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Late blight resistant tomato lines were created in independent breeding programs 

using the accession L. pimpinellifolium L3708 as the source of the resistance. However, 

initial field observation suggested that the late blight resistance in the lines produced by two 

different breeding programs differed. To address the possibility of a partial transfer of the 

late blight resistance derived from L. pimpinellifolium L3708 and to examine the possibility of 

race specificity of this resistance, laboratory analyses were performed of the responses of 

nine tomato genotypes against five Phytophthora infestans isolates. Prior analysis by 

standard ANOVA revealed significant differences across lines but could not determine 

whether the disease responses in the AVRDC lines were different from those of the 

heterozygous F1 hybrids, created by crossing susceptible tomatoes with the Cornell 

resistant fixed lines. A different analytical method was needed. Therefore, sporangia 

numbers/leaflet and diseased area data were analyzed using a half-normal probability plot 

and regression analysis. The results of this analysis show its utility for genetic or 

pathological studies. Considering only the uniform genotypes, this method confirms the 

results obtained by using a standard ANOVA, but provides a clearer demonstration of the 

distributions of the individuals within the populations and how this distribution impacts 

variance and the difference among the populations. This method also allows a joint 

analysis of the uniform genotypes with an addition population that is less uniform, because it 

is segregating. Such an analysis would be invalid using a standard ANOVA. The results 

of this joint analysis determined that the additional population was divergent from the 

Cornell fixed line, and, against some isolates, against the AVRDC lines as well. These 

implications of the results obtained for use of this late blight resistance are also discussed. 
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Late blight caused by Phytophthora infestans {Mont.) deBary, causes severe loss of 

tomato production when the environment is favorable to the pathogen. The control of this 

disease is increasingly difficult due to changes in pathogen virulence and increased 

chemical resistance of the pathogen (Fry and Goodwin 1997a; 1997b; Goodwin eta/. 1998; 

Kato et a/. 1997). Currently, late blight is controlled in tomato production fields by the use of 

fungicidal sprays; in some regions, the timing of these sprays is guided by blight forecasts 

based upon current weather conditions. {Davis et a/. 1996; 1998; Raposo et a/. 1993) 

Even with the monitoring of environmental conditions to forecast blight-favorable conditions 

and the utilization of controlling chemicals, losses in tomatoes due to late blight can be very 

high. Furthermore, many countries cannot afford the application of heavy loads of 

chemicals to their tomatoes. An incorporation of resistance could be a useful addition to an 

integrated late blight control strategy. 

Researchers at the AVRDC found that L. pimpinellifolium accession L3708 (a.k.a. 

LA 1269, NSL 116890 and Pl365957) is a strong resistance source to late blight in tomatoes 

{AVRDC 1994; Chunwongse et a/. 2002) and generously provided this accession to other 

breeding programs, each of which proceeded to transfer the resistance. However, when 

the resulting late blight resistant lines were grown together under natural infestation, the 

degree of resistance appeared to differ among lines from the different programs (R. Gardner, 

Pers. Comm.). Therefore, lines with resistance derived from L3708 bred at Cornell and at 

AVRDC were tested against a series of P. infestans isolates to test for differences in disease 
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response among lines across isolates. Standard ANOVA analysis revealed that the lines 

produced by the two programs were significantly different, with the set of lines bred at 

Cornell all resistant across the 5 isolates used and the other set of lines bred at AVRDC all 

showing resistance to high levels of the disease against some of the 5 isolates (Kim, 2003, 

Kim and Mutschler, submitted) Heterozygous F1 hybrids produced by crosses of 

susceptible lines with the homozygous Cornell lines also showed resistance to high levels of 

disease against some of the 5 isolates. That analysis, however, could not fully determine 

whether the disease responses among all of the populations of interest. Using a standard 

ANOVA method for data analysis would not be appropriate if any of the lines/populations 

were segregating. Segregation was a possible explanation for the lower level of late blight 

resistance in the AVRDC lines than that in highly resistant Cornell lines bred from the same 

resistance source (Kim, 2003, Kim and Mutschler, submitted). Segregation was also a 

distinct possibility for some low- resistance selections from the Cornell program. Therefore, 

an alternative analytical method was needed for analysis of data including these populations. 

Half-normal probability plot and regression analysis could be utilized to analyze a 

data set possibly including segregating populations. The half-normal probability plot 

method was conceived by Daniel (1959) and further developed by Birnbaum (1959) and 

Krane (1963). It is a procedure to determine if a set of observations are members of a 

single distribution, or if there are outliers present. Then observations are ranked from 1 to 

n (highest). The ordered values of Pk = (2k - 1 )/2n, k = 1, 2, ... , n, are computed. Using 

half-normal probability plot graph paper, the values of Pk, as ordinate values, are plotted 

against the response Yk as the abscissa values. The values of Yk falling on a straight line 

are considered to belong to the same distribution. Those not falling on the line are omitted 
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and the Pk values are recomputed for the reduced set of observations. The values are 

then re-plotted to determine if additional observations will be considered as outliers. 

Originally, the half-normal probability plot was used to identify important vs. 

unimportant factors on effect (expressed as orders) in singly replicated factorial design 

experiments (Daniel 1959). If some combination of factors contributed differently from the 

combined majority of the other factors, similarly contributed factors are found on a common 

line, and the different contributing factors are found off this common line. If the data are 

normally distributed, the data will be on the line. Important factors will not be in a normally 

distributed data set and will be off this line, forming a different line. Therefore, if the factors 

have different effects, data will be grouped differently, affecting the lines drawn. 

To our knowledge, the half-normal probability plot and regression analysis has not 

previously been used in genetic or pathological studies. The goals of this work is to apply 

the half-normal probability plot and regression analysis to the sporangia number and 

disease area data in order to test the utility of this method on host/pathogen interaction data, 

and to attempt to determine more completely the differences in disease response across 

isolate among the tomato genotypes tested against a series of 5 isolates of P. infestans. 

MATERIALS AND METHODS 

Tomato Lines Tested 

Nine tomato genotypes were tested against five Phytophthora infestans isolates in 

this study. The late blight susceptible control genotypes used were the open-pollinated 

freshmarket tomato line NC215E (Dr. Randolph Gardner, North Carolina State University) 
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and the open-pollinated processing tomato line E6203 (LA4024, available from C. M. Rick 

Tomato Genetics Resource Center, Davis, CA). 

Two AVRDC late blight resistance lines, CLN 2037 8 and CLN 2037 E (developed 

and provided by Dr. Hanson and Dr. Black of the AVRDC Tainan, Taiwan), which also carry 

resistance from L3708 were also used in the replicated test. 

Two late blight resistant lines bred at Cornell (Kim, 2003, Kim and Mutschler, 

submitted) carrying the resistance from L pimpinellifolium L3708 (AVRDC 1994; 

Chunwongse eta/. 2002) were used in this analysis. The P. infestans isolates US-7 and 

US-17 were used in screening late blight resistance during the breeding program; the 

resulting fixed lines were uniformly resistant to both of these isolates (Kim, 2003, Kim and 

Mutschler, submitted). The line 993104-10 was derived after one backcross to freshmarket 

tomatoes followed by one backcross to processing tomatoes, and line 993111-7 was derived 

after one backcross to freshmarket tomatoes followed by two backcrosses to processing 

tomatoes. Pollinating the susceptible genotypes, E6203 and NC215E, with pollen from the 

Cornell late blight resistant homozygous line, 993104-10 produced experimental hybrids that 

were heterozygous for the late blight resistance gene(s) carried by 993104-10. 

In the course of breeding the Cornell late blight resistant fixed lines, selections had 

also been made for plants that appeared to have lower levels of resistance to US-7 and US-

17. Self-progeny of one of these selections, designed low-R (982067 -3) was also tested. 

Pathogen Isolates Used 

Phytophthora infestans isolates US-7 (940330), US-11 (980066), US-17 (970001), 
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NC-1 (980003), and DR48 (DR990004) were obtained from Dr. William Fry (Dept. of Plant 

Pathology, Cornell University) for use in these tests. US-7 was previously a dominant 

isolate in US, and US-11 is still a major isolate in California. NC-1 has been a dominant 

isolate in North Carolina, and US-17 was what was called "a tomato-specified isolate" in the 

southeast US. DR4B was collected from the Dominican Republic. Culture maintenance 

and inoculum preparation were as described in (Kim, 2003, Kim and Mutschler, submitted) 

Inoculation and Data Collection 

The detached leaflet droplet test method (Legard et a/. 1995) was used to test 

resistance and susceptibility level. These experiments were replicated 3 times with 6 plants 

per genotype except the low resistance selection population that was tested 10 plants each. 

In all, 174 leaflets were tested. Assays were performed, and diseased leaflet area and 

sporangia produced per leaflet data were collected as described in (Kim, 2003, Kim and 

Mutschler, submitted) 

Data Analysis 

The collected spore number, diseased leaflet area and calculated sporangia 

number/unit diseased area (cm2) data were analyzed both by half-normal probability plot 

and by regression analysis. Three rep average values of individual plants were calculated 

and analyzed by a half-normal probability plot analysis. Data were ranked from 0 to high 

value then Pk values were calculated according to the rank as following equation. 



Pk = ((2 X rank)-1 )/2n 
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Data were plotted average sporangia No. and diseased area as X-axis and Pk value 

as Y- axis and regression lines were plotted. 

RESULTS AND DISCUSSION 

The trends are apparent in the differences among genotypes for average sporangia 

number and diseased leaflet area ( cm2) by some of the genotypes against the 5 isolates 

(Table 1 and 2). The average sporangia numbers indicate that the susceptible lines 

produced numbers of sporangia that were high, while in contrast the average sporangia 

numbers of the two ComeU homozygous lines were very low, demonstrating that these lines 

were resistant to all of these pathogen isolates (Table 1 ). Therefore, very little of the 

variability among genotypes or isolates in the experiment was generated from these 

homozygous lines. The average sporangia numbers of the heterozygous hybrids 

depended on the pathogen isolate used. The average sporangia numbers of the 

heterozygous hybrids were similar to those of the homozygous fixed lines against US-11 , 

but were between those of the resistant fixed lines and susceptible controls against the 

isolates US-17, NC-1 and DR4B (Table 1). Furthermore, the heterozygous hybrids did not 

suppress sporangia! production of US-7 although the parental homozygous fixed line was 

resistant to this isolate. 

The AVRDC lines, CLN 2037 B and CLN 2037 E, which were also supposed to be 

fixed for late blight resistance from L3708, produced very different average sporangia 

numbers against the 5 isolates than did the two Cornell homozygous lines. The resistance 
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of the AVRDC lines was not effective across all five isolates used. Indeed, the average 

sporangia! numbers of the AVRDC lines against US-7 followed a pattern that was more 

similar to that of the heterozygous F1s than of the Cornell fixed lines. 

The average sporangia numbers of the low-R progeny against US-7 was also similar 

to that of the AVRDC lines (Table 1 ). This presentation of the data provides the means and 

a measure of the variance around the means, but is not informative regarding the 

distribution within a group. 

The averages diseased area results of the susceptible lines and the Cornell fixed 

lines were very similar to those for the average sporangia results for these two genotypes 

(Table 2). The results for the average diseased area indicate that the susceptible lines 

were all highly susceptible to all isolates, with diseased areas often extending throughout 

the entire leaflet. The results for the average diseased area of the two Cornell 

homozygous lines showed similar strong resistance to all of the isolates. Therefore, very 

little of the variability among genotypes or isolates for disease area was generated from 

these late blight resistant entries (Kim, 2003, Kim and Mutschler, submitted). The results 

for the average diseased area were different than the sporangia results for the heterozygous 

hybrids. The average diseased areas in the heterozygous hybrids were generally much 

closer to those of the susceptible lines than was seen in the sporangia results. The 

diseased area data of the heterozygote were particularly close to susceptible lines when 

challenged with US-7 (Table 2). 

The disease expression of the two AVRDC lines and the low resistance population 

inoculated with the five isolates was similar to that of the heterozygous F1s. The response 

pattern for the average diseased area results for heterozygous hybrids were similar to 
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sporangia results for the AVRDC lines, as far as general ranking of the virulence of the 

isolates. When US-7 is used, the AVRDC lines, low resistance selection population, and 

the heterozygous F1's all have disease expression closer to that of the susceptible lines 

(Table 2). 

Simply by observing the averages presented in Table 1 and 2, it is clear that the 

AVRDC lines showed different responses against the 5 isolates, in terms of average 

sporangia numbers and average disease area, than the Cornell late blight resistant lines. 

However, a statistical test of the data is required to show that the differences are significant. 

To choose the appropriate method of testing, one must consider the natures of the lines 

being tested and of the L3708-derived resistance as transferred into the AVRDC lines vs. 

the Cornell lines. If a single gene controls the L3708 resistance and this resistance was 

transferred to the fixed lines bred in both breeding programs, then these fixed lines should 

all perform similarly. Prior field observations with the AVRDC lines suggested that this 

might not be the case. One explanation is that the full resistance derived from L3708 is 

controlled by more than one gene and that AVRDC lines are either not homozygous for, or 

are missing at least one of, the resistance genes. If either the AVRDC lines or the low 

resistance Cornell selection were heterozygous for a resistance gene and produced 

segregating progeny, then comparisons of averages and variations with the other non-

segregating lines would be inappropriate. Therefore, we employed the half-normal 

probability plot and regression analysis (Birnbaum 1959; Daniel 1959; Krane 1963) instead 

of a more typical AN OVA analysis. 

It is a procedure to determine whether sets of observations are members of a single 

distribution or if there are outliers present. The half-normal probability plot method has 
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been criticized because a precise rule for omitting observations has not been formulated. 

Usually, however, one only omits observations with large divergences from the line. The 

. process is then repeated to determine which additional observations are likely outliers. 

The process of repeating the procedure until all remaining observations are approximately 

on the same line is sufficient to detect outliers. Often, the experimenter will have a reason 

for an observation being an outlier. In our situation, we minimized the problem since we 

were able to detect an entire group that was divergent, such as resistant versus susceptible. 

The procedure is also useful for detecting divergent observations in a segregating group. 

In addition, the procedure allows for an estimate of the experimental error variance. From 

the final set of n observations considered to have the same distribution, compute m = 
0.683n + 0.5. The value of Y m is the estimated experimental variance. An eye-fitted line 

rather than a computed linear regression line is usually sufficient. 

There are advantages in using the half-normal probability plot method for analysis to 

detect heterogeneous components. In a homogeneous fixed line population, each plant 

will be considered as a factor combination and will be in a commonly distributed data set. In 

a segregating population, the population is heterogeneous and each plant is considered as 

a different factor combination; susceptible plants and resistant plants will not be in the same 

distributed data set. However, if the contribution to an effect is similar, the plants will be in 

commonly distributed data set. If we expand the concept that resistant gene combinations 

are factor combinations, the contribution of the same resistant gene combinations will be in 

the same commonly distributed data set. In other words, the same resistant gene(s) 

combination will lie on the same or a similar slope line. If the data of two populations were 

distributed in same range, the slopes of regression lines would be similar because the Pk 
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value would be similar too. If the range of the Y k values of one population was small and 

the range of another population was wide, the slopes of the distributions would be different. 

. With this method, we could also compare individual plants in a low resistance population 

which might be segregating. 

Data were grouped as Cornell fixed lines, the low resistance selection population, 

the heterozygous F1s, and the AVRDC lines, and then analyzed by the half-normal method 

described. Rather than using half-normal probability graph paper, we used Microsoft Excel 

to obtain the graphs. Excel uses equally-spaced values of Pk, which has the effect of 

flattening the slopes. This, however, does not affect the ability to observe discrepant 

observations. The data points located on Y-axis are all zero, even though they have 

different rank and Pk value. For the purpose of graphing, theses zero points were all given 

different ranks so the points would be visually distinguishable. This would not affect 

regressions of non-zero containing data sets and regressions would not be calculated on all 

zero data sets. The sporangia number plots for 5 different isolates are summarized in 

Figures 1 with the regression line slopes summarized in Table 3. 

Sporangia half-normal probability results against US-11 indicated that the Cornell 

homozygous lines, the low resistance selection population, the heterozygous F1s and the 

AVRDC lines were all resistant against this isolate. The slope of regression lines indicated 

that a few plants of the F1s and AVRDC lines were outliers, but these were probably 

experimental error (Fig. 1A, Table 3). The susceptible lines were a discrete group with a 

line that differed in its slope and placement from all of the other genotypes. 

Sporangia half-normal probability results against US-17, DR4B and NC-1 

indicated that the Cornell fixed lines were a unique group with the greatest resistance. The 
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low resistance selection population and the AVRDC lines grouped together and showed 

similar patterns of distribution and slopes indicating a resistance less than the Cornell 

resistant fixed lines. (Fig. 1 B, C, D, Table 3). The heterozygous F1s were in a group of their 

own between a group with AVRDC lines and the low resistance selection population and the 

group of susceptible lines. 

Sporangia half-normal probability results using US-7 were different than those 

obtained with any of the other isolates. The US-7 results separated the genotypes into 

three distinct grouping. Most resistant were the Cornell homozygous fixed lines, which had 

sporangia numbers of zero. The heterozygous F1s, AVRDC lines and the low resistance 

selections all had similar slopes of regression lines and had sporangia number ranges 

greater than the homozygous Cornell lines but lower than that of the last group composed of 

the susceptible lines (Fig. 1 E, Table 3). 

Against US-7, the group composed of the AVRDC lines, the heterozygous F1s, and 

the low resistance selection population were in same range of distribution and had 

regression line slopes that were similar to that of the susceptible lines. This result clearly 

suggested that the heterozygotes and AVRDC lines were not resistant to US-7 even though 

they were resistant to US-11. The results across isolates indicated that the AVRDC lines 

and the low resistance selection were more susceptible to US-7 than to US-17, NC-1 and 

DR4B. These results indicate that the susceptibility level of the two AVRDC lines was 

similar to that of the heterozygous F1s and the low resistance selection, rather than the 

Cornell fixed lines. 

Considering the preceding results, it is unlikely that resistance, transferred to the 
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AVRDC and the Cornell lines, is controlled by single, completely dominant gene. The results 

of the heterozygous F1s were clearly different from their fixed line parent against the 4 

isolates other than US-11. 

The alternative hypothesis, suggested by Chunwongse et a/ (2002), is that 

resistance is due to a single incompletely dominant gene, and so lower levels of resistance 

could be attributed to the heterozygous condition. However, the data from the less 

resistant AVRDC and high resistant Cornell fixed lines do not support this hypothesis. The 

responses across isolates of the AVRDC and Cornell fixed lines are very different. The 

levels of resistance of the of the AVRDC lines for some isolates does have similarities to that 

of the heterozygous F1 hybrid created using the Cornell fixed lines, however there was no 

evidence that these less resistant AVRDC lines or their selfed progenies segregate for 

resistance. If only one incompletely dominant gene controlled the resistance, and a 

population is not fixed and uniform for the resistance (due to segregation and/or assortment), 

then the progeny of at least some of these lines should include plants with the higher 

resistance against all 5 isolates and/or plants that are fully susceptible to all 5 isolates. Such 

off-type plants were not observed in the progeny of the AVRDC lines. Therefore one 

cannot attribute the lower levels of resistance to heterozygousity. 

Diseased area data were analyzed with the half-normal probability plot method 

(Figures 2, Table 4). The half-normal probability plot results of the diseased area data had 

similarities and differences with the results of the sporangia number analysis. Diseased 

area half-normal probability results of the homozygous Cornell fixed lines against the 

isolates US-17, DR4B, NC-1 indicate that these lines grouped together and have strong 

resistance against all of these isolates (Fig. 28 to D, Table 4 ). Comparatively, no other 
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plant genotypes groups with these lines. These results were very similar to those 

concerning sporangia numbers. The US-11 diseased area results were also the same as 

US-11 sporangia results. Homozygous fixed lines, low resistance selection population, F1s, 

and AVRDC lines were all grouped together and resistant against US-11 (Fig. 2A, Table 4). 

Diseased area half-normal probability results of F1s, the low resistance selection 

population and the two AVRDC lines against US-17, DR4B, NC-1 (Fig 28 to D, Table 4) 

were very similar, and more similar to that of the susceptible than to the resistant Cornell 

lines. This stands in contrast to the sporangia number analysis, in which a group with 

AVRDC lines and the low resistance selection population were more resistant than the 

heterozygous F1's, and closer to the Cornell lines. 

Diseased area half-normal probability results against US-7 are perhaps the most 

extreme. Most resistant were the homozygous fixed lines, which are a discrete class. All 

of the other genotypes fall in different, though overlapping, ranges on or very near a 

common line, indicating a lack of significant difference among these genotypes against US-7 

(Fig. 3E, Table 4 ). 

The combined sporangia results and diseased area results indicates that the 

AVRDC-developed resistant lines showed wider diseased area than sporangia production, 

like heterozygous F1s. A model that would fit the data would postulate that the resistance 

is controlled by a major gene, which provides resistance to US-11, and in combination with 

one (or more) additional gene(s), provides the resistance to the other isolates. The Cornell 

resistant fixed line results were completely different from the AVRDC line results. This 

,difference would be explained if other minor gene(s), fixed in the Cornell lines, was/were 

recessive and supports major gene action to provide the wider range of resistance. The 
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existence of the low resistance selection, which was derived from the same base population 

as the homozygous Cornell fixed lines, also fits the hypothesis that the full resistance, as 

expressed in the Cornell fixed lines, involves more than one gene. Progeny test results of 

CLN 2037 B and CLN 2037 E against US-17 support that two AVRDC lines are homozygous 

and do not segregate (Kim, 2003, Kim and Mutschler, submitted). If all of the populations 

are indeed fixed, one cannot explain the differences in response of the Cornell fixed lines 

and the AVRDC lines if the resistance was controlled by single gene. 

Considered together, the results of these experiments show that the resistance of 

L3708 can be transferred to create lines that have a full level of resistance, such as those 

released by the Cornell program. The results also show the possibility that a very good 

breeding program could transfer only partial resistance due to isolates used in a selective 

screen, producing lines with resistance that was weak and narrow in its protection. The 

weaker or partial resistance may be due to the absence of the other gene(s). 

Control of resistance by more than one gene is not unusual. In a study of 

resistance to late blight in potatoes, race-specific resistance required more than a single 

dominant R gene for expression of the dominant suppressor (EI-Kharbotly et a/. 1996). 

The interaction of more than one dominant gene for a fully functional expression of 

resistance has also been seen in studies of other host planUdisease systems. Cf-2, which is 

derived from L. pimpinellifolium, required the unlinked Rcr3 gene to be fully functional. 

Interestingly, Rcr3 is allelic toNe gene, which derived from L. pimpinellifolium and suppress 

Cf-2-dependent autonecrosis conditioned by its L. esculentum allele ne (Kruger eta/. 2002). 

M/a-12, race-specific resistant gene to powdery mildew in barley, also required Nar-1 and 

Nar-2 loci for full functionality (Freialdenhoven eta/. 1994). Resistance for rice blast was 
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found to be controlled by two dominant unlinked genes (Pan et a/. 1996). A race non-

specific resistant breeding effort is currently underway for rice blast resistance (Castano et 

a/. 1989). Ttie strategy in this program is to use pyramiding to obtain a broad spectrum of 

resistance (Li eta/. 2001; Rao et at. 2002) 

Considering the impact of the choice of isolate on the expression of the resistance 

(Kim, 2003, Kim and Mutschler, submitted), a likely cause for the difference in results 

between programs would be the type of isolates used for screening and selections in the 

course of the breeding program. The production of lines with partial resistance would be 

more likely if screening used only one of the weaker isolates, such as US-11, or was done 

using natural infection in a location which has only one or very few isolates of similar 

pathogenicity. 

These results have important implications for the use of the resistance from L3708 in 

tomato cultivars. Release of varieties with the partial resistance would be risky as they 

would subject to failure in a commercial setting when isolates new to the region moved in to 

the area. It would also be misleading for a breeder to interpret the "failure" of a partially 

resistant variety as indicating that a more complete resistance was not attainable from 

L3708. When a breeding program succeeds in transferring the complete resistance, it 

should use the resistance in the homozygous condition to help maintain the stability of the 

resistance and prevent the selection for isolates with a response such as that seen with US-

7. 
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Table 1. Average sporangia numbers and standard errors for nine tomato genotypes tested with five P. infestans isolates. 

P. infestans isolate 
Genotype name and class 

US-11 US-17 DR4B 

E6203 s 67,812 ± 13,370 163,953 ± 49,056 256,078 ± 36,872 

NC215E s 125,891 ± 19,695 145,086 ± 43,315 196,279 ± 23,712 

NC215E X 993104-10 F, 1,172 ± 682 9,688 ± 7,034 18,984 ± 8,246 

E6203 X 993104-10 F, 312 ± 243 7,656 ± 2,540 4,063 ± 1 ,897 

993104-10 R 0 0 0 

993111-7 R 0 0 0 

CLN 2037 B A 273 ± 273 9,648 ± 3,722 742 ± 510 

CLN 2037 E A 0 4,961 ± 2,439 0 

992067-3 LR 0 2,273 ± 1,176 30,975 ± 13,812 

N=30 for 992067-3 and all others, N=18 

Class S: Susceptible checks 

R: Cornell resistant fixed lines 

F1: Heterozygous F, hybrid between Cornell resistant fixed lines X Susceptible checks. 

A: AVRDC lines 

LR: Cornell low resistant selection. 

NC-1 US-7 

383,109 ± 86,844 683,655 ± 116,371 

209,995 ± 31 ,532 518,186 ± 64,490 

24,961 ± 8,865 158,273 ± 40,985 

26,367 ± 7,973 186,832 ± 28,608 

0 820 ± 661 

0 0 

9,766 ± 4,404 107,294 ± 25,924 

1,211 ± 760 61,377 ± 21,843 

2,391 ± 1 ,272 53,423 ± 15,924 



Table 2. Average diseased areas (cm2) and standard errors for nine tomato genotypes tested with five P. infestans 

isolates 

Genotype name and class 
P. infestans isolate 

US-11 US-17 DR4B 

E6203 s 11.19 ± 0.54 13.74 ± 1.06 9.42 ± 0.64 

NC215E s 7.12±0.69 9.90 ± 0.94 8.44 ± 0.78 

NC215E X 993104-10 F, 0.58 ± 0.33 1.92 ± 1.06 1.27 ± 0.42 

E6203 X 993104-10 F, 0.27 ± 0.20 4.20 ± 1.07 0.71 ± 0.29 

993104-10 R 0 0 0 

993111-7 R 0 0 0 

CLN 2037 B A 0.21 ± 0.21 2.57 ± 0.90 0.66 ± 0.49 

CLN 2037 E A 0 2.39 ± 1.00 0 

992067-3 LR 0 0.84 ± 0.40 1.99 ± 0.57 

N=30 for 992067-3 and all others, N=18 
Class S: Susceptible checks 

R: Cornell resistant fixed lines 

F1: Heterozygous F1 hybrid between Cornell resistant fixed lines X Susceptible checks. 

A: AVRDC lines 

LR: Cornell low resistant selection. 

NC-1 US-7 

12.66 ± 0.82 14.07 ± 0.94 

10.97 ± 0.63 13.09 ± 0.88 

3.98 ± 0.90 8.11 ±0.90 

4.78 ± 0.98 9.59 ± 0.75 

0 0.42 ± 0.42 

0 0 

2.86 ± 0.99 9.76 ± 1.45 

0.39 ± 0.19 3.80 ± 1.15 

1.07 ± 0.56 4.67 ± 0.73 



Table 3. Summary of regression and R2 of Pk vs. average sporangia number by genotype. 

Genotype 

Isolate Susceptible F1 LowR AVRDC 

Regression Rz Regression Rz Regression Rz Regression Rz 

US-11 '= 1.E-6a: + 0.77 0.82 f = 1.E-4 a:+ 0.33 0.58 N.A. N.A. '= 8.E-5 a:+ 0.63 0.35 

US-17 g.= 9.E-7 a:+ 0. 74 0.97 '= 3.E-6 a:+ 0.54 0.38 f = 3.E-5 a:+ 0.30 0.93 '= 2.E-5 a:+ 0.34 0.71 

DR4B f = 9.E-7 a:+ 0.69 0.94 f = 2.E-5 a:+ 0.40 0.54 g.= 2.E-6 a:+ 0.54 0.33 f = 6.E-5 a:+ 0.38 0.57 

NC-1 f = 5.E-7 a:+ 0.75 0.92 ff = 1.E-6 a:+ 0.61 0.86 'I= 2.E-5 a:+ 0.34 0.86 ff= 1.E-5a:+ 0.33 0.69 

US-7 g.= 5.E-7 a:+ 0. 72 0.88 'I= 2.E-6 a:+ 0.42 0.98 'I= 3.E-6 a:+ 0.31 0.88 f = 4.E-6 a:+ 0.30 0.78 

Small values of slope are due to digit differences between Pk and sporangia No. 
Regression and R2 for resistant genotype couldn't be calculated. 

Table 4. Summary of regression and R2 of Pk vs. average diseased area by genotype. 

Genotype 

Isolate Susceptible F1 LowR AVRDC 

Regression Rz Regression Rz Regression Rz Regression ~ 

US-11 , = 0.026 a: + 0.66 0.99 • = 0.430 a: + 0.30 0.83 N.A. N.A. • = 0.125a: + 0.63 0.40 

US-17 , = 0.022 a: + 0.62 0.88 , = 0.051 a:+ 0.39 0.93 , = 0.085 a:+ 0.29 0.93 , = 0.076 a: + 0.30 0.96 

DR4B , = 0.039 a: + 0.55 0.97 , = 0.237 a: + 0.29 0.91 'I = 0.085 a: + 0.44 0.65 , = 0.136 a: + 0.38 0.83 

NC-1 , = 0.045 a: + 0.36 0.98 , = 0.050 a:+ 0.37 0.94 , = 0.076 a: + 0.27 0.90 ' = 0.049 a: + 0.38 0.95 

US-7 , = 0.052 a: + 0.18 0.98 , = 0.081 a:+ 0.11 0.98 , = 0.043 a: + 0.16 0.95 • = 0.056 a:+ 0.12 0.99 

Small values of slope are due to digit differences between Pk and diseased area. 
Regression and R2 for resistant genotype couldn't be calculated. 
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Figure 1. Average sporangia No. by genotypes and isolates. 

A: US-11, 8: US-17, C: DR4B, D: NC-1, E: US-7 
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A: US-11, B: US-17, C: DR4B, D: NC-1, E: US-7 


