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Abstract

The tree dependence model has been used successfully to incorporate
dependencies between certain term pairs in the information retrieval process,
while the Bahadur Lazarsfeld Expansion (BLE) which specifies dependencies
between all subsets of terms has been used to identify productive clusters of
items i1n a clustered data base enviromment. The successes of these models are
unlikely to be accidental; it is of interest therefore to examine the similar-

ities between the two models.

The disadvantage of the BLE model is the exponential number of terms
appearings in the full expression, while a truncated BLE system may produce
negative probability values. The disadvantage of the tree dependence model 1s
the restriction to dependencies between certain term pairs only and the exclu-
sion of nigher-order dependencies. A generalized term dependence model 1is
introduced in this study which does not carry the disadvantages of either the
tree dependence or the BLE models. Sample evaluation results are included to

demonstrate the usefulness of the generalized system.
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1. Decision-Theoretic Retrieval

From a decision-theoretic viewpoint, the information retrieval task is
controlled by two probabilistic parameters which specify for each document of
a collection the probability of relevance, and the probability ot non-
relevance, with respect to a particular query. For obvious reasons, the
larger the probability of relevance of a particular item, and the smaller the
probability of nonrelevance, the greater will be the retrieval probability for

the item.

In particular, consider an item X in the data base represented by binary

attributes (x,,x ,....xn). where x, takes on the values 1 or 0 depending on

1°72
whether the 1th attribute is or is not assigned to item x. For each 1tem X
and each query Q, it is in principle possible to generate the two parameters
P(xlrel) and P(xlnonrel), representing the probabilities that a relevant and a
nonrelevant item, respectively, has vector representation x. Using decision

theoretic considerations, it is easy to show that an optimal retrieval rule

will rank the documents in decreasing order according to the expression

log (1)

P(x|nonrel)

That is, given two 1tems X and y, X should be retrieved ahead of y whenever

the value of expression (1) for x exceeds the corresponding value for y. [1-5]

The probabilistic approach 1s of course useless in retrieval unless
methods can be found for estimating the probabilities P(x|s) for each item in
the classes s of relevant and nonrelevant items, respectively. These proba-
bilities will necessarily depend on the occurrence characteristics of the
individual vector elements x; in the relevant and nonrelevant items of the

collection. The class variable s will be dropped in the remainder of this
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paper because the development that follows 1s identical tor the two classes of

documents.

An exact tormulation for P(x) is given by the Bahadur Lazarsfeld expan-

sion (BLE) as follows: [5-7]

n x 1-x (x.-p.)(x.-p.)

I ptt (l_pt) t 1 + 2 pij 1 1 11

t=1 1<j .p.(1-p.)(1-p.
i<i 77| pyp;(-py)d-py)

P(x)

s 5 (x;-p;) (x;-ps) (1 -py ) .
i<j<k 1k \Ipipjpk(l-pi)(l-pj)(l-pk)

+

(xl-pl)(xz-pz)...(xnfpn}

(2)

p
12..'n

\ P1Pgee P (1R ) (L-py)ee (1op )
where Py is the probability ot occurrence of attribute k in the class under
consideration, that 1s, Prob(xk=l). and pij’ pijk' etc., represent the second,
third, and higher order correlations between term pairs xi.xj. triplets

xi.xj.xk. and higher order subsets of terms. Specifically,

E[(xi-pi)(xi-pi)] E(xixi)-pipi ,
P.: = = 3)
ij - R - R
\lpipj(l p;) (1 pj) pipj(l p,) (1 pj)

-~

E[(xi-pi)(xi-pi)(xk-pk)]

and pi

e 5
J \lpipjpk(l-pi)(l-pj)(l-pn)

_ E(x.x.x.) - E(x.x.)p, - E(x.x )p. - E(x.x )p; + 2p.P:Py “
\lpipjpk(l-pi)(l-pj)(l-pk)

Corresponding expressions apply to the higher-order correlatioms.
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The BLE expansion (2) is of no help unless the term occurrence probabili-

ties p, can be obtained for all terms k in both the relevant and nonrelevant

document sets. Furthermore the correlation coefficients piJ

also be available for all term combinations in the two document classes.

s etc., must

This

last requirement 1s unfortunately difficult to satisfy in practice tor two

main reasons:

a) it 1s in practice 1impossible to compute the correlation coefficients

for an exponential number of term combinations;

b) . an injudicious truncation of the BLE series may produce unreliable

results; for example, the second order correlations pij become nega-

tive when the joint occurrence probabilities E(xixj) for pairs of

terms are close to zero, but the individual probabilities P; and pj

are positive; this may lead to the computation of negative (false)

probability values trom the BLE formula when third and higher order

dependencies are neglected.

To render the computational task more manageable, one often assumes that

the term occurrences are independent of each other in each of the relevant and

nonrelevant documents of a collection. In that case
P(x) = P(xl) P(xz)....P(xn).

For the independence case, the BLE expansion reduces to

nox (l-xt)
P(x) = T p. (1-p.)
t=1

since all p values will be equal to 0. [8-9]

(5)

(6)

In actual document collections, the assigned keywords and attributes do
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not of course occur independently of each other. The elimination of term

dependencies may then lead to substantial losses of information and to a

reduced retrieval effectiveness. This suggests that an approach be used in

which certain selected term dependencies are included while the others are

disregarded. The tree dependence model represents such a compromise solution.

In describing the tree dependence model, the following notation is used

1)

2)

P(x) or P(xl.xz.....xn) represents the actual probability distribu-
tion for a vector of n terms. When no ambiguity arises, the vector
(xl,xz,....xn) is replaced by (1,2,...,n). Thus any distribution

h(xl.xz....,xn) is written as h(l1,25...,5n).

The notation h(jl’jz""’jt) for specific terms jl’jZ""’jt stands

for 2 h(ls24...,n) where N = {1,2,...,0n} and J = {jl’jz""’j }.
N-J t

That is, h represents the probability distribution for the set of
terms J = {jl.jz.....jt} and the summation extends over all possible
combinations of 0 and 1 for all variables other than those in J.

For example when n = 4,

h(1,3) = h(xl.x2=0.x3.x4=0) + h(xl,x2=0.x3.x4=1)

+ h(x1,X2=1’X3’x4=0) + h(x1.x2=l ,x3,x4=l).
In particular,

P(i) = 2 P(l’zﬁliﬂ’n); pi = P(xi=1)
k#i
keN

represents the probability of occurrence of the ith term. An under-
lined variable denotes a vector of variables; a variable that is not

underlined stands for a single variable.
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2. Properties of the Tree Dependence Model

The tree dependence model is characterized by the fact that the depen-
dence structure between terms constitutes a tree in which the vertices
represent the terms and the edges represent the dependencies between pairs of
terms. More specifically, let T be a tree with root v. The tree can be
represented by a directed graph G = (V,E), where V is the set of vertices and
E is the set of directed edges (away from the root v). Then the probability
distribution of the terms on the items is given by the tree dependence model
as follows:

£(x36) = P(v) [T P(alb)] (7)
E

where b is the parent of a and the product is taken over all edges of E.
[10-12] When E is null, i.e. the graph has exactly one vertex, then the pro-

duct over E is assumed to be 1.

Consider as an example the dependence tree of Figure 1. The root is 1;
the immediate descendants are 2, 3 and 4, whose descendants are respectively

{5.6}0 {7}9 {8}. Then

£(x3G) = P(1) P(2]1) P(311) P(4l1) P(512) P(612) P(713) P(8l4).

Expression (7) can now be rewrittenm as follows. Suppose an edge (v,u)
incident on root v 1s deleted. Then the tree T is decomposed into two sub-
trees G = (V ,E ) and G_ = (V ,E ) having roots u and v respectively. It is

u u’u v v’y

clear that E = Eu U Ev U {(vsu)}. Hence
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f(x3G6) = P(v) P(ulv) [ I P(alb)]
E-(v,u)
P(v)II P(alb) P(u) I P(alb)
E E
- A'4 U
= P(v) P(ulv) P(v) P(2)
_ P(u.v) ) .
® Pwr(y) &G £x,i6,) (8)

where X, and xn are the variables restricted to vertices of Vv and Vu respec-

tively.

Thus, (8) is an inductive definition, equivalent to (7). When the origi-

nal-tree G has 1 vertex only, say v, (and no edge),
£(x3G) = P(v) (9)

When the original tree G contains more than one vertex, expression (8)

applies.

The next lemma shows that the tree expansion formulas (7), (8), (9) are
well-defined in the sense that the same result is obtained if a different root
is chosen for expansion or a different edge (v,u) is deleted. In fact, a sim-

ple formula is given in terms of the edges and the vertices of the tree.

Lemma l: For a tree G = (V,E), the tree dependence t(x;G) givemn by (7) is
independent of the chosen root and of the direction of the edges. Im particu-

lar £(x;G) is given by

o P(i,j)
(i,3)eE

d.-1

o P(i) *
ieV

f(x3;G) = (10)

where di is the degree of (the number of edges incident on) vertex i. If E is

null, the numerator of (10) gives 1.
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Proof: Since (7) in equivalent to the inductive definition given by (8) and
(9), it 1s sufficient to show that (10) is equivalent to the inductive defini-

tion.

The proof 1s by induction. If G has one vertex only, say vertex v, then

both (9) and (10) give P(v).

Consider a connected tree G having more than one vertex. The deletion of
an edge (v,u) causes the tree G = (V,E) to be decomposed into two subtrees
G = (V 4,E ) and G = (V ,E ) such that the degree of each of the vertices u

u u’u u vi'v
and. v 1n the subtrees is one less than the degree of the same vertices in G

(see Figure 2). By the inductive hypothesis, (8) gives

i o 6. | [ T PGi.j) |
E(xsG) = P(uay) (1.J)eEv (1.J)€§u
; P(u)P(v) d -2 d.-1 d -2 d.-1
P(v) ¥ @ P(i)*t P(u) © @ P(i)
ieV ieV
v u
L izvy iZu
o P(i,j)
_ (d.3)eE
- d.-1
mp(i) *

1€V

which 1s i1dentical with (10), since E = Eu u Ev U {(veu)} and V = Vu U Vv.

It is clear that (8) and hence (10) are identical with (7) for the tree
decomposition into subtrees Gv’ Gu and edge (u,v). Furthermore, vertex v and
edge (u,v) do not appear explicitly in (10). Hence any other decomposition

will also produce the formula of expression (10). [

For the decomposition of Fig. 2, expression (10) can be written as



_P(2.5)P(2.6)
p(2)2 2(5)% 2(6)°

)2 e syl p(7)0 p(s)°

P(1,2) - P(311) P(4I1) P(713) P(814)) - (P(512) P(612))

P(1) P(211) P(311) P(4l1) P(713) P(8l4) P(5(2) P(6]2)

This is of course identical with the formula derived from the tree of Fig. l.

It may be noted that the tactors P(i) and P(i,j) used in (10) represent
probabilities. Hence every term in expression (10) is nomnnegative. The tree
dependence model cannot therefore lead to the computation of negative proba-
bility factors, no matter how many, or how few, dependent term pairs are used

in the computations.

The similarity between the BLE model and the tree dependence model will
now be examined. It will be shown that the tree dependence model places a
constraint on the second order correlations, pij’ between term pairs. If
these correlation parameters (pij) are set in the BLE model so as to satisfy
this constraint, and if the third and higher order dependencies are negligible

(that is, pijk’pijkh

,» etc. are set to 0), then the BLE model is for practical
purposes equivalent to the tree dependence model. If the third and higher
order term dependencies are significant, then the generalized model introduced

in section 3 should be applied.
The tormulation of expression (10) leads to the following proposition:

Proposition 2 In the tree dependence model, if i,j and k are vertices of a

tree G = (V,E) such that a path exists between i and j passing through k, then

i and j are independent conditiopal on k, that is,

f(i,jlk) = £(ilk) - £(jlk) (11a)
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or equivalently
£(i,j.k) £(k) = £(i,k) « £(jsk) (11b)

Proof: Consider the tree G following the deletion of vertex k. The resulting
graph now consists of two or more components, including Gi = (vi'Ei) contain-
ing vertex i, Gj = (Vj’Ej) containing vertex j, and possibly additional com-
ponents which may collectively be labelled E. Assume that edge (k,il) is the
edge connecting vertex k to Gi along the path from k to i, and similarly that

(k.jl) connects vertex k to Gj along the path from k to j.

Restoring vertex k and its incident edges, the decomposition of G leads

to the identification of the following subsets of vertices and edges.
for G, : (Viu {k}, E; v {k.ll})

for Gj : (Vju {k}, Eju {k.jl})

for E:(V=‘v—(viuvjh E - (B UE;u (ki) u (kejp))).

For the tree previously used as an illustration, the decomposition into three

subtrees is shown in Fig. 3.

The result of Lemma 1 shows that the tree expansion f(x;G) is independent
of any particular node v used for expansion. Furthermore, the numerator of

expression (10) can be divided into three parts involving the edge sets asso-

ciated with G, cj and G (that 1is, E; U (k.il). Ej U (k.jl). and

E - (Ei u Ej U (kei,y U (k.jl))); similarly the denominator of (10) can be

1)
divided 1into three parts, consisting of the vertex sets associated with
Gi’ Gj. and G, with vertex k appearing in all three sets. Expression (10) can

then be rewritten as
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£(x36) = £(x) = hl(xl) . hz(xz) . h3(x3)

where HER IR involve variables in the three subsets of nodes and edges,

and h,, h,, h

1 g» Dy are suitable tunctions representing the products included in

(10).

Using the notation introduced earlier, ome obtains

s £(x)
P {i ok}

£(i k)

35 h(x,) - ho(x) - h,(x,) (12)
-l 101 2% 3 %3

With the formulation of expression (12), the four terms of expression (11b)

can now be rewritten as:

f(i,k) = 2. hl(xl)] [Ehz(xz) [ s h3(x3)] (12a)
| v;- il vs ] Lv-x}

f(jsk) = Ehl(xl)J [ - h2(x2)] s h3(x3)] (12b)
A v,-i5} | V- {k} .

f(i,j.k) = : hl(xl) ] [ - hz(XQ) ] [ 3 h3(xa) ] (12¢)
v,- i} v.-i5) - (k)
and f{k} = §h1(x1)] [§h2(x2)] [ s h3(x3)} (124)

A vs V- {k}

It is clear that the product of (12a) and (12b) is identical with the product

of (12¢) and (12d). This proves the proposition of expression (11). 0

Consider as an example the tree of Fig. 3. In that case, £f(x) =

hl(xl) . hz(xz) . h3(x3)
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P(2) P(l)

where P(l)2 is arbitrarily included in nl(xl). From 12(a) to 12(d) it tollows

that
RUL2RQ.5IP(2.6) PULPA.T)
£(1,5) = [ 3 I s 1L 3 ]
(2.6) p(2)2p(1)2 (3,7)  EG) (4,8) P&
‘ m,zlm,_mmuz
£(1,7) = [ 3 ][}m-‘%%g-)("“ﬂ[zm‘-‘;%%-‘“ﬂ]
(2,5,6) P(2) P(l) (3) (4,8)

' Wz..ﬂ
£(1,5,7) = [ 3 1 3 MLDPGL7)y  ; BULLAIR(4.8)4
(2,6)  p(2)2p(1)? (3)

: Wﬁl
£(1) = [ 3 . ]Lzm‘%%%‘*‘nuzﬂl‘-‘;%%-‘“&]
(2,5,6)  P(2)2p(1) (3,7) (4,8)

Thus, £(1,5) £(1,7) = £(1,5,7) £(1). g

Using these results, it is now easy to show that a relationship exists in
the tree dependence model between the correlation coefficients which measure
the dependencies between term pairs. In particular for any term triplet, the
correlation coefficient of a given term pair included in the triplet 1is
automatically derivable trom the coefficients of the other two term pairs in

the triplet. The following proposition states the result more formally:

Proposition 3: If the joint distribution of terms follows a tree dependence
structure and i,j and k are vertices of the tree such that there is path from

i to j passing through k, then



- 13 -

Remark: It has been pointed out ([13], p. 137-138) that a formula by Kendall
([14], p. 318) could be used to prove the result of proposition 3. However
the formula in Kendall is defined only for multi-variate random variables, and

not for the discrete random variables used here.

The result of proposition 3 could be proved using the log-linear model
and techniques similar to those given by Bishop et al [15]. A direct proof 1is

given in this study.

Proof:
. E[(xi-pi)(xk-pk)] i £(i=1,k=1) - p.p, (14)
ik ~ -
\ pipk(l-pi)(l-pk) \ pipk(l-pi)(l-pk)
Similarly
£(j=1,k=1) - p.p
Pik = Lk (15)
\'pjpk(l-pj)(l-pk)
From (14) and (15) one obtains that Pik’ pjk equals
i= = 1= = - 1= = - 1= = 2
[f(l—l.k-l)(f{g-l,k-l) P; Py £(j=1,k=1) PPy f(i=1,k=1) + pipipk] L6

\ pipj(l-pi)(l-pj)- pk(l-pk)

Since 1,j are independent conditional omn k, by Proposition 2, the left-hand
side of (11b) can be substituted in (16) for f(i,k) f(j,k). Following cancel-

lation of p, from both numerator and denominator of (16), one obtains

f(i=1,j=1,k=1) - pif(j=1.k=1) - Ejf(i=1.k=1) *+ P.P:Py

(17)

Per*Psy =
He Tk (1-p)\[ P37 AP (1-p)
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The numerator N of (17) may now be transformed in the following way:

N = £(i=1,j=1,k=1) - pif(j=l.k=l) - Py f£(i=1,k=1) + PiP; - pipj(l-pk) (18)

Since p, = P(i=1) = £(i=1,k=0) + £(i=1,k=1), (18) is further transformed into

f(i:l.j=1)k=l) - Pi f(j=1’k=l) + Pj f(i=l.k=0) - pipj(l-pk)

f(i=1,j=1,k=1) - P; £(j=1,k=1) - pipj(l-pk)

+ [£(j=1,k=0) + £(j=1,k=1)] £(i=1,k=0)

f(i=1’j=1’k=1) - pipj(l-pk) + f(j=1,k=0) f(i=lpk=0)

- £(j=1,k=1) Lp; - £(i=1,k=0)]

f(i=1,j=1.k=1) = pipj(l-pk) + f(k=0) f(i=1,j=1,k=0)

- £(j=1,k=1) £(i=1,k=1)
using the independent conditional property of expression (11b) with i=1l, j=1,
and k=0.

Using expression (llb) again with i=1, j=1, k=1, this is further

transformed into

f(izl’j:lgkzl) + f(k=0) f(i=l.j=l.k=0) - pipj(l_pk) - Pk f(i=1'j=19k=l)

f(i=1oj=19k=1)(l‘pk) + (l‘Pk) f(i=loj=lsk=0) - (l—Pk)PiPJ (19)

The last expression can now be substituted for the numerator of (17) to
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produce

f(i=1’j=19k=l) + f(i=1’j:1’k=0) " pipi

P.yep.. =
ik "jk
.p.(1-p.)(1-p.)
\|p1pJ( p;)(1-p,
£(i=1,j=1) - PP
= = pij 0
\Ipipj(l-pi)(l-pj)

Consider as an example p in the tree used as an example 1in Figs. 1 to
38

3. Using the result derived in proposition 3 one has trom Fig. 4:

P3g = P34 ° Pus

but P3s = P13 * P14 -

Thus P3g = P13 * P14 * Page
When equation (13) is valid, as it is 1n a pure tree dependence model,

third-and higher-order correlations pijk’ pi are equal to zero. Hence when

jh
the higher order correlations are negligibly small in a practical case, the
probabilities computed with the tree dependence model are about the same as
those obtained with the BLE model where the actual pij values are used for
term pairs (i,j) that are explicitly included in the dependence tree and p
values tor term pairs (k,h) not represented by an edge in the tree are then

computed as the product of the p values for the unique path leading from k to

h 1n the tree.

Unfortunately, dependencies between term triplets and higher order term
sets may not always be small. In that case the tree dependence model may still

be usable 1n an extended form as explained in the next section.
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3. A Generalized Dependence Model

In the last section, a probabilistic expression was constructed for a
given set of the tree dependencies by decomposing the tree into two subtrees
connected by edge (u,v). This resulted in expressions (8) and (9). It is
useful to extend the inductive construction to render it applicable to comn-
nected graphs containing triangles (that 1s, dependencies between term tri-
plets). The development which follows is applicable in suitably altered form
to higher order dependencies; however as a practical matter it may suffice to
extend the tree dependence model by inclusion of certain third order dependen-

cies only.

Let G be a graph consisting of three or more vertices and containing the
triangle (u,v,w), but not a cycle of length four or more. A cycle of length i
contains exactly i vertices and i edges. Expressions analogous to (8) and (9)
may then be constructed using the trianéle (u,vsw). Specifically, the follow-

ing definition applies using the expansion about triangle (u,v,w):

f(xu;Gu) f(;%;Gu) f(xw;Gw) (20)

ey - —P(u.vew)
£(x36) = 300 p(v)P(w)

where Gu. Gv' and Gw are the connected subgraphs containing vertices u, v, and
ws respectively, atter the three edges (u,v), (u,w) and (v,w) have been
removed. When an expansion is performed about a triangle, then expression
(20) can be used to represent the probability distribution of the terms. Oth-
erwise, expression (8) which is based on the expansion about an edge not

included in a triangle can be used.

It is necessary to show that the inductive definition of expression (20)
is well-defined and compatible with that given earlier in (8) and (9). This

can be done in the following four steps:
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a) an expression identical with (8) must be obtained no matter what
edge incident on vertex v, other than (u,v) is chosen for expan-

sion;

b) an expression identical with (20) must be obtained no matter what
triangle incident on vertex v other than (u,v,w) is chosen for

expansion;

c) the two expansions of expressions (8) and (20) about vertex v, ome
using an edge (u,v) and the other a.triangle (u,x,y), where u and v

are different from x and y, must be identical;

and d) the expansions must be independent of the chosen vertex v.

Proposition 4: The 1inductive definitions of expressions (8) and (20) are

well-defined if the connected graph G has no cycle of length 4 or more.

Proof: a) It has already been shown in Proposition 1 that the tree depen-
dence approximation of expression (8) is independent of any particular edge
chosen for expansion in the absence of triangles. Consider a graph G with two
edges (u,v) and (v,w) incident on vertex v, such that neither edge is part of
a triangle. Expression (8) applies in this case. After removal of edge (u,v)
from the graph, two connected components remain, consisting of Gu and
G, UG U (v,w), where G +G, and G are edge-disjoint subgraphs which together
with the edges (u,v) and (v,w) form the original graph G. (If the graph G
were still connected following removal of the edge (u,v), (u,v) would be part
of a cycle of length three or more in the original graph contrary to assump-
tion.) The situation is represented schematically in Fig. 5. Removal of edge

(vew) from the graph of Fig. 5 will similarly produce two subgraphs consisting
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of G and G_ u G U (u,v).
w v u .

Consider now the expansion about vertex v using edge (u,v). Applying (8)

one has

vy - P(u.v) . .
£(x3G) = P(0)P(v) f(xu.Gu) f(zg, UZx 3G UG U (vow))

where X, Y&, represents the union of the variables in . and S

When the last tactor is itself expanded using edge (v,w) the above expression

produces

o) —B(uav) ¢ ) —B{raw) . .
Ex:0)2 pap(v) G pwirtey &G EG)

P(v)P(w) f(xw’Gw) I:P(u)P(v) £(x,36,) £(xs G,

But the above expression is the expansion using edge (v,w). Obviously the

expression about (u,v) is identical with the one about (v,w).

b) Consider now the application of expressions (20) to a situation
involving triangles. Let the two triangles be (u,v,w) and (v,x,y) with common
vertex v, and consider the decomposition obtained by deletion of triangle
(usvsw). The illustration of Fig. 6 shows that three connected subgraphs are
produced consisting of G,» G, and G, u G v Gy U (vsx,y), respectively. On
the other hand, deletion of triangle (v,x,y) produces the three subgraphs

G. G.andG u G UG V) (u’VQW)n
X y A\ u w

A transformation similar to that carried out earlier for the edges makes

clear that the expansions for the two triangles are identical.

c) Consider now a comparison of the expansion using a particular edge
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(x,v) with the expansion using a triangle (u,v,w) both incident on vertex v as

shown in the sample graph of Fig. 7. Using edge (x,v) one obtains from (8)
oy = —R(xav) . .
£(x3G) = P(2)P(v) f(xx, Gx) f(xu Uux, UXK3G UG UG U (u,v,ow))

Using (20) this becomes

P(0)P(v) EE&SC) BmP(vIP(w) L& Gy F(&:6,) £(x:60)

P(wB(v)P(wn)  £E3G) Ea5 6p) £y v ks 6, v Gy v (vax))

The last expression is precisely the expansion using the triangle (u,v,w)
whose removal decomposes the graph into components Gu’ Gw and the connected

part consisting of G and G, and the edge (vex).

d) It remains to show that in a connected graph G the expansion about
any vertex v is the same as that about some adjacent vertex u. If the edge
(usv) is not part of a triangle, expression (8) produces identical expansions
about either vertex u or vertex v. Similarly, expression (20) produces ident-
ical expansions for any triangle u,v,w regardless of how the vertices u,v, and

w are chosen. [

Using the inductive definition for the approximating distribution of a
graph dependence structure that does not include any cycles of length four or
more, it is now possible to show that for any tree, say Go. (and in particular
also tor the maximum spanning tree that includes the most important dependen-
cies for pairs of terms [10]), the tree dependence approximation can be
improved by the addition to the original graph of t edges, t 2 1. Each edge

added to the original tree will produce a triangle, representing the depen-
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dence between a group of three terms (a triplet). In the present development
the added edges are chosen in such a way that no higher order cycles are

formed in the graph, that is no cycles of length four or more.

Let the difference between two distributions h(x) and g(x) in n variables
be measured by the information theoretical measure as

- h(x)
I(h(x),g(x)) = ih(x) log ()" (21)

X is a vector in n variables and h(x) and g(x) are the distributions whose
difference must be measured. [10]. It is known that I(h(x),g(x)) 2 0, the
equality holding when h(x) = g(x) for all x. The smaller the value of

I(h(x).g(Gt)) the closer the two distributions are to each other.

Consider, in particular, the original tree G0 and the graph Gt formed by
adding t edges (producing t triangles) to GO. If P(x) represents the true
probability distribution which presumably includes information about the
occurrence characteristics of all subsets of terms, and f(GO) and £(G%) are
the dependence approximations using the tree Go and the graph Gt. respec-

tively, it is possible to show that

1(P(x).£(c%)) 2 1(P(x).£(65)). (22)
The next proposition shows that each additional triangle gives a better
approximation,
Lemma 5: Consider two graphs G' and G1+1 such that G1+1 differs from ¢t by

addition of edge (u,v) which forms the triangle (u,v,w). Then

£(6H) /7£(6MY) = [PG)P(ulw)P(vIw)] / P(usvow). (23)
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Consider the situation in Fig. 8 showing the two graphs G* and G1+l. The

original edge (u,w) cannot be part of a triangle (u,w,x) in G, because other-
wise the addition of edge (u,v) would create a cycle (x,u,v,w) of length 4 in
Gl+1. contrary to assumption. Similarly, the original edge (v,w) cannot be

part ot a criangle in G*. Thus by (8) the expansion in G' about vertex w

using edge (u,w) is

ech) = Bl £ (6, uo, v W)
- ;fﬁ?;f&; o) o) £(c) (24)
An expansion in G'*! using triamgle (u,v,w) can be written by (20) as
£(ct*h) = RSemE 6 hee 56 (25)

The Lemma tollows immediately by division of (24) by (25).

Using (23) it is now easy to establish (22)

Proposition 6:

1(p(x), £(c5)) 2 1(p(x).£(c*™h)).
Proof:
1(p(x), £(e1)) - 1(p(x), £(ct*1))
= 3 P(x) log TEL - 5 p(x) log -1559;-
X £(cY)  x £(ctt)
i+l
= 3 P(x) log f“'g".""l
X £(ch)
_ P(u,v,w)
= i P(x) log P (9)P(ulw)P (v 1w) from (23)
P(y.v.w)

= 2 P(u,v,w) log

(Us VW) P(w)P(ulw)P(v|w)

= I(P(u,v,w),P(w)P(ulw)P(viw)) (26)
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The lLast expansion is necessarily greater or equal to zero because the infor-

mation theoretic measure is always nonnegative. [

The toregoing development shows that the information theoretic measure
for the two distributions using Gi and Gi+1 differs precisely by the differ-
ence due to the use of triangle (u,v,w) on one hand, and the edges (u,w) and
(vyw) on the other. An improved approximation to the distribution can be
obtained by selectively adding edges to the dependence tree in such a way that

at each point the value of

P(u.v.w)
P(w)P(ulw)P(viw)

W= 3 P(u,v,w) log (27)

Us VW

is maximized.‘ The first triangle to be formed could be the one for which W is
maximum; the next triangle could produce the next highest value of W, and so
on, until no further triangles can be generated without adding cycles of

length tour or more.

In summary, the tree dependence model is a computationally attractive
method for including dependencies between certain pairs of terms in a proba-
bilistic retrieval system. The computed probabilities are guaranteed to pro-
duce positive values, and the differences between the tree dependence model
and the optimum probabilistic model will be small when the higher order term

dependencies are small.

When dependencies between term triplets, quadruplets and higher order
term subsets become substantial, it is possible to improve the tree dependence

model by selective consideration of term triplets in addition to term pairs.
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The triplets to be added could be chosen in decreasing order of the values of
W in expression (27). When triplets that do not form cycles of length four
are exhausted, further improvements may be obtainable by adding dependencies
between term quadruplets that do not produce cycles of length five, and so on
for the higher order dependencies. Eventually the extended tree dependence
distribution converges with the true distribution given by the Bahadur Lazars-
feld expression. However, in practice, it 1s unlikely that fourth or higher
order dependencies can be easily determined. The extended tree dependence
model described here 1s a product approximation of the kind introduced in

(16].

4, Experimental Results

The generalized term dependence model is evaluated by using a small sam-
ple collection of 1033 documents and 30 queries in biomedicine. Specifically
for each query the various probabilistic models (term independence, standard
tree dependence, and generalized term dependence) are used to obtain a ranking
of the documents X in decreasing order of the expression P(x|rel)/P(x|nonrel).
For each document, expression (5) or (6) is used for the calculations in the
term independence model. Expressions (7) and (8) serve similarly in the tree
dependence system, and expression (20) is used in the generalized system for
the term triplets. In each case, only those document terms which are also

included in the corresponding query are used in the calculationms.

To insure that a sufficient number of dependent term pairs are available
for use in the tree dependence systems, the original user queries are expanded
before the probabilistic calculations are actually made by adding new related

terms to the ones originally present. The following sequence of steps is



used: [17]

a)

b)

c)

d)
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A maximum spanning tree (MST) is constructed for the terms included
in a given document collection in such a way that each vertex
represents a term, each edge represents a dependent term pair, and
the sum of the edge weights identifying the amount of useful depen-

dency information between pairs of terms is maximized.

The original available queries are expanded by using the MST to add
to each query all terms that are immediately adjacent to the ver-

tices representing the original query terms.

The pairwise occurrence probabilities P(i,jlrel) and P(i,jInonrel)
are obtained for all pairs (i,j) included in the expanded query
(that is, for each query term pair represented by an edge in the
spanning tree). The co-occurrence and dependency information allow

these values to be calculated for pairs included in the MST.

Term triples are identified for all sets of three terms for which
the individual terms occur in the expanded query, and two of the
three possible edges appear adjacently in the MST (that is, they
share a common vertex). For example, the triple (xi.xj.xk) is 1den-
tified if the three terms are included in the expanded query and
vertices (xi.xj) and (xj.xk) (or alternatively, pairs (xi.xk) and
(xk,xj). or pairs (xj.xi) and xi.xk)) appear in the MST. For each
identified triple, the probability factors P(i,j.klrel) and
P(i,jskInonrel) are computed as well as the corresponding W value of

expression (27).
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e) For each document X, the factors P(xlrel) and P(x|nonrel) are com-
puted, assuming either the term independence model, the tree depen-
dence model, or the generalized term dependence model, by summing
the values of the corresponding prgbability expression for all query
terms included in document X. The documents are then ranked in
decreasing order according to expression (1), and. the corresponding

recall and precision values are computed.

In the experimental process, the maximum spanning tree is used for two

distinct purposes:

a) the tree specifies the subset of term pairs, and by extemsion of
term triples, which can be taken into account in the tree dependence

system;

b) the tree is used to supply an adequate number of dependent query

term pairs using the previously mentioned query expansion process.

The query expansion process has nothing as such to do with the operations of a
probabilistic retrieval system. In fact, the query expansion will be injuri-
ous if the added query terms are not reflective of the user's original infor-
mation needs. Unfortunately, the term pairs defined by an unexpanded query
are not likely to be explicitly present in the MST. 1In that case, the tree
dependence model reduces by default to the term independence model since no
pairs are then available for use. For this reason some procedure must be used
in any probabilistic term dependence model to insure that term dependence

information is in fact available for an adequate number of subsets of terms.

An example of the query expansion process is shown in simplified form in

Fig. 9. Given an initialkquery Q = (xz.x3) and the maximum spanning tree of
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Fig. 9(b), only the term independence model is directly applicable, since pair
(xz.x3) is not available in the spanning tree. The expanded query
Q= (xl.xz.x3.x4.x5) leads to the use of the four pairs specified in the tree
((xl.xz).(xlsx3).(x3.x4) and (x3.x5)). In Fig. 9(c) a single dependent term

triple (xl.x .x3) is used instead of the two pairs (xl.xz) and (xl,x3).

2

In computing, the formula of expression (1), it 1s necessary to estimate

values of
p; = P(xi=1lre1)
l1-p, = P(xi=0|re1)
p.' = P(x.=1|nonrel)
i i
and 1-p.' = P(xi=0|nonre1). | (28)

Normally, the occurrence probabilities P; and pi' of term X, in the relevant
and nonrelevant documents of a collection are obtained by using actual
occurrence frequencies of the terms in the respective document subsets. In

particular

n.-r,
-~ t o =L
p; * r;/R and p.' = 7o (29)

where T, and n. represent the occurrence frequencies of term x, in the
relevant document set and in the whole collection, respectively, and R and N

represent the size of the relevant document set and the total collection size.

It is clear that unless the relevant and nonrelevant document subsets
with respect to each query are properly identified, problems will arise in the
evaluation of expression (l1). Two possibilities offer themselves for obtain-
ing the values of P; and pi' in (29). A retrospective experiment can be per-

formed in which the (unrealistic) assumption is made that all relevant and
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nonrelevant documents with respect to each query are known in advance of each
search. In that case, the values of P; and pi' are readily computable for all
terms x.. Alternatively, in a more realistic predictive experiment the ini-
tial queries are tirst used to retrieve a subset R' ¢ R of documents identi-
fied as relevant to the query, and a subset N' ¢ N-R' of documents identified
as nonrelevant to the query. Instead of using the full set of relevant and
nonrelevant documents R and N-R for the parameter estimation process, the par-
tial subsets of initially retrieved items R' and N' are used for the predic-

tive calculations.

Two problems arise 1n performing the predictive experiments: on the ome
hand, not enough information may be available to permit an accurate estimation
of the parameters P, and pi' for the terms xi; in particular the subset of
relevant or nonrelevant items actually available may be very small, leading to
ingccurate occurrence probability estimates. The evaluation process is also
complicated by the fact that the relevant and nonrelevant items initially
retrieved and used to derive the P; and pi' values should not be used again in

evaluating the results of the subsequent probabilistic searches.

Consider first the problem of deriving the values for P; and pi' in the
predictive case. When by mischance no relevant items at all are initially
retrieved in response to a given query, both r, and R are equal to 0, and the
tirst expression in (29) is computed as 0/0. To avoid such an undesirable
result, it 1s customary to adjust expressions (29) by addition of constants as

follows: [8,12]

r.+0.5 pi' n.-r.
p; = 'JE:I" and I-p,’ X Rl (30)

The adjusted parameter estimation process of expression (30) has been
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widely used in practice, but when T, and R are small, unsatisfactory estimates
are often produced. Consider, for example, the common situation where R =1
and r, = 0 (that is, one relevant document has been retrieved which does not
contain term xi). In that case, one finds that p; = 0.25 and pi'<< 0.25 since
N, the total number of retrieved documents, is necessarily larger than n., the
number of retrieved documents with term X, . So from the information that a
term x, does not occur in a relevant document, one reaches the unusual conclu-
sion that term x; is more likely to occur in the relevant than in the non-

relevant items.

If one assumes that the number of relevant documents not yet retrieved is
not much larger than the number of relevant items retrieved in the initial
search, and that each term x, is randomly distributed in the relevant items
that nave not yet been seen, one obtains the following probability estimates:

(18]

(31a)

and

e -
p,' = —‘-—J'——U-N_R_l . (31b)

In the previously cited limiting cases, the new estimates of expression (31)
provide the following more sensible values: when no relevant items are
intially retrieved and R = r = 0, one finds P(xilrel) = P(xilnonrel). When
the only relevant item does not contain a given term x,, one has P; = 1/2pi'.
The formulas of expression (31) were used to estimate the probability values

in the experiments described in this section.
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The experimental output for the generalized term dependence model is
included in Table 1 for the Medlars collection of 1033 documents and 30
queries. Instead of showing full recall-precision output, Table 1 contains
the average precision values for three recall points, corresponding to a low
recall of 0.25, a medium recall of 0.50, and a high recall of 0.75, averaged
over the 30 Medlars queries. Both the retrospective and the predictive output
are shown in Table 1. In the latter case, a vector provessing run was ini-
tially performed using a cosine similarity measure to compare documents and
que;ies expanded by use of the maximum spanning tree. The top 20 documents
retrieved by the cosine run were judged for relevance in each case. The term
occurrence information obtained from these 20 documents was then used to com-
pute the values of P; and pi' for all terms X:» and a new ranking was obtained
for all the documents using the probabilistic term independence, tree depen-

dence, and generalized term dependence models.

To obtain a fair comparison between the probabilistic retrieval runs and
the initial cosine rum, it is necessary to discount the performance of the
relevant and nonrelevant items retrieved in the top 20 ranks, since these are
utilized to estimate the parameters needed for the probabilistic formulas.
This is dome by using a rank freezing process which fixes the relevant items
originally retrieved at their initial ranks, while discarding the nonrelevant
items initially seen and replacing them by new items retrieved at lower ranks.

[19]

It may be seen that for both the retrospective and the predictive experi-
ments the probabilistic retrieval system performs better than the initial
cosine run used in the rank freezing mode. Moreover, for the retrospective

case where full relevance information is available and exact values can be
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computed for the probabilistic parameters, the gemeralized term dependence
theory is confirmed. That is, the tree dependence model provides a 13 percent
improvement over the term independence model; additional small improvements
are obtained when one, two, and finally all term triples defined by the span-
ning tree are taken into account. While the percentage improvement is small
because the high level of performance of all the rums leaves little room tor
amelioration, a consistent improvement is nevertheless in evidence for the
generalized model including term triples. When one triple 1s added to the
term pairs, 18 out of 30 queries show improvement, 6 shaw deterioration, and
the performance of 6 is not changed. When all triples'are used, the perfor-
mance improves for 24 out of 30 queries, with 3 additiomal qﬁeries remaining

unchanged, and only 3 showing deteriorationm.

In the predictive case where little relevance information is available,
the computed probability information for term triples obtained from the
retrieved documents did not help in the subsequent retrieval of additiomnal
relevant items. The average precision values of 0.69 to 0.70 are very close
to each other for the predictive case, but the best output was obtained for

the standard tree dependence model using all term pairs without added triples.

The use of the maximum spanning tree to define all usable term pairs and
triples and to expand the query terms may not be felicitous in practice. When
the original query contains high-frequency, common terms, a great many related
terms are added to the queries that might better be left out. Additional
experiments are under way using structures other than the maximum spanning
tree to define the term dependencies, and more discrimination query expansion

methods.



L 11

[ 2]

[ 9]

[10]

[11]

[12]

[13]

[14]

- 31 -

References

M.E. Maron and J.L. Kuhns, On Relevance, Probabilistic Indexing and
Information Retrieval, Journal of the ACM, Vol. 7, No. 3, July 1960, p.
216-244.

D. Kraft and A. Bookstein, Evaluation of Information Retrieval Systems:
A Decision Theory Approach, Journal of the ASIS, Vol. 29, No. l, January
1978, p. 31-40.

D. Chow and C.T. Yu, "On the Construction of Feedback Queries™, Journal
of the ACM, to appear.

G. Salton, Mathematics and Information Retrieval, Journal ot Documenta-
tion, Vol. 35, No. 1, March 1979, p. 1-29.

C.T. Yu, W.S. Luk and M.K. Siu, On Models of Information Retrieval
Processes, Information Systems, Vol. 4, No. 3, p. 205-218, 1979.

R.0. Duda and P.E. Hart, Pattern Classification and Scene Analysis, J.
Wiley and Sons, New York, 1973.

K. Lam and C.T. Yu, A Clustered Search Algorithm Interpreting Arbitrary
Term Dependencies, ACM Transactions on Data Base Systems, Vol. 7, No. 3,
September 1982, p. 500-508.

S.E. Robertson and K. Sparck Jones, Relevance Weighting of Search Terms,
Journal of the Am. Soc. for Information Science, Vol. 27, No. 3, 1976,
p. 129-146.

C.T. Yu and G. Salton, Precision Weighting--An Effective Automatic
Indexing Method, Journal of the ACM, Vol. 23, No. 1, 1976, p. 76-88.

C.J. van Rijsbergen, A Theoretical Basis for the Use of Cooccurrence
Data in Information Retrieval, Journal of Documentation, Vol. 33, No. 2,
June 1977, p. 106-119.

D.J. Harper and C.J. van Rijsbergen, An Evaluation of Feedback in Docu-
ment Retrieval using Co-occurrence Data, Journal of Documentation, Vol.
34, No. 3, September 1978, p. 189-216.

S.E. Robertson, C.J. van Rijsbergen, and M.F. Porter, Probabilistic
Models of Indexing and Searching, in Information Retrieval Research,
R.N. 0ddy, S.E. Robertson, C.J. van Rijsbergen and P.W. Williams, edi-
tors, Butterworths, London, 1981, p. 35-56.

C.J. van Rijsbergen, Information Retrieval, Butterworths, London, Second
Edition, 1979.

M.G. Kendall and A. Stuart, Advanced Theory ot Statistics, Vol. 2, C.
Griffin, London, Second Edition, 1967.



[15]

[16]

[17]

(18]

[19]

- 32 -

Y.M.M. Bishop, S.E. Fienberg and P.W. Holland, Discrete Multivariate
Analysis: Theory and Practice, MIT Press, Cambridge, Massachusetts,
1974.

P.M. Lewis, Approximating Probability Distributions to Reduce Storage
Requirements, Information and Control, Vol. 2, No. 3, 1959, p. 214-225.

G. Salton, C. Buckley and C.T. Yu, An Evaluation of Term Dependence
Models in Information Retrieval, in Research and Development in Informa-
tion Retrieval, Lecture Notes in Computer Science, Vol. 146, G. Saltomn
and H.J. Schneider, editors, Springer Verlag, Berlin 1983, p. 151-173.

C. Buckley, Probability Estimation, Technical Report, Department of Com-
puter Science, Cornell University, Ithaca, New York, 1983.

G. Salton, E.A. Fox, C. Buckley, and E. Voorhees, Boolean Query Formula-
tion with Relevance Feedback, Technical Report 83-539, Department of
Computer Science, Cornell University, Ithaca, New York, January 1983.



- 33 -

Typical Dependence Tree

Pig. 1

Tree Decomposition Using Edge (u,v)

Fig. 2



Decomposition into Three Subtrees Following
~ Removal of Vertex k

Fig. 3

Composition of Correlation Coefficients
P3g = P13 " P14 * P48

Fig. 4



Decomposition Following Removal of Edge (u,v)

Fig. 5
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Decomposition Following Removal of Triangle (u,v,w)

Fig. 6



Comparison of Triangle and Edge Decomposition

Fig. 7
G
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@
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a) Tree ¢+ b) Tree G

.Addition of One Edge (u,v) Forming Triangle (u,v,w)

Fig. 8
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ol Original Query : Q = (xz’x3)
| ©- © Expanded Query : Qexp = (xl,xz,x3.x4.x5)
X X
2 3
o o P(x) = P(xl)P(xz)P(x3)P(x4)P(x5)
x, Xg

a) Term Independence Model

P(x) = P(xl)-P(xzle)-P(x3lxl)-P(x4lx3)-P(x5Ix3)

b) Basic Tree Dependence Model

P(x) = P(xl.xz,x3)P(x4|x3)P(x5Ix3)

c) Generalized Tree Dependence With One Added Triple

Operations of Extended Tree Dependence System

Fig. 9
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Medlars 1033 Deccuments, 30 Queries Retrospective Predictive
Experiment Experiment

Initial Vector Processing Run,
cosine similarity ranking, 6739 .6739
weighted terms; retrieved additional
items after freezing relevant
retrieved in top 20 ranks

Probabilistic Retrieval, natural
language terms, query expansion .8241 8242
through spanning tree, term independence

Probabilistic Retrieval, query
expansion, all dependent pairs 9314 .9066
from spanning tree

Probabilistic Retrieval, query
expansion, all pairs plus .9336 (0%) .6979(-12)
one triple

Probabilistic Retrieval, query
expansion, all pairs plus .9405(+12) .6938(-2%)
two best triples

Probabilistic Retrieval, query ‘
expansion, all pairs plus .9538(+2%) .6961(-1.52)
all triples

- -—— —

Evaluation of Generalized Term Dependence Model
(average precision values at recall of 0.25, 0.50 and 0.75)

Table 1
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