ radius from the central coordinates of AGC198606 with magnitude limits of

17 < g < 20 and 17 < i < 20. This resulted in a list of ∼60 stars. The coordinates of

these stars were reformatted from decimal degrees to sexagesimal format for use

with msctvmark in IRAF. The selected stars were marked on the i-band image

and the best 20 sources (isolated, not saturated, actually stars) were selected for

photometry. The selected stars were then overlaid on the g-band image to con-

firm that they were also good sources in that exposure; any poor detections were
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removed from the photometry list.

C.2.2 Aperture Photometry of the Standard Stars

Now that we have a list of the coordinates of standard stars, we wish to perform

aperture photometry to obtain the measured magnitudes of these stars. We will

do the aperture photometry using the daophot package so that we are setting

parameters in preparation for doing photometry of all the stars later.

ecl> noao

noao> digiphot

digiphot> daophot

First, set the parameters for all the relevant tasks:

PACKAGE = daophot

TASK = datapars

(scale = 1.) Image scale in units per pixel

(fwhmpsf= 6.5) FWHM of the PSF in scale units

(emissio= yes) Features are positive?

(sigma = 5.) Standard deviation of background

in counts

(datamin= 150.) Minimum good data value

(datamax= 58000.) Maximum good data value

(noise = poisson) Noise model

(ccdread= noise) CCD readout noise image header

keyword

(gain = gain) CCD gain image header keyword

(readnoi= 19.56) CCD readout noise in electrons

(epadu = 12.24) Gain in electrons per count

(exposur= exptime) Exposure time image header

keyword

(airmass= airmass) Airmass image header keyword

(filter = filter) Filter image header keyword
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(obstime= ) Time of observation image header

keyword

(itime = 1.) Exposure time

(xairmas= INDEF) Airmass

(ifilter= INDEF) Filter

(otime = INDEF) Time of observation

(mode = ql)

PACKAGE = daophot

TASK = centerpars

(calgori= centroid) Centering algorithm

(cbox = 12.) Centering box width in scale units

(cthresh= 0.) Centering threshold in sigma above

background

(minsnra= 1.) Minimum signal-to-noise ratio for

centering algorithim

(cmaxite= 10) Maximum iterations for centering

algorithm

(maxshif= 1.) Maximum center shift in scale units

(clean = no) Symmetry clean before centering

(rclean = 1.) Cleaning radius in scale units

(rclip = 2.) Clipping radius in scale units

(kclean = 3.) K-sigma rejection criterion in

skysigma

(mkcente= no) Mark the computed center

(mode = ql)

PACKAGE = daophot

TASK = fitskypars

(salgori= mode) Sky fitting algorithm

(annulus= 30.) Inner radius of sky annulus in scale

units

(dannulu= 10.) Width of sky annulus in scale units

(skyvalu= 0.) User sky value

(smaxite= 10) Maximum number of sky fitting

iterations

(sloclip= 0.) Lower clipping factor in percent

(shiclip= 0.) Upper clipping factor in percent

(snrejec= 50) Maximum number of sky fitting

rejection iterations

(sloreje= 3.) Lower K-sigma rejection limit in sky sigma

(shireje= 3.) Upper K-sigma rejection limit in sky sigma
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(khist = 3.) Half width of histogram in sky sigma

(binsize= 0.1) Binsize of histogram in sky sigma

(smooth = no) Boxcar smooth the histogram

(rgrow = 0.) Region growing radius in scale units

(mksky = no) Mark sky annuli on the display

(mode = ql)

PACKAGE = daophot

TASK = photpars

(weighti= constant) Photometric weighting scheme

(apertur= 25) List of aperture radii in scale units

(zmag = 0.) Zero point of magnitude scale

(mkapert= no) Draw apertures on the display

(mode = ql)

The seeing for these images is ∼6.5 pixels (or 0.7′′). The scale parameter is set

to 1 so we are working in pixel units; if we wanted to work in arcseconds, scale

would be set to 0.11 - the plate scale of pODI. Note also that the modified gain and

noise terms are used so that the averaging of nine exposures is properly accounted

for when calculating the error in a measured magnitude. The min value is set to

150; this is the minimum sky value expected for the g-band image. A higher value

would be appropriate for the i-band image given the higher sky background. The

max value is set to 58000 to well avoid any saturation issues; saturation appears

to occur around 63000 counts. The cbox parameter is to ∼2 times the FWHM,

and an aperture of 4 times the FWHM is used. Note that the zero point of the

magnitude scale is set to zero.

We are now ready to set up and run phot; we run it separately on the two

images to avoid a mismatch in length between the number of images and the

number of input coordinate files (one). Note that the input coordinate list is in

decimal degrees and contains a list of ONLY R.A. and Dec (no source identification).

In addition it is VITAL to change the wcsin parameter to world.
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PACKAGE = daophot

TASK = phot

image = shclean_198606_g Input image(s)

coords = sdss_phot_coords.txt Input coordinate list(s)

(default: image.coo.?)

output = default Output photometry file(s)

(default: image.mag.?)

skyfile = Input sky value file(s)

(plotfil= ) Output plot metacode file

(datapar= ) Data dependent parameters

(centerp= ) Centering parameters

(fitskyp= ) Sky fitting parameters

(photpar= ) Photometry parameters

(interac= no) Interactive mode?

(radplot= no) Plot the radial profiles?

(icomman= ) Image cursor: [x y wcs]

key [cmd]

(gcomman= ) Graphics cursor: [x y wcs]

key [cmd]

(wcsin = world) The input coordinate system

(logical,tv,physical,world)

(wcsout = )_.wcsout) output coordinate system

(logical,tv,physical)

(cache = )_.cache) Cache input image pixels

in memory?

(verify = )_.verify) Verify critical parameters?

(update = )_.update) Update critical parameters?

(verbose= )_.verbose) Print phot messages?

(graphic= )_.graphics) Graphics device

(display= )_.display) Display device

(mode = ql)
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C.2.3 Getting Photometric Solutions

We now wish to compare the measured magnitudes to the magnitudes from SDSS

to figure out our photometric solutions. The equations we wish to solve look like:

g = G+ ZPG + CTG ∗ (G− I) (C.2)

i = I + ZPI + CTI ∗ (G− I), (C.3)

where g and i are the measured magnitudes and G, I the reported SDSS magni-

tudes. ZPG and ZPI are the zeropoints of the g and i filters, respectively while

CTG and CTI are the color terms for the two filters. Ideally, we would do this in

IRAF using fitparms. Unfortunately, this task returns a segmentation violation.

For this reason, photometric solutions were obtained in IDL using the photometric

equations above after formatting the output of phot with mknobsfile:

PACKAGE = photcal

TASK = mknobsfile

photfile= shclean*mag* The input list of APPHOT/DAOPHOT

databases

idfilter= odi_g,odi_i The list of filter ids

imsets = obsfile The input image set file

observat= aper25 The output observations file

(wrap = yes) Format output for easy reading?

(obspara= ) input observing parameters file

(obscolu= 2,3,4) The format of obsparams

(minmage= 0.001) The minimum error magnitude

(shifts = ) The input x and y coordinate

shifts file

(apercor= ) The input aperture

corrections file

(apertur= 1) The aperture number of the

extracted magnitude

(toleran= 10.) The tolerance in pixels for

position matching

(allfilt= no) Output only objects matched
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in all filters

(verify = no) Verify interactive user input?

(verbose= yes) Print status, warning and errors?

(mode = ql)

The final solutions are an i zero point magnitude of 25.83 with a color term of

0.0027 and a photometric scatter of 0.015. The g filter has a zero point of 26.23 with

a color term of 0.11 and a photometric scatter of 0.029. Note that the color term of

the i filter is zero within the scatter while the g filter has a substantial color term.

This is because the g filter used at pODI is not an exact clone of the SDSS filters.

C.3 Photometry of the Stars

This section overviews how the stars within the image are automatically identified

and have their photometry calculated. For this stage, I used the package daophot

within IRAF and followed the directions of the manual A Reference Guide to the

IRAF/DAOPHOT Package [Davis, 1994]. Note that it may very well be better to

use SExtractor. One important step that is missing is to use the size of the FWHM

of an object to determine if it is a star or a galaxy; SExtractor may provide a more

natural way of doing this than daophot.

C.3.1 Locate the Stars

First, we use daofind to automatically locate all the stars in the image. The choice

was made to generate a list of stars in the i-band image and use that list for pho-

tometry in both filters. As before, our PSF is 6.5 pixels, so set fwhmspf equal to
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6.5 The psfrad is the size of the largest star we would wish to measure in the

image. Visual inspection indicates this is ∼190 pixels across, so set psfrad to 95.

Now we will be a little more careful with our minimum count level. We calculated

earlier that the sky background level was 622 with a variance of 7 counts for the

i-band, so we wish to set our minimum level to be: 622 - 3*7 = 600. The parameter

files should look as follows:

PACKAGE = daophot

TASK = datapars

(scale = 1.) Image scale in units per pixel

(fwhmpsf= 6.5) FWHM of the PSF in scale units

(emissio= yes) Features are positive?

(sigma = 5.) Standard deviation of background

in counts

(datamin= 600.) Minimum good data value

(datamax= 58000.) Maximum good data value

(noise = poisson) Noise model

(ccdread= noise) CCD readout noise header keyword

(gain = gain) CCD gain image header keyword

(readnoi= 19.56) CCD readout noise in electrons

(epadu = 12.24) Gain in electrons per count

(exposur= exptime) Exposure time image header keyword

(airmass= airmass) Airmass image header keyword

(filter = filter) Filter image header keyword

(obstime= ) Time of observation header keyword

(itime = 1.) Exposure time

(xairmas= INDEF) Airmass

(ifilter= INDEF) Filter

(otime = INDEF) Time of observation

(mode = ql)

PACKAGE = daophot

TASK = daopars

(functio= gauss) Form of analytic component of

psf model

(varorde= 0) Order of empirical component of

psf model

(nclean = 0) Number of cleaning iterations for

computing psf model
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(saturat= no) Use wings of saturated stars in psf

model computation?

(matchra= 5.) Object matching radius in scale units

(psfrad = 95.) Radius of psf model in scale units

(fitrad = 7.) Fitting radius in scale units

(recente= yes) Recenter stars during fit?

(fitsky = no) Recompute group sky value during fit?

(groupsk= yes) Use group rather than individual

sky values?

(sannulu= 0.) Inner radius of sky fitting annulus

in scale units

(wsannul= 11.) Width of sky fitting annulus in

scale units

(flaterr= 0.75) Flat field error in percent

(proferr= 5.) Profile error in percent

(maxiter= 50) Maximum number of fitting iterations

(clipexp= 6) Bad data clipping exponent

(clipran= 2.5) Bad data clipping range in sigma

(mergera= INDEF) Critical object merging radius in

scale units

(critsnr= 1.) Critical S/N ratio for group

membership

(maxnsta= 10000) Maximum number of stars to fit

(maxgrou= 60) Maximum number of stars to fit

per group

(mode = ql)

PACKAGE = daophot

TASK = daofind

image = shclean_198606_i Input image(s)

output = agc198606.coo Output coordinate file(s)

(default: image.coo.?)

(starmap= ) Output density enhancement

image(s)

(skymap = ) Output sky image(s)

(datapar= ) Data dependent parameters

(findpar= ) Object detection parameters

(boundar= nearest) Boundary extension

(constant|nearest|reflect|wrap)
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(constan= 0.) Constant for boundary

extension

(interac= no) Interactive mode?

(icomman= ) Image cursor:

[x y wcs] key [cmd]

(gcomman= ) Graphics cursor:

[x y wcs] key [cmd]

(wcsout = )_.wcsout) The output coordinate system

(logical,tv,physical)

(cache = )_.cache) Cache the image pixels?

(verify = )_.verify) Verify critical daofind pars?

(update = )_.update) Update critical daofind pars?

(verbose= )_.verbose) Print daofind messages?

(graphic= )_.graphics) Graphics device

(display= )_.display) Display device

(mode = ql)

PACKAGE = daophot

TASK = findpars

(thresho= 5.) Threshold in sigma for

feature detection

(nsigma = 1.5) Width of convolution kernel

in sigma

(ratio = 1.) Ratio of minor to major

axis of Gaussian kernel

(theta = 0.) Position angle of major

axis of Gaussian kernel

(sharplo= 0.2) Lower bound on sharpness

for feature detection

(sharphi= 1.) Upper bound on sharpness

for feature detection

(roundlo= -1.) Lower bound on roundness

for feature detection

(roundhi= 1.) Upper bound on roundness

for feature detection

(mkdetec= no) Mark detections on the

image display?

(mode = ql)
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We set the variance to 7 counts and start with a threshold of 4 sigma. We

mark all the found stars on the i-band image using display and tvmark. This

detects a lot of stars but also a lot of junk. Most of the junk appears to be cosmic

rays, meaning the manual cleaning was highly ineffective. This could be due to

the large size of the images and the necessity to clean the full images, or in part

to the fact that the images are somehow smoothed to allow the full image to be

displayed at once during imedit. The threshold was gradually increased from 4

sigma to 7 sigma. This did not seem to affect the detection of stars overly much

and removed some of the junk detections. I displayed the detections found at the

7 sigma threshold and manually removed any entries that appeared to be cosmic

rays or have no actual counterpart in either the i-band OR g-band image. While

this was much more efficient than recleaning the images to remove cosmic rays,

it does introduce a strong bias to not detect faint sources near the background

level. Doing a more careful job at this stage is critical in future work as the full

depth of the images needs to be explored to place limits on the stellar populations

out to the distances of interest. However, because one of the next steps involve

PSF-fitting the detected sources it is important to not have a lot of junk detections

around as the program will attempt to fit PSFs to them.

Star-Galaxy Discrimination

As emphasized in Chapter 5, the analysis of the optical images is currently

strongly hampered by the poor star-galaxy separation. Visual inspection of the

data reveals many detected objects that are clearly galaxies. The excellent image
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quality from the WIYN telescope should allow a star-galaxy discrimination based

on the FWHM of an object. It may be possible to do this within daofind by ad-

justing the sharpness and roundness parameters. Alternatively, it may be possible

to calculate the FWHM of all detected objects after running daofind and doing

the photometry below. Then, a FWHM cut could be enacted that depends on the

magnitude of an object, accounting for the widening of the FWHM for low signal

stars. Alternatively, SExtractor may provide enhanced star-galaxy separation.

C.3.2 Aperture Photometry

This step serves as a starting point for the PSF-fitting photometry of daophot and

is also when the sky background levels are computed. We use a small aperture (∼

FWHM) for this step as we wish to ensure that we are measuring the light only

from the star and not any of its neighbors. We will set some of the inputs in

phot and make sure that verify is set to ’yes’ so that we are prompted on the

command line for the other relevant parameters.

PACKAGE = daophot

TASK = phot

image = shclean_198606_i Input image(s)

coords = agc198606.coo Input coordinate list(s)

(default: image.coo.?)

output = default Output photometry file(s)

(default: image.mag.?)

skyfile = Input sky value file(s)

(plotfil= ) Output plot metacode file

(datapar= ) Data dependent parameters

(centerp= ) Centering parameters

(fitskyp= ) Sky fitting parameters

(photpar= ) Photometry parameters

(interac= no) Interactive mode?
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(radplot= no) Plot the radial profiles?

(icomman= ) Image cursor: [x y wcs]

key [cmd]

(gcomman= ) Graphics cursor: [x y wcs]

key [cmd]

(wcsin = )_.wcsin) The input coordinate system

(logical,tv,physical,world)

(wcsout = )_.wcsout) The output coordinate system

(logical,tv,physical)

(cache = )_.cache) Cache the input image pixels?

(verify = yes) Verify critical phot params?

(update = yes) Update critical phot params?

(verbose= yes) Print phot messages?

(graphic= stdgraph) Graphics device

(display= stdimage) Display device

(mode = ql)

Centering algorithm (none) (CR or value):

New centering algorithm: none

Sky fitting algorithm (mode) (CR or value):

Sky fitting algorithm: mode

Inner radius of sky annulus in scale units (10.)

(CR or value): 15

New inner radius of sky annulus:

15. scale units 15. pixels

Width of the sky annulus in scale units (10.)

(CR or value):

New width of the sky annulus:

10. scale units 10. pixels

File/list of aperture radii in scale units (3.)

(CR or value): 7

Aperture radius 1: 7. scale units 7. pixels

Standard deviation of background in counts (7.)

(CR or value): INDEF

New standard deviation of background: INDEF counts

Minimum good data value (600.) (CR or value):

New minimum good data value: 600. counts

Maximum good data value (60000.) (CR or value):

New maximum good data value: 60000. counts
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C.3.3 Make the PSF

We need to create a model of the PSF to be used for the photometry and source

subtraction. In order to do this, we select several bright, isolated stars that can be

used to model the PSF. Set up and run the task psf:

PACKAGE = daophot

TASK = psf

image = shclean_198606_i Input image(s) for which to

build PSF

photfile= default Input photometry file(s)

(default: image.mag.?)

pstfile = default Input psf star list(s)

(default: image.pst.?)

psfimage= default Output PSF image(s)

(default: image.psf.?)

opstfile= default Output PSF star list(s)

(default: image.pst.?)

groupfil= default Output PSF star group file(s)

(default: image.psg.?)

(plotfil= ) Output plot metacode file

(datapar= ) Data dependent parameters

(daopars= ) Psf fitting parameters

(matchby= yes) Match psf star list to

photometry file(s) by id num?

(interac= yes) Compute the psf interactively?

(mkstars= no) Mark deleted and accepted psf

stars?

(showplo= yes) Show plots of PSF stars?

(plottyp= mesh) Default plot type

(mesh|contour|radial)

(icomman= ) Image cursor:

[x y wcs] key [cmd]

(gcomman= ) Graphics cursor:

[x y wcs] key [cmd]

(wcsin = )_.wcsin) The input coordinate system

(logical,tv,physical,world)

(wcsout = )_.wcsout) The output coordinate system

(logical,tv,physical)

(cache = )_.cache) Cache the input image in memory?
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(verify = )_.verify) Verify critical psf parameters?

(update = )_.update) Update critical psf parameters?

(verbose= )_.verbose) Print psf messages?

(graphic= stdgraph) Graphics device

(display= stdimage) Display device

(mode = ql)

Select stars with ’a’ and you will be able to view them using a variety of key

commands. Hit ’a’ again to accept the star as a model for constructing the PSF.

When finished type ‘w’ to write the PSF model based on the selected stars to file

and ’q’ to quit.

We need to test our PSF and account for the fact that neighboring stars will

impact its determination. First, we run nstar to fit the selected stars and their

neighbors simultaneously. The parameter psfradius should be set to the min-

imum separation between one of our PSF stars and its neighbors. We will take

40 pixels to be safe. Running nstar on the command line we have the following

interaction:

daophot> nstar

Image corresponding to photometry (shclean_198606_i ):

Input group file (image.grp.?) (default):

shclean_198606_i.psg.1

PSF image (default: image.psf.?) (default):

Output photometry file (default: image.nst.?) (default):

Output rejections file (default: image.nrj.?) (default):

Recenter the stars (yes):

Recenter the stars: yes

Refit the sky (no):

Refit the sky: no

Use group sky values (yes):

Use group sky values: yes

Psf radius in scale units (95.): 40

New psf radius: 40. scale units 40. pixels
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Fitting radius in scale units (7.):

New fitting radius: 7. scale units 7. pixels

Maximum group size in number of stars (60):

New maximum group size: 60 stars

Minimum good data value (600.) (CR or value):

New minimum good data value: 600. counts

Maximum good data value (60000.) (CR or value):

New maximum good data value: 60000. counts

Group: 1 contains 1 stars

ID: 2004 XCEN: 6058.42 YCEN: 7206.28 MAG: 15.18

Group: 2 contains 2 stars

ID: 2554 XCEN: 8339.79 YCEN: 9366.47 MAG: 16.61

ID: 2545 XCEN: 8256.10 YCEN: 9319.55 MAG: 23.22

Group: 3 contains 3 stars

ID: 1607 XCEN: 1573.59 YCEN: 5881.47 MAG: 15.81

ID: 1602 XCEN: 1680.09 YCEN: 5869.78 MAG: 22.76

ID: 1638 XCEN: 1622.13 YCEN: 5976.86 MAG: 22.67

Group: 4 contains 1 stars

ID: 1080 XCEN: 6630.98 YCEN: 4006.65 MAG: 15.76

Group: 5 contains 1 stars

ID: 694 XCEN: 7933.82 YCEN: 2634.98 MAG: 15.31

Looking at the output image, we realize that many of the psf stars subtracted

out very poorly. We reselect a new set of stars with similar properties to the best

subtracted star and try the steps above again. After a few iterations, we find a

good set of PSF stars - the initial stars that were chosen were too big and bright, in

general. Our final set of stars doesn’t include any neighbors so we are done after

checking our subtracted image. If our PSF stars had neighbors, we would want

to create an image where the neighbors (but not PSF stars) are subtracted off, and

use that image to create a final PSF.

239



C.3.4 Do the PSF-Fitting Photometry

We are now ready to do the PSF-fitting to the full field and obtain an initial pho-

tometry list. Set-up and run allstar:

PACKAGE = daophot

TASK = allstar

image = shclean_198606_i Image corresponding to

photometry

photfile= default Input photometry file

(default: image.mag.?)

psfimage= default PSF image (default:image.psf.?)

allstarf= default Output photometry file

(default: image.als.?)

rejfile = default Output rejections file

(default: image.arj.?)

subimage= default Subtracted image

(default: image.sub.?)

(datapar= ) Data dependent parameters

(daopars= ) Psf fitting parameters

(wcsin = )_.wcsin) The input coordinate system

(logical,tv,physical,world)

(wcsout = )_.wcsout) The output coordinate system

(logical,tv,physical)

(wcspsf = )_.wcspsf) The psf coordinate system

(logical,tv,physical)

(cache = yes) Cache the data in memory?

(verify = yes) Verify critical allstar pars?

(update = )_.update) Update critical allstar pars?

(verbose= )_.verbose) Print allstar messages?

(version= 2) Version

(mode = ql)

Recenter the stars (yes):

Recenter the stars: yes

Use group sky values (yes):

Use group sky values: yes

Refit the sky (no):

Refit the sky: no

Psf radius in scale units (95.):

New psf radius: 95. scale units 95. pixels
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Fitting radius in scale units (7.):

New fitting radius: 7. scale units 7. pixels

Maximum group size in number of stars (60):

New maximum group size: 60 stars

Minimum good data value (600.) (CR or value):

New minimum good data value: 600. counts

Maximum good data value (60000.) (CR or value):

New maximum good data value: 60000. counts

Examine the results in the subtracted image. We see that the PSF-fitting of

the brightest stars is horrible. This could be a result of using a low value for the

maximum good data value. Since these stars are foreground Milky Way stars,

their poor photometry is not of concern. The fainter objects appear to be well sub-

tracted, except for galaxies which are extended structures. A few relatively bright

stars are not subtracted as these were missed by daofind; for this preliminary anal-

ysis we do not worry about them. There do not appear to be new sources revealed

by the subtraction so we will use the list of magnitudes generated by allstar. If

there were a number of new sources revealed by the subtraction we would wish to

run daofind, phot and then allstar as above on the newly revealed sources,

appending the photometry to the current magnitude list.

C.3.5 Aperture Correction

Since the aperture used for determining the initial photometry was small (7 pix-

els), we wish to calculate an aperture correction to account for the fact that we are

missing light from the wings of the stars. In order to perform the aperture correc-

tion we will compare the magnitudes for a set of stars using apertures of 7 and 25

pixels. We wish to use isolated stars for this to ensure that with the larger aperture
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we are only measuring light from the star of interest and not its neighbors. Since

our PSF-model stars were selected for their isolation, we will use them. We use

txdump to get the x,y coordinates of these stars for input to phot:

daophot> txdump shclean_198606_i.nst.5 xc,yc > iap

Now run phot on these stars using both apertures:

phot shclean_198606_i iap ires aper=7.,25. annulus=30

dannu=10 verb+

sh*_i 6958.11 3892.12 625.5253 18.098 17.810 ok

sh*_i 1924.92 1956.34 623.8038 18.842 INDEF err

sh*_i 2523.05 6229.58 626.3999 18.406 INDEF err

sh*_i 7671.85 8811.21 624.8492 20.136 INDEF err

sh*_i 7193.28 2950.06 624.8723 18.554 18.243 ok

For some reason we were only able to get photometry from the larger aperture

for 2 of the 5 stars. We can obtain a “good enough” aperture correction using just

these two stars but for future work we will want more stars with good photometry

and to understand why these stars did not have magnitudes calculated for the

larger aperture - is it a background issue? The average correction for the two stars

is -0.3 mags.

We repeat the above steps (PSF-model creation, PSF-fitting and aperture cor-

rection) for the g band image. Everything is similar except that one of the PSF

model stars is too faint in g to be used. The aperture correction values look like

this:

txdump shclean_198606_g.nst.1 xc,yc > gap

phot shclean_198606_g gap gres aper=7.,25.

annulus=30 dannu=10 verb+
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sh*_g 1924.96 1956.89 240.828 20.988 20.684 ok

sh*_g 7193.11 2950.11 242.7656 20.263 20.000 ok

sh*_g 6957.75 3892.43 242.9698 19.485 19.221 ok

sh*_g 2523.26 6229.65 241.8139 18.539 18.286 ok

This time we obtain magnitudes for both apertures for all stars. We find an

average aperture correction of -0.28 for the g-band. Given the similarity between

the two filters and the minimal number of stars used, we choose to use -0.3 mags

for both filters.

C.3.6 Transform Magnitudes to Standard System

We now wish to use our photometric coefficients from before to transform the

measured magnitudes of all the stars to the standard system. Note that the zero

point used to calculate the magnitudes for the whole field was reset to the de-

fault IRAF value of 25 so the zero point corrections we need to apply are small

(0.83 for i and 1.23 for g). We wish to format the output from allstar before

transforming the magnitudes. We do this with mkobsfile (NOT mknobsfile).

This is also the stage at which aperture corrections are applied; setting apercor

to STDIN results in a command line prompt for the aperture correction. After

running mkobsfile, the magnitudes are transformed to the standard SDSS ugriz

system in IDL and further analysis proceeds in IDL.

PACKAGE = photcal

TASK = mkobsfile

photfile= The input list of

APPHOT/DAOPHOT databases
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idfilter= odi_g,odi_i The list of filter ids

observat= The output observations file

(wrap = yes) Format the output file for

easy reading ?

(imsets = STDIN) The input image set file

(obspara= ) The observing parameters file

(obscolu= 2 3 4 5) The format of obsparams

(minmage= 0.001) The minimum magnitude error

(shifts = STDIN) The x and y coordinate shifts

(apercor= STDIN) The aperture corrections file

(apertur= 1) The aperture number of the

extracted magnitude

(toleran= 5.) The tolerance in pixels for

position matching

(allfilt= no) Output only objects matched

in all filters

(verify = no) Verify interactive user input ?

(verbose= yes) Print status, warning and

error messages ?

(mode = ql)

C.4 Color Magnitude Diagram Analysis

The analysis of the detected sources is done by applying a color magnitude di-

agram (CMD) filter cut to all sources based on an old, metal poor stellar pop-
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ulation for a given distance modulus. The remaining sources are then spatially

smoothed to enhance any overdensity. Section 5.5 describes the motivation be-

hind the methodology in detail. The following IDL code contains the full details

on how this procedure is done:

pro cm

; Th i s p r o c e d u r e a p p l i e s c o l o r magni tude f i l t e r s
; t o t h e o b s e r v e d s o u r c e s and then d o e s
; s p a t i a l sm ooth ing

; F i r s t r e a d in t h e i s o c r h o n e s , which l i v e in
; / home / m a r i c a o / b e t s e y / uchvcs
r e s t o r e , ’/home/maricao/betsey/uchvcs/isochrone templa te . sav ’
d i r= ’/home/maricao/betsey/uchvcs/ ’
f i l e 0 0 0 6 8 g y r = ’ i sochron ez0006 8gyr av085 . dat ’
f i l e 0 0 0 1 8 g y r = ’ i sochrone z0001 8gyr av085 . dat ’
f i l e 0 0 0 6 1 3 5 g y r = ’ i sochrone z0006 13 . 5 gyr av085 . dat ’
f i l e 0 0 0 1 1 3 5 g y r = ’ i sochrone z0001 13 . 5 gyr av085 . dat ’
i s o 0 0 0 6 8 g y r = r e a d a s c i i ( d i r+ f i l e 0 0 0 6 8 g y r , $

template=isochrone templa te )
i s o 0 0 0 1 8 g y r = r e a d a s c i i ( d i r+ f i l e 0 0 0 1 8 g y r , $

template=isochrone templa te )
i s o 0 0 0 6 1 3 5 g y r= r e a d a s c i i ( d i r+ f i l e 0 0 0 6 1 3 5 g y r , $

template=isochrone templa te )
i s o 0 0 0 1 1 3 5 g y r= r e a d a s c i i ( d i r+ f i l e 0 0 0 1 1 3 5 g y r , $

template=isochrone templa te )
; Get t h e c o l o r s o f t h e i s o c h r o n e s
g i c o l o r 0 0 0 6 8 g y r = i s o 0 0 0 6 8 g y r . g − i s o 0 0 0 6 8 g y r . i
g i c o l o r 0 0 0 1 8 g y r = i s o 0 0 0 1 8 g y r . g − i s o 0 0 0 1 8 g y r . i
g i c o l o r 0 0 0 6 1 3 5 g y r = i s o 0 0 0 6 1 3 5 g y r . g − i s o 0 0 0 6 1 3 5 g y r . i
g i c o l o r 0 0 0 1 1 3 5 g y r = i s o 0 0 0 1 1 3 5 g y r . g − i s o 0 0 0 1 1 3 5 g y r . i

; Find t h e s t a r s t h a t a r e a p p r o p r i a t e t o use f o r t h e f i l t e r .
; S p e c i f i c a l l y , we don ’ t want s t a r s t h a t have e v o l v e d
; o f f t h e RGB t o w h i t e dwar f s , e t c .
; E v o l u t i o n o f f t h e RGB/AGB i s r e p r e s e n t e d by e x c e s s i v e
; mass l o s s compared t o t h e i n i t i a l mass .
; E m p i r i c a l l y d e t e r m i n e d t h e f o l l o w i n g l i m i t s by
; p l o t t i n g CMDs f o r t h e i s o c r h o n e s and p l a c i n g l i m i t s
; u n t i l e v o l u t i o n t o WD i s not s e e n .
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good 0006 8gyr = where ( ( i sochrone 0006 8gyr . m act / $
isochrone 0006 8gyr . m ini ) ge 0 . 6 5 )

good 0001 8gyr = where ( ( i sochrone 0001 8gyr . m act / $
isochrone 0001 8gyr . m ini ) ge 0 . 7 )

good 0006 135gyr=where ( ( i sochrone 0006 135gyr . m act / $
isochrone 0006 135gyr . m ini ) ge 0 . 7 )

good 0001 135gyr=where ( ( i sochrone 0001 135gyr . m act / $
isochrone 0001 135gyr . m ini ) ge 0 . 7 5 )

; C r e a t e m as t e r a r r a y s s t o r i n g t h e ” good ”
; i s o c h r o n e v a l u e s t h a t w i l l b e used
m a s t e r i = [ i sochrone 0006 8gyr . i [ good 0006 8gyr ] , $

i sochrone 0001 8gyr . i [ good 0001 8gyr ] , $
i sochrone 0006 135gyr . i [ good 0006 135gyr ] , $
i sochrone 0001 135gyr . i [ good 0001 135gyr ] ]

master gi = [ g i c o l o r 0 0 0 6 8 g y r [ good 0006 8gyr ] , $
g i c o l o r 0 0 0 1 8 g y r [ good 0001 8gyr ] , $
g i c o l o r 0 0 0 6 1 3 5 g y r [ good 0006 135gyr ] , $
g i c o l o r 0 0 0 1 1 3 5 g y r [ good 0001 135gyr ] ]

; S e t up a g r i d t h a t r a n g e s in c o l o r from
; ( −1 ,3) and mag ( 2 4 , 1 7 )
; i n c r e m e n t by 0 . 0 5
; d i m e n s i o n s a r e ( 4∗0 . 0 5 + 1 ) and ( 7∗ . 0 5 + 1 )
param space = f l t a r r (4/0 .05+1 ,7/ .05+1)
x index = findgen ( 4 / . 0 5 + 1 )∗ . 0 5 −1.
y index = −f indgen ( 7 / . 0 5 + 1 )∗ . 0 5 + 2 4 .
; and r e c o r d t h e s i z e o f t h e g r i d
nx=n elements ( x index )
ny=n elements ( y index )

; now r e s t o r e t h e a r r a y s c o n t a i n i n g i n f o r m a t i o n on
; t h e d e t e c t e d o b j e c t s .
r e s t o r e , ’ s t a r s 1 9 8 6 0 6 . sav ’
; And g i v e t h e i and g a r r a y s b e t t e r names so t h a t
; l o o p s can be i n d e x e d us ing i .
i o b s = i
g obs = g
; S e t l i m i t s on what o b j e c t s a r e c o n s i d e r e d w e l l measured
; D e f i n e t h e c o l o r and an e r r o r b a s e d on t h e r e p o r t e d e r r o r s
; in i n d i v i d u a l f i l t e r s
c o l o r =g−i
c e r r = s q r t ( i e r r ˆ2 + gerr ˆ 2 )
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; Only k e e p o b j e c t s wi th e r r o r s l e s s than 0 . 2 mags
good stars = where ( c e r r le 0 . 2 )
; And use t h e same c o l o r e r r o r f o r widening t h e f i l t e r
sigma gi = 0 . 2

; Now do a l l t h e s t e p s ( f i l t e r i n g , smooth ing , e t c . )
; f o r d i s t a n c e modulus =22.4 as an example
; Code can be a d a p t e d t o any d i s t a n c e modulus
; in a s t r a i g h t −f o r w a r d manner

; F i r s t s e t t h e m as t e r a r r a y t o have
; t h e m agni tdues a p p r o p r i a t e f o r t h e d i s t a n c e modulus
m a s t e r i 2 2 4 = m a s t e r i + 2 2 . 4
; and c r e a t e a p a r a m e t e r s p a c e a r r a y s p e c i f i c a l l y f o r t h i s
; d i s t a n c e modulus
param space 224 = param space

; Now c r e a t e t h e f i l t e r by l o o p i n g through t h e
; p a r a m e t e r s p a c e a r r a y and c h e c k i n g i f t h a t
; magni tude / c o l o r c o m b i n a t i o n f a l l s w i t h i n
; t h e c o l o r e r r o r p o i n t o f an i s o c h r o n e .
for i =0 ,nx−1 do begin

for j =0 ,ny−1 do begin
; g e t mag and c o l o r a t t h i s l o c a t i o n
imag = y index [ j ]
c o l o r = x index [ i ]

; c h e c k i f t h i s c o m b i n a t i o n i s c o n t a i n e d w i t h i n an
; i s o c h r o n e v a l u e

check = where ( abs ( master gi−c o l o r ) le sigma gi AND $
abs ( imag − m a s t e r i 2 2 4 ) le sigma gi , $
c n t i s o c h r o n e )

; i f i t does , updat e p a r a m s p a c e t o r e f l e c t t h a t
i f c n t i s o c h r o n e ge 1 then param space 224 [ i , j ] = 1 .

endfor
endfor

; Now use t h e p a r a m s p a c e 2 2 4 as a f i l t e r .
; I t e r a t e through e a c h s t a r / s o u r c e −
; f i n d t h e i n d e x o f i t s c o l o r and i mag r e l a t i v e t o
; t h e p a r a m s p a c e a r r a y .
; Then c h e c k i t t h e a r r a y l e t s i t p a s s or not ,
; and i f i t does , f l a g i t a s p a s s e d
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ns=n elements ( i o b s )
c h e c k s t a r 2 2 4 = f l t a r r ( ns )
g i obs = g obs−i o b s
for j =0 , ns−1 do begin

mincolor= min ( abs ( x index − gi obs [ j ] ) , ind param color )
minmag = min ( abs ( y index − i o b s [ j ] ) , ind param mag )
check cut=param space 224 [ ind param color , ind param mag ]
; i f s t a r p a s s e s c u t p a s s i t a s a v e f l a g
i f check cut eq 1 then c h e c k s t a r 2 2 4 [ j ] = 1

endfor

; now a l l t h e s t a r s t h a t p a s s c u t s h o u l d have c h e c k s t a r = 1
pass = where ( c h e c k s t a r 2 2 4 eq 1)

; Now i t i s t im e t o smooth t h e s t a r s
; F i r s t , t h e s t a r s need t o be g r i d d e d
; Degrade t h e r e s o l u t i o n by a f a c t o r o f 10
; f o r c o m p u t a t i o n a l r e a s o n s
; Th i s i s a g r i d s e p a r a t i o n o f 1 . 1 ” which
; s h o u l d be p l e n t y
g r i d 1 0 r e s = f l t a r r ( 1 1 0 1 , 1 1 0 1 )
; s t a y in p i x e l v a l u e s
x a r r a y p i x = findgen ( 1 1 0 1 )
y a r r a y p i x = findgen ( 1 1 0 1 )

; Go through a l l t h e s t a r s and add 1 t o e a c h p o i n t in
; g r i d 1 0 r e s t h a t c o n t a i n s a s t a r .
n=n elements ( pass )
for j =0 ,n−1 do begin

; f i n d t h e l o c a t i o n o f t h e s t a r in d e g r a d e d c o o r d i n a t e s
xtmp = round ( x [ pass [ j ] ] / 1 0 . )
ytmp = round ( y [ pass [ j ] ] / 1 0 . )
; i n c r e m e n t t h e g r i d a t t h a t l o c a t i o n
g r i d 1 0 r e s [ xtmp , ytmp ] = g r i d 1 0 r e s [ xtmp , ytmp ] + 1 .

endfor

; now smooth t o a l l t h e r e s o l u t i o n s o f i n t e r e s t
n=n elements ( g r i d 1 0 r e s )
; f i r s t c r e a t e t h e k e r n e l
print , ’ Creat ing a 4arcmin kerne l ’
gausskernel4=psf gauss ian ( npixe l =1101 ,fwhm=218 ,ndimen =2 , $
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/normalize , centro id = [ 0 , 0 ] )
; th en smooth v i a t h e FFT and c o n v o l u t i o n theor em
print , ’ Smoothing the grid to 4 ’
grid smooth4= r e a l p a r t ( FFT ( f f t ( g r i d 1 0 r e s )∗ $

f f t ( gausskernel4 ) ,/ inverse ) ) / $
s q r t ( n )

; Repea t f o r t h e o t h e r 3 sm ooth ing s c a l e s
print , ’ Creat ing a 3arcmin kerne l ’
gausskernel3=psf gauss ian ( npixe l =1101 ,fwhm=164 ,ndimen =2 , $

/normalize , centro id = [ 0 , 0 ] )
print , ’ Smoothing the grid to 3 ’
grid smooth3= r e a l p a r t ( FFT ( f f t ( g r i d 1 0 r e s )∗ $

f f t ( gausskernel3 ) ,/ inverse ) ) / $
s q r t ( n )

print , ’ Creat ing a 2arcmin kerne l ’
gausskernel2=psf gauss ian ( npixe l =1101 ,fwhm=109 ,ndimen =2 , $

/normalize , centro id = [ 0 , 0 ] )
print , ’ Smoothing the grid to 2 ’
grid smooth2= r e a l p a r t ( FFT ( f f t ( g r i d 1 0 r e s )∗ $

f f t ( gausskernel2 ) ,/ inverse ) ) / $
s q r t ( n )

print , ’ Creat ing a 1arcmin kerne l ’
gausskernel1=psf gauss ian ( npixe l =1101 ,fwhm=55 ,ndimen =2 , $

/normalize , centro id = [ 0 , 0 ] )
print , ’ Smoothing the grid to 1 ’
grid smooth1= r e a l p a r t ( FFT ( f f t ( g r i d 1 0 r e s )∗ $

f f t ( gausskernel1 ) ,/ inverse ) ) / $
s q r t ( n )

; p l o t r e s u l t s as d e s i r e d and t h i s i s t h e end

end
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M. Hoeft and S. Gottlöber. Dwarf Galaxies in Voids: Dark Matter Halos and Gas
Cooling. Advances in Astronomy, 2010:693968, 2010. doi: 10.1155/2010/693968.
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