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Visual scene understanding is a basic function of human perception and one of

the primary goals of computer vision. Object detection, which involves recog-

nizing and localizing objects present in an environment, is a fundamental task

in scene understanding. In the past years, object detection is one of most rapidly

developing research areas in computer vision. Progress has been made through

a combined efforts of large scale datasets, high quality annotations, and feature

representations learned with novel convolutional neural network architectures.

This thesis discusses both the process of dataset creation and the subsequent

challenges in algorithm design for object detection. We create a large scale vi-

sual dataset Common Object in COntext (COCO) that contains objects in ev-

eryday scenes and detailed instance segmentation masks. The COCO dataset

aims to enable research on detecting objects in an unconstrained environment

and presents the combined challenges of recognizing objects in context and ac-

curately localizing instances in 2D.

We discuss the algorithm design to address the subsequent challenges in

COCO dataset. First, we focus on learning multiscale feature representations to

improve object detection performance over a wide range of object scales. We

show that by leveraging the pyramidal shape of feature hierarchy in convolu-

tional neural network (ConvNet), we can learn multiscale pyramidal feature

representations that are semantic strong at all levels. The proposed Feature

Pyramid Networks (FPN) provides generic feature presentations that greatly



improve performance in terms of both accuracy and speed for various object

detection applications.

We then identify extreme class imbalance of foreground and background

examples is an inherent challenge for designing the training objective of object

detection algorithms. We propose a novel Focal Loss that focuses learning from

important examples and ignore most easy background examples to solve the

issue. We propose RetinaNet, a simple one-stage dense object detector using

both the focal loss and FPN, and achieve state-of-the-art performance for both

accuracy and speed on COCO dataset.
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CHAPTER 1

INTRODUCTION

Visual scene understanding is a basic function of human perception. It involves

numerous tasks including estimating 3D scene, localizing objects in 2D and 3D,

recognizing semantics such as object categories and attributes and providing a

semantic description of the scene that explains the relationships between objects

and the environment. In the past few years, scene understanding in computer

vision is developing rapidly through the combined efforts of large scale dataset

creation and machine learning algorithm design. Recently, computer vision is

able to classify an image with more than thousands of categories by training

convolutional neural networks (ConvNets) [61, 110, 48] on more than millions

of images [18, 129, 59] and achieve human-level performance.

While computer achieves excellent performance on image classification task,

it is just an early attempt to enable machines to perceive the world. Beyond clas-

sifying an image into one or more concept labels, recognizing and localizing all

objects present in an everyday scene is an important next step for solving the

ultimate goal of scene understanding. Detecting all objects in a scene is chal-

lenging. The objects can be small in the background, partially occluded, amid

cluttered. This introduces three core research problems for object detection: de-

tecting objects in non-iconic views, reasoning contextual information of objects,

and the precise 2D localization.

Object detection can be formulated as classifying regions with given loca-

tions, scales, and shapes on an image. To detect objects in non-iconic views,

the feature representations should be robust to occlusion, encode contextual in-

formation, and possess enough resolution to predict precise 2D location. De-
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signing feature representations has been an active research area in computer

vision. Before ConvNet is widely adopted for learning representations, feature

design requires sophisticated manual engineering [17][78][74]. Recently, a se-

ries of research that uses ConvNets to learn feature representations improves

performance significantly over hand-crafted features [61][110][48]. The Con-

vNets learn feature representations through end-to-end training, which only re-

quires to define input data, model architecture, and training objective for learn-

ing. The ConvNet model architecture, which consists of multiple convolution

and pooling operations, allows learning semantic strong features that contains

global contextual information for a local region [92]. The approach demon-

strates strong empirical results for object detection[41, 91, 46] and numerous

scene understanding tasks [110, 48]. However, the multiple pooling operations

in ConvNet sacrifice feature resolution which is an issue to precisely localize

objects, particularly in small scales.

The set of all possible object locations is nearly infinite. However, only lim-

ited object instances appear in an image, which means most regions on an image

are in the background or partially overlapped with objects. It can be difficult to

apply machine learning algorithms with such extreme class imbalance. During

training, the optimization process could get stuck with a model that predicts

every example as the background class to obtain low training loss. The recent

object detectors avoid the problem by resampling training data such that the

training loss is computed only on a class balanced subset of examples. The ex-

isting subsampling procedures are based on heuristics such as fixing the ratio

of background and foreground examples, sampling by training losses, or using

two-stage cascade [71, 41, 91].
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In this thesis, we introduce a large scale object detection dataset and algo-

rithms to solve the subsequent challenges from the new dataset. In Chapter

2, we introduce Common Object in COntext (COCO) dataset that serves as the

training source and testbed for detecting objects in everyday scenes [69]. The

COCO dataset currently contains 200k images with annotations, over one mil-

lion instances, and 80 common object categories. The categories are selected

such that they can be easily recognized by 5-year-old kids and cover objects

present in a wide range of scenes including indoor and outdoor. All instances

are annotated with segmentation masks to enable research on precise 2D local-

ization.

To address challenges present in COCO dataset, first we focus on improving

object detection performance by learning multiscale feature representations, in

particular developing algorithms that can efficiently compute features that are

both semantic strong and higher resolution. The key idea is to leverage feature

hierarchy in ConvNet and merge spatially rich information from low-level fea-

tures with the high-level object knowledge encoded in upper network layers

with top-down and lateral connections. In Chapter 3, we introduce SharpMask

that predict precise 2D instance segmentation masks by refining low resolution

mask encoding through top-down and lateral connections. [85]. In Chapter 4,

we continue developing the idea and propose Feature Pyramid Networks (FPN)

which learn generic multiscale features representations that are semantic strong

at all feature levels. The FPN only adds marginal costs to bottom-up ConvNet

architecture and shows great improvement for both accuracy and speed on var-

ious object detection applications, including object proposals, box localization,

and instance segmentation [67].
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In Chapter 5, we propose Focal Loss, a novel training objective that focuses

on important examples to address the extreme class imbalance issue [68]. The

proposed method simply adjusts the shape of the training loss such that it fo-

cuses on hard examples and ignores easy examples mostly coming from the

background class. The proposed focal loss provides a new path to address class

imbalance problem other than the heuristics used in existing methods. We pro-

pose a single-stage dense object detector RetinaNet, which leverages both fea-

ture representations from FPN and the focal loss, and achieve state-of-the-art

performance for both speed and accuracy.
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CHAPTER 2

COMMON OBJECTS IN CONTEXT DATASET

2.1 Introduction

One of the primary goals of computer vision is the understanding of visual

scenes. Scene understanding involves numerous tasks including recognizing

what objects are present, localizing the objects in 2D and 3D, determining the

objects’ and scene’s attributes, characterizing relationships between objects and

providing a semantic description of the scene. The current object classification

and detection datasets [18, 27, 122, 20] help us explore the first challenges related

to scene understanding. For instance the ImageNet dataset [18], which contains

an unprecedented number of images, has recently enabled breakthroughs in

both object classification and detection research [61, 39, 102]. The community

has also created datasets containing object attributes [29], scene attributes [82],

keypoints [8], and 3D scene information [109]. This leads us to the obvious ques-

tion: what datasets will best continue our advance towards our ultimate goal of

scene understanding?

We introduce a new large-scale dataset that addresses three core research

problems in scene understanding: detecting non-iconic views (or non-canonical

perspectives [81]) of objects, contextual reasoning between objects and the pre-

cise 2D localization of objects. For many categories of objects, there exists an

iconic view. For example, when performing a web-based image search for the

object category “bike,” the top-ranked retrieved examples appear in profile, un-

obstructed near the center of a neatly composed photo. We posit that current

recognition systems perform fairly well on iconic views, but struggle to rec-
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Figure 2.1: While previous object recognition datasets have focused on (a) im-
age classification, (b) object bounding box localization or (c) semantic pixel-level
segmentation, we focus on (d) segmenting individual object instances. We intro-
duce a large, richly-annotated dataset comprised of images depicting complex
everyday scenes of common objects in their natural context.

ognize objects otherwise – in the background, partially occluded, amid clutter

[51] – reflecting the composition of actual everyday scenes. We verify this ex-

perimentally; when evaluated on everyday scenes, models trained on our data

perform better than those trained with prior datasets. A challenge is finding

natural images that contain multiple objects. The identity of many objects can

only be resolved using context, due to small size or ambiguous appearance in

the image. To push research in contextual reasoning, images depicting scenes

[122] rather than objects in isolation are necessary. Finally, we argue that de-

tailed spatial understanding of object layout will be a core component of scene

analysis. An object’s spatial location can be defined coarsely using a bounding

box [27] or with a precise pixel-level segmentation [9, 98, 5]. As we demonstrate,

to measure either kind of localization performance it is essential for the dataset

to have every instance of every object category labeled and fully segmented.

Our dataset is unique in its annotation of instance-level segmentation masks,

Fig. 4.1.

To create a large-scale dataset that accomplishes these three goals we em-
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ployed a novel pipeline for gathering data with extensive use of Amazon Me-

chanical Turk. First and most importantly, we harvested a large set of images

containing contextual relationships and non-iconic object views. We accom-

plished this using a surprisingly simple yet effective technique that queries for

pairs of objects in conjunction with images retrieved via scene-based queries

[80, 122]. Next, each image was labeled as containing particular object cate-

gories using a hierarchical labeling approach [19]. For each category found, the

individual instances were labeled, verified, and finally segmented. Given the

inherent ambiguity of labeling, each of these stages has numerous tradeoffs that

we explored in detail.

The Common Objects in COntext (COCO) dataset contains 91 common ob-

ject categories with 82 of them having more than 5,000 labeled instances, Fig. 2.6.

In total the dataset has 2,500,000 labeled instances in 328,000 images. In contrast

to the popular ImageNet dataset [18], COCO has fewer categories but more in-

stances per category. This can aid in learning detailed object models capable

of precise 2D localization. The dataset is also significantly larger in number of

instances per category than the PASCAL VOC [27] and SUN [122] datasets. Ad-

ditionally, a critical distinction between our dataset and others is the number

of labeled instances per image which may aid in learning contextual informa-

tion, Fig. 2.5. COCO contains considerably more object instances per image

(7.7) as compared to ImageNet (3.0) and PASCAL (2.3). In contrast, the SUN

dataset, which contains significant contextual information, has over 17 objects

and “stuff” per image but considerably fewer object instances overall.
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Figure 2.2: Example of (a) iconic object images, (b) iconic scene images, and (c)
non-iconic images.

2.2 Related Work

Throughout the history of computer vision research datasets have played a crit-

ical role. They not only provide a means to train and evaluate algorithms, they

drive research in new and more challenging directions. The creation of ground

truth stereo and optical flow datasets [99, 4] helped stimulate a flood of inter-

est in these areas. The early evolution of object recognition datasets [30, 42, 17]

facilitated the direct comparison of hundreds of image recognition algorithms

while simultaneously pushing the field towards more complex problems. Re-

cently, the ImageNet dataset [18] containing millions of images has enabled

breakthroughs in both object classification and detection research using a new

class of deep learning algorithms [61, 39, 102].

Datasets related to object recognition can be roughly split into three groups:

those that primarily address object classification, object detection and semantic

scene labeling. We address each in turn.

Image Classification The task of object classification requires binary la-

bels indicating whether objects are present in an image; see Fig. 4.1(a). Early

datasets of this type comprised images containing a single object with blank
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backgrounds, such as the MNIST handwritten digits [64] or COIL household

objects [75]. Caltech 101 [30] and Caltech 256 [42] marked the transition to

more realistic object images retrieved from the internet while also increasing

the number of object categories to 101 and 256, respectively. Popular datasets

in the machine learning community due to the larger number of training exam-

ples, CIFAR-10 and CIFAR-100 [60] offered 10 and 100 categories from a dataset

of tiny 32 × 32 images [117]. While these datasets contained up to 60,000 im-

ages and hundreds of categories, they still only captured a small fraction of our

visual world.

Recently, ImageNet [18] made a striking departure from the incremental

increase in dataset sizes. They proposed the creation of a dataset containing

22k categories with 500-1000 images each. Unlike previous datasets containing

entry-level categories [79], such as “dog” or “chair,” like [117], ImageNet used

the WordNet Hierarchy [31] to obtain both entry-level and fine-grained [121]

categories. Currently, the ImageNet dataset contains over 14 million labeled im-

ages and has enabled significant advances in image classification [61, 39, 102].

Object detection Detecting an object entails both stating that an object be-

longing to a specified class is present, and localizing it in the image. The location

of an object is typically represented by a bounding box, Fig. 4.1(b). Early algo-

rithms focused on face detection [50] using various ad hoc datasets. Later, more

realistic and challenging face detection datasets were created [54]. Another pop-

ular challenge is the detection of pedestrians for which several datasets have

been created [17, 20]. The Caltech Pedestrian Dataset [20] contains 350,000 la-

beled instances with bounding boxes.

For the detection of basic object categories, a multi-year effort from 2005 to
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2012 was devoted to the creation and maintenance of a series of benchmark

datasets that were widely adopted. The PASCAL VOC [27] datasets contained

20 object categories spread over 11,000 images. Over 27,000 object instance

bounding boxes were labeled, of which almost 7,000 had detailed segmenta-

tions. Recently, a detection challenge has been created from 200 object categories

using a subset of 400,000 images from ImageNet [96]. An impressive 350,000 ob-

jects have been labeled using bounding boxes.

Since the detection of many objects such as sunglasses, cellphones or chairs

is highly dependent on contextual information, it is important that detection

datasets contain objects in their natural environments. In our dataset we strive

to collect images rich in contextual information. The use of bounding boxes

also limits the accuracy for which detection algorithms may be evaluated. We

propose the use of fully segmented instances to enable more accurate detector

evaluation.

Semantic scene labeling The task of labeling semantic objects in a scene re-

quires that each pixel of an image be labeled as belonging to a category, such as

sky, chair, floor, street, etc. In contrast to the detection task, individual instances

of objects do not need to be segmented, Fig. 4.1(c). This enables the labeling of

objects for which individual instances are hard to define, such as grass, streets,

or walls. Datasets exist for both indoor [109] and outdoor [106, 9] scenes. Some

datasets also include depth information [109]. Similar to semantic scene label-

ing, our goal is to measure the pixel-wise accuracy of object labels. However,

we also aim to distinguish between individual instances of an object, which re-

quires a solid understanding of each object’s extent.

A novel dataset that combines many of the properties of both object detec-

10



tion and semantic scene labeling datasets is the SUN dataset [122] for scene un-

derstanding. SUN contains 908 scene categories from the WordNet dictionary

[31] with segmented objects. The 3,819 object categories span those common

to object detection datasets (person, chair, car) and to semantic scene labeling

(wall, sky, floor). Since the dataset was collected by finding images depict-

ing various scene types, the number of instances per object category exhibits

the long tail phenomenon. That is, a few categories have a large number of

instances (wall: 20,213, window: 16,080, chair: 7,971) while most have a rela-

tively modest number of instances (boat: 349, airplane: 179, floor lamp: 276).

In our dataset, we ensure that each object category has a significant number of

instances, Fig. 2.5.

Other vision datasets Datasets have spurred the advancement of numer-

ous fields in computer vision. Some notable datasets include the Middlebury

datasets for stereo vision [99], multi-view stereo [101] and optical flow [4]. The

Berkeley Segmentation Data Set (BSDS500) [3] has been used extensively to

evaluate both segmentation and edge detection algorithms. Datasets have also

been created to recognize both scene [82] and object attributes [29, 62]. Indeed,

numerous areas of vision have benefited from challenging datasets that helped

catalyze progress.

2.3 Image Collection

We next describe how the object categories and candidate images are selected.

11



Figure 2.3: Our annotation pipeline is split into 3 primary tasks: (a) labeling the
categories present in the image (§2.4.1), (b) locating and marking all instances of
the labeled categories (§2.4.2), and (c) segmenting each object instance (§2.4.3).

2.3.1 Common Object Categories

The selection of object categories is a non-trivial exercise. The categories must

form a representative set of all categories, be relevant to practical applications

and occur with high enough frequency to enable the collection of a large dataset.

Other important decisions are whether to include both “thing” and “stuff” cate-

gories [49] and whether fine-grained [121, 18] and object-part categories should

be included. “Thing” categories include objects for which individual instances

may be easily labeled (person, chair, car) where “stuff” categories include ma-

terials and objects with no clear boundaries (sky, street, grass). Since we are pri-

marily interested in precise localization of object instances, we decided to only

include “thing” categories and not “stuff.” However, since “stuff” categories

can provide significant contextual information, we believe the future labeling of

“stuff” categories would be beneficial.

The specificity of object categories can vary significantly. For instance, a dog

could be a member of the “mammal”, “dog”, or “German shepherd” categories.

To enable the practical collection of a significant number of instances per cate-

12



gory, we chose to limit our dataset to entry-level categories, i.e. category labels

that are commonly used by humans when describing objects (dog, chair, per-

son). It is also possible that some object categories may be parts of other object

categories. For instance, a face may be part of a person. We anticipate the inclu-

sion of object-part categories (face, hands, wheels) would be beneficial for many

real-world applications.

We used several sources to collect entry-level object categories of “things.”

We first compiled a list of categories by combining categories from PASCAL

VOC [27] and a subset of the 1200 most frequently used words that denote vi-

sually identifiable objects [111]. To further augment our set of candidate cate-

gories, several children ranging in ages from 4 to 8 were asked to name every

object they see in indoor and outdoor environments. The final 272 candidates

may be found in Appendix B. Finally, the co-authors voted on a 1 to 5 scale for

each category taking into account how commonly they occur, their usefulness

for practical applications, and their diversity relative to other categories. The

final selection of categories attempts to pick categories with high votes, while

keeping the number of categories per super-category (animals, vehicles, furni-

ture, etc.) balanced. Categories for which obtaining a large number of instances

(greater than 5,000) was difficult were also removed. To ensure backwards com-

patibility all categories from PASCAL VOC [27] are also included. Our final list

of 91 proposed categories is in Fig. 2.5(a).
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2.3.2 Non-iconic Image Collection

Given the list of object categories, our next goal was to collect a set of candidate

images. We may roughly group images into three types, Fig. 2.2: iconic-object

images [7], iconic-scene images [122] and non-iconic images. Typical iconic-

object images have a single large object in a canonical perspective centered in

the image, Fig. 2.2(a). Iconic-scene images are shot from canonical viewpoints

and commonly lack people, Fig. 2.2(b). Iconic images have the benefit that they

may be easily found by directly searching for specific categories using Google or

Bing image search. While iconic images generally provide high quality object

instances, they can lack important contextual information and non-canonical

viewpoints.

Our goal was to collect a dataset such that a majority of images are non-

iconic, Fig. 2.2(c). It has been shown that datasets containing more non-iconic

images are better at generalizing [116]. We collected non-iconic images using

two strategies. First as popularized by PASCAL VOC [27], we collected im-

ages from Flickr which tends to have fewer iconic images. Flickr contains pho-

tos uploaded by amateur photographers with searchable metadata and key-

words. Second, we did not search for object categories in isolation. A search

for “dog” will tend to return iconic images of large, centered dogs. However,

if we searched for pairwise combinations of object categories, such as “dog +

car” we found many more non-iconic images. Surprisingly, these images typi-

cally do not just contain the two categories specified in the search, but numerous

other categories as well. To further supplement our dataset we also searched for

scene/object category pairs, see Appendix B. We downloaded at most 5 photos

taken by a single photographer within a short time window. In the rare cases
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in which enough images could not be found, we searched for single categories

and performed an explicit filtering stage to remove iconic images. The result is

a collection of 328,000 images with rich contextual relationships between objects

as shown in Figs. 2.2(c) and 2.6.

2.4 Image Annotation

We next describe how we annotated our image collection. Due to our desire

to label over 2.5 million object instances, the design of a cost efficient yet high

quality annotation pipeline was critical. The annotation pipeline is outlined in

Fig. 2.3. For all crowdsourcing tasks we used workers on Amazon’s Mechanical

Turk (AMT). Our user interfaces are described in detail in Appendix A. Note

that, since the original version of this work [70], we have taken a number of

steps to further improve the quality of the annotations. In particular, we have

increased the number of annotators for the category labeling and instance spot-

ting stages to eight. We also added a stage to verify the instance segmentations.

2.4.1 Category Labeling

The first task in annotating our dataset is determining which object categories

are present in each image, Fig. 2.3(a). Since we have 91 categories and a large

number of images, asking workers to answer 91 binary classification questions

per image would be prohibitively expensive. Instead, we used a hierarchical

approach [19].

We group the object categories into 11 super-categories (see Appendix B).
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For a given image, a worker was presented with each group of categories in turn

and asked to indicate whether any instances exist for that super-category. This

greatly reduces the time needed to classify the various categories. For example,

a worker may easily determine no animals are present in the image without hav-

ing to specifically look for cats, dogs, etc. If a worker determines instances from

the super-category (animal) are present, for each subordinate category (dog, cat,

etc.) present, the worker must drag the category’s icon onto the image over one

instance of the category. The placement of these icons is critical for the follow-

ing stage. We emphasize that only a single instance of each category needs to

be annotated in this stage. To ensure high recall, 8 workers were asked to la-

bel each image. A category is considered present if any worker indicated the

category; false positives are handled in subsequent stages. A detailed analysis

of performance is presented in §2.4.4. This stage took ∼20k worker hours to

complete.

2.4.2 Instance Spotting

In the next stage all instances of the object categories in an image were labeled,

Fig. 2.3(b). In the previous stage each worker labeled one instance of a category,

but multiple object instances may exist. Therefore, for each image, a worker

was asked to place a cross on top of each instance of a specific category found

in the previous stage. To boost recall, the location of the instance found by a

worker in the previous stage was shown to the current worker. Such priming

helped workers quickly find an initial instance upon first seeing the image. The

workers could also use a magnifying glass to find small instances. Each worker

was asked to label at most 10 instances of a given category per image. Each
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image was labeled by 8 workers for a total of ∼10k worker hours.

2.4.3 Instance Segmentation

Our final stage is the laborious task of segmenting each object instance,

Fig. 2.3(c). For this stage we modified the excellent user interface developed

by Bell et al. [5] for image segmentation. Our interface asks the worker to seg-

ment an object instance specified by a worker in the previous stage. If other

instances have already been segmented in the image, those segmentations are

shown to the worker. A worker may also indicate there are no object instances

of the given category in the image (implying a false positive label from the pre-

vious stage) or that all object instances are already segmented.

Segmenting 2,500,000 object instances is an extremely time consuming task

requiring over 22 worker hours per 1,000 segmentations. To minimize cost we

only had a single worker segment each instance. However, when first complet-

ing the task, most workers produced only coarse instance outlines. As a conse-

quence, we required all workers to complete a training task for each object cat-

egory. The training task required workers to segment an object instance. Work-

ers could not complete the task until their segmentation adequately matched

the ground truth. The use of a training task vastly improved the quality of the

workers (approximately 1 in 3 workers passed the training stage) and resulting

segmentations. Example segmentations may be viewed in Fig. 2.6.

While the training task filtered out most bad workers, we also performed

an explicit verification step on each segmented instance to ensure good quality.

Multiple workers (3 to 5) were asked to judge each segmentation and indicate
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whether it matched the instance well or not. Segmentations of insufficient qual-

ity were discarded and the corresponding instances added back to the pool of

unsegmented objects. Finally, some approved workers consistently produced

poor segmentations; all work obtained from such workers was discarded.

For images containing 10 object instances or fewer of a given category, ev-

ery instance was individually segmented (note that in some images up to 15

instances were segmented). Occasionally the number of instances is drasti-

cally higher; for example, consider a dense crowd of people or a truckload of

bananas. In such cases, many instances of the same category may be tightly

grouped together and distinguishing individual instances is difficult. After 10-

15 instances of a category were segmented in an image, the remaining instances

were marked as “crowds” using a single (possibly multi-part) segment. For the

purpose of evaluation, areas marked as crowds will be ignored and not affect a

detector’s score. Details are given in Appendix A.

2.4.4 Annotation Performance Analysis

We analyzed crowd worker quality on the category labeling task by comparing

to dedicated expert workers, see Fig. 2.4(a). We compared precision and recall

of seven expert workers (co-authors of the paper) with the results obtained by

taking the union of one to ten AMT workers. Ground truth was computed using

majority vote of the experts. For this task recall is of primary importance as false

positives could be removed in later stages. Fig. 2.4(a) shows that the union of

8 AMT workers, the same number as was used to collect our labels, achieved

greater recall than any of the expert workers. Note that worker recall saturates
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(a)

(b)

Figure 2.4: Worker precision and recall for the category labeling task. (a) The
union of multiple AMT workers (blue) has better recall than any expert (red).
Ground truth was computed using majority vote of the experts. (b) Shows the
number of workers (circle size) and average number of jobs per worker (circle
color) for each precision/recall range. Most workers have high precision; such
workers generally also complete more jobs. For this plot ground truth for each
worker is the union of responses from all other AMT workers. See §2.4.4 for
details.
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at around 9-10 AMT workers.

Object category presence is often ambiguous. Indeed as Fig. 2.4(a) indicates,

even dedicated experts often disagree on object presence, e.g. due to inherent

ambiguity in the image or disagreement about category definitions. For any un-

ambiguous examples having a probability of over 50% of being annotated, the

probability all 8 annotators missing such a case is at most .58 ≈ .004. Addition-

ally, by observing how recall increased as we added annotators, we estimate

that in practice over 99% of all object categories not later rejected as false posi-

tives are detected given 8 annotators. Note that a similar analysis may be done

for instance spotting in which 8 annotators were also used.

Finally, Fig. 2.4(b) re-examines precision and recall of AMT workers on cat-

egory labeling on a much larger set of images. The number of workers (circle

size) and average number of jobs per worker (circle color) is shown for each

precision/recall range. Unlike in Fig. 2.4(a), we used a leave-one-out evalua-

tion procedure where a category was considered present if any of the remaining

workers named the category. Therefore, overall worker precision is substan-

tially higher. Workers who completed the most jobs also have the highest preci-

sion; all jobs from workers below the black line were rejected.

2.4.5 Caption Annotation

We added five written caption descriptions to each image in COCO. A full de-

scription of the caption statistics and how they were gathered will be provided

shortly in a separate publication.
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2.5 Dataset Statistics

Next, we analyze the properties of the Microsoft Common Objects in COntext

(COCO) dataset in comparison to several other popular datasets. These include

ImageNet [18], PASCAL VOC 2012 [27], and SUN [122]. Each of these datasets

varies significantly in size, list of labeled categories and types of images. Im-

ageNet was created to capture a large number of object categories, many of

which are fine-grained. SUN focuses on labeling scene types and the objects

that commonly occur in them. Finally, PASCAL VOC’s primary application is

object detection in natural images. COCO is designed for the detection and seg-

mentation of objects occurring in their natural context.

The number of instances per category for all 91 categories is shown in

Fig. 2.5(a). A summary of the datasets showing the number of object categories

and the number of instances per category is shown in Fig. 2.5(d). While COCO

has fewer categories than ImageNet and SUN, it has more instances per cate-

gory which we hypothesize will be useful for learning complex models capable

of precise localization. In comparison to PASCAL VOC, COCO has both more

categories and instances.

An important property of our dataset is we strive to find non-iconic images

containing objects in their natural context. The amount of contextual informa-

tion present in an image can be estimated by examining the average number

of object categories and instances per image, Fig. 2.5(b, c). For ImageNet we

plot the object detection validation set, since the training data only has a single

object labeled. On average our dataset contains 3.5 categories and 7.7 instances

per image. In comparison ImageNet and PASCAL VOC both have less than 2
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categories and 3 instances per image on average. Another interesting observa-

tion is only 10% of the images in COCO have only one category per image, in

comparison, over 60% of images contain a single object category in ImageNet

and PASCAL VOC. As expected, the SUN dataset has the most contextual in-

formation since it is scene-based and uses an unrestricted set of categories.

Finally, we analyze the average size of objects in the datasets. Generally

smaller objects are harder to recognize and require more contextual reasoning

to recognize. As shown in Fig. 2.5(e), the average sizes of objects is smaller for

both COCO and SUN.

2.6 Dataset Splits

To accommodate a faster release schedule, we split the COCO dataset into two

roughly equal parts. The first half of the dataset was released in 2014, the second

half will be released in 2015. The 2014 release contains 82,783 training, 40,504

validation, and 40,775 testing images (approximately 1
2 train, 1

4 val, and 1
4 test).

There are nearly 270k segmented people and a total of 886k segmented object

instances in the 2014 train+val data alone. The cumulative 2015 release will

contain a total of 165,482 train, 81,208 val, and 81,434 test images. We took

care to minimize the chance of near-duplicate images existing across splits by

explicitly removing near duplicates (detected with [24]) and grouping images

by photographer and date taken.

Following established protocol, annotations for train and validation data

will be released, but not for test. We are currently finalizing the evaluation

server for automatic evaluation on the test set. A full discussion of evaluation
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Figure 2.5: (a) Number of annotated instances per category for COCO and PAS-
CAL VOC. (b,c) Number of annotated categories and annotated instances, re-
spectively, per image for COCO, ImageNet Detection, PASCAL VOC and SUN
(average number of categories and instances are shown in parentheses). (d)
Number of categories vs. the number of instances per category for a number of
popular object recognition datasets. (e) The distribution of instance sizes for the
COCO, ImageNet Detection, PASCAL VOC and SUN datasets.
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plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv avg.

DPMv5-P 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

DPMv5-C 43.7 50.1 11.8 2.4 21.4 60.1 35.6 16.0 11.4 24.8 5.3 9.4 44.5 41.0 35.8 6.3 28.3 13.3 38.8 36.2 26.8

DPMv5-P 35.1 17.9 3.7 2.3 7 45.4 18.3 8.6 6.3 17 4.8 5.8 35.3 25.4 17.5 4.1 14.5 9.6 31.7 27.9 16.9

DPMv5-C 36.9 20.2 5.7 3.5 6.6 50.3 16.1 12.8 4.5 19.0 9.6 4.0 38.2 29.9 15.9 6.7 13.8 10.4 39.2 37.9 19.1

Table 2.1: Top: Detection performance evaluated on PASCAL VOC 2012.
DPMv5-P is the performance reported by Girshick et al. in VOC release 5.
DPMv5-C uses the same implementation, but is trained with COCO. Bottom:
Performance evaluated on COCO for DPM models trained with PASCAL VOC
2012 (DPMv5-P) and COCO (DPMv5-C). For DPMv5-C we used 5000 positive
and 10000 negative training examples. While COCO is considerably more chal-
lenging than PASCAL, use of more training data coupled with more sophisti-
cated approaches [61, 39, 102] should improve performance substantially.

metrics will be added once the evaluation server is complete.

Note that we have limited the 2014 release to a subset of 80 categories. We

did not collect segmentations for the following 11 categories: hat, shoe, eye-

glasses (too many instances), mirror, window, door, street sign (ambiguous and

difficult to label), plate, desk (due to confusion with bowl and dining table,

respectively) and blender, hair brush (too few instances). We may add segmen-

tations for some of these categories in the cumulative 2015 release.

2.7 Algorithmic Analysis

Bounding-box detection For the following experiments we take a subset of

55,000 images from our dataset1 and obtain tight-fitting bounding boxes from

the annotated segmentation masks. We evaluate models tested on both COCO

and PASCAL, see Table 2.1. We evaluate two different models. DPMv5-P: the
1These preliminary experiments were performed before our final split of the dataset intro

train, val, and test. Baselines on the actual test set will be added once the evaluation server is
complete.
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Figure 2.6: Samples of annotated images in the COCO dataset.

latest implementation of [33] (release 5 [40]) trained on PASCAL VOC 2012.

DPMv5-C: the same implementation trained on COCO (5000 positive and 10000

negative images). We use the default parameter settings for training COCO

models.

If we compare the average performance of DPMv5-P on PASCAL VOC and

COCO, we find that average performance on COCO drops by nearly a factor
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of 2, suggesting that COCO does include more difficult (non-iconic) images of

objects that are partially occluded, amid clutter, etc. We notice a similar drop in

performance for the model trained on COCO (DPMv5-C).

The effect on detection performance of training on PASCAL VOC or COCO

may be analyzed by comparing DPMv5-P and DPMv5-C. They use the same im-

plementation with different sources of training data. Table 2.1 shows DPMv5-C

still outperforms DPMv5-P in 6 out of 20 categories when testing on PASCAL

VOC. In some categories (e.g., dog, cat, people), models trained on COCO per-

form worse, while on others (e.g., bus, tv, horse), models trained on our data are

better.

Consistent with past observations [130], we find that including difficult

(non-iconic) images during training may not always help. Such examples may

act as noise and pollute the learned model if the model is not rich enough to

capture such appearance variability. Our dataset allows for the exploration of

such issues.

Torralba and Efros [116] proposed a metric to measure cross-dataset gener-

alization which computes the ‘performance drop’ for models that train on one

dataset and test on another. The performance difference of the DPMv5-P mod-

els across the two datasets is 12.7 AP while the DPMv5-C models only have 7.7

AP difference. Moreover, overall performance is much lower on COCO. These

observations support two hypotheses: 1) COCO is significantly more difficult

than PASCAL VOC and 2) models trained on COCO can generalize better to

easier datasets such as PASCAL VOC given more training data. To gain insight

into the differences between the datasets, see Appendix B for visualizations of

person and chair examples from the two datasets.
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Figure 2.7: We visualize our mixture-specific shape masks. We paste thresh-
olded shape masks on each candidate detection to generate candidate segments.

Figure 2.8: Evaluating instance detections with segmentation masks versus
bounding boxes. Bounding boxes are a particularly crude approximation for ar-
ticulated objects; in this case, the majority of the pixels in the (blue) tight-fitting
bounding-box do not lie on the object. Our (green) instance-level segmentation
masks allows for a more accurate measure of object detection and localization.

Generating segmentations from detections We now describe a simple

method for generating object bounding boxes and segmentation masks, follow-

ing prior work that produces segmentations from object detections [10, 124, 87,

16]. We learn aspect-specific pixel-level segmentation masks for different cat-

egories. These are readily learned by averaging together segmentation masks

from aligned training instances. We learn different masks corresponding to the

different mixtures in our DPM detector. Sample masks are visualized in Fig. 4.4.

Detection evaluated by segmentation Segmentation is a challenging task
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Figure 2.9: A predicted segmentation might not recover object detail even
though detection and ground truth bounding boxes overlap well (left). Sam-
pling from the person category illustrates that predicting segmentations from
top-down projection of DPM part masks is difficult even for correct detections
(center). Average segmentation overlap measured on COCO for the 20 PASCAL
VOC categories demonstrates the difficulty of the problem (right).

even assuming a detector reports correct results as it requires fine localization

of object part boundaries. To decouple segmentation evaluation from detection

correctness, we benchmark segmentation quality using only correct detections.

Specifically, given that the detector reports a correct bounding box, how well

does the predicted segmentation of that object match the ground truth segmen-

tation? As criterion for correct detection, we impose the standard requirement

that intersection over union between predicted and ground truth boxes is at

least 0.5. We then measure the intersection over union of the predicted and

ground truth segmentation masks, see Fig. 2.8. To establish a baseline for our

dataset, we project learned DPM part masks onto the image to create segmen-

tation masks. Fig. 2.9 shows results of this segmentation baseline for the DPM

learned on the 20 PASCAL categories and tested on our dataset.
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2.8 Discussion

We introduced a new dataset for detecting and segmenting objects found in ev-

eryday life in their natural environments. Utilizing over 70,000 worker hours,

a vast collection of object instances was gathered, annotated and organized to

drive the advancement of object detection and segmentation algorithms. Em-

phasis was placed on finding non-iconic images of objects in natural environ-

ments and varied viewpoints. Dataset statistics indicate the images contain rich

contextual information with many objects present per image.

There are several promising directions for future annotations on our dataset.

We currently only label “things”, but labeling “stuff” may also provide signif-

icant contextual information that may be useful for detection. Many object de-

tection algorithms benefit from additional annotations, such as the amount an

instance is occluded [20] or the location of keypoints on the object [8]. Finally,

our dataset could provide a good benchmark for other types of labels, including

scene types [122], attributes [82, 29] and full sentence written descriptions [88].

We are actively exploring adding various such annotations.

To download and learn more about COCO please see the project website2.

COCO will evolve and grow over time; up to date information is available on-

line.

2http://mscoco.org/
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CHAPTER 3

LEARNING TO REFINE INSTANCE SEGMENTATION

3.1 Introduction

As object detection [33, 102, 114, 47, 39, 38, 91, 6] has rapidly progressed, there

has been a renewed interest in object instance segmentation [66]. As the name

implies, the goal is to both detect and segment each individual object. The task

is related to both object detection with bounding boxes [66, 27, 18] and semantic

segmentation [105, 27, 28, 83, 25, 128, 12, 100, 77]. It involves challenges from

both domains, requiring accurate pixel-level object segmentation coupled with

identification of each individual object instance.

A number of recent papers have explored the use convolutional neural net-

works (CNNs) [63] for object instance segmentation [43, 84, 14, 44]. Standard

feedforward CNNs [61, 110, 113, 48] interleave convolutional layers (with point-

wise nonlinearities) and pooling layers. Pooling controls model capacity and in-

creases receptive field size, resulting in a coarse, highly-semantic feature repre-

sentation. While effective and necessary for extracting object-level information,

this general architecture results in low resolution features that are invariant to

pixel-level variations. This is beneficial for classification and identifying object

instances but poses challenge for pixel-labeling tasks. Hence, CNNs that uti-

lize only upper network layers for object instance segmentation [43, 84, 14], as

in Figure 3.1a, can effectively generate coarse object masks but have difficulty

generating pixel-accurate segmentations.

For pixel-labeling tasks such as semantic segmentation and edge detection,
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Figure 3.1: Architectures for object instance segmentation. (a) Feedforward nets,
such as DeepMask [84], predict masks using only upper-layer CNN features,
resulting in coarse pixel masks. (b) Common ‘skip’ architectures are equiva-
lent to making independent predictions from each layer and averaging the re-
sults [73, 44, 123], such an approach is not well suited for object instance seg-
mentation. (c,d) In this work we propose to augment feedforward nets with a
novel top-down refinement approach. The resulting bottom-up/top-down ar-
chitecture is capable of efficiently generating high-fidelity object masks.

‘skip’ connections [103, 73, 44, 123], as shown in Figure 3.1b, are popular. In

practice, common skip architectures are equivalent to making independent pre-

dictions from each network layer and upsampling and averaging the results

(see Fig. 2 in [44], Fig. 3 in [73], and Fig. 3 in [123]). This is effective for semantic

segmentation as local receptive fields in early layers can provide sufficient data

for pixel labeling. For object segmentation, however, it is necessary to differ-

entiate between object instances, for which local receptive fields are insufficient

(e.g. local patches of sheep fur can be labeled as such but without object-level

information it can be difficult to determine if they belong to the same animal).

In this paper, we propose a novel CNN which efficiently merges the spatially

rich information from low-level features with the high-level object knowledge
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encoded in upper network layers. Rather than generating independent outputs

from multiple network layers, our approach first generates a coarse mask encod-

ing in a feedforward manner, which is simply a semantically meaningful feature

map with multiple channels, then refines it by successively integrating informa-

tion from earlier layers. Specifically, we introduce a refinement module and stack

successive such modules together into a top-down refinement process. See Fig-

ures 3.1c and 3.1d. Each refinement module is responsible for ‘inverting’ the

effect of pooling by taking a mask encoding generated in the top-down pass,

along with the matching features from the bottom-up pass, and merging the

information in both to generate a new mask encoding with double the spatial

resolution. The process continues until full resolution is restored and the final

output encodes the object mask. The refinement module is efficient and fully

backpropable.

We apply our approach in the context of object proposal generation [2, 118,

131, 86, 58, 56, 53]. The seminal object detection work on R-CNN [39] follows

a two-phase approach: first, an object proposal algorithm is used to find re-

gions in images that may contain objects; second, a CNN assigns each proposal

a category label. While originally object proposals were constructed from low-

level grouping and saliency cues [53], recently CNNs have been adopted for

this task [114, 91, 84], leading to massive improvements in detection accuracy.

In particular, Pinheiro et al. [84] demonstrated how to adopt a CNN to gener-

ate rich object instance segmentations in an image. The proposed model, called

DeepMask, predicts how likely an image patch is to fully contain a centered ob-

ject and also outputs an associated segmentation mask for the object, if present.

The model is run convolutionally to generate a dense set of object proposals for

an image. DeepMask outperforms previous object segment proposal methods
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by a substantial margin [84].

In this work we utilize the DeepMask architecture as our starting point for

object instance segmentation due to its simplicity and effectiveness. We aug-

ment the basic DeepMask architecture with our refinement module (see Fig-

ure 3.1) and refer to the resulting approach as SharpMask to emphasize its abil-

ity to produce sharper, higher-fidelity object segmentation masks. In addition

to the top-down refinement, we also revisit the basic bottom-up architecture of

the DeepMask network and likewise optimize it for the segmentation task.

SharpMask improves segmentation mask quality relative to DeepMask. For

object proposal generation, average recall on the COCO dataset [66] improves

10-20% and establishes the new state-of-the-art on this task. Moreover, we op-

timize our core architecture and improve speed by 50% with respect to Deep-

Mask, with an average of .76s per image. Our fast model, which still outper-

forms previous results, runs at .46s, or, by using additional image scales, we can

boost small object recall by ∼2×. Finally we show SharpMask proposals sub-

stantially improve object detection results when coupled with the Fast R-CNN

detector [38].

The paper is organized as follows: §3.2 presents related work, §3.3 introduces

our novel top-down refinement network, §3.4 describes optimizations to the

network architecture, and finally §3.5 validates our approach experimentally.

All source code for reproducing the methods in this paper will be released.
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3.2 Related Work

Following their success in image classification [61, 110, 113, 48], CNNs have

been adopted with great effect to pixel-labeling tasks such as depth estima-

tion [25], optical flow [23], and semantic segmentation [28]. Below we describe

architectural innovations for such tasks, and discuss how they relate to our ap-

proach. Aside from skip connections [103, 44, 73, 123], which were discussed

in §3.1, these techniques can be roughly classified as multiscale architectures,

deconvolutional networks, and graphical model networks. We discuss each in

turn next. We emphasize, however, that most of these approaches are not ap-

plicable to our domain due to severe computational constraints: we must refine

hundreds of proposals per image implying the marginal time per proposal must

be minimal.

Multiscale architectures: [28, 25, 83] compute features over multiple

rescaled versions of an image. Features can be computed independently at each

scale [28], or the output from one scale can be used as additional input to the

next finer scale [25, 83]. Our approach relies on similar intuition but does not

require recomputing features at each image scale. This allows us to apply re-

finement efficiently to hundreds of locations per image as necessary for object

proposal generation.

Deconvolutional networks: [127] proposed to invert the pooling process

in a CNN to generate progressively higher resolution input images by storing

the ‘switch’ variables from the pooling operation. Deconv networks have re-

cently been applied successfully to semantic segmentation [77]. Deconv layers

share similarities with our refinement module, however, ‘switches’ are commu-
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nicated instead of the feature values, which limits the information that can be

transferred. Finally, [23] proposed to progressively increase the resolution of an

optical flow map. This can be seen as a special case of our refinement approach

where: (1) the ‘features’ for refinement are set to be the flow field itself, (2) no

feature transform is applied to the bottom-up features, and (3) the approach is

applied monolithically to the entire image. Restricting our method in any of

these ways would cause it to fail in our setting as discussed in §3.5.

Graphical model networks: a number of recent papers have proposed inte-

grating graphical models into CNNs by demonstrating they can be formulated

as recurrent nets [128, 12, 100]. Good results were demonstrated on semantic

segmentation. While too slow to apply to multiple proposals per image, these

approaches likewise attempt to sharpen a coarse segmentation mask.

3.3 Learning Mask Refinement

We apply our proposed bottom-up/top-down refinement architecture to object

instance segmentation. Specifically, we focus on object proposal generation [53],

which forms the cornerstone of modern object detection [39]. We note that al-

though we test the proposed refinement architecture on the task of object seg-

mentation, it could potentially be applied to other pixel-labeling tasks.

Object proposal algorithms aim to find diverse regions in an image which

are likely to contain objects; both proposal recall and quality correlate strongly

with detector performance [53]. We adopt the DeepMask network [84] as the

starting point for proposal generation. DeepMask is trained to jointly generate

a class-agnostic object mask and an associated ‘objectness’ score for each input
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image patch. At inference time, the model is run convolutionally to generate

a dense set of scored segmentation proposals. We refer readers to [84] for full

details.

A simplified diagram of the segmentation branch of DeepMask is illustrated

in Figure 3.1a. The network is trained to infer the mask for the object located

in the center of the input patch. It contains a series of convolutional layers in-

terleaved with pooling stages that reduce the spatial dimensions of the feature

maps, followed by a fully connected layer to generate the object mask. Hence,

each pixel prediction is based on a complete view of the object, however, its

input feature resolution is low due to the multiple pooling stages.

As a result, DeepMask generates masks that are accurate on the object level

but only coarsely align with object boundaries, see Figure 3.2a. In order to ob-

tain higher-quality masks, we augment the basic DeepMask architecture with

our refinement approach. We refer to the resulting method as SharpMask to

emphasize its ability to produce sharper, pixel-accurate object masks, see Fig-

ure 3.2b. We begin with a high-level overview of our approach followed by

further details.

3.3.1 Refinement Overview

Our goal is to efficiently merge the spatially rich information from low-level

features with the high-level semantic information encoded in upper network

layers. Three principles guide our approach: (1) object-level information is of-

ten necessary to segment an object, (2) given object-level information, segmen-

tation should proceed in a top-down fashion, successively integrating informa-
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(a) DeepMask Output (b) SharpMask Output

Figure 3.2: Qualitative comparison of DeepMask versus SharpMask segmen-
tations. Proposals with highest IoU to the ground truth are shown for each
method. Both DeepMask and SharpMask generate object masks that capture
the general shape of the objects. However, SharpMask improves the masks near
object boundaries.

tion from earlier layers, and (3) the approach should invert the loss of resolution

from pooling (with the final output matching the resolution of the input).

To satisfy these principles, we augment standard feedforward nets with a

top-down refinement process. An overview of our approach is shown in Fig-

ure 3.1c. We introduce a ‘refinement module’ R that is responsible for inverting

the effect of pooling and doubling the resolution of the input mask encoding.

Each module Ri takes as input a mask encoding Mi generated in the top-down

pass, along with matching features F i generated in the bottom-up pass, and

learns to merge the information to generate a new upsampled object encoding

Mi+1. In other words: Mi+1 = Ri(Mi, F i), see Figure 3.1d. Multiple such modules

are stacked (one module per pooling layer). The final output of our network is a

pixel labeling of the same resolution as the input image. We present full details

next.
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3.3.2 Refinement Details

The feedforward pathway of our network outputs a ‘mask encoding’ M1, or sim-

ply, a low-resolution but semantically meaningful feature map with k1
m channels.

M1 serves as the input to the top-down refinement module, which is responsi-

ble for progressively increasing the mask encoding’s resolution. Note that using

k1
m > 1 allows the mask encoding to capture more information than a simple seg-

mentation mask, which proves to be key for obtaining good accuracy.

Each refinement module Ri aggregates information from a coarse mask en-

coding Mi and features F i from the corresponding layer of the bottom-up com-

putation (we always use the last convolutional layer prior to pooling). By con-

struction, Mi and F i have the same spatial dimensions; the goal of Ri is to gen-

erate a new mask encoding Mi+1 with double spatial resolution based on inputs

Mi and F i. We denote this via Mi+1 = Ri(Mi, F i). This process is applied itera-

tively n times (where n is the number of pooling stages) until the feature map

has the same dimensions as the input image patch. Each module Ri has separate

parameters, allowing the network to learn stage-specific refinements.

The refinement module aims to enhance the mask encoding Mi using fea-

tures F i. As Mi and F i have the same spatial dimensions, one option is to first

simply concatenate Mi and F i. However, directly concatenating F i with Mi poses

two challenges. Let ki
m and ki

f be the number of channels in Mi and F i respec-

tively. Typically, ki
f can be quite large in modern CNNs, so using F i directly

would be computationally expensive. Second, typically ki
f � ki

m, so directly

concatenating the features maps risks drowning out the signal in Mi.

Instead, we opt to first reduce the number of channels ki
f (but preserving the
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spatial dimensions) of these features through a 3×3 convolutional module (plus

ReLU), generating ‘skip’ features S i, with ki
s � ki

f channels. This substantially

reduces computational requirements, moreover, it allows the network to trans-

form F i into a form S i more suitable for use in refinement. An important but

subtle point is that during full image inference, as with the features F i, skip fea-

tures are shared by overlapping image patches, making them highly efficient to

compute. In contrast, the remaining computations of Ri are patch dependent as

they depend on the local mask Mi and hence cannot be shared across locations.

The refinement module concatenates mask encoding Mi with skip features

S i resulting in a feature map with ki
m + ki

s channels, and applies another 3 × 3

convolution (plus ReLU) to the result. Finally, the output is upsampled using

bilinear upsampling by a factor of 2, resulting in a new mask encoding Mi+1

with ki+1
m channels (ki+1

m is determined by the number of 3 × 3 kernels used for

the convolution). As with the convolution for generating the skip features, this

transformation is used to simultaneously learn a nonlinear mask encoding from

the concatenated features and to control the capacity of the model. Please see

Figure 3.1d for a complete overview of the refinement module R. Further opti-

mizations to R are possible, for details see Figure 3.7.

Note that the refinement module uses only convolution, ReLU, bilinear up-

sampling, and concatenation, hence it is fully backpropable and highly efficient.

In §3.5.2, we analyze different architecture choices for the refinement module

in terms of performance and speed. As a general design principle, we aim to

keep ki
s and ki

m large enough to capture rich information but small enough to

keep computation low. In particular, we can start with a fairly large number of

channels but as spatial resolution is increased the number of channels should
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decrease. This reverses the typical design of feedforward networks where spa-

tial resolution decreases while the number of channels increases with increasing

depth.

3.3.3 Training and Inference

We train SharpMask with an identical data definition and loss function as the

original DeepMask model. Each training sample is a triplet containing an input

patch, a label specifying if the input patch contains a centered object at the cor-

rect scale, and for positive samples a binary object mask. The network trunk pa-

rameters are initialized with a network that was pre-trained on ImageNet [18].

All the other layers are initialized randomly from a uniform distribution.

Training proceeds in two stages: first, the model is trained to jointly infer

a coarse pixel-wise segmentation mask and an object score, second, the feed-

forward path is ‘frozen’ and the refinement modules trained. The first training

stage is identical to [84]. Once learning of the first stage converges, the final

mask prediction layer of the feedforward network is removed and replaced

with a linear layer that generates a mask encoding M1 in place of the actual

mask output. We then add the refinement modules to the network and train us-

ing standard stochastic gradient descent, backpropagating the error only on the

horizontal and vertical convolution layers on each of the n refinement modules.

This two-stage training procedure was selected for three reasons. First, we

found it led to faster convergence. Second, at inference time, a single network

trained in this manner can be used to generate either a coarse mask using the

forward path only or a sharp mask using our bottom-up/top-down approach.
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Third, we found the gains of fine-tuning through the entire network to be mini-

mal once the forward branch had converged.

During full-image inference, similarly to [84], most computation for neigh-

boring windows is shared through use of convolution, including for skip layers

S i. However, as discussed, the refinement modules receive a unique input M1

at each spatial location, hence, computation proceeds independently at each lo-

cation for this stage. Rather than refine every proposal, we simply refine only

the most promising locations. Specifically, we select the top N scoring proposal

windows and apply the refinement in a batch mode to these top N locations.

To further clarify all implementation details, full source code will be re-

leased.

3.4 Feedforward Architecture

While the focus of our work is on top-down mask refinement, to obtain a better

understanding of object segmentation we also explore factors that effect a feed-

forward network’s ability to generate accurate object masks. In the next two

subsections we carefully examine the design of the network ‘trunk’ and ‘head’.

3.4.1 Trunk Architecture

We begin by identifying model bottlenecks. DeepMask spends 40% of its time

for feature extraction, 40% for mask prediction, and 20% for score prediction.

Given the time of feature extraction, increasing model depth or breadth can in-
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cur a non-trivial computational cost. Simply upgrading the 11-layer VGG-A

model [110] used in [84] to the 16-layer VGG-D model can double run time.

Recently He et al. [48] introduced Residual Networks (ResNet) and showed ex-

cellent results. In this work, we use the 50-layer ResNet model pre-trained on

ImageNet, which achieves the accuracy of VGG-D but with the inference time

of VGG-A.

We explore models with varying input size W, number of pooling layers

P, stride density S, model depth D, and final number of features channels F.

These factors are intertwined but we can achieve significant insight by a tar-

geted study.

Input size W: Given a minimum object size O, the input image needs to be

upsampled by W/O to detect small objects. Hence, reducing W improves speed

of both mask prediction and inference for small objects. However, smaller W re-

duces the input resolution which in turn lowers the accuracy of mask prediction.

Moreover, reducing W decreases stride density S which further harms accuracy.

Pooling layers P: Assuming 2 × 2 pooling, the final kernel width is W/2P.

During inference, this necessitates convolving with a large W/2P kernel in or-

der to aggregate information (e.g., 14×14 for DeepMask). However, while more

pooling P results in faster computation, it also results in loss of feature resolu-

tion.

Stride density S: We define the stride density to be S=W/stride (where typ-

ically stride is 2P). The smaller the stride, the denser the overlap with ground

truth locations. We found that the stride density is key for mask prediction.

Doubling the stride while keeping W constant greatly reduces performance as
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the model must be more spatially invariant relative to a fixed object size.

Depth D: For typical networks [61, 110, 113, 48], spatial resolution decreases

with increasing D while the number of features channels F increases. In the con-

text of instance segmentation, reducing spatial resolution hurts performance.

One possible direction is to start with lower layers that have less pooling and

increase the depth of the model without reducing spatial resolution or increas-

ing F. This would require training networks from scratch which we leave to

future work.

Feature channels F: The high dimensional features at the top layer introduce

a bottleneck for feature aggregation. An efficient approach is to first apply di-

mensionality reduction before feature aggregation. We adopt 1 × 1 convolution

to reduce F and show that we can achieve large speedups in this manner.

In §3.5.1 and Table 3.1 we examine various choices for W, P, S, D, and F.

3.4.2 Head Architecture
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Figure 3.3: Network head architecture. (a) The original DeepMask head. (b-d)
Various head options with increasing simplicity and speed. The heads share
identical pathways for mask prediction but have progressively simplified score
branches.
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We also examine the ‘head’ of the DeepMask model, focusing on score pre-

diction. Our goal is to simplify the head and further improve inference speed.

In DeepMask, the mask and scoring heads branch after the final 512×14×14

feature map (see Figure 3.3a). Both mask and score prediction require a large

convolution, and in addition, the score branch requires an extra pooling step

and hence interleaving to match the stride of the mask network during infer-

ence. Overall, this leads to a fairly inelegant and slow inference procedure.

We propose a sequence of simplified network structures that have identi-

cal mask branches but that share progressively more computation. A series of

model heads A-C is detailed in Figure 3.3. Head A removes the need for inter-

leaving in DeepMask by removing max pooling and replacing the 512 × 7 × 7

convolutions by 128 × 10 × 10 convolutions; overall this network is much faster.

Head B simplifies this by having the 128 × 10 × 10 features shared by both the

mask and score branch. Finally, model C further reduces computation by hav-

ing the score prediction utilize the same low rank 512 × 1 × 1 features used for

the mask.

In §3.5.1 we evaluate these variants in terms of performance and speed.

3.5 Experiments

We train our model on the training set of the COCO dataset [66], which con-

tains 80k training images and 500k instance annotations. For most of our ex-

periments, results are reported on the first 5k COCO validation images. Mask

accuracy is measured by Intersection over Union (IoU) which is the ratio of the
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Figure 3.4: SharpMask proposals with highest IoU to the ground truth on se-
lected COCO images. Missed objects (no matching proposals with IoU > 0.5)
are marked in red. The last row shows a number of failure cases.

intersection of the predicted mask and ground truth annotation to their union.

A common method for summarizing object proposal accuracy is using the aver-

age recall (AR) between IoU 0.5 and .95 for a fixed number of proposals. Hosang

et al. [53] show that AR correlates well with object detector performance.

Our results are measured in terms of AR at 10, 100, and 1000 proposals and
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averaged across all counts (AUC). As the COCO dataset contains objects in a

wide range of scales, it is also common practice to divide objects into roughly

equally sized sets according to object pixel area a: small (a < 322), medium

(322 ≤ a ≤ 962), and large (a > 962) objects, and report accuracy at each scale.

We use a different subset of the COCO validation set to decide architecture

choices and hyper-parameter selection. We use a learning rate of 1e-3 for train-

ing the refinement stage, which takes about 2 days to train on an Nvidia Tesla

K40m GPU. To mitigate the mismatch of per-patch training with convolutional

inference, we found that training deeper model such as ResNet requires adding

extra image content (32 pixels) surrounding the training patches and using

reflective-padding instead of 0-padding at every convolutional layer. Finally,

following [84], we binarize our continuous mask prediction using a threshold

of 0.2.

W P D S kernel F AR ARS ARM ARL time

DeepMask 224 4 8 14 512x14x14 512 36.6 18.2 48.7 50.6 1.32s

W160-P4-D8-VGG 160 4 8 10 1024x10x10 512 35.5 15.1 47.5 53.2 .58s

W160-P4-D39 160 4 39 10 1024x10x10 512 37.0 15.9 50.5 53.9 .58s

W160-P4-D39-F128 160 4 39 10 1024x10x10 128 36.9 15.6 49.9 54.8 .45s

W112-P4-D39 112 4 39 7 1024x7x7 512 30.8 11.2 42.3 47.8 .31s

W112-P3-D21 112 3 21 14 512x14x14 512 36.7 16.7 49.1 53.1 .75s

W112-P3-D21-F128 112 3 21 14 512x14x14 128 36.1 16.3 48.4 52.2 .33s

SharpMask 160 4 39 10 1024x10x10 128 39.3 18.1 52.1 57.1 .75s

Table 3.1: Model performance (upper bound on AR) for varying input size W,
number of pooling layers P, stride density S, depth D, and features channels F.
See §3.4.1 and §3.5.1 for details. Timing is for multiscale inference excluding the
time for score prediction. Total time for DeepMask & SharpMask is 1.59s & .76s.
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3.5.1 Architecture Optimization

We begin by reporting our optimizations of the feedforward model. For our

initial results, we measure AR for densely computed masks (∼104 proposals per

image). This allows us to factor out the effect of objectness score prediction and

focus exclusively on evaluating mask quality. In our experiments, AR across all

proposals is highly correlated (see Figure 3.6), hence this upper bound on AR is

predictive of performance at more realistic settings (e.g. at AR100).

Trunk Architecture: We begin by investigating effect of the network trunk

parameters described in §3.4.1 with the goal of optimizing both speed and accu-

racy. Performance of a number of representative models is shown in Table 3.1.

First, replacing the 224×224 DeepMask VGG-A model with a 160×160 version is

much faster (over 2×). Surprisingly, accuracy loss for this model, W160-P4-D8-

VGG, is only minor, partially due to an improved learning schedule. Upgrading

to a ResNet trunk, W160-P4-D39, restores accuracy and keeps speed identical.

We found that reducing the feature dimension to 128 (-F128) shows almost no

loss, but improves speed. Finally, as input size is a bottleneck, we also tested

a number of W112 models. Nevertheless, overall, W160-P4-D39-F128 gave the

best tradeoff between speed and accuracy.

Head Architecture: In Table 3.2 we evaluate the performance of the various

network heads in Figure 3.3 (using standard AR, not upper-bound AR as in

Table 3.1). Head A is already substantially faster than DeepMask. All heads

achieve similar accuracy with a decreasing inference time as the score branch

shares progressively more computation with the mask. Interestingly, head C is

able to predict both the score and mask from a single compact 512 dimensional

vector. We chose this variant due to its simplicity and speed.
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DeepMask-ours: Based on all of these observations, we combine the W160-

P4-D39-F128 trunk with the C head. We refer to the resulting architecture as

DeepMask-ours. DeepMask-ours is over 3× faster than the original DeepMask

(.46s per image versus 1.59s) and also more accurate. Moreover, model param-

eter count is reduced from ∼75M to ∼17M. For all SharpMask experiments, we

adopt DeepMask-ours as the base feedforward architecture.

AR10 AR100 AR1K AUCS AUCM AUCL AUC mask score total

DeepMask 12.6 24.5 33.1 2.3 26.6 33.6 18.3 1.32s .27s 1.59s

head A 14.0 25.8 33.4 2.2 27.3 36.6 19.3 .45s .06s .51s

head B 14.0 25.4 33.0 2.0 27.0 36.9 19.1 .45s .05s .50s

head C 14.4 25.8 33.1 2.2 27.3 37.4 19.4 .45s .01s .46s

Table 3.2: All model variants of the head have similar performance. Head C is a
win in terms of both simplicity and speed. See Figure 3.3 for head definitions.

3.5.2 SharpMask Analysis

(a) ki
m = ki

s = k (b) ki
m = ki

s =
k

2i−1 (c) detection perf.

Figure 3.5: (a-b) Performance and inference time for multiple SharpMask vari-
ants. (c) Fast R-CNN detection performance versus number and type of propos-
als.

We now analyze different parameter settings for our top-down refinement

network. As described in §3.3, each of the four refinement modules Ri in Sharp-

Mask is controlled by two parameters ki
m and ki

s, which denote the size of the

mask encoding Mi and skip encoding S i, respectively. These parameters control

network capacity and effect inference speed. We experiment with two different
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schedules for these parameters: (a) ki
m = ki

s = k and (b) ki
m = ki

s =
k

2i−1 for each

i ≤ 4.

Figure 3.5(a-b) shows performance for the two schedules for different k both

in terms of AUC and inference time (measured when refining the top 500 pro-

posals per image, at which point object detection performance saturates, see

Figure 3.5c). We consistently observe higher performance as we increase the

capacity, with no sign of overfitting. Parameter schedule b, in particular with

k = 32, has the best trade-off between performance and speed, so we chose this

as our final model.

We note that we were unable to obtain good results with schedule a for k ≤

2, indicating the importance of using sufficiently large k. Also, we observed

that a single 3 × 3 convolution encounters learning difficulties when (ki
s � ki

f ).

Therefore, in all experiments we used a sequence of two 3 × 3 convolutions

(followed by ReLUs) to generate S i from F i, reducing F i to 64 channels first

followed by a further reduction to ki
s channels.

Finally, we performed two additional ablation studies. First, we removed all

downward convs, set ki
m = ki

s = 1, and averaged the output of all layers. Second,

we kept the vertical convs but removed all horizontal convs. These two variants

are related to ‘skip’ and ‘deconv’ networks, respectively. Neither setup showed

meaningful improvement over the baseline feedforward network. In short, we

found that both horizontal and vertical connections were necessary for this task.
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Box Proposals Segmentation Proposals

AR10 AR100 AR1K AUC AR10 AR100 AR1K AUCS AUCM AUCL AUC

EdgeBoxes [131] 7.4 17.8 33.8 13.9 — — — — — — —

Geodesic [58] 4.0 18.0 35.9 12.6 2.3 12.3 25.3 1.3 8.6 20.5 8.5

Rigor [56] — 13.3 33.7 10.1 — 9.4 25.3 2.2 6.0 17.8 7.4

SelectiveSearch [118] 5.2 16.3 35.7 12.6 2.5 9.5 23.0 0.6 5.5 21.4 7.4

MCG [86] 10.1 24.6 39.8 18.0 7.7 18.6 29.9 3.1 12.9 32.4 13.7

RPN [6, 91] 12.8 29.2 42.6 21.4 — — — — — — —

DeepMask [84] 15.3 31.3 44.6 23.3 12.6 24.5 33.1 2.3 26.6 33.6 18.3

DeepMaskZoom [84] 15.0 32.6 48.2 24.2 12.7 26.1 36.6 6.8 26.3 30.8 19.4

DeepMask-ours 18.7 34.9 46.5 26.2 14.4 25.8 33.1 2.2 27.3 37.4 19.4

SharpMask 19.7 36.4 48.2 27.4 15.6 27.6 35.5 2.5 29.1 40.4 20.9

SharpMaskZoom 20.1 39.4 52.8 29.1 16.1 30.3 39.2 6.9 29.7 38.4 22.4

SharpMaskZoom2 19.2 39.9 55.0 29.2 15.4 30.7 40.8 10.6 27.3 36.0 22.5

Table 3.3: Results on the COCO validation set on box and segmentation propos-
als. AR at different proposals counts is reported and also AUC (AR averaged
across all proposal counts). For segmentation proposals, we also report AUC
at multiple scales. SharpMask has largest for segmentation proposals and large
objects.

3.5.3 Comparison with State of the Art

Table 3.3 compares the performance of our model, SharpMask, to other existing

methods on the COCO dataset. We compare results both on box and segmenta-

tion proposals (for box proposals we extract tight bounding boxes surrounding

our segmentation masks). SharpMask achieves the state of the art in all metrics

for both speed and accuracy by a large margin. Additionally, because Sharp-

Mask has a smaller input size, it can be applied to an additional one to two

scales (SharpMaskZoom) and achieves a large boost in AR for small objects.

Our feedforward architecture improvements, DeepMask-ours, alone, improve

over the original DeepMask, in particular for bounding box proposals. Not

only is the new baseline more accurate, with our architecture optimization to

the trunk and head of the network (see §3.4), speed is improved to .46s per

image. We emphasize that DeepMask was the previous state-of-the-art on this

50



task, outperforming all bottom-up proposal methods as well as Region Proposal

Networks (RPN) [91] (we obtained improved RPN proposals from the authors

of [6]).

We train SharpMask using DeepMask-ours as the feedforward network. As

the two networks have an identical score branch, we can disentangle the per-

formance improvements achieved by our top-down refinement approach. Once

again, we observe a considerable boost in performance on AR due to the top-

down refinement. We note that improvement for segmentation predictions is

bigger than box predictions, which is not surprising, as sharpening masks might

not change the tight box around the objects in many examples. Inference for

SharpMask is .76s per image, over 2× faster than DeepMask; moreover, the re-

finement modules require fewer than 3M additional parameters.

In Figures 3.2 and 3.9 we show direct comparison between SharpMask and

DeepMask and we can see SharpMask generates higher-fidelity masks that

more accurately delineate object boundaries. In Figures 3.4 and 3.8, we show

more qualitative results. Additional detailed performance plots are shown in

Figure 3.6.

3.5.4 Object Detection

In this section, we use SharpMask in the Fast R-CNN pipeline [38] and an-

alyze the improvements of using our proposals for object detection. In the

following experiments we coupled SharpMask proposals with two classifiers:

VGG [110] and MultiPathNet (MPN) [126], which introduces a number of im-

provements to the VGG classifier. In future work we will also test our proposals
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with ResNets [48].

First, Fig. 3.5c shows the comparison of bounding box detection results for

SharpMask and SelSearch [118] on the COCO val set with the MPN classifier ap-

plied to both. SharpMask achieves 28 AP, which is 5 AP higher than SelSearch.

Also, performance converges using only ∼500 SharpMask proposals per image.

Next, Table 3.4 top shows results of various baselines without bells and whis-

tles, trained on the train set only. SharpMask achieves top results with the VGG

classifier, outperforming both RPN [91] and SelSearch [118].

Finally, Table 3.4 middle/bottom shows results from the 2015 COCO de-

tection challenges. The performance is reported with model ensembling and

the MPN classifier. The ensemble model achieve 33.5 AP for boxes and 25.1

AP for segments, and achieved second place in the challenges. Note that for

the challenges, both SharpMask and MPN used the VGG trunk (ResNets were

concurrent work, and won the competitions). We have not re-run our model

with ensembling and additional bells and whistles after integrating ResNets

into SharpMask.

3.6 Conclusion

In this paper, we introduce a novel architecture for object instance segmenta-

tion, based on an augmentation of feedforward networks with top-down refine-

ment modules. Our model achieves a new state of the art for object proposals

generation, both in terms of performance and speed. The proposed refinement

approach is general and could be applied to other pixel-labeling tasks.
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AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

SelSearch + VGG [38] 19.3 39.3 — — — — — — — — — —

RPN + VGG [91] 21.9 42.7 — — — — — — — — — —

SharpMask + VGG 25.2 43.4 — — — — — — — — — —

ResNet++ [48] 28.2 51.5 27.9 9.3 30.6 45.2 25.7 37.4 38.2 16.8 43.9 57.6

SharpMask+MPN[126] 25.1 45.8 24.8 7.4 29.2 39.1 24.1 36.8 38.7 17.3 46.9 53.9

ResNet++ [48] 37.3 58.9 39.9 18.3 41.9 52.4 32.1 47.7 49.1 27.3 55.6 67.9

SharpMask+MPN[126] 33.5 52.6 36.6 13.9 37.8 47.7 30.2 46.2 48.5 24.1 56.1 66.4

ION [6] 31.0 53.3 31.8 12.3 33.2 44.7 27.9 43.1 45.7 23.8 50.4 62.8

Table 3.4: Top: COCO bounding box results of various baselines without bells
and whistles, trained on the train set only, and reported on test-dev (results
for [38, 91] obtained from original papers). We denote methods using ‘pro-
posal+classifier’ notation for clarity. SharpMask achieves top results, outper-
forming both RPN and SelSearch proposals. Middle: Winners of the 2015
COCO segmentation challenge. Bottom: Winners of the 2015 COCO bounding
box challenge.
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Figure 3.6: (a-b) Average recall versus number of box and segment proposals on
COCO. (c-e) AR versus number of proposals for different object scales on segment pro-
posals. (f-h) Recall versus IoU threshold for different number of segment proposals.
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Figure 3.7: (a) Original refinement model. (b) Refactored but equivalent model that
leads to a more efficient implementation. The models are equivalent as concatenat-
ing along depth and convolving along the spatial dimensions can be rewritten as two
separate spatial convolutions followed by addition. The green ‘conv’ boxes denote the
corresponding convolutions (note also the placement of the ReLUs). The refactored
model is more efficient as skip features (both S i and S i

∗) are shared by overlapping re-
finement windows (while Mi and Mi

∗ are not). Finally, observe that setting ki
m = 1, ∀i,

and removing the top-down convolution would transform our refactored model into a
standard ‘skip’ architecture (however, using ki

m = 1 is not effective in our setting).
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Figure 3.8: More selected qualitative results (see also Figure 3.4).
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(a) DeepMask Output (b) SharpMask Output

Figure 3.9: More selected qualitative comparisons (see also Figure 3.2).
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CHAPTER 4

LEARNING MULTISCALE FEATURE RRESENTATIONS

4.1 Introduction

Recognizing objects at vastly different scales is a fundamental challenge in com-

puter vision. Feature pyramids built upon image pyramids (for short we call these

featurized image pyramids) form the basis of a standard solution [1] (Fig. 4.1(a)).

These pyramids are scale-invariant in the sense that an object’s scale change is

offset by shifting its level in the pyramid. Intuitively, this property enables a

model to detect objects across a large range of scales by scanning the model

over both positions and pyramid levels.

Featurized image pyramids were heavily used in the era of hand-engineered

features [17, 74]. They were so critical that object detectors like DPM [33] re-

quired dense scale sampling to achieve good results (e.g.,, 10 scales per octave).

For recognition tasks, engineered features have largely been replaced with fea-

tures computed by deep convolutional networks (ConvNets) [61, 65]. Aside

from being capable of representing higher-level semantics, ConvNets are also

more robust to variance in scale and thus facilitate recognition from features

computed on a single input scale [47, 41, 92] (Fig. 4.1(b)). But even with this

robustness, pyramids are still needed to get the most accurate results. All re-

cent top entries in the ImageNet [97] and COCO [69] detection challenges use

multi-scale testing on featurized image pyramids (e.g.,, [48, 107]). The principle

advantage of featurizing each level of an image pyramid is that it produces a

multi-scale feature representation in which all levels are semantically strong, in-

cluding the high-resolution levels.
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(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 4.1: (a) Using an image pyramid to build a feature pyramid. Features are
computed on each of the image scales independently, which is slow. (b) Recent
detection systems have opted to use only single scale features for faster detec-
tion. (c) An alternative is to reuse the pyramidal feature hierarchy computed
by a ConvNet as if it were a featurized image pyramid. (d) Our proposed Fea-
ture Pyramid Network (FPN) is fast like (b) and (c), but more accurate. In this
figure, feature maps are indicate by blue outlines and thicker outlines denote
semantically stronger features.

Nevertheless, featurizing each level of an image pyramid has obvious limi-

tations. Inference time increases considerably (e.g.,, by four times [41]), making

this approach impractical for real applications. Moreover, training deep net-

works end-to-end on an image pyramid is infeasible in terms of memory, and

so, if exploited, image pyramids are used only at test time [47, 41, 48, 107], which

creates an inconsistency between train/test-time inference. For these reasons,

Fast and Faster R-CNN [41, 92] opt to not use featurized image pyramids under

default settings.

However, image pyramids are not the only way to compute a multi-scale fea-

ture representation. A deep ConvNet computes a feature hierarchy layer by layer,
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and with subsampling layers the feature hierarchy has an inherent multi-scale,

pyramidal shape. This in-network feature hierarchy produces feature maps of

different spatial resolutions, but introduces large semantic gaps caused by dif-

ferent depths. The high-resolution maps have low-level features that harm their

representational capacity for object recognition.

The Single Shot Detector (SSD) [71] is one of the first attempts at using a

ConvNet’s pyramidal feature hierarchy as if it were a featurized image pyra-

mid (Fig. 4.1(c)). Ideally, the SSD-style pyramid would reuse the multi-scale

feature maps from different layers computed in the forward pass and thus come

free of cost. But to avoid using low-level features SSD foregoes reusing already

computed layers and instead builds the pyramid starting from high up in the

network (e.g.,, conv4 3 of VGG nets [110]) and then by adding several new lay-

ers. Thus it misses the opportunity to reuse the higher-resolution maps of the

feature hierarchy. We show that these are important for detecting small objects.

The goal of this paper is to naturally leverage the pyramidal shape of a

ConvNet’s feature hierarchy while creating a feature pyramid that has strong

semantics at all scales. To achieve this goal, we rely on an architecture that

combines low-resolution, semantically strong features with high-resolution,

semantically weak features via a top-down pathway and lateral connections

(Fig. 4.1(d)). The result is a feature pyramid that has rich semantics at all lev-

els and is built quickly from a single input image scale. In other words, we

show how to create in-network feature pyramids that can be used to replace

featurized image pyramids without sacrificing representational power, speed,

or memory.

Similar architectures adopting top-down and skip connections are popular
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in recent research [85, 52, 35, 76]. Their goals are to produce a single high-level

feature map of a fine resolution on which the predictions are to be made (Fig. 4.2

top). On the contrary, our method leverages the architecture as a feature pyra-

mid where predictions (e.g.,, object detections) are independently made on each

level (Fig. 4.2 bottom). Our model echoes a featurized image pyramid, which

has not been explored in these works.

We evaluate our method, called a Feature Pyramid Network (FPN), in vari-

ous systems for detection and segmentation [41, 92, 84]. Without bells and whis-

tles, we report a state-of-the-art single-model result on the challenging COCO

detection benchmark [69] simply based on FPN and a basic Faster R-CNN de-

tector [92], surpassing all existing heavily-engineered single-model entries of

competition winners. In ablation experiments, we find that for bounding box

proposals, FPN significantly increases the Average Recall (AR) by 8.0 points;

for object detection, it improves the COCO-style Average Precision (AP) by 2.3

points and PASCAL-style AP by 3.8 points, over a strong single-scale baseline

of Faster R-CNN on ResNets [48]. Our method is also easily extended to mask

proposals and improves both instance segmentation AR and speed over state-

of-the-art methods that heavily depend on image pyramids.

In addition, our pyramid structure can be trained end-to-end with all scales

and is used consistently at train/test time, which would be memory-infeasible

using image pyramids. As a result, FPNs are able to achieve higher accu-

racy than all existing state-of-the-art methods. Moreover, this improvement is

achieved without increasing testing time over the single-scale baseline. We be-

lieve these advances will facilitate future research and applications. Our code

will be made publicly available.
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Figure 4.2: Top: a top-down architecture with skip connections, where predic-
tions are made on the finest level (e.g.,, [85]). Bottom: our model that has a
similar structure but leverages it as a feature pyramid, with predictions made in-
dependently at all levels.

4.2 Related Work

Hand-engineered features and early neural networks. SIFT features [74] were

originally extracted at scale-space extrema and used for feature point matching.

HOG features [17], and later SIFT features as well, were computed densely over

entire image pyramids. These HOG and SIFT pyramids have been used in nu-

merous works for image classification, object detection, human pose estimation,

and more. There has also been significant interest in computing featurized im-

age pyramids quickly. Dollár et al.[21] demonstrated fast pyramid computation

by first computing a sparsely sampled (in scale) pyramid and then interpolat-

ing missing levels. Before HOG and SIFT, early work on face detection with

ConvNets [119, 95] computed shallow networks over image pyramids to detect
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faces across scales.

Deep ConvNet object detectors. With the development of modern deep Con-

vNets [61], object detectors like OverFeat [104] and R-CNN [39] showed dra-

matic improvements in accuracy. OverFeat adopted a strategy similar to early

neural network face detectors by applying a ConvNet as a sliding window de-

tector on an image pyramid. R-CNN adopted a region proposal-based strat-

egy [118] in which each proposal was scale-normalized before classifying with

a ConvNet. SPPnet [47] demonstrated that such region-based detectors could

be applied much more efficiently on feature maps extracted on a single image

scale. Recent and more accurate detection methods like Fast R-CNN [41] and

Faster R-CNN [92] advocate using features computed from a single scale, be-

cause it offers a good trade-off between accuracy and speed. Multi-scale detec-

tion, however, still performs better, especially for small objects.

Methods using multiple layers. A number of recent approaches improve de-

tection and segmentation by using different layers in a ConvNet. FCN [73] sums

partial scores for each category over multiple scales to compute semantic seg-

mentations. Hypercolumns [44] uses a similar method for object instance seg-

mentation. Several other approaches (HyperNet [57], ParseNet [72], and ION

[6]) concatenate features of multiple layers before computing predictions, which

is equivalent to summing transformed features. SSD [71] and MS-CNN [11]

predict objects at multiple layers of the feature hierarchy without combining

features or scores.

There are recent methods exploiting lateral/skip connections that associate

low-level feature maps across resolutions and semantic levels, including U-Net

[94] and SharpMask [85] for segmentation, Recombinator networks [52] for face
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detection, and Stacked Hourglass networks [76] for keypoint estimation. Ghiasi

et al.[35] present a Laplacian pyramid presentation for FCNs to progressively re-

fine segmentation. Although these methods adopt architectures with pyramidal

shapes, they are unlike featurized image pyramids [17, 33, 104] where predic-

tions are made independently at all levels, see Fig. 4.2. In fact, for the pyramidal

architecture in Fig. 4.2 (top), image pyramids are still needed to recognize ob-

jects across multiple scales [85].

4.3 Feature Pyramid Networks

Our goal is to leverage a ConvNet’s pyramidal feature hierarchy, which has se-

mantics from low to high levels, and build a feature pyramid with high-level se-

mantics throughout. The resulting Feature Pyramid Network is general-purpose

and in this paper we focus on sliding window proposers (Region Proposal Net-

work, RPN for short) [92] and region-based detectors (Fast R-CNN) [41]. We

also generalize FPNs to instance segmentation proposals in Sec. 4.6.

Our method takes a single-scale image of an arbitrary size as input, and

outputs proportionally sized feature maps at multiple levels, in a fully convolu-

tional fashion. This process is independent of the backbone convolutional archi-

tectures (e.g.,, [61, 110, 48]), and in this paper we present results using ResNets

[48]. The construction of our pyramid involves a bottom-up pathway, a top-

down pathway, and lateral connections, as introduced in the following.

Bottom-up pathway. The bottom-up pathway is the feedforward computation

of the backbone ConvNet, which computes a feature hierarchy consisting of

63



feature maps at several scales with a scaling step of 2. There are often many

layers producing output maps of the same size and we say these layers are in the

same network stage. For our feature pyramid, we define one pyramid level for

each stage. We choose the output of the last layer of each stage as our reference

set of feature maps, which we will enrich to create our pyramid. This choice is

natural since the deepest layer of each stage should have the strongest features.

Specifically, for ResNets [48] we use the feature activations output by each

stage’s last residual block. We denote the output of these last residual blocks as

{C2,C3,C4,C5} for conv2, conv3, conv4, and conv5 outputs, and note that they

have strides of {4, 8, 16, 32} pixels with respect to the input image. We do not

include conv1 into the pyramid due to its large memory footprint.

Top-down pathway and lateral connections. The top-down pathway halluci-

nates higher resolution features by upsampling spatially coarser, but semanti-

cally stronger, feature maps from higher pyramid levels. These features are then

enhanced with features from the bottom-up pathway via lateral connections.

Each lateral connection merges feature maps of the same spatial size from the

bottom-up pathway and the top-down pathway. The bottom-up feature map is

of lower-level semantics, but its activations are more accurately localized as it

was subsampled fewer times.

Fig. 4.3 shows the building block that constructs our top-down feature maps.

With a coarser-resolution feature map, we upsample the spatial resolution by a

factor of 2 (using nearest neighbor upsampling for simplicity). The upsampled

map is then merged with the corresponding bottom-up map (which undergoes

a 1×1 convolutional layer to reduce channel dimensions) by element-wise ad-

dition. This process is iterated until the finest resolution map is generated. To
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Figure 4.3: A building block illustrating the lateral connection and the top-down
pathway, merged by addition.

start the iteration, we simply attach a 1×1 convolutional layer on C5 to produce

the coarsest resolution map. Finally, we append a 3 × 3 convolution on each

merged map to generate the final feature map, which is to reduce the aliasing

effect of upsampling. This final set of feature maps is called {P2, P3, P4, P5}, cor-

responding to {C2,C3,C4,C5} that are respectively of the same spatial sizes.

Because all levels of the pyramid use shared classifiers/regressors as in a

traditional featurized image pyramid, we fix the feature dimension (numbers

of channels, denoted as d) in all the feature maps. We set d = 256 in this paper

and thus all extra convolutional layers have 256-channel outputs. There are no

non-linearities in these extra layers, which we have empirically found to have

minor impacts.

Simplicity is central to our design and we have found that our model is ro-

bust to many design choices. We have experimented with more sophisticated

blocks (e.g.,, using multi-layer residual blocks [48] as the connections) and ob-
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served marginally better results. Designing better connection modules is not

the focus of this paper, so we opt for the simple design described above.

4.4 Applications

Our method is a generic solution for building feature pyramids inside deep

ConvNets. In the following we adopt our method in RPN [92] for bounding

box proposal generation and in Fast R-CNN [41] for object detection. To demon-

strate the simplicity and effectiveness of our method, we make minimal modi-

fications to the original systems of [92, 41] when adapting them to our feature

pyramid.

4.4.1 Feature Pyramid Networks for RPN

RPN [92] is a sliding-window class-agnostic object detector. In the original RPN

design, a small subnetwork is evaluated on dense 3×3 sliding windows, on top

of a single-scale convolutional feature map, performing object/non-object bi-

nary classification and bounding box regression. This is realized by a 3×3 con-

volutional layer followed by two sibling 1×1 convolutions for classification and

regression, which we refer to as a network head. The object/non-object criterion

and bounding box regression target are defined with respect to a set of refer-

ence boxes called anchors [92]. The anchors are of multiple pre-defined scales

and aspect ratios in order to cover objects of different shapes.

We adapt RPN by replacing the single-scale feature map with our FPN. We

attach a head of the same design (3×3 conv and two sibling 1×1 convs) to each
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level on our feature pyramid. Because the head slides densely over all loca-

tions in all pyramid levels, it is not necessary to have multi-scale anchors on a

specific level. Instead, we assign anchors of a single scale to each level. For-

mally, we define the anchors to have areas of {322, 642, 1282, 2562, 5122} pixels on

{P2, P3, P4, P5, P6} respectively.1 As in [92] we also use anchors of multiple as-

pect ratios {1:2, 1:1, 2:1} at each level. So in total there are 15 anchors over the

pyramid.

We assign training labels to the anchors based on their Intersection-over-

Union (IoU) ratios with ground-truth bounding boxes as in [92]. Formally, an

anchor is assigned a positive label if it has the highest IoU for a given ground-

truth box or an IoU over 0.7 with any ground-truth box, and a negative label if

it has IoU lower than 0.3 for all ground-truth boxes. Note that scales of ground-

truth boxes are not explicitly used to assign them to the levels of the pyramid;

instead, ground-truth boxes are associated with anchors, which have been as-

signed to pyramid levels. As such, we introduce no extra rules in addition to

those in [92].

We note that the parameters of the heads are shared across all feature pyra-

mid levels; we have also evaluated the alternative without sharing parameters

and observed similar accuracy. The good performance of sharing parameters in-

dicates that all levels of our pyramid share similar semantic levels. This advan-

tage is analogous to that of using a featurized image pyramid, where a common

head classifier can be applied to features computed at any image scale.

With the above adaptations, RPN can be naturally trained and tested with

our FPN, in the same fashion as in [92]. We elaborate on the implementation

1Here we introduce P6 only for covering a larger anchor scale of 5122. P6 is simply a stride
two subsampling of P5. P6 is not used by the Fast R-CNN detector in the next section.
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details in the experiments.

4.4.2 Feature Pyramid Networks for Fast R-CNN

Fast R-CNN [41] is a region-based object detector in which Region-of-Interest

(RoI) pooling is used to extract features. Fast R-CNN is most commonly per-

formed on a single-scale feature map. To use it with our FPN, we need to assign

RoIs of different scales to the pyramid levels.

We view our feature pyramid as if it were produced from an image pyramid.

Thus we can adapt the assignment strategy of region-based detectors [47, 41] in

the case when they are run on image pyramids. Formally, we assign an RoI of

width w and height h (on the input image to the network) to the level Pk of our

feature pyramid by:

k = bk0 + log2(
√

wh/224)c. (4.1)

Here 224 is the canonical ImageNet pre-training size, and k0 is the target level

on which an RoI with w × h = 2242 should be mapped into. Analogous to the

ResNet-based Faster R-CNN system [48] that uses C4 as the single-scale feature

map, we set k0 to 4. Intuitively, Eqn. (4.1) means that if the RoI’s scale becomes

smaller (say, 1/2 of 224), it should be mapped into a finer-resolution level (say,

k = 3).

We attach predictor heads (in Fast R-CNN the heads are class-specific classi-

fiers and bounding box regressors) to all RoIs of all levels. Again, the heads all

share parameters, regardless of their levels. In [48], a ResNet’s conv5 layers (a

9-layer deep subnetwork) are adopted as the head on top of the conv4 features,

but our method has already harnessed conv5 to construct the feature pyramid.
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So unlike [48], we simply adopt RoI pooling to extract 7×7 features, and attach

two hidden 1,024-d fully-connected (fc) layers (each followed by ReLU) before

the final classification and bounding box regression layers. These layers are ran-

domly initialized, as there are no pre-trained fc layers available in ResNets. Note

that compared to the standard conv5 head, our 2-fc MLP head is lighter weight

and faster.

Based on these adaptations, we can train and test Fast R-CNN on top of the

feature pyramid. Implementation details are given in the experimental section.

4.5 Experiments on Object Detection

We perform experiments on the 80 category COCO detection dataset [69].

We train using the union of 80k train images and a 35k subset of val im-

ages (trainval35k [6]), and report ablations on a 5k subset of val images

(minival). We also report final results on the standard test set (test-std)

[69] which has no disclosed labels.

As is common practice [39], all network backbones are pre-trained on the Im-

ageNet1k classification set [97] and then fine-tuned on the detection dataset. We

use the pre-trained ResNet-50 and ResNet-101 models that are publicly avail-

able.2 Our code is a reimplementation of py-faster-rcnn3 using Caffe2.4

2https://github.com/kaiminghe/deep-residual-networks
3https://github.com/rbgirshick/py-faster-rcnn
4https://github.com/caffe2/caffe2
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4.5.1 Region Proposal with RPN

We evaluate the COCO-style Average Recall (AR) and AR on small, medium,

and large objects (ARs, ARm, and ARl) following the definitions in [69]. We

report results for 100 and 1000 proposals per images (AR100 and AR1k).

Implementation details. All architectures in Table 4.1 are trained end-to-end.

The input image is resized such that its shorter side has 800 pixels. We adopt

synchronized SGD training on 8 GPUs. A mini-batch involves 2 images per

GPU and 256 anchors per image. We use a weight decay of 0.0001 and a mo-

mentum of 0.9. The learning rate is 0.02 for the first 30k mini-batches and 0.002

for the next 10k. For all RPN experiments (including baselines), we include the

anchor boxes that are outside the image for training, which is unlike [92] where

these anchor boxes are ignored. Other implementation details are as in [92].

Training RPN with FPN on 8 GPUs takes about 8 hours on COCO.

Ablation Experiments

Comparisons with baselines. For fair comparisons with original RPNs [92],

we run two baselines (Table 4.1(a, b)) using the single-scale map of C4 (the same

as [48]) or C5, both using the same hyper-parameters as ours, including using

5 scale anchors of {322, 642, 1282, 2562, 5122}. Table 4.1 (b) shows no advantage

over (a), indicating that a single higher-level feature map is not enough because

there is a trade-off between coarser resolutions and stronger semantics.

Placing FPN in RPN improves AR1k to 56.3 (Table 4.1 (c)), which is 8.0 points

increase over the single-scale RPN baseline (Table 4.1 (a)). In addition, the per-
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RPN feature # anchors lateral? top-
down?

AR100 AR1k AR1k
s AR1k

m AR1k
l

(a) baseline on conv4 C4 47k 36.1 48.3 32.0 58.7 62.2
(b) baseline on conv5 C5 12k 36.3 44.9 25.3 55.5 64.2
(c) FPN {Pk} 200k X X 44.0 56.3 44.9 63.4 66.2
Ablation experiments follow:
(d) bottom-up pyramid {Pk} 200k X 37.4 49.5 30.5 59.9 68.0
(e) top-down pyramid,
w/o lateral

{Pk} 200k X 34.5 46.1 26.5 57.4 64.7

(f) only finest level P2 750k X X 38.4 51.3 35.1 59.7 67.6

Table 4.1: Bounding box proposal results using RPN [92], evaluated on the
COCO minival set. All models are trained on trainval35k. The columns
“lateral” and “top-down” denote the presence of lateral and top-down connec-
tions, respectively. The column “feature” denotes the feature maps on which
the heads are attached. All results are based on ResNet-50 and share the same
hyper-parameters.

Fast R-CNN proposals feature head lateral? top-
down?

AP@0.5 AP APs APm APl

(a) baseline on conv4 RPN, {Pk} C4 conv5 54.7 31.9 15.7 36.5 45.5
(b) baseline on conv5 RPN, {Pk} C5 2fc 52.9 28.8 11.9 32.4 43.4
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8
Ablation experiments follow:
(d) bottom-up pyramid RPN, {Pk} {Pk} 2fc X 44.9 24.9 10.9 24.4 38.5
(e) top-down pyramid,
w/o lateral

RPN, {Pk} {Pk} 2fc X 54.0 31.3 13.3 35.2 45.3

(f) only finest level RPN, {Pk} P2 2fc X X 56.3 33.4 17.3 37.3 45.6

Table 4.2: Object detection results using Fast R-CNN [41] on a fixed set of propos-
als (RPN, {Pk}, Table 4.1(c)), evaluated on the COCO minival set. Models are
trained on the trainval35k set. All results are based on ResNet-50 and share
the same hyper-parameters.

Faster R-CNN proposals feature head lateral? top-
down?

AP@0.5 AP APs APm APl

(*) baseline [48]† RPN, C4 C4 conv5 47.3 26.3 - - -
(a) baseline on conv4 RPN, C4 C4 conv5 53.1 31.6 13.2 35.6 47.1
(b) baseline on conv5 RPN, C5 C5 2fc 51.7 28.0 9.6 31.9 43.1
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8

Table 4.3: Object detection results using Faster R-CNN [92] evaluated on the
COCO minival set. The backbone network for RPN are consistent with Fast R-CNN.
Models are trained on the trainval35k set and use ResNet-50. †Provided by
authors of [48].
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formance on small objects (AR1k
s ) is boosted by a large margin of 12.9 points.

Our pyramid representation greatly improves RPN’s robustness to object scale

variation.

How important is top-down enrichment? Table 4.1(d) shows the results of our

feature pyramid without the top-down pathway. With this modification, the 1×1

lateral connections followed by 3×3 convolutions are attached to the bottom-up

pyramid. This architecture simulates the effect of reusing the pyramidal feature

hierarchy (Fig. 4.1(b)).

The results in Table 4.1(d) are just on par with the RPN baseline and lag far

behind ours. We conjecture that this is because there are large semantic gaps

between different levels on the bottom-up pyramid (Fig. 4.1(b)), especially for

very deep ResNets. We have also evaluated a variant of Table 4.1(d) without

sharing the parameters of the heads, but observed similarly degraded perfor-

mance. This issue cannot be simply remedied by level-specific heads.

How important are lateral connections? Table 4.1(e) shows the ablation results

of a top-down feature pyramid without the 1×1 lateral connections. This top-

down pyramid has strong semantic features and fine resolutions. But we argue

that the locations of these features are not precise, because these maps have

been downsampled and upsampled several times. More precise locations of

features can be directly passed from the finer levels of the bottom-up maps via

the lateral connections to the top-down maps. As a results, FPN has an AR1k

score 10 points higher than Table 4.1(e).

How important are pyramid representations? Instead of resorting to pyramid

representations, one can attach the head to the highest-resolution, strongly se-
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mantic feature maps of P2 (i.e.,, the finest level in our pyramids). Similar to the

single-scale baselines, we assign all anchors to the P2 feature map. This variant

(Table 4.1(f)) is better than the baseline but inferior to our approach. RPN is a

sliding window detector with a fixed window size, so scanning over pyramid

levels can increase its robustness to scale variance.

In addition, we note that using P2 alone leads to more anchors (750k, Ta-

ble 4.1(f)) caused by its large spatial resolution. This result suggests that a larger

number of anchors is not sufficient in itself to improve accuracy.

4.5.2 Object Detection with Fast/Faster R-CNN

Next we investigate FPN for region-based (non-sliding window) detectors.

We evaluate object detection by the COCO-style Average Precision (AP) and

PASCAL-style AP (at a single IoU threshold of 0.5). We also report COCO AP

on objects of small, medium, and large sizes (namely, APs, APm, and APl) fol-

lowing the definitions in [69].

Implementation details. The input image is resized such that its shorter side

has 800 pixels. Synchronized SGD is used to train the model on 8 GPUs. Each

mini-batch involves 2 image per GPU and 512 RoIs per image. We use a weight

decay of 0.0001 and a momentum of 0.9. The learning rate is 0.02 for the first 60k

mini-batches and 0.002 for the next 20k. We use 2000 RoIs per image for training

and 1000 for testing. Training Fast R-CNN with FPN takes about 10 hours on

the COCO dataset.
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image test-dev test-std

method backbone competition pyramid AP@.5 AP APs APm APl AP@.5 AP APs APm APl

ours ResNet-101 - 59.1 36.2 18.2 39.0 48.2 58.5 35.8 17.5 38.7 47.8
Competition-winning single-model results follow:
G-RMI† Inception-ResNet 2016 - 34.7 - - - - - - - -
AttractioNet‡ [37] VGG16 + Wide ResNet

§ 2016 X 53.4 35.7 15.6 38.0 52.7 52.9 35.3 14.7 37.6 51.9
Faster R-CNN [48] ResNet-101 2015 X 55.7 34.9 15.6 38.7 50.9 - - - - -
Multipath [126] VGG-16 2015 49.6 31.5 - - - - - - - -
ION‡ [6] VGG-16 2015 53.4 31.2 12.8 32.9 45.2 52.9 30.7 11.8 32.8 44.8

Table 4.4: Comparisons of single-model results on the COCO detec-
tion benchmark. Some results were not available on the test-std
set, so we also include the test-dev results (and for Multipath [126]
on minival). †: http://image-net.org/challenges/talks/2016/
GRMI-COCO-slidedeck.pdf. ‡: http://mscoco.org/dataset/\#
detections-leaderboard. §: This entry of AttractioNet [37] adopts VGG-
16 for proposals and Wide ResNet [125] for object detection, so is not strictly a
single-model result.

Fast R-CNN (on fixed proposals)

To better investigate FPN’s effects on the region-based detector alone, we con-

duct ablations of Fast R-CNN on a fixed set of proposals. We choose to freeze

the proposals as computed by RPN on FPN (Table 4.1(c)), because it has good

performance on small objects that are to be recognized by the detector. For sim-

plicity we do not share features between Fast R-CNN and RPN, except when

specified.

As a ResNet-based Fast R-CNN baseline, following [48], we adopt RoI pool-

ing with an output size of 14×14 and attach all conv5 layers as the hidden layers

of the head. This gives an AP of 31.9 in Table 4.2(a). Table 4.2(b) is a baseline

exploiting an MLP head with 2 hidden fc layers, similar to the head in our ar-

chitecture. It gets an AP of 28.8, indicating that the 2-fc head does not give us

any orthogonal advantage over the baseline in Table 4.2(a).
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Table 4.2(c) shows the results of our FPN in Fast R-CNN. Comparing with

the baseline in Table 4.2(a), our method improves AP by 2.0 points and small

object AP by 2.1 points. Comparing with the baseline that also adopts a 2fc

head (Table 4.2(b)), our method improves AP by 5.1 points.5 These comparisons

indicate that our feature pyramid is superior to single-scale features for a region-

based object detector.

Table 4.2(d) and (e) show that removing top-down connections or removing

lateral connections leads to inferior results, similar to what we have observed

in the above subsection for RPN. It is noteworthy that removing top-down con-

nections (Table 4.2(d)) significantly degrades the accuracy, suggesting that Fast

R-CNN suffers from using the low-level features at the high-resolution maps.

In Table 4.2(f), we adopt Fast R-CNN on the single finest scale feature map of

P2. Its result (33.4 AP) is marginally worse than that of using all pyramid levels

(33.9 AP, Table 4.2(c)). We argue that this is because RoI pooling is a warping-

like operation, which is less sensitive to the region’s scales. Despite the good

accuracy of this variant, it is based on the RPN proposals of {Pk} and has thus

already benefited from the pyramid representation.

Faster R-CNN (on consistent proposals)

In the above we used a fixed set of proposals to investigate the detectors. But in a

Faster R-CNN system [92], the RPN and Fast R-CNN must use the same network

backbone in order to make feature sharing possible. Table 4.3 shows the com-

parisons between our method and two baselines, all using consistent backbone

5We expect a stronger architecture of the head [93] will improve upon our results, which is
beyond the focus of this paper.
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ResNet-50 ResNet-101
share features? AP@0.5 AP AP@0.5 AP

no 56.9 33.9 58.0 35.0
yes 57.2 34.3 58.2 35.2

Table 4.5: More object detection results using Faster R-CNN and our FPNs, eval-
uated on minival. Sharing features increases train time by 1.5× (using 4-step
training [92]), but reduces test time.

architectures for RPN and Fast R-CNN. Table 4.3(a) shows our reproduction of

the baseline Faster R-CNN system as described in [48]. Under controlled set-

tings, our FPN (Table 4.3(c)) is better than this strong baseline by 2.3 points AP

and 3.8 points AP@0.5.

Note that Table 4.3(a) and (b) are baselines that are much stronger than the

baseline provided by He et al.[48] in Table 4.3(*). We find the following imple-

mentations contribute to the gap: (i) We use an image scale of 800 pixels instead

of 600 in [41, 48]; (ii) We train with 512 RoIs per image which accelerate conver-

gence, in contrast to 64 RoIs in [41, 48]; (iii) We use 5 scale anchors instead of 4

in [48] (adding 322); (iv) At test time we use 1000 proposals per image instead of

300 in [48]. So comparing with He et al.’s ResNet-50 Faster R-CNN baseline in

Table 4.3(*), our method improves AP by 7.6 points and AP@0.5 by 9.6 points.

Sharing features. In the above, for simplicity we do not share the features be-

tween RPN and Fast R-CNN. In Table 4.5, we evaluate sharing features follow-

ing the 4-step training described in [92]. Similar to [92], we find that sharing

features improves accuracy by a small margin. Feature sharing also reduces the

testing time.

Running time. With feature sharing, our FPN-based Faster R-CNN system has

inference time of 0.148 seconds per image on a single NVIDIA M40 GPU for
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ResNet-50, and 0.172 seconds for ResNet-101.6 As a comparison, the single-scale

ResNet-50 baseline in Table 4.3(a) runs at 0.32 seconds. Our method introduces

small extra cost by the extra layers in the FPN, but has a lighter weight head.

Overall our system is faster than the ResNet-based Faster R-CNN counterpart.

We believe the efficiency and simplicity of our method will benefit future re-

search and applications.

Comparing with COCO Competition Winners

We find that our ResNet-101 model in Table 4.5 is not sufficiently trained with

the default learning rate schedule. So we increase the number of mini-batches

by 2× at each learning rate when training the Fast R-CNN step. This increases

AP on minival to 35.6, without sharing features. This model is the one we

submitted to the COCO detection leaderboard, shown in Table 4.4. We have

not evaluated its feature-sharing version due to limited time, which should be

slightly better as implied by Table 4.5.

Table 4.4 compares our method with the single-model results of the COCO

competition winners, including the 2016 winner G-RMI and the 2015 winner

Faster R-CNN+++. Without adding bells and whistles, our single-model entry has

surpassed these strong, heavily engineered competitors. On the test-dev set,

our method increases over the existing best results by 0.5 points of AP (36.2

v.s.35.7) and 3.4 points of AP@0.5 (59.1 v.s.55.7). It is worth noting that our

method does not rely on image pyramids and only uses a single input image

scale, but still has outstanding AP on small-scale objects. This could only be

achieved by high-resolution image inputs with previous methods.

6These runtimes are updated from an earlier version of this paper.
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Moreover, our method does not exploit many popular improvements, such

as iterative regression [36], hard negative mining [107], context modeling [48],

stronger data augmentation [71], etc.. These improvements are complementary

to FPNs and should boost accuracy further.

Recently, FPN has enabled new top results in all tracks of the COCO compe-

tition, including detection, instance segmentation, and keypoint estimation. See

[46] for details.

4.6 Extensions: Segmentation Proposals

5x5

5x5

5x5

160x160 [128x128]

80x80 [64x64]

320x320 [256x256]
14x14

14x14

14x14

Figure 4.4: FPN for object segment proposals. The feature pyramid is con-
structed with identical structure as for object detection. We apply a small MLP
on 5x5 windows to generate dense object segments with output dimension of
14x14. Shown in orange are the size of the image regions the mask corresponds
to for each pyramid level (levels P3−5 are shown here). Both the correspond-
ing image region size (light orange) and canonical object size (dark orange) are
shown. Half octaves are handled by an MLP on 7x7 windows (7 ≈ 5

√
2), not

shown here. Details are in the appendix.

Our method is a generic pyramid representation and can be used in appli-

cations other than object detection. In this section we use FPNs to generate seg-

mentation proposals, following the DeepMask/SharpMask framework [84, 85].

DeepMask/SharpMask were trained on image crops for predicting instance
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segments and object/non-object scores. At inference time, these models are run

convolutionally to generate dense proposals in an image. To generate segments

at multiple scales, image pyramids are necessary [84, 85].

It is easy to adapt FPN to generate mask proposals. We use a fully convolu-

tional setup for both training and inference. We construct our feature pyramid

as in Sec. 4.5.1 and set d = 128. On top of each level of the feature pyramid, we

apply a small 5x5 MLP to predict 14x14 masks and object scores in a fully con-

volutional fashion, see Fig. 4.4. Additionally, motivated by the use of 2 scales

per octave in the image pyramid of [84, 85], we use a second MLP of input size

7x7 to handle half octaves. The two MLPs play a similar role as anchors in RPN.

The architecture is trained end-to-end; full implementation details are given in

the appendix.

image pyramid AR ARs ARm ARl time (s)
DeepMask [84] X 37.1 15.8 50.1 54.9 0.49
SharpMask [85] X 39.8 17.4 53.1 59.1 0.77
InstanceFCN [13] X 39.2 – – – 1.50†

FPN Mask Results:
single MLP [5x5] 43.4 32.5 49.2 53.7 0.15
single MLP [7x7] 43.5 30.0 49.6 57.8 0.19
dual MLP [5x5, 7x7] 45.7 31.9 51.5 60.8 0.24
+ 2x mask resolution 46.7 31.7 53.1 63.2 0.25
+ 2x train schedule 48.1 32.6 54.2 65.6 0.25

Table 4.6: Instance segmentation proposals evaluated on the first 5k COCO
val images. All models are trained on the train set. DeepMask, Sharp-
Mask, and FPN use ResNet-50 while InstanceFCN uses VGG-16. DeepMask
and SharpMask performance is computed with models available from https:
//github.com/facebookresearch/deepmask (both are the ‘zoom’ vari-
ants). †Runtimes are measured on an NVIDIA M40 GPU, except the Instance-
FCN timing which is based on the slower K40.
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4.6.1 Segmentation Proposal Results

Results are shown in Table 4.6. We report segment AR and segment AR on

small, medium, and large objects, always for 1000 proposals. Our baseline FPN

model with a single 5x5 MLP achieves an AR of 43.4. Switching to a slightly

larger 7x7 MLP leaves accuracy largely unchanged. Using both MLPs together

increases accuracy to 45.7 AR. Increasing mask output size from 14x14 to 28x28

increases AR another point (larger sizes begin to degrade accuracy). Finally,

doubling the training iterations increases AR to 48.1.

We also report comparisons to DeepMask [84], SharpMask [85], and In-

stanceFCN [13], the previous state of the art methods in mask proposal gen-

eration. We outperform the accuracy of these approaches by over 8.3 points AR.

In particular, we nearly double the accuracy on small objects.

Existing mask proposal methods [84, 85, 13] are based on densely sampled

image pyramids (e.g.,, scaled by 2{−2:0.5:1} in [84, 85]), making them computa-

tionally expensive. Our approach, based on FPNs, is substantially faster (our

models run at 6 to 7 FPS). These results demonstrate that our model is a generic

feature extractor and can replace image pyramids for other multi-scale detection

problems.

4.7 Conclusion

We have presented a clean and simple framework for building feature pyra-

mids inside ConvNets. Our method shows significant improvements over sev-

eral strong baselines and competition winners. Thus, it provides a practical
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solution for research and applications of feature pyramids, without the need of

computing image pyramids. Finally, our study suggests that despite the strong

representational power of deep ConvNets and their implicit robustness to scale

variation, it is still critical to explicitly address multi-scale problems using pyra-

mid representations.
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CHAPTER 5

FOCAL LOSS FOR DENSE OBJECT DETECTION

5.1 Introduction

Current state-of-the-art object detectors are based on a two-stage, proposal-

driven mechanism. As popularized in the R-CNN framework [39], the first

stage generates a sparse set of candidate object locations and the second stage

classifies each candidate location as one of the foreground classes or as back-

ground using a convolutional neural network. Through a sequence of advances

[41, 92, 67, 46], this two-stage framework consistently achieves top accuracy on

the challenging COCO benchmark [69].

Despite the success of two-stage detectors, a natural question to ask is: could

a simple one-stage detector achieve similar accuracy? One stage detectors are

applied over a regular, dense sampling of object locations, scales, and aspect

ratios. Recent work on one-stage detectors, such as YOLO [89, 90] and SSD

[71, 34], demonstrates promising results, yielding faster detectors with accuracy

within 10-40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-stage object de-

tector that, for the first time, matches the state-of-the-art COCO AP of more

complex two-stage detectors, such as the Feature Pyramid Network (FPN) [67]

or Mask R-CNN [46] variants of Faster R-CNN [92]. To achieve this result, we

identify class imbalance during training as the main obstacle impeding one-

stage detector from achieving state-of-the-art accuracy and propose a new loss

function that eliminates this barrier.
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Figure 5.1: We propose a novel loss we term the Focal Loss that adds a factor
(1 − pgt)γ to the standard cross entropy criterion. Setting γ > 0 reduces the
relative loss for well-classified examples (pgt > .5), putting more focus on hard,
misclassified examples. As our experiments will demonstrate, the proposed
focal loss enables training highly accurate dense object detectors in the presence
of vast numbers of easy background examples.

Class imbalance is addressed in R-CNN-like detectors by a two-stage cas-

cade and sampling heuristics. The proposal stage (e.g.,, Selective Search [118],

EdgeBoxes [131], DeepMask [84, 85], RPN [92]) rapidly narrows down the num-

ber of candidate object locations to a small number (e.g.,, 1-2k), filtering out

most background samples. In the second classification stage, sampling heuris-

tics, such as a fixed foreground-to-background ratio (1:3), or online hard ex-

ample mining (OHEM) [107], are performed to maintain a manageable balance

between foreground and background.

In contrast, a one-stage detector must process a much larger set of candi-

date object locations regularly sampled across an image. In practice this often

amounts to enumerating ∼100k locations that densely cover spatial positions,
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scales, and aspect ratios. While similar sampling heuristics may also be ap-

plied, they are inefficient as the training procedure is still dominated by easily

classified background examples. This inefficiency is a classic problem in ob-

ject detection that is typically addressed via techniques such as bootstrapping

[112, 95] or hard example mining [120, 32, 107].

In this paper, we propose a new loss function that acts as a more effective

alternative to previous approaches for dealing with class imbalance. The loss

function is a dynamically scaled cross entropy loss, where the scaling factor

decays to zero as confidence in the correct class increases, see Figure 5.1. In-

tuitively, this scaling factor can automatically down-weight the contribution

of easy examples during training and rapidly focus the model on hard exam-

ples. Experiments show that our proposed Focal Loss enables us to train a high-

accuracy, one-stage detector that significantly outperforms the alternatives of

training with the sampling heuristics or hard example mining, the previous

state-of-the-art techniques for training one-stage detectors. Finally, we note that

the exact form of the focal loss is not crucial, and we show other instantiations

can achieve similar results.

To demonstrate the effectiveness of the proposed focal loss, we design a sim-

ple and intuitive one-stage object detector called RetinaNet, named for its dense

sampling of object locations in an input image. Its design features an efficient

in-network feature pyramid and use of anchor boxes. It draws on a variety of

recent ideas from [71, 26, 92, 67]. RetinaNet is efficient and accurate; our best

model, based on a ResNet-101-FPN backbone, achieves a COCO test-dev AP

of 38.1 while running at 5 fps, surpassing the previously best published single-

model results from both one and two-stage detectors (see Figure 5.4).
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5.2 Related Work

Classic Object Detectors: The sliding-window paradigm, in which a classifier

is applied on a dense image grid, has a long and rich history. One of the earliest

successes is the classic work of LeCun et al.who applied convolutional neural

networks to handwritten digit recognition [65, 119]. Viola and Jones [120] used

boosted object detectors for face detection, leading to widespread adoption of

such models. The introduction of HOG [17] and integral channel features [22]

gave rise to effective methods for pedestrian detection. DPMs [32] helped ex-

tend dense detectors to more general object categories and had top results on

PASCAL [27] for many years. While the sliding-window approach was the lead-

ing detection paradigm in classic computer vision, with the resurgence of deep

learning [61], two-stage detectors, described next, quickly came to dominate

object detection.

Two-stage Detectors: The dominant paradigm in modern object detection is

based on a two-stage approach. As pioneered in the Selective Search work [118],

the first stage generates a sparse set of candidate proposals that should contain

all objects while filtering out the majority of negative locations, and the second

stage classifies the proposals into foreground classes / background. R-CNN

[39] upgraded the second-stage classifier to a convolutional network yielding

large gains in accuracy and ushering in the modern era of object detection. R-

CNN was improved over the years, both in terms of speed [47, 41] and by using

learned object proposals [26, 84, 92] in place of bottom-up segmentation propos-

als. Region Proposal Networks (RPN) integrated proposal generation with the

second-stage classifier into a single convolution network, forming the Faster

R-CNN framework [92]. Numerous extensions to this framework have been
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proposed, e.g.,[67, 107, 108, 48, 46] among others.

One-stage Detectors: OverFeat [104] was one of the first modern one-stage

object detector based on deep networks. More recently SSD [71, 34] and

YOLO [89, 90] have renewed interest in one-stage methods. These detectors

have been tuned for speed but their accuracy trails that of two-stage methods.

SSD has a 10-20% lower AP, while YOLO focuses on an even more extreme

speed/accuracy trade-off. See Figure 5.4. In contrast, the aim of this work is

to understand if one-stage detectors can match or surpass the accuracy of two-

stage detectors while running at a similar speed. This is motivated by recent

work showing that two-stage detectors can be made fast by simply reducing

input image resolution and the number of proposals [55].

The design of our RetinaNet detector shares many similarities with previous

dense detectors, in particular the concept of ‘anchors’ introduced by RPN [92]

and use of features pyramids as in SSD [71] and FPN [67]. We emphasize that

our simple detector achieves top results not based on innovations in network

design but due to our novel loss.

Class Imbalance: Both classic one-stage object detection methods, like boosted

detectors [120, 22] and DPMs [32], and more recent methods, like SSD [71], face

a massive class imbalance during training. These detectors sample 104-105 can-

didate locations per image but only a few locations contain objects. This im-

balance causes two problems: (1) training is inefficient as most locations are

easy negatives that contribute no useful learning signal; (2) en masse, the easy

negatives can overwhelm training and lead to degenerate models. A common

solution is to perform some form of hard negative mining [112, 120, 32, 107, 71]

that samples hard examples during training. In contrast, we show that our pro-
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posed focal loss naturally handles the class imbalance faced by a one-stage de-

tector and allows us to efficiently train on all examples without sampling and

without easy negatives overwhelming the loss and computed gradients.

Robust Estimation: There has been much interest in designing robust loss func-

tions (e.g.,, Huber loss [45]) that reduce the contribution of outliers by down-

weighting the loss of examples with large errors (hard examples). In contrast,

rather than addressing outliers, our focal loss is designed to address class im-

balance by down-weighting inliers (easy examples) such that their contribution

to the total loss is small even if their number is large. In other words, the focal

loss perform the opposite role of a robust loss: it focuses training on a sparse set

of hard examples.

5.3 Focal Loss

The Focal Loss is designed to address the one-stage object detection scenario

in which there is an extreme imbalance between foreground and background

classes during training (e.g.,, 1:1000). We introduce the focal loss starting from

the cross entropy (CE) loss for binary classification:

CE(p, y) = −y log(p) − (1 − y) log(1 − p). (5.1)

In the above y ∈ {0, 1} specifies the ground-truth class and p ∈ [0, 1] is the

model’s estimated probability for class with label y = 1. For notational con-

venience, we introduce pgt:

pgt =


p if y = 1

1 − p otherwise,
(5.2)
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and rewrite CE(p, y) = CE(pgt) = − log(pgt).

The CE loss can be seen as the blue (top) curve in Figure 5.1. One notable

property of this loss, which can be easily seen in its plot, is that even exam-

ples that are easily classified (pgt � .5) incur a loss with non-trivial magnitude.

When summed over a large number of easy examples, these small loss values

can overwhelm the rare class.

5.3.1 Balanced Cross Entropy

A common method for addressing class imbalance is to introduce a weighting

factor α ∈ [0, 1] for class 1 and 1−α for class 0. In practice αmay be set by inverse

class frequency or treated as a hyperparameter to set by cross validation. For

notational convenience, we define αgt analogously to how we defined pgt. We

write the α-balanced CE loss as:

CE(pgt) = −αgt log(pgt). (5.3)

This loss is a simple extension to CE that we consider as an experimental base-

line for our proposed focal loss.

5.3.2 Focal Loss Definition

As our experiments will show, the severe foreground-background class imbal-

ance encountered during training of dense detectors overwhelms the cross en-

tropy loss. Easily classified negatives comprise the majority of the loss and dom-

inate the computed gradient. While α provides one way to adjust the cross en-
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tropy, it is not sufficient. Instead, we propose to reshape the loss function to

down-weight easy examples and thus focus training on hard negatives.

More formally, we propose to add a modulating factor (1 − pgt)γ to the cross

entropy loss, with tunable focusing parameter γ ≥ 0. We define the focal loss as:

FL(pgt) = −(1 − pgt)γ log(pgt). (5.4)

The focal loss is visualized for several values of γ ∈ [0, 5] in Figure 5.1. We

note two properties of the focal loss. (1) When an example is misclassified and

pgt is small, the modulating factor is near 1 and the loss is unaffected. As pgt → 1,

the factor goes to 0 and the loss for well-classified examples is down-weighted.

(2) The focusing parameter γ smoothly adjusts the rate at which easy examples

are down-weighted. When γ = 0, FL is equivalent to CE, and as γ is increased

the effect of the modulating factor is likewise increased (we found γ = 2 to work

best in our experiments).

Intuitively, the modulating factor reduces the loss contribution from easy

examples and extends the range in which an example receives low loss. For

instance, with γ = 2, an example classified with pgt = 0.9 would have 100x

lower loss compared with CE and with pgt ≈ 0.968 it would have 1000x lower

loss. This in turn increases the importance of correcting misclassified examples

(whose loss is scaled down by at most 4x for pgt ≤ .5 and γ = 2).

In practice we use an α-balanced variant of the focal loss:

FL(pgt) = −αgt(1 − pgt)γ log(pgt). (5.5)

We adopt this form in our experiments as it yields slightly improved accuracy

over the non-α-balanced form. Finally, we note that the implementation of the
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loss layer combines the sigmoid operation for computing p with the loss com-

putation, resulting in greater numerical stability.

While in our main experimental results we use the focal loss definition

above, its precise form is not crucial. In the appendix we consider alternate

instantiations of the focal loss and demonstrate that these can be equally effec-

tive.

5.3.3 Class Imbalance and Model Initialization

Binary classification models are by default initialized to have equal probability

of outputting either y = 0 or 1. Under such an initialization, in the presence of

class imbalance, the loss due to the frequent class can dominate total loss and

cause instability in early training. To counter this, we introduce the concept of a

‘prior’ for the value of p estimated by the model for the rare class (foreground)

at the start of training. We denote the prior by π and set it so that the model’s

estimated p for examples of the rare class is low, e.g.,0.01. We note that this is a

change in model initialization (see §5.4.2) and not of the loss function. We found

this to improve training stability for both the cross entropy and focal loss in the

case of heavy class imbalance.

5.3.4 Class Imbalance and Two-stage Detectors

Two-stage detectors are often trained with the cross entropy loss without use of

α-balancing or our proposed loss. Instead, they address class imbalance through

two mechanisms: (1) a two-stage cascade and (2) biased minibatch sampling.
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The first cascade stage is an object proposal mechanism [118, 84, 92] that re-

duces the nearly infinite set of possible object locations down to one or two

thousand. Importantly, the selected proposals are not random, but are likely

to correspond to true object locations, which removes the vast majority of easy

negatives. When training the second stage, biased sampling is typically used to

construct minibatches that contain, for instance, a 1:3 ratio of positive to neg-

ative examples. This ratio is like an implicit α-balancing factor that is imple-

mented via sampling. Our proposed focal loss is designed to address these

mechanisms in a one-stage detection system directly via the loss function.

box
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box+class
 subnets

W×H
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W×H
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(a) ResNet (b) feature pyramid net (c) box & class subnets

Figure 5.2: The one-stage RetinaNet network architecture uses a Feature Pyra-
mid Network (FPN) [67] (left side) backbone to generate a rich, multi-scale con-
volutional feature pyramid. To this backbone RetinaNet attaches two subnet-
works (right side), one for classifying anchor boxes and one for regressing from
anchor boxes to ground-truth object boxes. The network design is intentionally
simple and intuitive, which enables this work to focus on a novel loss function
that eliminates the accuracy gap between our one-stage detector and state-of-
the-art two-stage detectors like Faster R-CNN with FPN [67].

5.4 RetinaNet Detector

RetinaNet is a single, unified network composed of a backbone network and two

task-specific subnetworks. The backbone is responsible for computing a convo-

lutional feature map over an entire input image and is an off-the-self convo-

lutional network. The first subnet performs convolutional object classification
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on the backbone’s output; the second subnet performs convolutional bound-

ing box regression. The two subnetworks feature a simple design that we pro-

pose specifically for one-stage, dense detection (see Figure 5.2). While there are

many possible choices for the details of these components, most of the design

parameters are not particularly sensitive to exact values. We show the effect of

alternatives with lesion and sensitivity studies in §5.5.1.

Backbone: We adopt the Feature Pyramid Network (FPN) from [67] as the

backbone convolutional network used in our experiments. In brief, FPN aug-

ments a standard convolutional network with a top-down pathway and lat-

eral connections so the network efficiently constructs a rich, multi-scale feature

pyramid from a single resolution input image (Figure 5.2 (a+b)). FPN improves

dense, multi-scale predictions from fully convolutional networks (FCN) [73] as

demonstrated by its application to RPN and convolutional DeepMask-style [84]

mask proposal generation.

Following [67], we refer to the multi-scale feature maps output by the back-

bone as Pl, where l indicates the pyramid level (e.g.,, P2, P3, . . .). In our experi-

ments we build FPN on top of the ResNet-50 and ResNet-101 architectures [48]

and note two minor changes compared to [67]: (1) rather than computing P6 by

a 2x subsampling of P5, we instead apply a 3x3 / stride 2 conv layer to C5 (the

output of the final residual block in ResNet-50/101); (2) we construct an addi-

tional even coarser pyramid level, P7, by applying ReLU followed by a 3x3 /

stride 2 conv layer to P6. The number of filters in these new conv layers is set

so P6 and P7 have the same number of channels as the other FPN levels. The

addition of P7 improves large object AP while introducing minimal extra com-

putation. While many design choices are not critical, we emphasize the use of
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an FPN-like backbone is; preliminary experiments using features from a single

network level showed a substantially lower AP.

Anchors: We use translation-invariant anchor boxes as described for the FPN

variant of RPN in [67], aside from a two minor differences. First, our model

places anchors from P3 onwards, instead of P2 as in [67] (and therefore we do

not compute P2). This choice reduces computation time, since P2 has roughly 3x

as many spatial locations as P3 to P7 combined. Starting anchors from P3 increases

the finest anchor stride from 4 to 8 pixels, which we found does not significantly

reduce AP. Second, on each pyramid level we use three anchor aspect ratios, as

in [67], but unlike [67] we use three anchor scales spaced a factor of 21/3 apart on

each level. These intermediate scales provide denser coverage and improve AP.

Our anchors cover the scale range 32 - 813 pixels with respect to the network’s

input image.

Object Classification Subnet: During inference, for each anchor the model out-

puts K binomial distributions (each a probability between 0 and 1) for each of

the K object classes. These predictions are the output of a specially designed

object classification subnet that is a small FCN attached to each FPN level (P3 to

P7). Parameters of this subnet are shared across all pyramid levels. The classifi-

cation subnet has a simple design: taking an input feature map (e.g.,, P4) with C

channels, the subnet applies four 3x3 conv layers, each with C filters and each

followed by ReLU activations. A final 3x3 conv layer with AK filters, followed

by sigmoid activations, is used to output the AK binomial predictions, where A

is the number of anchors co-located at each spatial position (see Figure 5.2 (c)

bottom). Typical values used in our experiments are C = 256 and A = 9.

In contrast to RPN, our object classification subnet is deeper, uses only 3x3
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convs, and is not shared with the box regression subnet (described next). We

found these higher-level design decisions to be more important than specific

values of hyperparameters.

Box Regression Subnet: In parallel with the object classification subnet, we at-

tach another small FCN to each FPN level for the purpose of regressing the

geometric transformation from each anchor to a nearby ground-truth object, if

one exists. The design of the box regression subnet is identical to the classifica-

tion subnet with the exception that it terminates in 4A linear outputs per spatial

location (see Figure 5.2 (c) top). For each of the A co-located anchors, these 4

outputs predict the relative shift in anchor box position and log scale needed

to reconstruct a ground-truth box from the anchor. We use the standard pa-

rameterization from R-CNN, Fast R-CNN, and RPN [39]. We note that unlike

most recent work employing bounding box regressors, we use a class-agnostic

regressor which uses fewer parameters and we found it to work about as well

as a class-aware box regressor in practice.

Inference: The RetinaNet network forms single FCN comprised of a ResNet-

FPN backbone, an object classification subnet, and a box regression subnet. As

such, inference is performed by simply forwarding a test image through the

network. To improve inference speed, we only decode the box predictions from

the top-scoring 1k predictions, per FPN level, after thresholding detector confi-

dence at 0.05. Finally, the top predictions from all levels are merged and non-

maximum suppression with a threshold of 0.5 is applied to yield the final detec-

tions.
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5.4.1 Initialization

We experiment with ResNet-50-FPN and ResNet-101-FPN backbones. The un-

derlying RN-50 and RN-101 models are pre-trained on ImageNet1k; we use the

models released by [48]. New layers added for FPN are initialized as described

in [67]. The new conv layers in the RetinaNet subnets are initialized with bias

b = 0 and a Gaussian weight fill with σ = 0.01, with one exception: for the fi-

nal conv layer of the object classification subnet, we set the bias initialization to

b = − log((1−π)/π), where π (set to 0.01 in most experiments) specifies that at the

start of training every anchors should be labeled as background with a confi-

dence of approximately 1 − π. As explained in §5.4.1, this initialization prevents

the large number of background anchors from generating a huge, destabiliz-

ing loss value at the very start of training. The object classification subnet and

the box regression subnet, though sharing a common structure, use separate

parameters unless otherwise stated.

5.4.2 Training

Focal Loss: We use the focal loss introduced in this paper as the loss on the

output of the classification subnet. We find that γ = 2 works well in practice

and the RetinaNet is relatively robust to γ ∈ [0.5, 5]. We emphasize that when

training RetinaNet, the focal loss is applied to all ∼100k anchors in each sampled

image. This stands in contrast to standard methods that use heuristic sampling

(RPN) or hard example mining (OHEM, SSD) to select a limited set example

anchors (e.g.,, 256) for each minibatch image. We also note that α also has a

stable range, but it interacts with γmaking it necessary to select the two together
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α AP AP50 AP75

.10 0.0 0.0 0.0

.25 10.8 16.0 11.7

.50 30.2 46.7 32.8

.75 31.1 49.4 33.0

.90 30.8 49.7 32.3

.99 28.7 47.4 29.9
.999 25.1 41.7 26.1

(a) Varying α for CE loss
(γ = 0)

γ α AP AP50 AP75

0 .75 31.1 49.4 33.0
0.1 .75 31.4 49.9 33.1
0.2 .75 31.9 50.7 33.4
0.5 .50 32.9 51.7 35.2
1.0 .25 33.7 52.0 36.2
2.0 .25 34.0 52.5 36.5
5.0 .25 32.2 49.6 34.8

(b) Varying anchor scales
and aspects

#sc #ar AP AP50 AP75

1 1 30.3 49.0 31.8
2 1 31.9 50.0 34.0
3 1 31.8 49.4 33.7
1 3 32.4 52.3 33.9
2 3 34.2 53.1 36.5
3 3 34.0 52.5 36.5
4 3 33.8 52.1 36.2

(c) Varying γ for FL (w.
optimal α)

method
batch nms

AP AP50 AP75size thr
OHEM 128 .7 31.1 47.2 33.2
OHEM 256 .7 31.8 48.8 33.9
OHEM 512 .7 30.6 47.0 32.6
OHEM 128 .5 32.8 50.3 35.1
OHEM 256 .5 31.0 47.4 33.0
OHEM 512 .5 27.6 42.0 29.2

OHEM 1:3 128 .5 31.1 47.2 33.2
OHEM 1:3 256 .5 28.3 42.4 30.3
OHEM 1:3 512 .5 24.0 35.5 25.8

FL n/a n/a 36.0 54.9 38.7

(d) FL v.s.OHEM baselines (with ResNet-101-FPN)
model AP AP50 AP75 APS APM APL time

RN50-400 30.5 47.8 32.7 11.2 33.8 46.1 64
RN50-500 32.5 50.9 34.8 13.9 35.8 46.7 72
RN50-600 34.3 53.2 36.9 16.2 37.4 47.4 98
RN50-700 35.1 54.2 37.7 18.0 39.3 46.4 121
RN50-800 35.7 55.0 38.5 18.9 38.9 46.3 153

RN101-400 31.9 49.5 34.1 11.6 35.8 48.5 81
RN101-500 34.4 53.1 36.8 14.7 38.5 49.1 90
RN101-600 36.0 55.2 38.7 17.4 39.6 49.7 122
RN101-700 37.1 56.6 39.8 19.1 40.6 49.4 154
RN101-800 37.8 57.5 40.8 20.2 41.1 49.2 198

(e) Accuracy/speed trade-off RetinaNet (on test-dev)

Table 5.1: Ablation and sensitivity experiments for RetinaNet. All models are
trained on trainval35k and tested on minival unless noted. If not specified,
default values are: γ = 2; anchors for 3 scales and 3 aspect ratios; ResNet-
50-FPN backbone; and a 600 pixel train and test image scale. We compare
RetinaNet trained with our proposed focal loss to strong baselines including
α-balanced cross entropy loss (a) and two variants of online hard example min-
ing (OHEM) [107, 71] (d). We find that the focal loss strongly outperforms the
best results from either approach by about 3 points AP. Table (e) illustrates the
accuracy/speed trade-off provided by RetinaNet on test-dev.
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(see Table 5.1a and Table 5.1c).

Implementation Details: Unless otherwise stated, we set the α-balancing factor

to 0.25 for the foreground class. The total focal loss for one image is computed

as the sum of the individual balanced anchor focal losses divided by the number

of anchors assigned to a ground-truth box. To improve numerical stability we

clip probabilities estimated by the model at a threshold τ, using pgt = max(pgt, τ),

prior to computing the focal loss. With a small value of τ = 0.00001 our model

achieves the same accuracy as with a larger value of τ = 0.01, however it will

occasionally diverge early in training. With the larger value, training is always

stable. We emphasize that good results are achieved with τ = 0.00001 and there-

fore clipping is not responsible for addressing the class imbalance problem.

Label Assignment: For each image, each anchor is assigned a length K vector

of classification targets and a 4-vector of box regression targets. We use the

assignment rule from RPN [92] but with adjusted thresholds for object detection

(RPN was optimized for proposal generation). Specifically, anchors are assigned

to ground-truth boxes using an intersection-over-union (iou) threshold of 0.5;

and to background if their iou is in [0, 0.4). As each anchor is assigned to at most

one ground-truth box, we set the corresponding entry in its length K label vector

to 1 and all other entries to 0. If an anchor is unassigned, which may happen

with overlap in [0.4, 0.5), then all labels entries are set to −1, which flags it as

an ignored example. Box regression targets are computed as the transformation

between each anchor and its assigned ground-truth box, or omitted (zero loss)

if there is no assignment, just as in RPN.
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Optimization: RetinaNet is trained with stochastic gradient descent (SGD). We

use synchronized SGD over 8 GPUs with a total of 16 images per minibatch

(2 images per GPU). Unless otherwise specified, all models are trained for 90k

iteration with an initial learning rate of 0.01, which is then divided by 10 at 60k

and again at 80k iterations. Weight decay of 0.0001 and momentum of 0.9 are

used. The training loss is the sum the focal loss and the standard smooth L1 loss

used for box regression [41]. Training time ranges between 10 and 35 hours for

the models in Table 5.1e.

5.5 Experiments

We present experimental results on the bounding box detection track of the chal-

lenging COCO benchmark [69]. For training, we follow common practice [6, 67]

and use the COCO trainval35k split (union of 80k images from train and a

random 35k subset of images from the 40k image val split). We report lesion

and sensitivity studies by evaluating on the minival split (the remaining 5k

images from val). For our main results, we report COCO AP on the test-dev

split, which has no public labels and requires use of the evaluation server. If ac-

cepted, we will post results on test-std to the leaderboard, as recommended.

5.5.1 Training Dense Detection

We run numerous experiments to analyze the behavior of the loss function for

dense detection along with various optimization strategies. For all experiments

we use depth 50 or 101 ResNets [48] with a Feature Pyramid Network (FPN) [67]
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Figure 5.3: Cumulative distribution functions of the normalized loss for posi-
tive and negative samples for different values of γ for a converged model. The
effect of changing γ on the distribution of the loss for positive examples is mi-
nor. For negatives, however, increasing γ heavily concentrates the loss on hard
examples, focusing nearly all attention away from easy negatives.

constructed on top. For all ablation studies we use an image scale of 600 pixels

for training and testing.

Network Initialization: Our first attempt to train RetinaNet uses standard

cross entropy (CE) loss without any modifications to the initialization or learn-

ing strategy. This fails quickly, with the network diverging during training.

However, simply initializing the last layer of our model such that the prior

probability of detecting an object is π = .01 (see §5.4.1) enables effective learn-

ing. Training RetinaNet with ResNet-50 and this initialization already yields a

respectable AP of 30.2 on COCO. Results are insensitive to the exact value of π

so we use π = .01 for all experiments.

Balanced Cross Entropy: Our next attempt to improve learning involved using

the α-balanced CE loss (CEα) described in §5.3.1. Results for various α are shown

in Table 5.1a. Setting α = .75 gives a gain of 0.9 points AP.

Focal Loss: Results using our proposed focal loss are shown in Table 5.1c. The

focal loss introduces one new hyperparameter, the closing rate of the gate γ,

that controls the strength of the gating mechanism. When γ = 0, our loss is

equivalent to the CE loss. As γ increases, the shape of the loss changes so that
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“easy” examples with low loss get further discounted, see Figure 5.1. FL shows

large gains over CE as γ is increased. With γ = 2, FL yields a 2.9 AP improvement

over the standard CE loss.

For the experiments in Table 5.1c, for a fair comparison we find the best α for

each γ. We observe that lower α’s are selected for higher γ’s (as easy negatives

are down-weighted, less emphasis needs to be placed on the positives). Over-

all, however, the benefit of changing γ is much larger, and indeed the best α’s

ranged in just [.25,.75] (we tested α ∈ [.01, .999]). We use γ = 2.0 with α = .25 for

all experiments but α = .5 works nearly as well (.4 AP lower).

Analysis of the Focal Loss: To understand the FL better, we analyze the em-

pirical distribution of the loss of a converged model. For this, we take take our

default ResNet-101 600 pixel model trained with γ = 2 (which achieves 36.0 AP).

We apply this model to a large number of random images and sample the pre-

dicted probability for ∼107 negative windows and ∼105 positive windows. Next,

separately for positives and negatives, we compute the FL for these samples,

and normalize the loss such that it sums to one. Given the normalized loss,

we can sort the loss from lowest to highest and plot its cumulative distribution

function (CDF) for both positive and negative samples and for different settings

for γ (even though model was trained w γ = 2).

Cumulative distribution functions for positive and negative samples are

shown in Figure 5.3. If we observe the positive samples, we see that the CDF

looks fairly similar for different values of γ. For example, approximately 20% of

the hardest positive samples account for roughly half of the positive loss, as γ

increases more of the loss gets concentrated in the top 20% of examples, but the

effect is minor.
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backbone AP AP50 AP75 APS APM APL

Two-stage methods
Faster R-CNN+++ [48] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [67] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [55] Inception-ResNet-v2 [115] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [108] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods
YOLOv2 [90] DarkNet-19 [90] 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [71, 34] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 [34] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet (ours) ResNet-101-FPN 38.1 57.9 41.2 20.1 41.3 49.8

Table 5.2: Object detection single-model results (bounding box AP), v.s.state-of-
the-art on COCO test-dev. We show results for our ResNet-101 model that
operates on 800 pixel images, trained for 50% longer than the same model from
Table 5.1e. Our model achieves top results, outperforming both one-stage and
two-stage models. For a detailed breakdown of speed versus accuracy see Table
5.1e and Figure 5.4.

The effect of γ on negative samples is dramatically different. For γ = 0, the

positive and negative CDFs are quite similar. However, as γ increases, substan-

tially more weight becomes concentrated on the hard negative examples. In

fact, with γ = 2 (our default setting), the vast majority of the loss comes from a

small fraction of samples. As can be seen, FL can effectively discount the effect

of easy negatives, focusing all attention on the hard negative samples.

Online Hard Example Mining (OHEM): [107] proposed to improve training of

two-stage object detectors by constructing mini-batches using high-loss exam-

ples. Specifically, in OHEM each example is assigned a score based on its loss,

Non-Maximum Suppression (nms) is then applied, and a batch is constructed

with the highest-scoring examples. The nms threshold and batch size are tun-

able parameters. Like our focal loss, OHEM puts more emphasis on misclas-

sified examples. Unlike our approach, it completely discards easy examples.

We adapt OHEM to our setting of one-stage detection which has extreme class

imbalance.
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We additionally implement a variant of OHEM motivated by SSD [71]: after

applying nms to all examples, the mini-batch is constructed to enforce a 1:3

ratio between positives and negatives. The motivation for this is to help ensure

each mini batch has sufficient positives. Results for the original OHEM strategy

and the ‘OHEM 1:3’ strategy for selected batch sizes and nms thresholds are

shown in Table 5.1d. These results use ResNet-101, our baseline trained with

FL achieves 36.0 AP for this setting. In contrast, the best setting for OHEM (no

1:3 ratio, batch size 128, nms of .5) achieves 32.8 AP. This is a gap of 3.2 AP,

showing FL is much more effective than OHEM for training dense detectors.

We note that we tried other parameter setting and variants for OHEM but did

not achieve better results.

Hinge Loss: Finally, in early experiments, we attempted to train with the hinge

loss [45], which sets loss to 0 beyond a certain value of the loss. However, this

was unstable and we did not manage to obtain meaningful results.

5.5.2 Model Architecture Design

Anchor Density: One of the most important design factors in a one-stage de-

tection system is how densely it covers the space of possible image rectangles.

Two-stage detectors can classify rectangles at any position, scale, and aspect ra-

tio using a region pooling operation [41]. In contrast, as one-stage detectors use

a fixed sampling grid, a popular approach for achieving high coverage of im-

age rectangles in these approaches is to use multiple ‘anchors’ at each spatial

position to cover boxes of various scales and aspect ratios.

We sweep over the number of scale and aspect ratio anchors used at each
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spatial position and each pyramid level in FPN. We consider cases from a single

square anchor at each position to 12 anchors per position spanning 4 sub-octave

scales (2k/4, for k ≤ 3) and 3 aspect ratios (0.5, 1, 2). Results using ResNet-50 are

shown in Table 5.1b. A surprisingly good AP (30.3) is achieved using just one

square anchor. However, the AP can be improved by nearly 4 points (to 34.0)

when using 3 scales and 3 aspect ratios per position. We used this setting for all

other experiments in this work.

Finally, we note that increasing beyond 6-9 anchors did not shown further

gains. Thus while two-stage systems can classify arbitrary rectangles in an im-

age, the saturation of performance w.r.tdensity implies the higher potential den-

sity of two-stage systems may not offer an advantage.

Speed versus Accuracy: Larger backbone networks yield higher accuracy, but

also slower inference speeds. Likewise for input image resolution. We show

the impact of these two factors in Table 5.1e. In Figure 5.4 we plot the

speed/accuracy trade-off curve for RetinaNet and compare it to recent meth-

ods using public numbers on COCO test-dev. The plot reveals that Reti-

naNet, enabled by our focal loss, forms an upper envelope over all existing

methods, discounting the low-accuracy regime. Remarkably, RetinaNet with

ResNet-101-FPN and a 600 pixel image scale matches the accuracy of the re-

cently published ResNet-101-FPN Faster R-CNN [67], while running in 122 ms

per image compared to 240 ms (both measured on an Nvidia M40 GPU). Us-

ing larger image sizes allows RetinaNet to surpass the accuracy of all two-stage

approaches, while still being faster. At the higher speed side of the curve there

is only one operating point (500 pixel input) at which the ResNet-50-FPN back-

bone dominates the ResNet-101-FPN backbone. Addressing the high frame rate
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[A] YOLOv2† [90] 21.6 25
[B] SSD321 [71] 28.0 61
[C] DSSD321 [34] 28.0 85
[D] R-FCN‡ [15] 29.9 85
[E] SSD513 [71] 31.2 125
[F] DSSD513 [34] 33.2 156
[G] FPN FRCN [67] 36.2 172
RetinaNet [RN50-500] 32.5 73
RetinaNet [RN101-500] 34.4 90
RetinaNet [RN101-800] 37.8 198
†Not plotted ‡Extrapolated time

Figure 5.4: Speed (ms) versus accuracy (AP) on COCO test-dev. Enabled by
the focal loss, our simple one-stage RetinaNet detector outperforms all previous
one-stage and two-stage detectors, including the best reported Faster R-CNN
[92] system from [67]. We show variants of RetinaNet with ResNet-50 (blue
circles) and RN-101 (orange diamonds) each at five scales (400-800 pixels). Ig-
noring the low-accuracy regime (AP<25), RetinaNet forms an upper envelop
over all existing detectors. Details are given in §5.5.

regime will likely require special network architecture design, as in [90], rather

than use of an off-the-shelf model and is beyond the scope of this work.

5.5.3 Comparison to State of the Art

We evaluate RetinaNet on the bounding box detection task of the challenging

COCO dataset and compare test-dev results to recent state-of-the-art methods

including both one-stage and two-stage models. Results are presented in Ta-

ble 5.2. Inference times are not available for all models (e.g.,, [108]), so we focus

on accuracy. Compared to existing one-stage methods, our approach achieves
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a healthy 4.9 point gap (38.1 v.s.33.2) with the closest competitor, DSSD [34],

while also being faster (see Figure 5.4). Compared to recent two-stage methods,

RetinaNet achieves a 1.3 point gap above the top-performing TDM-based Faster

R-CNN model [108].

5.6 Conclusion

In this work, we identify class imbalance as the primary obstacle preventing

one-stage object detectors from surpassing top-performing, two-stage methods,

such as Faster R-CNN variants. Motivated by classic work in statistics on loss

function shaping, we propose the focal loss which applies a gating mechanism

to cross entropy loss in order to modulate its effect on easy examples. This in-

tuitive approach is highly effective at addressing the class imbalance problem

in object detection. We demonstrate its efficacy by designing a simple and in-

tuitive one-stage detector and report extensive experimental analysis showing

that it achieves state-of-the-art accuracy and run time on the challenging COCO

dataset.
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CHAPTER 6

CONCLUSION

We discuss the challenges of detecting common objects in everyday scenes. We

approach the challenges through the combined efforts of dataset creation and

algorithm designs. We create COCO dataset that enables research on detecting

objects in non-iconic views, recognizing objects in context, and precise 2D local-

ization. We propose using top-down and lateral connections to generate seman-

tic strong multiscale representations. The SharpMask is proposed to accurately

localize instance with detailed pixel segmentation masks. Using the same intu-

ition, FPN is designed and demonstrates the ability to learn generic multiscale

feature representations. We show that FPN can be applied for various object de-

tection applications, including instance segmentation, box localization, object

proposals, and greatly improve performance for both speed and accuracy of ex-

isting methods. Finally, we identify the extreme class imbalance is an inherent

challenge for training object detectors and propose Focal Loss to address the is-

sue. Combining the focal loss and FPN, we design a single-stage dense object

detector RetinaNet, which achieves state-of-the-art performance for both speed

and accuracy on COCO dataset.

106



APPENDIX A

ANNOTATION USER INTERFACES

We describe and visualize our user interfaces for collecting non-iconic im-

ages, category labeling, instance spotting, instance segmentation, segmentation

verification and finally crowd labeling.

Non-iconic Image Collection Flickr provides a rich image collection associ-

ated with text captions. However, captions might be inaccurate and images may

be iconic. To construct a high-quality set of non-iconic images, we first collected

candidate images by searching for pairs of object categories, or pairs of object

and scene categories. We then created an AMT filtering task that allowed users

to remove invalid or iconic images from a grid of 128 candidates, Fig. A.1. We

found the choice of instructions to be crucial, and so provided users with exam-

ples of iconic and non-iconic images. Some categories rarely co-occurred with

others. In such cases, we collected candidates using only the object category as

the search term, but apply a similar filtering step, Fig. A.1(b).

Category Labeling Fig. A.3(a) shows our interface for category labeling.

We designed the labeling task to encourage workers to annotate all categories

present in the image. Workers annotate categories by dragging and dropping

icons from the bottom category panel onto a corresponding object instance.

Only a single instance of each object category needs to be annotated in the im-

age. We group icons by the super-categories from Fig. A.2, allowing workers to

quickly skip categories that are unlikely to be present.

Instance Spotting Fig. A.3(b) depicts our interface for labeling all instances
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Figure A.1: User interfaces for non-iconic image collection. (a) Interface for se-
lecting non-iconic images containing pairs of objects. (b) Interface for selecting
non-iconic images for categories that rarely co-occurred with others.

of a given category. The interface is initialized with a blinking icon specifying

a single instance obtained from the previous category-labeling stage. Workers

are then asked to spot and click on up to 10 total instances of the given category,

placing a single cross anywhere within the region of each instance. In order to

spot small objects, we found it crucial to include a “magnifying glass” feature

that doubles the resolution of a worker’s currently selected region.

Instance Segmentation Fig. A.3(c) shows our user interface for instance seg-

mentation. We modified source code from the OpenSurfaces project [5], which

defines a single AMT task for segmenting multiple regions of a homogenous

material in real-scenes. In our case, we define a single task for segmenting a

single object instance labeled from the previous annotation stage. To aid the

segmentation process, we added a visualization of the object category icon to re-

mind workers of the category to be segmented. Crucially, we also added zoom-

in functionality to allow for efficient annotation of small objects and curved

boundaries. In the previous annotation stage, to ensure high coverage of all

object instances, we used multiple workers to label all instances per image. We
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would like to segment all such object instances, but instance annotations across

different workers may refer to different or redundant instances. To resolve this

correspondence ambiguity, we sequentially post AMT segmentation tasks, ig-

noring instance annotations that are already covered by an existing segmenta-

tion mask.

Segmentation Verification Fig. A.3(d) shows our user interface for segmen-

tation verification. Due to the time consuming nature of the previous task, each

object instance is segmented only once. The purpose of the verification stage

is therefore to ensure that each segmented instance from the previous stage is

of sufficiently high quality. Workers are shown a grid of 64 segmentations and

asked to select poor quality segmentations. Four of the 64 segmentation are

known to be bad; a worker must identify 3 of the 4 known bad segmentations

to complete the task. Each segmentation is initially shown to 3 annotators. If

any of the annotators indicates the segmentation is bad, it is shown to 2 addi-

tional workers. At this point, any segmentation that doesn’t receive at least 4 of

5 favorable votes is discarded and the corresponding instance added back to the

pool of unsegmented objects. Examples of borderline cases that either passed

(4/5 votes) or were rejected (3/5 votes) are shown in Fig. B.3.

Crowd Labeling Fig. A.3(e) shows our user interface for crowd labeling. As

discussed, for images containing ten object instances or fewer of a given cate-

gory, every object instance was individually segmented. In some images, how-

ever, the number of instances of a given category is much higher. In such cases

crowd labeling provided a more efficient method for annotation. Rather than

requiring workers to draw exact polygonal masks around each object instance,

we allow workers to “paint” all pixels belonging to the category in question.
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Crowd labeling is similar to semantic segmentation as object instance are not

individually identified. We emphasize that crowd labeling is only necessary for

images containing more than ten object instances of a given category.

Figure A.2: Icons of 91 categories in the COCO dataset grouped by 11 super-
categories. We use these icons in our annotation pipeline to help workers
quickly reference the indicated object category.
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Figure A.3: User interfaces for collecting instance annotations, see text for de-
tails.
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APPENDIX B

OBJECT & SCENE CATEGORIES IN COCO DATASET

Our dataset contains 91 object categories (the 2014 release contains segmen-

tation masks for 80 of these categories). We began with a list of frequent object

categories taken from WordNet, LabelMe, SUN and other sources as well as cat-

egories derived from a free recall experiment with young children. The authors

then voted on the resulting 272 categories with the aim of sampling a diverse

and computationally challenging set of categories; see §2.3 for details. The list in

Table B.1 enumerates those 272 categories in descending order of votes. As dis-

cussed, the final selection of 91 categories attempts to pick categories with high

votes, while keeping the number of categories per super-category (animals, ve-

hicles, furniture, etc.) balanced.

As discussed in §2.3, in addition to using object-object queries to gather non-

iconic images, object-scene queries also proved effective. For this task we se-

lected a subset of 40 scene categories from the SUN dataset that frequently co-

occurred with object categories of interest. Table B.2 enumerates the 40 scene

categories (evenly split between indoor and outdoor scenes).
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(a) PASCAL VOC. (b) COCO.

Figure B.1: Random person instances from PASCAL VOC and COCO. At most
one instance is sampled per image.
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person bicycle car motorcycle bird cat dog horse sheep bottle
chair couch potted plant tv cow airplane hat∗ license plate bed laptop
fridge microwave sink oven toaster bus train mirror∗ dining table elephant

banana bread toilet book boat plate∗ cell phone mouse remote clock
face hand apple keyboard backpack steering wheel wine glass chicken zebra shoe∗

eye mouth scissors truck traffic light eyeglasses∗ cup blender∗ hair drier wheel
street sign∗ umbrella door∗ fire hydrant bowl teapot fork knife spoon bear
headlights window∗ desk∗ computer refrigerator pizza squirrel duck frisbee guitar

nose teddy bear tie stop sign surfboard sandwich pen/pencil kite orange toothbrush
printer pans head sports ball broccoli suitcase carrot chandelier parking meter fish

handbag hot dog stapler basketball hoop donut vase baseball bat baseball glove giraffe jacket
skis snowboard table lamp egg door handle power outlet hair tiger table coffee table

skateboard helicopter tomato tree bunny pillow tennis racket cake feet bench
chopping board washer lion monkey hair brush∗ light switch arms legs house cheese

goat magazine key picture frame cupcake fan (ceil/floor) frogs rabbit owl scarf
ears home phone pig strawberries pumpkin van kangaroo rhinoceros sailboat deer

playing cards towel hyppo can dollar bill doll soup meat window muffins
tire necklace tablet corn ladder pineapple candle desktop carpet cookie

toy cars bracelet bat balloon gloves milk pants wheelchair building bacon
box platypus pancake cabinet whale dryer torso lizard shirt shorts

pasta grapes shark swan fingers towel side table gate beans flip flops
moon road/street fountain fax machine bat hot air balloon cereal seahorse rocket cabinets

basketball telephone movie (disc) football goose long sleeve shirt short sleeve shirt raft rooster copier
radio fences goal net toys engine soccer ball field goal posts socks tennis net seats

elbows aardvark dinosaur unicycle honey legos fly roof baseball mat
ipad iphone hoop hen back table cloth soccer nets turkey pajamas underpants

goldfish robot crusher animal crackers basketball court horn firefly armpits nectar super hero costume
jetpack robots

Table B.1: Candidate category list (272). Bold: selected categories (91). Bold∗:
omitted categories in 2014 release (11).

(a) PASCAL VOC. (b) COCO.

Figure B.2: Random chair instances from PASCAL VOC and COCO. At most
one instance is sampled per image.
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Figure B.3: Examples of borderline segmentations that passed (top) or were re-
jected (bottom) in the verification stage.

library church office restaurant kitchen living room bathroom factory campus bedroom
child’s room dining room auditorium shop home hotel classroom cafeteria hospital room food court

street park beach river village valley market harbor yard parking lot
lighthouse railway playground swimming pool forest gas station garden farm mountain plaza

Table B.2: Scene category list.
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