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     The mineral and energy imbalances of the transition period of dairy cows have a negative 

impact in the dairy industry because they are prevalent, contribute to economic losses and are an 

animal welfare issue.  This dissertation aimed to advance our understanding of the physiological 

adaptations characteristic of this period.  A series of experiments were conducted to: advance the 

understanding of body reserves mobilization around parturition, characterize the dynamics of 

blood calcium concentration after calving and evaluate its association with reproductive 

performance, and advance the understanding of the regulation of fibroblast growth factor 21 in 

the dairy cow.  

     Chapter 2 reviews the current information available regarding the physiological adaptations 

necessary to overcome the mineral and energy challenges faced by dairy cows in the 

periparturient period, with an emphasis in subclinical hypocalcemia and fibroblast growth factor 

21.  In Chapter 3, it is reported that blood calcium concentration is the lowest in the first day 

post-partum, independently of parity, but normal levels are regained by day 3 of lactation.  

Additionally, the interaction between subclinical hypocalcemia, disease occurrence, and 

increased levels of metabolites surrogates of negative energy balance significantly influence the 

loss of body weight in parity > 3 animals.  Chapter 4 introduces a new concept of subclinical 

hypocalcemia that considers not only the blood calcium concentration at a given time but also 

how many days post-partum blood calcium concentration is below the established cut-off point.  

In this chapter, it is reported that approximately 1/3 of the dairy cows have low blood calcium 
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concentration during the first 3 days in lactation.  Additionally, chronic subclinical hypocalcemia 

was associated with impaired reproductive performance of these animals. 

     Chapter 5 aims to identify objective measurements to assess body condition in dairy cows.  In 

this chapter, sequential measurement of body weight and the measurement of back-fat thickness 

were compared to the traditional visual body condition scoring system.  It was determined that 

body weight has the potential to be used to predict milk production throughout lactation, but 

other variables (i.e. disease and negative energy balance) can significant interfere with this 

measurement and further investigation of this methodology is necessary prior to the diffusion of 

this technique through the dairy industry at large.  

     Finally in Chapter 6, we demonstrated the importance of elevated plasma non-esterified fatty 

acids in hepatic fibroblast growth factor 21 production and consequently the increased 

circulating levels of this this hormone.  

     In summary, this dissertation contributes to the current knowledge regarding various aspects 

of dairy cows adaptation to milk production.  Nonetheless, further research is needed to advance 

our knowledge on the epidemiology of subclinical hypocalcemia and its influence in production 

outcomes. As well as to better understand the effects of elevated fibroblast growth factor 21 

concentrations in early lactation dairy cows. 
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     For the last few decades the dairy industry has selected dairy cows for milk production at the 

expense of other traits (Lassen et al., 2003, Berry et al., 2016).  As a consequence the metabolic 

challenge of meeting the nutrient requirements of early lactation has been exacerbated (Bell, 

1995, DeGaris and Lean, 2008), ultimately increasing the likelihood of disease occurrence 

during the periparturient period, and hampering milk production and reproductive performance 

(LeBlanc et al., 2005, Duffield et al., 2009, Ospina et al., 2010a, b, Chapinal et al., 2012, 

Martinez et al., 2012, McArt et al., 2012).  During the transition period, traditionally defined as 

the period from 3 weeks before to 3 weeks after calving, calcium and energy requirements are 

increased by 65% and 300%, respectively, to support lactogenesis (Bell, 1995, Drackley, 1999, 

Reynolds et al., 2003, DeGaris and Lean, 2008).  Therefore, physiological adaptations triggered 

by key metabolic hormones are essential to coordinate the mobilization of lipid and mineral 

reserves that will be used to overcome these deficits.  Amongst the potential mineral imbalances 

of the transition period, low blood calcium concentration or hypocalcemia, has been extensively 

studied.  Scientists have shown that various adaptations are triggered to re-establish calcium 

homeostasis in early lactation including increased absorption of dietary calcium, increased 

mobilization from bone, and enhanced renal re-absorption (DeGaris and Lean, 2008, Goff, 

2008).  Furthermore, by using efficient nutritional management protocols scientists were able to 

maximize the results of the aforementioned adaptations leading to a decrease in the incidence of 

clinical cases of hypocalcemia to 1% or less (DeGaris and Lean, 2008, Goff, 2008, Reinhardt et 

al., 2011).  However, it takes up to 48 hours for this adaptation to be fully effective (Goff, 2008, 

Oetzel, 2013).  Thus, a period of moderately low blood calcium concentration, also known as 

subclinical hypocalcemia (SHPC), can be found in a substantial proportion of dairy cows post-

partum (Goff, 2008, Reinhardt et al., 2011, Oetzel, 2013, Caixeta et al., 2015).  
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     In parallel, energy requirements to support milk production are also elevated during the 

periparturient period.  Yet, voluntary feed intake is depressed and not sufficient to cover the 

nutrient demands of this period.  Hence, dairy cows face a period of negative energy balance 

(NEB) in early lactation (Bell, 1995).  This physiological state leads to the mobilization of 

adipose tissue and muscle in the form of non-esterified fatty acids (NEFA) and amino acids to be 

used as alternative fuel sources for various tissues (Bell and Bauman, 1997, Drackley, 1999).  

The mobilization of adipose tissue is an essential source of energy for dairy cows in early 

lactation, but when in excess, it has been associated with decreased milk production and 

reproductive performance, and increased risk of disease occurrence (Duffield et al., 2009, Ospina 

et al., 2010a, b, Chapinal et al., 2011, McArt et al., 2012).  

     Previous research have produced vast knowledge that has been applied to mitigate the mineral 

and energy imbalances characteristic of the transition from late gestation to early lactation in the 

modern dairy cow.  However, the physiological adaptations during this period are not fully 

understood, and several questions remain to be answered. 

     The mobilization of body reserves to maintain milk production requirements have been 

usually assessed using body condition scoring systems that indirectly measure the mobilization 

of adipose tissue (Edmonson et al., 1989, Ferguson et al., 1994, Schroder and Staufenbiel, 2006, 

Thorup et al., 2013).  Yet, the relationship between the loss of body condition score and the 

concurrent mineral imbalances have not been addressed.  Can hypocalcemia exacerbate 

mobilization of body reserves in the modern dairy cow?  Can mineral imbalances and excessive 

mobilization of body reserves act synergistically to hinder productivity? 

     Also, SHPC has traditionally been defined as a single low blood calcium (< 8.0 ng/dL) 

measurement within the first 48 hours after calving (Goff, 2008, Reinhardt et al., 2011, Martinez 
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et al., 2012).  Nevertheless, the physiological adaptations to overcome this challenge may take 

longer than 48 hours (Goff, 2008, Martin-Tereso and Verstegen, 2011).  Thus, using a single 

blood calcium measurement during the first two days of lactation to define hypocalcemia might 

be overestimating the number of hypocalcemic animals.  Given the time necessary for complete 

adaptation to this new physiological state after calving, are multiple blood calcium 

measurements necessary to determine SHPC cases?  What is the proportion of animals that 

present low blood calcium concentration for more than 48 hours?  Do animals that adapt faster 

and re-establish normal blood calcium concentration within 48 hours perform better than animals 

that take longer to re-establish normal blood calcium concentrations?  

     Other methods of assessing body reserve mobilization and body condition have been used less 

frequently throughout the years (Edmonson et al., 1989, Ferguson et al., 1994, Schroder and 

Staufenbiel, 2006, Thorup et al., 2013).  A visual body condition scoring system has been 

commonly used to determine the extent of adipose tissue energy reserves even though 

undesirable inter and intra-observer variance and low repeatability is observed when this 

measurement is performed by not highly trained personnel (Ferguson et al., 1994, Kristensen et 

al., 2006).  Despite different scales, changes in the body condition measured by any of the 

aforementioned methods (i.e. body condition score, backfat thickness, and body weight) have 

been associated with differences in the amount of milk produced and reproductive performance 

(Mosenfechtel et al., 2002, Berry et al., 2003, Lopez-Gatius et al., 2003, Roche et al., 2007, 

Sakaguchi, 2009).  These different methods, however, have not been compared in the same 

experiment.  Would an objective (sequential body weight and back-fat thickness measurements) 

measurement behave in a similar fashion as the traditional method (body condition score) during 

early lactation?  Which of the current methods available can be more predictive of production 
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outcomes?  Can new approaches eliminate the inherent variance and low repeatability of 

methods based on a visual appraisal of fatness?  

     Lastly, the change in body condition during early lactation is a consequence of several 

physiological adaptations that are in place to fulfil energy requirements for milk production. 

Among these adaptations, increased plasma levels of NEFA and glucagon are a hallmark of this 

period (Herdt, 2000, Bobe et al., 2003).  Interestingly, these adaptations are also observed in 

other species in periods when energy availability is decreased.  Moreover, increased NEFA and 

glucagon have been reported to stimulate the liver expression of fibroblast growth factor 21 

(FGF21) in humans and rodents (Inagaki et al., 2007, Badman et al., 2009, Cyphert et al., 2012, 

Arafat et al., 2013).  Likewise, the plasma concentration of this protein hormone has been 

reported to peak at calving and remain elevated throughout the first five weeks of lactation 

(Schoenberg et al., 2011), which coincides with the period of elevated plasma NEFA and 

glucagon.  Therefore, it is important to understand if such adaptations are also responsible for 

triggering FGF21 expression in dairy cows.  Does elevated plasma fatty acids and glucagon 

induce FGF21 expression in the liver of dairy cows?     

     The overall objective of this dissertation is to better understand metabolic adaptations 

occuring during the transition period of dairy cows.  It is also my goal that the knowledge 

generated by this research will ultimately contribute to the development of new strategies that 

can enhance animal productivity, dairy farming profitability, and most importantly animal health 

and well-being.  
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INTRODUCTION 

     The transition from late gestation to early lactation is an extremely challenging period for the 

modern dairy cow because of the rapid increase in energy and mineral demands for colostrum 

and milk production (Bell, 1995, DeGaris and Lean, 2008).  The pursuit of a more efficient 

production system led the dairy industry to prioritize selection for milk yield over other traits 

exacerbating the metabolic problems faced by dairy cows (Lassen et al., 2003, Berry et al., 

2016).  As a consequence dairy cows are at greatest risk of developing diseases during the 

periparturient period (LeBlanc et al., 2005). 

     In early lactation, energy demands are increased by 300% and calcium requirements are 

increased over 65% in order to support lactogenesis (Bell, 1995, Drackley, 1999, Reynolds et al., 

2003, DeGaris and Lean, 2008).  Cows do not have sufficient appetite after parturition to cover 

these requirements leading to a period of negative balance for both energy and major minerals, 

including magnesium and phosphorus in addition to calcium (Herdt, 2000).  Thus, homeorhetic 

and homeostatic adaptations are essential during this period to coordinate the mobilization of 

lipid and mineral reserves (Bauman and Currie, 1980).  

     The increased mineral demands during the periparturient period, specially increased calcium 

demands, have been thoroughly studied.  Low blood calcium concentration during early lactation 

have been associated to negative effects on health and production outcomes in dairy cows 

(DeGaris and Lean, 2008, Chapinal et al., 2011, Chapinal et al., 2012, Martinez et al., 2012, 

Overton and Yasui, 2014, Wang et al., 2014).  Likelihood and severity of these imbalances 

increase with parity.  Meta-analysis studies found that the risk of milk fever increases by nine 

percentage points at each successive lactation (Lean et al., 2006).  Increased risk of 

hypocalcemia in older animals is explained by decreased capacity to mobilize calcium from 
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bones (van Mosel et al., 1993), decreased capacity to absorb calcium in the small intestines 

(Horst et al., 1990), and higher milk production.  

     Along with increased mineral demands, energy demands increases in the periparturient 

period.  Lower concentrations of circulating insulin and increased lipid mobilization are 

important adaptations necessary to supply energy for milk production while feed intake is 

insufficient (Bauman and Currie, 1980, Bell, 1995, Drackley, 1999, Komatsu et al., 2005).  

When excessive, however, lipid mobilization is associated with the occurrence of diseases, 

decreased milk production, impaired reproductive performance, and increased culling rates in 

early lactation (Goff and Horst, 1997, Herdt, 2000, LeBlanc et al., 2005, Walsh et al., 2008, 

Duffield et al., 2009, Ospina et al., 2010b, a, Chapinal et al., 2011, McArt et al., 2012).  Different 

strategies have been studied to alleviate lipid mobilization in early lactation, with limited 

success.  

     The transition period has been defined as the period 3 weeks before and after parturition 

(Grummer, 1995); nevertheless, metabolic changes can start earlier and have carryover effects 

beyond this period.  An efficient transition into lactation is essential to determine the success of 

the modern dairy cow in the current production systems (Drackley, 1999), and yet ineffective 

adaptation to the new physiological state remains common.  Therefore, it is important to 

understand the adaptations happening in the periparturient period to develop knowledge and 

strategies that can improve animal performance and welfare.  
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MINERAL IMBALANCES IN THE TRANSITION PERIOD 

     The interaction between macro and micro minerals has been extensively studied throughout 

the years and is a key determinant of occurrence of clinical diseases and negative downstream 

outcomes related to mineral imbalances in dairy cows.  Hypocalcemia, hypophosphatemia, and 

hypomagnesemia have been reported as the most common mineral imbalances faced by dairy 

cows.  Abnormal concentrations of these minerals in early lactation are involved in the 

development of the down cow syndrome which is characterized by recumbency and incapacity to 

rise (DeGaris and Lean, 2008, Martin-Tereso and Verstegen, 2011, Goff, 2014).  The 

understanding and prevention of the occurrence of such syndrome is important not only for 

production aspects but also for animal welfare, since euthanasia is indicated for animals that are 

non-ambulatory for more than 24 hours (Green et al., 2008).  Advances in the field of dairy 

nutrition and physiology have been paramount to the development of management strategies that 

decreased the occurrence of clinical hypocalcemia in the modern dairy cows (Reinhardt et al., 

2011, Oetzel and Miller, 2012). 

     Despite the importance of all mineral imbalances during the periparturient period, 

hypocalcemia has been studied more frequently and described as the major mineral imbalance 

affecting dairy cows.  

 

Hypocalcemia 

Definition and Incidence   

     Low blood calcium concentration, also known as hypocalcemia, has been reported as a 

problem in early lactation dairy cows for over two centuries (Murray et al., 2008).  Depending on 

its severity hypocalcemia is classified as either clinical or subclinical.  Clinical hypocalcemia is 
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characterized by the development of clinical signs, such as recumbency, lethargy, hypothermia, 

and rumen atony and is associated with total blood calcium concentrations lower than 5.6 mg/dL. 

Subclinical hypocalcemia (SHPC) corresponds to low blood calcium concentration without 

visible clinical signs, with traditional cut off points of 5.6 to 8.0 mg/dL for total blood calcium 

(DeGaris and Lean, 2008, Goff, 2008, Reinhardt et al., 2011).  Nevertheless, multiple total blood 

calcium cut-off, varying from 8.0 mg/dL to 8.8 mg/dL have been proposed to define SCHP on 

the basis of results of multiple clinical trials and epidemiological assessments (Chapinal et al., 

2011, Martinez et al., 2012). 

     Effective nutritional management during the dry period and early lactation, and increased 

understanding of transition cow period physiology has led to a decrease in the incidence of milk 

fever to 1% or less (Reinhardt et al., 2011, Oetzel and Miller, 2012).  Conversely, the incidence 

of SHPC remains high during the first 3 DIM averaging 25% for first lactation cows, 48% in 

older animals with as many as 73% of animals of parity > 3 presenting SCHP (Reinhardt et al., 

2011, Caixeta et al., 2015).  

Calcium Homeostasis 

     Upon initiation of lactation, daily calcium requirements increase from 30 g before calving to 

over 50 g after parturition (DeGaris and Lean, 2008).  Adaptations triggered to meet this 

nutritional challenge include increased absorption of dietary calcium, increased mobilization 

from bone, and enhanced renal re-absorption (DeGaris and Lean, 2008, Goff, 2008). 

     The lower blood calcium concentrations characteristic of early lactation increase the secretion 

of parathyroid hormone (PTH) by the parathyroid glands, which further induces calcitriol 

production by the kidneys.  The combined actions of these two hormones are essential to the re-

establishment of physiological concentration of extracellular calcium in periparturient dairy 
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cows.  In addition to inducing calcitriol production, PTH initiates bone calcium mobilization and 

enhances renal tubular reabsorption of calcium as long as intestinal absorption of calcium is 

insufficient (Martin-Tereso and Verstegen, 2011).  On the other hand, calcitriol stimulates 

efficient absorption of dietary calcium in the intestine and sustains bone mobilization in the 

presence of PTH (DeGaris and Lean, 2008, Goff, 2008).  In brief, calcitriol stimulates 

enterocytes to enhance their calcium transport competence during their early stages of 

differentiation.  Intestinal and bone adaptations take 24 to 48 hours to develop, a time period 

nearly identical to duration of SHPC after parturition (Goff, 2008, Oetzel, 2013).   

     Extracellular total calcium (tCa) concentration is maintained between 8.5 – 10.0 mg/dL 

(Goff, 2008); therefore intestinal capacity to absorb dietary calcium, bone mobilization, and 

renal resorption or excretion of calcium are dynamically changing throughout lactation in order 

to maintain this equilibrium (Martin-Tereso and Verstegen, 2011).  The interaction between PTH 

and calcitriol normalize calcium concentrations in early lactation by predominantly stimulating 

absorption of dietary calcium over bone mobilization or renal reabsorption (Martin-Tereso and 

Verstegen, 2011). 

     It is important to highlight that only part of the blood tCa pool is free and readily available for 

biological activities.  This calcium pool is referred to as ionized calcium (iCa), and is mainly 

transported in blood bonded to albumin (Sava et al., 2005).  In humans, iCa has been shown to 

correspond to half of tCa circulating under normal conditions (Forman and Lorenzo, 1991, 

Kragh-Hansen and Vorum, 1993).  However, during periods of abnormal calcium states such 

association is not maintained and measurement of iCa is necessary to improve calcium status 

diagnostics accuracy (Ong et al., 2012).  Similarly, a slight change in the iCa-tCa ratio, high 

iCa:tCa due to increased percentage of tCa being ionized, was observed in dairy cows 
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immediately after parturition (Sweeney et al., 2014).  Despite this discrepancy, measurements of 

tCa were considered adequate when predicting neutrophil function, and therefore acceptable as 

an index of calcium status in periparturient dairy cow (Sweeney et al., 2014).  Ionized Ca 

represents the bioactive calcium in blood, but its determination is complicated and costly.  

Moreover iCa does not predict functional outcomes significantly better than tCa. Accordingly, 

tCa is commonly measured in dairy cattle research.  

Prevention of Hypocalcemia 

     Nutritional strategies are commonly used to prevent clinical and subclinical hypocalcemia.  

An effective nutritional strategy is the utilization of low calcium diets during the pre-partum 

period.  Theoretically, low calcium diets activate osteoclastic bone resorption and stimulate 

enterocytes to efficiently transport calcium into the blood prior to calving, thus avoiding 

hypocalcemia (Green et al., 1981).  Nevertheless, formulation of low calcium diets is extremely 

difficult because many forages exceed the minimum calcium concentration necessary to achieve 

this effect (Martin-Tereso and Verstegen, 2011).  

     Another effective nutritional strategy proposed to prevent hypocalcemia is the 

supplementation of dairy cows with anionic salts pre-partum leading to a reduction of the dietary 

cation-anion difference (DCAD).  The use of anionic salts, low-DCAD diets, cause a drop in 

blood pH which is counteracted by a low grade calcium release from bones into the extracellular 

fluid to balance the excessive anions in circulation (Goff and Horst, 2003).  The mobilized 

calcium is excreted by the kidneys until parturition when it is used to fulfil the elevated milk 

calcium demands of lactation (DeGaris and Lean, 2008, Martin-Tereso and Verstegen, 2011).  

Therefore, the beneficial effects of low-DCAD diets in early lactating dairy cows is explained by 

enhanced capacity to mobilize calcium from bones and the maintenance of PTH actions.  The use 
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of low-DCAD diets has been reported to help prevent hypocalcemia at calving by numerous 

research groups (Oetzel et al., 1988, Horst et al., 1994, Moore et al., 2000, Ramos-Nieves et al., 

2009, Grunberg et al., 2011). 

     The prophylactic use of oral calcium supplementation in early lactation has also been 

proposed as a strategy to overcome calcium deficit.  Calcium supplementation after parturition 

has relevant economic impact in the dairy industry because it is associated with increased health 

and production in high yielding dairy cows, especially for greater parity and lame animals 

(Oetzel and Miller, 2012, McArt and Oetzel, 2015).  The use of oral calcium bolus establish a 

more sustained elevation of blood calcium concentration when compared to traditional 

intravenous treatments (Oetzel and Miller, 2012, Blanc et al., 2014).   

Impact of Hypocalcemia in Production Outcomes 

     Traditionally, low calcium concentration in the periparturient period has been associated with 

occurrence of dystocia, uterine prolapse, retained placenta, mastitis, decreased feed intake, and 

decreased rumen and abomasum motility (Curtis et al., 1983, Risco et al., 1984, Goff, 2008, Seifi 

et al., 2011, Sepulveda-Varas et al., 2015).  The association between hypocalcemia and the 

aforementioned diseases is mostly related to the importance of calcium for smooth muscle 

contraction.  Low blood calcium concentration is associated with decreased myometrial 

contractility which in turn leads to increased likelihood of uterine prolapses and delayed uterine 

involution that subsequently affect conception (Hansen et al., 2003, Whiteford and Sheldon, 

2005, Goff, 2008, Heppelmann et al., 2015).  Similarly, rumen and abomasal motility are 

reduced when calcium concentration is lower which increases the risk of abomasal displacement 

(Chapinal et al., 2011).  Additionally, low blood calcium is associated with reduction of cytosolic 

calcium concentration in immune cells affecting the ability of these cells to mount a strong 
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response to infections during the periparturient period (Kimura et al., 2006).  This 

immunosuppression is associated with increased risk of metritis, mastitis, and possibly retained 

placenta (Melendez et al., 2004, Martinez et al., 2012).  

     In addition, there is growing evidence that hypocalcemia can impair reproductive 

performance by altering ovarian activity.  For example hypocalcemic animals have smaller 

ovulatory follicle, smaller corpus luteum after ovulation, and lower plasma progesterone after the 

first ovulation during the voluntary waiting period than their eucalcemic counterparts resulting in 

decreased reproductive performance (Kamgarpour et al., 1999, Wilde, 2006, Chapinal et al., 

2012).  Overall hypocalcemia after parturition is associated with increased disease incidence 

within the first 30 DIM, decreased reproductive performance, decreased milk production, and 

increased culling rates.  

 

Other Macromineral Disorders 

Hypomagnesemia 

     Magnesium (Mg) is a major intracellular cation necessary as co-factor for a multitude of 

metabolic pathways and maintenance of normal levels in plasma depends on dietary absorption 

(Goff, 2008).  The blood Mg concentration is determined by the difference between dietary 

absorption and the renal clearance of this mineral.  An Mg shortage leading to concentrations 

below 1.80 mg/dL is defined as hypomagnesemia (Goff, 2008, Martin-Tereso and Martens, 

2014).  Clinical signs of hypomagnesemia resembles those of hypocalcemia and include 

recumbency, reduced feed intake, ataxia, and tetanic muscle spasms.  Animals affected by 

hypomagnesemia, however, rarely present severe clinical signs.  
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     Even though isolated cases of hypomagnesemia are easily treated by correcting magnesium 

deficiency (Reynolds et al., 1984), low blood magnesium concentration affects Ca metabolism.  

Hypomagnesemia reduces PTH secretion which in turn impairs Ca homeostasis.  Moreover 

magnesium is essential for the activation of PTH receptors with the consequence that 

hypomagnesemia reduces tissue sensitivity to PTH, bone Ca resorption and renal production of 

1,25-dihydroxyvitamin D (Goff, 2008).  Therefore, hypomagnesemic dairy cows have a lower 

ability to restore Ca blood concentration.  

Hypophosphatemia 

     Low blood phosphorus concentration is frequently observed in dairy cows in early lactation, 

especially in anorexic cows (Grunberg, 2014).  Hypophosphatemia, defined by phosphorus blood 

concentration below 5.6 mg/dL culminates in clinical presentation similar to hypocalcemia and 

hypomagnesemia, including recumbency and decreased feed intake.  PTH increases phosphorus 

excretion in saliva and urine (Goff, 2004).  Hypophosphatemia is commonly associated with 

hypocalcemia because of the higher PTH concentration required to re-establish Ca 

concentrations.  Accordingly, hypophosphatemia is usually not an isolated metabolic disorder 

but rather a consequence of hypocalcemia.  Oral and intravenous solutions can be used to treat 

hypophosphatemic cows, but in general phosphorus blood concentration rise following 

hypocalcemia treatment and reduction of PTH (Goff, 2004, Grunberg, 2014). 

 

ENERGY IMBALANCES IN THE TRANSITION PERIOD 

     In periparturient cows, voluntary feed intake is insufficient to cover nutrient demands 

associated with colostrum production and the considerable increase in the amount of milk 

produced (Bell, 1995).  In order to overcome this challenge, dairy cows mount several 
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adaptations in the periparturient period including mobilization of body reserves as alternative 

fuel sources.  The mobilization of adipose tissue is of extreme importance for the dairy cow, but 

jeopardize well-being and productivity if excessive. 

     Lipids are mobilized from adipose tissue and higher concentration of circulating NEFA are 

detected in dairy cows during early lactation (Herdt, 2000, Ospina et al., 2010c, McArt et al., 

2012).  Circulating NEFA can be used by various tissues as energy source and, as a source of 

preformed fatty acids by mammary gland, thus, the higher concentration of fat in milk of early 

lactation animals (Duffield et al., 1997, Drackley, 1999, Herdt, 2000, Reynolds et al., 2003, 

Ospina et al., 2013).  Nonetheless the majority of the circulating NEFA, approximately 25%, is 

taken up by liver where it can be completely oxidized in the tricarboxylic acid cycle to produce 

ATP or partially oxidized to ketone bodies that can be used as energy source by extrahepatic 

tissues (Grummer, 1993, Drackley, 1999, Herdt, 2000).  NEFA taken in excess of liver oxidative 

capacity are repackaged into TG which are then exported at inherently low rates as very low 

density lipoprotein (VLDL) or stored in liver leading to the occurrence of fatty liver (Drackley, 

1999, Bobe et al., 2004).  

     NEFA and β-hydroxybutyrate (BHB) have been used as surrogates of NEB during early 

lactation.  Despite the interchangeable use of these two parameters, concentrations of NEFA and 

BHB during early lactation have a weak relationship and caution should be used when 

extrapolating the relationships between the two metabolites (McCarthy et al., 2016).  

Nevertheless, extreme lipid mobilization during periods of excessive NEB leads to elevated 

concentrations of NEFA and BHB. The elevated concentration of NEB surrogates has been 

associated with negative downstream outcomes by various epidemiological studies (Duffield, 

2000, Ospina et al., 2010b, Chapinal et al., 2011, Ospina et al., 2013).  Lately, McArt et al. 
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(2014) have determined that the total cost per hyperketonemia, defined as BHB > 1.2 mmol/L, 

case in the modern dairy farm is on average $289, highlighting the importance of adequate 

nutrition and management during the periparturient period of dairy cows.  Despite that, 

hyperketonemia still has a relative high incidence in early lactation. In an effort to decrease 

economical losses due to hyperketonemia cases, a combined testing-and-treating strategy has 

been developed.  This strategy consists of testing approximately 20 cows, every other week, 

between 3 and 14 DIM, for blood hyperketonemia using a cow-side test.  Animals with BHB 

concentrations > 1.2 mmol/L are deemed positive for hyperketonemia.  Frequency of 

hyperketonemia determines the recommended intervention: if less than 15%, herd level 

prevalence should be monitored; if 15 to 40% all animals should be monitored twice between 3 

and 9 DIM and all positives individuals should be treated with 300 mL of propylene glycol for 5 

days; if more than 40% all cows should be treated with propylene glycol starting on 3 DIM for 5 

days.  Herds with elevated hyperketonemia prevalence should revise management and nutritional 

protocols in order to achieve acceptable prevalence rates and disease prevalence should be re-

assessed within a month (Ospina et al., 2013, McArt et al., 2014).  

     The increased levels of NEFA circulating during the periparturient period also leads to TG 

infiltration of the liver.  Excessive accumulation of TG leads to the development of a condition 

known as fatty liver and decreased metabolic function (Grummer, 1993, Drackley, 1999, Bobe et 

al., 2004, McCarthy et al., 2015).  Fatty liver can be categorized based on the extent of TG 

accumulation into normal liver (< 1% of wet weight), mild fatty liver (1 to 5% of wet weight), 

moderate fatty liver (5 to 10% of wet weight), and severe fatty liver (> 10% of wet weight) 

(Reid, 1980).  The accumulation of TG in liver has been associated with decreased capacity for 

urea synthesis, and glucose synthesis from propionate (Grummer, 1993, Strang et al., 1998, 
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McCarthy et al., 2015).  Liver accumulation of lipids affects up to 50% of early lactation dairy 

cows varying from 20% to 65% of the animals having moderate cases and 5% to 20% of the 

early lactation dairy cows presenting severe cases of fatty liver (Bobe et al., 2004).  Substantial 

economic losses due to impaired reproductive performance, exacerbation of metabolic problems, 

and decreased milk production because of the decreased hepatic gluconeogenesis have been 

associated with moderate and severe cases of fatty liver (Veenhuizen et al., 1991, Jorritsma et al., 

2000, Jorritsma et al., 2003, McCarthy et al., 2015).  

     Several nutritional and management strategies have been tested to treat, prevent, or alleviate 

fatty liver with limited success.  Increasing nutrient density of transition diets in order to increase 

propionate production in the rumen, as well as supplementing dietary fat to increase dietary 

energy density are strategies that have been proposed to prevent fatty liver (Grummer and 

Carroll, 1991).  Nonetheless, increasing energy density of pre-partum diet has little effects on 

liver accumulation of TG after calving (Rabelo et al., 2005).  Additionally, feed additives that 

decrease adipose tissue lipolysis (i.e. propylene glycol, monensin, chromium, and niacin), 

enhance hepatic VLDL secretion (i.e. choline and methionine), and alter hepatic fatty acid 

metabolism (i.e. carnitine and tallow) have been suggested as nutritional strategies to prevent and 

treat fatty liver (Grummer, 2008).  Among the dietary supplements tested only choline and 

propylene glycol repeatedly reduced TG in liver (Grummer, 2008).  Management strategies such 

as feeding one diet during the entire dry period and shortening the dry period have been proposed 

but insufficient data are available to assess the effectiveness of such strategies in reducing lipid 

accumulation in liver (Grummer, 2008).  
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Hormonal Adaptations of Early Lactation 

     Major changes in the plasma concentration of metabolic hormones occur during the 

periparturient period.  They include decreased levels of circulating insulin, leptin, and insulin-

like growth factor 1 (IGF-I)(Block et al., 2001, Ohtani et al., 2012, Mann et al., 2016), and 

increased levels of glucagon and growth hormone (GH) (De Koster and Opsomer, 2013, Mann et 

al., 2016).  In addition, periparturient dairy cows develop resistance to the actions of GH and 

insulin.  These hormonal adaptations are essential to maintain glucose availability for fetus 

growth and colostrum production in the pre-partum period, and to support the copious amount of 

milk produced after calving (Bauman and Currie, 1980). 

     Insulin and glucagon are two important players of glucose homeostasis during the 

periparturient period.  During this period, the physiological decrease in insulin levels is 

associated with decreased uptake of glucose by peripheral tissue and increased lipolysis in 

adipose tissue (Bauman and Currie, 1980, Bell, 1995, McNamara and Murray, 2001, Komatsu et 

al., 2005).  Lower plasma insulin directly contributes to increased hepatic glucose production 

because the repressive effects of insulin on key gluconeogenic enzymes is reduced.  Lower 

plasma insulin indirectly contributes to hepatic glucose production by increasing availability of 

endogenously derived precursors such as glycerol (De Koster and Opsomer, 2013).  

     Early lactation is also characterized by elevated concentrations of circulating glucagon.  

Glucagon increases gene expression of gluconeogenic and ureagenic enzymes, which in turn 

increases hepatic glucose synthesis and output, mainly through utilization of non-essential amino 

acids (Hanigan et al., 2004, Bobe et al., 2009).  Glucagon activity in early lactation dairy cows is 

also important to enhance fatty acids oxidation and ketones production in order to provide 

alternative energy source for peripheral tissues (Bobe et al., 2003).  Insulin inhibits glucagon 



24 
 

gene transcription in various species (Bansal and Wang, 2008, Zarrin et al., 2015), and therefore 

the hypoinsulinemia of early lactation increases glucagon production.  Hence, increased levels of 

circulating NEFA and BHB are a hallmark of the transition period in dairy cows. 

     Leptin is produced by adipose tissue with gene expression and circulating concentration 

reflecting adiposity as well as energy balance status.  A marked decrease in leptin concentrations 

reflects negative energy balance, decreased energy intake, and decreased glucose concentrations 

(Rosenbaum and Leibel, 2014, Park and Ahima, 2015).  Similarly, in early lactation dairy cows 

present a reduction of plasma concentration of leptin signaling the energy deficiency associated 

with NEB during this period (Block et al., 2001, Liefers et al., 2003, Janovick et al., 2011, 

Schoenberg et al., 2011, Ehrhardt et al., 2016).  During fasting and periods of decreased feed 

intake, such as early lactation, the low circulating concentrations of leptin triggers centrally 

regulated responses such as increased food intake and reduced energy expenditure (Park and 

Ahima, 2015).  These responses seek to reverse the energy deficient state by favoring appetite 

and depletion of body energy stores (Ingvartsen and Boisclair, 2001, Rosenbaum and Leibel, 

2014, Park and Ahima, 2015).  Additionally, lower concentrations of leptin reduce thyroid 

hormones and decrease response of peripheral tissues to insulin, promoting partitioning of 

glucose to milk production (Ehrhardt et al., 2016).  The combination of physiological adaptations 

promoted by low leptin concentrations in early lactation are important to sustain energy demands 

for milk production in the energy deficient dairy cow.  

     Simultaneously, GH concentration is elevated during the transition from late gestation to early 

lactation (Bell, 1995, Block et al., 2001, Ohtani et al., 2012).  Metabolic and physiological 

changes determined by GH can occur directly through stimulation of GH receptors in various 

tissues, and indirectly via stimulation of IGF-I production in the liver and other tissues.  Despite 
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elevated concentration of GH, IGF-I transcription in liver is not increased during periods of 

NEB.  This state of GH resistance is explained by reduced expression of the liver specific GH 

receptor, which is itself a consequence of the hypoinsulenemia of early lactation (Radcliff et al., 

2003, Kim et al., 2005, Boisclair et al., 2006, Rhoads et al., 2007).  The uncoupling of the GH-

IGF axis during early lactation is important to successfully adapt dairy cows to lactation because 

the anabolic effects of IGF-I are limited.  Moreover, it is possible that non-hepatic tissue also 

have a similar decrease in GH responsiveness during early lactation promoting catabolic 

adaptations (Boisclair et al., 2006).  Taken together, this adaptations lead to a decrease glucose 

uptake by non-mammary tissues and increase availability of glucose for milk production. 

     The combination of the actions of these hormones in different tissues promotes appetite, 

increased gluconeogenesis, increased lipolysis, and decreased glucose uptake by peripheral 

tissues.  A novel hormone known as fibroblast growth factor 21 (FGF21) has recently been 

identified and shown to regulate metabolic processes during various nutritional and physiological 

challenges in other species.  

 

Fibroblast Growth Factor 21  

     FGF21 is a novel protein reported to mediate metabolic adaptations in periods of decreased 

energy availability in various species (Kharitonenkov et al., 2005, Badman et al., 2007, Inagaki 

et al., 2007, Lundasen et al., 2007).  FGF21 is a secreted protein of 181 amino acids in humans 

and 182 amino acids in mice, with approximately 120 amino acid conserved core region with 

75% identity between species (Nishimura et al., 2000).  FGF21 is an atypical member of the FGF 

superfamily because the absence of the heparin-binding domain enables this protein to leave the 

site of synthesis and circulate in plasma (Itoh and Ornitz, 2008, Kharitonenkov, 2009).  This 
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protein is produced mainly in the liver, but white adipose tissue (WAT), brown adipose tissue, 

muscle experiencing mitochondrial dysfunction, and pancreas have been reported as meaningful 

production sites in rodents (Antonellis et al., 2014).  In dairy cows, FGF21 is produced almost 

exclusively by the liver, with little or no contribution by other tissues (Schoenberg et al., 2011). 

     FGF receptors (FGFR) are expressed in virtually every tissue and can be divided into seven 

FGFR proteins with distinct ligand-binding specificity, FGFR1b, 1c, 2b, 2c, 3b, 3c, and 4 (Itoh 

and Ornitz, 2004).  FGF21 predominantly activates FGFR1c, but FGFR2c, 3c, and FGFR4 can 

be also activated (Ogawa et al., 2007, Kharitonenkov et al., 2008, Suzuki et al., 2008).  

Schoenberg et al. (2011) showed that FGFR2c accounts for over 50% of relevant FGFR 

transcripts in dairy cows liver, followed by FGFR4 and FGFR1c, whereas FGFR1c was the only 

receptor expressed at meaningful level in subcutaneous WAT.  Even though expression of FGFR 

have been reported in various tissues, FGF21 is not capable of triggering metabolic actions by 

itself. FGF21 signaling depends on the presence of a transmembrane co-receptor known as β-

klotho (KLB), to form signaling receptor complexes (Inagaki et al., 2007, Ogawa et al., 2007, 

Kharitonenkov et al., 2008, Yie et al., 2009, Itoh, 2010, Ding et al., 2012, Inagaki, 2015).  

Accordingly, FGF21 target tissues are those with meaningful KLB expression (Ogawa et al., 

2007).  In dairy cows, KLB is expressed in liver and WAT with the increased expression in KLB 

and FGFR during early lactation in liver, but not in WAT (Schoenberg et al., 2011).  

Physiology of FGF21 

     Increased serum FGF21 in rodents has been reported as an adaptation to metabolic states 

characterized by increased lipid mobilization from WAT (Badman et al., 2007, Inagaki et al., 

2007, Kharitonenkov et al., 2007, Badman et al., 2009).  Increased plasma concentrations of fatty 

acids have been reported to induce liver expression of FGF21 in rodents and humans via 
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activation of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) 

(Badman et al., 2007, Inagaki et al., 2007, Lundasen et al., 2007, Cyphert et al., 2012).  Increased 

hepatic FGF21 gene transcription further potentiates energy homeostasis processes triggered by 

PPARα (Inagaki et al., 2007).  The hormone glucagon has also been shown to increase FGF21 

production directly via a cAMP dependent posttranscriptional mechanism and indirectly by 

promoting adipose tissue lipolysis and increased plasma fatty acids (Berglund et al., 2010, 

Cyphert et al., 2012, Arafat et al., 2013). 

     Dairy cows undergo a period of high glucagon and increased plasma NEFA around 

parturition (Bell, 1995, McNamara and Murray, 2001), this combination fulfills the description 

of stimuli necessary for activation of FGF21 production in liver.  Interestingly, dairy cattle data 

have shown that FGF21 plasma concentration and hepatic mRNA concentration peak around 

calving and remain elevated throughout the first few weeks of lactation when cows are in NEB 

(Schoenberg et al., 2011, Schlegel et al., 2012).  Thus, it is possible that elevated glucagon and 

NEFA are responsible for inducing FGF21 production in the liver of dairy cows.  

     Increased expression of FGF21 promotes adaptations associated with decreased energy 

availability.  In rodents, FGF21 has been shown to enhance hepatic gluconeogenesis, lipolysis in 

adipose tissue, and enhanced fatty acid oxidation and ketogenesis capacity in liver 

(Kharitonenkov et al., 2005, Badman et al., 2007, Inagaki et al., 2007, Potthoff et al., 2009, Chau 

et al., 2010, Chen et al., 2011, Vernia et al., 2014).  Similarly, gluconeogenesis, fatty acids 

oxidation, and ketogenesis have been reported to be up-regulated in the liver of early lactating 

dairy cows (Schlegel et al., 2012).  Furthermore, it has been reported that FGF21 alleviates 

fasting induced accumulation of fat in liver by increasing TG clearance (Badman et al., 2007, 
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Inagaki, 2015) and that systemic administration of FGF21 decreases TG accumulation in liver of 

obese rodents and primates (Coskun et al., 2008). 

 

Figure 2.1. Regulation and function of FGF21 signaling representing a possible link 
between FGF21 and liver and WAT. 
 
     Taken together FGF21 actions in other animal models suggest that it could reduce hepatic 

accumulation of lipids under a variety of conditions.  Therefore, this hepatokine may contribute 

to a better coordination between liver and WAT functions ameliorating the NEB state endured by 

dairy cows in early lactation. 

 
CONCLUSION 

     In conclusion, the transition from late gestation to early lactation is a challenging period for 

dairy cows because of the inability to fulfill their nutritional demands.  A complex network of 

metabolic adaptations take place during this period to overcome the mineral and energy 

imbalances.  These metabolic adaptations, however, fail in a portion of the animals leading to 

development of diseases and loss of productivity.  Despite all the knowledge generated 

throughout the years, the incidence of metabolic problems remains high in transition dairy cows, 
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contributing to economic losses.  Thus, the need to develop new strategies to improve animal 

welfare during the transition period of dairy cows.  
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with bodyweight change during the first 30 days post-partum in dairy cows milked with 

automatic milking systems* 
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ABSTRACT 

     In a prospective cohort study, the daily bodyweight (BW) and milk production of 92 cows 

were recorded using automatic milking systems.  The objectives were to characterize calcium 

serum concentration variability on days 1–3 post-partum and to evaluate the association between 

subclinical hypocalcemia (SHPC) and change in BW over the first 30 days in milk (DIM) in 

Holstein dairy cows, while controlling for concurrent disease and negative energy balance 

(NEB).  SHPC was defined as total serum calcium concentration between 6 and 8 mg/dL, NEB 

was inferred by non-esterified fatty acids (NEFA) > 0.7 mEq/L or β-hydroxybutyrate (BHB) ≥ 

1.2 mmol/L. 

     The peak incidence of SHPC was at 1 DIM for all groups (11%, 42% and 60% for parities 1, 

2, and ≥ 3, respectively).  All parity groups lost weight (21, 33, and 34 kg) during the first 30 

DIM. Parity 1 animals with disease compared with those without disease lost the most weight 

(2.6 kg/day BW loss vs. < 1.9 kg/day, respectively).  Normocalcemic parity 2 animals with either 

NEB or disease lost the most weight (> 5 kg/day) compared with those in the SHPC group (≤ 4.5 

kg/day).  In parity ≥ 3 animals, SHPC was an important factor for BW loss; SHPC animals lost 

the most weight (> 3.7 kg/day) vs. normocalcemic cows (≤ 3.3 kg/day) regardless of NEB or 

disease status.  Even though all animals lost weight during early lactation the effect of disease, 

NEB, and SHPC on BW loss was different in each parity group. 

Key Words: Automatic milking systems, bodyweight, dairy cows, subclinical hypocalcemia 
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INTRODUCTION 

     The transition period is challenging for both cows and producers due to the rapid increase in 

energy and mineral demands to support milk production after parturition (Bell, 1995, DeGaris 

and Lean, 2008).  Although homeorhetic and homeostatic adaptations occur in an effort to 

maintain a physiological mineral balance (Bauman and Currie, 1980) and metabolic changes take 

place to ensure there is sufficient energy to support maintenance requirements and the 

physiological state of lactation, cows are at greatest risk of developing diseases early in the post-

partum period (LeBlanc et al., 2005). 

     Despite these adaptations, dairy cows frequently experience a decrease in calcium 

concentration early post-partum.  Abnormal physiological calcium concentrations can be 

classified into clinical (Ca < 5.6 mg/dL; DeGaris and Lean, 2008) and subclinical hypocalcemia 

(SHPC; Ca 6 to 8 mg/dL; Reinhardt et al., 2011).  The incidence of clinical hypocalcemia is low: 

1% in first parity animals and 6% in older animals (Reinhardt et al., 2011); however, the 

incidence of SHPC has been reported to be much higher; 25% for first lactation and 48% in older 

animals (Reinhardt et al., 2011).  Although there are no clinical signs associated with subclinical 

hypocalcemia (SHPC), the increased disease incidence (e.g. displaced abomasum, metritis) 

associated with low blood Ca concentration within the first 30 days in milk (DIM) (Chapinal et 

al., 2012, Martinez et al., 2012) makes it an important factor. 

     In addition to the diseases associated with SHPC, the ability to mobilize energy in order to 

balance the deficit resulting from milk production and decreased dry matter intake (DMI) is 

important for health (Ospina et al., 2010b) and milk production.  Lipid reserves are mobilized as 

non-esterified fatty acids (NEFA) and are used for energy in both the mammary gland and non-

mammary tissues (Bell, 1995).  NEFA are also oxidized by the liver to ketone bodies, including 
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β-hydroxybutyrate (BHB), which can also be used as energy sources (Drackley et al., 2001).  

Plasma NEFA and BHB above various thresholds is strongly associated with detrimental effects 

on health and production (Ospina et al., 2010b, a, Chapinal et al., 2012).  The increased 

mobilization of NEFA and BHB production have been associated with changes in bodyweight 

(BW) and consequently body condition score (BCS), especially for high yield milking animals 

(Weber et al., 2013). 

     The evaluation of the change in BW over time as well as BCS can be used as a proxy for 

negative energy balance in transition cows; however, concurrent disease and a mineral imbalance 

may exacerbate BW loss during this period.  Recently Weber et al. (2013) showed that, high 

liver fat and high concentrations of NEFA post-partum were correlated to BW loss. 

     Dairy herds with automatic milking systems (AMS) may find that the evaluation of BW 

change over time is a useful metric for energy balance in transition cows because both daily milk 

production and BW are recorded by the units.  Understanding the relationship between calcium, 

negative energy balance indicators, milk production, and BW dynamics around parturition is 

important for better decision making and management of cows in the transition period. 

     The objectives of the present study were to characterize calcium serum concentration 

variability on days 1–3 post-partum and to evaluate the association between SHPC and change in 

BW over the first 30 DIM in Holstein dairy cows, while controlling for concurrent disease and 

negative energy balance. 
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MATERIALS AND METHODS 

Study population and study design 

     A prospective cohort study was conducted in three commercial dairy farms in central New 

York State.  To be included in the study a herd had (1) to have more than100 milking cows; (2) 

be in free-stall housing; (3) be fed a partial mixed ration (PMR), and (4) to use a Lely AMS 

(Astronaut A3 or A4, Lely Industries N.V.).  

     Within herds, all cows and heifers calving from 11 June until 8 August 2012 were enrolled in 

the study.  These animals were followed up until 30 DIM. The goal was to enroll a minimum of 

85 animals in the study in order to find a 1 kg difference in daily BW change between groups at 

the individual animal level, with a 1.5 kg standard deviation, 95% confidence interval and power 

of 85%. 

     The PMR consisted of 80% forage and 20% concentrate during the dry period, and 55% 

forage and 45% concentrate for milking cows.  The diets were formulated to meet or exceed the 

NRC nutrient requirements for lactating Holsteins and complementary pelleted grain was offered 

in the robots during milking. In the North Eastern United States, anionic salts are not commonly 

used as dairy herds manage the potassium content of dry cow diets through manipulation of 

manure application fields and forage choice, e.g. limiting alfalfa feeding to dry cows.  None of 

the herds in this study were feeding a diet where DCAD was managed by the addition of anionic 

salts during the study period. 

Data collection 

     Enrollment for each cow in the study occurred weekly between 3 and 10 days prior to the 

expected calving date.  Blood was collected from the coccygeal vessels; within 30 min of 

collection the blood samples were spun for 15 min at 2000g.  Serum was harvested and stored at 
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-20 °C following the recommendations of Stokol and Nydam (2005).  Five blood samples were 

collected from each cow over several days, at similar times each day, namely, pre-partum (7 ± 3 

days before expected calving), within 24 h of calving, and on days 2, 3, and 5 post-partum.  Total 

calcium, NEFA, and BHB concentrations were measured depending on the day (Figure 3.1). 

 

 

Figure 3.1. Sampling timeline for the animals enrolled in the study.  
Calving was used as reference (day = 0). tCa = total calcium; NEFA = non-esterified fatty acid; 
BHB = β-hydroxybutyrate. 

 

     Serum samples were sent to Cornell University Animal Health Diagnostic Center for total 

calcium concentration (Roche Diagnostic reagents) and serum NEFA concentration analysis 

(NEFA-C, Wako Chemicals).  The Precision Xtra meter (Abbott Laboratories) was used to 

evaluate BHB concentrations at the cow side (Iwersen et al., 2009). 

     Information on daily BW and daily milk production, from day 0 up to 30 DIM were 

downloaded from reports on the AMS system.  Information as to whether animals developed any 

disease (e.g., displaced abomasum, clinical ketosis, metritis, milk fever, and retained placenta) 

was documented in Dairy Comp 305 (Valley Agricultural Software) from two of the three herds. 
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     Standard disease definitions were discussed with the farms at the start of the study although 

each farm implemented their own standardized care.  The standard disease definitions were as 

follows: (1) displaced abomasum – movement of the abomasum to a location on the left side of 

the cow, which was detected by auscultating a ‘ping’ sound with finger percussion; (2) clinical 

ketosis– a cow that was off feed, positive ketone test, and having decreased milk production, 

with no other detectable signs of disease; cases were treated with propylene glycol (Duffield et 

al., 1999); (3) metritis – sick cow (dull, decreased milk yield) that had a temperature > 39.5 °C 

with a fetid (purulent or red to brown color or both) vulval discharge and was < 21 DIM 

(Sheldon et al., 2006); and (4) retained fetal membranes – failure to expel membranes within 24 

h after calving. 

Statistical analysis 

     Daily BW information was imported from the Lely T4C management system (Lely 

Industries) into Excel (Microsoft).  The daily BW was plotted against time to evaluate its change 

over time and a simple linear regression line of best fit was estimated.  The slope from the line of 

best fit was used as the estimate of change in BW for each animal during the first 30 DIM.  

Because the slope was used in the statistical analysis, the effect of individual missing points was 

negligible.  The change in BW over the first 30 DIM was used as the dependent variable in the 

analysis. 

     Total milk production over the first 30 DIM was also evaluated using similar methods.  The 

data were imported into Excel from the T4C management system and a line of best fit was used 

to estimate any missing values.  The sum of all values over the first 30 DIM was used to estimate 

total milk production over the first 30 DIM. Total milk production over the first 30 DIM was 

used as an explanatory variable in the analysis. 
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     Descriptive statistics were generated with the FREQ, MEANS, and BOX PLOT procedures of 

SAS version 9.3 (SAS Institute).  The t test was used to evaluate the mean difference in change 

in BW within first 30 DIM between parity groups (parity = 1, parity = 2, and parity ≥ 3).  

Statistical analyses to determine meaningful predictors of change in BW were conducted in SAS 

using the MIXED procedure.  The LSMEANS with the DIFF option was used to evaluate the 

interaction terms.  The development of any disease (displaced abomasum, metritis, clinical 

ketosis, or retained placenta) was dichotomized if it occurred within 10 DIM.  The following 

were dichotomized at a concentration below or above which animals were more likely to develop 

disease: pre-partum NEFA was dichotomized at ≥ 0.3 mEq/L (Ospina et al., 2010b); post-partum 

NEFA ≥ 0.7 mEq/L (Ospina et al., 2010b), and BHB at ≥ 1.2 mmol/L (McArt et al., 2012).  

Subclinical hypocalcemia was determined by total calcium concentrations between 6 and 8.0 

mg/dL (Reinhardt et al., 2011).  The NEFA and BHB predictors were included in the analysis as 

one dichotomous variable (NEB) and considered positive if any measured concentration was 

above predetermined cut-points.  The cows were considered positive for SHPC if any calcium 

measured post-partum was between 6 and 8 mg/dL. 

     The evaluation of change in BW was stratified into three parity groups (parity = 1, parity = 2, 

parity ≥ 3) and within these groups the following model was evaluated: the fixed effects of 

SHPC, NEB, the development of any disease, total milk production within the first 30 DIM, and 

two sets of interactions: SHPC and NEB; and SHPC and disease, with herd as a random effect.  

Interactions and potential explanatory variables were removed in a manual backward stepwise 

fashion if P > 0.1, the interaction with the largest P-value was removed first, then the 

explanatory variable if necessary. 
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RESULTS 

Descriptive results 

     The herds enrolled in this study had 200 (Herd A), 400 (Herd C), and 700 (Herd B) milking 

cows, and 4, 7, and 14 AMS, respectively. In total, 114 animals were enrolled during the study 

period.  Nine animals were excluded: three animals died, two were culled by farm personnel 

before 30 DIM and four were excluded because of incomplete data collection due to problems in 

the AMS. Herd A was excluded from the statistical model because this herd did not use Dairy 

Comp 305 for health record keeping, which could lead to missing information.  Ninety-two 

animals were available for the multivariable analysis (Table 3.1). 

 

Table 3.1. Distribution of the animals enrolled in the study divided into different parity 
groups by herd. 

 
Parity group Herd A Herd B Herd C Total 
Parity = 1 5 17 13 35 (33%) 
Parity = 2 2 9 18 29 (28%) 
Parity > 3 6 13 22 41(39%) 
Total 13 39 53 105 

 

     During the study period, the average disease incidence at the herd level was 18% for clinical 

ketosis (range: 0–21%), 1% for milk fever (range: 0–2.5%), 5% for displaced abomasum (range: 

0–8%), 8% for retained fetal membranes (range: 0–9.5%), and 10% for metritis (range: 0–18%) 

(Figure 3.2).  

     Blood calcium concentration, by lactation and DIM is presented in a box and whisker plot 

(Figure 3.3).  Most first lactation animals were normocalcemic, and only 6% of cows with parity 

≥ 3 were clinically hypocalcemic; however, the majority (60%) of the animals in this parity 
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group experienced SHPC at 1 DIM.  The prevalence of SHPC on day 1, 2, or 3 was 17% for first 

parity animals, 55% for second parity animals, and 73% of animals with parity ≥ 3. 

 

 

Figure 3.2. Incidence of disease in the first 10 DIM in the study population stratified by 
lactation group. 
The diseases of interest were: milk fever, ketosis, metritis and retained placenta. Lactation group 
was defined as: 1 = first parity animals, 2 = second parity animals, >3 = third and greater parity 
animals. 
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Figure 3.3. Serum calcium concentrations (Ca) for all animals enrolled in the study.  
Samples were collected in the first 24 h after calving (1 DIM) and on days 2 and 3 after calving (2 and 3 DIM). Calcium concentration 
results are stratified by lactation group. The two horizontal lines define the hypocalcemia levels: subclinical hypocalcemia as those 
with calcium concentrations between 6 and 8 mg/dL, and clinical hypocalcemia as those with calcium concentrations lower than 6 
mg/dL. The percentage of animals presenting normocalcemia, subclinical hypocalcemia, and clinical hypocalcemia in the first 3 DIM 
is shown. 
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Inferential results 

     There was no meaningful difference in milk production between the herds; daily average milk 

production was 32.6 kg/day for herd A and the average milk production for the first 30 days was 

980 kg, for herd B it was 36.2 kg/day and the 30 day average milk production was 1085 kg; for 

herd C it was 35 kg/day and 1050 kg, respectively (P = 0.7).  All animals lost weight in the first 

30 DIM; however, on average, parity ≥ 3 animals lost the most weight (33.6 kg), while parity 2 

lost 32.7 kg and parity 1 animals lost 21.3 kg. 

     The mean change in BW was different between parities (P < 0.001), with one exception: there 

was no difference between change in BW in normocalcemic animals in parity 2 and 

normocalcaemic animals in parity ≥ 3 (P = 0.07).  There was a difference in BW change when 

comparing across calcium status (P < 0.001) within parity, i.e. animals with SHPC lost weight 

faster than those with normocalcemia (Figure 3.4).  The BW loss was 19 and 39 kg, for parity 1; 

29 and 38 kg for parity 2, and 36 and 53 kg for parity ≥ 3 for normocalcemic and SHPC animals, 

respectively. 

     The multivariable results are found in Table 3.2 where final models were stratified by parity.  

The results of the interactions from these models and the effect on BW are found in Figures 3.5–

3.7. 
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Figure 3.4. Bodyweight change over the first 30 DIM was stratified by parity and within 
parity by SHPC status.   
Animals with SHPC were defined as having at least one calcium concentration between 6 and 8 
mg/dL on days 1, 2, or 3, and normocalcemia was defined as having no measured calcium 
concentration below 8 mg/dL. All animals lost weight and weight loss was different between 
parity groups (P < 0.001), with one exception. Normocalcemic second lactation animals (*) and 
normocalcemic > 3 lactation animals (*) did not have different bodyqeight slopes over the first 
30 DIM (P = 0.07). Within all parity groups, animals with SHPC lost more weight than those 
with normocalcemia (P < 0.001). 
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Parity 1 

     Subclinical hypocalcemia, disease, milk production and the interaction between SHPC and 

disease were associated with change in BW in first lactation animals (P < 0.001).  Negative 

energy balance (P = 0.2) and the interaction between SHPC and NEB (P = 0.3) were not 

associated with BW change and thus were removed from the final model.  With every additional 

45 kg of milk produced, heifers lost 0.3 kg/day.  The interaction between SHPC and disease 

showed that normocalcemic animals with disease lost the most weight (2.6 kg/day), while those 

with neither hypocalcemia nor disease lost the least weight (0.8 kg/day) (Figure 3.5). 

Parity 2 

     Milk production was not associated with the change in BW (P = 0.3) and was removed from 

the final model.  Although there was a 10% chance of committing a type I error with the 

interaction between SHPC and NEB, it was retained in the model so that the differences in the 

combinations could be analyzed.  The interaction between SHPC and disease and SHPC and 

NEB, demonstrated that animals with normocalcemia, but with either disease or NEB lost the 

more weight (5.1 and 5.2 kg/day, respectively) than the other combinations within their 

respective interactions (Figure 3.6). 

Parity ≥ 3 

     All explanatory variables were associated with change in BW.  The change in BW based on 

milk production was statistically significant, but numerically unimportant; for every additional 

45 kg of milk, the animal gained 0.1 kg/day (Table 3.2).  Animals with SHPC regardless of 

disease or NEB status lost weight faster (≥ 3.7 kg/day) than those without SHPC (< 3.3 kg/day) 

(Figure 3.7).  In addition, animals with both SHPC and disease or SHPC and NEB lost weight 

faster than those with just disease or NEB combined with normocalcemia. 
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Figure 3.5. Change in daily bodyweight based on the interaction between subclinical 
hypocalcemia and disease in parity = 1 animals.  
Subclinical hypocalcemia was defined as at least one calcium concentration between 6 and 8 
mg/dL on days 1, 2, or 3, and disease was defined as any disease within 10 DIM (displaced 
abomasum, retained placenta, metritis, milk fever, or ketosis). Normocalcemia defined as having 
no measured calcium reading < 8 mg/dL. Results based on the interaction term in the model. All 
contrast terms are significantly different from 0 and all are significantly different from each other 
(P < 0.01). The number of animals in each combination group is: 20, 5, 3, and 2 in columns 1, 2, 
3, and 4, respectively. 
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Figure 3.6. Change in daily bodyweight based on the interaction between subclinical 
hypocalcemia and disease, and subclinical hypocalcemia and negative energy balance in 
parity = 2 animals.  
Subclinical hypocalcemia was defined as at least one calcium concentration between 6 and 8 
mg/dL on days 1, 2, or 3. Disease was defined as the occurrence of any disease (displaced 
abomasum, retained placenta, metritis, milk fever, or ketosis) within 10 DIM. Negative energy 
balance was defined as at least one β-hydroxybutyrate concentration ≥ 1.2 mmol/L on days 1, 2, 
or 3; or non-esterified fatty acid concentration ≥ 0.7 mEq/L at 5 DIM. Normocalcemia defined as 
having no measured calcium reading < 8 mg/dL. Results based on the interaction term in the 
model. All contrast terms are significantly different than 0 (P < 0.01) and all are significantly 
different from each other (P < 0.05). The number of animals in the disease combination group is: 
12, 1, 10, 4 for columns 1–4, respectively; and 7, 6, 5, 9 for NEB columns 5–8, respectively. 
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Table 3.2. Multivariable analysis stratified by parity of the effect of subclinical 
hypocalcemia (SHPC)a on change in bodyweight (kg/day) while controlling for diseaseb, 
negative energy balance (NEB)c, milkd, and the interaction between SHPC and disease and 
SHPC and NEB; herd treated as a random effect. 
 
 
Effect Estimate (kg/day) Standard error P-value 
Parity = 1    
 Intercept 2 0.4 <0.0001 
 SHPCa -2.6 0.2 <0.0001 
 Diseaseb -1 0.2 <0.0001 
 SHPC x disease 4.9 0.2 <0.0001 
 Milkd -0.3 0.01 <0.0001 
Parity = 2    
 Intercept -8.2 0.5 <0.001 
 SHPCa -3.8 0.5 <0.001 
 Diseaseb -2.2 0.3 <0.002 
 NEBc 1.9 0.3 <0.003 
 SHPC x disease 3.1 0.5 <0.004 
 SHPCP x NEB -0.5 0.3 0.1 
Parity > 3    
 Intercept -11.6 0.7 <0.001 
 SHPCa 2.6 0.3 <0.001 
 Diseaseb 0.8 0.2 <0.001 
 NEBc 0.5 0.2 0.01 
 SHPCP x disease -2.2 0.4 <0.001 
 SHPC x NEB 0.8 0.4 0.06 
 Milkd 0.1 0.02 <0.001 

aSHPC defined as positive if any measured total calcium concentration was between 6 and 8mg/dL on day 1, 2, or3. 
bDisease defined as positive if animal developed any of the following diseases within 10 days in milk: displaced 
abomasum, retained placenta, metritis or clinical ketosis. 
cNEB defined as positive if any of the following concentrations were above the cut-point: pre-partum non-esterified 
fatty acids (NEFA) > 0.3mEq/L, β-hydroxybutyrate (BHB) > 1.2 mmol/L, post-partum NEFA > 0.7 mEq/L. 
dOne unit change in milk is equivalent to an increase in 45.5kg of total milk in the first 30 DIM. 
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Figure 3.7. Change in daily bodyweight based on the interaction between subclinical 
hypocalcemia and disease, and subclinical hypocalcemia and negative energy balance in 
parity = 3 animals.  
Subclinical hypocalcemia was defined as at least one calcium concentration between 6 and 8 
mg/dL on days 1, 2, or 3. Disease was defined as the presence of any of the following diseases 
within 10 DIM; displaced abomasum, retained placenta, metritis, milk fever, or ketosis. The 
variable negative energy balance was defined as at least one β-hydroxybutyrate concentration ≥ 
1.2 mmol/L on days 1, 2, or 3; or non-esterified fatty acid concentration ≥ 0.7 mEq/L at 5 DIM. 
Normocalcemia defined as having no measured calcium reading < 8 mg/dL. Results based on the 
interaction term in the model. All contrast terms are significantly different from 0 (P < 0.01) and 
all are significantly different from each other (P < 0.05). The number of animals in each disease 
combination is: 6, 5, 14, 10 for columns 1–4, respectively; and 8, 3, 8 16 for NEB columns 5–9, 
respectively. 
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DISCUSSION 

     The objectives of this study were to determine the influence of SHPC on changes in BW 

during the first 30 DIM while controlling for NEB, disease, and biologically relevant interactions 

in primiparous and multiparous cows in commercial herds that used AMS.  Few reports have 

evaluated BW, mostly due to the limitations of weighing cows on commercial farms; however, 

herds using AMS technology have access to this information daily. 

     It is important to note that our study evaluated these effects in only three herds in New York 

State; due to the small sample size results may not be representative of all herds.  The criteria 

used for selection were proximity to the laboratory and willingness to participate in the study; the 

herds were not selected due to on-going or identified health or production problems.  

Additionally, the cows in the study were also selected based on whether they calved during our 

study window.  Sampling all cows should not bias the results.  Nevertheless, because sampling 

only took place over the summer there might be some seasonal differences that were not 

evaluated in this study. 

     Subclinical hypocalcemia is encountered in most of the herds in the US, and its prevalence 

increases with parity (Reinhardt et al., 2011).  Several cut-points have been used to define SHPC, 

ranging from 8.0 to 8.8 mg/dL (Goff, 2008, Chapinal et al., 2011, Martinez et al., 2012).  The 

current study used 6–8 mg/dL to define SHPC similar to the range used by Reinhardt et al. 

(2011), but not as wide as the 5.5–8 mg/dL used by Kamgarpour et al. (1999) and (Horst et al., 

2003).  In the current study, the incidence of SHPC was in agreement with previous data for 

parity 2 and parity ≥ 3 animals (Goff, 2008, Reinhardt et al., 2011, Martinez et al., 2012); 

however, first lactation animals showed a lower incidence of SHPC.  Despite some number 

differences, the dynamics were similar between our study and previous reports; calcium 
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concentrations increased in the early post-partum period after a drop in the first 2 days post-

partum (Kamgarpour et al., 1999, Goff, 2008, Reinhardt et al., 2011, Martinez et al., 2012). 

     Although NEFA can be used as an alternative source of energy (Herdt, 2000), excessive 

concentrations of NEFA and BHB are disadvantageous to the animal’s production and health 

(Ospina et al., 2010a, b, Martinez et al., 2012).  The NEFA and BHB cut-points used in this 

study were based on Ospina et al. (2010b) in which these markers of negative energy balance 

were associated with subsequent increase risk of disease early in lactation. 

     The use of the AMS system made it possible to obtain daily BW and daily milk weights; 

however, there were some missing data points due to identification failures or improper data 

storage at the AMS.  These usually involved just one missing value per day.  As the slope of the 

regression line for BW was used in the analysis, missing values did not affect the outcome.  To 

estimate total milk production missing values were averaged over the two nearest data points. 

     In this analysis many interaction terms were significant and thus included in the final model.  

When interaction terms are included in the model, the independent effect of each factor should 

no longer be evaluated independently from the second factor.  For example, if the interaction 

between NEB and disease is in the model, then the change in NEB is based on disease status 

(i.e., disease or no disease) and the levels of both factors need to be taken into consideration. 

     To the authors’ knowledge no other peer-reviewed publication has discussed the differences 

between BW dynamics for the different parities.  In our study, first lactation animals lost the 

least amount of weight in the first 30 DIM; however those with disease (regardless of calcium 

status) lost the most weight.  The fact that those animals are still growing, not producing as much 

milk as other groups, and there were few animals with NEB may explain the decreased role 

played by SHPC and NEB with the BW change.  This finding also indicates that additional 
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research with a larger number of cows is necessary to accurately evaluate the calcium threshold, 

below which detrimental effects are likely in first parity animals. 

     Although the prevalence of SHPC was similar between parity 2 and parity ≥ 3 animals, parity 

2 animals were evaluated separately due to due differences in BW dynamics. SHPC was 

significantly related to BW loss; however, disease and NEB had a stronger association with BW 

loss.  This may be because parity 2 animals are still growing and calcium dynamics may be 

different when compared with more mature animals, even though they are producing similar 

quantities of milk. 

     Parity ≥ 3 animals had both the largest change in BW due to SHPC and the highest prevalence 

of SHPC.  This is not surprising because mature animals are making the most milk and not 

mobilizing calcium for growth, thus the calcium dynamics seen in first and second lactation 

animals may not be in effect.  In addition, this group of animals also had higher prevalence of 

disease and NEB than younger animals.  Similar dynamics have been described in other studies 

in commercial herds, where greater loss in BCS score was encountered in hypocalcemic cows 

(Martinez et al., 2012).  Multiparous cows lost the most weight in the first 30 DIM, in 

accordance with the study by Kamgarpour et al. (1999).  The pattern of BW loss in these older 

animals showed that animals with SHPC and an additional insult (e.g., disease or NEB) lost more 

BW than animals with either disease or NEB but normocalcemia. 

 

CONCLUSION 

     Bodyweight measurements can be easily assessed using the milking system technologies 

based on AMS, therefore this has great potential to be used as an accurate source of information 

for dairy research and management.  Blood calcium concentrations for all parity groups were 
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lower in the first DIM but regained normal levels by day 3 of lactation. Incidence of SHPC 

increased concomitantly with parity reaching 73% for cows in parity ≥ 3.  All animals lost 

weight in the first 30 DIM; however, some animals lost weight faster depending on SHPC, 

disease and NEB status.  Within first parity animals those with disease (and normocalcemia) lost 

the most weight.  Those cows within parity 2 with both disease and NEB (and normocalcemia) 

lost the most weight, and, conversely, those in parity ≥ 3 with SHPC and either disease or NEB 

lost the most weight. 
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CHAPTER 4: Association between subclinical hypocalcemia in the first 3 days of lactation and 

reproductive performance of dairy cows* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Caixeta LS, Ospina PA, Capel MB, Nydam DV. Association between subclinical 
hypocalcemia in the first 3 days of lactation and reproductive performance of dairy cows. 
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. 
ABSTRACT 

     The objective of this study was to determine the effects of subclinical hypocalcemia on 

reproductive performance in dairy cows.  In a prospective cohort study, 97 cows on 2 dairy farms 

with automatic milking systems were monitored for subclinical hypocalcemia.  Animals were 

enrolled 7 ± 3 days prior to estimated calving date and three parity groups were defined based on 

the lactation that the animals were going to start: lactation = 1, lactation = 2, and lactation ≥ 3.  

Serum calcium concentration (Ca) was measured in  all animals in  the first 3 DIM and 

subclinical hypocalcemia (SHPC) was defined as Ca < 8.6 mg/dL; animals that presented a low  

Ca level during all 3 days were classified as chronic SHPC (cSHPC).  Return to cyclicity 

(progesterone > 1 ng/mL between 21 ± 3 DIM and 49 ± 3 DIM) during the voluntary waiting 

period was analyzed based on weekly progesterone concentrations measured in serum.  

Information on reproductive outcomes (i.e., number of breedings, pregnancy status, days open, 

etc.), were collected from on-farm software after all study cows had completed their study 

period.  Chronic SHPC was present in all parity groups with higher incidence in multiparous 

animals (20% of parity = 1, 32% of parity = 2; and 46% of parity > 3 animals).  The cSHPC 

animals took longer to return to cyclicity when compared to eucalcemic and SHPC animals.  In a 

multivariable Cox’s Proportional Hazard model animals with normal Ca were 1.8 times more 

likely to return to cyclicity by the end of the voluntary waiting period when compared to cSHPC 

animals.  Animals with cSHPC also had 0.27 odds of being pregnant at first service compared to 

eucalcemic cows when analyzed by multivariable logistic regression.  Subclinical hypocalcemia 

had a negative effect on return of ovarian function during the voluntary waiting period and 

decreased the odds of pregnancy at first service.  Cows with cSHPC had an even more 

pronounced impaired reproductive function than those with one subclinical measurement.  
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INTRODUCTION 

     High producing dairy cows face a challenging period when transitioning from late pregnancy 

to early lactation.  Energy demand increases by 2.5-fold (Bell, 1995, Reynolds et al., 2003) and 

mineral requirements, especially calcium, are increased by over 65% to support lactogenesis in 

early lactation (DeGaris and Lean, 2008).  As a result, homeorhetic adaptations take place to 

adjust for such increased demands (Bauman and Currie, 1980).  Unsuccessful adaptation to 

transition period challenges has been associated with increased occurrence of diseases (LeBlanc 

et al., 2005, Ospina et al., 2010a, Chapinal et al., 2011), decreased milk production (Ospina et 

al., 2010b, Chapinal et al., 2011) and impaired reproductive performance (Ospina et al., 2010a, 

Chapinal et al., 2011). 

     Hypocalcemia has been reported as a problem in the dairy industry for over two centuries, 

especially clinical cases also known as milk fever (Murray et al., 2008).  Nutritional management 

of cations and anions during dry period and early lactation, along with an increased 

understanding of transition period physiology have been the key to decreasing the incidence of 

milk fever to rates as low as 1% (Reinhardt et al., 2011, Oetzel and Miller, 2012).  However, 

despite the low incidence of clinical cases in modern dairy cattle, reports have shown that 

prevalence of subclinical hypocalcemia is high in the US (Reinhardt et al., 2011) with as many as 

73% of animals of parity > 3 experiencing subclinical hypocalcemia during the first 3 DIM 

(Caixeta et al., 2015).  Subclinical hypocalcemia is defined as a low calcium concentration 

without the development of clinical signs (e.g. recumbency, lethargy, hypothermia, and rumen 

atony).  Several thresholds have been used to define subclinical hypocalcemia and they range 

from 8.0 mg/dL to 8.8 mg/dL (DeGaris and Lean, 2008, Goff, 2008, Chapinal et al., 2011, 

Reinhardt et al., 2011, Martinez et al., 2012).   
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     Even though, hypocalcemic animals may not develop clinical signs, further metabolic and 

health consequences have been associated with the occurrence of this mineral imbalance during 

early lactation and it has a great economic impact in modern dairy enterprises (Oetzel and Miller, 

2012).  Traditionally, hypocalcemia has been associated with occurrence of dystocia, uterine 

prolapse, retained placenta, mastitis and decreased rumen and abomasum motility (Curtis et al., 

1983, Risco et al., 1984, Goff, 2008), as well as impaired immune cell functions (Kimura et al., 

2006).  More recently, research has shown that subclinical hypocalcemia is associated with an 

increased risk of metritis (Martinez et al., 2012) and displaced abomasum (Chapinal et al., 2011) 

as well as an increase in culling rates (Duffield et al., 1999, Seifi et al., 2011) in dairy cows.  

Additionally, it has been reported that grazing animals that have low calcium concentrations 

within the first week post-partum have increased chances of developing multiple clinical 

disorders during lactation (Sepulveda-Varas et al., 2015).  Although hypocalcemia has been 

associated with impaired reproductive performance by delaying resumption of ovarian cyclicity 

(Jonsson et al., 1999) and impaired response to estrus synchronization protocols (McNally et al., 

2014), the effect  of prolonged low blood calcium concentration in early lactation on 

reproductive performance have not been described.  The objective of the present study is to 

evaluate the association between subclinical hypocalcemia in the first 3 days of lactation with 

reproductive performance during the first 120 DIM. 
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MATERIALS AND METHODS 

Study Population, Study Design, and Sample Size Calculation 

     A prospective cohort study was conducted from a convenience sample of 2 commercial farms 

in Central New York.  The 2 herds were selected as part of another study (Caixeta et al., 2015) 

because of the use of automatic milking systems (AMS - Astronaut A3 and A4, Lely Industries 

N.V, Rotterdam, The Netherlands).  Herd A milked over 700 cows using 14 AMS while herd B 

used 7 AMS to milk 400 cows.  Within herd, all cows and heifers calving between June 11th of 

2012 and August 8th of 2012 were enrolled in the study.  These animals were followed forward 

for the first 120 days of lactation. 

     In both farms cows were housed in free-stall barns; concrete stalls were covered with 

mattresses.  Herd A bedded with waste paper-pulp while herd B used sand bedding.  In both 

farms, animals from different parity groups were co-mingled in the fresh cow pen where only 

one milking unit was available; after leaving the fresh cow pen cows were separated according to 

their parity group into pens with at least 2 milking units.  A ratio of 60 animals/AMS was 

observed regardless of the lactation period of the cows.  Animals were fed partial mixed ration 

(PMR) consisted of 80% forage and 20% concentrate during the dry period, and 55% forage and 

45% concentrate for the lactation groups.  The diet was formulated to meet or exceed the NRC 

nutrient requirements for lactating Holsteins according to farm conditions.  A part of the total 

diet was offered to the animals as a grain mixture in the form of pellets in the AMS, the amount 

of pellets fed depended on both DIM and milk being produced at the cow level.  In the North 

Eastern United States, dairy herds, like the study herds, routinely manage the potassium content 

of dry cow diets through manipulation of manure application fields and forage choice, e.g. 

limiting alfalfa feeding to dry cows.  
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     The sample size was calculated in order to detect a minimum of 1.3 kg difference in milk 

production between eucalcemic and hypocalcemic animals with a standard deviation of 3.5 kg, 

power of 80% and a 95% confidence interval (Caixeta et al., 2015).  A post-hoc evaluation 

determined that the 97 animals enrolled in this study would achieve 80% power and 95% 

confidence interval, given the 15% difference between the proportions of animals returning to 

cyclicity at the end of the voluntary waiting period (VWP) between the two calcium status 

groups.  

Data Collection and Case Definition 

     Animals were enrolled 7 ± 3 days prior to expected calving date and body condition score 

(BCS) was determined using a 5-point scale (Ferguson et al., 1994).  A blood sample was 

collected from coccygeal vessels using a Vacutainer tube without anticoagulant and a 20-gauge x 

2.54 cm Vacutainer needle (Becton, Dickson and Company, Franklin Lakes, NJ) at the following 

time points: pre-partum, at 1, 2, 3, 5, and 7 days in milk (DIM); and weekly thereafter during the 

VWP (between second (14 ± 3 DIM) and seventh week (49 ± 3 DIM) post-partum).  

     Total calcium concentration was determined pre-partum and at d 1, 2, and 3 after calving to 

assess calcium status around parturition.  Negative energy balance was determined by the 

concentrations of serum non-esterified fatty-acid (NEFA) concentration measured pre-partum 

and 5 days postpartum; and serum β-hydroxybutyrate (BHB) concentration measured on d 3 and 

5 post-partum.  Finally, serum progesterone (P4) concentration was used to determine the 

presence of an active corpus luteum, and consequently return to cyclicity, at d 7 and weekly 

starting at the second week of lactation (14 ± 3 DIM) until the seventh week post-partum (49 ± 3 

DIM). 
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     All blood samples were spun for 15 minutes at 2,000x g at the farm in a portable centrifuge 

within 30 minutes of collection and immediately placed in ice to be transported back to the 

laboratory where samples were kept at -20°C until analysis were performed according to 

recommendations (Stokol and Nydam, 2005).  Serum samples were sent to Cornell University 

Animal Health Diagnostic Center (Ithaca, NY) for determination of calcium and NEFA 

concentration.  Serum β-hydroxybutyrate (BHB) concentration was evaluated cow side using the 

Precision Xtra meter (Abbott Laboratories, Abbott Park, IL) (Iwersen et al., 2009).  And 

progesterone concentrations were determined using radioimmunoassay as previous described by 

Beam and Butler (1997). 

     Negative energy balance (NEB) was defined using pre- and post-partum measurements of 

NEFA and BHB as described by previous reports (Ospina et al., 2010c, McArt et al., 2012).  

Briefly, metabolites concentrations were dichotomized as follows: pre-partum NEFA > 0.3 

mEq/L, post-partum NEFA > 0.7 mEq/L, and post-partum BHB > 1.2 mmol/L.  Return to 

cyclicity during the VWP was determined by measurement of P4 during the VWP.  Cows having 

P4 concentration > 1 ng/mL were considered to have a functional corpus luteum, thus cyclic 

(Canfield and Butler, 1991).  Subclinical hypocalcemia was defined based on serum total 

calcium concentration (Ca).  A cut-off point of Ca < 8.6 mg/dL was used to dichotomize each 

individual sample into hypocalcemic or eucalcemic (Martinez et al., 2012). 

     Occurrence of diseases of interest (e.g., displaced abomasum, clinical ketosis, metritis, and 

retained placenta) during the first 10 DIM and reproductive performance data was recorded in 

Dairy Comp 305 (Valley Ag. Software) and retrieved at the end of the study period.  Standard 

disease definitions as described elsewhere (Caixeta et al., 2015) were discussed with the farms at 

the start of the study; however, each farm implemented their own standardized care. 
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Statistical Analysis 

     The sequential Ca concentrations were used to divide the animals into three groups based on 

total serum calcium concentration: eucalcemia, subclinical hypocalcemia (SHPC), and chronic 

subclinical hypocalcemia (cSHPC).  Eucalcemic animals did not have an abnormal Ca (Ca > 8.6 

mg/dL); SHPC animals had at least one low Ca measurement during the first 3 DIM; while 

cSHPC animals had low Ca concentration for all three days measured.  

     Descriptive statistics were generated using FREQ and MEANS procedures of SAS version 

9.3 (SAS Institute Inc., Cary, NC).  Comparison between the proportions of SHPC animals 

among parity groups and within DIM, as well as cSHPC between parity groups, were obtained 

with procedure GENMOD of SAS.  

     Dynamics of serum calcium concentration during the first 3 DIM for the different groups, 

according to calcium status, were analyzed by the MIXED procedure in SAS, with repeated 

measurements and Bonferroni adjustment for multiple comparisons.  A Kenward-Roger degrees 

of freedom approximation was used to calculate the denominator degrees of freedom. 

     A general linear mixed model carried out using the GLIMMIX procedure of SAS was used to 

determine the association between early lactation calcium status and the reproductive variable: 

days open during the first 120 DIM.  The t test statement was used to evaluate the mean 

difference, between groups with different calcium status.  Statistical analysis for pregnancy at 

first service was carried out using multivariable logistic regression with the LOGISTIC 

procedure of SAS.  

     The effect of subclinical hypocalcemia on return to cyclicity during the VWP and time to 

pregnancy before 120 DIM were determined by multivariable Cox’s Proportional Hazard models 



73 
 

of MedCalc version 14.12.0 for Windows (MedCalc Software, Mariakerke, Belgium).  Cows that 

were not pregnant and were sold or died before 120 DIM were right censored. 

     Throughout statistical analysis herd was included in the models as random effect while other 

potential explanatory variables (i.e. calcium status group, parity, disease during the first 10 DIM, 

NEB, and total milk production during the first 60 DIM) were included as fixed effects.  All 

interactions between calcium status group and the other explanatory variables were analyzed.  

Calcium status was forced into all models and other explanatory variables and interactions were 

removed in a manual backwards stepwise fashion if P > 0.10.  

 

 

RESULTS 

Descriptive Statistics 

     In total, 101 animals were enrolled during the study period, but only 97 were used for 

statistical analysis.  Four animals were excluded from the study for the following reasons: one 

animal died, one was culled by farm personnel during the first week of lactation, and two were 

excluded because of incomplete data collection due to software problems between AMS system 

and farm management software.  

     Nineteen animals (20%) did not have low Ca concentration during the first 3 DIM, while 78 

were hypocalcemic; of those 45 were classified as SHPC (46%) and 33 as cSHPC (34%).  The 

percentage of animals presenting abnormal Ca decreased with time, independent of parity group.  

Despite the elevated number of animals presenting low calcium concentrations in early lactation, 

no clinical hypocalcemia, i.e. milk fever, cases were diagnosed during the study period.  Chronic 

SHPC increased with parity; parity > 3 (46%) when compared to parity = 1 (20%) (P = 0.03; 
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Table 4.1).  Serum calcium concentrations decreased to levels below cut-off values for both 

SHPC groups at 1 DIM while eucalcemic animals continued to have normal levels, despite 

reaching Ca nadir (8.8 ± 0.21 mg/dL) at 1 DIM.  Calcium levels had an upwards trend during the 

following days and after 3 DIM SHPC animals had normal Ca concentrations (9.0 ± 0.14 mg/dL) 

while cSHPC (7.9 ± 0.16 mg/dL) still presented low calcium concentrations (Figure 4.1).   

 

 

Table 4.1. Proportion of animals with low blood calcium concentration (Ca1) during the 
first 3 DIM2 by parity. Data: number of animals with low blood calcium concentration 
divided by the total number of animals in a given parity (percent). 
 

 Parity = 1 Parity = 2 Parity ≥ 3 P-value 
DIM2     
 1 11/30 (37)a 21/28 (75)b 38/39 (97)c < 0.001 
 2 12/30 (40)a 17/28 (61)a 32/39 (82)b 0.001 
 3 10/30 (33)a 12/28 (43)a 20/39 (51)a 0.3 
cSHPC3 6/30 (20)a 9/28 (32)a,b 18/39 (46)b 0.07 

1 Ca = low blood calcium concentration was defined as Ca < 8.6 mg/dL.  
2 DIM = days in milk.  
3 cSHPC = Chronic subclinical hypocalcemia was defined as total blood calcium concentration < 8.6 mg/dL for all the first 
3DIM.  
a,b,c Different letters in the same row indicate  P<0.05 between percentage of animals presenting low blood calcium concentration 
for the different parity groups. 
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Figure 4.1. Dynamics of serum calcium concentration (mg/dL) in the first 3 DIM according 
to calcium status group.  
Cows were classified as having eucalcemia (Ca > 8.6 mg/dL) or subclinical hypocalcemia (Ca < 
8.6 mg/dL). Subclinical hypocalcemia was categorized according to persistence of low serum 
calcium concentration: subclinical hypocalcemia (SHPC) animals had 1 or 2 low measurements 
while chronic subclinical hypocalcemia (cSHPC) animals presented low calcium concentration 
during all first 3 DIM. Horizontal dashed line represents serum calcium concentration cut-off 
point (8.6 mg/dL). Data are presented in LSM ± SEM and effects of the interaction between 
calcium status and DIM was analyzed (P < 0.01).  
 
 
     When controlling for parity group and occurrence of disease in the first 10 DIM, no statistical 

differences in the total milk production during the first 60 DIM were observed when comparing 

the groups with different calcium status (2006.7 ± 101.7 kg vs. 2169.0 ± 68.3 kg vs. 2259.9 ± 

80.7 kg for eucalcemia, SHPC, and cSHPC respectively; P = 0.18).  No statistical differences 

between the different calcium status groups were observed when comparing the concentration of 

circulating NEFA pre-partum (P = 0.77) and at 5 DIM (P = 0.14); as well as BHB at 3 DIM (P = 
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0.61) and 5 DIM (P = 0.60).  Nonetheless, when these metabolites were analyzed together, i.e. 

NEB variable, the proportion of animals considered to be in NEB was elevated in both 

hypocalcemic groups when compared to eucalcemia animals (eucalcemia = 21% vs. SHPC = 

76% vs. cSHPC 85%; P = 0.007). 

     The frequency of disease occurrence during the first 10 DIM was different when comparing 

the eucalcemic animals to both hypocalcemic groups (P = 0.006).  When comparing the different 

calcium status groups separately, it was observed that fewer eucalcemic animals developed any 

disease when compared to cSHPC animals (16% vs. 57%; P = 0.009) but not when compared to 

SHPC (16% vs. 42%; P = 0.14).  Additionally the proportion of animals developing any disease 

in early post-partum was not different when comparing both hypocalcemia groups to each other 

(42% vs. 57% for SHPC and cSHPC respectively; P = 0.49).   

Reproductive performance 

     Out of the 97 animals enrolled in the study, nine (9.3%) were right censored being culled not 

pregnant before reaching 120 DIM; three animals died in the first 30 days of the trial (1 

presumptive listeriosis case, 1 back injury and 1 non-defined), two animals were culled due to 

mastitis, two animals were culled due to lameness, and two animals were culled due to low milk 

production possible as a consequence of clinical ketosis during early lactation.  From the rest of 

the study population 29 animals (~ 30%) did not get pregnant until after 120 DIM, therefore they 

were considered open for the purpose of this study. 

     Days open during the first 120 of lactation was similar between the three groups, however 

days to return to cyclicity was longer for cSHPC.  Only a numerical difference on days open was 

observed when comparing the three calcium groups during the first 120 days of lactation: 85 ± 9 

days for eucalcemia; 87 ± 8 days for SHPC; and 89 ± 8 days for cSHPC animals (P = 0.89).  
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Days to return to cyclicity during the VWP was similar when comparing eucalcemia (28 ± 3 

DIM) and SHPC (29 ± 2 DIM), but cSHPC (36 ± 2 DIM) tended to take longer to return to 

cyclicity (P = 0.07).  No interaction between calcium status and other explanatory variables were 

observed for these reproductive outcomes (P > 0.20 and P > 0.30 for days open during the first 

120 DIM and days to return to cyclicity, respectively).   

     The odds of pregnancy at first service for the different calcium status groups was determined 

by multivariable logistic regression and including parity, NEB, milk production during the VWP, 

and development of any disease during the first 10 DIM as covariates; however, none of these 

variables nor the interaction terms between these variables and calcium status were significantly 

associated with the outcome (P > 0.16), and were removed.  Chronic SHPC cows had lower odds 

of pregnancy at first service (OR = 0.27; 95% CI = 0.080 – 0.876; P = 0.03) when compared to 

eucalcemic animals (Table 4.2).  

     Cox Proportional-Hazard models were calculated to show the risk of return to ovarian 

function during the VWP and time to pregnancy based on calcium groups (Figures. 4.2 and 4.3).  

During the voluntary waiting period SHPC animals had a similar hazard to return of cyclicity as 

eucalcemic animals (HR = 0.86; 95% CI = 0.48 – 1.52; P = 0.6), while the cSHPC group tended 

to have lower hazard for return to cyclicity (HR = 0.55; 95% CI = 0.30 – 1.02; P = 0.06).  There 

was no difference between the eucalcemic and subclinical hypocalcemia animals (P = 0.2) and 

no difference between the eucalcemia and cSHPC (P = 0.3) when evaluating pregnancy by 120 

DIM as the outcome.   
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Table 4.2. Logistic regression of the association of subclinical hypocalcemia, measured 
within 3 DIM, with pregnancy at first service. 
 

Variable n1 
Pregnant at 
1st Service 

(%) 
Odds ratio 95% CI P-value 

Pregnant at first 
service 

     

 Calcium Status2      
  Eucalcemia3 19 63a   Ref. - - 
  SHPC4 45   44a,b 0.46 0.152 – 1.401 0.2 
  cSHPC5 33 31b 0.27 0.080 – 0.876 0.03 

1 Total number of animals in each group according to total blood calcium concentration. 
2 Calcium status was defined according to the number of days the animals were classified as subclinical hypocalcemic. 
3 Eucalcemia = eucalcemic animals had all measurement of total blood calcium concentrations > 8.6 mg/dL. 
4 SHPC = Subclinical hypocalcemia. Subclinical hypocalcemia was defined as at least one measurement of total blood calcium 
concentration < 8.6 mg/dL.  
5 cSHPC = Chronic subclinical hypocalcemia. Chronic subclinical hypocalcemia was defined as total blood calcium 
concentration < 8.6 mg/dL for all the first 3DIM. 
a,b,c Different letters in the same column indicate P <0.05.  
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Figure 4.2. Cox Proportional-Hazard curves for time to detection of an active corpus 
luteum during the voluntary waiting period. 
Subclinical hypocalcemia (SHPC - dashed line) animals had similar hazard to return to cyclicity 
when compared to eucalcemic (solid line) animals (HR = 0.86; 95% CI = 0.48 – 1.52; P = 0.6). 
Chronic SHPC (dotted lines) animals tended to take longer to return to cyclicity when compared 
to eucalcemia and SHPC animals (HR = 0.55; 95% CI = 0.30 – 1.02; P = 0.06). The median days 
to active corpus luteum were, respectively, 25, 27, and 35 for eucalcemic, SHPC, and cSHPC 
animals. Active corpus luteum was defined as progesterone > 1.0 ng/mL. The total animals per 
each cohort were: 19, 45, and 33 for eucalcemic animals, SHPC, and cSHPC respectively. 
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Figure 4.3. Time to pregnancy during the first 120 DIM for the different cohorts.  
Cox Proportional-Hazard curves for time to pregnancy in the first 120 DIM for eucalcemic 
animals (eucalcemia; n = 19; solid line), subclinical hypocalcemia (SHPC; n = 45; dashed line) 
or chronic subclinical hypocalcemia (cSHPC; n = 33; dotted line). Compared to the eucalcemic 
group the hazard ratio for subclinical hypocalcemic cows was 0.63(95% CI = 0.33 – 1.23; P = 
0.2) and 0.71 for chronic SHPC (95% CI = 0.36 – 1.39; P = 0.3).  
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DISCUSSION 

     The objective of this study was to evaluate the effects of subclinical hypocalcemia during the 

first 3 DIM on the reproductive performance of dairy cows.  It is important to note that although 

there are several factors that may be associated with observed calcium concentration of a cow in 

the current lactation (e.g., previous lactation milk production, dry cow diet formulation, breed, 

and the use of anionic salts (Erb and Martin, 1978, Horst et al., 1997, Fleischer et al., 2001)) the 

objective was to evaluate the effect of subclinical hypocalcemia, irrespective of the cause.  

Several cut-points ranging from 8.0 to 8.8 mg/dL have been reported (Goff, 2008, Chapinal et 

al., 2011) for defining subclinical hypocalcemia; the cut-off used in this study was within the 

mentioned range, 8.6 mg/dL.  Martinez et al. (2012) identified 8.59 mg/dL as the value with the 

highest sensitivity (88.5%) and specificity (55.2%) to predict cows that would develop metritis 

post-partum; therefore this cut-off was chosen to dichotomize blood calcium concentration and 

analyze reproductive performance of dairy cows in this study. 

     During this study only total calcium was measured.  It is important to highlight that only part 

of the blood Ca pool is free and readily available for biological activities, also referred to as 

ionized calcium (iCa), the rest is transported in blood bonded to albumin (Sava et al., 2005).  

Additionally, increased blood pH can influence iCa concentration in blood, since alkaline 

environment determine a stronger binding of this ions to albumin (Wang et al., 2002).  Therefore 

the determination of the iCa:Ca ratio has been studied under different conditions. In humans, iCa 

has been shown to correspond to half of Ca circulating calcium under normal conditions (Forman 

and Lorenzo, 1991, Kragh-Hansen and Vorum, 1993), but during periods of abnormal calcium 

states such association is not maintained and measurement of iCa is necessary to improve 

calcium status diagnostics accuracy (Ong et al., 2012).  Similarly, a slight change in the iCa-Ca 
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ratio, high iCaA:Ca due to increased percentage of Ca being ionized, was observed on dairy 

cows immediately after parturition depending on calcium status (Sweeney et al., 2014).  Despite 

this discrepancy, measurements of Ca were considered adequate when predicting neutrophil 

function, and therefore acceptable as am index of calcium status in periparturient dairy cow 

(Sweeney et al., 2014).  Ionized Ca represents the bioactive calcium in blood, but its 

determination is complicated and costly.  Moreover iCa is believed to not predict functional 

outcomes significantly better than Ca. Accordingly, total calcium is commonly measured in dairy 

cattle research.    

     The sample size was estimated to compare two groups: hypocalcemic animals, defined as low 

calcium concentration within the first 3 DIM, and a eucalcemic group, defined as no low calcium 

concentrations within the first 3 DIM.  However, the incidence of cSHPC animals was alarming 

and this led to an additional level of analysis.  The consequence being that the inclusion of the 

third group in the analysis, decreased the statistical power.  It was not an objective of this study 

to detect differences in the reproductive performance of the different hypocalcemia groups, but 

the prevalence of cSHPC led to the division into two hypocalcemic groups.  A 45% power was 

determined by post-hoc power analysis when accounting for three calcium status groups instead 

of two groups (hypocalcemic vs. eucalcemic).  The reduced number of individuals per group and 

lower power of the statistical model may explain the higher p-values.  There is a chance that type 

II errors, i.e. indicating no difference when there truly is one, could be interpreted from some of 

the results presented in this study where the numerical differences where intriguing.  If the 

prevalence of cSHPC was known to be as elevated as encountered, more animals would have 

been enrolled decreasing the chances of a type II error.  
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     In the current study, the 80% prevalence of subclinical hypocalcemia during the first 3 DIM 

was higher than results obtained in a survey of dairy farms in the United States (Reinhardt et al., 

2011).  However, the cut-off point to determine subclinical hypocalcemia in the survey and 

previous studies were lower than the cut-off used in the current study (8.0 mg/dL vs 8.6 mg/dL).  

Differently from previous reports (Chapinal et al., 2011, Reinhardt et al., 2011, Jawor et al., 

2012, Martinez et al., 2012), the current study also defined subclinical hypocalcemia based on 

the duration of low calcium concentration during the first 3 DIM and not only based on a single 

low blood calcium concentration.  Nonetheless, when SHPC was defined as low calcium 

concentrations throughout the first 3 DIM the numbers of affected animals were surprisingly 

high indicating that calcium homeostatic mechanisms were not sufficient to overcome the 

challenge imposed by the increased milk production for more than 30% of animals in this study 

(Martin-Tereso and Verstegen, 2011, Goff, 2014).  

     Some degree of hypocalcemia is expected in early lactation with a nadir between 12 and 24 

hours after calving (Goff, 2014).  Nonetheless, several metabolic adaptations are triggered to 

overcome this challenge including enhanced absorption of dietary calcium, increased 

mobilization of calcium from bones, and enhanced renal re-absorption of calcium (DeGaris and 

Lean, 2008, Goff, 2008, Martin-Tereso and Martens, 2014), as a consequence serum calcium 

concentration should rise to normal values within 2 to 3 DIM (Kamgarpour et al., 1999, Martinez 

et al., 2012, Chamberlin et al., 2013, Sato et al., 2013).  However, when these mechanisms fail 

and cSHPC is the result we have an indication of a decreased capacity to adapt to the new 

physiological state in early lactation.  The persistence of abnormal metabolite levels may 

substantiate the exacerbated negative outcomes in cSHPC animals.  The increased prevalence of 

any disease during the first 10 DIM in the cSHPC animals observed in this study agrees with 
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results from previous reports (Kimura et al., 2006, Martinez et al., 2014) that described an 

association between hypocalcemia and immune suppression due to impaired neutrophil function 

in periparturient animals. 

     The dynamics of total serum calcium concentration presented in this study are in agreement 

with previous reports in which Ca nadir is reached in the first day of lactation and normal values 

are regained by 3 DIM in the subclinical hypocalcemia groups (Kamgarpour et al., 1999, 

Martinez et al., 2012, Chamberlin et al., 2013).  The analysis of cSHPC is a novel concept used 

by our group showing that some of animals do not adapt as expected to the mineral imbalances 

caused by the beginning of lactation.  The length of time that dairy cows remain in a SHPC state 

in early lactation might be more detrimental to health, milk production, and reproductive 

performance than the actual calcium concentration nadir in circulation.   

     Various factors throughout lactation have been associated with impaired reproductive 

performance in dairy cows.  Among those factors, subclinical hypocalcemia happening during 

the very early stages of lactation have been associated with poor reproduction (Chapinal et al., 

2012, Martinez et al., 2012).  In an attempt to minimize the effect of other confounding factors 

and isolate the association between subclinical hypocalcemia and the reproductive performance 

of dairy cows the analysis of the reproductive performance during the current study was 

restricted to the first 120 DIM.  

     The association between occurrence of subclinical hypocalcemia in early lactation and days 

open have been previously reported with inconsistent results. Martinez et al. (2012) reported that 

hypocalcemic animals tended to stay open 15 days longer than eucalcemic animals.  On the other 

hand, Chamberlin et al. (2013) reported no difference in the mean days open when comparing 

eucalcemic and subclinical hypocalcemic animals.  Even though the results of the current study 
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are in agreement with the latter, a distinction between these results must be made because time to 

pregnancy was only analyzed up to 120 DIM and not for the whole lactation period.  It is 

possible that other confounders, related or not to calcium metabolism, play a role in reproductive 

performance later than 120 of lactation leading to the variable results reported to date. 

     In the present study return to cyclicity tended to be different (P = 0.07) when comparing the 

calcium status groups; with animals having abnormal Ca levels for longer being negatively 

affected.  Similar results were reported in hypocalcemic animals (Ribeiro et al., 2013) while no 

difference has been reported in hypocalcemic cows with high risk of developing uterine disease 

(Martinez et al., 2012).  Abnormal blood calcium concentrations during the peri-parturient period 

has also been associated to reproductive impairment decreasing response to synchronization 

protocols (McNally et al., 2014) and decreased odds of pregnancy for cows (Chapinal et al., 

2012).  Similar results were observed in this study, with animals presenting abnormal 

concentration of Ca during the first 3 DIM; especially cSHPC animals which were less likely to 

have active ovaries by the time ovulation synchronization protocols were started.  This might 

have influenced the efficiency of protocols and contributed to the lower odds of pregnancy at 

first service (Santos et al., 2009, Bisinotto et al., 2010). 

     Impaired reproductive performance in hypocalcemic animals is, in part, explained by the 

association between mineral and metabolic adaptations during the transition period.  

Hypocalcemia can be detrimental to reproductive performance through two different 

interconnected pathways.  First, subclinical hypocalcemia reduces calcium availability to 

immune cells (Kimura et al., 2006) impairing neutrophil function (Martinez et al., 2012) leading 

to an increased risk of infectious uterine diseases; aggravated by the incapacity of the uterus to 

expel uterine content due to suppressed smooth muscle contraction caused by the calcium 
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deficiency (Hansen et al., 2003).  Secondly, subclinical hypocalcemia has been reported to 

exacerbate negative energy balance (Reinhardt et al., 2011, Ribeiro et al., 2013) and impair lipid 

metabolism (Chamberlin et al., 2013).  The decreased energy availability further intensifies 

immune cell dysfunction and increased occurrence of uterine diseases (Galvao et al., 2010).  

Clinical and subclinical diseases are associated with reduced pregnancy per artificial 

insemination rates and delayed return to cyclicity (Ribeiro et al., 2013).  Even though, the 

mechanisms by which lower calcium levels delays ovarian activity has not been described, the 

negative impacts of the early lactation metabolic challenges in high producing dairy cows has 

been reported to have effects that are carried over on fertility months later (Wathes et al., 2007). 

     The successful transition by eucalcemic cows is confirmed by improved early lactation 

reproductive performance, increased odds of getting pregnant at first service and increased 

hazard of getting pregnant before 120 DIM of these animals when compared to their chronic 

subclinically hypocalcemic counterparts.  These results are confirmed by previous reports 

showing that increased odds of pregnancy (Chapinal et al., 2012, Martinez et al., 2012) and 

decreased reproductive disorders (Martinez et al., 2012, Ribeiro et al., 2013) are observed in 

animals that maintain normal serum blood concentration during the periparturient period. 

     The incidence and persistency of SHPC during the first week of lactation is associated with 

impaired reproductive performance.  Identification and appropriate management of these animals 

is important to overcome the metabolic challenge the animal is facing during early lactation.  
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CONCLUSION 

     Approximately 1/3 of animals of all parities experienced cSHPC; with the incidence of low 

blood calcium concentration increasing directly associated with parity.  Subclinical 

hypocalcemia had a negative effect on return of ovarian function during the voluntary waiting 

period and decreased the odds of pregnancy at first service.  Cows with chronic subclinical 

hypocalcemia tended to have an even more pronounced impaired reproductive function than 

eucalcemic animals.  

  



88 
 

REFERENCES 

Bauman, D. E. and W. B. Currie. 1980. Partitioning of nutrients during pregnancy and lactation: 
a review of mechanisms involving homeostasis and homeorhesis. Journal of dairy science 
63(9):1514-1529. 
 
Beam, S. W. and W. R. Butler. 1997. Energy balance and ovarian follicle development prior to 
the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biology of 
reproduction 56(1):133-142. 
 
Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late 
pregnancy to early lactation. Journal of animal science 73(9):2804-2819. 
 
Bisinotto, R. S., R. C. Chebel, and J. E. Santos. 2010. Follicular wave of the ovulatory follicle 
and not cyclic status influences fertility of dairy cows. Journal of dairy science 93(8):3578-3587. 
 
Caixeta, L. S., P. A. Ospina, M. B. Capel, and D. V. Nydam. 2015. The association of subclinical 
hypocalcemia, negative energy balance and disease with bodyweight change during the first 30 
days post-partum in dairy cows milked with automatic milking systems. Veterinary journal 
(London, England : 1997) 204(2):150-156. 
 
Canfield, R. W. and W. R. Butler. 1991. Energy balance, first ovulation and the effects of 
naloxone on LH secretion in early postpartum dairy cows. Journal of animal science 69(2):740-
746. 
 
Chamberlin, W. G., J. R. Middleton, J. N. Spain, G. C. Johnson, M. R. Ellersieck, and P. Pithua. 
2013. Subclinical hypocalcemia, plasma biochemical parameters, lipid metabolism, postpartum 
disease, and fertility in postparturient dairy cows. Journal of dairy science 96(11):7001-7013. 
 
Chapinal, N., M. Carson, T. F. Duffield, M. Capel, S. Godden, M. Overton, J. E. Santos, and S. 
J. LeBlanc. 2011. The association of serum metabolites with clinical disease during the transition 
period. Journal of dairy science 94(10):4897-4903. 
 
Chapinal, N., S. J. Leblanc, M. E. Carson, K. E. Leslie, S. Godden, M. Capel, J. E. Santos, M. 
W. Overton, and T. F. Duffield. 2012. Herd-level association of serum metabolites in the 
transition period with disease, milk production, and early lactation reproductive performance. 
Journal of dairy science 95(10):5676-5682. 
 
Curtis, C. R., H. N. Erb, C. J. Sniffen, R. D. Smith, P. A. Powers, M. C. Smith, M. E. White, R. 
B. Hillman, and E. J. Pearson. 1983. Association of parturient hypocalcemia with eight 
periparturient disorders in Holstein cows. Journal of the American Veterinary Medical 
Association 183(5):559-561. 
 
DeGaris, P. J. and I. J. Lean. 2008. Milk fever in dairy cows: a review of pathophysiology and 
control principles. Veterinary journal (London, England : 1997) 176(1):58-69. 



89 
 

Duffield, T. F., K. E. Leslie, D. Sandals, K. Lissemore, B. W. McBride, J. H. Lumsden, P. Dick, 
and R. Bagg. 1999. Effect of prepartum administration of monensin in a controlled-release 
capsule on milk production and milk components in early lactation. Journal of dairy science 
82(2):272-279. 
 
Erb, H. N. and S. W. Martin. 1978. Age, breed and seasonal patterns in the occurrence of ten 
dairy cow diseases: a case control study. Canadian journal of comparative medicine : Revue 
canadienne de medecine comparee 42(1):1-9. 
 
Ferguson, J. D., D. T. Galligan, and N. Thomsen. 1994. Principal descriptors of body condition 
score in Holstein cows. Journal of dairy science 77(9):2695-2703. 
 
Fleischer, P., M. Metzner, M. Beyerbach, M. Hoedemaker, and W. Klee. 2001. The relationship 
between milk yield and the incidence of some diseases in dairy cows. Journal of dairy science 
84(9):2025-2035. 
 
Forman, D. and L. Lorenzo. 1991. Ionized calcium: its significance and clinical usefulness. 
Annals of Clinical & Laboratory Science 21(5):297-304. 
 
Galvao, K. N., M. Frajblat, W. R. Butler, S. B. Brittin, C. L. Guard, and R. O. Gilbert. 2010. 
Effect of early postpartum ovulation on fertility in dairy cows. Reproduction in domestic animals 
= Zuchthygiene 45(5):e207-211. 
 
Goff, J. P. 2008. The monitoring, prevention, and treatment of milk fever and subclinical 
hypocalcemia in dairy cows. Veterinary journal (London, England : 1997) 176(1):50-57. 
 
Goff, J. P. 2014. Calcium and magnesium disorders. The Veterinary clinics of North America. 
Food animal practice 30(2):359-381, vi. 
 
Hansen, S. S., J. Y. Blom, A. Ersboll, and R. J. Jorgensen. 2003. Milk fever control in Danish 
dairy herds. Acta veterinaria Scandinavica. Supplementum 97:137-139. 
 
Horst, R. L., J. P. Goff, T. A. Reinhardt, and D. R. Buxton. 1997. Strategies for preventing milk 
fever in dairy cattle. Journal of dairy science 80(7):1269-1280. 
 
Iwersen, M., U. Falkenberg, R. Voigtsberger, D. Forderung, and W. Heuwieser. 2009. 
Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. Journal of 
dairy science 92(6):2618-2624. 
 
Jawor, P. E., J. M. Huzzey, S. J. LeBlanc, and M. A. von Keyserlingk. 2012. Associations of 
subclinical hypocalcemia at calving with milk yield, and feeding, drinking, and standing 
behaviors around parturition in Holstein cows. Journal of dairy science 95(3):1240-1248. 
 
Jonsson, N. N., W. J. Fulkerson, P. M. Pepper, and M. R. McGowan. 1999. Effect of genetic 
merit and concentrate feeding on reproduction of grazing dairy cows in a subtropical 
environment. Journal of dairy science 82(12):2756-2765. 



90 
 

Kamgarpour, R., R. C. Daniel, D. C. Fenwick, K. McGuigan, and G. Murphy. 1999. Post partum 
subclinical hypocalcaemia and effects on ovarian function and uterine involution in a dairy herd. 
Veterinary journal (London, England : 1997) 158(1):59-67. 
 
Kimura, K., T. A. Reinhardt, and J. P. Goff. 2006. Parturition and hypocalcemia blunts calcium 
signals in immune cells of dairy cattle. Journal of dairy science 89(7):2588-2595. 
 
Kragh-Hansen, U. and H. Vorum. 1993. Quantitative analyses of the interaction between calcium 
ions and human serum albumin. Clinical chemistry 39(2):202-208. 
 
LeBlanc, S. J., K. E. Leslie, and T. F. Duffield. 2005. Metabolic predictors of displaced 
abomasum in dairy cattle. Journal of dairy science 88(1):159-170. 
 
Martin-Tereso, J. and H. Martens. 2014. Calcium and magnesium physiology and nutrition in 
relation to the prevention of milk fever and tetany (dietary management of macrominerals in 
preventing disease). The Veterinary clinics of North America. Food animal practice 30(3):643-
670. 
 
Martin-Tereso, J. and M. W. Verstegen. 2011. A novel model to explain dietary factors affecting 
hypocalcaemia in dairy cattle. Nutrition research reviews 24(2):228-243. 
 
Martinez, N., C. A. Risco, F. S. Lima, R. S. Bisinotto, L. F. Greco, E. S. Ribeiro, F. Maunsell, K. 
Galvao, and J. E. Santos. 2012. Evaluation of peripartal calcium status, energetic profile, and 
neutrophil function in dairy cows at low or high risk of developing uterine disease. Journal of 
dairy science 95(12):7158-7172. 
 
Martinez, N., L. D. Sinedino, R. S. Bisinotto, E. S. Ribeiro, G. C. Gomes, F. S. Lima, L. F. 
Greco, C. A. Risco, K. N. Galvao, D. Taylor-Rodriguez, J. P. Driver, W. W. Thatcher, and J. E. 
Santos. 2014. Effect of induced subclinical hypocalcemia on physiological responses and 
neutrophil function in dairy cows. Journal of dairy science 97(2):874-887. 
 
McArt, J. A., D. V. Nydam, and G. R. Oetzel. 2012. Epidemiology of subclinical ketosis in early 
lactation dairy cattle. Journal of dairy science 95(9):5056-5066. 
 
McNally, J. C., M. A. Crowe, J. F. Roche, and M. E. Beltman. 2014. Effects of physiological 
and/or disease status on the response of postpartum dairy cows to synchronization of estrus using 
an intravaginal progesterone device. Theriogenology 82(9):1263-1272. 
 
Murray, R. D., J. E. Horsfield, W. D. McCormick, H. J. Williams, and D. Ward. 2008. Historical 
and current perspectives on the treatment, control and pathogenesis of milk fever in dairy cattle. 
The Veterinary record 163(19):561-565. 
 
Oetzel, G. R. and B. E. Miller. 2012. Effect of oral calcium bolus supplementation on early-
lactation health and milk yield in commercial dairy herds. Journal of dairy science 95(12):7051-
7065. 



91 
 

Ong, G. S., J. P. Walsh, B. G. Stuckey, S. J. Brown, E. Rossi, J. L. Ng, H. H. Nguyen, G. N. 
Kent, and E. M. Lim. 2012. The importance of measuring ionized calcium in characterizing 
calcium status and diagnosing primary hyperparathyroidism. The Journal of clinical 
endocrinology and metabolism 97(9):3138-3145. 
 
Ospina, P. A., D. V. Nydam, T. Stokol, and T. R. Overton. 2010a. Association between the 
proportion of sampled transition cows with increased nonesterified fatty acids and beta-
hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. 
Journal of dairy science 93(8):3595-3601. 
 
Ospina, P. A., D. V. Nydam, T. Stokol, and T. R. Overton. 2010b. Associations of elevated 
nonesterified fatty acids and beta-hydroxybutyrate concentrations with early lactation 
reproductive performance and milk production in transition dairy cattle in the northeastern 
United States. Journal of dairy science 93(4):1596-1603. 
 
Ospina, P. A., D. V. Nydam, T. Stokol, and T. R. Overton. 2010c. Evaluation of nonesterified 
fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: 
Critical thresholds for prediction of clinical diseases. Journal of dairy science 93(2):546-554. 
 
Reinhardt, T. A., J. D. Lippolis, B. J. McCluskey, J. P. Goff, and R. L. Horst. 2011. Prevalence 
of subclinical hypocalcemia in dairy herds. Veterinary journal (London, England : 1997) 
188(1):122-124. 
 
Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries, and D. E. Beever. 2003. Splanchnic 
metabolism of dairy cows during the transition from late gestation through early lactation. 
Journal of dairy science 86(4):1201-1217. 
 
Ribeiro, E. S., F. S. Lima, L. F. Greco, R. S. Bisinotto, A. P. Monteiro, M. Favoreto, H. Ayres, 
R. S. Marsola, N. Martinez, W. W. Thatcher, and J. E. Santos. 2013. Prevalence of periparturient 
diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with 
concentrates. Journal of dairy science 96(9):5682-5697. 
 
Risco, C. A., J. P. Reynolds, and D. Hird. 1984. Uterine prolapse and hypocalcemia in dairy 
cows. Journal of the American Veterinary Medical Association 185(12):1517-1519. 
 
Santos, J. E., H. M. Rutigliano, and M. F. Sa Filho. 2009. Risk factors for resumption of 
postpartum estrous cycles and embryonic survival in lactating dairy cows. Animal reproduction 
science 110(3-4):207-221. 
 
Sato, R., K. Onda, H. Kato, H. Ochiai, K. Kawai, T. Iriki, K. Kaneko, Y. Yamazaki, and Y. 
Wada. 2013. An evaluation of the effect of age and the peri-parturient period on bone 
metabolism in dairy cows as measured by serum bone-specific alkaline phosphatase activity and 
urinary deoxypyridinoline concentration. Veterinary journal (London, England : 1997) 
197(2):358-362. 
 



92 
 

Sava, L., S. Pillai, U. More, and A. Sontakke. 2005. Serum calcium measurement: Total versus 
free (ionized) calcium. Indian journal of clinical biochemistry : IJCB 20(2):158-161. 
 
Seifi, H. A., S. J. Leblanc, K. E. Leslie, and T. F. Duffield. 2011. Metabolic predictors of post-
partum disease and culling risk in dairy cattle. Veterinary journal (London, England : 1997) 
188(2):216-220. 
 
Sepulveda-Varas, P., D. M. Weary, M. Noro, and M. A. von Keyserlingk. 2015. Transition 
diseases in grazing dairy cows are related to serum cholesterol and other analytes. PloS one 
10(3):e0122317. 
 
Stokol, T. and D. V. Nydam. 2005. Effect of anticoagulant and storage conditions on bovine 
nonesterified fatty acid and beta-hydroxybutyrate concentrations in blood. Journal of dairy 
science 88(9):3139-3144. 
 
Sweeney, B., E. Martens, M. Felippe, and T. Overton. 2014. Impacts and Evaluation of 
Subclinical Hypocalcemia in Dairy Cattle. in Proc. Cornell Nutrition Conference. 
 
Wang, S., E. H. McDonnell, F. A. Sedor, and J. G. Toffaletti. 2002. pH effects on measurements 
of ionized calcium and ionized magnesium in blood. Archives of pathology & laboratory 
medicine 126(8):947-950. 
 
Wathes, D. C., M. Fenwick, Z. Cheng, N. Bourne, S. Llewellyn, D. G. Morris, D. Kenny, J. 
Murphy, and R. Fitzpatrick. 2007. Influence of negative energy balance on cyclicity and fertility 
in the high producing dairy cow. Theriogenology 68 Suppl 1:S232-241. 

 

  



93 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
CHAPTER 5: Finding an objective measurement to body condition scoring dairy cows: 

dynamics of body condition score, ultrasound measured back fat thickness, and body weight in 

early lactation and its association with milk production in herds using automatic milking 

systems* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Chapter formatted according to Journal of Dairy Science author’s guideline.   
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ABSTRACT 

     Dairy cows undergo a state of negative energy balance after parturition and use their body fat 

reserves as an energy source.  Body condition score (BCS) is the most common subjective 

method to determine body fat reserves and has been shown to be correlated to fat reserves in 

dairy cows.  Alternatively, back-fat thickness (BFT) and body weight (BW) are potential 

objective methods to determine body energy reserves and change in these measures can indicate 

mobilization of body reserves.  The objectives of this study were to describe the dynamic of 

BCS, BFT, and BW in the first 60 DIM, and to evaluate the association between these variables 

and production outcomes in herds using automatic milking systems.  In a longitudinal 

prospective study, data was collected from 105 cows.  Body condition scores and BFT were 

measured weekly and BW, daily.  A repeated measures model was used for the descriptive 

analysis of the parameters and a mixed procedure with repeated measures was used to determine 

the potential explanatory variables related to milk production.  Animals from both parity groups 

reached BW, BCS, and BFT nadir within 60 DIM and an upwards trend was observed by the end 

of the voluntary waiting period.  Daily BW change and BW change during the first 30 DIM 

better explains milk production when compared to BCS and BFT. Daily BW data might be a 

better tool to monitor dairy cow during lactation when compared to BCS. 

 

 Key words: automatic milking systems, body condition score, body weight, back-fat thickness, 

dairy cows. 
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INTRODUCTION 

     In early lactation, cows are not able to fulfill the requirements for milk production by feed 

intake alone therefore they undergo a period of negative energy balance (Bauman and Currie, 

1980, Herdt, 2000).  In order to overcome this challenge animals will mobilize their body 

reserves, mostly adipose tissue, releasing metabolites (non-esterified fatty acids – NEFA) that 

can be used by various tissues as an energy source (Bauman and Currie, 1980, Bell, 1995, 

Drackley, 1999).  However, excessive levels of either of these metabolites has been associated 

with negative health, reproductive and productive outcomes (Duffield et al., 2009, Ospina et al., 

2010c, b, Chapinal et al., 2011, McArt et al., 2012).  Various attempts to decrease lipid 

mobilization in the early lactation and re-establish energy balance have been made with limited 

success due to the genetic predisposition for milk production (Grummer et al., 1995, Andersen et 

al., 2004, Delaby et al., 2009).  Although, lipid mobilization and negative energy balance may 

not be eliminated from the early post-partum period, managing the use of fat reserves to avoid 

excessive mobilization can limit possible negative effects during lactation.  Currently, several 

options for monitoring and measuring changes in the use of energy reserves in early lactation are 

used in animal agriculture: body condition score, back-fat measurement, and monitoring body 

weight.  

     Various body condition score (BCS) systems have been described in different parts of the 

world using different scales (Ferguson et al., 1994, Roche et al., 2004); regardless of scale, lower 

scores reflect thinner animals and higher score reflect over-conditioned cows.  Even though BCS 

is an effective and simple way to determine the cow’s energy stores (Fox et al., 1999), it is a 

subjective measurement with undesirable inter and intra-observer variation (Ferguson et al., 

1994, Kristensen et al., 2006).  Nonetheless, BCS has been widely used as a management tool to 
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determine body fat. In fact, optimum BCS and BCS dynamics during lactation have been 

determined for dairy cows: the optimum calving BCS for milk production has been reported to 

be around 3.5, in a 5-point scale; and a moderate BCS loss in early lactation, specifically less 

than 0.75 points on a 5-point scale, has been associated with increased milk production (Roche et 

al., 2007a).  Additionally, it has been determined that dairy cows calving with BCS > 3.75 are 

less likely to get pregnant and BCS loss of over 1 unit  (~ 430 Mcal/BCS unit) in early lactation 

is associated with impaired reproductive performance (Fox et al., 1999, Lopez-Gatius et al., 

2003, Roche et al., 2007b, Hoedemaker et al., 2009, Pires et al., 2013).  Previous reports have 

demonstrated that cows with higher BCS at calving lost more BCS during early lactation because 

of decreased dry matter intake and higher incidence of ketosis (Treacher et al., 1986, Gillund et 

al., 2001).  Animals at either extremity of the BCS scale have an increased risk of compromised 

animal welfare (Roche et al., 2009, Matthews et al., 2012), including increased prevalence of 

claw-horn disruption in animals with low BCS (Bicalho et al., 2009). 

     The measurement of the layer of subcutaneous fat (back-fat-thickness – BFT) has been 

commonly used to assess energy stores and carcass quality in beef cattle (Bullock et al., 1991, 

Greiner et al., 2003, Emenheiser et al., 2014). Yet, only recently this approach was used to 

determine dairy cows BFT (Schroder and Staufenbiel, 2006).  Ultrasonography of BFT can 

reasonably predict, with an acceptable degree of accuracy, the subcutaneous fat (Brethour, 1992, 

Bruckmaier et al., 1998); therefore, BFT has the potential to be used as an objective 

measurement of body reserves.  Similar to BCS, BFT has been associated with milk production 

and reproductive performance (Mosenfechtel et al., 2002). 

     Another objective measurement that can be used as an alternative to BCS is body weight 

(BW).  However, single measurements of BW may not be a good indicator of body reserves 



97 
 

because parity, stage of lactation, gestation, breed, gastrointestinal fill, and udder weight can lead 

to variations in this measurement.  On the other hand, the use of repeated measurements of BW 

allows an assessment of BW variation throughout lactation enabling its use as an accurate 

measure, even though gut fill might influence individual measurements (Thorup et al., 2013).  

Some major challenges for the sequential BW measures in commercial dairies are: the initial 

investment to install the scales, as well as maintenance costs, and the costs related to the 

excessive handling of the animals and time budget.  Nonetheless, the utilization of automatic 

milking systems (AMS) with built-in scales makes the daily weighing of cows in commercial 

farms feasible.  Additionally, gut and udder fill can change BW measurements of dairy cows.  

The association between BW and production outcomes has been determined previously with 

extremely heavy animals that present a rapid weight loss after calving having decreased milk 

production and impaired reproductive performance due to decrease dry matter intake and a more 

severe negative energy balance status (Berry et al., 2003, Berry et al., 2007, Roche et al., 2007a, 

Roche et al., 2007b, Sakaguchi, 2009). 

     Body condition score has been reported to be correlated to BFT and BW measurements with 

all three measurement being used to determine dairy cows’ energy stores (Domecq et al., 1995, 

Hussein et al., 2013).  Thus, understanding the normal dynamics of the BCS, BFT, and BW is 

essential to identify animals that are not complying with expected patterns during early lactation 

allowing implementation of preventive interventions.  A rigorous analysis of variation of these 3 

parameters in early lactation, with detection of target values can be beneficial to assessment of 

management programs, preventing metabolic problems and avoid decreased production (Roche 

et al., 2013).  The extent of the energy deficit, indirectly determined by assessment of variation 

in body condition measurement, and the use of tools and strategies to overcome this challenge 
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are important to achieve greater production.  Therefore, the objectives of this study were to 

describe the dynamics of BCS, BFT, and BW in the first 60 DIM, evaluate the correlation 

between the three different strategies to measure body reserves and body reserves utilization, and 

to determine the association between these potential explanatory variables and milk production.  

 

 

MATERIALS AND METHODS 

Study population and herds characteristics 

     The study was conducted in 2 commercial herds in central New York.  These herds met the 

following criteria: 1) greater than 100 milking cows, 2) free-stall housing, 3) fed a partial mixed 

ration (PMR), and 4) use of AMS.  Herd A milked over 700 cows using 14 AMS while herd B 

used 7 AMS to milk 400 cows.   

     The cows were housed in free-stall barns with concrete stalls and sand bedded in herd A, and 

concrete stalls covered with mattresses and bedded with waste paper-pulp in herd B.  In both 

herds, the alleys had grooved-concrete flooring and were cleaned by automatic scrapers.  The dry 

cow total mixed ration consisted of 80% forage and 20% concentrate during the dry period, and 

lactating cows received a PMR consisting of 55% forage and 45%.  The diet was formulated to 

meet or exceed the NRC (2001) nutrient requirements for dry and lactating Holsteins.  After 

parturition part of the ration was offered to lactating animals as a grain mixture in the form of 

pellets at the milking units to stimulate visits to AMS, the amount received by each animal 

varied according to estimated milk production and stage of lactation.  
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Study design and data collection 

     A longitudinal prospective observational study was conducted during the summer of 2012.  

Animals were enrolled in the study once a week, between 3 and 10 days prior to the expected 

calving date reported by the management software present at the farm; once enrolled animals 

were closely monitored until 60 DIM.  At enrollment, animals were restrained to allow 

determination of BCS (Ferguson et al., 1994) by two trained veterinarians and scores were 

averaged to minimize inter-observer bias.  Body condition score was determined prior to 

measurement of BFT ultrasound to avoid bias.   

     The BFT was determined by ultrasound measurements of the subcutaneous fat in the middle 

point between the hook and the pin bones in the thurl area according to Schroder and Staufenbiel 

(2006) by the same trained veterinarian throughout the experiment to avoid measurement 

discrepancies.  The depth of the subcutaneous fat was assessed using a portable ultrasound 

machine and a linear probe (IBEX pro, E.I. Medical Imaging, Colorado, USA) set at a frequency 

of 5 MHz.  Prior to scanning the area was cleaned and 70% alcohol was applied to improve 

image quality and a single measurement was taken at each sampling day. Upon start of lactation 

BW was measured every time the cows were milked by the AMS built-in scale. Even though 

most of the cows had multiple BW measurements in a day, only a daily average was exported 

from the Lely T4C management system (Lely Industries N.V/, Rotterdam, The Netherlands) into 

Excel (Microsoft, v. 97-2003).  Unlike BW which was measured daily after calving, the 

measurements of BCS and BFT to determine their dynamics in early lactation were assessed one 

week prior to expected calving date and weekly after parturition, until 60 DIM. 

     Information on whether animals developed any diseases (i.e., displaced abomasum, clinical 

ketosis, metritis, milk fever, and retained placenta) during the first 10 DIM was documented on 
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Dairy Comp 305 (Valley Ag. Software, 2009).  Standard disease definitions were discussed with 

farm employees and veterinary responsible for the herd at the start of the study.  Nevertheless, 

disease diagnosis and treatment was performed by farm personnel according to herd protocols 

defined by the herd veterinarian.   

     Blood samples were collected 7 ± 3 days pre-partum and post-partum on days 3 and 5.  Serum 

samples were stored at -20°C and laboratory assays to determine metabolites concentration were 

performed upon end of collection period.  Serum NEFA concentration was determined by a 

commercial kit (NEFA-C, Wako Chemicals); and BHB was evaluated at cow side using the 

Precision Xtra meter (Abbott Laboratories) (Iwersen et al., 2009).  Blood metabolites were 

dichotomized using the following cut- offs points: pre-partum NEFA was dichotomized at > 0.3 

mEq; post-partum NEFA > 0.7 mEq/L, and post-partum BHB > 1.2 mmol/L. Previous reports 

have shown that individuals presenting plasma metabolite concentrations exceeding these 

thresholds were more likely to develop diseases during early lactation, and have impaired milk 

production and reproductive performance (Ospina et al., 2010c, McArt et al., 2012). Therefore, a 

dichotomous variable, elevated energy balance metabolites (EEBM), was defined as positive if 

any of those measurements exceeded the thresholds established. 

     Milk production throughout lactation was used as outcome for the current study.  Daily milk 

production data was extracted from the AMS software at the end of the 60 day period and total 

lactation milk production, adjusted for 305 DIM (305M), was collected from the management 

software used by the farm.  

Statistical analysis 

     The variables BCS, BFT, and BW were checked for normality using the UNIVARIATE 

procedure of SAS.  Descriptive statistics  and comparison between parity groups for average 
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BCS, BFT, and BW at calving and 30 DIM was generated using ANOVA procedure of SAS 

version 9.3 (SAS Institute Inc., Cary, NC).  The analysis of the dynamics of BCS, BFT, and BW 

in the first 60 DIM was generated using a MIXED procedure with repeated measures and 

Tukey’s adjustments for multiple comparisons in SAS (version 9.3 SAS Inst. Inc., Cary, NC).  

Animals were stratified into 2 parity groups (primiparous, multiparous). 

     The change in BW (BWΔ), BCS (BCSΔ), and BFT (BFTΔ) at 30 DIM was calculated 

subtracting the value at 30 DIM from that at the week prior to calving for BCS and BFT, and 

calving day for BW.  Daily body weight change (DBWC) during the first 30 DIM was 

determined using the daily BW measurements taken by the AMS. The daily BW data was used 

to in a simple linear regression with the coefficient of the regression line corresponding to the 

DBWC (JMP statistical package, version 9 SAS Inst. Inc., Cary, NC, 2011).  The distribution of 

BWΔ, BCSΔ, BFTΔ, and DBWC within parity groups were determined using UNIVARIATE 

procedure.  To facilitate data analysis and results interpretation, the variables DBWC, BWΔ, 

BCSΔ, and BFTΔ were categorized into 3 levels according to their distribution quantile within 

parity group.  Values below the 25th percentile were identified as low variation (LOW), values 

between the 25th and 75th percentile were identified as medium variation (MEDIUM), and values 

above the 75th percentile were identified as high variation (HIGH).  Upper and lower levels for 

each quantile of all the explanatory variables are presented in Table 5.1.  Other explanatory 

variables used in the statistical models were: development of any of the aforementioned diseases 

within 10 DIM and dichotomous variable created based on plasma metabolite concentration, 

EEBM. Herd was used as random effect in the models and cows were nested within herd. 
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Table 5.1. Limits for quantiles of each body condition score measurement according to 
parity group. 
 

 
 Primiparous 

(n = 35) 
 Multiparous 

(n = 70) 
Variable quantile 25th Percentile 75th Percentile  25th Percentile 75th Percentile 
DBWC1 (kg/day) 0.18 -1.31  -0.47 -2.17 
BWΔ2 (kg) -6.36 -38.18  -21.8 -64.1 
BCSΔ3 -0.25 -0.75  -0.25 -0.75 
BFTΔ4 (mm) -3 -11  -3 -10 

1 Daily body weight change 
2 Body weight variation in the first 30 DIM 
3 Body condition score variation in the first 30 DIM 
4 Back-fat thickness variation in the first 30 DIM 
 

     The correlation between the three different methods of measuring body condition was 

determined using CORR procedure of SAS.  Milk production was evaluated on a daily basis 

during the first 60 DIM; total milk produced within 60 DIM and total milk produced during the 

entire lactation were later used to determine possible associations with study variables.  For 

statistical analysis the continuous variable, milk production, was checked for normality and 

repeated measures over time were analyzed using MIXED procedure of SAS.  The covariance 

structure used for each model was chosen based on the smallest Akaike information criterion.  A 

Kenward-Roger degrees of freedom approximation was used to calculate the denominator 

degrees of freedom.  The evaluation of the influence of DBWC, BWΔ, BCSΔ, and BFTΔ in the 

total milk produced over 60 days and throughout whole lactation was determined by MIXED 

procedure in SAS using herd as random effect with animals nested within.  Development of any 

disease and EEBM were added as dichotomous explanatory variables.  Potential explanatory 

variables were removed from the statistical models in a manual backward stepwise fashion if P > 

0.15.   
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RESULTS 

     In total, 114 animals were enrolled during the study period; however 9 were excluded due to 

removal from herd that resulted in less than 30 days of milk production and body weight 

information.  Of these 9, three animals died in the first 30 days of the trial (1 presumptive 

listeriosis case, 1 back injury and 1 non-defined), 2 animals were culled by farm personnel and 4 

cows were excluded from the analysis because of incomplete data collection due to problems in 

the AMS.  The remaining 105 animals were comprised of 35 primiparous animals and 70 

animals from multiparous. 

Body weight, body condition score, and back-fat thickness 

     Descriptive statistics of BCS, BFT, and BW for the different parity groups at calving and at 

30 DIM is presented in Table 5.2.  Body condition measurements were normally distributed 

within parity groups and quantiles calculations were performed.  Daily body weight change 

during the first 30 DIM ranged from -4.0 to 0.94 kg/day, with a mean of -0.7 kg/day for 

primiparous; older animals had a greater range of DBWC varying from -4.42 to 1.79 kg/day 

(mean of -1.48kg/day).  Following the same pattern BWΔ varied differently depending parity 

group: -94.1 to 8.2 kg for primiparous and -123.2 to 20.9 kg for multiparous over the first 30 

DIM.  Change in BFT and BCS during the first 30 DIM were similar for both groups with lowest 

BFTΔ around -20 mm and highest at 3 mm; both groups had their most extensive BCS loss as -

1.25 units and the least change in BCS as an increase of 0.25 units. 
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Table 5.2. Descriptive statistics of BW1, BCS2, and BFT3 for the different parity groups at 
calving and at 30 DIM. 
 
 Primiparous (n = 35) Multiparous (n = 70) P-value Mean (±SE) Mean (±SE) 
Average BW at calving, kg 577 ± 13.1 693 ± 8.9 < 0.001 
Average BW at 30 DIM, kg 554 ± 11.8 669 ± 8.4 < 0.001 
Average BCS at calving 3.9 ± 0.05 4.2 ± 0.04 0.08 
Average BCS at 30 DIM 3.4 ± 0.05 3.5 ± 0.04 0.003 
Average BFT at calving, mm 28.4 ± 1.1 27.1 ± 0.7 0.3 
Average BFT at 30 DIM, mm 21.6 ± 0.7 20.5 ± 0.5 0.2 

1 Body weight (kg) 

2 Body condition score 
3 Back-fat thickness (mm) 
 

     On average cows from both parity groups had similar dynamics of BCS, BFT and BW; most 

animals, regardless of parity group, lost BW, BCS, and BFT in early lactation, especially within 

30 DIM.  A downwards trend on all three body condition measurements was observed during 

early lactation but it was reversed around the 4th week of lactation for primiparous animals 

(Figure 5.1).  Regardless of the measurement used, multiparous animals took longer to reach 

nadir when compared to primiparous.  Primiparous animals reached BCS nadir at 4 weeks post-

partum while multiparous at about 5 weeks; similarly 1 week difference was observed when 

comparing the time to lowest BFT during early lactation (5 weeks vs. 6 weeks, for primiparous 

and multiparous respectively).  A greater difference, two weeks, was observed when analyzing 

BW change in early lactation; primiparous animals reached their lightest weight at 20 DIM while 

multiparous around 33 DIM.  Overall all types of measurement techniques were correlated (P < 

0.001) to each other regardless of parity group (Table 5.3). 
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Figure 5.1. Dynamics of BCS (A), BFT (B), and bodyweight (C) during the voluntary waiting period for primiparous (◊) and 
multiparous (■).  
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Table 5.3. Correlation among the different methods of measuring body condition in the 
study. 
 

      BCS1  BFT2 

  
 Correlation 

coefficient P-value 
 Correlation 

coefficient P-value 

BFT  Primiparous 0.60 <0.0001    
  Multiparous 0.69 <0.0001      

BW3   Primiparous 0.41 <0.0001  0.38 <0.0001 
  Multiparous 0.44 <0.0001  0.47 <0.0001 

1Body condition score 
2Backfat thickness (mm) 
3Body weight (kg) 

 

Milk production 

     Daily milk production increment up to 30 DIM did not differ between body measurements 

quantiles irrespective of parity groups.  On average all animals increased their milk production 

during the first 30 DIM by about 250 g daily, regardless of health and energy balance status.  

Daily milk production during the first 60 DIM for both parity groups according to DBWC 

quantiles is presented in Figure 5.2. All animals presented a greater increase in milk production 

during the first 20 DIM, independently of quantile groups. 

     Primiparous animals that had the least variation in weight daily (DBWCLOW) produced less 

milk when compared to the other quantile groups (quantile x day interaction; P = 0.04), with 

these animals producing on average sixe fewer kilos of milk daily between 2 DIM and 48 DIM.  

On the other hand DBWC did not significantly influence daily milk production of multiparous 

which is shown by the similar milk curves of the three quantiles (quantile x day interaction; P = 

0.2)
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Figure 5.2. Daily milk production during the first 60 DIM according to daily body weight change in different parity groups.  
A total of 35 primiparous animals (A) are represented in the figure (DBWCLOW n = 9; DBWCMEDIUM, n = 17, DBWCHIGH, n = 9).  
First lactation individuals that presented the least daily bodyweight change (DBWCLOW) produced significantly less milk when 
compared to the groups.  Seventy multiparous animals (B) are represented (DBWCLOW n = 18; DBWCMEDIUM, n = 34, DBWCHIGH, n = 
18).  Amongst the multiparous animals milk production was similar for the 3 different groups with animals losing moderate body 
weight producing numerically more milk throughout the first 60 days of lactation.  For each individual time point results represents 
the least square mean ± SEM of all cows in each group.
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      The association between DBWC, BWΔ, BCSΔ, and BFTΔ and total milk production during 

the first 60 DIM and throughout the whole lactation (305 DIM) was analyzed for the different 

parity groups accounting for early lactation disease and EEBM.  Independently of the period 

analyzed (30DIM, 60 DIM, 305DIM) BCSΔ and BFTΔ were not associated (P > 0.1) with milk 

production.  Similarly, EEBM did not affect milk production of animals enrolled in this study; 

hence no data are presented. Results for the effect of DBWC and BWΔ, as well as disease 

occurring during the first 10 DIM is presented in Table 5.4 and 5.5.  

      For primiparous animals, DBWC in the first 30 DIM influenced milk production (P < 0.01) 

in the first 60 DIM while BWΔ did not change milk production.  The effect of DBWC was 

opposite when comparing early lactation and whole lactation milk production: in our experiment 

it was calculated that for each extra kg of daily body weight lost in the first 30 DIM animals 

increased their total milk produced in the first 60 DIM by approximately 274 kg (P < 0.001) 

while the total milk production during the first lactation was decreased by 432 kg (P = 0.06).  

Interestingly, the occurrence of any disease in the first 10 DIM was associated with an increased 

total milk produced during the first 60 DIM (approximately 490 kg; P = 0.05) with no effects on 

total milk produced throughout 305 DIM.  

     Even though whole lactation milk production for multiparous tended to be affected by DBWC 

(P = 0.1) no other association between body weight changes and milk production was observed 

for this parity group in the study animals.  On the other hand, the occurrence of disease during 

the first 10 DIM was associated with decreased milk production during the first 60 DIM (-256 kg 

± 115, P = 0.03 when analyzing DBWC; and -276 kg ± 125, P = 0.03 when analyzing BWΔ) and 

tended to decreased milk production during 305 DIM (-1127 kg ± 597, P = 0.06 when analyzing 

DBWC; and -1088 ± 631, P = 0.09 when analyzing BWΔ) for this parity group.   
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Table 5.4. Estimated effects of body weight change and disease in early lactation on milk 
production (kg) during the first 60 DIM according to parity. 
 
Effect Estimate Standard Error P-value 
Primiparous    
 DBWC1    
  Intercept2 2427 117.6 < 0.001 
  DBWC 273.9 97.7 < 0.01 
  Disease3 489.8 238.8 0.05 
Multiparous    
 DBWC    
  Intercept2 2400 95.8 < 0.001 
  DBWC 82.8 44.3 0.6 
  Disease3 -255.8 115.2 0.03 
 BWΔ    
  Intercept2 2362 108.4 < 0.001 
  BWΔ4 1.8 1.9 0.4 
  Disease3 -275.8 124.9 0.03 

 

1 DBWC was defined as the daily bodyweight change during the first 30DIM. 
2 Total milk production for animals that did not have daily bodyweight change, and did not develop any disease 
during the first 10 DIM. 
3 Disease defined as positive if animal developed any of the following diseases within 10 days in milk: retained 
placenta, metritis, clinical ketosis, or displaced abomasum. 
4 BWΔ was defined as the difference in bodyweight between 30 DIM and 1DIM. 
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Table 5.5. Estimated effects of body weight change and disease in early lactation on milk 
production (kg) during the whole lactation (305 DIM) according to parity. 
 
Effect Estimate Standard Error P-value 
Primiparous    
 DBWC1    
  Intercept2 9433 290.4 < 0.001 
  DBWC -432.9 225.9 0.06 
Multiparous    
 DBWC    
  Intercept2 13608 485.8 < 0.001 
  DBWC 347.5 222.2 0.1 
  Disease3 -1127.3 596.9 0.06 
 BWΔ    
  Intercept2 12672 711.55 < 0.001 
  BWΔ4 13.7 9.8 0.2 
  Disease3 2003.5 1322.16 0.3 
  BWΔ x Disease -8160.96 1662.82 0.03 

 

1 DBWC was defined as the daily bodyweight change during the first 30DIM. 
2 Total milk production for animals that did not have daily bodyweight change, and did not develop any disease 
during the first 10 DIM. 
3 Disease defined as positive if animal developed any of the following diseases within 10 days in milk: retained 
placenta, metritis, clinical ketosis, or displaced abomasum. 
4 BWΔ was defined as the difference in bodyweight between 30 DIM and 1DIM.  
  



111 
 

     After dividing body weight changes into quantiles to facilitate statistical interpretation, the 

interaction between diseases and DBWC was not significant for both parity groups (P = 0.2 for 

primiparous; and P = 0.13 for multiparous) even though the number of sick animals was not 

equally distributed among the different groups.  Similarly, the BWΔ and disease interaction was 

not important for primiparous animals (P = 0.6).  On the contrary, the interaction of BWΔ and 

disease in the first 10 DIM significantly influence whole lactation milk production of 

multiparous animals (P = 0.03).  The results of the interaction between BWΔ quantiles and 

disease occurrence in the first 10 DIM for multiparous animals are presented in Figure 5.3.  

Briefly, animals that did not have a disease event in early lactation produced similar amounts of 

milk throughout lactation even though a numerical difference was observed (BWΔLOW = 

12,672kg; BWΔMEDIUM = 13,369 kg; BWΔHIGH = 13,150 kg; P > 0.1).  On the other hand, whole 

lactation milk production of animals that were sick in early lactation was significantly different 

when comparing the different amount of BW lost during the first 30DIM: in fact, animals that 

BWΔLOW produced significantly more than animals that developed disease in the first 10 DIM 

and lost more BW during the first 30 DIM (BWΔMEDIUM = 11,467 kg, P = 0.01; BWΔHIGH = 

10,898 kg, P < 0.01).     
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Figure 5.3. Total milk produced during the whole lactation based on the interaction 
between difference in bodyweight during the first 30 DIM and occurrence of disease in 
multiparous cows.  
Animals that lost the most weight in the first 30 DIM and got sick produced statistically 
significant less milk that their healthy counterparts (10,898kg ± 839 vs. 13,150kg ± 798; P = 
0.05). Similarly, these animals produced less milk than animals that were sick in the first 10 DIM 
but lost the least amount of weight in the first 30 DIM (10,898kg ± 839 vs. 14,675kg ± 1,114; P 
< 0.001). Whole lactation milk production was adjusted for 305 DIM. Difference in body weight 
during the first 30 DIM was calculated subtracting the value at 30 DIM from that at calving 
(BWΔ).  Disease was defined as development of displaced abomasum, clinical ketosis, metritis, 
milk fever, and retained placenta during the first 10 DIM; while no disease was defined as the 
absence of any disease during the same period. ). Data presented in LSM ± SE. a,b,c Different 
letters indicates that milk production differs between quantile and health status (P < 0.05). 
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DISCUSSION 

     The objectives of the current study were to characterize the dynamics of BW, BCS, and BFT 

in the early lactation period, the correlation between the different measurements, and to 

determine the association of these possible explanatory variables with milk production.  Few 

reports have evaluated BFT and BW, mostly due to the limitations of weighing cows in 

conventional farms and lack of user friendly ultrasound technology; however, herds using AMS 

technology have access to the BW information daily and the development of better portable 

ultrasound machines have facilitated the assessment of these measurements.  

     In the current study pre-partum BCS and BFT measurement were used as proxy to define 

calving BCS and BFT in order to decrease the handling time of this animals in the first day after 

calving.  Conversely, BW was only recorded when animals entered the lactating herd.  Study 

animals lost BW, BFT, and BCS during early lactation similarly to previous reports by many 

authors (Roche et al., 2006, Sumner and McNamara, 2007, Hussein et al., 2013).  A reason for 

the use of energy reserves that lead to loss of BW, BCS, and BFT is the state of negative energy 

balance that dairy cows experience in early lactation (Bell, 1995, LeBlanc et al., 2005, Ospina et 

al., 2010a, Chapinal et al., 2011, McArt et al., 2012).   

     Similar to our results, BCS, BFT, and BW have been shown to be correlated to each other and 

to this day this is the first report to measure all three parameters concomitantly (Domecq et al., 

1995, Hussein et al., 2013).  The correlation between BCS and BFT was higher (r2 > 0.6) than 

the correlation between BW with either one (r2 < 0.45 and r2 < 0.48 for BCS and BFT, 

respectively) for both parity groups.  This discrepancy was expected because gut fill influences 

BW measurement while it is not considered for the other two methods.  
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     Not surprisingly, the BW of primiparous and multiparous animals was different (P < 0.01) 

during early lactation (Blottner et al., 2011).  The enrollment of animals in herds using AMS 

allowed the determination of the exact day of the nadir because BW was measured on a daily 

basis, while the BW data from other studies was determined in a weekly basis.  Therefore, the 

BW difference and variation in the early lactation in the present study is robust and accurate.  

The measurements of BFT were higher than previous reports (Blottner et al., 2011, Hussein et 

al., 2013).  Previous studies have grouped all parities while analyzing BFT change and animals 

were managed within different feeding systems leading to the differences encountered between 

results of this studies and previous published data. 

     When analyzing the comparison between BW, BCS, and BFT for the different parity groups it 

is important to point out that primiparous animals have a less accentuated change in BW and 

BCS than their multiparous counterparts, while BFT change is not different.  The fact that 

primiparous animals do not produce as much milk as multiparous animals might explain the 

difference in BCS at 30 DIM and a less accentuated BW loss.  Even though adipose tissue 

reserves are being used to support milk production the growth of other tissues is likely to 

influence the subjective measurement of BCS while the objective measurements BW and BFT 

are not influenced as much.  

     In our study, DBWC better predicted milk production when compared to the other two 

parameters.  Primiparous animals that presented the lowest daily change in BW had lower milk 

production throughout the whole lactation.  On the other hand, multiparous animals that had the 

fastest weight loss rate had similar milk production to their counterparts, with disease being more 

influential than weight loss.  Interestingly, an interaction between BWΔ and disease was very 

important to determine whole lactation milk production of multiparous animals.  Decreased milk 
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production due to clinical and subclinical diseases  and  increased BW loss associated with 

subclinical hypocalcemia and other diseases  have been previously reported and support this 

finding (Ospina et al., 2010b, Chapinal et al., 2011, McArt et al., 2012, Caixeta et al., 2015).  As 

expected the associations between BCS and BFT change with milk production followed a similar 

pattern (Domecq et al., 1995, Roche et al., 2007a). 

     Even though occurrence of any disease event has been determined to be more influential for 

milk production in older animals (Caixeta et al., 2015), the same association could not be 

observed in the younger animals probably because the number of disease episodes for this group 

was very low.  Based on the results of this study the rate of BW loss should be monitored since 

animals that lose weight rapidly tend to produce less total milk.  This finding is supported by 

previous reports showing that cattle which have higher dairy genetic merit take longer to reach 

their BW and BCS nadir in comparison to their lower dairy genetic counterparts (Gallo et al., 

1996, Berry et al., 2007).  

     The intensity of the BW, BCS, and BFT change as well as how rapidly these changes are 

happening are important to determine animals’ capacity to adapt to the beginning of the lactation 

period.  The possibility of the use of these different parameters to produce a more accurate report 

can be extremely important to decision making and earlier responses to abnormalities in order to 

prevent future losses.  
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CONCLUSION 

     The dynamics of BW, BCS, and BFT are similar for the different parity groups; animals lost 

BW, BCS, and BFT during early lactation but started to recuperate body measurements by the 

end of the of the 60 days period.  Daily change in BW and BW change over the first 30 DIM 

were better predictors of milk production than BCS and BFT for both parity groups, while 

occurrence of disease in association with increased BW change in early lactation significantly 

affect total milk production throughout whole lactation of multiparous animals. The increased 

use of technology by progressive dairy farms and the pursue for accurate measurement capable 

of helping in the decision making of modern dairy farms may set the stage for the use of 

sequential BW as an objective measurement with the potential to replace body condition scoring.  
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CHAPTER 6: The effect of fatty acids and glucagon administration on liver expression of 

fibroblast growth factor 21 in dairy cows* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Chapter formatted according to Journal of Dairy Science author’s guideline. 
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ABSTRACT 

     Dairy cows typically experience a period of negative energy balance when transitioning from 

late gestation to early lactation.  Higher plasma concentrations of glucagon and non-esterified 

fatty acids (NEFA) are metabolic hallmarks of this period.  Dairy cows also experience a sudden 

increase in plasma concentration of the novel hormone fibroblast growth factor 21 (FGF21) in 

early lactation. In other species, both glucagon and NEFA have implicated in the induction of 

FGF21 in the liver.  To assess the relative contribution of these factors in regulating FGF21, two 

experiments were performed in energy sufficient, non-pregnant, non-lactating dairy cows.  In the 

first study, six cows were injected with saline or glucagon (5 mg) every 8 h over 72 h.  Glucagon 

treatment caused a 3-fold increase in FGF21 mRNA expression in liver but did not impact 

plasma FGF21.  In the second study, six cows received an IV infusion and SC injections of 

saline (Control group), an IV infusion of intralipid and SC injections of saline (Lipid group) or 

an IV infusion of intralipid and SC injections of glucagon (Lipid + Glcg group).  Intravenous 

infusions lasted 16 consecutive hours and SC injections were performed every 8 h.  Lipid 

infusion elevated circulating fatty acid concentration and successfully induced storage of 

triglycerides in liver.  Intralipid infusion caused a 34-fold increase in FGF21 mRNA expression 

in liver and an 8-fold increase in plasma FGF21.  Presence of glucagon during the intralipid 

infusion did not have any additional effects on plasma NEFA, liver triglyceride, liver FGF21 

mRNA or plasma FGF21.  These data indicate that increased plasma NEFA is a major factor 

triggering hepatic FGF21 expression in the early lactating dairy cow.   

Key Words: fatty acids, glucagon, FGF21, dairy cows. 
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INTRODUCTION 

     The transition from late pregnancy to early lactation is a challenging period for the modern 

dairy cow.  The increased nutrient demands associated with initiation of milk production occurs 

in the absence of adequate compensatory feed intake, and as a consequence early lactating dairy 

cows experience a period of negative energy balance (NEB) (Bell, 1995, Drackley, 1999).  

Excessive NEB is associated with increased risk of development of several diseases (i.e. retained 

fetal membranes, metritis, displaced abomasum, and clinical ketosis) and decreased milk 

production and reproductive performance (Duffield et al., 2009, Chapinal et al., 2011, McArt et 

al., 2012, Ospina et al., 2013).  An efficient transition period is essential to the success of the 

modern dairy cow in current production systems (Drackley, 1999); therefore it is important to 

understand the adaptations happening in the periparturient period to develop strategies that can 

improve animal performance.   

     Dairy cows cope with NEB by calling on several metabolic adaptations triggered by changes 

in key metabolic hormones.  Among those adaptations, elevated concentrations of circulating 

glucagon is important to increase gluconeogenesis, and to enhance fatty acid oxidation and 

ketone production (Bobe et al., 2003a, Hanigan et al., 2004, Bobe et al., 2009).  Also, a lower 

concentration of circulating insulin, associated with increased plasma growth hormone 

concentrations lead to increased availability of glucose to the mammary gland and increased 

supply of non-esterified fatty acids (NEFA) as on alternative fuel source (Vernon and Finley, 

1988, Bell, 1995, Drackley, 1999; Rhoads et al., 2007).  Additionally, plasma leptin is reduced in 

early lactation leading to a reduction in thyroid hormone levels which in turn improves metabolic 

efficiency during this period (Block et al., 2001; Boisclair et al., 2006; Ehrhardt et al., 2016).   
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     Fibroblast growth factor 21 (FGF21) is a novel protein hormone reduced by various 

nutritional stresses in rodents (Kharitonenkov et al., 2005, Badman et al., 2007, Inagaki et al., 

2007, Lundasen et al., 2007).  FGF21 has been shown to improve fatty acid oxidation capacity in 

liver and to coordinate liver and adipose tissue functions in various species (Inagaki et al., 2007, 

Schoenberg et al., 2011).  In rodents and humans increased plasma concentrations of fatty acids 

and glucagon have been reported to enhance FGF21 gene expression in liver (Badman et al., 

2007, Inagaki et al., 2007, Cyphert et al., 2012, Arafat et al., 2013, Kinoshita et al., 2014).  

Interestingly, Schoenberg et al. (2011) demonstrated that FGF21 plasma concentration peaks on 

the day of parturition when both glucagon and NEFA are elevated.  Accordingly, the major 

objective of the present work was to assess the possibility that glucagon and NEFA are positive 

regulators of FGF21 production in dairy cattle. 

 

 

MATERIALS AND METHODS 

Animal and Experimental design 

     Two experiments were performed with non-pregnant, non-lactating Holstein dairy cows with 

approval of the Cornell University Institutional Animal Care and Use Committee.  Procedures 

common to both experiments were as follow.  Cows were held in individual tie-stalls and fed 

non-limiting amounts of a total mixed ration (TMR).  The TMR consisted of grass hay, wheat 

straw, dried distiller’s grains and mineral supplement in the ratio of 58:23:14:5 and containing 

1.55 Mcal of metabolizable energy (ME) and 143 g crude protein per kg DM (Table 6.1).  The 

TMR was offered as either 2 (experiment 1) or 12 daily meals (experiment 2) and the daily feed 

intake was calculated for each animal as the difference between feed offered and feed refusal. 
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Energy intake and energy balance was calculated based on feed composition analysis and 

estimated maintenance energy requirements.  Liver and adipose tissue biopsies were obtained 

after surgical preparation and local anesthesia of the biopsy site.  Liver tissue was harvested via 

percutaneous puncture with a biopsy trocar and adipose tissue via dissection of the tail head 

region (Block et al., 2001, Schoenberg et al., 2011).  Liver and adipose tissue samples were 

divided into aliquots, snap-frozen in liquid N and stored at -80°C until further analysis.  

Indwelling jugular catheters were fitted the day before each experimental period.  After 

collection, jugular blood samples were mixed immediately with heparin (15 IU/ml) and spun at 

3,000x g for 15 min at 4°C.  Resulting plasma was stored at -20°C until analyzed for metabolites 

and hormones.    

 

Table 6.1. Chemical composition of the experimental diet used in chapter 6.  
 

Nutrient Content1 
 Metabolizable energy (Mcal/kg) 1.55 
 Crude protein (%) 14.30 
 ADF (%) 32.20 
 NDF (%) 46.10 
 Calcium (%) 0.78 
 Phosphorus (%) 0.36 
 Potassium (%) 1.21 
 Magnesium (%) 0.27 
 Sodium (%) 0.16 
 Sulfur (%) 0.26 

   1Values given on a dry matter basis. 
 

Experiment 1:  effect of glucagon  

     The objective of this study was to determine whether glucagon alone triggers FGF21 

production.  Six multiparous Holstein cows were selected on the basis of uniform age (4.75 ± 

0.75 year), body condition score (3.6 ± 0.2 on a scale of 1 to 5) and weight (698.4 ± 36.8 kg).  
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They were randomly allocated to a single reversal design with experimental periods of 72 h 

separated by a 3-day intervening period.  Treatments were initiated at 0 h and consisted of 

subcutaneous (SC) injection of either saline solution (0.9% Sodium Chloride USP; Abbott 

Laboratories, North Chicago, IL) or bovine glucagon (5 mg dissolved in saline, Eli Lilly and Co., 

Indianapolis, IN).  Each treatment was administered as a 60 ml solution every 8 h as we 

previously described (Bobe et al., 2003b, Osman et al., 2008).  Blood samples were collected at -

2, -1, 0, 1, 2, 3, 4, and 8 h relative to first SC injection and immediately before SC injections at 

16, 24, 48 and 72 h.  Liver biopsies were obtained immediately before SC injections at 16 and 72 

h (Fig. 6.1A). 

Experiment 2: effect of increased plasma NEFA with and without glucagon 

     This study involved a second group of 6 multiparous dairy cows with average age, body 

condition score and weight of 4.3 ± 0.3 year, 3.25 ± 0.2 and 682.5 ± 21.2 kg, respectively.  They 

were randomly assigned to two – 3 x 3 Latin squares with experimental periods of 17 h separated 

by 3-day intervals.  Each 17 h experimental period consisted of 1h of basal blood sampling 

followed by a 16 h period of treatment.  Treatments consisted of various combinations of SC 

injections of saline or bovine glucagon (Eli Lilly; Indianapolis, IN) and intravenous (IV) infusion 

of saline or 20% intralipid solution (Frasenius, Kabi; Deeriled, IL).  These treatments were: 1) IV 

infusion and SC injections of saline (Control); 2) IV infusion of intralipid and SC injections of 

saline (Lipid); 3) IV infusion of intralipid and (SC) injections of glucagon (Lipid + Glcg). Saline 

and intralipid solutions were infused at the rate of 100 mL/hr for the entire treatment period 

using a controlled infusion pump (Abbot Plum XL Infusion Pump; Abbott Laboratories, North 

Chicago, IL).  Subcutaneous injections of saline and glucagon (5 mg dissolved in saline) were 

given in a 60 ml volume at the 0 and 8 h time point of treatment period.  Blood samples were 
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collected at -1, -0.5 and 0 h relative to the start of treatment, hourly during the first 4 hours of 

treatment and every 3 hours thereafter.  Liver and adipose tissue biopsies were obtained at the 

end of each experimental period (Fig. 6.1B).  

 

 

Figure 6.1. Sampling timeline for the animals enrolled in experiment 1 (A) and experiment 
2 (B). 
In experiment 1, dairy cows received subcutaneous injection of saline or glucagon every 8 h for a 
72 h period. Liver triglyceride and glycogen contents were measured on biopsies obtained after 
16 or 72 hours of treatment.  During experiment 2, dairy cows were treated for 16 h with 
intravenous (IV) infusion and subcutaneous (SC) injections of saline (control), IV infusion of 
intralipid and SC injections of saline (Lipid), or IV infusion of intralipid and SC injections of 
glucagon (Lipid + Glcg). 
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Analysis of metabolites and hormones 

     Plasma glucose, NEFA and β-hydroxybutyrate (BHBA) were analyzed by spectrophotometric 

methods based respectively on the enzymes glucose oxidase, acyl-CoA/oxidase, and β-

hydroxybutyrate dehydrogenase (Block et al., 2001).  Liver triglycerides (TG) and glycogen 

content were measured using procedures validated in cattle (Folch et al., 1957, Bernal-Santos et 

al., 2003).  In brief, total lipids were extracted using the Folch procedure followed by 

determination of TG by the colorimetric Hantzsch condensation method.  Glycogen was 

extracted with KOH, precipitated with ETOH and converted into glucose with amyloglucosidase; 

the spectrophotometric glucose oxidase was then used to measure released glucose.  The plasma 

concentrations of insulin and FGF21 were determined using double-antibody assays (Porcine 

insulin RIA, Millipore Corp; Human FGF21 ELISA, Eli Lilly Corp) previously validated with 

bovine plasma (Pires et al., 2007, Osman et al., 2008, Schoenberg et al., 2011), The standard 

curve range was 50 – 3200 pg/mL for FGF21 and from 2 – 200 ng/dL for insulin. The FGF21 

assay had a sensitivity of 36pg/mL while the insulin assay had a sensitivity of 12 ng/dL and a 

cross-reactivity with bovine insulin of 90% according to manufacturer.  Samples were analyzed 

in triplicates for all metabolites and hormone and inter- and intra-assay coefficients of variation 

were < 10% and < 6% for all metabolite assays, and < 6% for all hormone assays. 

Gene Expression Analysis 

     Frozen liver and adipose tissue were homogenized with Qiazol (QIAGEN, Inc., Valencia, 

CA).  Total RNA was isolated and purified using RNeasy Mini columns and on-column RNase-

free DNase treatment (Qiagen).  The quantity and integrity of the RNA was assessed using an 

RNA Nano Lab chip kit and bioanalyzer (Agilent, Palo Alto, CA).  Reverse transcription 

reactions were performed with 2 μg of RNA in a total 20 μL volume with the high-capacity 
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cDNA reverse transcription kit and RNase inhibitor (Applied Biosystems). Gene expression was 

analyzed with quantitative real-time PCR assays using Power SYBR Green Mix (Applied 

Biosystems).  Real-time PCR assays were performed in duplicate with a total 25 μL reaction 

volume containing 500 nM concentration of each primer and reverse transcribed mRNA (25 ng 

except 2.5 ng for the internal standard gene 18S).  The sequences of all primers used are given in 

Table 6.2. mRNA data were analyzed using a relative standard curve based on serial 2-fold 

dilutions of pooled cDNA from adipose or liver tissue.  Unknown sample expression levels were 

calculated from the standard curve and adjusted to the geometric mean of the invariant genes 

18s, Rps2, and B2M unless otherwise specified.  

Table 6.2. Bovine primers used in real-time PCR analysis. 
 
Transcripta                  Sequence b Product (bp) Accession No. 
RN18S1    
 F GATCCATTGGAGGGCAAGTCT 74 NR_036642.1 
 R GCAGCAACTTTAATATACGCTATTGG   
B2M    
 F CATCCAGCGTCCTCCAAAGAT 131 NM_173893.3 
 R CCCCATTCTTCAGCAAATCG   
FGF21    
 F GCCAGGCGTCATTCAGATCT 110 XM_005219486.3 
 R GAAAGCTGCAGGCTTTGGG   
FGFR1c    
 F GCAAGGTGTACAGTGACCCGCA 134 NM_001110207.1 
 R TTTGTCGGTGGTGTTAACTCCGG   
FGFR4    
 F GAATGGGCACGTTTACCCC 67 NM_001192584.1 
 R CAGTTTCTTCTCCATGCGCTG   
KLB    
 F TTCCCTGTGATTTCTCCTGGG 113 NM_001205326.1 
 R GTTGCCCGTCACATTCCACA   
RPS2    
 F GGAGCATCCCTGAAGGATGA 101 NM_001033613.2 
 R TCCCCGATAGCAACAAACG   

a Primers were designed to measure the abundance of the following transcripts:  18S ribosomal RNA (RN18S1), 
beta-2-microglobulin (B2M), fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1c (FGFR1c), 
fibroblast growth factor receptor 4 (FGFR4), β-Klotho (KLB), and ribosomal protein S2 (RPS2). 
b Primers sequences are shown in a 5’ to 3’ orientation. 
 

https://www.ncbi.nlm.nih.gov/nuccore/NR_036642.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_173893.3
https://www.ncbi.nlm.nih.gov/nuccore/XM_005219486.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_001110207.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001192584.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001205326.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001033613.2
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Statistical Analysis 

     Data were analyzed by the mixed procedure of SAS version 9.3 (SAS Institute Inc., Cary, 

NC).  Descriptive statistics were generated using MEANS procedures and comparison among 

groups was obtained using ANOVA.  For the glucagon experiment, data collected at multiple 

times were analyzed by a model accounting for treatment (saline vs glucagon), time and their 

interactions as fixed effects and animal as the random effect.  For the experiment involving 

glucagon and intralipid, the mixed model accounted for treatment (Control, Lipid, and Lipid + 

Glcg), time and their interaction as fixed effects and animal as the random effect.  If significant, 

variation accounted by treatment was partitioned in 2 orthogonal contrasts accounting for the 

effect of intralipid (Control vs Lipid and Lipid + Glcg) and the effect of glucagon (Lipid vs Lipid 

+ Glcg).  Both models included measurements collected during the basal period when available 

(e.g., plasma concentrations of metabolites and hormones) and involved the Toeplitz covariance 

structure resulting in the smallest Akaike’s information criterion.  Statistically significance and 

tendency were set at P < 0.5 and P < 0.10, respectively. 

 

 

RESULTS 

Experiment 1: effects of glucagon alone  

     Non-pregnant, non-lactating dairy cows received SC injections of glucagon every 8 h over a 

72 h study period.  Glucagon treatment had not effects on voluntary dry matter or energy intake 

(Table 6.3).  The calculated energy balance was equally positive across treatments and averaged 

122 and 123 % of estimated maintenance energy requirements for saline and glucagon treatment, 

respectively.  
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Table 6.3. Effect of glucagon treatment on whole body energetics. 
 

    Treatment a   
   Saline Glcg SEM P-value b 
Whole body energetics     
 Dry matter intake (kg/d) 9.96 10.17 0.19 NS 
 Energy intake (Mcal ME/d) 15.12 15.45 0.29 NS 
 Energy balance (Mcal ME/d) 4.26 4.58 0.21 NS 
 Energy balance (% maintenance) 122 123 5.00 NS 
a Dairy cows (n = 6) were treated with subcutaneous injections of saline or glucagon every 8h for 72h. 
b Type I error probability. NS = non-significant. 
 
 
     To document effectiveness of glucagon treatment, blood samples were obtained over the first 

8 h following the first injection and analyzed for plasma glucose, insulin and plasma NEFA.  

Over this period, the plasma concentration of glucose, insulin, and NEFA for the cows in the 

saline group remained nearly invariant at ~ 82 mg/dL, 5.49 ng/mL and 261 µM (Fig. 6.2A).  In 

contrast, the concentrations of glucose and insulin increased by 31% and 314% within the first 

hour after glucagon injection followed by a return to baseline over the next 3 hours (Fig. 6.2A; 

Treatment x Time, P < 0.001).  A reciprocal pattern was seen for plasma NEFA, with a 36% 

reduction at 1 h followed by a progressive return to baseline over the next 7 hours.   

     To determine whether repeated glucagon injections could lead to sustained changes overtime, 

additional samples were obtained at 16, 24, 48 and 72 h (Fig 6.2B).  These samples were taken 8 

h after SC injections but immediately before the next scheduled injection.  Plasma glucose 

remained 13% higher across all times with glucagon treatment (P < 0.001) but no effects were 

seen on plasma insulin and NEFA.  Liver biopsies were also obtained in a similar manner at 16 

and 72 h of the study period and analyzed for triglyceride and glycogen content (Fig. 6.3).  Liver 

glycogen content remained more or less stable over time whereas there was a numerical 

reduction in triglyceride content between 16 and 72 h.  Glucagon treatment had no significant 

effect on either variable.  
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Figure 6.2. Effect of glucagon administration on the plasma concentration of glucose, non-
esterified fatty acids (NEFA), and insulin.  
Dairy cows received subcutaneous injections of saline or glucagon every 8 h over a 72 h period. 
A) Plasma concentrations of each variable were measured at the indicated times relative to first 
injection at 0 h. For each variable, individual time point represents the mean ± SE of 6 cows. The 
significant effects of treatment, time and treatment x time are reported.  B) Plasma 
concentrations of each variable were measured at the indicated times immediately before 
injection of saline or glucagon. For each variable, individual bars represent the mean ± SE of 6 
cows.  The significant effect of treatment is reported.   
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Figure 6.3. Effect of glucagon administration on liver composition.  
Dairy cows received subcutaneous injection of saline or glucagon every 8 h for a 72 h period. 
Liver triglyceride and glycogen contents were measured on biopsies obtained after 16 or 72 
hours of treatment. Each bar represents the mean ± SEM of 6 cows.  
 

     To determine effects of glucagon on FGF21 production and its signaling components, mRNA 

abundance was measured in liver biopsies.  Glucagon caused similar increases in FGF21 mRNA 

expression at both 16 and 72 h (Fig 6.4A; Treatment, P < 0.04 and Treatment X Time, P > 0.6) 

even though FGF21 expression tended to drop over time (Time, P = 0.093).  Glucagon reduced 

the abundance of both β-Klotho and FGFR1c mRNA (Fig. 6.4C; Treatment, P < 0.05 or less) 

whereas an increase in FGFR1c mRNA abundance occurred between 16 and 72 h (Time, P < 

0.03).  Neither glucagon nor time affected hepatic FGFR4 expression.  Despite the positive 

effects of glucagon on liver FGF21 mRNA, plasma FGF21 did not differ between treatment 

groups at either 16 or 72 h of the study period (Fig. 6.4B).   
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Figure 6.4. Effect of glucagon administration on FGF21 variables.  
Dairy cows received subcutaneous injection of saline or glucagon every 8 h for a 72 h period. A) 
Total RNA was isolated from liver biopsies obtained after 16 or 72 h of treatment and analyzed 
for FGF21 mRNA abundance (n = 6 cows). The significant effects of treatment and time are 
reported. B) The plasma concentration of FGF21 was measured at the indicated times. Each bar 
represents the mean ± SE of 6 cows. C) Total RNA was isolated from liver biopsies obtained 
after 16 or 72 h of treatment and analyzed for mRNA abundance of the indicated genes. For each 
gene, each bar represents abundance (n = 6 cows). The significant effects of treatment and time 
are reported. 
 
 
Experiment 2: effect of increased plasma NEFA with and without glucagon 

     In mice, fatty acids acting through peroxisome proliferator-activated receptor α (PPARα) 

synergizes with glucagon to increase hepatic FGF21 expression.  To examine whether circulating 

fatty acids and glucagon interact to regulate FGF21 production in cattle, a second group of non-

pregnant, non-lactating dairy cows was infused for 16 consecutive hours with intralipid solution 

in presence or absence of glucagon injections at 0 and 8 h.  Intralipid treatments led to numerical 

depression in dry matter and energy intake, and as a consequence tended to reduce the extent of 

positive energy balance (Table 6.5; Lipid, P < 0.10).  After correcting for the caloric value of 
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infused solutions, however, energy balance calculated either as an absolute value or as a % of 

maintenance energy requirement was higher with intralipid than saline infusion (Lipid, P < 

0.001).  Glucagon treatment during intralipid infusion had no additional effect on these energy 

variables (Glucagon, P > 0.5). 

     Consistent with positive energy balance, the concentrations of plasma glucose, insulin and 

NEFA immediately before infusions averaged 58 mg/dL, 8.15 ng/ml and 99 µM and did not 

differ between treatments (Fig. 6.5A and 6.6).  Plasma NEFA averaged 92 µM throughout the 16 

h study period during saline infusion but rose within 1 h to a new steady concentration of 529 - 

568 µM during intralipid infusions (Fig. 6.5A; Lipid x Time, P < 0.001).  Biopsies were also 

collected at the end of each infusion to determine effects on liver TG.  After only 16 h, hepatic 

TG content increased from 1.09% of wet weight with saline infusion to an average of 4.8% with 

intralipid infusions (Fig 6.5B; Lipid, P < 0.001).  No additional effects were seen on any of these 

variables when glucagon and intralipid were co-administered (Glucagon, P = 0.66). 

     The plasma concentrations of BHBA and insulin increased within 3 h of intralipid infusion 

and remained elevated for the next 13 h whereas they remained at basal levels during the saline 

infusion (Fig. 6.6; Lipid x Time, P = 0.06 or less).  The elevations in the concentrations of 

BHBA and insulin were exacerbated when the intralipid infusion was combined with glucagon 

injections (Glucagon x Time, P < 0.005 or less).  On the other hand, neither intralipid infusions 

nor glucagon injections impacted plasma glucose concentration or liver glycogen over the study 

period (Fig 6.6 and Table 6.4)   

     Indices of FGF21 production and signaling were measured in liver and adipose tissues 

collected at the end of infusions.  In liver, intralipid infusions caused on average a ~ 34 fold 

increase in FGF21 mRNA over saline infusion (Fig. 6.7A; Lipid, P < 0.005), but the additional 
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increase seen when glucagon was present was not significant (Glucagon, P < 0.4).  FGF21 

signaling components in liver were not affected by treatments with single exception that 

presence of glucagon during intralipid infusion reduced β-Klotho expression.  In adipose tissue, 

intralipid infusions had no effect on the mRNA abundance of FGF21.  Intralipid infusions 

increased plasma FGF21 8 fold after 9 h of infusion with not further effects of glucagon; a 

similar increase was seen after 16 h of infusion. 

 

 

 
 

Figure 6.5. Effect of glucagon and intralipid on the plasma non-esterified fatty acids 
(NEFA) and liver triglyceride content.  
Dairy cows were treated for 16 h with intravenous (IV) infusion and subcutaneous (SC) 
injections of saline (control), IV infusion of intralipid and SC injections of saline (Lipid), or IV 
infusion of intralipid and SC injections of glucagon (Lipid + Glcg). A) Plasma concentration of 
NEFA, individual time points represent the mean ± SE of 6 cows. The significant effects of the 
lipid contrast and its interaction with time are reported. B) Triglyceride content was measured on 
liver biopsies obtained at the end of treatment. Each bar represents the mean ± SE of 6 cows. The 
significant effect of the lipid contrast is reported. 
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Figure 6.6. Effect of glucagon and intralipid on the plasma concentration of glucose, β-
hydroxybutyrate (BHB), and insulin.  
Dairy cows were treated for 16 h with intravenous (IV) infusion and subcutaneous (SC) 
injections of saline (control), IV infusion of intralipid and SC injections of saline (Lipid), or IV 
infusion of intralipid and SC injections of glucagon (Lipid + Glcg). Plasma concentrations of 
each variable were measured at the indicated times relative to start or infusion. For each variable, 
individual time point represents the mean ± SE of 6 cows.  The significant effects of the lipid 
contrast and its interaction with time are reported. 
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Table 6.4. Effect of intralipid infusion in absence or presence of glucagon injection on whole body energetics and liver 
glycogen. 
 
   Treatment a  P value of contrast b 
  Control Lipid Lipid + Glcg SEM Lipid Glucagon 
Whole animal energetics       
 Dry matter intake (kg/d) 11.33 10.62 10.91 0.21 NS NS 
 Energy intake (Mcal ME/d) 17.95 16.82 17.28 0.43 NS NS 
 Energy balance (Mcal ME/d) 7.26 6.14 6.60 0.45 NS NS 
 Corrected energy balance (Mcal ME/d) c 7.26 9.34 9.80 0.45 < 0.001 NS 
 Corrected energy balance (% maintenance) 129 137 140 4.00 0.04 NS 
Liver glycogen (% wet weight) 1.16 1.03 1.00 0.09 NS NS 

a Dairy cows (n = 6) were treatment with intravenous (IV) infusion and subcutaneous (SC) injection of saline (Control), IV infusion of intralipid and SC 
injection of saline (Lipid), or IV infusion of intralipid and SC injections of glucagon every 8 hours (Lipid + Glcg) P-value indicate the results when 
comparing all treatments. 
b Linear contrasts were Lipid (Lipid and Lipid + Glcg vs. Control) and Glucagon ( Lipid + Glcg vs. lipid). Type I error probability. NS = non-significant.   
c Estimated energy balance after including the caloric value of infused intralipid.. 
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Figure 6.7. Effect of glucagon and intralipid administration on FGF21 variables.  
Dairy cows were treated for 16 h with intravenous (IV) infusion and subcutaneous (SC) 
injections of saline (control), IV infusion of intralipid and SC injections of saline (Lipid), or IV 
infusion of intralipid and SC injections of glucagon (Lipid + Glcg). A) Total RNA was isolated 
from liver and fat biopsies obtained after 16 h of treatment and analyzed for FGF21 mRNA 
abundance (n = 6 cows). The significant effect of the lipid contrast is reported. B) The plasma 
concentration of FGF21 was measured at the indicated times. Each bar represents the mean ± SE 
of 6 cows. C) Total RNA was isolated from liver biopsies obtained after 16 h of treatment and 
analyzed for mRNA abundance of the indicated genes. For each gene, each bar represents 
abundance (n = 6 cows). Significant effects of the lipid contrast are reported. 
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DISCUSSION 

     Our previous work show that plasma FGF21 rises abruptly at the onset of lactation in dairy 

cows and remains elevated during the ensuing period of energy insufficiency (Schoenberg et al., 

2011).  Early lactation in dairy cows also features dynamic changes in the plasma concentration 

of a multitude of metabolites and hormones, many of which have been implicated in regulating 

plasma FGF21 in other physiological states and species (Herdt, 2000, Block et al., 2001, Ohtani 

et al., 2012, De Koster and Opsomer, 2013).  Early lactation is therefore a challenging 

physiological context to identify factors capable of regulating FGF21.  For this reason, we 

performed studies in energy-sufficient, non-pregnant and non-lactating dairy cows characterized 

by low plasma concentration of FGF21 and presumptive regulatory factors.  

     We selected glucagon as our first candidate for 2 reasons.  First, plasma glucagon is induced 

at the onset of lactation as a homeostatic response to counter the hypoglycemia associated with 

copious milk secretion (Bell, 1995).  The latter reflects the utilization by the mammary gland of 

> 80% of all available glucose in support of lactose synthesis (Bell and Bauman, 1997).  Second, 

glucagon has been shown to stimulate FGF21 production in both rodents and humans (Berglund 

et al., 2010, Cyphert et al., 2012, Arafat et al., 2013).  As previously showed in lactating dairy 

cattle using the same dose and mode of administration [i.e., 5 mg SC every 8 h] (Bobe et al., 

2003b, Osman et al., 2008, Osman et al., 2010), glucagon led to peak in plasma glucose and 

insulin within 1 h of SC injection.  These effects dissipated over the next 3 h such that they were 

no longer visible immediately before the next injection, with the exception of plasma glucose 

which remained elevated over the entire study period.  Despite these data demonstrating efficacy 

of glucagon treatment, we did not detect any measurable changes in plasma FGF21, either 

measured within the initial 8 h window or throughout the experiment.  It is important to note that 
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positive effects of glucagon on FGF21 in humans and rats were detected under insulinopenic 

conditions (Type I diabetes in humans and streptozotocin-diabetes in rats) (Arafat et al., 2013).  

This context allowed increased plasma NEFA, a necessary condition to the positive effects of 

glucagon and other lipolytic hormones on FGF21 in rodents and humans.  In our experimental 

setting, however, plasma NEFA were reduced for much of the 8 h periods separating glucagon 

injections, likely reflecting the anti-lipolytic effects of increased insulin.  Moreover, glucagon is 

unable of lipolytic effects in bovine adipose tissue (Etherton et al., 1977), negating the possibility 

an indirect effect through plasma NEFA even in physiological states where plasma insulin is 

low.   

     Profound energy insufficiency is another hallmark of early lactation in dairy cows (Bauman 

and Currie, 1980).  This feature reflects insufficient voluntary feed intake after parturition and 

therefore insufficient substrates of dietary origin to fulfill the rapidly rising energy demand of the 

mammary gland for milk synthesis (Bell, 1995).  As a consequence, plasma NEFA peaks ~ 500-

800 µM around parturition and remains higher than 300 µM for weeks (Block et al., 2001, 

McCarthy et al., 2015, McCarthy et al., 2016), reflecting, the intensity and extent of lipid 

mobilization.  To assess the role of plasma NEFA in inducing FGF21, we infused an intralipid 

solution directly in the vascular system for 16 h.  Relative to saline treatment, intralipid caused a 

chronic increase in plasma NEFA from 92 to ~ 550 µM, in line with plasma NEFA concentration 

prevailing over the first 2 weeks of lactation.  This single experimental manipulation was 

sufficient to increase plasma FGF21 from 1.3 ng/mL to 11.3 ng/ml.  Our data agree with 

stimulation of plasma FGF21 in rodents and humans by treatments increasing circulating NEFA 

such as fasting, intralipid infusion and GH therapy (Badman et al., 2007, Inagaki et al., 2007, 

Kharitonenkov et al., 2007, Badman et al., 2009).  We also tested glucagon in the presence of 
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intralipid on the basis of its synergistic effect in increasing FGF21 production (Berglund et al., 

2010).  Such glucagon actions, however, do not appear to occur in cattle as the combination of 

glucagon and intralipid did not lead to additional effects on plasma FGF21.  Overall, these data 

implicate elevated plasma NEFA as a key factor driving increased plasma FGF21 in early 

lactating dairy cows.    

     We previously reported that liver expressed FGF21 at 25-fold higher levels than White 

adipose tissue (WAT) in late pregnancy when plasma FGF21 is nearly undetectable, and 

represents the only tissue with increased FGF21 expression in early lactation (Schoenberg et al., 

2011).  To verify that intralipid mimics this mechanism, we measured FGF21 expression in both 

liver and adipose tissue.  Intralipid caused a 34-fold increase in FGF21 expression in liver.  This 

effect is likely to involve transcriptional effects through activation of the nuclear receptor 

PPARα as shown in humans and rodents (Badman et al., 2007, Inagaki et al., 2007, Lundasen et 

al., 2007, Galman et al., 2008, Domouzoglou and Maratos-Flier, 2011, Cyphert et al., 2012).  

Our data also show that glucagon alone is able to increase FGF21 expression in liver in absence 

of increased plasma NEFA.  This effect could still involve PPARα if, as demonstrated in the 

mouse, glucagon promotes translocation of this transcription factor to the nucleus (Longuet et al., 

2008).  Finally, lipids and their derivatives are able to stimulate FGF21 expression in adipose 

tissue.  These effects were inferred to depend on PPARγ rather than PPARα, based on 

stimulation of FGF21 mRNA by rosiglitazone but not GW4674 (Muise et al., 2008, Dutchak et 

al., 2012).  Our data show that increased NEFA are unable of such effects in cattle as intralipid 

failed to stimulate FGF21 expression in adipose tissue.  Overall, these data implicate NEFA 

activation of FGF21 production as a major mechanism accounting for increased plasma FGF21 

in transition dairy cows.   



144 
 

     Our experiment also provided an opportunity to assess effects of glucagon and intralipid 

treatment on expression of FGF21 signaling components in liver.  FGF21 is devoid of a 

proteoglycan binding domain necessary for high affinity binding to FGF receptors.  Instead, 

FGF21 secure high affinity binding through recruitment of the single pass transmembrane 

protein β-Klotho as a co-receptor (Ogawa et al., 2007, Kharitonenkov et al., 2008, Adams et al., 

2012).  Accordingly, we measured expression of β-Klotho (KLB), the preferred FGF21 receptor 

(FGFR1c) and the FGFR receptor expressed at the highest level in liver (FGFR4).  When 

administered alone, glucagon reduced hepatic expression of KLB mRNA whereas intralipid had 

no effect.  Impact of these treatments were reversed for FGFR1c, with intralipid increasing 

expression and glucagon lacking effects.  As a consequence, the combination of glucagon and 

intralipid reduced KLB mRNA but increased FGFR1c mRNA.  The functional significance of 

opposite directional changes for these signaling components on FGF21 action in liver remains 

unknown.  On the other hand, neither treatment affected hepatic expression of FGFR4. This is 

not surprising given that this receptor conveys predominantly FGF19 rather than FGF21 

signaling (Kuro-o, 2012). 

     Exogenous FGF21 administration promotes many adaptations associated with energy 

insufficiency.  In rodents, FGF21 has been shown to enhance hepatic gluconeogenesis, lipolysis 

in adipose tissue, and enhanced fatty acid oxidation and ketogenesis capacity in liver 

(Kharitonenkov et al., 2005, Badman et al., 2007, Inagaki et al., 2007, Potthoff et al., 2009, Chau 

et al., 2010, Chen et al., 2011, Vernia et al., 2014).  Similarly, gluconeogenesis, fatty acids 

oxidation, and ketogenesis are known to be up-regulated in the liver of early lactating dairy cows 

(Graber et al., 2010, Schlegel et al., 2012, Akbar et al., 2015)  Furthermore, it has been reported 

that FGF21 alleviates fasting induced accumulation of fat in liver by increasing TG clearance 



145 
 

(Badman et al., 2007, Inagaki, 2015) and that systemic administration of FGF21 decreases TG 

accumulation in liver of obese rodents (Coskun et al., 2008).  Therefore, this hepatokine may 

contribute to a better coordination of metabolic function between liver and WAT during the NEB 

state of early lactation in dairy cows.    

     In summary, our experiments implicate elevated plasma NEFA is a key factor triggering 

hepatic FGF21 production and increased circulating levels in early lactation.  Future work is 

needed to investigate the role of other candidate factors and to identify the functional 

consequences of increased plasma FGF21 at the onset of lactation. 
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     The transition from late gestation to early lactation is a challenging period for dairy cows.  

During this period, energy and mineral requirements are increased to support colostrum and milk 

production demands without an appropriate increment in dry matter intake (Bell, 1995, DeGaris 

and Lean, 2008), consequently dairy cows experience a period of negative energy and mineral 

balance (NEMB).  In order to overcome this challenge several metabolic adaptations, triggered 

by key metabolic hormones, take place around parturition leading to the mobilization of non-

esterified fatty acids (NEFA) and amino acids as alternative fuel source for various tissues, as 

well as mobilization of bone calcium reserves (Bauman and Currie, 1980, Bell, 1995, Bell and 

Bauman, 1997, Drackley, 1999, DeGaris and Lean, 2008).  Such adaptations are a hallmark of 

early lactation but some cows do not adapt to this new physiological state properly.  In this 

situation, elevated blood NEFA and low blood calcium concentrations are encountered and have 

been associated with increased disease occurrence (i.e. retained fetal membranes, metritis, 

displaced abomasum, fatty liver, and clinical ketosis), decreased milk production, and decrease 

reproductive performance (Duffield et al., 2009, Ospina et al., 2010a, b, Chapinal et al., 2011, 

McArt et al., 2012).  

     Therefore, the main objectives of this dissertation were: 1) To investigate the mobilization of 

body reserves during early lactation; 2) To characterize blood calcium concentration during the 

first 3 days in milk; 3) to evaluate the association between calcium concentration and changes in 

body weight as well as reproductive performance; 4) to assess the role of glucagon and NEFA on 

liver expression of the novel regulatory hormone fibroblast growth factor 21 (FGF21). 

     In Chapter 3, the association between BW change and subclinical hypocalcemia was 

investigated through an observational study.  Our results demonstrated that low blood calcium 

concentration and diseases in early lactation influence BW change in multiparous dairy cows, but 
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only the latter influences the BW change in primiparous animals.  Additionally, we reported the 

dynamics of blood calcium concentration during the first three days in milk.  Using a cut-off 

point of 8.0 mg/dL we determined that 17% of first lactation animals, 55% of second lactation 

animals, and 73% of third and greater lactation animals presented low blood calcium 

concentration during the first 3 days of lactation.  This results were in agreement with subclinical 

hypocalcemia prevalence and dynamics of blood calcium concentration previously reported by 

other (Goff, 2008, Reinhardt et al., 2011, Martinez et al., 2012).  The results of our experiment 

will contribute to further investigations connecting mineral and energy imbalances during the 

transition period. 

     As previously mentioned subclinical hypocalcemia (SHPC) has been associated with 

impaired reproductive performance (Chapinal et al., 2012, Martinez et al., 2012, Chamberlin et 

al., 2013).  Traditionally, SHPC has been defined as low blood calcium concentration within the 

first three days of lactation irrespective of the number of days the animals have low blood 

calcium concentration (Reinhardt et al., 2011, Martinez et al., 2012).  In Chapter 4 we introduced 

the concept of chronic SHPC, which was defined as blood calcium concentrations below 8.6 

mg/dL in all 3 first days post-calving.  Despite the more conservative disease definition used 

during our experiment, almost 50% of third and greater lactation animals were classified as 

chronic subclinical hypocalcemic with 97% of the animals in this parity group presenting blood 

calcium concentration below the cut-off point within 24 hours of calving.  Moreover, chronic 

SHPC was associated with longer time to return to cyclicity during voluntary waiting period, 

more days open, and lower odds of pregnancy at first service when compared to eucalcemic 

animals.  These findings suggest that subclinical hypocalcemia is highly prevalent in dairy cows 

and is one of the factors influencing productivity.  Additionally, by measuring blood calcium 
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concentration during the first 3 days of lactation and reporting its dynamics we can speculate that 

the current methods used to determine SHPC, e.g. measuring blood calcium concentration within 

48 hours of calving, might be inflating the prevalence of the disease and might not be the best 

recommended time to test for SHPC.  The data generated by this experiment can lead to the 

development of a more accurate SHPC testing scheme that can be used by the dairy industry at 

large. 

     Additional large epidemiological studies are necessary to determine the best cut-off points 

when defining subclinical hypocalcemia for the different parity groups.  Currently, the cut-off 

points are based on results of studies that did not account for the natural variation of blood 

calcium concentration within the first few days of lactation.  Therefore, understanding the 

variation of blood calcium concentration during the first week post-partum is imperative for the 

determination of the thresholds to be used when assessing the epidemiology of hypocalcemia in 

commercial herds.  The determination of a more accurate cut-off points based on the results of a 

scientific study using a large number of individuals will provide information about the 

association of blood calcium concentrations in early lactation and possible negative impact of 

such condition and downstream production outcomes.   

     The mobilization of body reserves to fulfil energy can be measured using several different 

methods such as visual body condition score (BCS) (Edmonson et al., 1989, Ferguson et al., 

1994), back-fat thickness (BFT)(Schroder and Staufenbiel, 2006) and body weight (BW)(Thorup 

et al., 2013).  Amongst the different methodologies, body condition score and back-fat thickness 

mainly measure the mobilization of subcutaneous adipose tissue (Brethour, 1992, Bruckmaier et 

al., 1998), while body weight might be the only method that also accounts for the protein 

mobilization happening in early lactation.  Extreme mobilization of body reserves can be 
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assessed using all three methods and has been associated with decreased milk production and 

impaired reproductive performance (Mosenfechtel et al., 2002, Berry et al., 2003, Lopez-Gatius 

et al., 2003, Roche et al., 2007, Sakaguchi, 2009).  Therefore, monitoring the mobilization of 

body reserves can be used as a management tool to determine when interventions should be 

launched to prevent metabolic problems and potential loss of production.  In Chapter 5, it is 

reported that BCS, BFT, and BW are correlated to each other and change similarly in early 

lactation across parity groups.  Additionally, our results show that daily BW change and BW 

change over the first 30 days in milk are a better predictor of milk production then BCS and 

BFT.  Therefore, when possible, sequential BW measurements, as often as weekly, during early 

lactation can replace BCS as a management tool. This could be a valuable tool to dairy producers 

because it eliminates the subjectivity of BCS and accounts for protein mobilization in addition to 

adipose tissue mobilization during the transition period.  

     As previously stated, the mobilization of body reserves is essential to dairy cows during early 

lactation because of the decreased energy availability characteristic of this period.  Recently 

FGF21 plasma concentration have been reported to peak on the day of calving in dairy cows and 

to remain elevated levels throughout the first weeks of lactation when cows are in NEB 

(Schoenberg et al., 2011).  Chapter 6 describes our experiments investigating the effects of 

glucagon and circulating fatty acids on FGF21 production in dairy cows.  Glucagon 

administration during the experimental period enhanced liver capacity to express FGF21 but had 

little effect on plasma concentration of FGF21.  In contrast, elevated plasma NEFA led to a 

substantially greater increment of hepatic FGF21 mRNA and to a 10 fold increase in plasma 

FGF21 concentration.  These findings implicate plasma NEFA as a significant driver of the 

plasma FGF21 surge in early lactating dairy cows. 
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     In future experiments, it will be important to determine whether FGF21 concentrations in 

early lactation dairy cows is associated with different liver fatty acid oxidation and ketogenesis 

capacity. Additionally, further research is necessary to determine if administration of FGF21 

decreases liver triglyceride accumulation similarly to what is observed in rodents. The 

understanding of FGF21 in liver fatty acid oxidation, ketogenesis, and fatty liver will provide 

information on the importance of FGF21 to the successful transition into lactation by high 

producing dairy.  

     Overall, the research described in this dissertation contributes to a better understanding of 

metabolic adaptations in transition dairy cows.  Nonetheless, the frequency of unsuccessful 

transition into lactation remains unacceptably high with substantial negative impact on animal 

welfare and the profitability of dairy enterprises.  Thus, further research is necessary to improve 

our understanding of physiologic adaptations in transition dairy cows so that metabolic problems 

can be prevented. 
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