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DEVELOPMENTAL AND INDIVIDUAL  

DIFFERENCES IN DECISION-MAKING 

 

Johannes Hugo Decker, PhD 

 

We are defined by our behavior—how we act and the decisions we 

make throughout life. The processes underlying decision-making are not fully 

understood, especially in regards to developmental and clinical populations. 

Cognitive processes have been proposed to reflect the function of two 

systems—one fast and automatic, the other slow and deliberative. These dual-

systems models fail to acknowledge the complex interconnectivity of neural 

networks, but have provided a useful framework in psychology for 

understanding decision-making. An extension of this work uses computational 

reinforcement-learning algorithms to help characterize potential evaluative 

processes thought to underlie decision formation. Simple evaluations use 

error-based feedback from prior responses to track the values of options while 

increasingly complex evaluations supplement that information to guide goal-

directed actions. Such goal-directed decisions are proposed to rely on the 

ability to form and recruit a cognitive representation of decision relevant 

information. Relatedly, information received through instruction is thought to 

have a prolonged biasing effect on habitual learning processes. While the 

signal underlying simple reinforcement-learning algorithms closely matches 

neural activity within a well-circumscribed circuit, more complex evaluative 

processes making up higher-order cognitive models of the world involve a 

distributed network of brain regions. Given that many of these regions and 

their connections show dynamic changes across development and 



	
  

perturbations in clinical populations, there are likely significant differences in 

the evaluative processes of decision-making among these groups relative to 

adults.  

Chapter One provides an overview of habitual and goal-directed 

decision-making. Chapter Two tests whether children and adolescents recruit 

task structure knowledge to make goal-directed decisions to the same extent 

that adults do. Chapter Three examines how instruction biases learning and 

decision-making across development. Chapter Four addresses how decisions 

involving delayed outcomes may be perturbed in anorexia nervosa. Chapter 

Five summarizes these results and offers a critical assessment of the current 

state of computational modeling of decision-making in developmental and 

psychiatric populations. Collectively, in this thesis, I report an initial attempt at 

using computational modeling as a method for understanding the underlying 

evaluative processes behind individual and developmental differences in 

decision-making, and discuss the advantages and disadvantages of this 

approach. 
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Chapter 1: Developmental and individual differences 

in decision-making – An introduction 

 

INTRODUCTION 

 
“Behavior has that kind of complexity or intricacy which discourages simple 
description and in which magical explanatory concepts flourish abundantly. 
[…] Behavior is what an organism is doing—or more accurately what it is 
observed by another organism to be doing. […] It is convenient to speak of this 
as the action of the organism upon the outside world.” – (Skinner 1938) 
 

The understanding of human behavior continues to be a major goal of a 

diverse set of scientific fields, including economics, sociology, psychology, 

neuroscience, and computer science. Countless studies have deepened our 

understanding of behavior and have provided insights into the underlying 

neural substrates thereof, and yet, how the brain ultimately drives behavior 

largely remains a mystery. Decision-making is a sub-category of behavior that 

has received much attention, particularly those decisions motivated by 

rewards, due to the comparative objectivity with which a decision can be 

experimentally measured (Edwards 1954). A decision can be defined as 

follows: an individual is presented with various options, determines the value 

of those options, takes an action, and evaluates the outcome that is received 

(Ernst and Paulus 2005). While the presented options, eventual actions, and 

outcomes are observable, the crucial evaluative step must be inferred from 

those observations. This evaluation depends on prior information, the 

observable external environment, and on unobservable internal factors 

encompassing emotion, mood, attention, memory, impulses, and motivations 

(Hampshire et al. 2012). Prior information can come from personal experience, 
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observing others’ experiences, and specific rules and instructions that are 

pertinent to the various goals one wants to achieve. The overarching goal of 

the study of decision-making is to understand the process by which this set of 

disparate factors interacts to form an eventual decision. Decisions have 

broadly been split into two categories, those resembling a habitual action and 

those that appear more goal-directed. Studying the underlying evaluative 

processes of these types of decisions may provide greater traction for 

understanding typical human behavior, and how these processes may go awry 

in neurological and psychiatric disorders. Clarifying the normal developmental 

maturation and individual differences in decision-making will hopefully lead to 

insights that can be applied toward understanding and preventing unhealthy 

decisions and treating those with difficulty in making appropriate decisions. 

 

Rationale for studying individual differences in decision-making 

The ongoing maturation of many behaviors throughout development 

provides an opportunity for experiences to fine-tune decision-making 

strategies, but also potentiates poor or risky decisions. The brain of the 

developing child and adolescent is thought to follow a trajectory passing 

through multiple sensitive periods that allow age-specific experiences to 

appropriately influence the formation and strengthening of various neural 

circuits that are necessary for supporting the increased independence of 

adulthood (Spear 2000; Munakata, Snyder, and Chatham 2012; Somerville 

2013; Galván 2014). However, this increased independence during 

adolescence can also lead to dangerous situations. For a host of potential 

reasons, such as an increased tolerance for ambiguous situations (Tymula et 

al. 2012), heightened sensitivity to rewards (Galvan et al. 2006), an inability to 
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self-regulate impulses (Heatherton and Wagner 2011), and the heightened 

influence of peers (Gardner and Steinberg 2005; Steinberg and Monahan 

2007; Pfeifer et al. 2011), adolescents often make decisions that can put 

themselves at risk (Simons-Morton, Lerner, and Singer 2005; Crone et al. 

2008; Chein et al. 2012). This increase in risky decision-making likely 

contributes to the increase in mortality rates seen in adolescence, when 

individuals are otherwise in prime health (Casey 2014). Indeed, 71% of deaths 

among persons aged 10-24 in a given year are a result of motor-vehicle 

crashes, other unintentional injuries, homicide, and suicide (Eaton et al. 2006). 

In contrast, earlier development of self-control strategies, such as being able 

to favor distant rewards over immediately rewarding actions, is associated with 

more rational decision-making and reaching higher levels of academic and 

social competencies later in life (Mischel, Shoda, and Peake 1988; Casey et 

al. 2011). Adolescence is also the time period where many psychiatric 

disorders are prone to develop (P. Cohen, Cohen, and Brook 1993; Wittchen, 

Nelson, and Lachner 1998; Merikangas et al. 2010; Paus, Keshavan, and 

Giedd 2008; F. S. Lee et al. 2014), many of which are also associated with an 

increase in harmful and potentially fatal decisions (Henriksson et al. 1993; 

Sullivan 1995; Suominen et al. 1998; Sareen et al. 2006). 

 The widespread impairment of decision-making in numerous psychiatric 

and neurological disorders has led to a growing medical interest in studying 

how its underlying processes may be perturbed (Bechara, Damasio, and 

Damasio 2000). Such decision-making impairments have been proposed to 

result from distinct types of dysregulation in different cognitive processes 

(Siegel and Ryan 1989; Barkley et al. 2001). Thus, diminished inhibitory 

control in ADHD, hypersensitivity to rewards in substance abuse, diminished 
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reward learning in Parkinson’s disease and schizophrenia, and the distorted 

weight placed on negative outcomes in anxiety and depression are likely due 

to disruptions in specific subcomponents of decision-making processing (D. 

Lee 2013). Such dysregulation can have profound consequences. Children 

with attention-deficit disorder are more likely to progress to problems with 

substance abuse, potentially resulting from a compounding effect in which 

early decrements in certain cognitive domains may prevent the appropriate 

development of other dependent cognitive processes (Nigg and Casey 2005). 

Poor decision-making has more generally been associated with greater levels 

of drug use, addiction, and gambling (Brand et al. 2005; Bechara 2005; H. de 

Wit 2009; Michalczuk et al. 2011). In anorexia nervosa, a defining part of the 

disease is the abnormal decision to persistently restrict the intake of caloric 

needs which leads to a significantly low body weight (American-Psychiatric-

Association 2013). This preference for delayed outcomes extends beyond 

decisions about food and body image (Steinglass et al. 2012), suggesting it 

may underlie a perturbation in a more general underlying evaluative process. 

Characterizing the evaluative processes that underlie decision-making will 

lead to a better understanding of both normal and disordered decisions. 

 

Historical account of decision-making  

Many different fields of study have provided insight into decision-

making processes. Philosophers have debated the concept of free will for 

millennia (Pereboom 2001). Behaviorists asserted that animal behavior was 

purely reactive to external stimuli (Thorndike 1898). Economists viewed 

decisions as rational or irrational and that they revealed an individual’s internal 

preference (Edwards 1954). Psychologists have been focused on determining 
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how decisions are represented in the mind (Anderson 1990). Cognitive 

neuroscientists have studied the neural networks that form both an individual’s 

mental state and their eventual decision (Gazzaniga 2004). More recently, the 

new interdisciplinary field of neuroeconomics has been formed in an effort to 

bring together these varying approaches that are all studying the same 

process (Glimcher and Fehr 2013). But first, let us begin with a brief account 

of the historical study and theory of decision-making.  

Early researchers heavily debated the level of “animal intelligence” 

(Thorndike 1898). Thorndike made repeated observations of learned animal 

behavior, specifically that of animals escaping an enclosure, and concluded 

that these complex actions were merely associative, habitual learning. An 

animal’s initial goal to escape was instinctive, which led to more or less 

random actions, and those actions that led to the animals escape were 

strongly reinforced. Thus, regardless of the anecdotal evidence suggestive of 

animal intelligence—his term for what he considered the sloppy scientific 

methodology of the day—Thorndike believed that all animal action was either 

instinctive or associative, rather than an “intelligent” evaluation to achieve a 

specific goal.  

Associative learning was the basis of much of modern psychology 

(Skinner 1938), and from which a careful set of terms were generated to allow 

for the objective and quantitative description of behavior. A stimulus was 

defined as an aspect or modification of the environment that affects an 

individual, and a response was defined as the corresponding action of that 

individual. Further, a reflex was defined as the learned behavioral association 

between a stimulus and response. While careful experimentation has 

extended this vocabulary, many experiments to this day use simple stimulus-
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response learning as means of studying behavior and specifically habitual 

decisions. I will be using the terms habitual and goal-directed decision-making 

to distinguish between two categories of decisions. Habitual decisions are 

based on associative, stimulus-response learning whereas goal-directed 

decisions are based on knowledge of rules, contingencies in the environment, 

and aspects of outcome not related to reward (Miller and Cohen 2001). 

Thorndike’s behaviorist account of habitual decision-making dominated 

for many decades, with no satisfactory evidence surfacing that showed that 

non-human animals were indeed capable of non-associative, “intelligent”, 

goal-directed decisions. However, through carefully designed and replicable 

methodology, evidence emerged that rats could indeed make purposeful, 

goal-directed decisions from information that was not obtained through 

reward-driven learning (Tolman and Honzik 1930). Tolman’s work showed that 

rats that had been pre-exposed to a maze learned much faster to complete 

the maze optimally once a reward was introduced relative to a control group 

that did not have this pre-exposure. This was an example of latent learning, 

learning of the maze structure that occurred without reinforcement, which 

allowed rats to make goal-directed decisions at key points in the maze. Many 

experiments followed that revealed similar types of goal-directed actions were 

possible, suggesting that animal decisions were not purely habitual. Tolman 

asked a question that is still being pursued today, ‘what are the conditions that 

favor the learning and utilization of a broad cognitive map versus a narrow 

map?’ Furthermore, he proposed that many psychopathologies resulted from 

the narrowing of such a cognitive map (Tolman 1948). Since this time, many 

animal behaviors have been observed that cannot be adequately described by 

habitual or associative processes. Indeed, the dead-reckoning of foraging 
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ants, the spatial representation of the digger wasp’s nest, and the ability of 

rats, birds, and fish to represent time, number, and rate all provide evidence 

that animals are capable of goal-directed behavior (see Gallistel 1989 for a 

review), and not simply behavior that reflects stimulus-response associations. 

Throughout history, behavior has been described as being determined 

by two separate systems, alluded to throughout this thesis as habitual and 

goal-directed decisions. From Plato’s dichotomy between reason and passion, 

Freud’s Id and Ego, and Thorndike’s animal reflexes and intelligent behavior—

many accounts of behavioral and cognitive processes have been put into this 

dual systems framework: heuristic versus analytic (Evans 1984), associative 

versus rule-based (Sloman 1996), implicit versus verbal (Ashby et al. 1998), 

hot versus cool (Metcalfe and Mischel 1999), automatic versus controlled 

(Schneider and Shiffrin 1977; Posner, Nissen, and Ogden 1978), bottom-up 

versus top-down (Corbetta and Shulman 2002; Posner and Petersen 1990), 

system I versus system II (Kahneman 2003), and impulsive versus reflective 

(Strack and Deutsch 2004). The many instantiations of this dual system model 

present the two systems as acting separately from one another. Where the 

habitual system is seen as emotional, fast, reflexive, simple, and automatic, 

the more goal-directed system is seen as reasoned, slow, reflective, complex, 

and deliberative.  

In decision contexts where animals tend to employ habitual learning 

strategies, humans often take a goal-directed approach. Even for simple 

procedural learning tasks, in which stimulus-response learning is sufficient, 

humans often use quite complex strategies (S. C. Hayes et al. 1986). This use 

of goal-directed strategies is thought to require a cognitive representation of 

the task at hand, and thus may rely on the ability to verbalize what must be 
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done. As such, pre-verbal infants and animals often perform similarly to each 

other but differ remarkably from older children and adults in basic reward 

learning tasks (Lowe, Beasty, and Bentall 1983). However, it is critical to note 

that goal-directed decision-making is not necessarily superior to habit, but that 

either strategy may be appropriate, or superior, in a given environment. 

Indeed, attempting to use a reasoned approach can actually diminish 

performance relative to more simple stimulus-response strategies in some 

tasks (Bocanegra and Hommel 2014). And even complicated decisions are 

often answered better using non-deliberative approaches (Dijksterhuis et al. 

2006). In an elegant example that shows the superiority of habitual learning in 

certain contexts, pigeons and humans were both trained in a categorization 

task in which the categories were difficult to verbalize, and whereas all four 

pigeons could transfer this knowledge to a test phase, only 1 of 10 humans 

performed above chance (Jitsumori 1993). The pigeons likely learned the 

categorization through simple associative learning and responded using 

habitual processes. In contrast, the human participants’ reported use of 

inaccurate verbal rules likely led to their poor performance (Ashby et al. 1998). 

Thus, recruitment of a verbalized goal-directed strategy can impede habitual 

learning processes and actions, which athletes are well aware of when they 

attempt to verbalize their well trained motor actions (Flegal and Anderson 

2008). This work suggests that the degree to which instructions elicit a verbal 

rule or cognitive map may change a normally automatic decision into one that 

is goal-directed.  

The expansive adoption of dual-systems terminology comes from the 

useful intuition it provides for how humans behave, but there are issues with 

using such simple toy models. The distinction between these systems is not 
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always consistent (Sloman 1996), especially the use of “hot and cool” 

terminology, which has occasionally made interpretation of results difficult 

(Gladwin and Figner 2014). This confusion is compounded when applying 

these models across development, when the brain networks proposed to 

underlie these processes are in a maturational flux. Here, the two systems 

have been presented as being imbalanced (Casey et al. 2010), where the 

ontogenetically early maturation of a simpler system relative to the later 

maturation of a more complex system is manifested in the turmoil of 

adolescence. This model has been critiqued (Pfeifer and Allen 2012), 

defended (Strang, Chein, and Steinberg 2013), and reframed to account for 

the known issues in dividing the brain into two systems (Casey 2014). Neural 

networks are widely distributed, parallel, and interconnected rather than 

separate (Mesulam 1990). As such, it is presumed that many evaluative 

processes occur in tandem across mutually overlapping regions of the brain to 

eventually result in a single decision. Thus, it is especially critical to consider 

how these processes interact and inform one another.  

Despite their limitations, dual-systems models capture important 

behavioral distinctions, and have provided an important insight into behavior 

that has remained valid over time, solidifying the idea that decisions stem from 

multiple underlying evaluative processes (Sloman 1996). Whereas the goal-

directed form of evaluation may involve the recruitment of cognitive 

representations of external stimuli and internal goals, the habitual system may 

rely on associative stimulus-response representations. The key point is that 

these evaluative processes are not separate. A parsimonious and more 

biologically plausible model suggests that there likely exists as a continuum of 

how many modalities and cognitive representations can be evoked when 
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making a specific decision (Kahneman 2003; Marchette, Bakker, and Shelton 

2011; Daw et al. 2011; Dolan and Dayan 2013). Adaptive control of behavior 

in a dynamic environment involves a fluid and contextually sensitive balance 

between these dissociable learning systems. Whereas habitual behavior 

allows for the well-honed behavioral routines without forethought or attention, 

goal-directed behavior enables the flexible adaption of behavior to the 

dynamic state of our world, and true behavior is a mixture of both. Throughout 

this thesis, I will use the terms habitual and goal-directed to represent the ends 

of this continuum. While there is still much to be learned about decision-

making, many of the component cognitive processes that support various 

types of decision-making have been quite well described.  

 

Cognitive processes of goal-directed decision-making 

Decision-making depends on various cognitive processes at every 

stage of a decision—from evaluating potential options, executing an action, 

and evaluating the outcome (Ernst and Paulus 2005)—including, but not 

limited to, working memory, planning, and inhibitory control. The set of 

cognitive processes which support goal-directed behavior has been called 

executive or cognitive control (Miller and Cohen 2001). Evoking these 

processes to various extents may change decision behavior. Working memory 

was initially thought to be a singular system that kept recent information in 

mind, but is now considered to consist of auditory, visual, and episodic 

memory components that are coordinated by a central executive (Baddeley 

and Hitch 1974; Paulesu, Frith, and Frackowiak 1993; Baddeley 2010). 

Working memory ability is long been known to improve across development 

(Siegel and Ryan 1989), and may depend on different neural structures across 
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development (Finn et al. 2010). Decisions have been shown to become less 

goal-directed and more habitual when this central executive system is taxed 

with a working-memory task (Otto, Gershman, et al. 2013). Thus, depending 

on the complexity of the task, working memory capacity may play a crucial role 

in goal-directed decision-making. 

Planning is also crucial for decision-making and relies on proper 

working memory to keep goal-relevant information in mind. A decision can be 

planned based both on memories of past events (retrospection) and 

simulations of potential future outcomes (prospection) (Gilbert and Wilson 

2007), both of which rely on a cognitive representation of the world 

(Gershman, Markman, and Otto 2014). Additionally, the ability to represent 

and utilize rules relies both on planning and working-memory processes. 

Rules and explicit information can help form a cognitive representation of the 

decision problem and must be maintained in working memory at the relevant 

points of a decision. As may be expected, this ability to hold and use multiple 

rules in mind increases with age (Diamond, Kirkham, and Amso 2002). The 

degree to which internal and external rules are followed can influence the 

types of decision-making strategies that are pursued (Sloman 1996). For 

example, rules and prior information have the ability to generate confirmation 

biases (Nickerson 1998), in which new information is weighed subjectively 

differently to fit with prior beliefs. That is, the normal associative learning 

thought to underlie habitual action is altered in such a way that it does not 

accurately track value changes, which has been proposed to occur through 

the influence of goal-directed representations of the world (Doll, Simon, and 

Daw 2012).  
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The ability to inhibit non goal-oriented actions is another crucial aspect 

of decision-making, and has often been used to probe disorders of impulsivity 

(Bickel, Odum, and Madden 1999; H. de Wit 2009; Scheres et al. 2010). 

Multiple factors can lead to impulsive decisions, such as the salience of the 

inappropriate stimulus (Casey 2005), the inability to keep goal relevant 

information in mind, or the inability to appropriately apply that information, 

which can be observed when an individual can verbalize the appropriate 

action but fails to do so (Strommen 1973). A task commonly used as a 

measure of impulsivity and self-control is known as delay discounting 

(Steinberg et al. 2009), which shares some properties with delay of 

gratification (Mischel, Shoda, and Rodriguez 1989). Discounting tasks require 

individuals to choose between smaller rewards that are available immediately 

and larger rewards available after a variable delay. The overall preference for 

delayed rewards serves as an assessment of self-control and has been 

considered to reflect a goal-directed decision that requires the cognitive 

representation of the future (Kurth-Nelson, Bickel, and Redish 2012). Indeed, 

imagining the future leads to a preference for the larger delayed rewards, 

potentially because the forced prospective representation of the future 

simplifies the evaluation of delayed rewards (Benoit, Gilbert, and Burgess 

2011; J. Peters and Büchel 2011). Decision tasks can be designed to test 

each component of a decision, and examining the underlying evaluative 

process of these steps will help clarify decision-making. 

Although perception, emotion, motivation, and long-term memory also 

support decision-making, the cognitive processes discussed above are critical 

for the types of decisions that occur in the tasks presented in this thesis. 

Furthermore, there are well characterized developmental differences observed 
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in cognitive control (Munakata, Snyder, and Chatham 2012), working memory 

(Diamond, Kirkham, and Amso 2002; Olesen, Westerberg, and Klingberg 

2004), effective use of abstract rules or instruction (Bunge and Zelazo 2006), 

and response inhibition (Diamond 2006; Somerville and Casey 2010). These 

processes are proposed to underlie the increased capacity for making goal-

directed decisions with age (Munakata, Snyder, and Chatham 2012). Finally, 

psychiatric diseases are known to have deficits in these cognitive processes 

as well, which may explain the disrupted decision-making of many individuals 

with psychiatric conditions in tasks of reward learning and delay discounting 

(Montague et al. 2012; D. Lee 2013). 

 

Decision-making neural circuitry  

As much of the early work in characterizing the neurocircuitry of 

decision-making processes was built upon the foundation of a dual-systems 

model, it is straightforward to characterize the progress made in understanding 

the underlying neurobiology in those terms. Both habitual and goal-directed 

action selection strategies rely on large, overlapping, and cooperative neural 

networks, although they have often been proposed to be supported by 

separate circuits. The evolution of different brain structures is used as a strong 

indicator for which networks are required for various cognitive functions. 

Whereas the subcortical regions known as the basal ganglia have a conserved 

structure across vertebrate species, there has been tremendous growth and 

increasing complexity in the prefrontal cortex (Redgrave, Prescott, and Gurney 

1999; Grillner and Robertson 2015). It follows that the habitual behaviors that 

are observed in both lower and more phylogenetically advanced animals are 

likely supported by subcortical and very basic forebrain regions (Grillner et al. 
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2008), whereas the increasingly complex goal-directed behaviors of humans 

likely depend on the expanded prefrontal cortex.  

Animal lesion studies, when combined with simple learning tasks, have 

provided insights into the underlying neural circuitry of decision-making, many 

of which have been extended to humans with neuroimaging studies. In these 

experiments, animals are initially trained to perform a specific action through 

reinforcement and then, by changing the value or contingency of the outcome, 

their behavior can be assessed to determine whether they are employing a 

habitual or goal-directed strategy. Early studies of the striatum showed that 

there was a major division, with the ventral striatum shown to be processing 

salience and reward information (Kelly, Seviour, and Iversen 1975; Taylor and 

Robbins 1986; Cardinal et al. 2001), and the dorsal striatum shown to be 

processing sensorimotor information to help learn and refine motor actions 

(Graybiel 1995; Voorn et al. 2004). This division was proposed to reflect the 

learning and action components of a decision, with a shared role in evaluation 

(Joel, Niv, and Ruppin 2002). Such a division has also been reported in 

human imaging studies (O’Doherty et al. 2004). The dorsal striatum however 

can be further subdivided and has been shown to play roles in the cognitive 

aspects of decision-making in addition to simple motor functions (Balleine, 

Delgado, and Hikosaka 2007; Bornstein and Daw 2011). Forming stimulus-

response associations is the basis of habitual actions, whereas learning about 

the outcomes of those actions is a hallmark of goal-directed behavior. The 

dorsolateral striatum has been shown to be necessary for the acquisition and 

expression of habitual behaviors (Yin, Knowlton, and Balleine 2004; Yin and 

Knowlton 2006; Yin, Ostlund, and Balleine 2008; Tricomi, Balleine, and 

O’Doherty 2009), and the dorsomedial striatum has been shown to be a key 
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node in goal-directed behavior (Yin and Knowlton 2004; Yin et al. 2005; 

Clarke, Robbins, and Roberts 2008; Brovelli et al. 2011). A rare human case 

of bilateral lesion to the head of the caudate (dorsomedial striatum) implicates 

it in the role of numerous cognitive processes, including those thought to 

underlie goal-directed decision-making (Richfield, Twyman, and Berent 1987). 

Separately, the hippocampus also projects to the ventral striatum, and is 

thought to be crucial in the planning aspect of goal-directed decision-making 

(van der Meer, Kurth-Nelson, and Redish 2012). Taken collectively, the 

striatum is an important conduit for both habitual and goal-directed decisions. 

Another influential contribution to decision-making that must be 

discussed alongside striatal function is the dopamine neuromodulatory 

system. Dopamine, through its input on the ventral and dorsal striatum, has 

long been known to play a role in reward learning (Schultz 1986; Taylor and 

Robbins 1986) and action selection (Dauer and Przedborski 2003). However, 

dopaminergic inputs from the ventral tegmental area innervate broad swaths 

of the cortex as well. Dopamine appears to play a key role in modulating goal-

directed behavior (Durstewitz and Seamans 2008; Cools 2011), potentially 

through its input on the prefrontal cortex as well as in the hippocampus (Goto 

and Grace 2005). Although the mechanisms through which dopamine 

modulates goal-directed choice are not well understood, there is evidence that 

it may stem from its gating of prefrontal and hippocampal information to the 

striatum, enabling state and other goal-relevant information to inform the 

learning signal (Goto and Grace 2005). The dopaminergic system undergoes 

marked developmental changes from childhood to adulthood and this 

dopaminergic maturation has been proposed to contribute to the maturation of 

goal-directed behavior in rodents (Naneix et al. 2012). Other neurotransmitter 
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systems are known to influence multiple cognitive processes that are involved 

in making decisions (serotonin in impulsivity and emotion, acetylcholine in 

memory, and norepinephrine in attention and arousal), and therefore it is 

important to include these neuromodulatory systems in the interpretation of the 

neural circuits of decision-making (Ernst and Paulus 2005).  

The distinction between sub-region roles within the prefrontal cortex is 

less clear, with many studies highlighting areas that support different aspects 

of goal-directed decision-making. This is due in part to the wide distribution of 

cognitive functions among different cortical regions, and the fact that higher 

cognitive functions are themselves less distinguishable from one another and 

rely on subcomponents of each other (Manes et al. 2002). An example of this 

can be seen in the broad cognitive impairments noted in patients with diffuse 

frontal lobe damage (Russel 1948; Delazer et al. 2007). However, by 

comparing naturally occurring lesions of the human prefrontal cortex with 

homologous surgical or ablative lesions in monkeys and rats that result in 

similar disruptions in cognitive processes related to goal-directed decision-

making (e.g. response inhibition or perseverative behavior, temporal ordering 

of actions, and spatial orientation (B. Kolb 1984)), some separation is possible. 

Whereas orbital prefrontal (ventral in rats) lesions lead to more problems with 

response inhibition, dorsolateral prefrontal (medial in rats) lesions lead 

primarily to problems in ordering and spatial orientation. These regions 

correspond fairly neatly with recent neuroimaging studies in humans for 

response inhibition (Aron and Poldrack 2006; Chikazoe et al. 2007), planning 

and ordering (Tanji and Hoshi 2001; Knutson, Wood, and Grafman 2004), and 

the use of spatial maps (Hagler and Sereno 2006; Curtis 2006). While the 

prefrontal cortex has been shown to support many executive functions (Miller 
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and Cohen 2001), it is becoming increasingly clear that these rely on a broad 

network of regions outside of the prefrontal cortex, especially the parietal 

cortex, amygdala, and hippocampus (Corbetta and Shulman 2002; Casey 

2014). 

The preceding paragraphs point to specific regions involved in various 

components of the decision-making process, but it is crucial to also consider 

their interconnectivity, as no region functions in isolation. The cortex has 

inputs on the striatum in multiple distinct circuits, and after relaying through 

multiple nuclei of the basal ganglia, these circuits end up looping back to the 

cortex (Graybiel 1995; Haber and Knutson 2009). The dorsolateral striatum is 

interconnected with the sensory and motor cortex, the dorsomedial striatum 

with associative cortex, and the ventral striatum with the prefrontal cortex, 

amygdala, and hippocampus, but these circuits are not defined by sharp 

borders and are instead overlapping (Graybiel 1995; van der Meer, Kurth-

Nelson, and Redish 2012). Furthermore, the output neurons in these loops 

project more heavily back to the associative prefrontal cortex than to the motor 

cortex, suggesting that any separation of decision-making systems in the 

striatum is likely reintegrated in the prefrontal cortex to assist in the arbitration 

between multiple evaluative processes (Graybiel 1995). Thus, this 

corticostriatal circuitry integrates information form a broad network of neural 

structures that support decision-making (van der Meer, Kurth-Nelson, and 

Redish 2012). 

 

Decision-making networks in developmental and psychiatric populations 

 The neural structures that comprise the decision-making network 

undergo extensive maturational changes across development (M. H. Johnson 
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2001; Somerville, Jones, and Casey 2010). Neural maturation can be 

measured using multiple indices, such as local and global structural changes 

in addition to functional changes. At the local structural level, gray-matter 

cortical thickness has been shown to increase sharply in infancy and early 

childhood, peak in late childhood, and decrease across development in a 

posterior to frontal fashion (Giedd et al. 1999; Gogtay et al. 2004). This 

change in thickness is thought to reflect the overgrowth and pruning of 

neuronal synaptic connections (Chechik, Meilijson, and Ruppin 1998), and the 

posterior to anterior pattern is thought to be related to the gradual 

improvement of first motor and then more cognitive abilities across 

development. A recent study focusing on subcortical structures has revealed 

highly heterochronous development in the striatum, with the caudate tail and 

putamen showing significant expansion with age and the caudate head 

showing contraction with age, and that these maturational changes continue 

into early adolescence (Raznahan et al. 2014). These changes in gray-matter 

volume suggest that fine-tuning of local circuits continues throughout 

development. At the global structural level, white-matter volume has been 

show to increases well into the third decade of life (Imperati et al. 2011), 

thought to reflect the increasing myelination of axons, which allows for the 

more efficient communication between regions comprising a neural network. 

More intact fronto-striatal white matter tracts, as measured by lower levels of 

radial diffusivity, have been associated with increased levels of cognitive 

control (Liston et al. 2006). The structural changes that occur across 

development strongly suggest that the strong integration between different 

regions of the brain is crucial for the increasing cognitive abilities with 

increasing age. Structural changes, however, do not speak to the changes in 
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network function that are thought to underlie developmental differences in 

behavior. 

Functional imaging studies, in contrast, allow for the BOLD (blood-

oxygen-level dependent) signal of every region of the brain to be directly 

compared with behavior as it occurs, allowing for a richer characterization of 

which networks may play a role in decision-making across development (Luna 

and Sweeney 2004; Kotsoni, Byrd, and Casey 2006). Supporting the structural 

observations, functional imaging studies have found that greater cognitive 

control is associated with an increased recruitment of the frontostriatal network 

(Dalley, Everitt, and Robbins 2011), and that the deficits in cognitive control of 

children and adolescents are associated with lower BOLD signal in these 

regions (Rubia et al. 2006; Rubia et al. 2007; Somerville, Hare, and Casey 

2011). While better performance in tasks gauging executive functioning is 

generally associated with increased BOLD signal (Crone and Dahl 2012), 

some studies report heightened responses in children with equivalent 

performance to adults (Pfeifer and Allen 2012). This discrepancy likely reflects 

the difference between the tendency to recruit a cognitive process and the 

efficiency with which it is done, highlighting the care needed in interpreting 

developmental differences (Strang, Chein, and Steinberg 2013). In addition to 

the differential recruitment of the same network, some studies suggest that 

children and adults recruit different networks for the same task (Thomas et al. 

2004; Finn et al. 2010). These studies provide evidence that decision-making 

networks are recruited differentially across development, which could reflect a 

difference in the underlying evaluative processes themselves, or how they are 

being recruited to inform choices across the lifespan. 



 20 

The diverse symptomatology of various psychiatric disorders has led to 

the fractionated study of their underlying neurobiological substrates; however 

by focusing on the overlapping symptom of disrupted decision-making, 

insights from one disorder may be informative for the others (Sharp, 

Monterosso, and Montague 2012). Additionally, it is critical to understand the 

development of decision-making and its neural circuitry as most psychiatric 

diseases appear in adolescence (Casey, Oliveri, and Insel 2014). Disruptions 

in the neuromodulatory systems play a role in many psychiatric disorders—

dopamine in substance abuse, attention deficit-hyperactivity disorder, and 

schizophrenia; serotonin in depression, anxiety, and anorexia nervosa—which 

are known to be important for decision-making (Montague et al. 2012). 

Dopamine is crucial for both habitual and goal-directed actions and serotonin 

has been associated with impulsivity and self-control (D. Lee, Seo, and Jung 

2012). Currently, a trend in psychiatry has been to focus on the changes in 

neural circuitry that are at the root of various psychiatric diseases (van der 

Meer, Kurth-Nelson, and Redish 2012). An important characteristic of 

substance use disorders is an underlying change in brain circuitry that may 

persist beyond detoxification (American Psychiatric Association 2013), which 

carries the strong implication that there is a disruption in the system underlying 

reward learning and habit formation (Huys et al. 2014). In anorexia nervosa, 

both disease specific and neutral tasks have been used to reveal differential 

neural signaling from healthy controls in many regions of the decision-making 

network, including the anterior cingulate (Zastrow et al. 2009), head of the 

caudate (Rothemund et al. 2011), and dorsolateral prefrontal and parietal 

cortices (van Kuyck et al. 2009). The broad array of cognitive processes and 

associated neuronal changes observed in various psychiatric disorders makes 
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it difficult to generate a clear network model that underlies the observed 

cognitive changes in these disorders. By focusing on perturbed decision-

making that is devoid of disease specific stimuli, it may be revealed that 

different aspects of a common evaluative process are affected in different 

psychiatric disorders. 	
  

	
  

Computational approaches towards understanding decision-making  

Computational models have been used to formalize the distinct 

evaluative processes postulated by dual systems theories of decision-making. 

Marr proposed that to understand an informational processing system—vision 

in his example, but the proposal is equally valid for decision making—it must 

be characterized at three levels: computational theory, representation and 

algorithm, and hardware implementation (Marr 1982). The computational 

theory captures the goal of the process and the logic of the strategy behind its 

implementation. In psychology a decision has been defined as observing and 

evaluating a set of options, and taking an action to obtain an outcome – with 

habitual and goal-directed responses serving as two strategies to do so. The 

representation and algorithm is a set of mathematical rules that allows input 

(external stimuli and internal states) to be transformed into output (action). The 

hardware implementation is the brain, but determining the mechanism of this 

implementation and which networks are involved in various cognitive 

processes is a pursuit that will long be followed in neuroscience. Research 

focusing on any of these levels of understanding a cognitive process will 

inform the others. 

While it is agreed that there is likely a continuum of decision-making 

between purely habitual choices and those that are goal-directed (Dolan and 
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Dayan 2013), these two extremes of decision behavior have proven quite easy 

to represent as mathematical models. Two classes of reinforcement-learning 

algorithms that are formalized in computational theory capture the key 

properties of habitual and goal-directed learning and have been proposed to 

approximate their underlying neural computations (Daw, Niv, and Dayan 

2005). “Model-free” learning recruits trial and error feedback to efficiently 

update a cached action value associated with a stimulus. In contrast, “model-

based” learning algorithms select actions via a flexible but computationally 

demanding process of searching a cognitive model or “map” of potential state 

transitions and outcomes. Rescorla and Wagner described an early model-

free learning algorithm, based on a reward prediction error signal that encodes 

the discrepancy between expected and experienced outcomes (A. R. Wagner 

and Rescorla 1972). This algorithm has been modified for various types of 

related learning (Sutton and Barto 1998), but each version relies on a simple 

evaluation system that uses error-based feedback from prior responses to 

track the value of various options. In contrast, a model-based algorithm uses a 

representation of all possible action outcome possibilities and calculates which 

action is likely to lead to the highest reward given the current information. 

Furthermore, a behavioral strategy that favors a mixture of the habitual and 

goal-directed approaches can be implemented computationally as a weighted 

average of these two separate reinforcement-learning algorithms (Daw et al. 

2011). 

Model-free and model-based learning are proposed to recruit distinct 

underlying neural processes (Daw, Niv, and Dayan 2005). Dopaminergic input 

to the striatum, carrying a signal that resembles a computational reward 

prediction error, is thought to support such a model-free learning process 
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(Schultz, Dayan, and Montague 1997; Pagnoni et al. 2002; McClure, Berns, 

and Montague 2003; O’Doherty et al. 2003). Developmentally, the striatal 

prediction error signals thought to underpin model-free learning appear to be 

relatively mature from childhood onwards (Galvan et al. 2006; J. R. Cohen et 

al. 2010; van den Bos et al. 2012). Model-based learning also engages striatal 

prediction error signals (Daw et al. 2011), but these signals are thought to 

integrate information about states and outcomes that stem from a more 

extensive network of brain regions. Both the hippocampus and the prefrontal 

cortex, regions with strong connectivity to the striatum (Pennartz et al. 2011), 

are proposed to play a role in the representation and search of a cognitive 

model of the task (Hassabis et al. 2007; Pfeiffer and Foster 2013; Wilson et al. 

2014). Model-based learning also depends on the dorsolateral prefrontal 

cortex (Smittenaar et al. 2013), which may reflect the engagement of working 

memory and cognitive control processes (Miller and Cohen 2001; Otto, 

Gershman, et al. 2013). Studies that examine the development of these 

circuits and their relationship to the underlying evaluative processes of 

decision-making may serve as a way to understand suboptimal decision-

making across development and in various psychiatric populations (Stephan 

and Mathys 2014). Extending computational algorithms that were developed 

to study adult decision-making such that they characterize the decisions of 

developmental and psychiatric populations is one approach to studying these 

evaluative processes. 

 While the model-free and model-based algorithms include both the 

learning and action components of a decision in their algorithms, alternative 

models for the action selection algorithm can be used independently to 

describe decision-making in tasks where no learning occurs. This is the 
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approach that is used in tasks known as delay (or probability) discounting, in 

which a choice must be made between two differently valued options that are 

available after different delays (Laibson 1997). This type of choice has also 

been suggested to reflect goal-directed decision-making, as evaluating the 

delayed reward can be considered as a search through a cognitive 

representation of the future (Kurth-Nelson, Bickel, and Redish 2012). 

Therefore, a computational model that only consists of action-selection phase 

can still be used to probe the underlying process of the decision-making that 

supports goal-directed behavior. 

 

The Current Thesis 

 In this thesis, the goal is to further the understanding of the evaluative 

processes underlying decision-making across development and within 

anorexia nervosa. We explored how children, adolescents, and adults make 

decisions when different levels of task information, such as task structure or 

advice, could be used to form an evaluation, and thereby sought to 

understand the reliance on simpler, habitual versus more complex, goal-

directed strategies of decision-making across development. Additionally, by 

comparing how healthy individuals and those with anorexia nervosa evaluated 

decisions involving delayed outcomes while they underwent a functional 

neuroimaging scan, we probed whether these groups recruit different neural 

circuits, or the same circuits to differing extents. 

 The thesis has been structured as follows: Chapter 1, “Individual and 

developmental differences in decision-making – An introduction,” 

provided the basic framework by which psychologists and cognitive 

neuroscientists have studied decision-making, habitual and goal-directed, two 
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strategies at extreme ends of a decision-making continuum. Furthermore, 

developmental and psychiatric disruptions in cognitive processes and neural 

circuitry were highlighted to offer an indication that the underlying evaluative 

processes may be different form those seen in healthy adults. Finally, it 

summarized the computational approach to understanding decision-making, 

and offered a rationale for studying the development of goal-directed 

strategies. Chapter 2, “Model-based behavior emerges across 

development,” examines the developmental recruitment of task structure 

knowledge in making goal-directed decisions. Chapter 3, “Experiential 

learning outweighs instruction prior to adulthood,” (Decker, Lourenco, 

Doll, & Hartley. 2015. Cognitive Affective Behavioral Neuroscience), tests for 

developmental differences in how instruction biases learning and decision-

making. Chapter 4, “On weight and waiting: delay discounting in anorexia 

nervosa pretreatment and posttreatment,” (Decker, Figner, Steinglass. 

2015. Biological Psychiatry), utilizes functional magnetic resonance imaging, 

alongside a delay discounting decision-task task in order to explore 

differences in evaluative processes between healthy controls and individuals 

with anorexia nervosa (in both an underweight and weight-restored state). 

Chapter 5, “Individual and developmental differences in decision-

making: Conclusions and implications,” summarizes the results of the 

current thesis. Furthermore, it offers a critical assessment of the utility of using 

computational modeling to understand individual and developmental 

differences in decision-making, and discusses future directions to increase the 

relevance of this approach. 
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Chapter 2: Model-based behavior emerges across development 

We are defined by our behavior—how we act and the decisions we make 

throughout life. Psychological theories distinguish between two broad types of 

decisions, goal-directed and habitual. Mirroring this distinction, the field of 

reinforcement learning defines “model-based” and “model-free” classes of 

algorithms that capture key aspects of these two forms of action. Model-based 

learning generates and searches a cognitive map of potential paths and 

outcomes, enabling flexible behavioral adaptation to a dynamic environment. 

Model-free learning incrementally updates and stores a cached action value or 

policy associated with a stimulus, allowing the execution of well-honed 

behavioral routines without forethought or attention. While adults have been 

shown to rely on a mixture of these two strategies, the developmental 

trajectory of action selection strategies has not yet been examined. In this 

study, we adapted a two-stage Markov reinforcement-learning task for use 

across development, which allowed us to estimate model-based and model-

free contributions to choice behavior in each age group. Whereas a model free 

strategy was evident in the choices across all age groups, model-based 

influence on choice only emerged in adolescence and continued to increase 

with age. 

INTRODUCTION 

Learning to select actions that will yield the best outcomes is a lifelong 

challenge. From even very young ages, children demonstrate competence in 

making many simple value-based decisions (Jacobs and Klaczynski 2002). 

However, there is also abundant evidence that the choices of children and 

adolescents differ in important qualitative ways from those of adults. Younger 

individuals tend to persist in performing actions that were previously rewarded 
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even after those outcomes were no longer valued relative to other potential 

actions (Piaget 1954; Klossek, Russell, and Dickinson 2008). Children and 

adolescents often make seemingly shortsighted choices that prioritize 

immediate gains over longer-term rewards (Mischel, Shoda, and Rodriguez 

1989; Green, Fry, and Myerson 1994). Such choices have been proposed to 

reflect a regulatory failure, in which insufficient executive control leads to the 

performance of a pre-potent action or the prioritization of a hedonically alluring 

outcome over a more valuable alternative (Posner and Rothbart 2000). 

Indeed, studies of cognitive development have clearly demonstrated that 

executive functions such as inhibitory control and working memory improve as 

one matures into adulthood, conferring increased ability to withhold suboptimal 

actions and maintain goal-relevant information (Diamond 2006). However, an 

alternative but not necessarily contradictory account is that this normal 

cognitive maturation may alter the learning processes through which actions 

are evaluated, yielding developmental differences in the estimates of which 

actions are best. 

Several prominent theoretical models of decision making distinguish 

two types of evaluative processes that can inform one’s choices (Sloman 

1996; Kahneman 2003). A slower and more deliberative process compares 

possible actions and their likely consequences to identify the action most likely 

to obtain the current goal. In contrast, a more rapid and automatic process 

links previously rewarded actions to the cues and contexts with which they 

were associated, enabling reflexive repetition of actions that were successful 

in the past. A large psychological and neuroscientific literature provides 

support for such a distinction, suggesting that “goal-directed” and “habitual” 

forms of action evaluation yield distinct behavioral tendencies and have largely 
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dissociable neural substrates (Dolan and Dayan 2013). Two classes of 

algorithms formalized in computational theory capture the key properties of 

goal-directed and habitual learning and have been proposed to approximate 

their underlying neural computations (Daw, Niv, and Dayan 2005). “Model-

based” learning algorithms select actions via a flexible but computationally 

demanding process of searching a cognitive model or “map” of potential state 

transitions and outcomes. In contrast, “model-free” learning recruits trial and 

error feedback to efficiently update a cached action value associated with a 

stimulus. Adaptive control of behavior in a dynamic environment involves a 

fluid and contextually sensitive balance between these dissociable learning 

systems. Whereas model-free learning allows us to carry out well-honed 

behavioral routines without forethought or attention, model-based learning 

enables us to flexibly adapt our behavior to the dynamic state of our world.  

In adulthood, these two learning systems are proposed to operate in 

parallel, competing for control over behavior (Dickinson 1985). Previous 

studies have indeed demonstrated that adults exhibit a mixture of both model-

free and model-based learning strategies during decision-making tasks (Daw 

et al. 2011), and that reliance upon a given strategy is sensitive to the 

cognitive or affective demands placed on the individual (Otto, Gershman, et al. 

2013; Otto, Raio, et al. 2013; Dias-ferreira et al. 2009). However, to date, there 

has been little study of when these action selection strategies typically 

develop, and how their relative recruitment changes as individuals mature 

from childhood to adulthood. In this study, we sought to characterize 

maturational changes in model-based and model-free learning using a two-

stage reinforcement-learning task that can dissociate the extent to which each 

learning system informs an individual’s choices. Model-free and model-based 
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algorithms make different predictions of behavior in the task. A model-free 

chooser relies only on reward information. In contrast, a model-based chooser 

also takes into account the probabilistic state transition structure in the task. 

We examined the extent to which children, adolescents, and adults exhibited 

the behavioral signatures of these two forms of learning. Whereas a model 

free strategy was evident in the choices across all age groups, model-based 

influence on choice only emerged in adolescence and continued to increase 

with age. Together, these results suggest that the ability to recruit model-

based evaluative processes to inform one’s choices increases with age, 

highlighting a critical component of the gradual emergence of goal-directed 

behavior. 

METHODS 

Participants 

A total of 82 individuals (30 children, 28 adolescents, and 22 adults) 

participated in the task. Using a behavioral exclusion criteria discussed below, 

the final sample included 59 subjects: 20 children (11 females; M = 9.80; SD = 

1.54, 8-12 years), 20 adolescents (12 females; M = 15.35; SD = 1.39; 13-17 

years), and 19 adults (11 females; M = 21.63; SD=2.03; 18-25 years). All 

participants were recruited from the New York metropolitan area and provided 

written informed consent according to the procedures of the Weill Cornell 

Medical College Institutional Review Board. All participants were compensated 

$30 regardless of their performance.  

 

Spaceship-task 

This task was adapted from the Daw et al. (2011) two-step task to use 

child-friendly stimuli and timing, and a child-friendly narrative. Participants 
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were instructed they would be traveling through space to collect space-

treasure (Figure 2.1A). Participants chose between two spaceships in the first 

stage, which took them to one of two planets, and then chose between two 

aliens (a different pair on each planet). Each spaceship traveled more 

frequently (70% versus 30%) to one planet than the other throughout the 

entire experiment. Choosing an alien revealed whether the participant was 

rewarded (a picture of ‘space treasure’) or not (an empty circle of the same 

size). Each alien was rewarded according to a slowly drifting probability 

(bounded between 0.2 and 0.8). This required participants to explore 

throughout the experiment. Participants had 3 seconds to choose the left or 

right stimuli (press 1 or 0), their choice was animated for 1 second, and they 

saw crossed out stimuli for 4 seconds if they failed to do so. The inter-trial 

interval was 1 second.  

 Prior to the task, participants were verbally instructed and experientially 

trained on the task. Participants were instructed that each alien had a mine, 

and that how often an alien would bring up treasure changed slowly 

depending on how easy it was to dig. A set of 10 forced choices for one alien 

with a good mine, rewarded 7/10 times, was used as an example of 

probabilistic feedback. 20 choices between 2 aliens, rewarded 20% and 80% 

of the time, were used as an example of good and bad aliens (all participants 

correctly identified the ‘good alien’). And 20 full trials were used as an example 

of the probabilistic nature of transitioning to different second-stage states, and 

participants were told that the planet the spaceship goes to most of the time 

would stay the same for the whole game. Finally, participants were reminded 

that that the alien mines were independent, and that there were not special 

patterns of choices that would lead to rewards. The spaceships, planets, and 



 31 

aliens used in the tutorial were different from those in the task. The full game 

consisted of 200 trials in four blocks separated by breaks. 

 

Exclusion Criteria  

One child and one adult were excluded for inattentiveness during the 

task. One adult was excluded for complete choice invariance throughout the 

task. A fundamental assumption in the task is that participants are trying to 

obtain rewards. We used two reward-sensitivity based criteria to exclude 

subjects whose behavior was not consistent with such a goal. First, for trials 

following common transitions, the proportion of trials in which participants 

repeated a first stage choice had to be at least 0.1 greater when rewarded 

than unrewarded. This restriction requires that participants appear to be 

pursuing reward, but is unbiased as to whether they do so via a model-free or 

model-based strategy. Second, when participant arrived at a second stage 

state in which the were rewarded on the previous trial, they were required to 

choose the same previously rewarded stimulus at least 55% of the time. This 

removed participants whose behavior would not be well explained by our 

analysis, such as choosing randomly or using a non-reward based strategy. 

 

Behavioral Analysis  

The group logistic regression analysis has been described previously 

(Daw 2011; Otto, Gershman, et al. 2013). Briefly, a generalized linear mixed-

effects regression analysis of group behavior data was performed using the 

lme4 package for the R-statistics language. 1st-stage choice (stay/switch from 

previous trial) was modeled by independent predictors of previous reward 

(reward/no reward), previous transition (rare/common), age (z-score 
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transformed), and all two-way and three-way interactions as fixed-effects, as 

well as per-participant random adjustment to the fixed intercept (‘random 

intercept’), and per-participant adjustment to previous outcome, transition, and 

outcome-by-transition interaction terms (‘random slopes’). The terms of 

interest are for a main effect of reward (model-free term), a reward-by-

transition type interaction effect (model-based term), and the reward-by-age 

and reward-by-transition-by-age interaction effects. The first 9 trials for every 

subject were removed, as were trials in which an individual failed to make a 

first or second stage choice (median: child=3.5, adolescent=0.5, adult=0). This 

approach enabled separate estimation of the evidence for intact habitual and 

goal-directed learning strategies across development. Additionally, this 

analysis was performed for each age group separately, removing the age and 

age-interaction terms. Response time data for the second-stage actions was 

analyzed similarly using a linear mixed-effects analysis with current transition 

and age as independent predictors. Finally, the relationship of how model-

based a participant was, determined by the individual random-effects 

estimates of the reward-by-transition interaction, with age and response time 

differences was examined through correlational analyses. 

Additionally, the reinforcement learning computational learning model 

consisted of a weighted combination of a model-free SARSA(𝜆) (Sutton and 

Barto 1998) temporal difference algorithm that incrementally updates a fixed 

value for the first-stage choice based on reward history and a model-based 

“tree-search” reinforcement learning algorithm (explicit computation of 

Bellman’s equation (Sutton and Barto 1998)), which represents all possible 

choices and associated outcomes from which to choose. In addition to the w 
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parameter, the algorithm includes parameters for learning rate (𝛼), eligibility 

trace (𝜆).  

 The hybrid model consists of model-free and model-based algorithms, 

both of which estimate a state-action value functions Q(s,a) that map each 

state-action pair to its expected future value. On a given trial, the first and 

second stages, actions, and rewards are denoted as s1,t, s2,t, a1,t, a2,t, r1,t 

(always zero), and r2,t. The model-free temporal difference algorithm updates 

the state action values according to the following formula: 

𝑄!" 𝑠!,! ,𝑎!,! =   𝑄!" 𝑠!,!!!,𝑎!,!!!   +   𝛼𝛿!,! 

where 
𝛿!,! =   𝑟!,! +   𝑄!" 𝑠!!!,! ,𝑎!!!,! −   𝑄!" 𝑠!,!!!,𝑎!,!!!  

 

As such, 𝛿 is the reward-prediction error (RPE). At stage one, reward 

𝑟 = 0 and the RPE is driven by the estimate of the second stage action value. 

At the second stage, 𝑟 = 0  or  1, and there is no third stage that drives 

additional value. The eligibility trace 𝜆, which is only carried over across 

stages for one tiral, is used to further update the first-stage action by the 

second-stage RPE according to:  
 

𝑄!" 𝑠!,! ,𝑎!,! =   𝑄!" 𝑠!,! ,𝑎!,!   +   𝛼𝜆𝛿!,! 
 

 For the model-based algorithm, the first state learning function differed 

from the model-free algorithm in that it took into account the 70/30-transition 

probability structure and computed cumulative state-action values from all 

possible outcomes. The second-stage action value estimate is the same 

across the model-free and model-based algorithms. As such, the model-based 

algorithm updates the first stage action values according to the following 

formula: 
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𝑄!" 𝑠!,! ,𝑎!,! =   𝑃 𝑠!|𝑠!,𝑎! max

!∈{!!,!!}
𝑄!" 𝑠! ,𝑎

+   𝑃 𝑠!|𝑠!,𝑎! max
!∈{!!,!!}

𝑄!" 𝑠! ,𝑎  

 

These action value estimates are combined by a simple linear 

combination using a weighting factor (w), ranging from 0 (no model-based 

component) to 1 (only model-based).  

𝑄!"# 𝑠!,𝑎! =   𝑤𝑄!" 𝑠!,𝑎! + (1− 𝑤)𝑄!" 𝑠!,𝑎!  

Finally, we estimate the probability of a choice using the softmax formula with 

𝑄!"#: 
 

𝑃 𝑎!,! = 𝑎|𝑠!,! =   
exp(𝛽 𝑄!"# 𝑠!,! , 𝑎 + 𝑝 ∙ rep 𝑎 )

exp 𝛽 𝑄!"# 𝑠!,! , 𝑎! + 𝑝 ∙ rep 𝑎! + exp(𝛽 𝑄!"# 𝑠!,! , 𝑎! + 𝑝 ∙ rep 𝑎! )
 

 

Here, inverse temperature (𝛽) determines how deterministic the 

participant is. The rep(a) function is set to 1 if the participant repeats the first 

stage choice, and 0 if not repeated or for a second stage choice. 

Perseveration (p) captures how likely the participant is to repeat the previous 

choice (p>0) or switch away (p<0). This model then fit 5 separate parameters, 

𝛼, 𝜆,𝑤, 𝛽,  and 𝑝. These models were fit by maximum a posteriori estimation 

(Daw 2011; den Ouden et al. 2013), taking the beta distributions beta(1.1, 1.1) 

as a prior for 𝛼, 𝜆,  and  𝑤 parameters and gamma(3,1) for 𝛽 as a priors. The 

parameter estimates were chosen to ensure smooth parameter boundaries 

and be uninformative over the previously observed ranges of parameter 

estimates in adults on this task (Daw et al. 2011). This nests with pure model-

free (w=0, with or without fixed 𝜆) and pure model-based (w=1, 𝜆 arbitrary), 

which were compared by AIC (Akaike 1974). As the relative weighting of 

model-based over model-free learning, w, is not normally distributed (ranging 
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from 0 to 1), we performed age correlation analyses on the log-transformed 

value of w. 

 

Results 

We modified an established two-stage reinforcement-learning task (Daw et al. 

2011; Otto, Gershman, et al. 2013) to be maximally engaging for a broad 

developmental cohort. Participants performed 200 trials in the task, each of 

which consisted of two choices. In the first-stage state, participants made a 

choice between two stimuli (spaceships), each of which made probabilistic 

transitions to each of two second-stage states (the red or purple planets). For 

example, choosing the blue spaceship led to the red planet with 70% 

probability (the common transition), and led to the purple planet with 30% 

probability (the rare transition). On each planet, participants made a second 

choice between two stimuli (aliens), each of which were associated with an 

independent probability of reward (space treasure), which changed slowly 

according to a Gaussian random walk across trials (Figure 2.1A). These 

shifting reward probabilities encouraged participants to explore different 

choices throughout the task in order to maximize rewards.  

 Critically, this task structure enables the dissociation of model-free and 

model-based learning strategies in the task. Whereas a model-based chooser 

uses a cognitive model of the transitions and outcomes in the task to select 

actions, a model-free chooser simply repeats previously rewarded actions 

(Figure 2.1B). Thus, how a previous trial influences the first-stage choice on 

the next trial depends on the participant’s learning strategy. For example, 

consider a trial in which a participant chooses the blue spaceship, makes a 

rare transition to the purple planet, chooses an alien, and is rewarded. 
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Figure 2.1 Two-stage spaceship task design and idealized behavior. (A) 
For each trial, participants made a choice between two stimuli (spaceships) in 
the first-stage state and made probabilistic transitions to each of two second-
stage states (the red or purple planet). This transition probability was fixed 
such that each first-stage stimulus led preferentially to a particular second-
stage state (70% versus 30%). Participants similarly chose between two 
stimuli (aliens) in either second-stage state and rewarded (space treasure) 
according to a slowly drifting probability (bounded between 0.2 and 0.8). B) 
Model-free and model-based strategies make different predictions about first-
stage choices for trials following a rare transition. Whereas a model-free 
chooser (left) is more likely to stay with their first-stage choice when rewarded 
and switch when unrewarded, a model-based chooser (right) is more likely to 
switch when rewarded and stay when unrewarded. 

 

A model-free learner is likely to repeat the previous first-stage choice (blue 

spaceship) regardless of the transition that led to the reward. In contrast, a 
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model-based chooser—taking into account the state transition structure—is 

likely to switch to the green spaceship in order to increase the likelihood of 

returning to that rewarded state. Below we assess the recruitment of these two 

learning strategies at different stages of development by examining trial-by-

trial switching or staying as a function of the transition type (common or rare) 

and outcome (reward or no reward) on the previous trial. 

First, examining the behavior visually provides an initial indication of 

whether the participants are following a more model-free or model-based 

pattern of behavior (Figure 2.2). The proportion of trials for which a participant 

stayed with their previous first-stage choice serves as an overall measure of 

their reward seeking behavior. A stay, or repetition, of a first-stage choice 

suggests a belief that that spaceship is more likely to lead to a highly rewarded 

alien. Children were more likely to choose the same spaceship following a 

reward, regardless of the previous transition, exhibiting a typical model-free 

pattern of behavior. In contrast, adolescents and adults showed a more 

complex pattern of behavior. After a rare transition, they were less likely to 

stay following a reward and more likely to switch following no reward relative 

to when the previous trial had a common transition. There was still an overall 

greater tendency to stay following rewarded trials than unrewarded trials 

suggesting a mixture of both model-free and model-based strategies were 

being used in the adolescents and adults. 



 38 

Figure 2.2 Proportion of 1st-stage choices that were repeated by trial 
type. Children were more likely to repeat their first stage choice after a reward, 
regardless of whether the previous transition was common or rare, reflecting a 
model-based strategy. Adolescents and adults exhibited a mix of both model-
free and model-based strategies, taking into account both the previous reward 
and transition. 

 

Generalized mixed-effects regression 

To analyze the age-related differences in the recruitment of these 

learning systems, we used logistic regression to test for the influence of a 

given trial’s transition type (common or rare) and reward (reward or no reward) 

on the subsequent first-stage choice (stay or switch) (Figure 2.1B). A purely 

model-free strategy disregards transition information and relies solely on 

previous reward to determine whether to repeat the first-stage action or not (a 

main effect of reward). In contrast, a model-based strategy incorporates both 

transition and reward information (a reward-by-transition interaction effect). In 

order to characterize the developmental changes in these learning strategies, 

we included age and age-interactions in this analysis (Table 2.1). The 

behavioral signatures of both model-free and model-based learning were 

evident in the full cohort of participants, who showed both a significant main 

effect of reward (p<1e-8) and a reward-by-transition interaction (p<1e-6). 

However, only the model-based learning signature exhibited a significant 
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increase with age (reward-by-transition-by-age interaction p<0.001; Figure 

2.3). Notably, the regression line has its intercept near the childhood age 

range, highlighting the lack of model-based behavior in the child age group.  

 
Table 2.1 Result of the mixed-effects logistic regression for the full 
sample. Examining the effect that age, previous reward, and previous 
transition type have on first-stage choice repetition. 
Predictor Estimate X2 (df=1) p-value 
Intercept 1.20 64.22 <1e-14 
Reward 0.37 34.28 <1e-8 
Transition 0.05 2.64 0.13 
Age 0.43 13.55 0.0003 
Reward by Transition 0.26 28.47 <1e-6 
Reward by Age 0.10 3.14 0.124 
Transition by Age 0.01 0.37 0.77 
Reward by Transition by Age 0.17 14.37 0.0004 

 
 

Figure 2.3 Individual estimates of model free and model-based behavior 
as a function of age. The model-free signature of behavior (main effect of 
reward) was above zero and did not increase significantly with age. The 
model-based signature of behavior (reward-by-transition interaction) was not 
present in children but increased significantly with age.  
 

These results replicate previous findings that adults exhibit a mixture of both 

model-free and model-based strategies (Daw et al. 2011; Otto, Gershman, et 

al. 2013), and extends this result to adolescents. Additionally, while 
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perseveration—the tendency to repeat actions regardless of outcome or 

transition—was significantly positive (p < 1e-14), this tendency increased with 

age (main effect of age p<0.001). Collectively, these results suggest that 

whereas the behavioral signature of model-free learning is evident from 

childhood through adulthood, the recruitment of model-based learning 

increases as one develops from childhood into adulthood.  

This regression analysis was repeated within each age group, removing 

the age terms, to determine whether this mixture of model-free and model-

based strategies was present in all age groups (Table 2.2). Children 

(p<0.001), adolescents (p<0.01), and adults (p<1e-5) all show a main effect of 

reward, whereas only adolescents (p<0.002) and adults (p<0.0001), but not 

children (p=0.65), show a reward-by-transition interaction effect. Thus the 

mixture of strategies is evident only in adolescents and adults, while the 

choices of children tend to rely principally on the model-free strategy. 

 
Table 2.2 Result of the mixed-effects logistic regression for each age 
group. Examining the effect of previous reward and transition type on 
first-stage choice repetition.  
Group Predictor Estimate X2 (df=1) p-value 
Child Intercept 0.61 20.45 <1e-5 
N=20 Reward 0.30 11.79 0.0006 
 Transition 0.01 0.07 0.79 
 Reward by Transition 0.02 0.21 0.65 
     
Adolescent Intercept 1.19 17.28 <0.0001 
N=20 Reward 0.22 7.39 0.0066 
 Transition 0.09 2.34 0.13 
 Reward by Transition 0.35 10.00 0.0016 
     
Adult Intercept 1.85 26.32 <1e-6 
N=19 Reward 0.56 20.43 <1e-5 
 Transition 0.07 5.06 0.024 
 Reward by Transition 0.49 15.64 <0.0001 
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To determine whether these age group differences might reflect a lack 

of understanding of the transition structure of the task, we asked participants 

to recall the state transition structure at the end of the task, “Which spaceship 

traveled to the red planet most of the time.” (2 children, 3 adolescents, and 2 

adults were not asked about their explicit recognition of the transition 

structure). There was no difference by age group (X-squared = 0.6701, df = 2, 

p-value = 0.7153, 14 children, 14 adolescents, and 15 adults answered 

correctly), suggesting that participants from each age group had explicit 

awareness of the transition structure. Next, we examined participant response 

times (RT) to the second stage choice (choosing an alien) as a function of 

transition type. If participants were not aware of the transition structure, we 

would expect no differences in RT at the second stage as a function of 

transition type (common or rare). A linear mixed-effects model revealed that 

participants were slower after rare transitions than common transition (main 

effect of transition type: 42 ms, X2=38.6, p<1e-7), there was a general 

quickening of responses with age (main effect of age: -78 ms, X2=9.2, 

p=0.0036), but there was no transition type by age interaction (p=0.40) (Figure 

2.4). This analysis provides evidence that children are processing the 

transition structure of the task, even though this information does not appear 

to directly inform their choices. Finally, we examined whether these RT 

differences were associated with model-based behavior (Figure 2.5), as has 

recently been shown in adults (Deserno et al. 2015). Within adults (r=0.578, 

p=0.0095) and adolescents (r=0.51, p=0.022), individuals with longer 

response times after rare relative to common transitions were more model-

based. In other words, the degree to which these participants incorporated 

transition information into their first stage choices was associated with how 
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much they slowed their responses for rare versus common trials. This 

relationship was not seen in children (r=0.084, p=0.72), further suggesting that 

children did not integrate this information into their choices. 

 

 

Figure 2.4 Second stage response time as a function of transition type. 
Children, adolescents, and adults all responded more slowly following a rare 
transition than after a common transition. 
 
 

 
Figure 2.5 The relationship of model-based estimates to the difference in 
response times between rare and common transitions, by age group. In 
adults and adolescents, those participants that have longer response latencies 
for rare relative to common transitions are those that show more model-based 
behavior. This relationship is not present in the child group, suggesting that 
any awareness in transition differences is not incorporated in their decisions. 
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Hybrid model-free and model-based algorithm 

 Motivated by these results, we used a hybrid reinforcement-learning 

algorithm that combines model-free and model-based learning systems to 

determine the degree to which participants deploy one system over the other. 

The model-free system uses a simple temporal-difference reinforcement 

algorithm to cache the value of various actions, whereas the model-based 

system uses the transition structure to form evaluations prospectively. This 

approach provides a few advantages over the group regression analysis. We 

considered these models separately, and combined using a weight parameter, 

w, which captures the degree to which an individual favors a model-based or 

model-free strategy. This hybrid model fit significantly better than chance, at 

p<0.05 by likelihood ratio testing for 16/20 children, 19/20 adolescents, and all 

19 adults. We estimated the parameters individually for each participant by 

maximum a posteriori likelihood (Table 2.3, Figure 2.6). By non-parametric 

Kruskal-Wallis testing, the only reinforcement-learning parameter that differed 

across age groups was the inverse temperature, 𝛽 (X2 = 10.1, p = 0.0064), 

suggesting that the different age groups were differently deterministic in their 

choices. (learning rate, 𝛼, p = 0.19; eligibility trace, 𝜆, p = 0.90; perseveration, 

𝑝, p = 0.14; hybrid weight, 𝑤, p = 0.12). As we had a special interest in the 

hybrid parameter, 𝑤, we did a post-hoc exploratory analysis. As suggested by 

the data, we examined the correlation between age-squared and log(𝑤) (r = -

0.40, p = 0.0015; this remains significant with non-transformed 𝑤, p = 0.0057; 

Figure 2.7). 
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Table 2.3 Parameter estimates, mean and quartiles across subject in 
each age group 

Age Group	
   Quartile	
   𝛽	
   𝛼	
   𝜆	
   𝑝	
   𝑤	
   LL	
   p-R2 

Children 25% 1.549 0.177 0.431 0.175 0.103 -265.341 0.024 
Children 50% 1.946 0.395 0.701 0.222 0.176 -253.862 0.070 
Children 75% 2.482 0.703 0.861 0.338 0.625 -233.567 0.144 
Adolescents 25% 1.591 0.318 0.286 0.225 0.322 -256.231 0.072 
Adolescents 50% 1.999 0.617 0.687 0.372 0.542 -238.928 0.132 
Adolescents 75% 3.834 0.799 0.943 0.498 0.683 -166.069 0.356 
Adults 25% 2.186 0.427 0.357 0.225 0.064 -223.214 0.191 
Adults 50% 3.837 0.601 0.720 0.372 0.434 -172.925 0.376 
Adults 75% 4.943 0.703 0.909 0.498 0.648 -140.461 0.493 
All 25% 1.642 0.299 0.327 0.176 0.120 -256.457 0.064 
All 50% 2.229 0.555 0.717 0.317 0.434 -233.643 0.157 
All 75% 3.681 0.724 0.922 0.455 0.648 -171.059 0.361 
𝛽	
  inverse	
  temperature;	
  𝛼	
  learning	
  rate;	
  𝜆  eligibility	
  trace;	
  𝑝	
  perseveration;	
  𝑤	
  model-­‐based	
  
weight;	
  LL	
  log-­‐likelihood;	
  p-­‐R2	
  pseudo-­‐R2 

	
  

Figure 2.6 Density plots of parameter estimates. Inverse temperature, 𝛽; 
learning rate, 𝛼; eligibility trace, 𝜆; perseveration, 𝑝; hybrid weight, 𝑤. 

 



 45 

 
Figure 2.7 The relationship between age and the log-transformed model-
based parameter. The adolescent group showed the most prominent mixture 
of strategies whereas the child and adult group have a higher proportion of 
members that show a purely model-free strategy. 
 

Next, we performed classical model comparisons to determine whether 

the parameters chosen in the hybrid model were justified by the data, relative 

to four simpler models and the null model (Table 2.4). We tested the special 

cases where the eligibility trace, 𝜆, was set to 0 or 1, and the full model-free, 𝑤 

= 0, and model-based, 𝑤 = 0. While the hybrid model performed well for most 

participants, often a simpler model was sufficient for a handful of participants. 

4 children, 13 adolescents, and 9 adults were best explained by a version of 

the hybrid model (including the 𝜆 = 0/1 hybrid models). 8 children, 2 

adolescents, and 5 adults were best fit by the model-free temporal difference 

model. 5 children, 4 adolescents, and 5 adults were best fit by the model-

based model. This shows that at the population level there definitely does 

seem to be a mix of strategies, but with quite a bit of individual and 

developmental variability.  
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Table 2.4 Model Comparisons between Hybrid Model and Nested Models 
Age 

Group Model -LL Number Favoring 
Hybrid 

Aggregate LRT 
Favoring Hybrid 

Median 
AIC 

Total Number 
Favored 

Childr
en Hybrid 4918 - - 517.7 0 

N=20 𝜆 = 0 4975 10 X2
20 = 115 

p < 5e-15 520.3 1 

 𝜆 = 1 4926 0 X2
20 = 16 

p = 0.71 515.9 3 

 𝑤	
  = 0 4929 1 X2
20 = 23 

p = 0.31 517.2 8 

 𝑤	
  = 1 4987 7 X2
40 = 139 

p < 1e-12 519.7 5 

 Null 5402 16 X2
100 = 969 

p < 1e-100 544.8 3 

Adole
scents Hybrid 4264 - - 487.9 0 

N=20 𝜆 = 0 4308 8 X2
20 = 87 

p < 5e-10 489.5 2 

 𝜆 = 1 4271 2 X2
20 = 13 

p = 0.86 488.2 11 

 𝑤	
  = 0 4307 7 X2
20 = 85 

p < 1e-9 488.1 2 

 𝑤	
  = 1 4320 8 X2
40 = 110 

p < 5e-8 489.4 4 

 Null 5476 19 X2
100 = 2423 

p < 1e-100 553.1 1 

Adults Hybrid 3355 - - 355.9 1 

N=19 𝜆 = 0 3434 9 X2
19 = 158 

p < 5e-23 354.8 2 

 𝜆 = 1 3367 3 X2
19 = 24 

p = 0.19 354.3 6 

 𝑤	
  = 0 3430 9 X2
19 = 151 

p < 5e-22 390.2 5 

 𝑤	
  = 1 3456 10 X2
38 = 202 

p < 5e-24 352.9 5 

 Null 5257 19 X2
95 = 3804 

p < 1e-100 554.5 0 

 
 

DISCUSSION 

In this study, we examined developmental changes in the recruitment of 

model-free and model-based evaluation systems in a sequential decision-

making task. We found that children, adolescents, and adults all exhibited the 

behavioral signature of model-free learning, showing a tendency to repeat an 

initial choice that eventually led to reward. In contrast, there was no evidence 
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of model-based learning in children’s choices. Although participants of all ages 

were able to distinguish common from rare transitions, the model-based ability 

to recruit this task transition knowledge to inform one’s choices only emerged 

in adolescence and continued to strengthen into adulthood.  

Model-based behavior stems from the ability to form a cognitive model 

of the environment, and use it to inform goal-directed choices.  This capacity 

involves multiple component processes, including the recruitment of executive 

functions, such as working memory and cognitive control (Daw and Shohamy 

2008). Introducing concurrent working memory load during the two-stage task 

renders choices more model-free (Otto, Gershman, et al. 2013), providing 

evidence of the role of working memory in model-based behavior. Similarly, 

individuals who exhibit greater cognitive control on independent tasks are also 

more model-based (Otto et al. 2015). Multiple components of executive 

function including working memory (Diamond, Kirkham, and Amso 2002; 

Olesen, Westerberg, and Klingberg 2004), cognitive control (Munakata, 

Snyder, and Chatham 2012), effective use of abstract rules or instruction 

(Bunge and Zelazo 2006; Decker et al. 2015), and response inhibition 

(Diamond 2006) exhibit a protracted maturational trajectory, and are proposed 

to underlie an increased capacity for goal-directed behavior with age 

(Munakata, Snyder, and Chatham 2012). The gradual developmental 

emergence of many of these cognitive processes likely contributes to our 

observed increase in model-based choice with age. 

A striking result in our study is that, although children’s first stage 

actions were model-free, there was both implicit and explicit evidence that they 

had formed a cognitive model of the task structure. Children, like adolescents 

and adults, were able to verbally report the common transition after completing 
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the task. Moreover, analysis of response time data showed that participants of 

all ages exhibited behavioral slowing following rare transitions, reflecting 

implicit knowledge of the transition structure. A previous study in adults found 

that that the magnitude of this behavioral slowing effect predicted greater 

model-based choice (Deserno et al. 2015). However, in our study, only 

adolescents and adults showed this correlation. Thus, although children 

exhibit knowledge of the transition structure, they do not recruit this knowledge 

prospectively in their subsequent choices at the first stage. This result accords 

with a dissociation commonly observed in many studies of cognitive 

development between the age at which knowledge of a task is present, and 

when it is behaviorally evident in task performance (Zelazo, Frye, and Rapus 

1996). The emergent ability to recruit transition knowledge in one’s choice 

strategies may reflect a developmental shift from reactive engagement of 

cognitive control following surprising transitions, to proactive cognitive control 

engaged at the first stage choice (Munakata, Snyder, and Chatham 2012; 

Botvinick et al. 2001).  

 Model-based learning algorithms reproduce several defining features of 

goal directed behavior (Daw, Niv, and Dayan 2005; Sutton and Barto 1998). 

Goal-directed behavior is distinguished from habitual behavior by two key 

properties: sensitivity to changes in the contingency between an action and its 

outcome, and sensitivity to changes in the value of the outcome itself. 

Perseveration in either condition reveals an action to be under habitual control 

(Dickinson 1985; Balleine and O’Doherty 2009; Yin and Knowlton 2006). 

Model-free learners do not recruit representations of state transitions or 

specific outcomes that are necessary to inform goal-directed behavior. In 

several canonical assays of cognitive development, younger children 



 49 

perseverate in performing previously rewarded actions following a change in 

contingency; however, this behavior disappears at a slightly later 

developmental stage. For example, in Piaget’s A not B task, after repeating a 

reinforced action several times (e.g. reach left to obtain a hidden toy), babies 

aged 10 months or younger are impaired in a critical test trial where they must 

perform a new action (reach right), but at 12 months old this is no longer seen 

(Piaget 1954). In other tasks of increased complexity, this developmental 

emergence of sensitivity to changes in contingency can be observed at later 

ages (Zelazo, Frye, and Rapus 1996; Gerstadt, Hong, and Diamond 1994; 

Kirkham, Cruess, and Diamond 2003). Similarly, sensitivity to outcome 

devaluation has been reported to emerge across development (Klossek, 

Russell, and Dickinson 2008). A parsimonious account for these 

developmental changes in behavior may be a transition from a model-free to a 

model-based process of evaluating actions. This transition may be a general 

characteristic of cognitive development that occurs at different ages for tasks 

of varying complexity, as the capacity to form and recruit a model of the task 

improves.  

Studies in adults suggest that model-free and model-based learning 

recruit distinct underlying neural processes (Daw, Niv, and Dayan 2005). The 

model free algorithm relies on error-driven feedback to compute actions 

values. Dopaminergic input to the striatum, carrying a signal that resembles a 

computational reward prediction error, is thought to support such a model-free 

learning process (Schultz, Dayan, and Montague 1997; Pagnoni et al. 2002; 

McClure, Berns, and Montague 2003; O’Doherty et al. 2003). In addition to the 

central role of the ventral striatum in estimating model-free values, the 

dorsolateral striatum is critical for model-free action selection (Yin, Knowlton, 
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and Balleine 2004; Tricomi, Balleine, and O’Doherty 2009). Developmentally, 

the striatal prediction error signals thought to underpin model-free learning 

appear to be relatively mature from childhood onwards (Galvan et al. 2006; J. 

R. Cohen et al. 2010; van den Bos et al. 2012). These neural data are 

consistent with our present result that model-free choice behavior was evident 

in children, adolescents, and adults.  

Model-based learning also engages striatal prediction error signals 

(Daw et al. 2011), but these signals are thought to integrate information about 

states and outcomes that stem from a more extensive network of brain 

regions. Both the hippocampus and the prefrontal cortex, regions with strong 

connectivity to the striatum (Pennartz et al. 2011), are proposed to play a role 

in the representation and search of a cognitive model of the task (Hassabis et 

al. 2007; Pfeiffer and Foster 2013; Wilson et al. 2014). The hippocampus 

supports the learning of sequential relationships that constitute state transition 

information (Turk-Browne et al. 2010; DuBrow and Davachi 2014) and orbital 

and medial prefrontal regions are implicated in learning associations between 

actions and their specific outcomes (Corbit and Balleine 2003; Valentin, 

Dickinson, and O’Doherty 2007; Schoenbaum, Saddoris, and Stalnaker 2007). 

Model-based learning also depends on the dorsolateral prefrontal cortex 

(Smittenaar et al. 2013), which may reflect the engagement of working 

memory and cognitive control processes (Miller and Cohen 2001). 

Additionally, the dorsomedial striatum plays a central role in the selection and 

performance of model-based actions (Yin et al. 2005; Yin, Ostlund, and 

Balleine 2008; Bornstein and Daw 2011; McNamee et al. 2015). While the 

present behavioral study cannot speak to underlying neural substrates, this 

literature suggests that the developmental emergence of model-based 



 51 

learning may reflect the burgeoning integration of a prefrontal-hippocampal-

striatal circuit that recruits learned information about states and outcomes to 

take goal-directed action (Shohamy and Turk-Browne 2013). Corticostriatal 

connectivity exhibits a protracted maturational trajectory from childhood 

through adulthood, paralleled by increased efficacy of cognitive functions that 

depend on this circuitry (Liston et al. 2006; Imperati et al. 2011). Although 

studies suggest early maturation of hippocampal dependent learning 

processes (Amso and Davidow 2012), developmental changes in 

hippocampal-striatal connectivity have not been well-characterized to date. 

Future studies examining the development of these circuits and their 

relationship to behavior may elucidate the neurocircuitry underlying the 

increase in model-based learning with age. 

Dopamine appears to play a key role in modulating the recruitment of 

model-based learning (Durstewitz and Seamans 2008; Cools 2011), 

potentially through its influence on the prefrontal cortex as well as the 

hippocampus (Arnsten 2009; Shohamy and Adcock 2010). Manipulations or 

measures that predict increased or decreased dopamine signaling have been 

shown to yield a corresponding influence on model based choice (Wunderlich, 

Smittenaar, and Dolan 2012; S. De Wit et al. 2012; Deserno et al. 2015). 

Although the mechanisms through which dopamine modulates model-based 

choice are not well understood, there is evidence that it may stem from its 

gating of prefrontal and hippocampal information to the striatum, enabling 

state and other goal-relevant information to inform the learning signal (Goto 

and Grace 2005).The dopaminergic system undergoes marked changes 

across the lifespan (Wahlstrom et al. 2010), which have been proposed to 
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contribute to the emergence of goal-directed behavior in adolescence (Naneix 

et al. 2012), and its decline in aging (Eppinger et al. 2013; Worthy et al. 2014). 

The balance between model-based and model-free learning is 

proposed to have important implications for real world decision-making 

(Lucantonio, Caprioli, and Schoenbaum 2014). Impulsive decision-making is 

often defined as a propensity to prioritize immediate rewards or hedonic 

experiences, over a more highly valued long-term goal (Mischel, Shoda, and 

Rodriguez 1989). Model-free learners may be particularly susceptible to such 

impulsive choices, as they may be prone to repeat an action that previously 

yielded a small immediate reward and fail to prospectively consider the long-

term opportunity cost of such actions (Kurth-Nelson, Bickel, and Redish 2012; 

Story et al. 2014). Furthermore, insensitivity to the devaluation of a reinforcer 

may lead a model-free learner to perseverate in taking previously rewarded 

actions when they are no longer beneficial. Experimentally, children and 

adolescents have been found to exhibit greater impulsivity and perseveration 

in their choices than adults (Klossek, Russell, and Dickinson 2008; Mischel, 

Shoda, and Rodriguez 1989). Such developmental differences in decision-

making strategies can have important real-world repercussions. This may be 

particularly true during adolescence, when increased exploration and 

autonomy confers greater opportunity to make new choices, with less parental 

protection from their consequences. Indeed, the greatest perils of adolescence 

are those associated with poor decision-making (e.g. reckless driving, 

unprotected sex, suicide) (Eaton et al. 2006), underscoring the importance of 

understanding how decision-making changes across development. The 

developmental emergence of model-based learning observed in the present 

study represents an expansion in the repertoire of evaluative processes that 
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are available to inform one’s actions. This increasing ability to incorporate a 

model of the complex and changing environment into one’s evaluations may 

promote the maturation of goal-directed decision-making from childhood to 

adulthood. 

 

LIMITATIONS 

In this section, some of the limitations of using computational model to 

describe behavior, in general, and as it applies specifically to the results of this 

study, are discussed. The first recognition that must be made is that there is 

no model can fully capture behavior. However, that does not mean modeling is 

a worthless endeavor. Rather, it means that the interpretations must be 

measured so as not to overstate the findings. These issues, and others, are 

discussed below, along with some thoughts as to how these issues can be 

partially reconciled. 

 

Reinforcement learning algorithm limitations 

Care needs to be taken when interpreting the parameter estimates and 

overall goodness of fits when modeling behavior (Nassar and Gold 2013; 

Shteingart and Loewenstein 2014). An assumption in all the previous analyses 

and interpretations of the data in this chapter is that the models accurately 

reflect the underlying neural process determining the behavior. But, how well 

does the model fit the data, or is there a better model to describe the data? 

This is a difficult question to answer (Daw 2011). The first approach is to 

determine how well the model fits the data, often by reporting negative log 

likelihood estimates, or corrected versions such as the AIC and BIC that 

account for the number of parameters included. However, these scores are 
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somewhat difficult to understand in isolation, and are only relevant to a model 

on the same set of data. Across studies that have different number of trials, or 

within the same study if missed trials are thrown out (as is the case in our 

study), these numbers do not serve as an intuitive representation of how well 

the data fits. Reporting a pseudo-r2 statistic can provide the same intuition as 

the normal r2 statistic. This provides a number between 0 and 1 that can serve 

as a goodness of fit, relative to the null or random model. The formula used 

here is 1  −   𝐿/𝑅 (Camerer and Hua Ho 1999), where L is the log likelihood 

under the fit model, and R is the log likelihood under chance (𝑙𝑜𝑔(.5)    ∙   𝑁) and 

N is the number of trials. All but 3 children and 1 adolescent were fit better to 

some model than the random model, suggesting the parameterization of the 

models does a decent job of explaining participant’s behavior. However, there 

are also concerns about using pseudo-r2 measures as an indicator of model 

fit, and other approaches are likely better for assessing the appropriateness of 

a model (Lukacs, Burnham, and Anderson 2010). 

Another way to examine whether the model fits the data well is by 

simulating new data with the estimated parameters and comparing 

performance. Before doing so, let us discuss what we might predict from the 

model-based, model-free, and mixed strategies. Model-based strategies allow 

for more information to be considered and a complex set of choices to be 

evaluated, and therefore are often seen as a superior behavioral strategy to 

model-free decision-making. There are, of course, many instances when a 

model-free strategy is more appropriate, which reflects the often-observed 

phenomena that initially goal-directed actions become habitual (Grafton, 

Hazeltine, and Ivry 1995; Dickinson 1994), both with positive and negative 

behaviors (Vanderschuren and Everitt 2004). In our task, we can use the 
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proportion of trials that were rewarded as a measure of performance, 

excluding the first 9 trials and any trial the participant missed (Range: 0.44-

0.63; M: 0.53; SD: 0.04). Correlations with various study parameters are 

shown in Table 2.5. While a few parameters are somewhat predictive of how 

well participants performed, none did as well as age (Figure 2.8), suggesting 

that it was some combination of these parameters that is most predictive of 

performance.  

 
Table 2.5 Relationship between proportion of trials that were rewarded 
and various study parameters.  
 𝛽 𝛼 𝜆 𝑝 𝑤 p-R2 Int Rew Reward- 

Transition RT Age 

r 0.21 0.11 0.02 0.03 0.15 0.25 0.18 0.17 0.23 0.22 0.26 
p-value 0.11 0.43 0.90 0.83 0.27 0.052 0.18 0.20 0.077 0.095 0.05 

 
 

Figure 2.8 Relationship between proportion of trials rewarded and age. 
There is a non-significant increase in proportion of trials that were rewarded 
with age. 
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Testing for an optimal strategy using simulation 

This raises the question as to what might be the optimal strategy in this 

task. What decision-making strategy will lead to the highest amount of reward? 

The design of the task, with the transition structure and probabilistic nature of 

obtaining rewards, likely makes it difficult for a participant to determine the 

optimal strategy. As both the model-based and model-free approaches are 

valid strategies that can lead to similar levels of total reward, our assumption is 

that the task reflects differences in a tendency to choose a strategy, rather 

than an ability to find and use the optimal strategy. To probe this question 

further, we ran a number of simulations of the reinforcement-learning algorithm 

while varying a set of parameters to determine which set would generally lead 

to the highest amount of reward. We were especially interested if there would 

be a noticeable difference in model-free, model-based, or mixed strategies. 

We ran 21 sets of simulations to determine if any specification led to higher 

rewards: one with 𝛽 = 0 to signify a random chooser, one with the parameters 

from the participant that had the highest proportion of rewarded trials, one with 

the parameters from the participant that had the lowest proportion of rewarded 

trials, and then a systematic variation of three of the five parameters that 

varied the most between the age groups (𝛽,𝑝,  and  𝑤 (Figure 2.9). Each 

simulation was run 100 times, and the mean and standard deviation of the 

proportion of rewarded trials was reported. As can be seen, the random choice 

had the lowest average score, and while there was a slight increase in number 

of rewards with higher 𝛽, the differences were minimal and only trending 

towards significance when taking 20 samples each from the lowest and 

highest scoring simulations (t=-2.02, p=0.051). An additional simulation was 

run with 𝛽 = 25, and performance did not improve further; suggesting  



 57 

 
Figure 2.9 Simulated Choices (100x). The columns show a model-based, 
model-free, and mixed strategy from left to right. Parameterization had little 
influence on reward total.  
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performance of the model may be at asymptote. Similarly, simulations using 

the parameters of the highest and lowest rewarded participants did not, on 

average, achieve the same proportion of trials that were rewarded, and were 

just outside the 95% confidence interval. The worst proportion was 0.444 

(lower 95% bound at that parameterization was 0.45), and the best proportion 

was 0.633 (upper 95% bound at that parameterization was 0.626). While it is 

possible that this high performing participant used a superior strategy than 

some form of the hybrid algorithm discussed above, the higher score may also 

have been due to chance. All other participant scores fell within the 95% 

confidence interval produced by the simulations. Choosing a model-free, 

model-based, or mixed strategy had little influence on performance, therefore, 

a tendency to use one strategy can be viewed as an individual preference, 

rather than uncovering an optimal strategy. 

 

Further modeling considerations 

While it is clear that the reinforcement models fit individual behavior 

better than the null (or random choice) model for most participants, and there 

is no prevailing optimal strategy, there are still other reasons why the retrieved 

parameters may be a poor indicator of participant choices. For example, 

unaccounted factors may lead to a biasing of the estimates in the model. Two 

additional approaches are commonly used to determine the appropriateness 

of using a specific model of participant behavior. The first is to analyze the 

data using different analytical methods and determine whether it provides a 

similar interpretation. Another approach is to analyze a subset of the trials for 

which there is reason to believe that there may be a breakdown in the 

assumption in the choice of parameterization (Nassar and Gold 2013). For 
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example, if a task has different phases or blocks of trials, then using fixed 

parameter estimates to account for every trial is likely inappropriate, and using 

adjustable or multiple parameters might be warranted. Our task design did not 

include subsets of trials that would be categorically different from one another, 

as the reward probabilities drifted slowly. As such, this second approach is not 

available in this study. 

We did however use the first approach of using a different analytic 

technique. The data were presented graphically, through group logistic 

regression, and individual reinforcement learning model fits. The graphical 

representation allows for a visual comparison of the age group patterns of 

behavior to one another and the pure model-free and model-based strategies. 

While there is some agreement between these approaches, namely that a 

mixture of strategies is used in adolescents and adults, the regression and 

algorithmic approach results are somewhat difficult to reconcile in children. 

The regression analysis suggests that children show model-free behavior, but 

the reinforcement-learning approach suggests their mixture of model-free and 

model-based strategies does not differ from adolescents or adults. This may 

be due to the inappropriateness of fitting a complex model to children when a 

simpler one (w=0) fits similarly well. Another possibility is that children do use 

a model-based strategy, but that it is different from the one that has been 

shown to fit adult behavior. There are no suggestions from the behavior that 

might signal that an alternative model is being used, but this possibility should 

be kept in mind when interpreting the results. Many studies in adults under 

various conditions have suggested that a hybrid of model-free and model-

based selection strategies is an appropriate depiction of adult behavior (Daw 

et al. 2011; Otto, Raio, et al. 2013; Otto, Gershman, et al. 2013; Skatova, 
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Chan, and Daw 2013; Otto et al. 2015), however that does not guarantee that 

it is appropriate in children. Indeed, the developmental differences on which 

the hypothesis that model-based behavior would emerge across development 

could also predict that the type of model-based strategy simply changes 

across development. Separately, the peak in the hybrid weight parameter 

seen in adolescence may tell us something about the development of the 

model-based strategy that the regression analysis does not. Perhaps 

adolescents, once capable of recruiting the model-based strategy tend to 

preferentially do so, whereas adults may be better at determining when a 

model-free approach might suffice, or default to using one or the other.   

The regression analysis assumes that each decision was based on the 

previous trial type (reward and transition). We likened a participant that was 

solely sensitive to reward to be showing model-free behavior, whereas one 

that incorporated reward and transition information to be model-based. 

However this characterization is only loosely related to the model-free and 

model-based algorithms. Only considering the previous trial precludes the 

possibility that participants are basing their decisions on multiple, or a pattern 

of, previous trials. Methodologically, using information from the past two trials 

would generate 16 different trial types and three trials back would generate 64 

trial types, requiring 19 and 83 independent variables and making this analysis 

intractable for the current study. The tutorial preceding the task explicitly 

informed participants that no pattern of choices would lead to more treasure 

and that rewards only depended on the slowly drifting probability at the second 

stage. There are, of course, still valid behavioral reasons why an individual 

might base a decision on more than the previous trial. An individual could, for 

example, decide to switch due to a model-free or model-based strategy, but 
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withhold that switch for one or more trials, which would be completely missed 

by our analysis approach. However, the qualitative effects of a model-free and 

model-based strategy are considered to be well characterized in adults when 

using the single previous trial (Otto, Raio, et al. 2013). 

Another potential strategy participants could use is hypothesis testing. 

That is, a good strategy may be to test a specific spaceship and alien, then 

switch and test another, and then exploit the best combination. As was alluded 

to earlier, the task structure makes this strategy somewhat difficult due to the 

constant slow drift in reward probabilities and fixed transition probabilities 

makes clear testing difficult. This strategy may, however, be reflected in an 

individual’s baseline tendency to repeat the previous trial, captured in the 

regression analysis by the intercept term and by reinforcement-learning 

algorithm by the perseveration parameter. While this tendency to repeat does 

obscure the pure model-free or model-based behavior, the trials for which 

participants do switch their first-stage choice reveals a pattern of behavior that 

can be still be defined as either reward (model-free) or reward-and-transition 

(model-based) sensitive. 

The reinforcement-learning fits do take into account the entire history of 

an individual’s prior actions and rewards at each subsequent decision. That is, 

a reward prediction error is calculated after the second stage, which updates 

both second-stage action values and first-stage model-free action values. We 

make the assumption that participants base their action selection on the 

model-free and model-based estimates of value that were determined by the 

reward history they experienced (as well as the perseveration and inverse-

temperature parameters discussed in the methods). However, determining 

whether the parameters that go into the model reflect the true neural 
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computations sufficiently well is difficult, requiring a measured interpretation of 

those parameters. 

 

 

Deterministic choices and perseveration 

The two analytical approaches revealed an aspect of participant 

behavior that is not well described by either model-free or model-based 

directed action. Descriptively, model-free and model-based choice strategies 

do not account for the systematic tendency to repeat a previous choice 

regardless of the previous outcome or transition information (Lau and 

Glimcher 2005; Schönberg et al. 2007 - supplement). This base tendency to 

repeat a previous decision can be observable in the Figure 2.2 as an average 

shift away from the 0.5 probability of repeating a choice, in the regression 

analysis as the intercept term (Table 2.1), and in the reinforcement analysis as 

the perseverance parameter (𝑝) (Table 2.3). Positive 𝑝 values indicate a 

higher likelihood of repeating a choice, and negative values a higher likelihood 

of switching. A purely model-free or model-based learner should have no 

tendency to repeat or switch their choice (𝑝 = 0), and should determine their 

choice solely according to the values that each algorithm has calculated. This 

type of pure behavior is not seen, which is why the perseveration parameter 

and intercept terms were included in our analytical approaches. Perseveration 

is not involved in producing the model-free or model-based learning signal (the 

reward prediction error). Rather, it is part of the action selection strategy and 

should be included in the descriptive models of habitual and model-based 

decision-making. A modeling choice may be done when considering where to 

place the 𝑝 parameter: in our formulation it is multiplied by the 𝛽 term, but it 
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could alternatively be added. This parameterization makes slightly different 

assumptions about behavior. In our formulation there is the assumption that 

the baseline tendency to stay is also somewhat non-deterministic, whereas the 

other assumes it is. Our formulation requires the combined term 𝑝 ∗ 𝛽 to be 

used to correspond to the intercept term of the regression model (Table 2.1), 

and this product correlates with age as well (r=0.34, p=0.0081). Perseveration 

is an important aspect of decision-making that should be considered 

developmentally. 

Relatedly, there is another aspect of the action selection stage of 

decision-making (as opposed to the evaluation stage) that is not part of the 

descriptive characterization of model-free and model-based decision-making – 

how deterministic an individual is when making a choice. In other words, how 

likely is it that an individual will choose the higher valued option given the 

difference that was calculated between them? In the group regression analysis 

this cannot be determined on a per-participant basis, but is reflected at the 

group level to some extent by how much variance remains in the model. The 

residual error, or variance, in the data that is not described by the model can 

then be ascribed to noisy, uncertain, or non-deterministic behavior, or because 

a wrong or simplified model is being utilized. Which of these factors, and to 

what degree, drive the unexplained variance cannot be determined. However, 

in the individual reinforcement learning analysis of behavior, a parameter (𝛽, 

or the softmax inverse-temperature parameter) is included that estimates the 

extent to which a participant’s behavior is deterministic (Schönberg et al. 

2007), separate from the unexplained variance. Alternatively this can be 

considered as a parameter that captures how noisy a participant’s decisions 

are. A 𝛽 = 0 means that all choices will have the same probability of being 
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chosen regardless of their difference in value and the decision will be random, 

whereas a large positive number (approaching ∞) means that any difference in 

value will have a probability approaching 1 of choosing the higher valued 

action (Sutton and Barto 1998). Here too a developmental increase in 𝛽 is 

seen (r=0.40, p=0.0015), suggesting that participants become more 

deterministic with age, which should be included in a descriptive 

characterization of action selection strategies. 

Let us first assume that the models being used are correct (or are 

sufficiently accurate representation of behavior), and that children are not 

basing their decisions on a wholly different structure of computational models, 

so as to consider these developmental differences. Though the inverse-

temperature and perseveration parameters are not presented in the 

descriptive characterization of model-free and model-based behavior, there 

are interesting hypotheses as to where these developmental differences may 

originate. The inverse-temperature parameter reflects differences in the 

randomness, or noise, of behavior, but it does not suggest the underlying 

cause of this randomness (Nassar and Gold 2013). It could simply be due to 

the task complexity; participants with poor attention or an inability to keep the 

previous trial’s information in working memory would have some non-

deterministic behavior. Alternatively, this random behavior could be 

purposeful, which has been proposed to be an important strategy for learning 

(Daw et al. 2006; Luksys, Gerstner, and Sandi 2009), with suggestions that 

lower deterministic behavior may be predictive of the risky or exploratory 

behavior seen in adolescence (Tymula et al. 2012). Together, the 

perseveration and inverse temperature parameters can reflect a tendency to 

exploit a known option, or explore unknown options (Daw et al. 2006; 
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Schönberg et al. 2007; Lau and Glimcher 2005). An individual that has a 

tendency to repeat a previous action and does not show much choice 

variability is exploiting an action for which the outcome value is known, 

whereas as a person that often switches or is quite variable in their behavior 

might be exploring the other options in the hope of finding a more beneficial 

outcome. The task in our study was not appropriately designed to determine 

whether the developmental differences seen in the perseverance and inverse 

temperature parameters are related to differences in exploratory or exploitative 

behavior, as a repetition after a common transition is different from a repetition 

after a rare transition. Regardless, these aspects of behavior seem to be 

present across development and should fall under the description of model-

free or model-based behavior. 

 

How does imaging constrain interpretation of the change in model-based 

behavior across development?  

In the experiment described in Chapter 2, there was evidence of a 

gradual developmental increase in goal-directed (model-based) behavior, 

whereas the level of habitual (model-free) responding was fairly consistent 

across all age groups. There are multiple possible causes leading to this 

developmental difference in behavior, which were discussed in the previous 

limitations section. Neuroimaging, additionally, can be used to help constrain 

these interpretations. Recent efforts to extend animal studies of the neural 

substrates of habitual and goal-directed action into humans have largely 

suggested that homologous networks are involved (Balleine and O’Doherty 

2009). Lesions in the infralimbic cortex (medial prefrontal and orbital prefrontal 

cortex) and nucleus accumbens (ventral striatum), dorsolateral striatum 
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(putamen), and dorsomedial striatum (anterior caudate) have revealed their 

roles in reward evaluation, habitual action selection, and goal-directed action 

selection respectively; animals: (Schultz, Dayan, and Montague 1997; Ostlund 

and Balleine 2007; Yin, Knowlton, and Balleine 2004; Yin et al. 2005), and by 

imaging for humans: (McClure, Berns, and Montague 2003; Schoenbaum, 

Saddoris, and Stalnaker 2007; Tricomi, Balleine, and O’Doherty 2009; 

Valentin, Dickinson, and O’Doherty 2007). Furthermore, many regions are 

crucial to cognitive processes involved in goal-directed behavior – including 

the dorsolateral prefrontal and parietal regions for working-memory (J. D. 

Cohen et al. 1997; Otto, Gershman, et al. 2013; McNamee et al. 2015), the 

dorsal anterior cingulate cortex for conflict resolution (Botvinick et al. 2001; 

Davidson et al. 2004), the hippocampus for mapping sequences or events to 

goals (Bornstein and Daw 2012; Pfeiffer and Foster 2013; Pennartz et al. 

2011), and an as yet poorly defined role for the amygdala (Schoenbaum, 

Saddoris, and Stalnaker 2007). Collectively, this provides many regions that 

could be examined for the corresponding developmental differences in 

recruitment of model-based strategies. 

Adults that performed a task similar to ours exhibited neural signals in 

the ventral striatum that tracked both the purported model-free and model-

based reward prediction errors determined by the reinforcement learning 

algorithm (Daw et al. 2011). Next, I will discuss analytic approaches building 

from this finding that can be used to probe the developmental differences 

observed in behavior in our study. The clearest behavioral result was a 

differential recruitment of the model-based strategy with age, which is reflected 

in the proportion of first-stage choices that were repeated as a function of trial 

type (previous reward and transition). To examine this effect neurally, we will 
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look for brain regions that correlate with a set of time series that match first 

stage choices (stay or switch), previous outcome (reward or no reward), 

previous transition (common or rare), and their interactions, and we will 

specifically examine the reward-by-choice (model-free like decisions) and 

reward-by-transition-by-choice (model-based like decision) effects. Unlike the 

computational-neural approach discussed below, these neural signals will 

capture habitual and goal-directed behavior without assuming a specific 

learning model. As this first stage reflects a decision point, rather than the 

reward prediction error, we expect to find the largest developmental difference 

in the putamen and anterior caudate. We expect that all age groups would 

show a larger signal in the putamen for reward-stay than reward-switch, and 

that there would be no age dependent effect. Additionally, we would expect to 

find an age related effect in the anterior caudate for the reward-by-transition-

by-choice interaction, specifically in the contrast of [reward-common-stay + no 

reward-rare-stay] – [reward-common-switch + no reward-rare-switch]. Such a 

result would provide evidence that while all age groups are using some model-

free, habitual strategy to base their decision, there is a developmental 

increase in the amount of model-based, goal-directed strategy being used. 

A second examination would use the reinforcement-learning 

parameters to look at the difference in reward-prediction-error signaling in the 

ventral striatum. This will be also prove to be somewhat difficult to interpret, as 

these error signals are highly correlated, and both have been found to 

correlate with striatal activity (Daw et al. 2011). Also, it is important to note the 

individual differences we see in our participants, such that some children show 

model-based behavior and some adults show model-free behavior, without 

much mixture. As such, if we use a mixed reward prediction error using each 
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individual’s hybrid weight parameter, there may be no difference seen. 

However, if we separately examine a purely model-free, model-based, and 

half mixed prediction error signal, we predict that these will differ as a function 

of age and the individual hybrid weight parameter. Preliminary imaging 

analyses in 5 participants (2 children, 1 adolescent, 2 adults) shows that the 

model-free prediction error signal is present in the ventral striatum, suggesting 

that this analysis is warranted. 

An additional analysis will probe the behavioral result that suggests that 

all participants, including children, were aware of the rare transitions, 

according to their response time slowing after a rare transition. This analysis 

will be similar to the reward prediction analysis, except that it will follow a state 

prediction error signal, which is only produced by a model-based evaluative 

process. Here, we predict that a neural signal in the hippocampus will 

correlate with this state prediction error, and that it will vary as a function of 

how much the participant slowed, on average their response to a rare trial.  

Additionally, any regions found in the above analyses will be used as 

seeds for functional and structural connectivity, which may provide some 

insight into the individual and developmental differences seen in behavior. 

Namely, we expect to see decreased corticostriatal connectivity in those 

participants with the weakest recruitment of the model-based strategy. 

Examining hippocampal-striatal and hippocampal-cortical connections may 

also show differences by how model-based an individual is, reflecting the 

difference between implicit awareness of the transition structure and 

recruitment thereof. Taken together, these analytic approaches would provide 

strong evidence that using model-free and model-based algorithms is an  
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appropriate representation of habitual and goal-directed behavior across 

development. 

There are of course concerns with computational modeling in 

neuroimaging, similar to those discussed in regards to behavior earlier. A 

specific worry is that neural signals could correlate strongly with trial-by-trial 

values that were determined from a computational model of behavior, and this 

would be used as a strong indicator that the computational model was 

somehow “correct”. However, it is important to remember that differing 

parameterization will provide highly correlated reward prediction error signals, 

even if there was a systematic bias in those parameters (Daw 2011; Wilson 

and Niv 2013). Thus, strong correlation would be suggestive that a process 

similar to the one parameterized by our approach is occurring in the brain, it 

does not indicate proof. However, the approach using first stage choices is a 

non-modeling approach to get at the same question. Regardless of these 

potential limitations, imaging will still serve to shine light on some of the 

outstanding questions brought up in the behavioral results. 
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Chapter 3: Experiential learning outweighs instruction prior to 

adulthood* 

 

Throughout our lives, we face the important task of distinguishing 

rewarding actions from those that are best avoided. Importantly, there are 

multiple means by which we acquire this information. Through trial and error, 

we use experiential feedback to evaluate our actions. We also learn which 

actions are advantageous through explicit instruction from others. Here, we 

examined whether the influence of these two forms of learning on choice 

changes across development by placing instruction and experience in 

competition in a probabilistic learning task. Whereas inaccurate instruction 

markedly biased adults’ estimation of a stimulus’ value, children and 

adolescents were better able to objectively estimate stimulus values through 

experience. Instructional control of learning is thought to recruit prefrontal-

striatal brain circuitry, which continues to mature into adulthood. Our 

behavioral data suggest that this protracted neurocognitive maturation may 

cause the motivated actions of children and adolescents to be less influenced 

by explicit instruction than those of adults. This absence of confirmation bias in 

children and adolescents represents a paradoxical developmental advantage 

of youth over adults in the unbiased evaluation of actions through positive and 

negative experience. 

 

*     Decker, J. H., Lourenco, F. S., Doll, B. B. & Hartley, C. A. Experiential 
reward learning outweighs instruction prior to adulthood. Cogn. 
Affect. Behav. Neurosci. (2015). doi:10.3758/s13415-014-0332-5 
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INTRODUCTION 

Learning to obtain rewards and avoid punishment is critical for the survival of 

all organisms. An approach to this challenge that is employed across species 

is trial and error-based learning. By aggregating positive and negative 

feedback stemming from our previous actions, we are able to estimate how 

beneficial a given action might be in the future. Although such feedback-driven 

learning is effective, the need to learn about the consequences of our actions 

through direct experience can be inefficient at best, and dangerous when the 

potential outcomes are extremely negative.  

Recruiting a sophisticated capacity for symbolic communication, 

humans regularly circumvent these shortcomings of experiential learning by 

conveying the value of an action through rules, advice, or other forms of 

explicit instruction. By selecting actions based on instruction, a learner is able 

to benefit from the prior experience and knowledge of others. The utility of 

transmitting information through instruction is particularly evident in the context 

of development. Children and adolescents receive a great deal of instructed 

information from parents, teachers, and public policy campaigns that seek to 

educate and protect them, as well as from their peers. An assumption inherent 

in providing such guidance is that instruction can direct children and 

adolescents’ behavior as effectively as, or better than, their own experiential 

learning. To date, there have been few studies directly examining whether the 

efficacy of learning from instructions versus experience changes across 

development. However, our understanding of the cognitive processes and 

neural circuits implicated in such learning, and their maturational trajectories, 

suggests that there may be qualitative changes in the recruitment of instructed 

versus experiential learning across development. 
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Previous research has demonstrated that providing adults with 

instruction or advice induces a behavioral “confirmation bias”, in which 

recommended actions are valued more highly than those learned solely 

through experience, even when those recommendations turn out to be 

inaccurate (Biele, Rieskamp, and Gonzalez 2009; Biele et al. 2011; Doll, 

Hutchison, and Frank 2011; Doll et al. 2009). This instructional biasing of 

experiential learning is thought to stem from the influence of the prefrontal 

cortex, implicated in rule-guided behavior (Bunge and Zelazo 2006; Miller and 

Cohen 2001), on feedback-based evaluative processes in the striatum 

(McClure, Berns, and Montague 2003; O’Doherty et al. 2003; Pagnoni et al. 

2002). This process has been modeled computationally as an instruction-

consistent distortion of error-driven reinforcement learning signals (Doll et al. 

2009). Developmentally, the striatal signals implicated in feedback-based 

reward learning appear to be relatively mature in children and adolescents (J. 

R. Cohen et al. 2010; Galvan et al. 2006; van den Bos et al. 2012). In contrast, 

connectivity between the prefrontal cortex and the striatum exhibits marked 

structural changes from childhood through adulthood (Liston et al. 2006; 

Imperati et al. 2011). Consistent with the proposal that these connectivity 

changes reflect fine-tuning of the information exchange between these regions 

(Somerville and Casey 2010), cognitive functions that depend on the integrity 

of frontostriatal pathways typically show continued maturation into adulthood 

(Liston et al. 2006; Rubia et al. 2006; Somerville and Casey 2010) . This 

neural model suggests that the biasing influence of explicit instruction on 

value-based choices might be diminished in children and adolescents, 

predisposing them to exhibit greater reliance on experiential learning. 
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In the present behavioral study, we tested this hypothesis by having 

children, adolescents, and adults complete a probabilistic reward-learning task 

consisting of a learning phase immediately followed by a test phase. In the 

learning phase, three pairs of stimuli were presented, and participants could 

learn experientially, through trial and error, which stimulus within each pair 

was most likely to yield reward. Importantly, participants were given inaccurate 

instruction that a lower-valued stimulus within one pair was likely to be 

rewarding.  Participants could discover that this information was inaccurate 

through the subsequent positive or negative feedback following each choice. 

During the test phase, participants were presented with all possible pairings of 

the six stimuli from the learning phase, and attempted to select the higher 

valued option, receiving no feedback. By comparing their performance for 

instructed and uninstructed stimuli of equal value, we could determine the 

extent to which false instruction biased their experiential learning of the true 

stimulus value, providing a quantitative measure of the influence of instruction 

on experiential learning. Previous studies in adults have demonstrated that 

inaccurate instruction strongly biases experiential value learning (Doll, 

Hutchison, and Frank 2011; Doll et al. 2009; Staudinger and Büchel 2013). We 

hypothesized that children and adolescents would be less susceptible to this 

bias, instead relying predominantly upon their own experience to guide their 

choices. 

 

METHODS 

Participants 

Participants were recruited through community-based events (e.g. 

street fairs) and flyers posted within institutions in the New York City 
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metropolitan area. All participants (or parents of minors) were screened by 

phone prior to participation to ensure that the participant had no history of 

diagnosed neurological or psychiatric disorders, was not taking medication, 

and was typically developing cognitively and behaviorally (based on self or 

parental report). We also ensured that all participants were not color blind. All 

participants provided written consent to participate and were paid for their 

participation. Participants were debriefed following the experiment about the 

misleading nature of the instructions. 

A total of 87 (51 female) paid volunteers completed the study and were 

included in the analyses: 30 children (18 females, aged 6-12 years, M = 9.5, 

SD = 1.8), 31 adolescents (15 females, aged 13-17 years, M = 14.8, SD = 1.5) 

and 26 adults (17 females, aged 18-34 years, M = 23.0, SD = 4.3). Previous 

studies (Biele, Rieskamp, and Gonzalez 2009; Doll et al. 2009) have reported 

large instruction bias effect sizes in adults (d = 0.9 and d = 1.0–1.3, 

respectively). As we considered the possibility that children or adolescents 

might show a smaller effect, we targeted a sample size of 25 participants per 

group, which would enable us to detect a significant effect of at least 0.6 in 

each age group with 80% power (alpha of .05, two-tailed). Additional 

participants were recruited to ensure adequate power in the event of subject 

attrition, particularly in the child and adolescent groups.  

 

Behavioral Paradigm 

Participants completed an instructed probabilistic selection task (Doll et 

al. 2009) that was adapted for use across development, which consisted of a 

learning phase immediately followed by a test phase. Participants were told 

that their task was to feed a hungry mouse by helping him find the cheese 
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hidden behind one of two mouseholes. During learning, participants saw one 

of three stimulus pairs on each trial, referred to here as AB, CD and EF, which 

consisted of uniquely colored mouseholes (Figure 3.1). These stimuli were 

chosen to make them easily distinguishable and to be as engaging as possible 

for our younger participants. 

                         

 
Figure 3.1 Probabilistic learning paradigm. The learning phase consisted of 
180 choices between 6 probabilistically reinforced stimuli presented in 3 pairs. 
Participants were falsely instructed that one stimulus had a high likelihood of 
being rewarded when in actuality it did not. Positive or negative feedback was 
given following each trial. The test phase, consisting of all 15 possible stimulus 
pairs with no feedback, enabled assessment of the extent to which learned 
stimulus values were biased by instruction.  

Participants were given positive or negative feedback (a happy mouse 

with cheese, or a sad mouse) after each choice during the learning phase, 

indicating whether they made a “correct” or an “incorrect” choice. Although 

participants did not receive monetary rewards, previous studies suggest that 
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purely cognitive feedback in learning tasks recruit similar underlying 

neurocircuitry to reward-based reinforcement learning (Rodriguez, Aron, and 

Poldrack 2006; Daniel and Pollmann 2010; van den Bos et al. 2012). Though 

both stimuli in each pair were occasionally correct or incorrect, each pair had 

an optimal choice. Stimuli were probabilistically reinforced; for the AB pair, 

choosing “A” resulted in positive feedback for 80% of the trials, whereas “B” 

led to positive feedback for 20% of the trials. The other two pairs (CD and EF) 

had reward contingencies of 70%(C/E) and 30%(D/F), but participants were 

given inaccurate instruction about stimulus F (verbatim: “We’ll get you started 

with a hint – this mousehole has a good chance of containing cheese”). This 

instruction was provided in textual format on the screen, accompanied by an 

image of the recommended mousehole. Thus, the instruction did not have a 

clear social source and was not directly associated with the experimenter, or 

any specific individual. Before starting, participants completed a brief quiz on 

the task instructions during which they were prompted to recall the 

recommended stimulus and were again visually reminded of this instruction. 

The participants saw each stimulus pair 60 times, pseudo-randomized in 10-

trial blocks, with side of presentation counterbalanced for each participant. 

Participants had 2.5 seconds to choose a stimulus and received feedback for 

1 second.  

Before the test phase, participants were told they would now be tested 

on what they had just learned. Participants were presented all 15 possible 

stimulus pairings (3 original, 12 novel), but were not given feedback after 

making a choice. For each pair, they were asked to “choose the mousehole 

that feels more correct based on what you’ve learned; if you’re not sure which 

one to pick, go with your gut feeling”. Participants saw each pair 6 times, 
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randomly intermixed in the 90 test trials. There was a blank screen between 

trials (150ms duration), and no time limit when making a choice.  

 

Data Analysis  

Learning phase choice behavior data were analyzed using a 

generalized linear mixed-effects model using the lme4 package for the R-

statistics language (Bates et al. 2014). Optimal choice (i.e., choosing the 

higher probability option) was modeled with independent predictors of age 

group (factors: children, adolescents, adults), pair (factors: AB, CD, EF), trial 

(1:180, z-normalized), and all 2-way and 3-way interactions. We used a 

maximal random-effects structure (Barr et al. 2013), including a per-participant 

adjustment to the intercept (“random intercepts”), as well as per-participant 

adjustments to the pair, trial, and pair-by-trial interaction terms (“random 

slopes”). In addition, we included all possible random correlation terms among 

the random effects. P-values and 95% confidence intervals of the log-odds 

were determined through bootstrapping with 1000 simulations using the 

bootMer function as implemented in the lme4 package, and p-values for 

analyses of variance were determined using likelihood-ratio-tests as 

implemented in the mixed function of the afex package. Data are presented 

visually in Figure 3.2 using mean percent choice for each pair by age group in 

10-trial blocks.  

 We assumed that any biasing influence of instruction on experiential 

learning would be revealed by a tendency to make instruction-consistent 

choices in the test phase, an effect previously observed when participants are 

instructed either that a suboptimal stimulus is good, or an optimal stimulus is 

bad (Doll et al. 2009). We examined participants’ test phase choices for pairs 
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that included the equally valued but differentially instructed 30% stimuli (D and 

F) to determine the extent to which learned stimulus values were biased by 

instruction. We first assessed whether participants chose in accordance with 

the instruction for the equally valued pair of 30% stimuli (DF pair; 30:30 

instructed; Figure 3.3A). We then compared performance for a set of pairs 

from the test phase to generate an instruction-bias score: AD (80:30), AF 

(80:30 instructed), DB (30:20), and FB (30 instructed:20, see Figure 3.3B). 

These were chosen because any difference in performance — measured as 

the proportion of choices of the optimal, higher probability option — between 

the two 80:30 pairs or 30:20 pairs, is likely due to instruction as they are 

otherwise identical. The bias score is the mean of two difference scores: the 

difference between AD and AF performance, and the difference between FB 

and DB performance, each of which can vary between -1 and +1. Positive 

numbers indicate an instruction-consistent bias while negative numbers 

indicate an instruction-inconsistent bias (i.e., participants chose against 

instruction), and values close to zero indicate no instruction bias. The choice 

behavior data for these pairs were analyzed similarly to the training phase 

analysis except the independent variables were age group (children, 

adolescents, adults), pair (factors: easy 80:30, hard 30:20), and instruction 

(factors: instructed, uninstructed). Post-hoc testing was performed using t-

tests of the instruction-bias score mentioned above. To establish that all age 

groups exhibited above chance experiential learning, we performed an 

additional analysis testing performance on all uninstructed pairs (A, B, C, D 

combinations) with age group as the independent variable. 

Response-time data from each phase of the task were analyzed 

separately using a linear mixed-effects model. Models were constructed as 
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before, with response time as the dependent variable and choice and its 

interactions added as additional independent variables. P-values were 

determined using conditional F-tests with Kenward-Roger correction of 

degrees-of-freedom, as implemented in the ANOVA function (with Type III F-

tests) from the car package. 

We used reinforcement-learning models to attempt to characterize how 

participants integrated the positive and negative feedback received during the 

learning phase. We used participants’ test phase choices as indication of their 

learned stimulus values (Doll, Hutchison, and Frank 2011; Doll et al. 2009; M. 

J. Frank, Seeberger, and O’reilly 2004; M. J. Frank and O’Reilly 2006; M. J. 

Frank et al. 2007) and fit two reinforcement-learning models to these test 

phase choices by maximum a posteriori estimation (Daw et al. 2011; den 

Ouden et al. 2013) using Matlab optimization toolbox (MATLAB 2012). For 

each model, we estimated the parameters that best captured how learning 

phase feedback could be integrated to yield the choices observed in the test 

phase. The first model was a standard reinforcement-learning model, in which 

prediction errors (𝛿) are used to update the values (𝑄) associated with each 

stimulus. Feedback that is better than expected yields a positive prediction 

error and feedback is worse than expected yields a negative prediction error 

(𝛿). The learning rate parameter (𝛼) determines the extent to which these 

prediction errors are incorporated into the updated stimulus value. This 

learning algorithm has been widely used to model an experiential trial-and 

error-based learning process (Bayer and Glimcher 2005; Pessiglione et al. 

2006; Watkins and Dayan 1992). Specifically, we updated stimulus values (𝑄) 

on each trial according to the following model:  

𝑄! 𝑡 + 1 =   𝑄! 𝑡 +   𝛼𝛿(𝑡)   (for all stimuli A,B,C,D,E,F) 
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where 𝛿 𝑡 = 𝑟 𝑡 −   𝑄! 𝑡   is the difference between the outcome at time t (1 

reward, 0 no reward) and the current expected stimulus value. 

The second reinforcement learning model includes an additional bias 

parameter (𝛼!) that alters the integration of feedback following choices of the 

instructed stimulus, enabling instruction-consistent feedback to be amplified 

(multiplying positive prediction errors, 𝛿!, which were set to zero on negative 

prediction error trials, by the bias parameter), and instruction-inconsistent 

feedback to be diminished (dividing negative prediction errors, 𝛿!, which were 

set to zero on positive prediction error trials, by the bias parameter) (Doll et al. 

2009; Doll, Hutchison, and Frank 2011). For the instruction bias reinforcement-

learning model, stimulus values were updated as follows:  

𝑄! 𝑡 + 1 =   𝑄! 𝑡 +   𝛼𝛿(𝑡)    (for uninstructed stimuli A,B,C,D,E) 

𝑄! 𝑡 + 1 =   𝑄! 𝑡 +   𝛼!𝛿! 𝑡 +   𝛿! 𝑡 /𝛼! (for instructed stimulus F) 

For both models, the final stimulus values were then fit to participants’ test-

phase choices, with each trial modeled using the softmax choice rule: 
 

𝑃!! 𝑡 =   
1

1+ 𝑒!! !!!!!      

 

Where the inverse temperature parameter (β) describes how deterministic an 

individual’s choices are given the difference in Q-values. Parameter estimates 

were compared at the group level using non-parametric tests. Model fits were 

compared to one another using the Akaike Information Criterion (Akaike 

1974). 

We took the Beta(1.1, 1.1) distribution as a prior for the learning rate 

parameter (𝛼), and the Gamma(1.2,5) distribution as a prior for both the bias 

(𝛼!) and inverse temperature (𝛽) parameters. These priors were chosen to be 

uninformative over the previously observed ranges of parameter estimates in 
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similar tasks and to ensure smooth parameter boundaries (Daw et al. 2011; 

Daw 2011). 

 

RESULTS 

Learning phase 

During the learning phase (Figure 3.2), there was a significant 

difference in performance by age group (Χ2 = 6.96, df = 2, p = 0.031). Children 

performed significantly worse than adults (log-odds difference = -0.547, 95% 

confidence interval (CI) (-1.018, -0.161), p = 0.015), and children showed a 

trend toward worse performance than adolescents (log-odds difference = -

0.357, CI (-0.721, 0.082), p = 0.095), but adolescents did not differ from adults 

(log-odds difference = -0.190, CI (-0.627, 0.198), p = 0.40). Performance also 

differed significantly depending on the stimulus pair (Χ2 = 29.7, df = 2, p < 

0.0001). Performance for the easy, uninstructed pair (AB 80/20) was 

significantly better than the falsely instructed pair (EF 70/30) (log-odds 

difference = 1.046, CI (0.721, 1.387), p < 0.005), and marginally better than 

the hard, uninstructed pair (CD 70/30) (log-odds difference = 0.183, CI (-

0.001, 0.338), p = 0.055). Performance for the CD pair (70/30) was also 

significantly better compared to the instructed EF pair (70/30; log-odds 

difference = 0.863, CI (0.573, 1.182), p < 0.005). There was also a significant 

linear improvement in performance across the learning phase (Χ2 = 36.1, df = 

1, p < 0.0001, log-odds estimate = 0.297, CI (0.202, 0.378)).  
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Figure 3.2 Learning phase performance. Adults (cyan squares) perform 
better than children (red circles) and marginally better than adolescents (blue 
triangles) for the two uninstructed pairs (AB, CD). All groups initially adhere to 
the false instruction (F) and gradually learn through experience to select the 
higher valued alternative (E), with adolescents showing the fastest 
improvement. Error bars are SEM. 

The linear improvement in performance across the learning phase 

differed by age group (Χ2 = 7.45, df = 2, p = 0.024). Children showed slower 

improvement in performance than adults (log-odds difference = -0.283, CI (-

0.502, -0.066), p < 0.005), marginally slower improvement than adolescents 

(log-odds difference = -0.183, CI (-0.363, 0.037), p = 0.080), and there was no 

difference between adolescents and adults (log-odds difference = -0.100, CI (-

0.309, 0.109), p = 0.344). The linear improvement in performance also differed 

by stimulus pair (Χ2 = 2.53, df = 2, p = 0.009). There was a slower 

improvement in performance for both the easy uninstructed pair (AB) 

compared to the falsely instructed pair (EF) (log-odds difference = -0.265, CI (-

0.397, -0.135), p = 0.010), and the hard uninstructed pair (CD) compared to 

the EF pair (log-odds difference = -0.169, CI (-0.300, -0.034), p=0.030), 
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suggesting that performance quickly reached asymptote in the uninstructed 

pairs. However, there was no difference between the two uninstructed pairs 

(log-odds difference = -0.096, CI (-0.208, 0.016), p = 0.110). There was a 

marginally significant age group by stimulus pair interaction effect (Χ2 = 9.33, 

df = 4, p = 0.053). Whereas adults performed better than children and 

adolescents on uninstructed pair choices (AB/CD), their performance 

decreased for the instructed pair (EF), particularly when compared to 

adolescents (Fig. 2). Finally, we found no evidence of a pair-by-age-by-trial 

interaction (X2 = 2.89, df = 4, p = 0.576).  

 

Test phase 

Replicating previous results (Doll et al. 2009), during the test phase, 

adults showed a bias towards the instructed stimulus (F) when it was part of 

the equally valued DF stimulus pair (30:30 instructed; t = 5.98, df = 25, p < 

0.0001, mean = 81.4%, CI (70.6, 92.2)). However, children only showed a 

marginal effect (t = 1.98, df = 29, p = 0.0573, mean = 60.8%, CI (49.6, 71.9)) 

and adolescents showed no effect of instruction (t = 0.66, df = 30, p = 0.515, 

mean = 53.8%, CI (42.1, 65.4)) (Figure 3.3A). Children (t = -2.64, df = 54.0, p 

= 0.011, percent difference = -20.7, CI (-35.8, -5.5)), and adolescents (t = -

3.56, df = 55.0, p = 0.0008, percent difference = -27.6, CI (-43.2, -12.1)) chose 

the instructed stimulus significantly less than adults, and there was no 

difference in preference between children and adolescents (t = 0.92, df = 59.0, 

p = 0.36, percent difference = 7.0%, CI (-8.8, 22.8)). This provided an initial 

indication of a persistent instruction bias in adults that is absent in children and 

adolescents. 
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Figure 3.3 Test phase performance. a) Percentage of F choices when 
seeing the DF pair (30:30 instructed). b) The instruction bias is the average of 
two difference scores between stimulus pairs of equal probability that are 
differentially instructed. c) Adults show a significantly larger instruction bias 
than both children and adolescents. d) There is a significant increase in 
instruction bias with age (darker circles indicate two data points). Error bars (a, 
c) are 95% confidence intervals; shading (d) is SEM. 

The computed instruction bias score (Figure 3.3B) assesses choice 

preference across a broader set of pairs that are equally valued, but 

differentially instructed. Again, we found that adults were more biased than 

children (t = 2.24, df = 51.8, p = 0.029, instruction bias difference = 0.179, CI 

(0.018, 0.340)), and adolescents (t = 2.29, df = 51.0, p = 0.026, instruction 

bias difference = 0.182, CI (0.026, 0.341)), and that children were not 

differently biased from adolescents (t = 0.002, df = 58.7, p = 0.998, instruction 

bias difference = 0.003, CI (-.284, .295); Figure 3.3C). This pattern of age-
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group differences was also present for each individual subcomponent of the 

bias score (80/30 and 30/20). The effect of age group remained significant 

when gender was included as a predictor of instruction bias, with only adults 

showing a significant bias (p=0.0005). There was also a significant gender 

interaction for the adult group (p=0.0133), but not children (p=0.40) or 

adolescents (p=0.25). This effect was due to adult females having a larger 

instruction bias than adult males (t = 2.57, df = 24, p = 0.017, instruction bias 

difference = 0.298, CI (0.059, 0.537)). We also found the instruction bias to 

increase linearly with age (r=0.246, p = 0.021; Figure 3.3D).  

We examined the choices for the pairs that make up the instruction bias 

(Figure 3.3B) – pairs AD 80/30, AF 80/30 instructed, DB 30/20, and FB 30/20 

instructed – using a mixed-effects regression with pair difficulty, instruction, 

age group, and all interactions as independent variables. As expected, we 

found a significant pair-by-instruction interaction effect (i.e., an instruction bias) 

on performance (Χ2 = 23.19, df = 1, p < 0.0001, log-odds estimate = -0.510, CI 

(-0.729, -0.302)), indicating that the false instruction impaired performance for 

the otherwise easy pair (80/30), and improved performance for the otherwise 

hard pair (30/20). Additionally, this instruction bias effect differed across age 

groups (Χ2 = 11.59, df = 2, p = 0.0031), mirroring the effects seen in the 

instruction bias score. Children and adolescents were equally unaffected by 

instruction (log-odds difference = 0.024, CI (-0.428, 0.471), p = 0.945), 

whereas adults were significantly more affected by instruction than children 

(log-odds difference = -0.793, CI (-1.311, -0.278), p < 0.002) and adolescents 

(log-odds difference = -0.769, CI (-1.325, -0.267), p = 0.008). We found no 

other significant effects of pair or instruction (both p > 0.6). 
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There was an overall difference in age group optimal choice for these 

pairs (Χ2 = 16.58, df = 2, p = 0.0003), reflecting age-related differences in 

overall probabilistic learning, independent of instruction. Children (log-odds 

difference = -1.310, CI (-1.963, -0.665), p < 0.002) and adolescents (log-odds 

difference = -0.868, CI (-1.486, -0.275), p = 0.006) chose less optimally than 

adults, but not differently from one another (log-odds difference = -0.443, CI (-

1.024, 0.115), p = 0.108). 

Performance on all uninstructed pairs (A, B, C, and D combinations) 

showed that all age groups performed better than chance (children: log-odds 

estimate = 0.436, CI (0.128, 0.744), p = 0.006; adolescents: log-odds estimate 

= 0.674, CI (0.367, 0.981), p < 0.0001; adults: log-odds estimate = 1.28, CI 

(0.932, 1.621), p < 0.0001). Children (log-odds difference = -0.840, CI (-1.302, 

-0.378), p = 0.0004) and adolescents (log-odds difference = -0.603, CI (-1.063, 

-0.143), p = 0.010) performed less well than adults and were not significantly 

different from each other (log-odds difference = -0.238, CI (-0.672, 0.197), p = 

0.284), demonstrating age differences in experiential learning, similar to those 

evident in learning phase uninstructed choices.   

Both during the learning and test phases, response times were 

unrelated to choice, instruction, age group, or any of their interactions. 

Response times decreased significantly over the learning phase (response 

time effect = -51.4 ms, SEM = 7.75 ms, Χ2 = 35.58, df = 1, p < 0.0001), with no 

difference by age group. During the test phase response times were 

significantly longer for the hard pairs (30:20) than easy pairs (80:20), 

regardless of instruction (response time difference = 244.8 ms, SEM = 

38.5ms, F1,93.58 = 9.58, p = 0.0026). There were no other significant effects on 

test phase response times. 



 87 

 

Reinforcement Learning (RL) 

To explore the process by which instruction might influence the 

integration of feedback during the learning phase, we fit participants’ test-

phase choices using a standard and modified instruction bias RL model. The 

standard RL model describes a feedback-driven learning process that has 

been proposed to underlie experiential reward learning (Bayer and Glimcher 

2005; Pessiglione et al. 2006). The instruction bias RL model adds a bias 

parameter that amplifies the influence of instruction-consistent outcomes and 

diminishes instruction-inconsistent feedback, yielding an instruction bias (Doll 

et al. 2009). The standard RL model is equivalent to an instance of the 

instruction bias RL model in which the bias parameter is set to 1 (i.e. no bias). 

Model comparison based on the median AIC values for each age group (see 

Table 3.1) indicated that the choices of children and adolescents were better 

fit by the standard RL model, whereas adults were better fit by the modified 

model that includes an instruction bias parameter. This result suggests that 

children and adolescents recruited an undistorted feedback-based integration 

process during the learning phase, while adults biased the integration of 

feedback for the instructed stimulus, altering the weighting of positive and 

negative outcomes in an instruction-consistent manner.  

These age differences in choice consistency parallel the differences in 

test phase performance observed for the experientially learned stimuli in the 

regression results. In the instruction bias RL model, bias parameter estimates 

(𝛼!) exhibited the same pattern of age group differences observed for both the 

instruction bias score and the regression analysis (H = 14.25, p = 0.0009). 

Adults’ bias parameter estimates were significantly higher than both children’s 
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(W = 156.5, p = 0.0002) and adolescents’ (W = 237, p = 0.021), with no 

difference between children and adolescents (W = 430.5, p = 0.62).  
 
 
Table 3.1. Reinforcement learning model parameter fits. 𝛼 – learning rate. 
𝛽 – softmax inverse temperature parameter, 𝛼! – bias parameter, AIC - Akaike 
Information Criterion. The non-parametric Kruskal-Wallis (KW) and Mann-
Whitney-Wilcoxon (MWW) tests were used to compare group parameter 
estimates. Standard (RL) and modified (Mod RL) reinforcement-learning 
models. 
  Median  KW MWW 

Model Param Child 
Adol
esce

nt 
Adult Chi-sq 

(df=2) 
Child vs. 

Adolescent 
Child vs. 

Adult 
Adolescen
t vs. Adult 

RL 𝛼 0.429 0.083 0.036 H=12.87 
p=0.002 

W=579 
p=0.10 

W=621 
p=0.0002 

W=504 
p=0.11 

 𝛽 0.80 1.25 3.89 H=16.26 
p=0.0003 

W=361 
p=0.14 

W=150 
p<0.0001 

W=238 
p=0.009 

 AIC 131.2 125.2 117.2  
    

Mod 
RL 𝛼 0.289 0.046 0.054 H=8.82 

p=0.013 
W=622 
p=0.023 

W=565 
p=0.004 

W=396 
p=0.92 

 𝛽 1.32 2.89 4.55 H=18.71 
p<0.0001 

W=316 
p=0.031 

W=127 
p<0.0001 

W=262 
p=0.024 

 𝛼!  1.42 1.44 3.31 H=14.25 
p=0.0009 

W=430.5 
p=0.62 

W=156.5 
p=0.0002 

W=237 
p=0.021 

 AIC 135.8 128.3 100.0  
    

Collectively, these modeling results suggest qualitative differences as a 

function of age in the manner in which instruction influenced experiential 

feedback-based learning. Whereas instruction biased the integration of 

feedback during learning for adults, both children and adolescents were less 

influenced by instruction, integrating feedback in a relatively unbiased manner. 

 

DISCUSSION 

In this study, we examined whether the influence of instruction on 

experiential learning changes across development. Despite age differences in 

performance, children, adolescents, and adults were all able to recruit 
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experiential feedback to learn to preferentially select the higher-valued 

stimulus of each uninstructed pair. In all age groups, choices for the instructed 

pair were initially biased toward the inaccurately recommended stimulus and 

gradually (rapidly in adolescents) shifted toward the higher-valued alternative 

stimulus as participants received continued negative feedback. However, 

performance during the test phase suggested marked qualitative differences 

across development in how instruction influenced the processing of this 

experiential feedback. Consistent with previous findings (Doll et al. 2009; 

Staudinger and Büchel 2013), we found that adults showed a strong 

instruction-consistent bias, suggesting that inaccurate instruction distorted 

their feedback-based value learning. In contrast, both children and 

adolescents showed a minimal influence of instruction on test phase 

performance, suggesting that they integrated positive and negative feedback 

more objectively during the learning phase in order to estimate the value of the 

instructed stimulus. These data suggest that when explicit instruction or advice 

conflicts with experiential feedback about the value of an action, children and 

adolescents, unlike adults, weight their own experience more heavily. 

Our analyses of instruction bias focused on decisions made during the 

test phase, in which participants’ novel choices revealed the value estimated 

for each stimulus through the integration of learning phase feedback. In 

contrast, choices during the learning phase can reflect potentially 

heterogeneous evaluation strategies adopted by participants (e.g. hypothesis 

testing across multiple trials, (M. J. Frank et al. 2007; Doll, Hutchison, and 

Frank 2011)), which may obscure current stimulus value estimates. Past 

studies employing variants of this task suggest that test phase choices may 

provide the most reliable indication of learning and are selectively sensitive to 
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various pharmacological, genetic, psychological, and neurological factors 

thought to alter the incremental experiential learning process (M. J. Frank, 

Seeberger, and O’reilly 2004; M. J. Frank and O’Reilly 2006; M. J. Frank et al. 

2007; Doll et al. 2009; Doll, Hutchison, and Frank 2011). In our study, age 

group differences in the influence of instruction were not evident in choices 

made during the learning phase. However, we saw robust evidence of 

instruction bias in the test phase choices of adults, but not children and 

adolescents. Our reinforcement-learning analyses establish a link between 

feedback received during the learning phase and test phase decisions by 

formalizing potential underlying processes for learning stimulus values. 

Crucially, reinforcement-learning parameters for the initial learning phase were 

fit to the test phase choices that reflect final learned stimulus values. These 

analyses suggest that whereas experienced outcomes during the learning 

phase were objectively weighted in children’s and adolescents’ value 

estimates, adults biased the weighting of outcomes for the instructed stimulus 

to be more consistent with the explicit instruction they had received. 

Experiential learning is thought to depend critically on dopaminergic 

prediction errors, through which the striatum can learn the value of an action 

(McClure, Berns, and Montague 2003; O’Doherty et al. 2003; Pagnoni et al. 

2002; Schultz, Dayan, and Montague 1997). Explicit instruction is proposed to 

bias this striatal learning process through the top-down influence of the 

prefrontal cortex (Biele, Rieskamp, and Gonzalez 2009; Biele et al. 2011; Doll 

et al. 2009; Doll, Hutchison, and Frank 2011; Li, Delgado, and Phelps 2011; 

Staudinger and Büchel 2013), which enables task-relevant rules and 

instructions to influence goal-directed behavior (Miller and Cohen 2001). A 

theoretical model supported by our reinforcement learning analyses (Doll et al. 
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2009) posits that the prefrontal cortex amplifies the effect of instruction-

consistent outcomes and diminishes the influence of instruction-inconsistent 

outcomes on striatal learned values. This produces a behavioral “confirmation 

bias”, through which recommended actions are more highly valued than those 

learned solely through experience, even when the recommendation is 

inaccurate. Previous studies examining the instructional control of experiential 

value learning in adults largely support this model, demonstrating both the 

hypothesized alteration of striatal feedback-driven error signals (Biele et al. 

2011), and a correlation between instruction-guided choice outcomes and 

prefrontal cortex activation (Li, Delgado, and Phelps 2011). Collectively, this 

evidence suggests that functional interaction between the prefrontal cortex 

and the striatum may mediate the instructional biasing of learning that we 

observed in our adult participants. 

By extension, the relative absence of instructional influence on 

experiential learning in children and adolescents may stem from reduced 

functional efficacy of prefrontal-striatal pathways prior to adulthood. Functional 

imaging studies have observed intact striatal prediction error signals from 

childhood onwards (Galvan et al. 2006; van den Bos et al. 2012), consistent 

with evidence of feedback-based experiential reward learning across 

development (J. R. Cohen et al. 2010; van den Bos et al. 2009; van den Bos 

et al. 2012; S. Peters et al. 2014). In contrast, both structural and functional 

connectivity between the prefrontal cortex and the striatum exhibit marked 

changes from childhood through adulthood (Liston et al. 2006; Imperati et al. 

2011). Cognitive functions that depend on the integrity of this neural pathway 

typically show continued maturation into adulthood (Liston et al. 2006; Rubia 

et al. 2006; Somerville and Casey 2010), suggesting that developmental 
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changes in frontostriatal connectivity may facilitate information exchange 

between these regions. Based on the neuroscientific model of instructional 

control of learning in adulthood, we hypothesize that the prolonged maturation 

of prefrontal-striatal connectivity underlies the resistance of children and 

adolescents to the biasing effects of inaccurate instruction in our task. Our 

present study focused solely on behavior. However, we expect that a 

functional imaging study of our task might find that adults exhibit an 

instruction-consistent bias in striatal prediction error signals for choices of the 

instructed stimulus during the learning phase, with positive signals amplified 

and negative signals diminished relative to those for the equally valued 

uninstructed stimulus. We expect that this biased signaling in adults would be 

accompanied by greater PFC-striatal connectivity following instructed versus 

uninstructed choices outcomes.  In contrast, we expect that children and 

adolescents would show no such differences in prediction error signals for 

instructed versus uninstructed stimuli. These specific hypotheses about the 

potential neural substrates of our behavioral results could be tested directly in 

a subsequent developmental neuroimaging study.  

This maturational increase in instructional influence on learning 

observed in this study concurs with a broader literature suggesting a gradual 

developmental emergence of cognitive control (Bunge and Zelazo 2006; 

Diamond 2006; Munakata, Snyder, and Chatham 2012). A primary challenge 

of cognitive development is to acquire knowledge across a variety of stimulus 

domains about the nature of the environment, which is accomplished in large 

part through inductive statistical learning. Such experientially acquired 

knowledge may be more flexibly applied and easily generalized than explicit 

rule-based learning, a principle that has long been recognized in pedagogical 
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theory (R. L. Hayes 1993; D. A. Kolb 1984). Implicit learning processes 

typically recruit evolutionarily conserved subcortical regions including the basal 

ganglia (Bischoff-Grethe et al. 2004; Rauch et al. 1997). Such learning is 

evident early in development (Amso and Davidow 2012; Saffran, Aslin, and 

Newport 1996; Kirkham, Slemmer, and Johnson 2002), and may continue to 

improve into adulthood (Thomas et al. 2004). Although reduced prefrontal 

control is often portrayed as a developmental handicap, it may confer distinct 

advantages by enabling implicit learning to occur unhindered (Thompson-

Schill, Ramscar, and Chrysikou 2009). Providing instruction, whether false or 

veridical, has been shown to interfere with multiple forms of implicit 

experiential learning, reducing task performance relative to when no 

instruction is given (Reber 1989). Increased sensitivity to underlying patterns 

in the reinforcement of actions may facilitate children and adolescents’ 

acquisition of language, social conventions, and other complex behaviors.  

An important consideration not addressed in this study is whether the 

social source of instruction might modulate its influence. In the present study, 

the instruction provided to participants was simply presented on the screen, 

lacking any specific social origin. In contrast, real world advice often comes 

from peers (friends, classmates, colleagues) or authority figures (parents, 

teachers, bosses), which may yield different effects on behavior than a printed 

message. The source of advice may be a particularly important factor during 

adolescence—a period of increasing independence and heightened sensitivity 

to peers (Chein et al. 2012; Galván 2014; Gardner and Steinberg 2005; Jones 

et al. 2014; Steinberg and Monahan 2007). Moreover, the influence of 

instruction has been shown to depend on the perceived expertise of the 

advisor (Meshi et al. 2012), and peers and authority figures may be viewed as 
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experts in different behavioral domains at different developmental stages. 

Thus, advice from different social sources may vary in salience across both 

age groups and decision contexts. Future work might explore whether 

manipulating the social source of instruction alters the developmental 

differences in instruction bias reported here. 

Both parents and policy-makers commonly rely upon rules and 

instruction to deter children and adolescents from actions that carry potentially 

harmful consequences. In particular, increased independence during 

adolescence often presents opportunities to experiment with behaviors (e.g. 

sex, drug experimentation, reckless driving) that frequently yield positive social 

or hedonic outcomes, but can have rare yet serious negative effects. Positive 

experienced outcomes may come to predominate in adolescents’ risk 

estimates (Reyna and Farley 2006). In our study, participants of all ages 

initially adhered to instruction, consistent with other evidence that the actions 

and decisions of adolescents can be influenced by advice (Engelmann et al. 

2012). However, when the feedback they received provided evidence 

contradictory to their prior instruction, both children and adolescents, but not 

adults, showed greater reliance upon their own experience. Public policy 

campaigns attempting to deter adolescents from risky behavior through explicit 

guidance or information have had limited efficacy (Ennett et al. 1994; 

Trenholm et al. 2007). The present results suggest a cognitive mechanism 

underlying such resistance to instruction. This finding highlights the 

importance of research aimed at identifying effective ways for both parents 

and public health campaigns to advise adolescents as they navigate real-

world risky behavioral domains.  
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In summary, by placing instruction and experience in competition, we 

show here that the relative weighting of these two sources of information shifts 

over the course of development. Consistent with the protracted maturation of 

the circuitry implicated in instructional control of learning, children and 

adolescents showed less influence of instruction on choice than adults. 

Whereas instruction alters the processing of experiential feedback in adults, 

our results suggest that children and adolescents remain attuned to the true 

reward contingencies in their environment, enabling experience to prevail in 

directing their actions. Many aspects of cognition (e.g. working memory (Crone 

et al. 2006), attentional control (Rueda, Posner, and Rothbart 2005), and 

executive function (Diamond 2006) improve as individuals mature from 

childhood through adulthood, typically conferring advantages for adults in 

learning and decision-making. Similarly, the effective recruitment of instruction 

to guide one’s actions may generally be advantageous, allowing an individual 

to benefit from the knowledge and prior experience of others. However, our 

results suggest that this ability may also come at the cost of introducing 

pronounced bias in the processing of experiential feedback. The absence of 

confirmation bias in children and adolescents observed in this study 

represents a paradoxical developmental advantage of youth over adults in the 

unbiased evaluation of actions through positive and negative experience. 

 

LIMITATIONS 

Reinforcement learning algorithm limitations 

This study shares many of the same limitations as those discussed in 

the limitations section of Chapter 2, so the discussion will be focused primarily 

on aspects and considerations that are specific to the analysis approach taken 
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in this chapter. In addition to the typical concerns that come with modeling 

behavior using trial-by-trial estimates of a learning process, this experiment 

makes a critical change to the modeling procedure. Whereas reinforcement-

learning algorithms generally model learning and action-selection for every 

trial throughout a task, here, the learning and action-selection portions of the 

algorithm are separated into different phases (Doll et al. 2009). More 

specifically, only the learning phase is used to calculate the prediction errors 

that train the learning portion of the algorithm, and only the test phase choices 

are used to calculate the action-selection probabilities. The reasons for doing 

so are as follows: first, the study is not interested in determining which action-

selection strategies are being used by participants during the learning phase, 

but only how instruction influences that learning. As such, regardless of 

whether participants use atypical action-selection strategies during the 

learning phase, such as choosing randomly or hypothesis testing, no attempt 

is made to model those decisions. Second, there is no feedback during the 

test phase and so no additional learning can occur. It follows that participants 

should thus only choose the stimuli they think would reward them on a given 

trial, rather than some strategy to help them learn. Therefore, we make the 

assumption that the final derived stimulus values from the learning phase are 

transferred over to the test phase decisions. While this has the nice property of 

not needing to estimate the true choice strategy of the learning phase, it also 

offers no chance to interpret the decision strategy during the learning phase. 

 Previous studies have attempted other modeling approaches to explain 

the decision behavior of adults. The bias (the approach used in our analysis), 

override, strong prior, and insight models each have a corresponding 

neuropsychological interpretation (Doll et al. 2009). The bias model assumes 
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that reinforcement learning of the non-instructed stimuli corresponds to a plain 

SARSA algorithm (Sutton and Barto 1998), and that learning about the 

instructed stimuli includes a scaling factor. This scaling factor is the bias 

parameter, and simply amplifies instruction-consistent prediction errors and 

dampens instruction-inconsistent prediction errors. This provided a good 

account of the learning phase and test phase in prior work. The override 

model assumes that learning proceeds according to reinforcement learning for 

all stimuli, but that there is an additional scaling factor during decisions 

involving the instructed stimulus. While this account was qualitatively similar to 

the bias model, the override model fit the behavior less well, especially during 

the test-phase. The strong prior model assumes that instruction leads to a high 

initial estimated value of the instructed stimulus and lowers the learning rate 

for that specific stimulus, and this model was shown to fit both learning and 

test phases poorly. Finally, the insight model assumes that a participant, after 

experiencing instruction-inconsistent outcomes, has the insight that the 

instruction was incorrect, and will make a sharp switch to favoring the 

uninstructed paired stimulus. While this account captured the learning phase 

data fairly well, it failed to account for the bias seen in the adult test phase 

choices. Given these results, we selected to focus our attention on the bias 

model, but it is possible that one of these other models may be better than the 

standard reinforcement-learning model currently being used.  

A more parsimonious model would likely incorporate all of these 

approaches. As participants of all ages initially followed the instruction, 

adolescents sharply shifted their learning phase behavior, and adults showed 

the instruction bias behavior, a single model would need to be designed that 

allowed any of these aspects to drive behavior. The model could, for example, 
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keep the initial values of each of the six stimuli as free parameters, and allow 

for the values in a pair to be swapped on any given trial. However, we expect 

that the unmodified reinforcement-learning algorithm would continue to fit child 

and adolescent behavior as well as any other, when correcting for free 

parameters.  

Another issue in the modeling approach is that it does not take into 

consideration that the values of the learning phase stimuli within a pair are 

yoked. While the point is not belabored during the instructions, it is stated that 

one stimulus in each pair is better than the other, and becomes fairly obvious 

quite early during the learning phase, and this yoking is the basis behind the 

insight model. The algorithm could model this information by having a 

prediction error update two values, including the uninstructed stimulus that 

was paired with the instructed stimulus. If the value estimates of the paired 

stimuli are yoked, it would suggest that there may also be an indirect 

instruction bias, going in the opposite direction of the main result. However, a 

separate scaling parameter is likely unnecessary for this indirectly instructed 

stimulus, as there is no behavioral evidence in the test phase showing that 

subject representations of these values were tied to one another. 

 

What is the optimal strategy? 

 Unlike the two-stage task discussed in Chapter 2, there is a clear 

optimal strategy in this task, and no age group seems to adopt it. The optimal 

strategy is to always choose the stimulus with the higher likelihood of yielding 

a reward. There were 6 participants (3 adolescents and 3 adults) who showed 

perfectly optimal strategy for all three pairs by the end of the learning phase, 

and 4 additional (3 adolescents and 1 adult) that showed close to optimal. Yet, 
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as a whole, participants seem to asymptote at around the reinforcement 

probability, known as probability matching behavior (Stanovich 2003; Doll et 

al. 2009). This behavior is readily observable with probabilistic reinforcers, and 

is known as the Gambler’s Fallacy (Tversky and Kahneman 1971). The fallacy 

is as follows: even knowing the probability of an event, like a coin toss, people 

generally assume outcomes to be self-correcting, such that if multiple heads 

come up in a row, multiple tails must follow to bring the average back to 0.5. In 

our task, this might manifest in an individual predicting that on a given trial, the 

reward might appear with the lower probability stimulus. However, it has been 

shown that with large financial incentives, meaningful and regular feedback, 

and extensive training, participants can eventually adopt an optimal strategy 

(Shanks, Tunney, and McCarthy 2002). As none of these are the case in our 

study, save feedback, we are not surprised by this result in the learning phase, 

and do not think that it informs the interpretation of the test phase behavior.  

 Finally, the poor model fits in this study need to be discussed. Unlike 

the studies in Chapter 2 and Chapter 4, the proposed models fit many 

participants’ data no better than a chance model. And while each age group 

seemed to fit the model overall, group differences were present, and the poor 

individual-level fits suggest that there may be some serious problems either 

with the parameterization of the models, or with the design of the task. The 

test phase, with its 12 novel pairs, is difficult, and it is quite easy to make 

internally inconsistent decisions. For example, if someone were to indicate that 

A > B, B > C, and C > A, it would be impossible to estimate their difference in 

relative values and a fitting function would predict that they are all equal. Thus, 

because of the relatively poor fits, we do not rest our interpretations on the 
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modeling results, and instead use the bias score and regression analysis to 

make our claim. 

 

Limitations to the bias score and regression analysis 

 The bias score and DF-preference (the relative preference between the 

two equally valued but differentially instructed 30% reinforced stimuli) are not 

especially robust as they are based on choice proportions, but we explored 

the possibility of including more trials to increase this robustness. The bias 

score is the average of two proportions, whereas the DF-preference is based 

on only one. It may be valid, however, to increase the number of 

measurements that go into the bias score, if it is appropriate to include the 

stimulus that was paired with the instructed stimulus as an indirectly instructed 

stimulus. To determine this, we examined the CE-preference (equally valued, 

differentially instructed 70% reinforced stimuli), and the indirect instruction bias 

score, which is calculated equivalently to the normal bias score but with E and 

C stimulus swapped for F and D. There was no indication in either measure for 

a bias in any age group (all p-values > 0.15). As such, it was determined that 

these trials should not be incorporated as measures of the instruction bias. 

However, in an effort to examine the consistency in the instruction bias score, 

we plotted the range of the two proportions that form the instruction bias score 

(Figure 3.4). The general low within-participant variability suggests that, 

despite the low number of measurements, the instruction bias measure is 

internally consistent.  
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Figure 3.4 Variance of instruction bias measurement. Most participants are 
consistent in both measures of the instruction bias score. Darker circles 
indicate two participants are overlapping. 
 

The regression analysis is a more robust approach, as it uses all 24 test 

phase trials that make up the instruction bias score in its prediction of test 

phase choice. However, this number of trials is still fairly small to estimate 4 

random effects for each participant and 7 fixed-effects overall; thus, the 

returned statistics are likely not very trustworthy. Thus, rather than relying 

simply on likelihood-ratio-tests, as we did in the other chapters, here we 

employed parametric bootstrapping. That the results hold with this more 

stringent test provides added support that the observed bias effect in adults, 

which was undetectable in children and adolescents, was valid. 

Another concern is that participants were not learning to the same 

extent during the learning phase. This is especially concerning for the 

instructed pair for which most participants were choosing the optimal choice 

only 50% of the time. However, just because they were choosing this option, 

does not guarantee they were not learning, and when looking at overall 
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performance during the test phase, all age groups were performing above 

chance. Nevertheless, other versions of this study have used a ‘to criterion’ 

learning phase, rather than a fixed number of trials (Doll et al. 2014). That 

way, once a pair was learned (measured as choosing in proportion with the 

reward probability), it was not overly trained for the participants who learned it. 

This also runs into the problem of different training amounts, but is a good way 

of guaranteeing that learning occurred. However, if the hypothesis is that 

children may have learned about the instructed stimulus less than adults, then 

it might be expected that they would be more likely to be biased, which is not 

what we see. This is something to consider in future implementations of the 

task. 
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Chapter 4: On weight and waiting: delay discounting in anorexia nervosa 

pre-treatment and post-treatment* 

Individuals with anorexia nervosa (AN) override the drive to eat, forgoing 

immediate rewards in favor of longer-term goals. We examined delay 

discounting and its neural correlates in AN before and after treatment to test a 

potential mechanism of illness persistence. Inpatients with AN (n=59) and 

healthy controls (HC, n=39) performed a delay discounting task at two 

timepoints. A subset (n=30 AN, n=22 HC) participated in fMRI scanning during 

the task. The task consisted of a range of monetary choices with variable 

delay times, yielding individual discount rates—the rate by which money loses 

value over time. Before treatment, the AN group showed a preference for 

delayed over earlier rewards (i.e., less steep discount rates) compared with 

HC; after weight restoration, AN did not differ from HC. Underweight AN 

showed slower response times for earlier versus delayed choices; this 

reversed with treatment. Underweight AN showed abnormal neural activity in 

striatum and dorsal anterior cingulate; normalization of behavior was 

associated with increased activation in reward regions (striatum and dorsal 

anterior cingulate) and decision-making regions (dorsolateral prefrontal cortex 

and parietal cortex). The undernourished state of AN may amplify the 

tendency to forgo immediate rewards in favor of longer-term goals. The results 

suggest that behavior that looks phenotypically like “excessive self-control” 

does not correspond with enhanced prefrontal recruitment.  Rather, the results 

point to alterations in cingulo-striatal circuitry that offer insights on the potential 

role of perturbed decision-making neural systems in the perpetuation of AN.  

* Decker, J. H., Figner, B. & Steinglass, J. E. On Weight and Waiting: 
Delay Discounting in Anorexia Nervosa Pretreatment and Posttreatment. 
Biol. Psychiatry 1–9 (2015). doi:10.1016/j.biopsych.2014.12.016 
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INTRODUCTION 

Anorexia nervosa (AN) is a serious disorder with a mortality rate six 

times as high as expected among young women (Arcelus and Mitchell 2011). 

Despite ongoing research, the neurobiology of AN remains poorly understood. 

One defining characteristic of AN is the ability to resist the drive to eat. 

Individuals with AN demonstrate a capacity to forgo receipt of food reward—to 

override biological hunger cues and “postpone” eating. This common feature 

of AN is examined in the current study using a behavioral task that quantifies 

delay discounting, a measure of one aspect of self-control. 

The clinical phenomena seen in AN have been understood as 

manifestations of excessive self-control, dating back to early descriptions by 

Hilde Bruch of “iron determination” (Bruch 1978). In a recent study using a 

monetary delay discounting task, we measured preferences between smaller-

but-immediate rewards versus larger-but-delayed rewards, providing an 

estimate for individual discount rates—reflecting how rapidly a reward loses 

subjective value as a function of how long one must wait to receive it (Green, 

Fry, and Myerson 1994). Individuals with AN had discount rates that were 

significantly less steep than their healthy peers (i.e., they preferred larger-but-

delayed rewards) (Steinglass et al. 2012), suggesting greater “self-control” or 

“patience.” This result was provocative in part because it is uncommon to find 

heightened self-control in this task in a psychiatric population, and because 

discount rates have been shown to have behavioral correlates and thus 

ecological validity (Sharp, Monterosso, and Montague 2012). Steeper 

discounting (i.e., less patience) is associated with poorer self-control as 

evidenced by increased tendencies toward impulse shopping and gambling 

(Chabris et al. 2008), and lower achievement later in life (Mischel, Shoda, and 
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Rodriguez 1989; Ayduk et al. 2000). These established links between discount 

rate and behavior have implications for AN, where the core disturbances are 

maladaptive eating behaviors. 

Measuring self-control in a monetary reward paradigm has advantages in 

AN, as the reward value of food is uncertain (G. K. W. Frank et al. 2012). 

Disrupted decision-making around money is not part of the AN diagnosis, 

therefore, the presence of an abnormality in delay discounting of monetary 

reward may indicate an attribute that extends beyond eating-related 

abnormalities and that can provide clues to underlying neurobiology. In AN, 

the tendency to choose delayed monetary rewards suggests a disposition that 

may contribute to persistent maladaptive eating choices. Perhaps brain 

function is altered in AN in a way that makes it easier to resist the temptation 

of short-term reward—resisting both monetary smaller-sooner rewards and 

food rewards such that the waiting for future weight loss is less of a burden. 

Paradigms with non-food rewards have previously shown reward processing 

abnormalities supporting this avenue of investigation in AN (Keating et al. 

2012).  

Neurobiologically, fronto-striatal reward and fronto-parietal control 

networks are implicated in delay discounting, including the medial prefrontal 

cortex, ventral striatum, dorsolateral prefrontal cortex (dlPFC) and inferior 

parietal lobule (McClure et al. 2004; Kable and Glimcher 2007; Ballard and 

Knutson 2009; Carter, Meyer, and Huettel 2010). The increased patience in 

delay discounting seen in AN raises the question as to whether individuals 

with AN may exhibit functional abnormalities in these decision-making 

systems. Existing data in healthy adults suggest that choosing the larger-later 

rewards is associated with activity in the dlPFC (McClure et al. 2004; Figner et 
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al. 2010), a region identified with self-control processes (Miller and Cohen 

2001; Hare, Camerer, and Rangel 2009). Neuroimaging studies in AN have 

pointed to potential abnormalities in regions relevant for delay discounting 

(striatum and dorsal anterior cingulate) (Keating et al. 2012; G. K. Frank et al. 

2005; Bischoff-Grethe et al. 2013; A. Wagner et al. 2007), yet this hypothesis 

has not been investigated. 

 Clarification of the neurocognitive underpinnings of AN is critical for 

developing new treatment targets for this potentially severe illness. In this 

study, we aimed to examine delay discounting behavior before and after 

treatment, along with the associated neural systems. We hypothesized that 

individuals with AN would show less steep discounting both before and after 

treatment, as compared with healthy peers, suggesting a possible underlying 

trait consistent with excessive self-control and that this would be associated 

with greater activity in the dlPFC.  

 

METHODS 

Participants 

Participants were individuals with AN presenting to the Columbia Center for 

Eating Disorders/ New York State Psychiatric Institute (NYSPI) and healthy 

controls (HC)(Table 1). Eligible patients were between 16 and 45 years old, 

met DSM-5 (American-Psychiatric-Association 2013) criteria for AN, restricting 

(AN-R) or binge-purge (AN-BP) subtype, and were receiving inpatient 

treatment. Individuals were excluded if they had an estimated IQ less than 80, 

history of a neurological, bipolar, or psychotic disorder, substance abuse in the 

last 6 months, or if they were pregnant. Anxiety or depressive disorders, which 
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commonly co-occur, were not an exclusion when AN was the primary 

diagnosis (Hudson et al. 2007). 

A subset of these individuals were recruited to participate during an 

fMRI scan (n=48) if they were 16-25 years old, female, with no 

contraindication to MRI, and not taking psychotropic medication. Medications 

are not routinely used for AN on the inpatient unit, due to lack of evidence of 

utility (Attia et al. 1998).  

HC were matched for age, sex, and ethnicity and were included if they 

had no current or past psychiatric illness, no significant medical illness, no 

psychotropic medications, and a BMI in the normal range (18-25 kg/m2). This 

study was approved by the NYSPI Institutional Review Board, and after 

complete description of the study to the participants, written informed consent 

was obtained. 

 

Procedures 

Height and weight were measured on a beam balance scale (Detecto). 

Participants were administered the Eating Disorders Examination semi-

structured interview (Z. Cooper and Fairburn 1987), and the Wechsler Test of 

Adult Reading (Wechsler 2001). Testing occurred twice. Individuals with AN 

were tested within 1 week of hospital admission (Session 1), and after weight 

restoration to a BMI of 19.5 kg/m2(Session 2). Time between sessions was 

group-matched.  

 

Delay Discounting Task  

Participants made binary choices between amounts of money available at 

various delays: smaller-sooner (SS) and larger-later (LL), adapted from 
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(McClure et al. 2004) . The SS options were available “today” (NOW) or “in 2 

weeks” (NOT-NOW). The delay to the LL option was either 2 or 4 weeks after 

the SS option. The relative difference in dollar amounts between the SS and 

LL options (i.e., (LL-SS)/SS) was 1, 3, 5, 10, 15, 20, 25, 35, or 50%. The SS 

amounts ranged from $15 to $85 dollars.  

This factorial design results in 36 trials—2 (NOW or NOT-NOW) by 2 (2 

or 4 week delay) by 9 (relative percentage difference). Two sets of trials were 

used during the fMRI scan. These sets were duplicated, with one duplicate 

presenting the LL option as the default (ACCELERATE) and the other 

presenting the SS as the default (DELAY), for a possible total of 144 trials. 

Participants outside the scanner used only one duplicate set, for 72 trials. The 

order and frame (ACCELERATE or DELAY) was counterbalanced within and 

between participants. For half of the participants, ACCELERATE trials were 

paired with amazon gift cards and DELAY trials with cash, also 

counterbalanced between participants.  

In the scanner, participants had 10 seconds to indicate their choice, and 

received feedback for 2 seconds, indicating that their choice was recorded. 

During feedback, the triangle below the chosen option turned green while the 

triangle below the alternative option disappeared. Feedback was followed by a 

variable inter-trial-interval ranging from 7 to 8 seconds. The task was 

presented in 4 runs of 4 minutes each, with a brief break between runs to 

allow participants to rest. Runs were presented in one of two counterbalanced 

orders, either (A = Acceleration; D = Delay) A-D-D-A or D-A-A-D. Outside of 

the scanner there was no time limit. 

Participants were instructed that there were no right or wrong answers 

and to choose the option they truly preferred because at the end of the 
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experiment they would be paid according to their choice on one of the trials. 

After finishing participation, one trial was selected by a random number 

generator, and the participant was paid according to their preference on that 

trial (e.g., if they had selected an SS of $24 today over an LL of $36 in 4 

weeks, they received $24 that day). 

Figure 4.1 Delay discounting task design. Individuals were presented with a 
choice between a smaller amount of money available sooner (SS) and a larger 
amount available later (LL). Amounts ranged from $15 to $85 and time of 
delivery for SS choices was either Now or in 2 weeks, and the time of delivery 
for LL was 2 or 4 weeks after the SS. Outside the scanner, there was no time 
limit for responding. In the fMRI version, there was a fixation cross between 
trials. All task parameters (i.e. monetary values, time differences) were the 
same inside and outside the scanner. 
 

fMRI Data Acquisition 

Imaging was performed on a 1.5T Philips Intera scanner, with an 8-

channel head coil. High-resolution T1-weighted anatomical images were 
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acquired using an SPGR sequence (TR=25sec, TE=3.7ms, angle=30°, 

FOV=256mm, 256x204 matrix, 128 slices, voxel size 1x1x1mm). The task was 

performed during 4 functional runs using an EPI sequence (TR=2000ms, 

TE=40ms, FOV=192mm, 64x63 matrix, 33 axial slices, voxel size 3x3x4mm, 

180 TRs). Trials advanced with participants’ selections, and were not 

synchronized with TRs. 

 

fMRI Data Preprocessing 

fMRI data were preprocessed and analyzed using the Analysis of 

Functional Neuroimages software package (AFNI) (Cox 1996). Functional 

scans were corrected for slice acquisition using sinc-interpolation. Volume 

registration using 6-parameter rigid-body transformation, to account for head 

motion, and normalization into Talairach space using 12-parmeter affine 

transformation were performed in a single interpolation step. Data were 

resampled to 3mm isotropic voxels. Data were iteratively smoothed to achieve 

a final full-width half-max Gaussian kernel of 6mm. Signal intensity was 

normalized by individual voxel to percent signal change.  

 

Data Analysis  

Behavioral  

Clinical characteristics were compared using Student's t-tests for 

independent samples, with Welch correction for unequal variances, and Mann-

Whitney-Wilcox tests for ordered measures. For each individual, a hyperbolic 

discount rate (k) was estimated from their choice data, per Session. Log-

transformed discount rates, log(k), were analyzed using a linear mixed-effects 

model, with main predictors of interest Diagnosis, Session, and their 
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interaction and with random intercepts and Session slopes for each 

participant, also repeated with age and IQ included in the model. This method 

models individual variability and is robust to missing data, and was selected 

due to the different sample sizes across different stages of analysis. Log-

transformed discount rates were compared using the lme4, and afex packages 

in the R-statistics language (R-Core-Team 2012; Bates et al. 2014; Singmann 

2013). P-values were determined using conditional F-tests with Kenward-

Roger correction of degrees-of-freedom, as implemented in the Anova function 

(with Type III F-tests) from the package car (Fox and Weisberg 2010); this 

function calls the KRmodcomp function from package pbkrtest; (Højsgaard 

2014)). The interaction was examined using post-hoc tests of Diagnosis for 

Session 1 and 2, and tests of Session for AN and HC. Lower values of log(k) 

indicate less steep discount rates, or a greater preference for the LL reward. 

We examined the relationship of discounting with various clinical 

characteristics by testing the correlation of the discount rate with age, IQ, body 

mass index, duration of illness, eating disorder examination score, and the 

time to discharge after weight was restored.  

 

Fitting Discount Models 

We estimated the probability of making a larger-later choice given the 

choice subjective values on a given trial. 

 

𝑝 =
1

1+ 𝑒^(−𝛽 𝑆𝑉!! − 𝑆𝑉!! )
 

Where p is probability, 𝛽  is the slope parameter, and SV is the reward (SS or 

LL) subjective value. SV was determined using three different discounting 
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models (Mazur, Nevin, and Rachlin 1987; McKerchar et al. 2009; Benhabib, 

Bisin, and Schotter 2010): 

𝑆𝑉 =
𝐴

1+ 𝑘𝑇                                                                     ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 

𝑆𝑉 = 𝐴𝑒!!"                                                                        𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 

𝑆𝑉 =   
𝐴                              𝑖𝑓  𝑇 = 0
𝐴𝑏𝑒!!"       𝑖𝑓  𝑇 > 0                                    𝑞𝑢𝑎𝑠𝑖ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 

Where A is the offered amount, k is a 1-parameter discount rate, b and d are 

the 2-parameter discount rates, and T is the time to the reward in years. 

These parameters were estimated to minimize the negative log-

likelihood of individual choice probability using MATLAB's fmincon minimizing 

function (MATLAB 2012). A pseudo-R2 was generated by comparing the fit 

against that of a random chooser, p = 0.5 ((Doll et al. 2009), Figure 4.2). 

Though the quasi-hyperbolic model had a significantly better fit than the other 

two models using the signed Wilcox rank sum test, there was no difference 

between models using an unsigned test (hyperbolic p = 0.25, exponential p = 

0.33). As such, the hyperbolic model was chosen to describe the results as a 

single discount rate is simpler to interpret, and is the most commonly 

described discount model in the literature. Participants for whom the fitted 

model was not better than chance were excluded (Green, Fry, and Myerson 

1994; Reynolds and Schiffbauer 2004), set at 0.15 to exclude as few imaging 

participants as possible. 



 113 

 

Figure 4.2 Pseudo-R2 Comparisons of Each Discounting Model. All 
participants who completed the task are included. A pseudo-R2 below 0.15 for 
the hyperbolic model was selected as being insufficiently different from 
random to use in the analysis. 

 

Inter-temporal Choice Analysis 

Another approach to analyzing the delay discounting behavior is to use 

a generalized linear mixed-effects model for choice behavior from each trial. 

The model was similar to the one for discounting behavior, but additional 

predictors were added that model Immediacy (NowNotnow), smaller-sooner 

amount (SS_Amount), time difference between options (TimeDiff), and relative 

difference between reward (RelDiff100) for the given trials. The continuous 

predictors were scaled such that they had a mean of zero and a standard 

deviation of 1. We followed the advice of (Barr et al. 2013), and used a 

maximal random-effects structure: the repeated-measures nature of the data 

was accordingly modeled by including a per-participant random adjustment to 

the fixed intercept ("random intercept"), as well as per-participant random 

adjustments to the Session, NowNotnow, SS_amount, TimeDiff, RelDiff100, 
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and four interaction (Session:NowNotnow, Session:SS_amount, 

Session:TimeDiff, and Session:RelDiff100) slopes ("random slopes"); in 

addition, we included all possible random correlation terms among the random 

effects. P-values were determined using the Likelihood Ratio Tests as 

implemented in the mixed function of the afex package. 

 

Response-time analysis 

Response times may provide some insight into the type of strategy 

being used by individuals. We used a linear mixed-effects model from trial 

data using Diagnosis, Session, Choice, their interactions, and including a full 

random-effects structure, similar to what was described for the inter-temporal 

choice analysis. This analysis was also repeated including the absolute 

difference in subjective value between the two options presented (LL-SS). The 

subjective value was determined with the hyperbolic discount function of each 

value, using participant specific discount rates and trial specific delays. 

Absolute value was utilized, as it is the magnitude of the difference, and not 

the direction, that captures the difficulty of a given trial.  

 

fMRI 

Single-subject analysis on preprocessed data was done using a general 

linear model (GLM). Each subject had a design matrix with 22 regressors: 

baseline, trend, and quadratic signal to capture shifts in signal change for each 

of the 4 runs(12), motion parameters(6), and 4 trial-specific regressors that 

reflected participants’ choices (SS-NOW, SS-NOT-NOW, LL-NOW, LL-NOT-

NOW). These trial regressors were convolved with a duration-modulated (by 

trial response time) block hemodynamic-response function. Trials with greater 
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than 2mm of motion (as well as the preceding and following trial) were 

censored, and scans with greater than 10% of trials censored were excluded 

from further analysis. In an attempt to account for the change in subjective 

values seen across sessions, we added an additional amplitude-modulated 

regressor for the difference in subjective value between LL and SS options of 

a given trial according to the subject-specific, behaviorally determined discount 

rate (z-normalized).  

 Our main analysis of interest of the group data was performed using 

linear mixed-effects modeling using AFNI’s 3dLME function (Chen et al. 2013), 

which is robust to small amounts of missing data. Regression coefficients from 

the individual analysis estimated from fewer than 12 trials were excluded from 

the group analysis. The model included fixed-effect terms: Choice (SS or LL), 

Immediacy (NOW or NOT-NOW), Diagnosis (AN or HC), Session (1 or 2), and 

all their possible interactions, covariates (age and IQ), and a random intercept 

for each participant. For regions in which the Choice by Session by Diagnosis 

interaction term was identified as significant, we extracted the average SS and 

LL first- level regression coefficients of each individual for each session. These 

were used to further examine how these regions differed between groups 

through post-hoc t-tests. This group analysis was repeated using the individual 

regression coefficients from when absolute difference in subjective value was 

included. 

 

RESULTS 

Participants are described in Table 1. Of the initially enrolled 106 

participants, we excluded 1 HC and 1 individual with AN when it was 

discovered during further screening that they did not meet inclusion criteria.  
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Table 4.1 Demographic and Clinical Characteristics of Participants 
 HC (n=39) AN (n=59)*    

 Mean ± SD Mean ± SD t df p 
Time 1 n=39 n=54**    

Age (years) 24.7±7.6 25.0±7.5 -0.17 91 0.87 
BMI (kg/m2) 21.7±1.9 16.6±1.5 -3.13 62.5 <0.005 

Education (years) 15.1±3.0 14.1±2.1 1.72 63.9 0.09 
Eating Disorder 

Examination 
0.08±0.10 3.1±1.4Ϯ -15.3 53.7 <0.001 

WTAR estimated IQ 108.5±11.8 107.9±8.0 0.26 56.6 0.79 
Time 2 n=31 n=43    

Days between sessions  58.5±35.4 52.6±15.6 0.87 38.8 0.39 
BMI (kg/m2) 21.9±2.0 20.4±0.7 -2.76 50.3 <0.01 

EDE 0.1±0.1 2.1±1.3 -13.9 42.7 <0.001 
 N  (%) N  (%) Χ2 df p 
Caucasian  27  69.2 53 89.8 2.5 1 0.11 
Female 37 94.9 57 96.6 0.20 1 0.65 
        
WTAR=Weschler Test of Adult Reading, EDE=Eating Disorder Examination, BMI=Body 
Mass Index 
*At Time 1, AN-R n=25 and AN-BP n=29. At Time 2, AN-R n=22 and AN-BP n=21. 
ϮEDE scores were significantly different between AN-R and AN-BP (3.7±1.1 vs 2.6±1.5, 
respectively, p=0.004). 
**Three individuals’ data were excluded at Time 1, based on the behavioral algorithm. 
These individuals were included at Time 2. Two subjects participated only at Time 2.  
Subset of the above participants who also provided fMRI data 
 HC (n=21) AN (n=25)*    
 Mean ± SD Mean ± SD t df p 
Time 1 n=21 n=23    

Age (years) 20.7±2.8 19.3±2.5 1.6 42 0.10 
BMI (kg/m2) 21.4±1.8 16.8±1.4 3.1 39.9 <0.005 

Education (years) 14.1±2.2 13.2±2.0 1.4 40.6 0.17 
Eating Disorder 

Examination 
0.08±0.11 3.09±1.58Ϯ -9.1 22.5 <0.001 

WTAR estimated IQ 109.3±10.2 104.7±8.1 1.6 34 0.13 
Time 2 n=16 n=18    

Days between sessions  53.3±30.2 45.4±11.8 1.0 19.1 0.34 
BMI (kg/m2) 21.7±1.8 20.2±0.6 3.3 31.8 <0.005 

EDE 0.1±0.1 2.3±1.4 -9.6 17.1 <0.001 
      
* At Time 1, AN-R n=13 and AN-BP n=10. At Time 2, AN-R n=9, and AN-BP n=9. 
ϮEDE scores did not differ between subtypes. 
**Two individuals data were excluded at Time 1, based on the behavioral algorithm. 
These individuals were included at Time 2. One HC and one subject with AN had fMRI 
data that was excluded due to motion, their behavioral data were included in analyses. 

Data from 6 participants (all AN) were excluded because their behavior was 

not distinguishable from random choice. The 6 excluded participants did not 

differ significantly from the included AN group in clinical characteristics, and 
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are not included in any of the analyses below. The final sample included 98 

participants (39 HC and 59 AN); of these, 30 HC and 37 AN provided task 

data at both Sessions. Mean duration of illness among AN was 8.6±6.9 years, 

with a history of 0-15 (mean=2.6) prior hospitalizations. There were 28 

individuals with AN-R and 31 individuals with AN-BP in the full sample.  There 

were no significant differences in clinical characteristics between the groups 

who completed one versus two sessions. As shown in Table 1, there was a 

small difference in BMI between AN and HC at Time 2, likely related to the 

narrow BMI range among weight-restored AN. 

The age range for individuals who participated in the fMRI portion of the 

study was designed to be narrow in order to obtain a more homogeneous 

sample (22 HC, 26 AN). As such, they were younger than non-scanned 

participants (19.8±2.7 years versus 29.8±7.2 years, t96=8.97, p<0.0001), with 

no difference between AN and HC. All fMRI participants were female; two with 

AN were left-handed. There were no other significant differences between the 

fMRI and behavioral participants.  

 

Behavioral Results 

Discount rate results 

Results of the delay discounting task showed a significant effect of 

Session (F1,71.4=12.0, p=0.0009) and a Diagnosis by Session interaction effect 

(F1,71.4=19.45, p<0.0001) on the discount rates, log(k) (Table 4.2). Individuals 

with AN had a significantly lower mean discount rate than HC at Session 

1(t91=2.25, p=0.027), a significant increase between Sessions (t36=-4.6, 

p<0.0001), and did not differ from HC at Session 2 (t72=-0.84, p=0.40)(Figure 

4.3). There was no difference in HC between sessions (t29=1.22, p=0.23). The 
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same pattern was seen when age and IQ were included in the linear mixed-

effects model (Table 4.3). Delay discounting results followed the same pattern, 

with no significant differences among the subsets in and out of the scanner. 

Discount rate and change in discount rate were not significantly associated 

with measures of illness severity or other variables that could potentially affect 

the value of reward (Table 4.4). 

 
Figure 4.3 Individuals with AN have lower discount rates than HC only 
when underweight. (A) The log-transformed discount rates (per unit years) 
are shown for individuals with AN and HC at Sessions 1 and 2. Lower log-
transformed discount rates indicate less steep discounting, i.e., a preference 
for larger-later over smaller-sooner options. (B) The proportion of trials that the 
larger-later option was chosen is shown for the AN and HC groups at each 
Session, separated into three bins indicating how much greater the larger-later 
choice was than then smaller-sooner choice in percentage terms. The AN 
group shows an overall decrease in the proportion of trials that they chose the 
delayed option, rather than for a specific subset of trials.  
a Session 2 sample size (N=31 HC, 43 AN)  
* p<0.05 (error bars are SEM).  
 
Table 4.2 Discount rate as a function of diagnosis (Dx) and session 
Effect Estimate F-Stat ndf ddf p-value 
Intercept 0.68 482.23 1 95.85 <0.0001 
Dx 0.06 .45 1 95.85 0.50 
Session -0.14 12.01 1 71.43 0.0009 
Dx:Session 0.17 19.45 1 71.43 <0.0001 
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Table 4.3 Discount rate as a function of diagnosis (Dx), session, age (z-
normalized zAge) and IQ (z-normalized zIQ) 
Effect Estimate F-Stat ndf ddf p-value 
Intercept 0.63 15.52 1 84.99 <0.0001 
Dx 0.14 .72 1 84.99 0.40 
Session -0.21 14.52 1 61.46 0.0003 
zAge 0.31 2.70 1 88.38 0.10 
zIQ -0.38 4.89 1 83.66 0.030 
Dx:Session 0.28 25.76 1 61.46 <0.0001 
Dx:zAge 0.14 0.53 1 88.38 0.47 
Session:zAge -0.12 3.16 1 62.28 0.080 
Dx:zIQ -0.14 0.67 1 83.66 0.42 
Session:zIQ 0.09 1.89 1 60.38 0.17 
zAge:zIQ -0.00 0.00 1 83.00 0.98 
Dx:Session:zAge 0.18 6.45 1 62.28 0.014 
Dx:Session:zIQ -0.02 0.17 1 60.38 0.68 
Dx:zAge:zIQ -0.01 0 1 83.00 0.97 
Session:zAge:zIQ 0.11 4.27 1 59.84 0.043 
Dx:Session:zAge:zIQ -0.05 0.90 1 59.84 0.35 

 
 

As a secondary analysis, discount rates were compared between AN-R, 

AN-BP and HC in the mixed-effects model and showed a significant Session 

effect (F1,71.4=24.23, p<0.0001) and a significant Diagnosis by Session 

interaction (F1,71.3=10.82, p<0.0001). Compared with HC at Session 1, the AN-

R group had lower discount rates (i.e. more patience) (t62=2.48, p=0.016), and 

no difference from HC at Session 2 (t51=0.096, p=0.92). Individuals with AN-

BP did not differ significantly from HC or AN-R at Session 1 (HC: t66=1.37, 

p=0.175, AN-R: t52=-1.09, p=0.28) or Session 2 (HC: t50=-1.62, p= 0.11 and 

AN-R: t41=-1.56, p=0.13). Both AN-R (t17=-3.38p=0.004) and AN-BP (t18=-

3.40,p=0.003) groups changed significantly across Sessions. 
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Table 4.4 Additional delay discounting statistical analyses 
Log(k) All Participants  Scanned Subset 
 Session 1  Session 2  Session 1  Session 2 
Diagnosis n Mean±SD  n Mean±SD  n Mean±SD  n Mean±SD 
HC 39 0.77±1.50  31 0.59±1.52  22 0.60±1.45  17 0.46±1.47 
AN 54 0.05±1.52  43 0.89±1.50  24 0.23±1.54  19 0.97±1.13 
Scanned Subset Significance Testingb Statistic p-value 
Diagnosis by Session Interaction F1,34.2 = 7.39 p = 0.010 
Diagnosis at Session 1 t44 = 0.82 p = 0.42 
Diagnosis at Session 2 t34 = -1.17 p = 0.25 
Session:AN paired t16 = -2.58 p = 0.020 
Session:HC paired t16 = 0.6 p = 0.56 
Behavioral Subset Significance Testing Statistic p-value 
Diagnosis by Session Interaction F1,34.0 = 11.10 p = 0.0021 
Diagnosis at Session 1 t45 = 2.32 p = 0.025 
Diagnosis at Session 2 t36 = -0.15 p = 0.88 
Session:AN paired t19 = -3.83 p = 0.0011 
Session:HC paired t12 = 1.06 p = 0.31 

Log(k) 
correlation 

 Session 1  Session 2  Change in Log(k) 
 t-test r p t-test r p t-test r p 

Age HC 2.19 0.34 0.04 1.57 0.28 0.13 0.33 0.06 0.75 
 AN -0.38 -0.05 0.71 1.53 0.23 0.13 2.79 0.42 0.008 
IQ HC -2.33 -0.37 0.03 -2.59 -0.45 0.02 -1.82 -0.33 0.08 
 AN -0.31 -0.04 0.75 -0.26 -0.04 0.80 0.28 0.05 0.78 
BMI HC -0.38 -0.06 0.71 0.13 0.02 0.90 -1.73 -0.31 0.094 
 AN 0.27 0.04 0.79 0.55 0.09 0.58 0.88 0.15 0.38 
Duration of 
Illness AN -0.95 -0.13 0.35 0.55 0.09 0.59 1.75 0.28 0.09 

EDE Score AN 0.72 0.10 0.48 0.56 0.09 0.58 0.24 0.04 0.81 
Time to 
Discharge AN    -0.14 -0.02 0.89 0.38 0.06 0.71 

  HC  AN    
Household Income Level n (%)  n (%)  W p 
< $10,000 1 5 13.2  9 16.7  1222 0.12 
$10,000-19,999 2 4 10.5  7 13    
$20,000-34,999 3 7 18.4  13 24.1    
$35,000-49,999 4 4 10.5  6 11.1    
$50-000-99,999 5 4 10.5  12 22.2    
$100,000-199,999 6 10 26.3  4 7.4    
> $200,000 7 4 10.5  3 5.6    
Employment Level n (%)  n (%)  W p 
 None 14 35.9  36 61  1354 0.10 
 Part-time 17 43.6  10 16.9    
 Full-Time 8 20.5  13 22    



 121 

Inter-temporal choice results 

There were no group differences in immediacy (p = 0.15), time 

difference (p = 0.23), or relative difference (p = 0.34), but a marginal effect of 

SS amount (p = 0.055). This suggests that there were no systematic session-

independent differences between AN and HC in how variation in the timing 

and in the amounts of the rewards affected their inter-temporal choices, or to 

put it differently, there was no evidence that individuals with AN might have 

neglected the difference in the delays or amounts between the two options.  
 
Table 4.5 Choice as a function of diagnosis (Dx), session, immediacy 
(Now-Notnow), smaller-sooner amount (zSS_Amount), relative difference 
between smaller-sooner and larger-later amount (zRelDiff100), and time 
difference between delays (zTimeDiff)  
Effect Estimate Chi-sq p-value 
Intercept 1.17 8.17 0.0043 
Dx -0.25 0.32 0.57 
Session -0.72 14.07 0.0002 
NowNotnow 0.05 0.52 0.47 
zSS_Amount 1.19 119.38 <0.0001 
zRelDiff100 3.58 111.88 <0.0001 
zTimeDiff -0.36 41.31 <0.0001 
Dx:Session 0.83 20.34 <0.0001 
Dx:zNowNotnow -0.09 2.12 0.15 
Dx:zSS_Amount 0.14 3.67 0.055 
Dx:zRelDiff100 0.23 0.93 0.34 
Dx1:zTimeDiff -0.06 1.45 0.23 
Session:NowNotnow 0.05 1.44 0.23 
Session:zSS_Amount -0.01 0.06 0.81 
Session:zRelDiff100 -0.44 9.66 0.0019 
Session:zTimeDiff 0.02 0.42 0.52 
Dx:Session:NowNotnow 0.09 3.52 0.061 
Dx:Session:zSS_Amount 0.04 0.77 0.38 
Dx:Session:zRelDiff100 0.33 6.68 0.0098 
Dx:Session:zTimeDiff 0.05 1.78 0.18 

The marginally significant effect of SS amount suggests that AN had an 

attenuated magnitude effect (which is the effect that, everything else being 



 122 

equal, larger amounts of money lead to increased patience). This latter result 

might suggest that AN tend to be less sensitive to increasing outcome 

magnitudes; but given that this effect is only marginally significant, we are 

hesitant to make strong conclusions. However, there is a significant Diagnosis-

by-Session-by-Relative Difference interaction (p = 0.0098). This term similarly 

suggests that that the change in preference for the larger-later choice that 

occurred in the AN group across sessions might depend on being more 

responsive to changes in relative difference once weight restored. This would 

suggest that the AN group were somewhat less aware or responsive to the 

relative differences in outcome magnitudes when underweight. 
 

Response time results 

Overall response times quickened across sessions for both groups 

(mean difference=-311ms, SD=815ms, t68=3.17, p=0.002), with no diagnosis-

by-session interaction (p=0.67; Table 4.6). Response times for HC did not 

differ between SS and LL choices across sessions (difference=-50ms, 

SD=819ms, t27=-0.32, p=0.75). Individuals with AN showed a significant shift 

in response time between sessions: At Session 1, AN were slower for SS 

choices than for LL choices, and after treatment, responses were faster for SS 

choices than for LL choices (difference=-336ms, SD=797ms, t34=2.5, 

p=0.018)(Figure 4.4). When absolute difference in subjective value of the two 

options was included in the analysis, to account for choice difficulty, the 

pattern was the same, but only at trend level (p=0.063)(i.e., slower response 

for SS choices in the underweight phase, Table 4.7).  
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Figure 4.4 Individuals with AN chose smaller-sooner options more slowly 
than larger-later options when underweight, and switched when weight 
restored. (A) Response time by percent that the larger-later (LL) option is 
greater than the smaller-sooner (SS) option.  This shows that both groups 
quickened their responses across session, and for some trial types more than 
the other. (B) Response time by session, split by SS and LL choice. The AN 
group shows a significant switch from being slower during SS than during LL 
choices when underweight, to being faster during SS than during LL choices 
once weight restored.  

 
Table 4.6 Response time as a function of diagnosis (Dx), session, and 
choice (SS or LL) 
Effect Estimate Chi-square p-value 
Intercept 3055.3 221.28 0 
Dx -63.2 0.37 0.54 
Session 177.3 12.67 0.0004 
Choice -8.1 0.02 0.88 
Dx:Session -19.9 0.18 0.67 
Dx:Choice -41.4 0.66 0.42 
Session:Choice 2.9 0.02 0.90 
Dx:Session:Choice -59.8 5.86 0.016 
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Table 4.7 Response time as a function of diagnosis (Dx), session, choice 
(SS or LL), and the absolute difference in subject value (z-normalized, 
zAbsPresDiff) 
Effect Estimate Chi-square p-value 
Intercept 2988.5 221.64 <0.0001 
Dx -83.5 0.72 0.40 
Session 158.0 10.3 0.0013 
Choice -73.0 2.72 0.099 
zAbsPresDiff -233.0 81.64 <0.0001 
Dx:Session -7.8 0.03 0.86 
Dx:Choice -35.3 0.65 0.42 
Session:Choice -11.6 0.2 0.65 
Dx:Session:Choice -44.8 3.46 0.063 

 

Imaging Results 

Imaging analyses probed the behavioral finding of differences in preference 

for delayed rewards between AN and HC. Analyses examined differences in 

neural activity between LL and SS choices. There was a significant Choice 

(SS/LL) by Diagnosis (AN/HC) by Session (S1/S2) interaction in multiple brain 

regions, including the striatum bilaterally, the dorsal anterior cingulate cortex 

(dACC), the right dlPFC (rdlPFC), and the right parietal lobule (rPar)(Figure 

4.5, Table 4.8). We compared the differences in Choice (LL minus SS) activity 

between diagnostic groups at each Session in these regions. At Session 1, HC 

showed no difference between LL and SS activity in any of these regions, 

whereas individuals with AN showed lower LL relative to SS activity in the 

striatum and dACC. At Session 2, HC showed lower LL relative to SS activity 

in the dACC, rdlPFC, and rPar, whereas individuals with AN showed greater 

LL relative to SS activity in the striatum, dACC, and rdlPFC. HCs showed a 

significant change across sessions: LL minus SS activity was smaller at 

Session 2 than Session 1 in the striatum, dACC, rdlPFC, and rPar, whereas 

AN showed the opposite change in these regions, with LL minus SS activity 

being greater at Session 2 than Session 1.  These differences appear to be 
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driven only by a decrease in LL activity in HC and by a concurrent increase in 

LL and decrease in SS activity in individuals with AN (Table 4.9).  

 

Figure 4.5 Individuals with AN have altered neural activity as compared 
with HC for larger-later (LL) versus smaller-sooner (SS) choices in 
cingulo-striatal and fronto-parietal circuitry. (A) Areas with a significant 
interaction effect of Choice (LL or SS), Diagnosis (AN or HC), and Session (1 
or 2) (whole-brain corrected p<0.01, individual voxel threshold p<0.01, spatial 
extent >= 41 voxels; ST2). (B) Mean contrasts of LL minus SS choice neural 
activity between Diagnosis (AN or HC) and Session (1 or 2) in regions 
identified in the interaction effect. A positive value indicates greater neural 
activity when making LL choices than when making SS choices.  
a Session 2 sample size (17AN, 14HC).  
# p<0.10, * p<0.05, ** p<0.01, *** p<0.001 (error bars are SEM) Symbols below 
the horizontal bar indicate the test of the LL-SS contrast, those above indicate 
t-tests between diagnostic group of this contrast (Table 4.9). 
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Table 4.8 Activation maps of individuals with anorexia nervosa (AN) and 
healthy controls (HC) during the delay discounting task 

Region x y z voxels volume F-stat 

Interaction Effect of Choice (SS vs LL), Diagnosis (AN vs HC), and Session (1 vs 2) 
Cluster FWE-corrected p < 0.01, individual voxel threshold 0.01, size ≥ 41 voxels 

Left Putamen +25.5 +19.5 +8.5 89 2.4 cm3 20.3 
Left Striatum +7.5 -1.5 +11.5 75 2.0 cm3 20.6 
Right Striatum -16.5 -7.5 +11.5 69 1.9 cm3 21.7 
Dorsal Anterior Cingulate +7.5 -19.5 +29.5 66 1.8 cm3 13.2 
Right Parietal Cortex -55.5 +40.5 +35.5 60 1.6 cm3 19.6 
Right Dorsolateral Prefrontal 
Cortex -31.5 +25.5 +32.5 44 1.2 cm3 14.2 
 

Absolute Difference in Subjective Value 
 

Interaction Effect of Choice (SS vs LL), Diagnosis (AN vs HC), and Session (1 vs 2) 
Cluster FWE-correct p < 0.01, individual voxel threshold 0.005, size ≥ 31 voxels 

Left Striatum +16.5 -4.5 +8.5 64 1.7 cm3 17.2 
Right Striatum -16.5 -13.5 +5.5 52 1.4 cm3 15.6 
Left Putamen +31.5 +16.5 -3.5 37 1.0 cm3 14.6 

Talairach-Tournoux coordinates. 
FWE, family-wise error. 
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Table 4.9 Comparisons of the Difference in Neural Activity between 
Larger-Later and Smaller-Sooner Choices 

Table 4.9 (Continued) 
Region 

 
Test 

 
Statistic 

 
p-value 

 
Clusters Identifying Differences by Diagnosis and Session (main test) 

Bilateral Anterior Caudate Diagnosis:Session F1,30.9 = 48.0 <0.0001 
 Diagnosis:Session 1 t38 = 2.45 0.019 
 Diagnosis:Session 2 t29 = -3.66 0.0010 
 Session:AN paired t13 = -5.51 <0.0001 
 Session:HC paired t13 = 4.13 0.0012 
 AN Session 1 t19 = -2.97 0.0079 
 AN Session 2 t16 = 3.41 0.0036 
 HC Session 1 t19 = 1.00 ns 
 HC Session 2 t13 = -2.00 0.066 
Dorsal Anterior Cingulate 
(dACC) Diagnosis:Session F1,31.3 = 29.7 <0.0001 

 Diagnosis:Session 1 t38 = 1.92 0.062 
 Diagnosis:Session 2 t29 = -4.01 0.0004 
 Session:AN paired t13 = -4.5 0.0006 
 Session:HC paired t13 = 2.51 0.026 
 AN Session 1 t19 = -2.76 0.012 
 AN Session 2 t16 = 2.92 0.010 
 HC Session 1 t19 = 0.28 Ns 
 HC Session 2 t13 = -2.73 0.017 
Right Dorsolateral 
Prefrontal Cortex (rdlPFC) Diagnosis:Session F1,31.4 = 15.0 0.0005 

 Diagnosis:Session 1 t38 = 0.41 Ns 
 Diagnosis:Session 2 t29 = -3.71 0.0009 
 Session:AN paired t13 = -3.22 0.0067 
 Session:HC paired t13 = 2.08 0.058 
 AN Session 1 t19 = -1.12 Ns 
 AN Session 2 t16 = 2.31 0.035 
 HC Session 1 t19 = -0.33 Ns 
 HC Session 2 t13 = -2.78 0.016 
Right Inferior Parietal 
Cortex (rPar) Diagnosis:Session F1,30.3 = 21.2 <0.0001 

 Diagnosis:Session 1 t38 = -0.15 Ns 
 Diagnosis:Session 2 t29 = -3.53 0.0014 
 Session:AN paired t13 = -2.88 0.013 
 Session:HC paired t13 = 3.27 0.0061 
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Table 4.9 (Continued) 
Region 

 
Test 

 
Statistic 

 
p-value 

 AN Session 1 t19 = -1.97 0.063 
 AN Session 2 t16 = 2.09 0.053 
 HC Session 1 t19 = -1.32 Ns 
 HC Session 2 t13 = -2.71 0.018 

 
Clusters Identifying Differences by Diagnosis and Session with Absolute Difference in 

Subjective Value 
Right Striatum Diagnosis:Session F1,35.8 = 46.8 <0.0001 
 Diagnosis:Session 1 t38 = 3.00 0.0047 
 Diagnosis:Session 2 t29 = -6.95 <0.0001 
 Session:AN paired t13 = -2.69 0.019 
 Session:HC paired t13 = 8.64 <0.0001 
 AN Session 1 t19 = -1.48 0.16 
 AN Session 2 t16 = 3.79 0.0016 
 HC Session 1 t19 = 3.21 0.0046 
 HC Session 2 t13 = -6.04 <0.0001 

Left Striatum Diagnosis:Session F1,36.2 = 47.1 <0.0001 
 Diagnosis:Session 1 t38 = 3.40 0.0016 
 Diagnosis:Session 2 t29 = -5.7 <0.0001 
 Session:AN paired t13 = -2.94 0.012 
 Session:HC paired t13 = 5.78 <0.0001 
 AN Session 1 t19 = -2.01 0.058 
 AN Session 2 t16 = 3.24 0.0051 
 HC Session 1 t19 = 2.76 0.013 
 HC Session 2 t13 = -4.52 0.0006 

Left Putamen Diagnosis:Session F1,37.1 = 38.9 <0.0001 
 Diagnosis:Session 1 t38 = 2.82 0.0076 
 Diagnosis:Session 2 t29 = -6.31 <0.0001 
 Session:AN paired t13 = -2.39 0.032 
 Session:HC paired t13 = 6.2 <0.0001 
 AN Session 1 t19 = -1.38 0.18 
 AN Session 2 t16 = 3.88 0.0013 
 HC Session 1 t19 = 2.71 0.014 
 HC Session 2 t13 = -5.29 0.0002 

 

 When absolute difference in subjective value between SS and LL (to 

account for choice difficulty) was added as a regressor in the first level 
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analysis, the same pattern of activity remained in the striatum, but there were 

no longer any group and session differences in fronto-parietal activity (Figure 

4.6). This suggests that the anterior cingulate, dorsolateral prefrontal, and 

parietal cortex activity differences seen in the main analysis were due in part 

to the different changes in subjective value for each group at each time point, 

and perhaps therefore the differences in difficulty that were experienced 

across sessions. It is important to note that the main analysis likely already 

accounted for some of these differences in group difficulty to some degree, 

due to the inclusion of the duration modulated regressor of response time. 

Response times were negatively correlated with trial absolute difference in 

subjective value (r = -0.231, p < 0.0001). 

 

 
 
Figure 4.6 Group Analysis when the absolute difference in subjective 
value was included in the single subject general linear model. The 
diagnosis-by-session-by-choice interaction seen in the bilateral striatum 
reported in the main text is also present when including the regressor of 
absolute difference in subjective value. The dorsolateral prefrontal cortex, 
parietal cortex, and anterior cingulate no longer pass threshold correction. 
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DISCUSSION 

This study provides behavioral and neural data on monetary delay 

discounting from a large sample of acutely ill individuals with AN, tested before 

and after weight restoration, as well as a comparison with healthy peers. We 

replicated our previous result that in the underweight state, individuals with AN 

discount the value of a reward over time significantly less steeply than healthy 

peers (Steinglass et al. 2012). Specifically, individuals with AN selected a 

larger reward delivered after a delay more often than HC, a behavior 

commonly interpreted as indicating self-control. Additionally, underweight AN 

responded more slowly when choosing the smaller, earlier options than the 

larger, delayed options. Once weight-restored, individuals with AN showed 

normalized discount rates (i.e., less tendency to delay reward as their health 

improved), and quickened response times when choosing earlier options, 

suggesting a change in how the choices are perceived.  

Neural activation patterns also differed from HC, though not in the 

expected ways. We predicted that individuals with AN might show increased 

neural activity compared to HC in regions associated with executive control 

(e.g. dlPFC), which has been shown to subserve the tendency to choose 

delayed rewards among HC (Figner et al. 2010). Instead, underweight AN 

showed relatively less activity than HC during delayed compared to earlier 

choices in the dACC and striatum, regions associated with multiple aspects of 

cognition and behavior. After behavior normalized with weight restoration, 

neural activity then differed between groups, specifically with differences in the 

cingulo-striatal and fronto-parietal systems to delayed versus earlier choices. 

However, when subjective value was included, capturing an aspect of choice 
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difficulty for each individual, there were no observable group or session 

differences in this fronto-parietal circuit. In other words, results in these fronto-

parietal regions vary by analytical approach (and may reflect changes in 

subjective difficulty that come with changes in discounting behavior); thus the 

most conservative interpretation would be that the main difference between 

groups is in striatal activity. These results suggest that phenotypic “excessive 

self-control” in AN might not result from executive-control circuit hyperactivity 

in the prefrontal cortex, but rather appears mainly associated with differences 

in striatal activity. 

How, then, should we best understand increased “patience” in AN? The 

current study yields three sets of results. One, among AN in the underweight 

state, discount rate was abnormal, responses were slowed to the earlier 

choices, and cingulo-striatal activity was lower than HC during delayed 

choices relative to earlier choices. Two, with weight restoration, discount rate 

normalized and response times shifted to being faster for the earlier choices. 

Three, with weight restoration, neural activity in the cingulo-striatal and fronto-

parietal circuits increased during delayed relative to earlier choices in the AN 

group, whereas activity decreased for the HC group. Taking these results 

together suggests a new hypothesis: the tendency to prefer larger, delayed 

rewards in the acutely ill state of AN may reflect a state-specific shift in 

decision-making. We can further speculate that acutely ill individuals with AN 

may be relying on choice strategies with reduced cognitive demands. While 

we cannot address this with the data in this study, perhaps choices amongst 

the underweight AN group are more habit driven (Walsh 2013), choosing to 

delay as a default response. Alternatively, the evaluation of delay and 

outcome-magnitude information might be changed (Haber and Knutson 2009; 
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J. Peters and Büchel 2011; Kurth-Nelson, Bickel, and Redish 2012) compared 

to healthy controls.   

Faster response times can be an indication of a more automatic 

response (Schneider and Shiffrin 1977; Keramati, Dezfouli, and Piray 2011). 

For the AN group, response times were slower during earlier versus delayed 

choices when underweight, which reversed with treatment. This suggests that 

the delayed choice may be the default option and choosing earlier rewards 

required more deliberation. Considering the clinical phenomena, where delay 

of eating is likely rewarded initially, it may be that delay of gratification is 

incrementally reinforced and becomes a habitual choice (Walsh 2013), which 

may be amplified in the setting of starvation. This has yet to be tested in AN. 

 Although this interpretation is speculative, prior research suggests it is 

worthy of testing. Malnourishment is known to lead to many cognitive changes 

(Keys et al. 1950), and cognitive deficits have frequently been observed in AN 

(Steinglass and Glasofer 2011). Furthermore, chronic starvation in animals 

has been shown to alter reward processing (Carr 2002). The current data 

suggest that starvation may interact with the pathology of the illness to alter 

decision-making in ways that contribute to its entrenchment and create 

challenges in treatment. These data seem to differ from the reward-enhancing 

effects of acute hunger in food-related (Goldstone et al. 2009) and monetary 

paradigms (Wang and Dvorak 2010), yet may relate to the literature that 

shows hunger does not lead to increased risk tolerance (Levy, Thavikulwat, 

and Glimcher 2013). Cingulo-striatal circuits have been suggested to play a 

role in modulation of basic reward signals (Haber and Knutson 2009). The 

hypoactivity in the dACC and striatum during delayed choices among 
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underweight AN suggests a possible deficit in complex decision-making during 

delay discounting. 

The absence of longitudinal imaging studies of delay discounting in HC 

makes interpreting the pattern of neural signal in HC across sessions difficult. 

One possibility is that neural activity decreases with task familiarity. Prior 

studies show variable neuroimaging results among HC, some with similarities 

to ours at either Session 1 or Session 2 (Kable and Glimcher 2007; Luo et al. 

2009), while others show differences (Wittmann, Leland, and Paulus 2007; 

Christakou, Brammer, and Rubia 2011)—likely related to differences in task 

design. Whereas HC showed less neural activity, individuals with AN showed 

increased activity during larger-later choices upon repeat administration of the 

task. Inpatient treatment may improve health such that, after treatment, 

individuals with AN are able to engage in more deliberate decision-making. 

These cognitive processes may be necessary in AN for making consistent 

healthy choices. Individuals with long-term remission of AN showed no 

behavioral difference from HC in a recent delay discounting study (Wierenga 

et al. 2014), suggesting that normalized discount rates persist once weight is 

restored.  

The majority of research on delay discounting in psychiatry has 

suggested that discount rates are steeper than normal in behavioral disorders 

(e.g., substance abuse disorders) (Koffarnus et al. 2013). AN thus appears 

unusual in being characterized by the opposite behavior. Additionally, one 

study has shown that less steep discount rates were associated with more 

lethal suicidal behavior (Dombrovski et al. 2011), and another reported lower 

rates among individuals with obsessive compulsive personality disorder (Pinto 

et al. 2013), a personality disorder often comorbid with AN. Our behavioral and 
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neuroimaging results suggest that abnormally low discount rates in AN warrant 

further study. For example, does discount rate relate to maladaptive food 

choice, and does it predict response to treatment, as seen in disorders 

associated with high impulsivity and steeper discounting rates (Yoon et al. 

2007; MacKillop and Kahler 2009)?  

The patients in this study were all receiving inpatient treatment, raising 

the question as to whether AN and HC differ because of context, such that 

monetary rewards are less valuable during inpatient treatment. However, 

patients showed similar behavior between cash and gift card trials, and their 

discount rates showed no correlation with time to discharge, which mitigates 

this concern. Nevertheless, we cannot rule out the possibility that discounting 

behavior was influenced by the prospect of leaving the inpatient setting. Our 

main interest was to compare AN and HC and accordingly, our study was not 

powered to make strong empirical conclusions regarding the AN subtypes, 

particularly in the fMRI sample. It may be that self-control differs between 

these groups, a possibility that deserves attention in future research. 

Discounting preferences have been shown to differ across development; as 

such we age-matched our groups, and there was no change to the results 

when age and IQ were included as covariates in the analysis.  

 In conclusion, these novel behavioral and brain imaging results 

illustrate how delay discounting differs among individuals with AN, pre- and 

post- treatment, compared with healthy peers. Our results suggest that self-

control, as measured by a delay discounting task, is selectively altered in the 

acutely ill, underweight state rather than a trait-like abnormality of AN, and that 

this alteration is not due to heightened dorsolateral prefrontal cortex activity, 

as one might have expected based on previous work in healthy individuals 
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(Figner et al. 2010). Thus, the “iron determination” (Bruch 1978) manifested by 

individuals with AN is perhaps not the result of persistent executive control, a 

cognitively demanding approach that may be too challenging for an 

undernourished brain. Rather, these findings may indicate a maladaptive rule-

based or automatic tendency to select the larger, delayed option when 

undernourished. Treatment and weight restoration may facilitate the switch to 

cognitively more demanding strategies. This aberrant decision-making 

warrants exploration specifically as related to choices about eating and 

suggests new directions for understanding the basic mechanisms of AN.  

 

LIMITATIONS 

 Unlike the previous two chapters, this experiment consists only of a 

decision phase and no learning phase, and as such the computational model 

used is somewhat different. This is similar in nature to the analysis in Chapter 

3 in which the behavior was fit only to the decisions of the test phase. The 

algorithm that was used for action-selection in this chapter was equivalent to 

those of the previous chapters. However, rather than being used to make 

inferences about different learning strategies from these decisions, this 

algorithm is used to predict an individual discount rate that leads to such 

decision-making. The action-selection model, just as in the previous chapters, 

is a fair representation of the underlying neural process of decision-making, 

that of contrasting the value of two options. However, the determination of the 

subjective value of each of the options is less representative of an underlying 

neural process. In this section, I discuss limitations in the discounting model 

used, participant subgroups, and imaging of delay discounting in general. 
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Limitations of the hyperbolic discounting model 

 The discount rate is the primary behavioral measure reported in this 

study, and yet there are some crucial limitations to its use. In the methods 

section, three alternative discounting models were presented—hyperbolic, 

exponential, and double exponential—all of which resulted in fits and discount 

rates that were highly correlated to one another. The hyperbolic model 

captures the phenomena of preference reversals in which the estimated value 

of two variably delayed rewards changes as one of them becomes 

immediately available (Laibson 1997; Story et al. 2014). The exponential is an 

internally consistent discounting function that is invariant to amount of delay. 

The double exponential, or quasi-hyperbolic, is also able to explain preference 

reversals and is often discussed using the dual-systems framework – with a 

habitual, steep discounting system and a goal-directed, flatter discounting 

system (McClure et al. 2004; Kurth-Nelson, Bickel, and Redish 2012).  

For most participants, these models explain a large portion of their 

variance, as captured by the pseudo-R2 measure (discussed previously in 

Chapter 2 limitations section). However, it must be remarked again that of the 

participants that had the lowest fits and were excluded due to the cutoff, all six 

were individuals with anorexia nervosa. We examined whether any clinical 

measurements could explain why this subset might be different from the rest, 

but did not discover anything in the attributes we measured. This might 

suggest that there may be some variants in AN that either could not perform 

the task, or chose not to. Generally, discounting has been shown to be quite 

stable over time (Kirby 2009), even to the point that it has been suggested that 

it be used as an individual trait marker (Odum 2011a). However, although this 

model fits behavioral data fairly well and these discount functions are able to 
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reflect this paradoxical preference reversal behavior, this does not mean that 

they provide a good cognitive model of decision-making (Kirby 1997). It is 

unlikely that humans have a mathematical constant from which the subjective 

value of certain options can be derived given reward magnitude and delay to 

receipt. Rather, research suggests that different areas of the brain are 

sensitive to reward and delay information, and it has been proposed that the 

relative weight given each of these signals, as well as their integration, may 

result in behavior that is well fit by a hyperbolic discounting model (Ballard and 

Knutson 2009). Such an account could also explain how various contextual 

and framing manipulations can bias an individual’s decision-making in ways 

that are not appropriately accounted for in a standard hyperbolic discounting 

model (J. Peters and Büchel 2011; Koffarnus et al. 2013). For example, 

increasing the reward magnitudes, making the immediate choice the default 

one, performing a secondary task, and using real money all lead to increased 

discounting of the delayed options, and imagining or drawing attention to the 

future can decrease discounting (J. Peters and Büchel 2010; N. Cooper et al. 

2013). Such manipulations likely change the cognitive representation of the 

magnitude and delay themselves, rather than some mathematical discounting 

function. Given that delay discounting is malleable, it is important that our 

analysis is able to reflect this behavior. 

 

Searching for cognitively relevant approaches to modeling discounting 

Given the limitations of using a hyperbolic discounting model as a 

description for the underlying evaluative process of delay discounting, the 

search for alternative analytic approaches is warranted. In our study, we used 

a generalized linear mixed effects regression analysis, often dubbed 
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intertemporal choice analysis (Figner et al. 2010), as an alternative method of 

analyzing the choice data from the delay discounting task. This analysis 

estimates the influence of a variety of within subject factors (e.g. magnitude 

and delay, relative difference in magnitude and delay, immediacy, framing, 

and session, and their interactions) and between subjects factors (e.g. 

diagnosis, age, and IQ in this case) on the probability of choosing the delayed 

option. Unlike the hyperbolic model, this approach provides a slightly better 

representation for what the brain is thought to be doing—considering the 

various aspects of each stimulus to reach a decision. In our study, both the 

hyperbolic and intertemporal analysis provided the same overall interpretation 

that underweight individuals with anorexia nervosa had lower discounting than 

healthy controls and that they discounted at a normal level once weight 

restored. However, the intertermporal choice analysis offered a more nuanced 

explanation of what leads to delay preference. As might have been expected, 

all participants were more likely to delay with increasing value difference and 

decreasing delay difference, but also with increasing magnitude of the earlier 

available option. This last effect has often been noted in the literature, that the 

discounting changes when the range of rewards is shifted, which is not 

predicted by the hyperbolic model (Baker, Johnson, and Bickel 2003; M. W. 

Johnson and Bickel 2002). Additionally, there was an indication that the AN 

group became more sensitive to the relative difference between the reward 

magnitudes of the presented options with weight restoration. Thus, certain 

decision attributes influence the subjective value of a delayed choice that are 

not accounted for in a hyperbolic discounting model. While intertemporal 

choice analysis does highlight important decision features, and to some extent 

the degree to which they are important, this analytic approach does not 
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provide a formalized computational model for how these decisions may be 

formed. Simply stating that relative difference is important for discounting is an 

unsatisfactory description of decision-making, and we should consider 

alternative models that attempt to model the underlying neural processes 

thought to support such behavior. 

There have only been a few efforts to define new computational models 

that could potentially reflect a neural process that still allows for the known 

idiosyncrasies of delay discounting decision-making. One such effort uses a 

computational model akin to the model-based algorithm discussed in Chapter 

2. Here, a cognitive map representing many different delay times and reward 

magnitudes is searched through in a step-wise fashion (Kurth-Nelson, Bickel, 

and Redish 2012). The probability that such an algorithm would find the given 

reward-delay pair in a constrained number of steps reflects behavior that 

resembles true discounting curves. Furthermore, by limiting the number of 

steps, biasing the slope of the random search, or by changing the starting 

point of this search algorithm, this model is able to reproduce many of the 

state dependent discounting effects that hyperbolic discounting fails to 

capture. Furthermore, this model predicts that imagining or drawing attention 

to the future would decrease the search distance and therefore lower the 

amount of discounting, and such an effect has been observed in healthy 

adults (J. Peters and Büchel 2010; N. Cooper et al. 2013). The random search 

process presented in this model is somewhat difficult to imagine being 

pursued by the brain; however, it is important to test and refine new models 

when the old ones have been shown to be incomplete, even if many will 

eventually be found to be inappropriate. 
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Concerns regarding the differences between participant samples 

 Although, on the whole, the study reproduced that underweight 

individuals with AN discounted less steeply than healthy controls (Steinglass 

et al. 2012), there were some differences between the subsamples. Namely, 

when separating the group that only performed the task behaviorally and 

those that performed the task in the scanner, there was no diagnosis 

difference in the scanner group at session one when the AN group was 

underweight (see Table 4.4). However, the group interaction effect and 

change across session effect within the AN group were still significant. 

Furthermore, the AN group was consistent between the scanned and 

behavioral groups, it was actually the healthy control group that differed 

between the two contexts. This is somewhat concerning, and suggests that 

the effect may not be as robust as we thought. In fact, a recent article failed to 

reproduce the previous and current result (Ritschel et al. 2015), but there were 

many differences between the task designs. Their task used only hypothetical 

rewards, they had a fixed immediate option (not presented), presented trials in 

a non-random fashion (enabling internal consistency), and used far fewer 

trials. For the presentation structure they used a highly regularized adaptive 

algorithm, within each of five different delay blocks, 10 trials were presented 

according to the following algorithm: if the immediate amount was chosen, the 

delayed amount increased by half the difference between the immediate and 

delayed rewards in the next trial and if the delayed amount was chosen, it 

decreased by half the difference between both rewards in the next trial. Given 

this pattern, participants could have learned to move to a high value range and 

then simply switch back and forth. However, it may also be that the result we 

have reported is not very robust. 
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 In our AN sample we included both restricting and binge-purging 

subtypes. There is some indication in the data that these have slightly different 

discounting preferences, with the AN-R group showing less discounting than 

the AN-BP group. Additionally, once weight restored, the AN-BP group show 

higher discounting relative to the adults, suggesting they may become more 

impulsive. While there is some concern with combining subtypes, this can be 

difficult to avoid, especially when dealing with young patients who may not yet 

have crossed-over from AN-R to AN-BP (Eddy et al. 2008). This also another 

concern with the study discussed above, as they make no mention of what 

subtype distribution was present in their sample, if any. This is something that 

should be pursued in a larger sample to see if the differences hold, and then it 

should be decided whether the distinction in meaningful, both for this task and 

clinically.  

 

Limitations to neuroimaging in delay discounting 

Due in part to the inadequacies of modeling delay discounting behavior, 

there are some concerns in imaging discounting decisions that limit the 

interpretation of the results. Depending on the specific task structure, 

behavioral analysis, or imaging analysis used, neuroimaging studies of delay 

discounting have had varied and sometimes conflicting results and 

interpretations (McClure et al. 2004; Kable and Glimcher 2007). Our study, 

which closely matched the design of McClure et al., was unable to replicate 

the result that separate neural networks supported decisions for immediate 

options versus delayed options. This led to a major worry that an error 

occurred during some stage of the collection or analysis the data. However, 

when reanalyzing to look for subjective value signals as done by Kable and 



 142 

Glimcher, we found activation in the expected regions (the medial prefrontal 

cortex and ventral striatum, Figure 4.7), in both groups at both sessions, with 

no differences between them. This suggested that participants were indeed 

doing the task as neural signals in value regions matched individual estimates 

of subjective value. 

Figure 4.7 Subjective value signal of AN and HC participants from both 
sessions. Signal in the medial prefrontal cortex and ventral striatum 
correlated with an amplitude modulated regressor that tracked trial by trial 
subjective value of both options summed together. 

In contrast, the dorsolateral prefrontal cortex has been consistently 

shown to be active during delayed choices (McClure et al. 2007; Kable and 

Glimcher 2007; J. Peters and Büchel 2011), specifically in a region 

overlapping with an area active during working memory tasks (Wesley and 

Bickel 2013). This was the basis of our hypothesis that the AN group might 

have heightened activity in this region. However, in our study, neither the HC 

nor AN group showed heightened activity in this region for delayed choice at 

session 1. While the lack of heightened activity in this region for individuals 

with anorexia nervosa, might suggest that dorsolateral regions are not 

y = -46mm     y = -13mm
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supporting heightened control, it is difficult to draw this conclusion given the 

lack of signal in this region for the HC group.  

There are multiple difficulties in interpreting the imaging from session 2. 

First, when the subjective value regressor is included, there are no differences 

observed in the frontoparietal regions, suggesting this may simply reflect the 

change in perceived subjective value. Second, we see neural changes in our 

healthy controls across sessions with no change in behavior. As we are 

unaware of a longitudinal imaging study of delay discounting in healthy 

controls, there is limited ability to understand our observed session 

differences. These differences might suggest that the test retest reliability for 

discounting imaging findings is low, or that the network used to perform the 

same task changes over time, perhaps due to familiarity with the task. 

Another issue with our study is that we showed and varied both options 

whereas most current imaging studies of delay discounting keep the 

immediate option at a fixed value, off screen, only showing the value of the 

variable delay option. The advantage to having only one changed value is that 

a single regressor tracks many different value signals. More specifically, a 

regressor for the subjective value of the delayed options (which changed trial-

by-trial) also tracks sum, difference, and ratio between the both options (Kable 

and Glimcher 2007). This is not possible in our study, and we would need 

multiple regressors, that are highly collinear to get the same effect. Thus, our 

study was not optimized to pull out subjective value signals out of the analysis, 

and we had to be selective in which signal we would include as an amplitude 

modulated regressor. We settled on absolute-value of the difference between 

regressors as that might best track the relative difficulty of a decision. 
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These are important issues in the data analysis, and should have been 

worked out in a healthy population before performing the experiment on a 

special population. It is good practice to determine the analysis and effects of 

various manipulations in a healthy population first, taking extra precaution to 

make sure that the results are consistent with what is reported in the field, 

before extending a study into a special population (Stephan and Mathys 

2014).  
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CHAPTER 5: Individual and developmental differences in  

decision-making: Conclusions 

 

 Advances in the study of decision-making, from psychological, neural, 

and computational sciences, have provided a foundation for understanding the 

strategies individuals employ in evaluating and choosing actions. 

Characterizations of these decision strategies have distinguished between a 

simple, habitual process and a more complex, goal-directed process, and it is 

proposed that behavior results from a mixture of these two strategies (Dolan 

and Dayan 2013). The balance between these decision-making systems may 

change over development, or may be disrupted in psychiatric populations, 

such that one system, namely habit, is generally favored. It has been 

appreciated that developmental and psychiatric populations differ in their 

ability to make goal-directed decisions, but the mechanisms that lead to these 

differences have not been fully elucidated (Posner and Rothbart 2000; D. Lee 

2013). There is hope that insights into these underlying evaluative processes, 

and how they may be perturbed, can be applied to improvements in 

diagnosing and researching numerous overlapping psychopathologies (Insel 

et al. 2010), as well as their developmental basis (Casey, Oliveri, and Insel 

2014). However, until there is further evidence that these analytic approaches 

yield constructive insights for understanding behavior across development, it is 

too early to draw strong conclusion from these models.  

 

Discussion of goal-directed decision-making across development 

The central question that was probed in this thesis was how the 

recruitment of decision-making strategies in developmental and psychiatric 
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populations may differ from healthy adults. In Chapter 2, “Model-based 

learning emerges across development,” we studied how information about a 

task structure was incorporated into decision-making strategies across 

development. The language used in this chapter was framed under the 

computational terminology of model-based and model-free reinforcement 

learning algorithms. The model-based algorithm reflects a process in which an 

individual makes goal-directed decisions by using a cognitive representation of 

the task structure and outcome information. The model-free algorithm reflects 

a process in which an individual makes habitual decisions, relying solely on 

feedback about previous actions to update and track the value of possible 

actions. Adaptive decision-making requires the appropriate balance of these 

two systems in various contexts. The central task in the study was designed 

with a probabilistic transition and reward structure such that habitual and goal-

directed strategies, as well as a mixture of the two, would be valid approaches 

to the task. Whereas a model-free, habitual pattern of behavior was observed 

across all age groups, the recruitment of task information into a model-based, 

goal-directed strategy emerged in adolescence and continued to increase into 

adulthood. In other words, whereas adolescents and adults showed a mixture 

of strategies, children favored using the model-free, habitual strategy.  

However, this lack of a model-based strategy in children was not due to 

an inability to understand the task structure. Indeed, children, like the 

adolescents and adults, were explicitly aware of the task structure when asked 

upon completion of the task and showed implicit awareness by slowing their 

responses after a rare transition. The reason that this knowledge went unused 

cannot be determined from our data; it could have been a deliberate strategy 

selection, it could reflect indifference to the task goals, it could reflect a 
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childhood tendency to rely on habitual responses, or it could be an inability to 

incorporate this knowledge into goal-directed actions. As recent adult studies 

of this task have shown that working memory load and stress lead to a 

reduction in the use of a model-based, goal-directed strategy (Otto, 

Gershman, et al. 2013; Otto, Raio, et al. 2013), working memory issues are a 

likely candidate for more model-free decisions in the younger participants. 

Indeed, it has long been observed that working-memory improves across 

development, possibly due to gains in capacity or efficiency (Case, Kurland, 

and Goldberg 1982; Casey et al. 1995; Ullman, Almeida, and Klingberg 2014). 

However, it is difficult to conclude that children “failed” to use a goal-directed 

strategy, as model-free and model-based approaches were both valid. 

Regardless of the underlying cause, the use of a goal-directed strategy in this 

task only emerged in adolescence. 

In Chapter 3, “Experiential learning outweighs instruction prior to 

adulthood,” (published 2015, Decker, Lourenco, Doll, & Hartley. 2015. 

Cognitive and Affective Behavioral Neuroscience), we explored whether the 

influence of instruction on experiential learning changed across development. 

Our task modified a common reward learning experimental design. Normally, 

the task consists of a learning phase in which participants choose between 

stimuli presented in fixed pairs and learn their relative value through positive 

and negative feedback, followed by a test phase in which participants choose 

between all possible stimulus pairs and receive no feedback, which serves as 

an assessment of the learned values. The key manipulation is that participants 

were given inaccurate instruction that one stimulus had a high value when its 

true value was low. In such a design, the model-based ability to represent and 

recruit this information may be observed in two acts of biased behavior, 
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following the instruction initially, and continuing to show a preference for the 

instructed stimulus despite experiencing contradictory feedback. 

Children, adolescents, and adults were initially biased toward choosing 

the inaccurately instructed stimulus. However, all age groups were able to 

recruit experiential feedback and eventually learned to preferentially select the 

higher-valued stimulus for all instructed and uninstructed pairs, showing no 

residual instruction bias in the learning phase. During the test phase, however, 

behavior suggested qualitative differences across development in how 

instruction influenced choices. Consistent with previous findings (Doll et al., 

2009; Staudinger & Buchel, 2013), we found that adults exhibited an 

instruction-consistent bias, suggesting that a continued representation of this 

inaccurate instruction distorted their feedback-based value learning. In 

contrast, both children and adolescents showed minimal influence of 

instruction on test phase performance, and two potential accounts might 

explain this difference. It is possible that the representation of the one-time 

instruction was more susceptible to the interfering effects of experiential 

information (Casey, Jones, and Somerville 2011), or that they integrated 

positive and negative feedback in a more objective, model-free manner during 

the learning phase. These data suggest that when explicit instruction or advice 

conflicts with experiential feedback about the value of an action, children and 

adolescents weight their own experience more heavily than the instruction. 

This might have important implications for how adults attempt to guide 

adolescent behavior regarding risky decisions (Reyna and Farley 2006), 

especially as public information campaigns have been shown to be largely 

ineffective (Ennett et al. 1994; Trenholm et al. 2007). 
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When these two studies are considered together, it becomes clear that 

the developmental emergence of model-based, goal-directed strategies differs 

across various types of decision-making. As the ability to represent the 

complexity of a decision increases, goal-directed evaluative strategies may 

come to predominate over habits. This pattern has been observed at various 

ages in many studies of cognitive development (Piaget 1954; Zelazo, Frye, 

and Rapus 1996; Gerstadt, Hong, and Diamond 1994; Kirkham, Cruess, and 

Diamond 2003; Klossek, Russell, and Dickinson 2008). However, the absence 

of a goal-directed strategy does not imply an inability to represent goal-

relevant rules. Indeed, both in our task and others’, children have been shown 

to be aware of the rules but fail to incorporate that knowledge into their actions 

(Strommen 1973; Zelazo, Frye, and Rapus 1996; Kirkham, Cruess, and 

Diamond 2003). Finding manipulations of the task that either promote or 

prevent the recruitment of task knowledge, thereby driving either goal-directed 

or habitual decisions, may be helpful in understanding what factors can 

influence the decision-making behavior of adolescents in more relevant 

contexts. The objective is difficult, however, as an ideal task would be simple 

and engaging enough that younger participants might engage in goal-directed 

decisions, but not too simple that adults find and use the optimal strategy. We 

believe that the relative recruitment of transition information is a promising 

target, and plan to continue exploring it from different perspectives. 

 

Computational modeling limitations in developmental decision-making 

We used computational modeling in an attempt to get closer to determining 

what the underlying evaluative processes of decision-making might be and 

how they might differ across development. No model is capable of describing 
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all human behavior, but the hope is that by finding a model that captures 

behavior sufficiently well, we can scrutinize its components as a reflection of 

an underlying neural process (Daw 2011). So, what was gained by using 

computational models in these developmental studies over more traditional 

behavioral analysis methods? To answer this question we first needed to 

determine whether the chosen modeling approach was valid by examining 

how well the model explained the observed data relative to a random model 

(Camerer and Hua Ho 1999; Daw 2011). The models from both Chapter 2 and 

3 explained more variance than a random model for most participants; 

however, these fits improved with age, highlighting an inability of the model to 

capture younger participant behavior as accurately as adult behavior. Why 

might this be? Perhaps the wrong model is being applied to describe the 

younger participants’ behavior, or they may be choosing more randomly 

(either purposefully or unintentionally) than adults, or both. Without an 

alternative hypothesis, however, it is difficult to generate a meaningful 

alternative model (Nassar and Gold 2013). Randomness may, additionally, 

reflect increased exploratory behavior in children and adolescents (Daw et al. 

2006; Tymula et al. 2012), which can be viewed as an important aspect of 

learning to become independent (Spear 2000). Thus, it may be incorrect to 

assert that these models are false because they explain little variance, as the 

randomness may be an appropriate feature of their behavior. In our studies, 

many of the younger participants’ behavior was fit equivalently well by simple 

reinforcement-learning models without model-based modification parameters, 

compared to those that included those parameters. While this could reflect the 

children’s use of the simpler model, it is difficult to use as confirmatory 
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evidence that children are not using a different goal-directed, model-based 

strategy, especially given the low total variance explained. 

Given the limited amount of variance that the models explained, it is 

unclear how much the resulting individual parameter estimates can be trusted. 

If the low level of explained variance is due to noisy or random choosing, then 

the parameter estimates may be fairly trustworthy, and would become 

increasingly so with more data, because the model still reflects the underlying 

structure of the data. However, if the behavior has an underlying structure that 

goes unexplained by a given computational model, that can lead to the 

systematic biasing of the parameter estimates (Nassar and Gold 2013). To an 

extent, running simulations and confirming that the same pattern of results 

emerges can help determine the quality of parameter estimates. This was 

done for the study in Chapter 2, and revealed that, on average, the same 

pattern of results was obtained when using the parameter estimates from the 

data. However, some participants had a low estimated value of the 

deterministic (inverse-temperature) parameter, which measures the degree to 

which decisions were deterministic or random. A simulation that used the 

lowest value that was estimated for that parameter would occasionally 

produce a pattern of behavior that did not match the behavioral profile 

generally observed in the tasks (a model-free, model-based, or mixed 

strategy). Furthermore, when higher levels of randomness (low levels of the 

deterministic parameter) were used, the resulting simulations were less likely 

to return the original input parameters. The issues of overall fit and parameter 

estimation limit the ability to interpret the data and draw conclusions about 

their meaning. We have accordingly avoided a close comparison of the 

parameter estimate differences between age groups, and rather focused on 
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the overall pattern of behavior. Nevertheless, defining and formalizing a 

process model that describes both learning and action-selection is an attempt 

to constrain the possible interpretations of more traditional behavioral analysis, 

and computational modeling approaches should be continued despite the 

limited insight observed in these studies. Computational analysis of behavior, 

especially for developmental behavior, is still in its early stages, and as these 

analyses improve, our interpretation of them will hopefully become less 

superficial.  

 

Other measures that capture goal-directed behavior in development 

Going forward, if the computational modeling approach is to be relevant 

for developmental populations, it will be important to determine how other 

cognitive processes, and individual traits, in addition to age, contribute to 

differences in decision-making. Cognitive control is proposed to support goal-

directed behavior by coordinating the internal representation of those goals 

and associated rules, and likely coordinates with the hippocampus to support 

planning and prospection (Miller and Cohen 2001), and is thought to emerge 

in various stages across development (Munakata, Snyder, and Chatham 

2012). Various measures have been shown to reflect these abilities, including 

but not limited to working memory capacity, future-orientation, and IQ. We 

failed to collect these measures in the studies presented here, but it is clear 

that attention and working memory play a role in goal-directed, model-based 

behavior (Rueda, Posner, and Rothbart 2005; Otto, Raio, et al. 2013). 

Therefore, we are collecting these measures in current and future studies. 

Alternatively, it would be useful to consider modifications to the task designs 

presented here, or to use altogether new tasks. For example, would changing 
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the reward structure such that the task favors following a model-based 

strategy promote more goal-directed behavior in the younger participants? By 

adapting the design appropriately, making it simpler, more engaging, or more 

rewarding to use a goal-directed strategy, it may be possible to elicit a goal-

directed strategy in children, and from there more modifications could be done 

to determine where the breakdown from using goal-directed to habitual 

strategies is occurring. Testing how various measures of cognitive control and 

individual levels of intelligence relate to goal-directed behavior will help 

provide traction for understanding the evaluative processes of decision-

making. 

 

Discussion of goal-directed decision-making in anorexia nervosa 

The recruitment of decision-making strategies was also examined in 

individuals with anorexia nervosa, a disorder that emerges in adolescence 

(Kaye, Fudge, and Paulus 2009). In Chapter 4, “On weight and waiting: delay 

discounting in anorexia nervosa pretreatment and posttreatment,” (published 

2015, Decker, Figner, & Steinglass. (2015). Biological Psychiatry), we 

addressed the perturbed decision-making in anorexia that may underlie the 

ability to forgo basic caloric needs in favor of the future goal of thinness. We 

used a delay discounting task in which an individual makes a series of choices 

between smaller amounts of money that are available sooner or larger 

amounts that are available later. This task has been used as an assessment of 

self-control (Steinberg et al. 2009). Showing a preference for the smaller, 

sooner rewards (steeper discounting) has been associated with the 

heightened impulsivity in various disorders (H. de Wit 2009), and a preference 

for the delayed rewards (less discounting) has been associated with healthier 



 154 

outcomes later in life (Mischel, Shoda, and Peake 1988; Story et al. 2014). 

However, an extreme preference for delayed outcomes has been observed in 

anorexia nervosa, and when juxtaposed to severe food restriction, suggests 

that the underlying perturbation in decision-making may be part of the 

pathology of the disease (Steinglass et al. 2012). We examined individuals 

with anorexia nervosa as they performed this task in an MRI scanner, before 

and after treatment, and compared them to healthy controls to investigate the 

underlying circuitry of this decision process in anorexia nervosa.  

Individuals with anorexia nervosa (AN) showed many changes with 

treatment. The underweight AN group showed significantly less discounting 

than the healthy controls (HC), but their discounting increased to normal levels 

once weight restored. This suggests that the unhealthy decision to seek 

distant goals may be exacerbated with worsening disease. Additionally, 

underweight individuals with AN responded more slowly when choosing the 

smaller earlier options than the larger delayed options, but showed a switch 

once weight restored. This may suggest that choosing the earlier options 

required more deliberation when underweight, but that this was facilitated with 

treatment. Rather than the AN group showing the expected heightened neural 

signal in the dorsolateral prefrontal cortex, an executive control region 

previously shown to support preferentially choosing delayed options (Figner et 

al. 2010), the AN and HC groups differed primarily in their striatal signals. The 

initial diminished striatal signal for delayed choices relative to sooner choices 

in the underweight AN group changed to heightened striatal signal for delayed 

relative to sooner choices once weight restored, and the HC group showed the 

opposite pattern, reflecting that there may be changes in reward processing 

before and after treatment. When the behavioral and imaging results are 
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considered together, they argue that the phenotypic self-control of AN may not 

result from canonical cognitive self-control. An alternative hypothesis is that 

their behavior reflects habitual decision-making, in which the initial goal-

directed choice to forgo eating gets reinforced—by observed weight loss or 

social approval—and over time, forms a habit (Walsh 2013). Furthermore, as 

starvation has been associated with an increased reliance on habitual over 

goal-directed actions (Keys et al. 1950; Godier and Park 2014), the formation 

of a habit to delay rewards could be exacerbated by progressive weight loss, 

leading to a feedback loop in which waiting for future weight loss becomes 

less of a mental burden. The existence of such a feedback loop may explain 

the therapeutic effect of weight restoration treatment. 

Interpreting phenotypic self-control behavior as a habit, when the 

opposite behavior is normally considered impulsive, is counterintuitive, and so 

this habit hypothesis must be further examined. The response time data also 

provide an indication that delay goes from being the default option to one that 

requires more deliberation. However, the idea that anorexia nervosa would 

lead to preferentially habitual choices is likely. As stress and working memory 

taxation led to more model-free behavior in the two-stage task (Otto, Raio, et 

al. 2013), stress has been shown to decrease the ability to shift attention, 

possibly due to disruptions to a prefrontal-parietal network (Liston, McEwen, 

and Casey 2009). Given that anorexia nervosa is a disease of high stress and 

anxiety (Kaye et al. 2004), it would not be surprising to find a general shift to 

more model-free, habit based strategies, as has been seen in other disorders 

or compulsivity (Voon et al. 2015). Perhaps the best approach to examining 

whether the delay preference is a habitual decision would be to design a task 

made to disentangle habitual or goal-directed decision-making from delay 
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preference. Many tasks, like those presented in Chapters 2 and 3, might be 

used to probe whether individuals with anorexia nervosa tend to use a model-

free or model-based approach. However, even if such studies were to show 

that individuals with anorexia nervosa generally respond habitually it would not 

prove that their tendency to delay is also habitual. Perhaps a task could be 

used in which delaying is clearly a suboptimal decision. Ideally, a task could 

vary both the difficulty and optimality of delaying, which would allow the 

dissociation between habits and delay preference. That self-control may result 

from a form of habitual behavior is an intriguing possibility, and developing 

ways to probe this more closely is warranted. 

 

Limitations in delay discounting analysis 

The behavioral result that lower discounting in underweight individuals 

with anorexia nervosa normalized with weight restoration was reported 

primarily using a hyperbolic discounting model, and there are issues regarding 

this model’s behavioral relevance. A major reason for its use is that it captures 

behavior well in pigeons (Ainslie 1974), rats (Reynolds, de Wit, and Richards 

2002), healthy adolescent and adult humans (Green, Fry, and Myerson 1994; 

Steinberg et al. 2009; Odum 2011b) and those with various disorders (Bickel 

et al. 2007; Dombrovski et al. 2011), specifically in regards to the phenomena 

of preference reversal (Story et al. 2014). However, this hyperbolic model is 

unlikely to reflect an underlying neural process despite fitting behavior well. 

Although some cognitive process likely exists that considers the value and 

delay of each reward and leads to decisions that are correlated with hyperbolic 

discounting rate (Ballard and Knutson 2009), various contextual and framing 

manipulations have been shown to influence discounting that are not predicted 
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by a hyperbolic discounting model (J. Peters and Büchel 2011; Koffarnus et al. 

2013). For example, increasing magnitude, making the immediate choice the 

default one, performing a secondary task, and using real money all make 

individuals discount delayed values more. Again, such manipulations may 

make it difficult to recruit and use information in a model-based, goal-directed 

fashion. To look at the importance of such factors, we performed an additional 

regression analysis. While the results mostly coincided with the discounting 

model, there was also a suggestion that individuals with anorexia nervosa 

were more sensitive to the relative difference in value between options after 

they were weight restored relative to when they were underweight. This shows 

that certain attributes of the decision can influence the subjective value of a 

delayed choice that are not accounted for in the hyperbolic discounting model.  

Given the issues with the hyperbolic and similar discounting models, 

there are current efforts to find new computational models that reflect neural 

processes that could support discounting decisions. One such effort uses a 

computational model akin to the model-based algorithm discussed in Chapter 

2. By searching through a cognitive representation of potential future events, 

this model measures the probability that a delayed option gets sampled as a 

function of time to delay, which resembles real discounting data (Kurth-Nelson, 

Bickel, and Redish 2012). Furthermore, this model predicts that imagining or 

drawing attention to the future would decrease the search distance and 

therefore lower the amount of discounting, and such an effect has been 

observed in healthy adults (J. Peters and Büchel 2010; N. Cooper et al. 2013). 

Perhaps the emphasis that individuals with anorexia nervosa place on the 

future draws their attention more to the delayed option. As the use of the 

hyperbolic discounting model is limited in its ability to explain the underlying 
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neural evaluative processes, it is important to consider alternative 

computational models if progress is to be made. The testing and refining of 

new models is required when the old ones are shown to be incomplete, even if 

many will eventually be found to be inappropriate. 

Due in part to the inadequacies of modeling delay discounting behavior, 

there are some concerns in imaging discounting decisions that limit the 

interpretation of these results as well. Depending on the specific task 

structure, behavioral analysis, or imaging analysis used, neuroimaging studies 

of delay discounting have had varied and sometimes conflicting results and 

interpretations (McClure et al. 2004; Kable and Glimcher 2007). Our study, 

which closely matched the design of McClure et al., was unable to replicate 

that study’s result that separate neural networks supported decisions for 

immediate options versus delayed options. In contrast, the dorsolateral 

prefrontal cortex has been consistently shown to be active during delayed 

choices (McClure et al. 2007; Kable and Glimcher 2007; J. Peters and Büchel 

2011), specifically in a region overlapping with an area active during working 

memory tasks (Wesley and Bickel 2013). The lack of heightened activity in this 

region for individuals with anorexia nervosa, given that it is so commonly seen 

to be involved, would suggest that some other mechanism is likely involved in 

anorexia nervosa. However, it is difficult to be confident in this conclusion 

given that the healthy controls in our study also failed to show activity in this 

region. A large issue with our study is that we showed and varied both options, 

whereas most current imaging studies of delay discounting keep the 

immediate option at a fixed value and off screen, only showing the delay and 

value of the other option. This is problematic because there is collinearity 

between factors that track the changing value and subjective value of each 
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option, which is ameliorated by a simpler task design with only one changing 

value. Another issue is that we see neural changes in our healthy controls 

across sessions with no change in behavior. As we are unaware of a 

longitudinal imaging study of delay discounting in healthy controls, there is 

limited ability to understand our observed session differences. These 

differences might suggest that the test retest reliability for discounting imaging 

findings is low, or that the network used to perform the same task changes 

over time, perhaps due to familiarity with the task. These are important issues, 

and before an imaging study is to be performed in a special population, it 

would be good practice to determine the analysis and effects of various 

manipulations in a healthy population first, taking extra precaution to make 

sure that the results are consistent with what is reported in the field (Stephan 

and Mathys 2014).  

	
  

Future directions for using computational modeling in developmental 

and psychiatric populations 

There are important limitations when using computational modeling to 

understand decision-making in both developmental and psychiatric 

populations, but there may be certain ways in which modeling may still prove 

useful. The biggest limitation comes from trying to extend a theoretical model 

about the underlying processes of decision-making that was developed in 

healthy adults, and is still being refined, to populations that are known to differ 

in that decision domain. Often, as is the case for the developmental studies 

presented in this thesis, the finding is that younger participants are not using 

the same model-based evaluative process as adults, and it is then assumed 

that they are using a simpler default model. It is also possible, however, that 
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they are using a different cognitive representation of the task to make goal-

directed decisions that the model fails to capture (Nassar and Gold 2013). 

Even if it is the case that children use a simpler model than adults, this 

observation is unsurprising and does not in itself offer suggestions as to how 

we might guide children and adolescents to improve their decision-making, nor 

inform how the transition to more goal-directed decision-making occurs. 

However, if the framework of the evaluative process is sufficiently correct, 

testing whether task manipulations exist that could push decision-making 

closer or farther from that of adults may generalize to more relevant contexts. 

Similarly, tasks that were developed for children and adolescents could 

receive similar computational attention. Because computational modeling 

provides a formalized operation by which an individual learns, evaluates, and 

makes a decision, it can offer predictions as to how a specific manipulation 

might change behavior. It is worthwhile to pursue many lines of inquiry in the 

hope that we might gain traction in the understanding of the underlying 

evaluative processes of decision-making. 

Another hope of computational neuroscience is that these methods can 

be used to extend the knowledge of the function that various neural networks 

may play in decision-making. The ventral striatum had long been known to be 

involved in reward processing (Taylor and Robbins 1986), but 

neurophysiological and neuroimaging studies extending computational 

reinforcement learning models provided evidence that it does so by tracking 

the difference between the reward that was received and what was predicted 

(Schultz, Dayan, and Montague 1997; Elliott et al. 2000; Pagnoni et al. 2002). 

This extension, from knowledge of involvement to evidence of its functional 

role, fueled research which led to a more nuanced understanding of reward 
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based learning (Schultz 2013), and how this learning signal may differ in 

developmental (Galvan et al. 2006; J. R. Cohen et al. 2010) and psychiatric 

(Huys et al. 2014; G. K. W. Frank et al. 2012) populations. This is an example 

of the promise that the computational study of decision-making offers. As the 

networks that are involved in various types of decision-making and their 

functions are resolved, perhaps it will become feasible to describe how the 

process gets disrupted in a psychiatric disorder, and how best to treat it (van 

der Meer, Kurth-Nelson, and Redish 2012).  

The current initiative by the National Institutes of Mental Health is to find 

new ways of diagnosing and researching psychiatric disorders that depend 

less on classification by symptom clustering and more on genetic, 

psychological, and neuroimaging criteria that are thought to be involved in the 

underlying pathologies of psychiatric diseases (Insel et al. 2010; Cuthbert and 

Insel 2013). Furthermore, as adolescence is the stage when most psychiatric 

disorders first emerge (F. S. Lee et al. 2014), it is critical to understand the 

developmental trajectory of the behaviors and corresponding neural circuitry 

that are being proposed to be researched in this initiative (Casey, Oliveri, and 

Insel 2014). The current diagnosis system is imprecise and this imprecision is 

likely a contributor to the lack of progress over the past few decades in the 

development of new treatments for psychiatric disorders, and the hope is that 

more precise diagnoses could lead to “individualized” treatment. As such, 

there has been much interest in using computational studies of decision-

making to investigate pathophysiological processes and their relation to 

behavior (Maia and Frank 2011; Montague et al. 2012; D. Lee 2013; van der 

Meer, Kurth-Nelson, and Redish 2012; Stephan and Mathys 2014). 

Reinforcement-learning paradigms have received particular focus due to the 
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well-studied role that dopamine plays both in reward learning and various 

psychiatric disorders (Maia and Frank 2011), but the same approach should 

prove useful for other neurocognitive processes and disorders. This new 

initiative calls for research that spans across multiple psychiatric disorders by 

focusing on how they may be linked by perturbations in common 

neurocognitive domains. However, such an approach should be equally 

applicable to the study of the development of decision-making, which may 

prove especially useful as adolescence is the time when many psychiatric 

disorders develop (Kessler et al. 2005; Somerville, Jones, and Casey 2010; F. 

S. Lee et al. 2014). An important component in this research initiative is that 

the cognitive construct being examined have high construct validity to a 

specific behavioral function, and that there is strong evidence that this function 

is reflected in specific neural substrate (Cuthbert and Insel 2013). Thus, if the 

goal is to study decision-making when it is not fully developed or has gone 

awry, we should be using tasks that have been well characterized in 

developmental or psychiatric populations, or carefully modifying tasks that are 

highly trusted in healthy adults, so as to be confident that a known process is 

being studied. In this thesis, we used various decision-making tasks and 

computational modeling in an effort to determine whether they were useful in 

describing differences in decision-making across development and in a 

psychiatric population. These approaches have provided a preliminary 

indication of developmental and psychiatric differences in decision-making 

processes, and by further refining the computational models as well as 

drawing connections from research in other cognitive domains, it may be 

possible to better characterize the computational nature of these differences. 
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