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This thesis is concerned with heat kernel estimates on weighted Dirichlet spaces.

The Dirichlet forms considered here are strongly local and regular. They are

defined on a complete locally compact separable metric space. The associated

heat equation is similar to that of local divergence form differential operators.

The weight functions studied have the form of a function of the distance from a

closed set Σ, that is, x 7→ a(d(x,Σ)). We place conditions on the geometry of the

set Σ and the growth rate of function a itself. The function a can either blow up

at 0 or ∞ or both. Some results include the case where Σ separates the whole

spaces. It can also apply to the case where Σ do not separate the space, for

example, a domain Ω and its boundary Σ = ∂Ω. The condition on Σ is rather

mild and do not assume differentiability condition.
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CHAPTER 1

INTRODUCTION

This chapter reviews some history of heat kernel estimates as it is related to

the work done in this thesis. Even though the subject is less than sixty years old,

it has progressed in many directions – [6],[31],[39],[41],[18],[15],[43],[42],[49].

For example, readers interested in Riemannian manifolds should look at Saloff-

Coste’s book[39] or Grigor’yan’s recent book[15] while those interested in Lie

group should have a look at Varopoulos[48]. Delmotte[7] also study heat equa-

tion on graphs. Recently, Ohta and Sturm[37] also study heat equation on

Finsler manifolds. Several reviews of the subject are also available[40, 1, 38,

24, 12, 13, 11, 22, 14]. It is impossible to cover all aspect of the subject. What is

written here is rather incomplete and the author apologies for any missing work

that is not mentioned.

The classical heat equation is given by

∂tu =

n∑
i=1

( ∂
∂xi

)2
u

u(0, ·) = f

for any appropriate function f : Rn → R. The solution u of the heat equation

represents the evolution of temperature over time: u(t, x) is the temperature at

point x at time t ≥ 0 given the initial temperature distribution f .

It is well-known that the solution u is given by

u(t, x) =

ˆ
Rn

f (y)
1

(4πt)n/2 e−|x−y|2/4tdy

The function p(t, x, y) = 1
(4πt)n/2 e−|x−y|2/4t is called the heat kernel associated to the

Laplacian
∑n

i=1

(
∂
∂xi

)2
. One important characteristics of p(t, x, y) is that it depends
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only on the distance d(x, y) = |x − y|, not x and y directly. As time t → ∞, the dis-

tances dt(x, y) =

√
|x−y|2

4t are getting smaller. This corresponding to the fact heat

spreads further and further away as time goes by. Another important charac-

teristics is the term tn/2. It might not be cleared at the moment what it is related

to. This could come from the dimension constant n, or the volume of a ball of

radius t(which is equal to tn).

In general, the heat equation is given by

∂tu = Lu

u(0, ·) = f

for any appropriate function f : X → R. Here L is an infinitesimal operator

associated to a Markov semigroup Pt = e−Lt. For example, the Laplacian in the

classical heat equation mensioned earlier is the infinitesimal operator associated

to the Brownian semigroup. Another example is L =
∑n

i, j=1
∂
∂xi

ai j
∂
∂x j

where ai j = a ji

are smooth functions on Rn. Nash, Moser and Aronson[32, 28, 29, 30, 3, 4, 5]

shows that if (ai j) is uniformly elliptic i.e. there exists a constant c ≥ 1 such that

c−1
∑

i, j

ξiξ j ≤
∑

i, j

ai jξiξ j ≤ c
∑

i, j

ξiξ j

for all (ξi) ∈ Rn, then the heat kernel associated to L =
∑n

i, j=1
∂
∂xi

ai j
∂
∂x j

satisfies the

heat kernel estimates

c1

tn/2 e−|x−y|2/c2t ≤ p(t, x, y) ≤
c3

tn/2 e−|x−y|2/c4t

for some fixed constants c1, . . . , c4. Their approach is based on Harnack inequal-

ity. Nash’s approach is more primitive[9, 32] while Moser’s approach is easier

to generalize[28, 29, 30]. It is well-known today as Moser iteration method. The

Harnack inequality is in itself an interesting subject. Readers interested in the

history of Harnack inequality may look at Kassmann’s article[21].
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In 1986, P. Li and S.T.Yau[23] prove the following heat kernel estimates

c1√
vol(x,

√
t)vol(y,

√
t)

e−c2d(x,y)2/t ≤ p(t, x, y) ≤
c3√

vol(x,
√

t)vol(y,
√

t)
e−c4d(x,y)2/t

for the Laplacian on Riemannian manifolds with nonnegative Ricci curvature.

The proof is based on S.T.Yau earlier work on Harnack inequality. For detail

proof, the author suggests interested readers to take a look at R. Schoen and

S.T.Yau’s book[41].

The heat kernel estimates in this case differs from the Euclidean case. The

term tn/2 is replaced by
√

vol(x,
√

t)vol(y,
√

t). Of course, in Euclidean space, both

terms differ only by a constant multiple. Riemannian manifolds on the other

hands, one must take into account the inhomogeneity of the volume measure.

Saloff-Coste[39] and many others take a functional analytic approach in

proving heat kernel estimates and arrive at equivalent conditions, one of which

is parabolic Harnack inequality. The results is then further extended to the gen-

eral setting, strongly local regular Dirichlet spaces, by K.T.Sturm[45, 46, 47].

In this work, the author proves heat kernel estimates on weighted Dirichlet

spaces. This could be seen as a perturbation result. But the ”perturbation”

can be very significant. The basic setting is as follows. First, one starts with

a strongly local, regular, Dirichlet form (E,D(E)) on a L2-space of a complete,

locally compact, separable topological space. The Dirichlet form can be given in

the form

E( f , g) =

ˆ
dΓ( f , g)

for all f , g ∈ D(E). The weighted Dirichlet space corresponding to a weight h is

given by

Eh( f , g) =

ˆ
hdΓ( f , g)

3



for any f , g in an appropriate domainD(Eh). The detailed construction of this is

given in Chapter 6. Assuming that the original Dirichlet form (E,D(E)) satisfies

the parabolic Harnack inequality, we consider the question of finding assump-

tions that imply that the weighted Dirichlet form (Eh,D(Eh)) also satisfies the

parabolic Harnack inequality.

If the Dirichlet form (E,D(E)) corresponds to the Laplacian in a Riemannian

manifold or Euclidean spaces, the result can be extended to a local divergence

form differential operators L =
∑d

i, j=1
∂
∂xi

ai j
∂
∂x j

when (ai j) are comparable to h in

the following sense

c−1h(ξ)
∑

i, j

ξiξ j ≤
∑

i, j

ai jξiξ j ≤ ch(ξ)
∑

i, j

ξiξ j, ∀ξ = (ξi)

This could be seen as a generalization of Nash and Moser’s results.

Actually this work is not the first studying weighted Dirichlet spaces. Saloff-

Coste and Grigor’yan[10] also study such results on weighted manifolds. How-

ever, their results do not allow h to be infinite or vanish even though one would

easily apply their proof to the case where h has unique singularity i.e. {h = ∞} is

a singleton.

Moschini and Tesei[27] also prove results on weighted Euclidean space

Rn, n > 1 for the weight h(x) = |x|−k, k < n. All of these results relies on the

fact that the complement of singularity set {h = ∞} is connected. In this thesis,

the author try to extend the result to the case where the singularity set separates

the space. The weighted function, on another hand, is assumed to take the sim-

ple form of h(x) = a(d(x,Σ)) where Σ is the singularity set. At the end, the author

obtain similar result by assume the following conditions.

The function a : [0,∞)→ (0,∞] is assumed to be remotely constant i.e. there

4



exists a constant c ≥ 1 such that

sup
[r,3r]

a ≤ c inf
[r,3r]

a < ∞

for all r > 0. This means that the function a is uniformly comparable to constant

on balls far away to 0. Any weight function with unique singularity in any dou-

bling space is equivalent to a function in this form. This is not true in general,

however.

A closed set Σ is assumed to be ρ-accessible i.e. it has measure zero, satisfies

the ρ′-skew condition for some ρ′ > ρ and that the cone {x : ρd(x, o) ≤ d(x,Σ) ≤ r}

is connected for all o ∈ Σ and r > 0. Examples of ρ-accessible sets include closed

subsets of hyperplane in Euclidean spaces, boundary of uniform domains and

of Reifenberg domains.

One of the results the author obtain is the following theorem.

Theorem 1.0.1 Let (E,D(E)) be a strongly local, regular, Dirichlet form in L2(X, ν)

with intrinsic metric d satisfies the usual assumptions. Let also Σ ⊂ X be a ρ-accessible

subset, dµ = hdν where h(x) = a(d(x,Σ)), and (Eh,D(Eh)) be the weighted Dirichlet

form corresponding to function h.

Assume (E,D(E)) satisfies the parabolic Harnack inequality and a > 0 on X is

nonincreasing, and remotely constant. Then the Parabolic Harnack inequality for

(Eh,D(Eh)) holds for all balls whenever µ is doubling.

The author also gives sufficient condition for the weight measure dµ =

a(d(·,Σ))dν to be doubling. The result works best when ν is Alfor-regular of

dimension αν and Σ is a self-similar fractal of dimension αΣ. In this case it can be

proved that µ is doubling if 1/a = o(rαν−αΣ). This is exactly what happen when Σ
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is a hyperplane in Euclidean space.

Another related work is that of D.W. Robinson and his colleagues(e.g. [2,

35, 36]). Heat kernels asociated to degenerate operators were studied in their

works. Heat kernels upper bounded were given, including the case that zero

sets separated spaces. Their approach and assumptions, however, are different

from this thesis.

Lastly, the organization of this thesis is as follows. Each chapter are pretty

much independent and could be read in any order. Those who prefer the general

picture first might start from Chapter 5 and then read Chapter 3, 4, and 6 in any

order. Otherwise, one may also start from Chapter 3. Chapter 2 proves the

results in Euclidean setting. Readers who would like to get a taste of the results

may feel free to read it first. It can also be skipped without causing any problem

at all. Chapter 3 reviews doubling spaces and doubling measures while Chapter

5 reviews Dirichlet spaces. Most of the results in these two chapters are from

[6],[39],[45],[46],[47],[18] and [10]. Chapter 4 proves the doubling property for

weighted measures and Chapter 6 gives the construction of weighted Dirichlet

spaces and proves the heat kernel estimates. Those familiar with the subject can

skip Chapter 3 and Chapter 5 altogether.
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CHAPTER 2

A TASTE OF THE RESULTS

Before diving into the general theory of Dirichlet spaces, lets first take a look

at the results on Euclidean spaces. All the results in this chapter will be proved

again in the later chapter in the setting of metric spaces. So it can be skipped

without causing any problems. The proofs though, will mostly be based upon

calculus which make it interesting in itself.

In this chapter, n ∈ N is the fixed dimension of the Euclidean space Rn. Con-

sider the bilinear form (E,D(E)) on L2(Rn, dx) defined by

E(u, v) =

ˆ
Rn
〈∇u,∇v〉dx =

ˆ
Rn

n∑
i=1

∂iu · ∂ivdx

with domainD(E) = W1,2(Rn), the Sobolev space in L2(Rn, dx).

Fixed a continuous function a : [0,∞]→ (0,∞] satisfying

sup
[r.3r]

a ≤ ca inf
[r,3r]

a ∀r > 0

for some constant ca independent of r and define h(x) = a(d(x,Σ)) for any x ∈

Rn. Here, Σ is an affine subspace of Rn with positive codimension, and d is

the Euclidean distance on Rn. By change of coordinate, we may assume that

Σ = Rk × {0}n−k for some k = 0, 1, ..., n − 1.

One example of such a is polynomial function with positive coefficients since

the class of such a is closed under finite addition and multiplication. This class

of functions is also closed under finite maximum and minimum. Therefore, one

may construct new functions from old ones using these operations. Another

note is that a satisfies the above inequality if and only if 1/a satisfy such inequal-
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ity. Later on, it will be shown that such a are the quotient of two nondecreasing

functions satisfying the above conditions.

Another example of a is r 7→ [log(e + 1
r )]α for any fixed α > 0. Since this

function decrease slower than any polynomial, the function h associated to it is

always locally integrable. The details proof of this is in the end of this chapter.

For any nonnegative function h, denote Eh(u, v) =
´
Rn h〈∇u,∇v〉dx for any

u, v ∈ C∞c (Rn). It will be shown in a later chapter that if h is locally integrable,

then (Eh,C∞c (Rn)) is closable and its closure, denoted by (Eh,D(Eh)), is a strongly

local, regular Dirichlet space on L2(Rn, hdx). Also denote d the Euclidean metric

on Rn.

The goal of this chapter is to give sufficient conditions for parabolic Harnack

inequality of the weight Dirichlet space (Eh,D(Eh)) defined above. This is equiv-

alent to show that the weighted measure dµ = hdx is doubling and (Eh,D(Eh))

satisfies (weak) Poincaré inequality for all balls[45]. Grigor’yan and Saloff-Coste

characterize this further using classes of remote and anchored balls.

Fixed the singularity set Σ. A Σ-anchored ball is a ball centered in Σ, a Σ-

remote ball is any ball B(x, r) with r ≤ d(x,Σ)
2 . The prefix Σ is usually dropped if it

can be understood from the context without causing any confusion.

A measure ν is said to satisfy the doubling condition for remote balls if for

any remote ball B(x, r), ν(B(x, r)) ≤ CDν(B(x, r
2 )) for some fixed constant CD ≥ 1, ν

is said to satisfy doubling condition for anchored balls if for any anchored ball

B(x, r), ν(B(x, r)) ≤ CDν(B(x, r
2 )) for some fixed constant CD ≥ 1, ν is said to satisfy

volume comparison condition if for any r = d(x,Σ) = d(x, o) > 0, o ∈ Σ,

ν(B(o, r)) ≤ CVν(B(x,
r

64
))
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for some fixed constant CV > 0.

A Dirichlet form (E′,D(E′)) on L2(Rn, ν) with associated energy measure Γ is

said to satisfy the (δ-weak) Poincaré inequality, δ ∈ (0, 1], for a family of balls

F if there exists a fixed constant CP > 0 such that for any u ∈ Dloc(E′), and any

B(x, r) ∈ F

inf
ξ∈R

ˆ
B(x,δr)

(u − ξ)2dν ≤ CPr2
ˆ

B(x,r)
dΓ′(u, u)

It is said to satisfy (weak) Poincaré inequality for remote(anchored) balls if F is

the family of remote(anchored) balls.

The following two propositions are the main tools to prove the results in

this chapter. For the prove of these two propositions, see [10, p.849,852]. Note

that the setting in [10] is on weighted manifolds and the weight function is as-

sumed to have no singularity. The proof, however, still work for weight func-

tions with singularity. Actually, these two results hold for any regular, strongly

local Dirichlet space(see Corollary 3.4.4 and Chapter 5).

Before proceeding, let the author summarises the assumptions for this chap-

ter again. The weight function h : Rn → (0,∞] is a continuous function on Rn in

the extended sense i.e. h(xk) → h(x) whenever xk → x no matter h(x) is finite or

not. The singularity set Σ = {h = ∞} of h is assumed to have measure zero. This

is to guarantee that the weighted Dirichlet form (Eh,D(Eh)) is well-defined as a

regular, strongly local Dirichlet form on L2(Rn, hdx). Actually, (Eh,D(Eh)) is the

closure of f , g ∈ C∞c (Rn) 7→
´
Rn h〈∇u,∇v〉dx.

Proposition 2.0.2 The weighted Dirichlet form (Eh,D(Eh)) satisfies (weak) Poincaré

inequality for all balls if and only if it satisfies (weak) Poincaré inequality for remote

and anchored balls.

9



Proposition 2.0.3 A measure satisfies doubling condition for all balls if and only if it

satisfies doubling condition for remote balls and volume comparison condition.

The results of this chapter could be summarized as follows

Theorem 2.0.4 Assume that the function h : X → (0,∞] is given by h(x) = a(d(x,Σ))

where a satisfies

sup
[r.3r]

a ≤ ca inf
[r,3r]

a ∀r > 0

and Σ is an affine subspace of dimension k. The weighted Dirichlet form (Eh,D(Eh))

on L2(Rn, dµ = hdν) satisfies parabolic Harnack inequality if either one of the following

conditions hold:

(a) k < n − 1, and there exists a constant c > 0 such that
´ r

0 a(s)sn−k−1ds ≤ ca(r)rn−k

for any r > 0.

(b) k = n−1, and there exists a constant c > 0 such that
´ r

s a(s)ds ≤ c min{a(r), a(s)}r

for any r > s > 0.

The proof of this theorem is separated into several parts. The first part is the

proof of doubling property. The second is the proof of Poincaré inequality for

several cases based on relationship between k and n. The case k = 0 and n > 1

gives the same result as that of Moschini and Tesei[27]. The proof, however, is

mostly based on calculus.

As a consequence of this theorem, we have the following heat kernel esti-

mates.

10



Corollary 2.0.5 Under the assumption of the above theorem, the heat kernel p(t, x, y)

associated to (Eh,D(Eh)) satisfies to following heat kernel estimates

c1

A(t, x, y)tn/2 e−|x−y|2/c2t ≤ p(t, x, y) ≤
c3

A(t, x, y)tn/2 e−|x−y|2/c4t

where A(t, x, y) = min{a(
√

t),
√

a(d(x,Σ)a(d(y,Σ)))} for some fixed constant c1, . . . , c4.

The proof follows from the fact that µ(B(x, r)) ∼ min{a(r), a(d(x,Σ))}rd uni-

formly in r > 0 and x ∈ Rn.

2.1 Proof of the Doubling Property

Lemma 2.1.1 If the weighted measure µ satisfy volume comparison condition, then it

is doubling.

Proof. It is sufficient to show that µ is doubling for remote balls. For any y in

a remote balls B(x, r), |d(y,Σ) − d(x,Σ)| ≤ r ≤ d(x,Σ)
2 . Hence d(y,Σ) ∈ [ d(x,Σ)

2 , 3d(x,Σ)
2 ]. It

follows that

sup
B(x,r)

h ≤ sup
[ d(x,Σ)

2 , 3d(x,Σ)
2 ]

a ≤ ca inf
[ d(x,Σ)

2 , 3d(x,Σ)
2 ]

a ≤ ca inf
B(x,r)

h

Therefore,

µ(B(x, r)) ≤ sup
B(x,r)

h
ˆ

B(x,r)
dx ≤ 2dca inf

B(x,r)
h
ˆ

B(x, r
2 )

dx ≤ 2dcaµ(B(x,
r
2

))

This proves the doubling condition for remote balls.

�

Theorem 2.1.2 The weighted measure µ satisfies doubling condition for all balls if and

only if there exists a constant c > 0 such that
´ r

0 a(s)sn−k−1ds ≤ ca(r)rn−k for any r > 0.

11



Proof. If the weighted measure µ satisfies doubling property, then it must

also satisfies doubling comparison condition. On the contrary, volume compari-

son condition also implies doubling property by the previous lemma. Therefore,

it is sufficient to show that the above condition is equivalent to volume compar-

ison condition. This is obvious since for any o ∈ Σ, µ(B(o, r)) = µ(B(0, r)) ∼

rk
´ r

0 a(s)sn−k−1ds while µ(B(x, r)) ∼ a(d(x,Σ))rn for any r ≤ d(x,Σ)/2.

�

2.2 Proof of (weak) Poincaré Inequality

Lets first prove the obvious result.

Lemma 2.2.1 The weighted Dirichlet space (Eh,D(Eh)) satisfies Poincaré inequality

for remote balls.

Proof. Let B = B(x, r) be a remote ball and u ∈ Dloc(Eh)∩Cc(Rn). Then u ∈ D(E)

and

inf
ξ∈R

ˆ
B
(u − ξ)2dµ ≤ ( sup

B(x,r)
h) inf

ξ∈R

ˆ
B
(u − ξ)2dx

≤ caCPr2( inf
B(x,r)

h)
ˆ

B
|∇u|2dx

≤ caCPr2
ˆ

B
|∇u|2dµ

This finishes the proof.

�
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Next we prove Poincaré inequality for anchored balls which will immedi-

ately implies Poincaré inequality for all balls. The first result cover the case

n = 1. It will be extended to the case k = n − 1 later on.

Theorem 2.2.2 The weighted Dirichlet form (Eh,D(Eh)) on L2(R, µ) satisfies Poincaré

inequality for all balls whenever the following two conditions hold:

(a) µ satisfies doubling condition, i.e. whenever there exists a constant c > 0 such

that
´ r

0 a(s)ds ≤ ca(r)r for any r > 0,

(b) a satisfies the following integral inequality:
´ t

s a(r)dr ≤ ca(s)t for any 0 < s < t,

and some fixed constant c > 0.

The condition (b) actually implies that a is equivalent to a decreasing func-

tion. To see this, fixed t ≥ 2s. Then

t
2

sup
[t, t

2 ]
a ≤

cat
2

inf
[t, t

2 ]
a

≤ ca

ˆ t

s
a(r)dr

≤ caca(s)t

This implies sup[t, t
2 ] a ≤ 2caca(s) for any t ≥ 2s. Since this also hold for any

s < t < 2s, one must have a(t) ≤ 2caca(s) for any t > s.

If one define ã(s) = sup{t>s} a(t), then ã
2cac ≤ a ≤ ã. It should be obvious that ã

is decreasing.

Proof. Fixed u ∈ C∞c (R) and r > 0. Without loss of generality, one may

assume u(0) = 0. Note that
ˆ r

0
u2dµ =

ˆ r

0

( ˆ x

0
u′(y)dy

)2
a(x)dx

13



≤

ˆ r

0

(
x
ˆ x

0
|u′|2(y)dy

)
a(x)dx

=

ˆ r

0
|u′|2(y)

(ˆ r

0
xa(x)χ

{y≤x}dx
)
dy

≤ cr2
ˆ r

0
|u′|2(y)a(y)dy

By replacing u with x 7→ u(−x), one will also have
´ 0
−r u2dµ ≤

cr2
´ 0
−r |u

′|
2(y)a(y)dy. Therefore,

inf
ξ∈R

ˆ r

−r
(u − ξ)2dµ = 2

ˆ r

−r
u2dµ ≤ 2cr2

ˆ r

−r
|u′|2dµ = cr2

ˆ r

−r
|u′|2dµ

�

The case n ≥ 2 is based on polar coordinates. To prove it, one can not avoid

proving Poincaré inequality for half line. So before moving on to higher dimen-

sion, lets prove the following result.

Lemma 2.2.3 Let (EN ,D(EN)) be a Dirichlet form on [0,∞) with Neumann boundary

condition and EN(u) =
´ ∞

0 |u
′|

2dx for any smooth function u. Let b : [0,∞)→ (0,∞] be

a locally integrable continuous function. Assume that b satisfies the following inequal-

ity:

sup
[r,3r]

b ≤ c inf
[r,3r]

b, ∀r > 0

and
´ r

0 b(s)ds ≤ cb(r)r, ∀r > 0, with a fixed constant c > 0. Then the weighted Dirichlet

space (Eb
N ,D(Eb

N)) on L2([0,∞), dµ = bdx) satisfies Poincaré inequality for all balls.

The proof of this lemma is based on the following proposition.

Proposition 2.2.4 (e.g. [39], Lemma 5.3.12) Fixed a doubling measure γ on a metric

space (M, d). There exists a constant CDD, depends only on doubling constant such that

14



for any family of balls Bi in (M, d) and a sequence of nonnegative number bi,

ˆ (∑
i

biχ3Bi

)2
dγ ≤ CDD

ˆ (∑
i

biχBi

)2
dγ

Proof of Lemma 2.2.3. First notice that dµ = bdx is doubling, and (Eb
N ,D(Eb

N))

satisfies Poincaré inequality, with some fixed constant P > 0, on any interval

(x− s, x+ s) with s ≤ 3x/5. Let u ∈ D(Eh
N)∩Cc([0,∞)). Set ū =

ffl r
0 udµ, uk =

ffl r
2k−1
r

2k+1
udµ.

inf
ξ∈R

ˆ r

0
(u − ξ)2dµ ≤

∞∑
k=1

ˆ r
2k−1

r
2k+1

(u − u1)2dµ

≤ 2
∞∑

k=1

ˆ r
2k−1

r
2k+1

(u − uk)2dµ + 2
∞∑

k=1

ˆ r
2k−1

r
2k+1

(uk − u1)2dµ

≤ 2P
∞∑

k=1

(
3r

2k+2
)2
ˆ r

2k−1

r
2k+1

|u′|2dµ + 2
∞∑

k=1

(uk − u1)2
ˆ r

2k−1

r
2k+1

dµ

≤ Pr2
ˆ r

0
|u′|2dµ + 2

∞∑
k=1

(uk − u1)2µ([
r

2k+1 ,
r

2k−1 ])

Now,

µ([
r
2k ,

r
2k+1 ])|uk − uk+1|

2 =

ˆ r
2k

r
2k+1

|uk − uk+1|
2dµ

≤ 2
ˆ r

2k

r
2k+1

(u − uk)2dµ + 2
ˆ r

2k

r
2k+1

(u − uk+1)

≤ 2P(
3r
8

)2[
ˆ r

2k−1

r
2k+1

|u′|2dµ +

ˆ r
2k

r
2k+2

|u′|2dµ]

≤ Pr2
ˆ r

2k−1

r
2k+2

|u′|2dµ

and

(uk − u1)2χ
[ r

2k+1 ,
r

2k−1 ]
≤

( k−1∑
j=1

|u j − u j+1|χ[ r
2k+1 ,

r
2k−1 ]

χ
[0, 3r

2 j+1 ]

)2

≤ Pr2
[ k−1∑

j=1

( 1
µ([ r

2 j ,
r

2 j+1 ])

ˆ r
2 j−1

r
2 j+2

|u′|2dµ
)1/2

χ
[0, 3r

2 j+1 ]

]2
χ

[ r
2k+1 ,

r
2k−1 ]

15



Therefore,

∞∑
k=1

(uk − u1)2 µ([
r

2k+1 ,
r

2k−1 ])

≤ Pr2
ˆ r

0

[ ∞∑
j=1

( 1
µ([ r

2 j ,
r

2 j+1 ])

ˆ r
2 j−1

r
2 j+2

|u′|2dµ
)1/2

χ
[0, 3r

2 j+1 ]

]2
χ

[ r
2k+1 ,

r
2k−1 ]

dµ

≤ 2Pr2
ˆ r

0

[ ∞∑
j=1

( 1
µ([ r

2 j ,
r

2 j+1 ])

ˆ r
2 j−1

r
2 j+2

|u′|2dµ
)1/2

χ
[0, 3r

2 j+1 ]

]2
dµ

≤ 2PCDDr2
ˆ r

0

[ ∞∑
j=1

( 1
µ([ r

2 j ,
r

2 j+1 ])

ˆ r
2 j−1

r
2 j+2

|u′|2dµ
)1/2

χ
[ r

2 j+1 ,
r

2 j ]

]2
dµ

= 2PCDDr2
ˆ r

0

∞∑
j=1

( 1
µ([ r

2 j ,
r

2 j+1 ])

ˆ r
2 j−1

r
2 j+2

|u′|2dµ
)
χ

[ r
2 j+1 ,

r
2 j ]

dµ

= 2PCDDr2
∞∑
j=1

ˆ r
2 j−1

r
2 j+2

|u′|2dµ

= 2PCDDr2
ˆ r

0
|u′|2dµ

Combining all of these, we get

inf
ξ∈R

ˆ r

0
(u − ξ)2dµ ≤ (4CDD + 1)Pr2

ˆ r

0
|u′|2dµ

This prove Poincaré inequality for anchored balls, Hence we are done.

�

Now assume n ≥ 2 and Σ = {0} a singleton set. One way to proof the results

in this case is to follows Grigor’yan and Salof-Coste[10] arguments. See also

[27]. The author, however, will decompose the space using polar coordinate.

Even though this proof is specific to Euclidean space, it will also introduce a

technique that will be useful in later chapter.

Theorem 2.2.5 Assume Σ = {o} and h = a(d(·, o)) as before. The weighted Dirich-

let form (Eh,D(Eh)) on L2(Rn, µ) satisfies Poincaré inequality for all balls whenever
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µ satisfies doubling condition i.e. whenever there exists a constant c > 0 such that
´ r

0 a(s)sn−1ds ≤ ca(r)rn for any r > 0.

Proof. What’s left is to prove Poincaré inequality for balls centered at 0.

Fixed r > 0. Let u ∈ C∞c (Rn) and use polar coordinate (s, θ). Denote B = B(0, r),

us = u(s, ·), ūs =
ffl

usdθ, and ū =
ffl

B udµ.

inf
ξ∈R

ˆ
B
(u − ξ)2dµ ≤

ˆ
B
(u − ū)2hdx

≤ 2[
ˆ

B
(us − ūs)2a(s)sn−1dsdθ +

ˆ
B
(ū − ūs)2a(s)sn−1dsdθ]

Using the Poincaré inequality on Sn−1, one get
´

(us − ūs)2nθ ≤ C1
´
|∂θus|

2dθ.

Therefore the first term is

ˆ
B
(us − ūs)2a(s)sn−1dsdθ ≤ C1

ˆ r

0

( ˆ
|∂θus|

2dθ
)
a(s)sn−1dθ

≤ C1

ˆ
B
|∂θus|

2hdx

≤ 2C1r2
ˆ

B
|∇u|2dµ

As for the second term, one applies Lemma 2.2.3 with b(r) = a(r)rn−1 and get

ˆ r

0
(ū − ūs)2a(s)sn−1ds ≤ C2r2

ˆ r

0
|
dūs

ds
|

2

a(s)sn−1ds

≤ C2r2
ˆ r

0

(  
|∂su|dθ

)2
a(s)sn−1ds

≤ C2r2
ˆ r

0

(  
|∂su|2dθ

)
a(s)sn−1ds

≤ C2r2
ˆ

B
|∇u|2dµ

�

Lastly, we gives the proof for the general case.

17



Theorem 2.2.6 The weighted Dirichlet form (Eh,D(Eh)) on L2(Rn, µ) satisfies

parabolic Harnack inequality if either one of the following conditions hold:

(a) k < n − 1, and there exists a constant c > 0 such that
´ r

0 a(s)sn−k−1ds ≤ ca(r)rn−k

for any r > 0.

(b) k = n − 1, and there exists a constant c > 0 such that
´ r

s a(s)sn−k−1ds ≤

c min{a(r), a(s)}rn−k for any r > s > 0.

Again it can be proved in case (b) that the function a is equivalent to a de-

creasing function.

Proof. All one needs to do is to prove Poincaré inequality for anchored balls.

The proof relies on k = 0 case.

Assume here that k > 0. By symmetry, it is sufficient to prove the result for

balls centered at the origin. Fixed r > 0. From now on, we view Rn as product

space Rk × Rn−k, i.e. we identify x = (y, z) for any x ∈ Rn, y ∈ Rk, and z ∈ Rn−k.

Moreover, dµ = a(|z|)dydz.

Let u ∈ C∞c (Rn). Denote B = Bk(0, r) × Bd−k(0, r), uz = u(·, z), ū =
ffl

B udx, and

ūz =
ffl

Bk(0,r) uzdy. Here, Bk(0, r) denote a ball in Rk. Note that ū =
ffl

Bd−k(0,r) ūza(|z|)dz,

and hence

ˆ
Bd−k(0,r)

(ūz − ū)2a(|z|)dz ≤ P1r2
ˆ

Bd−k(0,r)

(dūz

dz

)2
a(|z|)dz

≤ P1r2
ˆ

Bd−k(0,r)

 
Bk(0,r)

(∂zu)2a(|z|)dydz

for some fixed constant P1 independent of r and u. Also,

ˆ
Bk(0,r)

(uz − ūz)2dy ≤ P2r2
ˆ

Bk(0,r)
|∂yu|2dy
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where P2 is again independent of r and u. Therefore,

inf
ξ∈R

ˆ
B
(u − ξ)2dµ ≤

ˆ
B
(u − ū)2dµ

≤ 2
ˆ

Bd−k(0,r)
a(|z|)

ˆ
Bk(0,r)

(uz − ūz)2dydz

+2
ˆ

Bk(0,r)

ˆ
Bd−k(0,r)

(ū − ūz)2a(|z|)dzdy

≤ 2P2r2
ˆ

Bd−k(0,r)
a(|z|)

ˆ
Bk(0,r)

|∂yu|2dydz

+2P1r2
ˆ

Bd−k(0,r)

 
Bk(0,r)

(∂zu)2a(|z|)dydz
ˆ

Bk(0,r)
dz

≤ 2(P1 + P2)r2
ˆ

B
|∇u|2dµ

Now, Bk(0, r
2 ) × Bn−k(0, r

2 ) ⊂ Bn(0, r) ⊂ Bk(0, r) × Bn−k(0, r). Hence,

inf
ξ∈R

ˆ
B(0,r)

(u − ξ)2dµ ≤ 2(P1 + P2)r2
ˆ

B(0,2r)
|∇u|2dµ

�

Corollary 2.2.7 Let Σ be an affine subspace of Rn with dimension k and h(x) = d(x,Σ)α

with α < 0. Then the weighted Dirichlet Space (Eh,D(Eh)) satisfies parabolic Harnack

inequality if and only if α > n − k.

Proof. Under the assumption α < 0, the weighted measure dµ = hdx is

doubling if and only if α > n − k.

�

Lastly, lets end this chapter with an example of a weight function that always

work on any Euclidean spaces regardless of its dimension.
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2.3 Example

In this section, let α > 0 be fixed and denote a(r) = aα(r) = [log(e + 1
r )]α for any

r > 0. Denote h = a(d(·,Σ)) where Σ is a k-dimension affine subspace of Rn. The

goal is to show that

Theorem 2.3.1 Given

Eα(u, v) =

ˆ
Rn

a(d(x,Σ))〈∇u,∇v〉(x)dx =

ˆ
Rn

n∑
i=1

a(d(x,Σ))∂iu(x) · ∂iv(x)dx

with domain D(Eα) = W1,2(Rn, a(d(·,Σ))dx), the weighted Sobolev space. Then

(Eα,D(Eα)) satisfies parabolic Harnack inequality for all α > 0 and n = 1, 2, . . . More-

over, its heat kernel p(t, x, y) satisfies the following estimates

c1

A(t, x, y)tn/2 e−|x−y|2/c2t ≤ p(t, x, y) ≤
c3

A(t, x, y)tn/2 e−|x−y|2/c4t

where A(t, x, y) =
(
min{− log(t∧1/2),

√
log(d(x,Σ)∧1/2) log(d(y,Σ)∧1/2)}

)α/2
for some

fixed constant c1, . . . , c4.

This can be done by showing that there exists a constant c > 0 such that
´ r

s a(s)sn−k−1ds ≤ c min{a(r), a(s)}rn−k for any r > s > 0. Since a is decreasing,

we obviously have
´ r

s a(s)sn−k−1ds ≤ a(s)rn−k for any r > s > 0. Therefore it

is sufficient to prove there exists a constant c > 0 such that
´ r

s a(s)sn−k−1ds ≤

ca(r)rn−k for any r > s > 0.

Lemma 2.3.2 The logarithmic weighted function a defined earlier satisfies

sup
[r,3r]

a ≤ ca inf
[r,3r]

a,∀r > 0

for some constant ca < 3α
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Proof. Note that a′ < 0, so sup[r,3r] a = a(r) and inf[r,3r] a = a(3r). Therefore, it is

sufficient to show that ca = supr>0
a(r)
a(3r) < 3α. Without loss of generality, one may

assume α = 1. Denote

A(r) =
a(r)

a(3r)
=

log(e + 1
r )

log(e + 1
3r )

Then limr→∞ A(r) = 1. Also

lim
r→0

A(r) = lim
r→0

−1/(r2(e + 1
r ))

−1/(3r2(e + 1
3r ))

= lim
r→0

3er + 1
er + 1

= 1

Since A > 1, A must attains a finite maximum. Next assume that A attains maxi-

mum at R ∈ (0,∞). Using the fact that

A′(r) =

− log(e+ 1
3r )

(er2+r) +
log(e+ 1

r )
(3er2+r)

[log(e + 1
3r )]2

and A′(R) = 0, one must have A(R) = 3eR2+R
eR2+R < 3.

�

The above proof also gives the following result.

Corollary 2.3.3 Fixed c > 0. Define A(r) =
log(e+ 1

r )
log(e+ 1

cr )
for r > 0. Then supr A(r) < ∞.

Moreover, supr A(r) < c if c > 1.

Now lets proof the integral Inequality:
´ r

0 a(s)ds ≤ ca(r)r. This will implies a

more general inequality
´ r

0 a(s)skds ≤ ca(r)rk+1.

For α ≤ 1, there is a simple proof of this inequality.

Theorem 2.3.4 For α ≤ 1, there exists a constant C ∈ (0, 2ca
3−ca

] such that
´ r

0 a(s)ds ≤

Ca(r)r.
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The sole reason for a requirement α ≤ 1 is to guarantee that ca < 3.

Proof. Fixed r > 0,
ˆ r

0
a(s)ds =

∞∑
k=1

ˆ r
3k−1

r
3k

a(s)ds

≤ a(r)
∞∑

k=1

ck
a

ˆ r
3k−1

r
3k

ds

= 2a(r)r
∞∑

k=1

ck
a

3k

= 2
ca

3 − ca
a(r)r

�

For general α > 0, the proof is more complicated.

Theorem 2.3.5 For any r > 0,
´ r

0 a(s)ds ≤ (eα∨2)a(r)r.

Proof. First, one shows that there exists C > 0 such that for any r > 0,
´ r

0 a(s)ds ≤ Ca(r)r. Fixed k > 0 small enough so that kα < 1. For any r < 1
e∧

1
eα ,

ˆ r

0
a(s)ds ≤

1
kα

ˆ r

0
[log(

2
s

)k]αds

≤
1
kα

ˆ r

0

2kα

skα ds

≤
2kα

kα
r1−kα

Choose k = − 1
log r , then

inf
0<r≤ 1

e

krk log(e +
1
r

) = inf
1≤x<∞

1
x

(e−x)1/x log(e + ex) = e−1

Hence,
´ r

0 a(s)ds ≤ 2−α/ log reαa(r)r. For r ≥ 1
e∧

1
eα , use the fact that 1 ≤ a(r) ≤

a( 1
e∧

1
eα ) and conclude

ˆ 1
e∧

1
eα

0
a(s)ds +

ˆ r

1
e∧

1
eα

a(s)ds ≤ 2eαa(
1
e
∧

1
eα

)a(r)r + a(
1
e
∧

1
eα

)a(r)r
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Next, one finds the best C possible. Set A(r) = 1
a(r)r

´ r
0 a(s)ds. By the previous

conclusion C = supr>0 A(r) < ∞.

Case I: A does not attain the maximum. Then either there exists a sequence

rk → 0 such that A(rk)→ C or there exists a sequence sk → ∞ such that A(sk)→ C.

In the first case,limk→∞ A(rk) ≤ limk→∞ 2−α/ log rkeα = eα. In the latter case, fixed r0

so that a(s) < 3α/2 for all s > r0. We have for any r > 2Cr0,
ˆ r

0
a(s)ds ≤ Ca(r0)r0 + a(r0)(r − r0) ≤ 3αr ≤ 3αra(r)

Therefore, limk→∞ A(sk) ≤ 3α.

Case II: A attains a maximum at R ∈ (0,∞). Then A′(R) = 0. But

A′(r) =
a2(r)r − (a′(r)r + a(r))

´ r
0 a(s)ds

a2(r)r2

Therefore, A(R) =
a(R)

a′(R)R+a(R) . Note that

a′(r) =
[log(e + 1

r )]α−1

(−r2(e + 1
r ))

= −
a(r)

(er2 + r) log(e + 1
r )

Therefore

A(R) =
a(R)

a(R) − a(R)
(eR+1) log(e+ 1

R )

=
(eR + 1) log(e + 1

R )

(eR + 1) log(e + 1
R ) − 1

= 1 +
1

(eR + 1) log(e + 1
R ) − 1

Set B(r) = (er + 1) log(e + 1
r ) − 1. Since limr→0,∞ B(r) = ∞, B attains a minimum

at some point r0 ∈ (0,∞). Now

0 = B′(r0) = (er0 + 1)/(−r2
0(e +

1
r0

)) + e log(e +
1
r0

)

which implies log(e + 1
r0

) = 1
er0

. So B(r0) = 1 + log(e + 1
r0

) − 1 ≥ 1. This concludes

that C = A(R) ≤ 2.
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�

This proves Theorem 2.3.1 and ends this chapter. The next chapter reviews

background results on doubling spaces and doubling measures. Readers famil-

iar with the subjects may skip to Chapter 4 right away.
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CHAPTER 3

DOUBLING SPACES

This chapter introduces the doubling property, one of the two neccessary

conditions for both parabolic Harnack inequality and heat kernel estimates. An-

other condition is the Poincaré inequality which will be covered in Chapter 5. It

turns out that doubling property and Poincaré inequality together are sufficient

to prove heat kernel estimates and parabolic Harnack inequality[47].

Unlike the Poincaré inequality, the doubling property does not depend di-

rectly on the Dirichlet form. Rather, it depends on the geometry of the space.

This allow us to discuss the doubling property without the need to discuss

Dirichlet spaces.

Most results of this chapter are labored from [19],[8],[18], and [10], or are

direct consequence of the results contained in these references. There are two

versions of doubling property, one for spaces, and another for measures.

3.1 Doubling Spaces

Definition 3.1.1 (Doubling spaces) A metric space (X, d) is doubling if there exists

a constant NX ∈ N such that any ball of radius r can be covered by NX balls of radius r
2 .

Note that doubling property is a property of finite dimensional spaces, open

subsets of infinite dimensional spaces cannot be doubling.

Recall that a subset of a metric space is totally bounded if it can be covered

by a finite number of balls with arbitrarily small fixed radius.
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Proposition 3.1.2 Let (X, d) be a doubling space.

(a) A subset of X is bounded if and only if it is totally bounded.

(b) If (X, d) is complete, any ball in X is compact. Hence, (X, d) is locally compact.

Proof. To prove (a), it is sufficient to show that all ball in X is totally bounded.

This follows easily by applying the assumption successively: any ball B(x, r) in

X can be covered by Nk
X balls of radius r

2k .

To prove (b), recall that a metric space is compact if and only if it is complete

and totally bounded. Since each ball B(x, r) is complete, the result follows from

(a)

�

Next we characterize the doubling spaces.

Theorem 3.1.3 Let (X, d) be a metric space. The following are equivalent.

(a) (X, d) is doubling.

(b) There is a function NX : (0, 1/2] → (0,∞) such that any ball of radius r can be

covered by bNX(ε)c balls of radius εr.

(c) There is a α > 0, c = cα ≥ 1 such that for any fixed ε ∈ (0, 1/2], any ball of radius

r can be covered by bcε−αc balls of radius εr.

Proof. Clearly, (c) =⇒ (b) =⇒ (a) To prove (a) =⇒ (c), set α = log2 NX and

c = NX. For each 0 < ε ≤ 1/2, choose k ∈ N so that 1
2k+1 ≤ ε <

1
2k . Easy calculation
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show that Nk+1
X = c2kα ≤ cε−α. Iterating the assumption, any ball of radius r can

be covered by Nk+1
X balls of radius r

2k+1 ≤ εr and the result follows.

�

Definition 3.1.4 (Assouad Dimension) Let (X, d) be a doubling space. The Assouad

dimension of X, denotes dimA X, is the finite infimum of α > 0 so that there exists cα ≥ 1

with the following property: any ball of radius r can be covered by bcαε−αc balls of radius

εr.

Note that dimA X ≤ log2 NX.

Proposition 3.1.5 The completion of a doubling space is doubling and also has the

same Assouad dimension.

Proof. Obvious.

�

Proposition 3.1.6 Let (X, d) be a doubling space. The Assouad dimension of X is equal

to the infimum of all β > 0 such that there exists a corresponding cβ ≥ 1 with the

following property: for any fixed 0 < ε ≤ 1/2, any ball of radius r has at most bcβε−βc

disjoint points of mutual distance at least εr.

Proof. Let β be as above and choose {xi} a subset of B(x, r) so that d(xi, x j) ≥ εr

for all i , j. WLOG, one may assume {xi} is maximized in the sense that no point

can be added to {xi} so that mini, j d(xi, x j) remains at least εr. Then B(xi, εr) must

be a covering of B(x, r). Hence dimA X ≤ β.
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To prove the converse, fixed β > dimA X and let S be a maximal subset of

B(x, r) such that d(s, S−{s}) ≥ εr. Choose an open covering Bi = B(xi,
ε
2r), i =

1, . . . , n with n ≤ bcβ2βε−βc. Note that each Bi can only contain at most one s ∈ S .

Hence S must have at most bcβ2βε−βc elements.

�

Let’s finish this section with the existence of homogeneous measures for

doubling spaces. Here an α-homogeneous measure is a Borel measure µ such

that there exists a constant c = cµ ≥ 1 with

µ(B(x, r))
µ(B(x, s))

≤ c
(r

s

)α
for any x ∈ X and 0 < s < r.

Proposition 3.1.7 (e.g. [18]) Any complete doubling space carries an α-homogeneous

measure for each α larger that the Assouad dimension.

3.2 Doubling Geodesic Spaces

Let’s start this section with the definition of length of a path between two points.

Definition 3.2.1 Let γ : [0, 1] → (X, d) be a path in a metric space. The length of γ is

defined to be the supremum of

k∑
i=1

d(γ(ti−1), γ(ti))

where the supremum is taken over all partitions 0 = t0 < t1 < . . . < tk = 1.
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A metric space is said to be a length space if the distance between any two points is

the infimum of the length of all paths connecting those two points.

A complete length space is a geodesic space if one can always find a path connecting

any two points with the length equal to their distance.

Proposition 3.2.2 Any complete doubling length space is a geodesic space.

Proof. This follows from the fact that any complete doubling space is locally

compact(Proposition 3.1.2).

�

One of nice features of doubling geodesic spaces is the existance of Whitney

covering on any open sets.

Definition 3.2.3 Fixed an ε > 0. A strict ε-Whitney covering of an open subset U in

a metric space (X, d) is any familyW of disjoint balls such that

(a) ∪B∈W3B = U where kB(x, r) = B(x, kr) for any k, r ≥ 0 and x ∈ X,

(b) for any B = B(x, r) ∈ W, r = εd(B, X−U),

Proposition 3.2.4 (e.g. [39], [17],[25]) If (X, d) is a doubling geodesic space, then ones

can always construct a strict ε-Whitney covering W for an open subset U whenever

ε < 1/4. Moreover,W satisfies the following extra properties

(a) the familyW is countable,

(b) there is a finite constant a = aε such that for any k ≤ 1
10ε ,

∑
B∈W χkB ≤ a.
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3.3 Doubling Measures

In this section, the author assumes that any topological space is path-connected,

Hausdorff, locally compact, and second countable, hence metrizable. The au-

thor also uses the term LCHS space to referred to such spaces. A ball centered

at x and of radius r will be denote by B(x, r). Note that r is always chosen so that

B(x, s) , B(x, r) for all s < r.

Recall that aσ-field or aσ-algebraA on a LCHS space X is a collection of sub-

sets that is closed under countable unions, complement and contain the whole

space X. A Borel σ-field B(X) is the smallest σ-field containing all open sets of

X. An element of B(X) is called a Borel set. A Borel σ-field is always exists and

is closed under countable intersection as well.

A Borel measure on a LCSH space X is a function µ : B(X)→ [0,∞] such that

for any disjoint Borel sets Ai ∈ B(X), µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai).

A support of a measure is the smallest close set S such that µ(X−S ) = 0. A

measure is said to have full support if its support is X.

A radon measure is a Borel measure such that µ(K) < ∞ for any compact

subset K of X.

Definition 3.3.1 Denote F a family of balls in a metric space X. A Borel measure µ on

a metric space (X, d) is said to satisfy volume doubling property, or doubling property

for short, on F if there exists a constant CD ≥ 1 such that

µ(B(x, r)) ≤ CDµ(B(x, r/2)), ∀B(x, r) ∈ F

Sometimes we write µ ∈ (VD) if the measure µ satisfies doubling property for all
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balls.

Well-known examples of doubling measures are Lebesgue measures on Eu-

clidean spaces, Haar measures on virtually nilpotent Lie groups, Riemannian

volumes of Riemannian manifolds with nonnegative Ricci curvature. See, for

example, [41] and [31].

Proposition 3.3.2 For any µ ∈ (VD), either µ is zero or it is a σ-finite radon measure

with full support.

Proof. Assume that µ(B(x, r)) = 0 for some x ∈ X, r > 0. By doubling

property, µ(B(x, 2kr)) ≤ Ck
Dµ(B(x, r)) = 0 for all k. Taking k → ∞, we have

µ(X) = 0. Thus, either we have µ = 0 or µ has full support. Assume that

µ , 0. If µ(B(x, r)) = ∞, then µ(B(x, 2−kr)) ≥ C−k
D µ(B(x, r)) = ∞ for all k and

hence limk→∞ µ(B(x, 2−kr)) = ∞, contradicts to the continuity of measure. There-

fore µ(B(x, r)) < ∞ for any ball B(x, r). Particularly, µ is radon. Since X is second

countable, we also have µ is σ-finite.

�

Obviously, homogeneous measure is doubling. It turn out that the converse

is also true. Moreover, if the underlying metric is geodesic, then doubling mea-

sures must at least grow polynomially.

Proposition 3.3.3 ([39]) Fixed µ ∈ (VD) with doubling constant CD and denote α =

log2 CD. Then for any s < r, x, y ∈ X, we have

µ(B(x, r))
µ(B(y, s))

≤ CD

(r + d(x, y)
s

)α
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Proof. First we assume x = y, choose k ∈ Z∪{0} so that 2k ≤ r/s ≤ 2k+1. Then

Ck
D = 2kα ≤ (r/s)α and

µ(B(x, r)) ≤ µ(B(x, 2k+1s))

≤ Ck+1
D µ(B(x, s))

≤ CD

(r
s

)α
µ(B(x, s))

For general case, we use the fact that B(x, r) ⊂ B(y, r + d(x, y)) to conclude that

µ(B(x, r)) ≤ CD[(r + d(x, y))/s]αµ(B(y, s)).

�

Proposition 3.3.4 ([39]) Let µ be a Borel measure in a geodesic space. Assume that

µ ∈ (VD) with doubling constant CD. Denote β = log3(1 + C−3
D ), and cD = (1 + C−3

D )−1.

Then for any s < r, x ∈ X with B(x, r) , M, we have

µ(B(x, r))
µ(B(x, s))

≥ cD

(r
s

)β
Proof. Pick z ∈ M−B(x, r) and choose a path γ from x to z. Since the

function t 7→ d(x, γ(t)) is continuous, there exists y = γ(t0) such that d(x, y) =

2r/3. This implies B(y, r/3) and B(x, r/3) are disjoint. Moreover, µ(B(x, r/3)) ≤

3log2 CDCDµ(B(y, r/3)) ≤ C3
Dµ(B(y, r/3)). Therefore

µ(B(x, r)) ≥ µ(B(x, r/3)) + µ(B(y, r/3)) ≥ (1 + C−3
D )µ(B(x, r/3))

For general s < r, choose k ∈ N so that 3k ≤ r/s ≤ 3k+1. Then

µ(B(x, r)) ≥ (1 + C−3
D )kµ(B(x, r/3k))

≥
3(k+1) log3(1+C−3

D )

1 + C−3
D

µ(B(x, s))

≥ (1 + C−3
D )−1(

r
s
)log3(1+C−3

D )µ(B(x, s))
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The following result is also from [39]. The proof is based on Marcinkiewicz

interpolation theorem. It will be used in the proof of Poincaré inequality later

on.

Proposition 3.3.5 (e.g. [39] Lemma 5.3.12) Assume that µ is a doubling measure in

a geodesic space. Then for any K > 0, there exists a constant C > 0 such that for any

sequence Bi of balls and nonnegative numbers ai,
ˆ (∑

i

aiχKBi

)2
≤ C

ˆ (∑
i

aiχBi

)2

The next result show that doubling measures only exists in doubling spaces.

Corollary 3.3.6 Fixed µ ∈ (VD) and r > 0. For any δ > 0, there is a number Kδ ∈ N

such that for any relatively compact ball of radius r can be covered by at most Kδ balls

of radius δr.

Proof. Fixed a relatively compact ball B = B(x, r) and x0 ∈ B. For any

k > 0, choose xk ∈ B−∪k
i=0B(xi, s). Since B is relatively compact, this process

must stop, say at K. Clearly, B ⊂ ∪K
i=0B(xi, s). Choose k so that µ(B(xk, s)) =

min0≤i≤K µ(B(xi, s)). Using doubling property and the fact that B(xi, s/2) are dis-

joint,

K ≤
1

µ(B(xk, s/2))

K∑
i=0

µ(B(xi, s/2))

≤
µ(B(x, r + s/2))
µ(B(xk, s/2))

≤ CD(
r + s/2 + d(x, xk)

s/2
)α

≤ CD(
4 + δ

δ
)α
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Thus, we can set Kδ = bCD( 4+δ
δ

)αc.

�

3.4 Doubling Property: From remote balls to all balls

The original idea of results in this and the next section belongs to A. Grigor’yan

and L. Saloff-coste [10].

Definition 3.4.1 Fixed ε, λ ∈ (0, 1], and Σ a closed subset in X. A Borel measure

µ on X is said to satisfy volume comparison property on Σ with parameter (ε,Σ), or

µ ∈ (VC)Σ,ε,λ for short, if there is a constant CV > 0 such that for any o ∈ Σ and any

x ∈ X−Σ such that d(x,Σ) ≥ λd(o, x),

µ(B(o, d(o, x))) ≤ CVµ(B(x,
1

32
εd(o, x)))

Note that in many cases, for example when µ has doubling property for re-

mote balls, the constant 1/32 is not particularly important.

Lemma 3.4.2 If µ ∈ (VD), then µ ∈ (VC)Σ,ε,λ for any closed set Σ and parameter λ, ε.

Proof.

µ(B(o, d(x, o)))
µ(B(x, 1

32εd(o, x)))
≤ CD

(d(x, o) + d(x, o)
1

32εd(x, o)

)α
≤ CD(64ε−1)α

= 64αCDε
−α

34



�

Recall that a Ball B(x, r) is said to be ε-remote to Σ if r ≤ 1
2εd(x,Σ) and is said

to be Σ-anchored balls if its center lies in Σ.

Theorem 3.4.3 Assume that µ satisfies doubling property for ε-remote balls. Then µ ∈

(VD) if and only if µ satisfies doubling property for Σ-anchored balls and µ ∈ (VC)Σ,ε,λ

for some λ ∈ (0, 1].

Proof. We only need to prove sufficiency part. Let B(x, r) be a non anchored

ball and ρ = d(x,Σ). Choose o ∈ Σ so that d(x, o) = d(x,Σ). If r ≤ ερ/2, then B(x, r)

is a remote ball. If r > 3ρ, then B(x, r) ⊂ B(o, 4
3r) and B(o, 1

6r) ⊂ B(x, 1
2r). Using

doubling property for anchored balls, we have

µ(B(x, r)) ≤ C3
Dµ(B(o,

1
6

r)) ≤ C3
Dµ(B(x,

1
2

r))

If 1
2ερ ≤ r ≤ 3ρ, B(x, r) ⊂ B(o, 4ρ) and B(x, 1

32ερ) ⊂ B(x, 1
2r). By (VD) and

(VC)Σ,ε,λ,

µ(B(x, r)) ≤ C2
DCVµ(B(x,

1
2

r))

�

The last result in this chapter is from [10]. Saloff-Coste and Grigor’yan char-

acterize the doubling property using volume comparison on a fully accessible

set. This result will be generalized in the next chapter. Recall that a fully ac-

cessible set is a closed set Σ such that for any o ∈ Σ and r > 0, there is x ∈ X

with d(x,Σ) = d(o, x) = r. An example of a fully accessible set is a singleton, any

vector subspace of Rn of positive codimension. Another example is Σ = ∂V in

X = Rn−V where V is an open convex subset of Rn.
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Corollary 3.4.4 ([10]) Let µ be a Borel measure on a geodesic space (X, d). Assume

that µ satisfies doubling property for balls ε-remoted to a fully accessible subset Σ. Then

µ ∈ (VD) if and only if µ ∈ (VC)Σ,ε,λ.

Proof. It is sufficient to show doubling property for anchored balls. Let

o ∈ Σ and r > 0. Since Σ is fully accessible, there is x ∈ X with d(x,Σ) =

d(x, o) = r. Choose a path γ from x to o with length at most (1 + δ)r. Choose

0 = t0 ≤ . . . ≤ ti ≤ ti+1 ≤ . . . ≤ tk so that d(γ(ti), γ(ti+1)) = 1
32εr and

d(o, γ(tk)) = mini d(o, γ(ti)) = r/4. Clearly, k ≤ 32[3/4 + δ]ε−1. It is not hard to see

that each ball B(γ(ti), εr/8) is ε-remote to Σ. Since B(γ(ti), εr/32) ⊂ B(γ(ti), εr/8),

µ(B(γ(ti), εr/32)) ≤ C2
Dµ(B(γ(ti+1), εr/32)). Therefore,

µ(B(o, r)) ≤ CVµ(B(x, εr/32))

≤ CVCk
Dµ(B(γ(tk), εr/32))

≤ CVC32[3/4+δ]ε−1

D µ(B(o, r/2))

→ CVC24ε−1

D µ(B(o, r/2)) as δ→ 0

�
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CHAPTER 4

DOUBLING PROPERTY FOR WEIGHTED MEASURES

The goal of this chapter is to answer the question when the weighted mea-

sure µ = hdν will satisfy doubling property if ν does. The simplest form of

h is a function of distance function i.e. h(x) = a(d(x,Σ)) for some function

a : [0,∞)→ [0,∞] and closed set Σ. Follows Grigor’yan and Saloff-Coste’s idea,

the author will focus to the functions a that will immediately imply doubling

condition for Σ-remote balls.

4.1 Remotely Constant Functions

Definition 4.1.1 A nonzero function a : [0,∞) → [0,∞] is said to be remotely con-

stant if a(1) < ∞ and there exists a constant c = ca ≥ 1 such that for any r > 0,

sup
[r,3r]

a ≤ c inf
[r,3r]

a

Note that any reciprocal of remotely constant functions is also remotely con-

stant. This class of functions also closed under finite additions, multiplications,

maximum and minimum.

In a sense, a is remotely constant if and only if it is roughly constant on any

interval remoted to 0. The condition a(1) < ∞ is simply to guarantee that the

function a is not infinite anywhere except possibly at 0. This condition is es-

sential if one want the weighted measure µ = a(d(·,Σ))dν to be locally finite. It

will be shown later that any remotely constant function is equivalent to a con-

tinuous function. Moreover, it is equivalent to finitely differentiable functions
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of any finite order. It can be said that remotely constant functions behave rather

well in rough geometry.

Here functions f and g are equivalent, written f ∼ g, if there exists a constant

c ≥ 1 such that c−1 f ≤ g ≤ c f .

Proposition 4.1.2 For any remotely constant function a, there exists a constant β ≥ 0

and an increasing continuous function ã such that a(r) ∼ r−βã(r).

Proof. First assume that sup[r,3r] a ≤ c inf[r,3r] a for all r > 0, for some fixed

constant c < 3. Define ã(r) =
´ r

0 a. Then

ã(r) =

∞∑
i=0

ˆ r
3i

r
3i+1

a

≤ a(r)
∞∑

i=0

ci+1
ˆ r

3i

r
3i+1

ds

= a(r)r
∞∑

i=0

ci+1
( 1
3i −

1
3i+1

)
=

6c
3(3 − c)

a(r)r

By the same argument, one also have ã(r) ≥ 2
3c−1a(r)r. For general a, apply the

result to a1/k for k big enough so that c1/k < 3 gives (ã1/k)k(r) ∼ rka(r).

�

The above proposition implies that there must exists the best i.e. the smallest

nonnegative β which is bounded above by log3 c. However, both are not equal

in general. Consider for example a(r) =
(
rχ[0,1] + (5r + 1)χ(1,3) + 2rχ[3,∞)

)−1
. In this

case, ca = 6 but a(r) ∼ r−1.
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Definition 4.1.3 Let a be a remotely constant function. The decay rate of a is the

infimum of all nonnegative β such that there exists a constant c > 0 with

c
(r

s

)−β
≤

a(r)
a(s)

∀r > s > 0

Denote [β] the set of all remotely constant functions with decay rate β and (β) the

set of those a ∈ [β] that such that there exists a constant c > 0 with c
(

r
s

)β
≤

a(r)
a(s) ∀r >

s > 0. Furthermore, denote (β)s = {a ∈ (β) : limr→0 rβa(r) = 0}. For example, (0) is the

set of all functions equivalent to nondecreasing functions.

Proposition 4.1.4 For all β ≥ 0, ∅ ( (β)s ( (β) ( [β].

Proof. The middle inequality is simple. For the first one, consider r 7→

r−β ln(1 + r). For the last one, let a(r) = ln(e + 1/r). Clearly, a < (0). Denote

bλ(x) = x−λ ln(e + x). Since b′λ < 0 outside a compact set, bλ is equivalent to

a nonincreasing function. Hence, r 7→ rλa(r) is equivalent to a nondecreasing

function. This directly implies a ∈ [0]. For β > 0, use r 7→ r−β ln(e + 1/r) instead.

�

Proposition 4.1.5 Let a be a remotely constant function with decay rate β0 and β , β0.

Then there exists a nondecreasing continuous function ã such that r−βã ∼ a if and only

if β > β0.

Proof. If β > β0, set ã = sup0<s<r sβa(s). Since sβa(s) . rβa(r) for all r > s > 0,

ã ∼ rβa.

On the contrary, if r−βã ∼ a for some nondecreasing function ã, then

a(r)
a(s)

∼
( s
r

)β ã(r)
ã(s)

≥
( s
r

)β
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Therefore β must be bigger than the decay rate of a.

�

4.2 Doubling Exponent

The goal of this chapter is, after all, to determine to what extent the doubling

property of weighted measure will hold. In other words, to determine the

biggest β so that all dµ = a(d(·,Σ))dv, a ∈ [β] satisfies doubling property. It turns

out that on a large class of Σ, it is sufficient to consider only a(r) = r−β.

Definition 4.2.1 Fixed ρ ∈ (0, 1]. A closed subset Σ of a complete length space (X, d)

satisfies ρ-skew condition if for any o ∈ Σ and r > 0, the set

Σρ(o, r) = {x ∈ X : ρr ≤ d(x,Σ) ≤ d(x, o) ≤ r}

is nonempty. Σ is said to be fully accessible if it satisfies ρ-skew condition with ρ = 1.

Denote cΣρ(o, r) = ∪0≤s≤rΣρ(o, s) and cΣρ(o) = ∪r>0cΣβ(o, r).

Proposition 4.2.2 Let ν be a doubling measure in a metric space (X, d). For any closed,

measure zero, subset Σ satisfying ρ-skew condition, and any remotely constant a, the

weighted measure dµ = a(d(·,Σ))dν is doubling if and only if there exists a constant

c > 0 such that

µ(B(o, r)) ≤ ca(r)ν(B(o, r))

for any o ∈ Σ and r > 0.

40



Proof. First of all, the fact that a is remotely constant immediately implies

that µ satisfies doubling property for Σ-remote balls. Moreover, µ(B(x, r)) ∼

a(d(x,Σ))ν(B(x, r)) for any remote balls B(x, r). If one can find a constant c′ > 0 so

that µ(B(o, r)) ≥ c′a(r)ν(B(o, r)) for any o ∈ Σ and r > 0, then combines this with

the original assumption, we get µ(B(o, r)) ∼ a(r)ν(B(o, r)). This implies both dou-

bling property for anchored balls and volume comparison condition. Therefore,

µ must be doubling.

Conversely, if µ is doubling, then for each o ∈ Σ and r > 0, and x ∈ X so that

d(x,Σ) ≥ ρd(x, o) = ρr. Then

µ(B(o, r)) ≤ CVµ(B(x, ρ
r

32
))

∼ a(r)ν(B(x, ρ
r

32
))

Lastly, lets find the constant c′. This can be shown analogously as the previ-

ous argument. For each o ∈ Σ and r > 0, pick x ∈ Σρ(o, r). Then

µ(B(o, 2r)) ≥ µ(B(x,
ρr
2

))

≥
(

inf
[ ρr

2 ,
3ρr
2 ]

a
)
ν(B(x,

ρr
2

))

∼ a(r)ν(B(o, r))

�

Now it is time to introduce the main concept in this section.

Definition 4.2.3 Fixed a doubling measure ν on a metric space (X, d). For any closed

measure zero set Σ ⊂ X, the doubling exponent βD(Σ) of Σ is the supremum of all β ≥ 0

such that the weighted measure d(·,Σ)−βdν is doubling.
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Proposition 4.2.4 Fixed a doubling measure ν on a metric space (X, d), and closed

mesure zero sets Σi ⊂ X where i = 1, . . . , n. Then

βD(Σ1∪ · · · ∪Σn) ≥ inf
1≤i≤n

βD(Σi)

Moreover, if all Σi satisfy ρ-skew condition, then

βD(Σ1∪ · · · ∪Σn) = inf
1≤i≤n

βD(Σi)

Proof. This follows from the fact that

1
d(·,Σ1∪ · · · ∪Σn)β

∼
1

d(·,Σ1)β
+ · · · +

1
d(·,Σn)β

for any β ≥ 0. So if β < inf1≤i≤n βD(Σi), then d(·,Σi)−βdν is doubling for all i which

implies d(·,Σ1∪ · · · ∪Σn)−βdν is as well. This proves the first inequality.

Moreover, d(·,Σi)−β ≤ d(·,Σ1∪ · · · ∪Σn)−β. Combining this with the assumption

that all Σi satisfy ρ-skew condition, then the equality must follows.

�

Proposition 4.2.5 For any doubling measure ν on a metric space (X, d) and any closed

mesure zero subsets Σ1 ⊂ Σ2 of X, βD(Σ1) ≥ βD(Σ2) provided that Σ2 satisfies ρ-skew

condition.

Proof. First note that Σ1 also satisfies ρ-skew condition. Also for any β <

βD(Σ2) o ∈ Σ1, and r > 0
ˆ

B(o,r)

1
d(x,Σ1)β

dν(x) ≤
ˆ

B(o,r)

1
d(x,Σ2)β

dν(x)

.
1
rβ
ν(B(o, r))

and the result follows.
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Corollary 4.2.6 Let ν be any doubling measure on a metric space (X, d) and Σ1 ⊂ Σ2 be

any closed mesure zero subsets of X such that βD(Σ1) = βD(Σ2). Assume that Σ2 satisfies

ρ-skew condition, then for any Σ1 ⊂ Σ ⊂ Σ2, βD(Σ) = βD(Σ1).

Theorem 4.2.7 Let ν be a doubling measure in a geodesic space. For any β ≥ 0 and a

closed mesure zero set Σ satisfies ρ-skew condition, the following are equivalent.

(a) β < βD(Σ)

(b) a(d(·,Σ))dν is doubling for all a ∈ [β], and β , βD(Σ)

(c) a(d(·,Σ))dν is doubling for all a ∈ (β), and β , βD(Σ)

(d) a(d(·,Σ))dν is doubling for all a ∈ (β)s, and β , βD(Σ)

Proof. It is sufficient to prove (a) implies (b) and (d) implies (a). Assume that

(a) holds. If one can show that d(·,Σ)βdν is doubling, then for any nondecreasing

function ã,

ˆ
B(o,r)

ã(d(x,Σ))
d(x,Σ)β

dν(x) ≤ ã(r)
ˆ

B(o,r)

1
d(x,Σ)β

dν(x)

. ã(r)
1
rβ
ν(B(o, r))

Therefore r 7→ ã(r)r−β must also be doubling. Therefore a(d(·,Σ))dν is doubling

for all a ∈ [β]. This show that it is sufficient to prove d(·,Σ)βdν is doubling.

By definition, there exists β0 > β such that d(·,Σ)β0dν is doubling. By the same

argument, one would have

ˆ
B(o,r)

1
d(x,Σ)β

dν(x) =

ˆ
B(o,r)

d(x,Σ)β0−β

d(x,Σ)β0
dν(x)
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≤ rβ0−β

ˆ
B(o,r)

1
d(x,Σ)β0

dν(x)

. rβ0−β
1

rβ0
ν(B(o, r))

= rβν(B(o, r))

for any o ∈ Σ and r > 0.

Now, lets prove (d) implies (a). Note that for all r > s > 0,

ln(1 + r)
ln(1 + s)

≤
r
s

Therefore r 7→ ln(1 + r) is remotely constant. If there exists δ > 0 such that for

some c > 0,
ln(1 + r)
ln(1 + s)

≥ c
(r

s

)δ
, ∀r > s > 0

Then c ln(1+s)
sδ ≤

ln(1+r)
rδ → 0 as r → ∞ which leads to a contradiction. This implies

that r 7→ ln(1 + r) ∈ (0)s.

Define aδ(r) = r−β[ln(1 + r)]δ. It follows that aδ ∈ (β)s. Hence for any o ∈ Σ and

r > 0,

[ln(1 + r)]δ

rδ

ˆ
B(o,r)

1
d(x,Σ)β−δ

dν(x) ≤
ˆ

B(o,r)

[ln(1 + r)]δ

d(x,Σ)β
dν(x)

.
[ln(1 + r)]δ

rβ
ν(B(o, r))

Thus,
´

B(o,r)
1

d(x,Σ)β−δ dν .
1

rβ−δ ν(B(o, r)) which directly implies β − δ ≤ βD(Σ). Since

this holds for any δ > 0, β ≤ βD(Σ).

�

Now is the time to face the real question, how can one compute βD(Σ)? In the

beginning, the author shows that the doubling exponent of any affine subspace
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of a Euclidean space with respect to Lebesgue measure is its codimension. The

next section show similar result for singleton. For a more general case, however,

is not always true.

4.2.1 Doubling Exponent of Singleton

At this point, it should not be surprise that the doubling exponent of singleton

is the growth rate of doubling measures.

Theorem 4.2.8 Let ν be a doubling measure in a geodesic space (X, d) and o ∈ X. The

doubling exponent βD(o) of {o} is the supremum of all β ≥ 0 such that there exists c > 0

so that
ν(B(o, r))
ν(B(o, s))

≥ c
(r

s

)β
∀r > s > 0

Moreover, the measure d(·, o)−βD(o)dν is not doubling.

Proof. For convenient, denote the supremum of such β as β0. Fixed β > 0

and set dµ = d(·, o)−βdν. If µ is doubling, then there must exists ε, c > 0 such that

c
(r

s

)ε
≤
µ(B(o, r))
µ(B(o, s))

, ∀r > s > 0

On the other hand, µ(B(o, r)) ∼ r−βν(B(o, r)). This implies that β+ ε ≤ β0 i.e β < β0.

On the contrary, if β < β0, then one can choose β′ ∈ (β, β0). Now,

µ(B(o, r)) =

∞∑
i=0

ˆ
B(o, r

3i )−B(o, r
3i+1 )

1
d(x, o)β

dν(y)

≤

∞∑
i=0

1
rβ

3iβ(ν(B(o,
r
3i )) − ν(B(o,

r
3i+1 ))
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≤
1
rβ

∞∑
i=0

3iβν(B(o,
r
3i ))

.
1
rβ

∞∑
i=0

3iβ ν(B(o, r))
3iβ′

≤
3β
′−β

3β′−β − 1
ν(B(o, r))

rβ

This shows that µ is doubling.

�

Corollary 4.2.9 Let ν be a doubling measure in a geodesic space (X, d) and o ∈ X.

Denote αD(o) the supremum of all α ≥ 0 such that there exists c > 0 so that

ν(B(o, r))
ν(B(o, s))

≥ c
(r

s

)α
∀r > s > 0

Then the following are equivalent.

(a) β < αD(Σ).

(b) a(d(·,Σ))dν is doubling for all a ∈ [β].

(c) a(d(·,Σ))dν is doubling for all a ∈ (β).

(d) a(d(·,Σ))dν is doubling for all a ∈ (β)s.

4.2.2 Assouad Dimension revisited

In this section, the author compute the bounds of doubling exponent on a class

of Σ. As in the Euclidean case, the bounds are related to Assouad dimension of

Σ. Actually, it is more related to the change in Assouad dimension.
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Definition 4.2.10 A doubling space (X, d) is said to have consistent Assouad dimen-

sion αA = αA(X) if for each α > αA, there exists a constant c > 0 such that for any

r > s > 0, x ∈ X, and y ∈ B(x, r), one can find ε-sets S ε(x, r) of B(x, r) and S ε(y, s) of

B(y, s) such that

lim sup
ε→0

#S ε(y, s)
#S ε(x, r)

≥ c
( s
r

)α
where #A denote the number of elements of A.

Recall that an ε-set of a subset B of a metric space is any maximal subset of

B such that each elements are at least ε distance to each others. By Proposition

3.1.6, the Assouad dimension is always smaller than the consistent Assouad

dimension. At this moment, the author do not yet know whether these two

numbers are the same.

First the author shows that it actually do not matter which ε-set to choose

from as long as one adjusts the constant c appropriately. It also implies that one

may replace lim sup in the definition of consistent Assouad dimension by lim inf.

Lemma 4.2.11 Let (X, d) be a doubling space. Then there exists a constant N ≥ 1 such

that for any x ∈ X, r > 0, and any two ε-set S , S ′ of B(x, r),

1
N

#S ≤ #S ′ ≤ N#S

Proof. By definition, B(y, ε), y ∈ S is a covering of B(x, r). Denote S y = {z ∈

S ′ : z ∈ B(y, ε)}. Since X is a doubling space, there is a number N depends solely

on X such that #S y ≤ N. This implies

#S ′ ≤
∑
y∈S

#S y ≤ N#S

By switching S and S ′, one also have #S ≤ N#S ′.
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Proposition 4.2.12 Any postcritically finite fractal(e.g. [42]) has consistent Assouad

dimension equal to its Hausdorff dimension.

Proof. For any open subsets U ⊂ V of a doubling space X, one have

dimA U ≤ dimA V . The fact that X is a postcritically finite fractal then forces

dimA U = dimA V . Moreover, we know that dimA X equal to Hausdorff dimen-

sion in this case. Therefore, X must have consistent Assouad dimension.

�

Definition 4.2.13 Let ν be a doubling measure in a geodesic space (X, d) and Σ ⊂ X.

The uniform growth rate αD = αD(Σ) over Σ is the supremum of all α > 0 such that

there exists c > 0 with
ν(B(o, r))
ν(B(o, s))

≥ c
(r

s

)α
for any r > s > 0 and o ∈ Σ.

Recall that if (X, d) is a Euclidean space, ν is a Lebesgue measure, and Σ be its

affine subspace, then βD(Σ) = dim X − dim Σ = αD − αA as shown in Chapter 2. So

one might ask whether this is always true or not. The answer is no and it should

not be surprising. Consider for example dν = |x|−n+1dx on the Euclidean space

of dimension n. In this case αD(Rn−1) = 1 while αA(Rn−1) = n − 1. This happens

simply because the measure is not comparable at different points. This leads the

author to prove the following result.
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Theorem 4.2.14 Let ν be a doubling measure in a geodesic space (X, d) and Σ ⊂ X

satisfying ρ-skew condition and have consistent Assouad dimension αA. Then

βD(Σ) ≥ αD(Σ) − αA(Σ)

Proof. If αD − αA ≤ 0, then the above inequality becomes trivial. So it is

natural to assume that αD − αA > 0.

Fixed o ∈ Σ, r > 0, and β < αD. Then there exists c > 0 and β0 > β such that

for any o′ ∈ Σ with d(o, o′) < r,

ν(B(o′, s))
ν(B(o′, t))

≥ c
( s

t

)β0

It follows that for such o′,

ˆ
cΣρ(o′,r)

1
d(·, o′)β

dν ≤

ˆ
B(o′,r)

1
d(·, o′)β

dν

.
1
rβ
ν(B(o′, r))

.
1
rβ
ν(B(o, r))

uniformly. Here ρ is small but fixed, say ρ < 1/4. Since on cΣρ(o′, r), d(·, o′) ∼

d(·,Σ), it follows that

ˆ
cΣρ(o′,r)

1
d(·,Σ)β

dν .
1
rβ
ν(B(o, r)) (4.1)

uniformly as well.

Next, fixed α > αA. Choose c > 0, εn ↘ 0, and ε-sets S n(o, r) = S εn(o, 2r) ⊂ S n+1

such that

lim
n→∞

#S εn(o
′, s)

#S n(o, r)
≥ c

( s
r

)α
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Let S n(o′, s) be the set of all y ∈ S n(o, r) such that B(y, εn)∩B(o′, s) , ∅. It can be

proved the same way as before that #S n(o′, s) & #S εn(o
′, s). Therefore, one also

have

lim inf
n→∞

#S n(o′, s)
#S n(o, r)

&
( s
r

)α
Fixed δ = 1

ρ
− 2 > 0. For each x ∈ B(o, r), choose ox ∈ Σ such that d(x,Σ) =

d(x, ox) = rx. Let n be big enough so that εn < rx, then for any o′ ∈ S n(ox, δrx),

d(x, o′) ≤ d(x, ox) + d(ox, o′)

≤ rx + δrx + εn

≤ (2 + δ)rx

Therefore, x ∈ Σρ(o′, r). This implies

lim inf
n→∞

1
#S n(o, r)

∑
o′∈S n(o,r)

χcΣρ(o′ ,r)(x) ≥ lim inf
n→∞

1
#S n(o, r)

#S n(ox, δrx)

& (
rx

r

)α
= (

d(x,Σ)
r

)α
for any x ∈ B(o, r). Combining this with equation 4.1 and get

1
rβ
ν(B(o, r)) & lim inf

n→∞

ˆ
B(o,r)

( 1
#S n(o, r)

∑
o′∈S n(o,r)

χcΣρ(o′ ,r)(x)
) 1
d(x,Σ)β

dν(x)

&
ˆ

B(o,r)

1
rαd(x,Σ)β−α

dν(x)

This is equivalent to
´

B(o,r)
1

d(x,Σ)β−α dν(x) . 1
rβ−α ν(B(o, r)).

Since β < αD and α > αA are arbitrary, it follows that
ˆ

B(o,r)

1
d(x,Σ)β

dν(x) .
1
rβ
ν(B(o, r))

for any β < αD − αA.
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Of course, if the measure are comparable at different points in Σ, then αD ≥

αA. The proof is based on following lemma.

Lemma 4.2.15 Let ν be a doubling measure on (X, d) and Σ ⊂ X having consistent

Assouad dimension αA(Σ). Assume that there exists c ≥ 1 such that for any o, o′ ∈ Σ

and r > 0 with r ≤ d(o, o′),

1
c
ν(B(o, r)) ≤ ν(B(o′, r)) ≤ cν(B(o, r))

then αA(Σ) is at most the infimum of all α > 0 such that there exists c > 0 so that

ν(B(o, r))
ν(B(o, s))

≤ c
(r

s

)α
for any o ∈ Σ and r > s > 0.

Proof. Fixed α > αD and o ∈ Σ and r > s > 0. For any ε-sets S ε(o, r) and

S ε(o, s), ν(B(o, r + εn)) ≥ ν(B(o, εn
2 ))#S n(o, r) while ν(B(o, s)) ≤ ν(B(o, εn))#S n(o, s).

Therefore,

(r
s

)α
& lim inf

ε→0

ν(B(o, r + εn))
ν(B(o, s))

≥ lim inf
ε→0

ν(B(o, εn
2 ))#S n(o, r)

ν(B(o, εn))#S n(o, s)

& lim inf
ε→0

#S n(o, r)
#S n(o, s)

�
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Theorem 4.2.16 Let ν be a doubling measure on (X, d) and Σ ⊂ X having consistent

Assouad dimension αA(Σ). Assume that

ν(B(o, r))
ν(B(o, s))

∼
(r

s

)αD

uniformly in o ∈ Σ and r > s > 0. Then αA ≤ αD.

Proof. Combining the above assumption with the fact that ν(B(o, r)) ∼

ν(B(o′, r)) for any d(o, o′) ≤ r, one also have ν(B(o, s)) ∼ ν(B(o′, s)) for any

d(o, o′) ≤ r and s ≤ r. From the previous Lemma, αA ≤ αD.

�

Conjecture 4.2.1 Let ν be a doubling measure on (X, d) and Σ ⊂ X having consistent

Assouad dimension αA(Σ). Assume that

ν(B(o, r))
ν(B(o, s))

∼
(r

s

)αD

for any o ∈ Σ and r > 0. Then βD = αD − αA.

4.3 Examples

This section collects some simple examples to demonstrate the computation

power of all that have been done so far. Most of them will be Euclidean spaces

but the same idea can be more generally applied as well.

Example 4.3.1 Let ν be the Lebesgue measure in the Euclidean space and Σ be the closer

of an open subset of its affine subspace with codimension k. It is not hard to see that
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its consistent Assouad dimension is the dimension of the affine subspace containing it.

Using Theorem 4.2.14, βD(Σ) ≥ k. Then the fact that doubling property must be locally

integrable forces βD(Σ) = k.

Example 4.3.2 Let ν be the Lebesgue measure in the Euclidean space and Σ = Zk×{0}n−k

be its subset. Again, Theorem 4.2.14, βD(Σ) ≥ n − k. Moreover,
ˆ

B(o,r)

1
d(·,Σ)β

dν ∼ nk
ˆ

B(o,1)

1
d(·,Σ)β

dν +

ˆ
B(o,r)−{x:d(x,Σ)<1}

1
d(·,Σ)β

dν

∼ rk + rn−β

for any big r > 0. Therefore, doubling property only holds when k ≤ n − β and hence

βD(Σ) = n − k.

Note that even though both Zk × {0}n−k and Rk × {0}n−k have the same doubling

exponent n − k, their behavior at n − k are different. The weighted measure d(·,Zk ×

{0}n−k)n−kdν is doubling but the weighted measure d(·,Rk × {0}n−k)n−kdν is not. The

latter is not even locally integrable.

Example 4.3.3 Let ν be the Lebesgue measure in the Euclidean space and Σ be an ε-set

of an affine subspace Rk×{0}n−k. Then βD(Σ) = n−k. The proof is similar to the previous

example.

Example 4.3.4 Let ν be the Lebesgue measure in the Euclidean space and Σ be a set

containing an ε-set of an affine subspace Rk × {0}n−k containing Σ. Then βD(Σ) = n − k.

The is an immediate fact of Corollary 4.2.6.

Example 4.3.5 Let ν be the Lebesgue measure in the Euclidean space of dimension

n > 1, and Σ be a finite union of rays originated from the origin. Then βD(Σ) = n − 1.

The is also an immediate fact of Corollary 4.2.6.
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Example 4.3.6 Let ν be the Lebesgue measure in the Euclidean space of dimension

n > 1, and Σ be its compact submanifolds, possibly with boundary, of dimension k < n.

It is not hard to see that αA = k, so βD ≥ n − k. Locally integrability then forces

βD = n − k.

Note that the compactness condition can also be replaces by the boundedness and

nonnegativeness of curvature. The idea is that this submanifold must be quasi-isometric

to the affine subspace.

Example 4.3.7 Let ν be the Lebesgue measure in the Euclidean space of dimension

n > 1, and Σ be a finite complex with dimension k < n. Then βD = n − k. This follows

from Corollary 4.2.6 and local integrability condition.

Example 4.3.8 Let ν be the Lebesgue measure in the Euclidean space R3 and Σ = S1×R

where S1 is the unit circle in R2. In this case βD = βD(S1) = 1.

On the contrary, if Σ′ = S1 × Z, then αA = 1. Therefore βD = 2. In contrary to

earlier example, Σ′ contains a 1-set of Σ, yet βD(Σ′) , βD(Σ).

What about the discrete set Σ′′ = {eik/n : k = 1, . . . , n} × Z? Is βD(Σ′′) = 3 in this

case? The answer is no. The doubling exponent βD(Σ′′) is still 2.

What happen in this example is that on a large scale, all these sets behave like a one

dimensional space, while locally they behaves different. It then follows that the doubling

exponent can never exceed 3 − 1 = 2.
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CHAPTER 5

DIRICHLET SPACES

This chapter introduces Dirichlet forms on general metric spaces focusing

on the strongly local ones. For more information regarding general theory of

Dirichlet forms, see for example [26] and [6].

5.1 Dirichlet Spaces

A Dirichlet form is a positive symmetric bilinear form with some special prop-

erties, so the author will start by reviewing the definition of symmetric bilinear

forms.

A densely defined positive symmetric bilinear form (E,D(E)) on a Hilbert

space H is said to be closed if its domain D(E) is a Hilbert space under the

Dirichlet inner product

〈 f , g〉E :=〈 f , g〉H + E( f , g)

It is said to be closable if it has a closed extension. The smallest closed extension

of (E,D(E)) is called the closure of (E,D(E)). It is easy to show that a densely

defined bilinear form (E,D(E)) is closable if and only if for any Cauchy sequence

( fk) inD(E) with fk → 0 in H, fk → 0 inD(E).

One way to construct positive symmetric bilinear forms is via the formula

E( f , g) = 〈L f , g〉 for some operator L.

Corollary 5.1.1 Let L : D(L) ⊂ H → H be a densely defined operator with the follow-

ing properties:
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(a) Positivity: 〈L f , f 〉 ≥ 0, for all f ∈ D(L),

(b) Symmetry: 〈L f , g〉 = 〈 f , Lg〉 for all f , g ∈ D(L),

(c) Closability: L fk → 0 for any fk ∈ D(L) converging to 0 in H.

Define E( f , g) = 〈L f , g〉 with domainD(L). Then (E,D(L)) is closable.

Conversely, all positive symmetric bilinear forms can be obtained this way.

There always exists a unique positive self-adjoint operator L on H with domain

D(L) :={h ∈ H : E(h, g) ≤ C‖g‖, ∀g ∈ D(E), ∃C > 0}

so that E( f , g) = 〈L f , g〉 for all f , g ∈ D(L) andD(E) = D(L1/2).

The Hille-Yosida Theorem state that there is one-one corresponse between a

positive self-adjoint operator, one parameter semigroup and resolvent. So the

above theorem also state that there is a one-one corresponse between a closed

positive symmetric bilinear form, one-parameter semigroup, and resolvent. The

next two theorems state explicitly how they are related.

Theorem 5.1.2 Let (Tt) be a semigroup of linear operator on H such that

1. each Tt is a contraction: 〈Tt f ,Tt f 〉 ≤ 〈 f , f 〉, ∀ f ∈ H,

2. each Tt is self-adjoint: 〈Tt f , g〉 = 〈 f ,Ttg〉, f orall f , g ∈ H,

3. (Tt) is strongly continuous: Tt f → f in H as t → 0 for all f ∈ H .

Define E( f , g) = limt→0 〈
f−Tt f

t , g〉 whenever the limit exists and D(E) = { f ∈ H :

limt→0 〈
f−Tt f

t , f 〉 exists}. Then (E,D(E)) is a closed positive symmetric bilinear form.

Moreover, all closed positive symmetric bilinear form can be constructed in this way.
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Theorem 5.1.3 Let (Gα) be a resolvent i.e. (Gα) satisfies the following conditions.

1. αGα is a contraction for all α > 0.

2. each Gα is self-adjoint.

3. (Gα) satisfies resolvent equation: Gα −Gβ = (β − α)GαGβ.

4. (Gα) is strongly continuous: αGα f → f in H as α→ ∞ for all f ∈ H .

Define E( f , g) = limα→∞ α〈 f − αGα f , g〉 whenever the limit exists and D(E) = { f ∈

H : limα→∞ α〈 f − αGα f , f 〉 exists}. Then (E,D(E)) is a closed positive symmetric bi-

linear form. All closed positive symmetric bilinear form can be constructed in this way.

Moreover,

E(Gα f , g) + α〈Gα f , g〉 = 〈 f , g〉

for all f ∈ H, g ∈ D(E).

5.1.1 Dirichlet Forms

From now on a topological space means a locally compact, second-countable,

Hausdorff topological space. Even though Dirichlet forms generally defined in

more general topological spaces, these assumptions are what make the analysis

possible.

Definition 5.1.4 Let X be a topological space and µ be a Borel measure on X. A Dirich-

let form is a closed positive symmetric bilinear form (E,D(E)) on L2(X, dµ) with the

following property:

∀ f ∈ D(E), g = ( f∨0)∧1 ∈ D(E), and E(g, g) ≤ E( f , f )
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The Hilbert space D(E) is called the Dirichlet space and its norm associated to its

inner product 〈·, ·〉L2(X,dµ) + E(·, ·) is referred to as the Dirichlet norm.

By linearity, it is easy to see that | f |, f∨g, f∧g, f∨c, f∧c ∈ D(E) for any f , g ∈

D(E) and c ∈ R. As for the semigroup associated to it, it turn out to be the

submarkovian semigroup.

Proposition 5.1.5 Let (E,D(E)) be a closed positive symmetric bilinear map on

L2(X, dµ), (Tt) be its associated semigroup, and (Gα) be its associated resolvent. The

following properties are equivalent.

1. (αGα) is submarkovian i.e. αGα f ≤ 1 for all f ∈ L2(X, dµ) with 0 ≤ f ≤ 1.

2. (Tt) is submarkovian i.e. Tt f ≤ 1 for all f ∈ L2(X, dµ) with 0 ≤ f ≤ 1.

3. (E,D(E)) is a Dirichlet form.

4. For any f ∈ D(E) and g ∈ L2(X, dµ) such that |g| ≤ | f | and |g(x) − g(y)| ≤

| f (x) − f (y)| for all x, y ∈ X, g ∈ D(E) and E(g, g) ≤ E( f , f ). Note that such g is

called a normal contraction of f .

5. For any ε > 0, there exists a nondecreasing nonexpansive map φε : R→ [−ε, 1 +

ε] such that φε is an identity on [0, 1], and for all f ∈ D(E), φε( f ) ∈ D(E) with

E(φε( f ), φε( f )) ≤ E( f , f ).

5.1.2 Energy Measures

It turn out that one can view a regular Dirichlet form as a measure-valued bilin-

ear form. Here regular means that it poses a core. A core C of a Dirichlet form
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(E,D(E)) is a subset of D(E)∩Cc(X) such that C is dense in D(E) under Dirichlet

norm and dense in Cc(X) under supremum norm. If (E,D(E)) is regular, then

D(E)∩Cc(X) is a core of (E,D(E)).

Let (E,D(E)) be a regular Dirichlet form. There exists a unique signed-

measure-valued bilinear form Γ, called energy measure of (E,D(E)), with do-

mainD(E) such that

ˆ
φdΓ( f , g) =

1
2

[E( f , φg) + E(g, φ f ) − E( f g, φ)]

for all φ ∈ D(E)∩Cc(X), f , g ∈ D(E). Moreover, Γ( f , f ) is actually a finite measure

for all f ∈ D(E).

The proof of this is based on the fact that for any f ∈ D(E) and φ ∈

D(E)∩L∞(dµ),

E( f , φ f ) −
1
2
E( f 2, φ) ≤ ‖φ‖∞E( f , f )

One nice thing about Γ is that one can prove Cauchy-Schwarz inequality:

ˆ
φψdΓ( f , g) ≤ [

ˆ
φ2dΓ( f , f )

ˆ
ψ2dΓ(g, g)]1/2

≤
1
2

[
ˆ
φ2dΓ( f , f ) +

ˆ
ψ2dΓ(g, g)]

for any f , g ∈ D(E) and φ, ψ ∈ L∞(dµ). The prove is similar to other forms of

Cauchy-Schwarz inequality.

5.1.3 Strong Locality

There are three ways to state strong locality, one is its definition, other two are

Leibnitz rule and chain rule.
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Theorem 5.1.6 (e.g. [45, 46, 47]) Let (E,D(E)) be a regular Dirichlet form on some

L2(X, dµ) with associated energy measure Γ. The following properties of (E,D(E)) are

equivalent.

1. Strong locality: for any f , g ∈ D(E) with ( f − a)g = 0 for some constant a ∈ R,

E( f , g) = 0.

2. Leibnitz rule: for any f , g, h ∈ D(E), dΓ( f g, h) = f dΓ(g, h) + gdΓ( f , h).

3. Chain rule: for any f , g ∈ D(E)∩L∞(X, dµ), and η : R → R continuously differ-

entiable, dΓ(η( f ), g) = η′( f )dΓ( f , g)

The condition f , g ∈ L∞(x, dµ) in 3. is redundant in the sense that the chain

rule still hold without this assumption, however, we only know that η( f ) is in

the local domain instead of the actual domainD(E).

The local domain Dloc(E) of a strongly local Dirichlet form is defined to be

the vector space of all locally square integrable function f such that for any rel-

atively compact open set V , one can find a function g ∈ D(E) such that f = g on

V . For such f , one can define dΓ( f , f ) = dΓ(g, g) on V . This is well-defined by

strong locality. Of course, the formula extends to any f , h ∈ Dloc(E) by polariza-

tion dΓ( f , h) = [dΓ( f + h, f + h) − dΓ( f − h, f − h)]/4.

Another important concept is the notion of distance. Under mild assump-

tions, this will turn X into a geodesic space. This is another reason why one

should not expect the result to holds beyond locally compact, second-countable,

Hausdorff spaces.

Definition 5.1.7 Let (E,D(E)) be a strongly local regular Dirichlet form on some
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L2(X, dµ) with associated energy measure Γ. For any x, y ∈ X, define

ρ(x, y) = ρE(x, y) = sup{ f (x) − f (y) : f ∈ D(E)∩Cc(X), dΓ( f , f ) ≤ dµ}

ρ∗(x, y) = ρ∗E(x, y) = sup{ f (x) − f (y) : f ∈ D(E)∩C(X), dΓ( f , f ) ≤ dµ}

Here dΓ( f , f ) ≤ dµ means dΓ( f , f ) is absolutely continuous with respect to dµ and that

its Radon-Nykodim derivative bounded by 1 µ-a.e. on X.

The functions ρ, ρ∗ depend on both the Dirichlet form and the topology on

X. It is lower-semicontinuous, symmetric, and satisfies triangle inequality. It is,

however, only pseudo-distance. Moreover, it is possible that ρ , ρ∗(see [20, 44]).

Definition 5.1.8 A strongly local regular Dirichlet form (E,D(E)) on some L2(X, dµ)

is said to satisfy the basic assumption if the following conditions hold

(a) The pseudo-distance ρ is actually a distance function on X and X is complete

under ρ,

(b) The topology induced by ρ is the original topology of X.

Under these conditions , one also have ρ = ρ∗. Moreover, (X, ρ) is a geodesic

space and the distance function f (x) = ρ(x,V), where ∅ , V ⊂ X, is inDloc(E) and

that dΓ( f , f ) ≤ dµ[20, 44].

5.2 Poincaré Inequality and Heat Kernel Estimates

Let begins this section with the definition of (weak) Poincaré Inequality.
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Definition 5.2.1 Let (E,D(E)) be a strongly local regular Dirichlet form on some

L2(X, dµ) with associated energy measure Γ satisfying the basic assumption. (E,D(E))

is said to satisfy weak Poincaré inequality if there exists constants k ≥ 1 and CP > 0

such that for any r > 0, x ∈ X and f ∈ D(E),

min
ξ∈R

ˆ
B(x,r)
| f − ξ|2dµ ≤ CPr2

ˆ
B(x,kr)

dΓ( f , f )

If k = 1, then (E,D(E)) is said to satisfy Poincaré inequality.

Note that under doubling property, the weak Poincaré inequality and

Poincaré inequality are equivalent[39]. Furthermore, doubling property and

Poincaré inequality together imply stronger conditions, parabolic Harnack in-

equality and heat kernel estimates. Recall here that the heat kernel associated

with (E,D(E)) is a function p : (0,∞) × X × X → (0,∞) such that Pt f (x) =

´
f p(t, x, ·)dµ for all f ∈ L2(X, dµ) where Pt, t > 0 is the heat semigroup associ-

ated to (E,D(E)).

Definition 5.2.2 Let (E,D(E)) be a strongly local regular Dirichlet form on some

L2(X, dµ) with associated energy measure Γ satisfying the basic assumption. It is said to

satisfy the heat kernel estimates if the heat kernel p associates to it satisfies the estimate

c1e−
ρ(x,y)2

c2t√
µ(B(x,

√
t)B(y,

√
t)
≤ p(t, x, y) ≤

c3e−
ρ(x,y)2

c4t√
µ(B(x,

√
t)B(y,

√
t)

uniformly in t > 0 and x, y ∈ X. Here c1, c2, c3, c4 > 0 are fixed constants.

Note that the term
√
µ(B(x,

√
t)B(y,

√
t) in the buttom can be replaced either

by µ(B(x,
√

t)) or µ(B(y,
√

t))[41].
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As for parabolic Harnack inequality, one need to clarify first what a solution

of heat equation is. This is nothing but a generalization of the classical heat

equation. Let L be the infinitesimal generator associates to (E,D(E)). Informally,

a solution of the heat equation associated to L is a function u such that ∂tu = Lu.

This can also be interpreted as
´
< ∂tu, v > dt =

´
< Lu, v > dt = −

´
E(u, v)dt for

all test functions v. To make this precise, one must first define test functions.

Given a Hilbert space H and an open interval I, denote L2(I → H) the Hilbert

space of all measurable function u : I → H with finite norm

‖u‖ =
( ˆ

I
‖u(t)‖2dt

)1/2
< ∞

Let W1(I → H) be the set of all functions u ∈ L2(I → H) whose distributional

derivative u′ can be represented by a function in L2(I → H). Equipped W1(I →

H) with the norm

‖u‖ =
(ˆ

I
‖u(t)‖2dt +

ˆ
I
‖u′(t)‖2dt

)1/2

will make W1(I → H) into a Hilbert space.

From now on, any function u : I → X → R will be viewed as a function

u : I → (X → R). This will allow us to view solutions of heat equation as

function from I → D(E).

Set F (I × X) = L2(I → D(E))∩W1(I → D(E)∗) and set

Fc(I × X) = {u ∈ F (I × X) : u(t, ·) has compact support for a.e. t ∈ I}

Also denotes Floc(I × X) the set of all functions u : I × X → R such that for

any relatively compact open subset V of X and J of I, there exists a function

uV ∈ F (I × X) satisfying u = uV a.e. on J × V .
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Definition 5.2.3 Let I be an open time interval. A function u : I × X → R is a (local)

weak solution of the heat equation ∂tu = Lu if

(a) u ∈ Floc(I × X),

(b) For any open interval J relatively compact in I and any φ ∈ Fc(I × X),
ˆ

J

ˆ
X
φ∂tudµdt +

ˆ
J
E(φ(t, ·), u(t, ·))dt = 0

A simple example of weak solution in the sense introduced above is u(t, ·) =

Pt f for t ∈ I ⊂ (0,∞), where I is a bounded interval and f ∈ L2(X, dµ). For a more

interesting example, one can take a look at Aronson[4] or Gyrya’s thesis[17](see

also [16]).

Fixed an open set V . Note that if one replaceD(E) with the closure of the set

{ f ∈ D(E) : f has compact support in V} in the above definition, then one also

arrives at the definition of local solution (in V) of heat equation[17].

Now, it is possible to define (uniform) parabolic Harnack inequality.

Definition 5.2.4 A regular strongly local Dirichlet form (E,D(E)) on L2(X, µ) satisfies

(uniform) parabolic Harnack inequality if there exists a constant H0 > 0 such that

for any x ∈ X, r > 0, and any non-negative weak solution u of the heat equation ∂tu = Lu

on (0, r2) × B(x, r), one have

sup
Q−

u ≤ H0 inf
Q+

u

where Q− = (r2/4, r2/2) × B(x, r/2), Q+ = (3r2/4, r2) × B(x, r/2) and both supremum

and infimum are essential i.e. computed up to sets of measure zero.

A crucial consequence of uniform parabolic Harnack inequality is that all

local weak solutions of the heat equation are continuous in the sense that they
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admit continuous representatives. Another one is that it is equivalent to heat

kernel estimates discuss earlier. The following result is the cornerstone of the

author’s approach in proving uniform parabolic Harnack inequality. It is the

work of Sturm which in turn generalizes the works of many others that came

before[47].

Theorem 5.2.5 ([47]) Let (E,D(E)) be a regular strongly local Dirichlet form on

L2(X, µ) satisfying the basic assumptions. Then the following properties are equivalent:

(a) (E,D(E)) satisfies uniform parabolic Harnack inequality.

(b) (E,D(E)) satisfies heat kernel estimates.

(c) (E,D(E)) satisfies Poincaré inequality and µ satisfies volume doubling property.
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CHAPTER 6

WEIGHTED DIRICHLET SPACES

This chapter is divided into two parts. The first part deals with the construc-

tion of weighted Dirichlet spaces. The second part gives sufficient conditions

for the heat kernel estimates on weighted Dirichlet spaces. This is equivalent

to doubling property and Poincaré inequality[47]. Since doubling property on

weighted measures is already study in Chapter 4, this chapter will only deals

with the proof of Poincaré inequality.

6.1 Construction of Weighted Dirichlet Spaces

Fixed a locally compact metrisable space X, a radon measure ν on X, and a

strongly local, regular Dirichlet form (E,D(E)) with associated energy measure

Γ on L2(X, ν). Moreover, we assume that (E,D(E)) satisfies the basic assumption

i.e. the intrinsic metric

ρ(x, y) := sup{u(x) − u(y) : u ∈ Dloc(E)∩Cc(X), dΓ(u) ≤ dν}

is a complete metric metrises the topology of X.

For any F ⊂ D(E), denote F
E

the closure of F under the Dirichlet inner

product E1 = 〈·, ·〉 + E.

Lemma 6.1.1 Let φ ∈ C(X), φ ≥ 0, u ∈ D(E), and v = (u∨0)∧1. Then
ˆ

X
φdΓ(v, v) ≤

ˆ
X
φdΓ(u, u)

Proof. By [6, p.17], the result holds if we further assume that φ ∈ D(E)∩Cc(X)

and u ∈ D(E)∩L∞(X, ν). For general u, we have
´
φdΓ(u) = supn

´
φdΓ((−n)∨u∧n),
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so the result also holds in this case. By regularity of Dirichlet forms, the results

can be extended to any φ ∈ Cc(X). Since X is a length space, we can extend the

result for any φ ∈ C(X).

�

Lets starts by assume that the weighted function is regular i.e. it only take

finite values.

Lemma 6.1.2 Let h : X → (0,∞) be a continuous function and Ω be a relatively

compact, open subset of X. Denote dµ :=hdν and

Eh(u, v) =

ˆ
X

hdΓ(u, v), ∀u, v ∈ D(E)∩Cc(X)

Then (Eh,D(E)∩Cc(Ω)) is a densely defined, closable, symmetric bilinear form on

L2(Ω, µ) and its closure is a strongly local, regular Dirichlet form on L2(Ω, µ) with

domainD(E)∩Cc(Ω)
E

.

Proof. Clearly, (Eh,D(E)∩Cc(Ω)) is a symmetric bilinear form on L2(Ω, µ).

First, we show that D(E)∩Cc(Ω) is dense in L2(Ω, µ). Since Cc(Ω) is dense

in L2(Ω, µ), it is sufficient to show that D(E)∩Cc(Ω) in dense in Cc(Ω) under

supremum norm. Fixed u ∈ Cc(Ω). There exist uk ∈ D(E)∩Cc(X) such that

‖uk − u‖∞ → 0 as k → ∞ by regularity of (E,D(E)). Choose F ∈ D(E)∩Cc(X) such

that χsupp(u)
≤ F ≤ χ

Ω
. Such F exists because supp(u) is a compact subset of Ω.

Let vk = Fuk ∈ D(E)∩Cc(Ω). Using u = Fu, we have ‖vk − u‖∞ ≤ ‖F‖∞‖uk − u‖∞ →

0.

Next, we show that (Eh,D(E)∩Cc(Ω)) is closable. First notice that

(E,D(E)∩Cc(Ω)) is closable. Denote m = infx∈Ω h and M = supx∈Ω h. Since h is con-
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tinuous and Ω is relatively compact, 0 < m ≤ M < ∞. Now, mdν ≤ dµ ≤ Mdν, and

mE ≤ Eh ≤ ME. Hence E1 and Eh
1 are equivalent. It follows that (Eh,D(E)∩Cc(Ω))

is also closable and its closure has domainD(E)∩Cc(Ω)
E

.

By Theorem 6.1.1, (Eh,D(E)∩Cc(Ω)
E

) is a Dirichlet form on L2(Ω, ν). Let u, v ∈

D(E)∩Cc(Ω)
E

be such that u is constant in a neighborhood of a support of v. Then

dΓ(u, v) is the zero measure and hence Eh(u, v) = 0. This proof the strong locality

of (Eh,D(E)∩Cc(Ω)
E

).

�

Theorem 6.1.3 Let h : X → (0,∞) be a continuous function. Denote dµ :=hdν and

Eh(u, v) =

ˆ
X

hdΓ(u, v), ∀u, v ∈ D(E)∩Cc(X)

Then (Eh,D(E)∩Cc(X)) is closable and its closure is a strongly local, regular Dirichlet

form satisfies the basic assumption.

Proof. Fixed o ∈ X and denote Ωn = B(o, n). Since X is a length space, Ωn is

relatively compact for all n ≥ 1. Let (An,D(An)) be the self-adjoint operator as-

sociated to (Eh,D(E)∩Cc(Ωn)
E

). Define Au = Anu for any u ∈ D(E)∩Cc(Ωn). Since

for smallest possible n, u = 0 on a neighborhood of Ωn+1−Ωn, A is well-defined

on ∪n∈ND(E)∩Cc(Ωn) = D(E)∩Cc(X). It is not hard to see that (A,D(E)∩Cc(X)) is

a densely defined, positive, symmetric operator on L2(X, µ). By Friedrichs Ex-

tension Theorem, (Eh,D(E)∩Cc(X)) is closable. By Theorem 6.1.1, its closure is a

regular Dirichlet form on L2(X, µ).

Lastly, it is easy to see that the associated energy measure Γh of (E,D(Eh)) is

defined by dΓh(u, v) = hdΓ(u, v) and hence dΓh(u) ≤ dµ if and only if dΓ(u) ≤ dν.
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Thus, (Eh,D(Eh)) also satisfies the basic assumption. Moreover, it defines the

same metric as (E,D(E)).

�

Theorem 6.1.4 (Friedrichs Extension) Let A be a positive symmetric densely defined

linear operator with domain D(A) in a Hilbert space and let q(x, y) :=〈Ax, y〉 for any

x, y ∈ D(A). Then q is a closable symmetric bilinear form.

Recall that a densely defined linear operator A is positive if 〈Ax, x〉 ≥ 0 for

any x ∈ D(A), A is symmetric if 〈Ax, y〉 = 〈x, Ay〉 for any x, y ∈ D(A).

Proof. See [33, p.195,255] and [34, p.177].

�

Now lets move on to singular weights. Let h : X → (0,∞] be a positive

continuous, locally integrable function on X and dµ = hdν. Here h is continuous

means h is lower semi-continuous on X and continuous on X−{h = ∞} i.e.

h(xn)→ h(x) whenever xn → x ∈ {h , ∞}

h(xn)→ ∞ whenever xn → x ∈ {h = ∞}

Note that we can always write h = h1h2 where h1 is bounded from above and h2

is bounded from below. One such choices is that h1 = h ∧ 1 and h2 = h ∨ 1.

Define E′(u, v) =
´

h1dΓ(u, v) for any u, v ∈ D(E). The previous subsection

show that (E′,D(E)∩Cc(X)) is closable and its closure (E′,D(E′)) is a strongly

local, regular Dirichlet form satisfies the basic assumption. One can then replace
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(E,D(E)) with (E′,D(E′)) and assume the following stronger assumptions for the

weight h.

Assumption 6.1.1 h : X → (0,∞] is continuous, locally integrable and has positive

minimum 1. Particularly, ν(h = ∞) = 0.

Theorem 6.1.5 Let h : X → (0,∞] be a continuous, locally integrable function with

positive minimum 1. Denote dµ :=hdν and

Eh(u, v) =

ˆ
X

hdΓ(u, v), ∀u, v ∈ D(E)∩Cc(X)

If C = {u ∈ D(E)∩Cc(X) : Eh(u) < ∞} is dense in (Cc(X), ‖ · ‖∞), then (Eh,C) is closable

and its closure is a strongly local, regular Dirichlet form on L2(X, hdν) satisfies the basic

assumption.

Proof. The assumption about C is to guarantee that (Eh,C) is at least densely

defined and its closure, once proved, is regular. Let (un) be a Cauchy sequence

in (Eh,C) such that un → 0 in L2(X, hdν). Since h ≥ 1, un → 0 in L2(X, ν) and

E(um − un)→ 0 as n,m→ ∞. It follows that E(un)→ 0.

Using the fact that |
´
|φ|dΓ(un, um)| ≤

√´
|φ|dΓ(un, un)

´
|φ|dΓ(um, um) and

´
|φ|dΓ(un) ≤ ‖φ‖∞E(un) for all n,m, we have

lim
m→∞

ˆ
|φ|dΓ(um, um) = lim

m→∞

ˆ
|φ|dΓ(un, um) = 0, ∀φ ∈ C(X)∩L∞(X, ν)

Set Uk = {k−1 < h < k+1}. Since X−{h = ∞} is a metric space, it is paracompact

and hence there exists a partition of unity {φk} subordinates to {Uk}. Then

ˆ
X

hdΓ(un) ≤
∑
k∈N

ˆ
X
φkhdΓ(un)
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=
∑
k∈N

lim
m→∞

ˆ
X
φkhdΓ(un − um)

≤ lim inf
m→∞

∑
k∈N

ˆ
X
φkhdΓ(un − um)

≤ lim inf
m→∞

ˆ
X

hdΓ(un − um)

Letting n → ∞ and we have Eh(un) → 0. This proves that (Eh,D(E)∩Cc(X)) is

closable. Using the fact that E1 ≤ E
h
1,D(Eh) :=D(E)∩Cc(X)

Eh

⊂ D(E).

By Lemma 6.1.1,
´

X h∧kdΓ(v) ≤
´

X h∧kdΓ(u) for any u ∈ D(Eh) and v =

(u∨0)∧1. Letting k → ∞ and we have Eh(v) ≤ Eh(u) which prove that (Eh,D(Eh))

is a Dirichlet form. It is not hard to see that in fact (Eh,D(Eh)) is a strongly local,

regular Dirichlet form on L2(X, hdν) satisfies the basic assumption.

�

Corollary 6.1.6 Let h : X → (0,∞] be a continuous, locally integrable function. De-

note dµ :=hdν and

Eh(u, v) =

ˆ
X

hdΓ(u, v), ∀u, v ∈ D(E)∩Cc(X)

Let C = {u ∈ D(E)∩Cc(X) : Eh(u) < ∞}. If (E,D(E)) admits a carré du champ operator,

then (Eh,C) is closable and its closure is a strongly local, regular Dirichlet form on

L2(X, hdν) satisfies the basic assumption.

Proof. This follows from the fact that Eh(u) < ∞ for any Lipschitz function

with compact support.

�
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Denote S = S h :={h = ∞} where h : X → (0,∞] be a continuous, locally

integrable function. Instead of construct the weighted Dirichlet form as the

closure of C = {u ∈ D(E)∩Cc(X) : Eh(u) < ∞}, one might replace it with

D(E)∩Cc(X−S ). The last goal of this section is to give a sufficient condition

for which there is no different between the two i.e. the sufficient condition for

whichD(Eh) = D(E∩Cc(X−S ))
Eh

.

Theorem 6.1.7 Assume that the weighted Dirichlet form (Eh,D(Eh)) is well-defined,

and for each compact subset K of S = {h = ∞},

lim
ε→0

1
ε2

ˆ
Kε

hdν = 0 (6.1)

ThenD(Eh) = D(E)∩Cc(X−S )
Eh

.

The proof is based on the following lemma.

Lemma 6.1.8 Let f : [0,∞) → [0,∞) be a nondecreasing function with f (0) = 0.

Then

∃εn ↘ 0 s.t. f (εn)/ε2
n → 0 ⇐⇒ ∃εn ↘ 0 s.t. f (εn)/(εn − εn+1)2 → 0

Proof. (⇒) Choose a subsequence εnk so that εnk+1/εnk → 0. Then

f (εnk)
(εnk − εnk+1)2 =

f (εnk)
ε2

nk

ε2
nk

(εnk − εnk+1)2

→ 0

(⇐) Since εn ≥ εn − εn+1, f (εn)/ε2
n ≤ f (εn)/(εn − εn+1)2 → 0.

�

72



Theorem 6.1.7. For any ε > 0 and K ⊂ X, denote Kε the ε-neighborhood of

K. It is sufficient to show that D(E)∩Cc(X)∩{u : Eh(u) < ∞} ⊂ D(E)∩Cc(X−S )
Eh

.

Let u ∈ D(E)∩Cc(X) be such that Eh(u) < ∞ and set K = {h = ∞}∩supp(u),

f (ε) =
´

Kε hdν. By assumption, we can choose εn ↘ 0 so that f (εn)/(εn−εn+1)2 → 0.

Set

ρn(x) =


ρ(x,Kεn+1 )
εn−εn+1

x ∈ Kεn

1 otherwise

Then un = ρnu ∈ D(E)∩Cc(X−S ), un → u a.e. and hence

ˆ
(un − u)2dν ≤ (sup |u|)2

ˆ
Kεn

dν→ 0

Since ρn − 1 is Lipschitz with constant 2/(εn − εn+1),

ˆ
hdΓ(un − u, un − u) ≤ 2

ˆ
[u2hdΓ(ρn − 1, ρn − 1) + (ρn − 1)2hdΓ(u, u)]

≤ 2 sup |u|2 f (εn)/(εn − εn+1)2 + 2
ˆ

Kεn

hdΓ(u, u)

→ 0

Therefore, ‖un − u‖Eh → 0.

�

The above theorem shows that if the dimension of S is too small compared

to the growth rate of the measure, then it does not matter which domain one

should to prove the Poincaré inequality. This idea is not exploited in this thesis

though.
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6.2 The proof of Poincaré inequality

As state in the background materials, heat kernel estimates is equivalent to dou-

bling property and Poincaré inequality. The doubling property is studied in ear-

lier chapter, so in this section, the author will focus on Poincaré inequality. The

first version of the result will focus on nonincreasing remotely constant weights,

while the second one will focus on measure with small growth. Unlike doubling

property with work well with increasing weights, it is simpler to prove Poincaré

inequality for nonincreasing weights.

Another important point is that the proof of Poincaré inequality relies on

paths between points, so the singularity sets must have some kinds of path

property too.

Definition 6.2.1 Let (X, d) be a geodesic space and Σ ⊂ X. The set Σ is said to be

ρ-accessible if it satisfies ρ′-skew condition for some ρ′ > ρ and the cone cΣρ(o, r) is

path-connected for all o ∈ Σ and r > 0.

A ρ-accessible set Σ is said to be ρ-couniform if the Σρ(o, r) itself is path-connected

for all o ∈ Σ and r > 0.

Although the definition of accessible set does not involve the length of the

path, it is still possible to control it.

Proposition 6.2.2 Let Σ be a ρ-accessible set in a geodesic space (X, d). For each ρ0 <

ρ, there exists a constant CL > 0 such that for any x ∈ cΣρ(o), one can find a path

γ ⊂ cΣρ0(o) from o to x with length at most CLd(o, x).
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Proof. First, choose ε > 0 so that ρ > (1 + 2ε)ρ0 + 2ε. For any x ∈ cΣρ(o, r), one

can find a path γ ⊂ cΣρ(o, r) connecting x to o. For each k = 1, 2, . . ., denote tk the

last point that d(o, γ(t)) ≥ ρkr, and also denote t0 = 0. On each interval [tk, tk+1],

replace the path with the path constructed below.

Denote {xi} an ερkr-set on the path γ|[tk ,tk+1]. By doubling property, the number

of {xi} is uniformly bounded depending only on doubling constant and ε. Rear-

ranging {xi} so that B(xi, 2ερkr)∩B(xi+1, 2ερkr) , ∅. Now, one can replace γ|[tk ,tk+1]

with the path in this chain. It is easy to see that this new path has length roughly

ρkr on [tk, tk+1] so the whole path has length roughly r.

Lastly, for any y ∈ B(xi, ερ
kr),

d(y, o) ≤ d(y, xi) + d(xi, o) ≤ (1 + ε)ρkr

and

d(y,Σ) ≥ d(xi,Σ) − d(xi, y) ≥ (ρ − ε)ρkr

Therefore, y ∈ cΣρ0(o).

�

By the same arguments, one can also prove the following result.

Proposition 6.2.3 Let Σ be a ρ-couniform set in a geodesic space (X, d). For each ρ0 <

ρ, there exists a constant CL > 0 such that for any x, y ∈ Σρ(o, r), one can find a path

γ ⊂ Σρ0(o, r) from x to y with length at most CLd(x, y).

The next result gives the reason why one should not simply assume Σ satis-

fies ρ-skew condition.
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Lemma 6.2.4 Let x ∈ cΣρ(o), o ∈ Σ. Then for each ε ∈ (0, 1) and õ ∈ Σ with d(õ, o) ≤

εd(x,Σ), one have x ∈ cΣ ρ
1+ρε

(õ).

Proof. Let x ∈ Σρ(o), and d(õ, o) ≤ εd(x,Σ).

d(x, õ) ≤ d(x, o) + d(o, õ)

≤ (ρ−1 + ε)d(x,Σ)

Therefore d(x,Σ) ≥ ρ

1+ρε
d(x, õ).

�

Proposition 6.2.5 Let Σ be a subset of a geodesic space (X, d) satisfying ρ-skew condi-

tion and 2ρ < ρ′. Then for any r > 0 and o, o′ ∈ Σ with d(o, o′) ≤ r,

Σρ′(o, r) ⊂ cΣρ(o′, 2r)−B(o′, 2ρr)

Proof. Clearly, for any x ∈ Σρ′(o, r), d(x, o′) ≤ d(x, o) + d(o, o′) ≤ 2r.

�

Now, lets prove Poincaré inequality. There are three versions of the theorem.

The first one is when Σ is couniform. This case is not new; it is proved in Saloff-

Coste and Gyrya[17] result. The proof given here is an adaptation of Saloff-

Coste and Gyrya’s proof. It is modified to give a basic building block of the other

cases. The second version deals with nonincreasing weight functions when Σ is

only require to be accessible. The last version try to generalize the result to a

bigger class of function by assume some dimensional conditions on Σ.

All versions are based on the following theorem.
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Theorem 6.2.6 Let (E,D(E)) be a strongly local, regular, Dirichlet form in L2(X, µ)

with intrinsic metric d satisfies the usual assumptions. Let also Σ ⊂ X be a ρ-accessible

subset. Assume that the measure µ is doubling and the local Poincare inequality holds

for all Σ-remote balls. Then the local Poincare inequality holds for all balls if and only if

there exists a constant CA > 0 such that for any o ∈ Σ, x, y ∈ Σρ(o, r), and f ∈ D(E),
 

B(x,εr)

 
B(y,εr)

| f (u) − f (v)|2dµ(u)dµ(v) ≤ CAr2
 

B(o,r)
dΓ( f , f ) (6.2)

where 0 < ε < 1 be a fixed constant independent of o, x, y, r and f .

The proof relies on the Whitney covering so lets us review the definition

here. A strict ε-Whitney covering of X−Σ, denotedW, is a countable family of

disjoint balls B(x, r) such that r = εd(x,Σ) and ∪A∈W3A = X−Σ. Here ε is a very

small positive number. For any o ∈ Σ, denoteWo = {A ∈ W : 3A∩cΣρ(o) , ∅}.

In view of Saloff-Coste and Grigor’yan’s work[10], it is sufficient to prove the

result for anchored balls. The arguments relies on the chain arguments and is

divided into 4 steps. First one connects any remote balls to another remote balls

of roughly the same radius and can be connected to a balls of radius roughly

the same size of the anchored ball. Then connects that ball to a fixed remote ball

of radius roughly that of the anchored balls. The difficulty lies in controling the

number of times a ball is used.

Lemma 6.2.7 Let Σ be a ρ-accessible set in a geodesic space (X, d). Fixed ε ∈ (0, 1].

There exists a constant N > 1 independent of o ∈ Σ and r > 0 such that the number of

A ∈ Wo with εr ≤ r(A) ≤ r is at most N.

Proof. For such A = B(x, s), denote y ∈ cΣρ(o)∩A. Note that

d(x, o) ≤ d(x, y) + d(y, o)
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≤ s + ρ−1d(y,Σ)

≤ s + ρ−1(d(y, x) + d(x,Σ))

≤ s + ρ−1(s + ε−1s)

= (1 + ρ−1 + ρ−1ε−1)s

Therefore A ⊂ B(o, (2+ρ−1+ρ−1ε−1)r). By doubling property, there is a number

N depend only on doubling constant, ρ, ε, and ε such that the number of such A

is always at most N.

�

Lemma 6.2.8 Let Σ be a ρ-accessible set in a geodesic space (X, d). There exists a con-

stant N,C ≥ 1 such that for any x ∈ cΣρ(o), o ∈ Σ, we can find a sequence of remote

balls {Bi = B(xi, ri)}∞i=1 ⊂ W with the following properties

1. x ∈ 3B1,

2. 3Bi∩3B j , ∅ if and only if |i − j| = 1,

3. 1
C ε

id(x, o) ≤ ri ≤ Cε i/Nd(x, o),

4. there exists a partition Pk of {Bi}, each with at most N elements such that

1
C ε

kd(x, o) ≤ ri ≤ Cεkd(x, o) for any Bi ∈ Pk

5. B j ⊂ CBi for any j > i

Proof. Fixed ρ0 < ρ. Denote d(x, o) = r. By assumptions, there is a path γ from

x to o lying entirely in cΣρ0(o, r) such that there is a unique ti with d(γ(ti), o) = ε ir

and γ([ti, ti+1]) ⊂ Σρ0(o, r). The path γ can be constructed recursively on each

level.
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For each A ∈ W that intersects γ([ti, ti+1]), εi+1

1+ε
r ≤ r(A) ≤ εi

1−ε r. Therefore there

exists N ≥ 1 such that at most N such A cover γ([ti, ti+1]).

Choose B1 ∈ W so that x ∈ 3B1 then choose Bi recursively as follows. Let si

be the last s so that d(γ(s), 3Bi) = 0. If si ≤ t1 we are done for this level, otherwise

choose Bi+1 ∈ W that contains γ(si). This process will be done in at most N

steps. After this repeat the process on each level recursively. It is clear that this

sequence satisfies the first four properties. For the last one, the distance from xi

to x j is at most

N
j−i∑

k=1

(1 + ε)εkri

1 − ε
≤

N(1 + ε)
(1 − ε)2 ri

�

Now, one can prove the above theorem.

Proof of Theorem 6.2.6. First choose ρ′ > ρ such that Σ satisfies ρ′-skew

condition and 0 < ε < 1 so that ρ′

1+ρ′ε
> ρ. Fixed o′ ∈ Σ and r > 0. For each

o ∈ B(o′, 3r)∩Σ, choose xo ∈ Σρ′(o, 3r
ρε

). This is possible by ρ′-skew condition.

It follows that xo ∈ cΣρ(o′). Choose, for each xo, a sequence of remote balls

Bo = {Bo
i = B(xi, ri)}∞i=1 ⊂ W according to Lemma 6.2.8.

Let F = {B ∈ W : 3B∩B(o′, r) , ∅}. For each B = B(z, rB) ∈ F , choose oB ∈ Σ so

that z ∈ cΣρ(oB). Notice that d(o′, oB) ≤ 3r. Then choose WB ∈ BoB to be the first

ball that has radius at most rB. Since the radius of WB is roughly the same as that

of the one before it, its radius must be roughly rB.

Next, denote Wo = Bo
1 and W = Bo′

1 . Denote also fB =
ffl

4B f dµ for any balls B.

Nothing that

| f − fW |
2
≤ 4

[
| f − fB|

2 + | fB − fWB |
2 + | fWB − fWoB

|
2 + | fWoB

− fW |
2
]
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for any B ∈ F . Therefore

ˆ
B(o′,r)

| f − fW |
2dµ ≤ 4

∑
B∈F

ˆ
4B

[
| f − fB|

2 + | fB − fWB |
2 + | fWB − fWoB

|
2 + | fWoB

− fW |
2
]
dµ

The first term is bounded easily. For any B ∈ F , 4B ⊂ B(o′, 2r). The Poincaré

inequality for remote balls then implies

∑
B∈F

ˆ
4B
| f − fB|

2dµ . r2
∑
B∈F

ˆ
4B

dΓ( f , f )

. r2
ˆ

B(o′,2r)

(∑
B∈F

χ4B

)
dΓ( f , f )

. r2
ˆ

B(o′,2r)
dΓ( f , f )

The last term is also simple to bounded. Since the radius of each Wo is

roughly r, there must be at most N different balls Ai by Lemma 6.2.7. There-

fore

∑
B∈F

ˆ
4B
| fWoB

− fW |
2dµ =

∑
i

| fAi − fW |
2
( ∑

WoB =Ai

µ(4B)
)

.
∑

i

| fAi − fW |
2µ(B(o′,

3r
ρε

))

.
∑

i

 
4Ai

 
4W
| f (u) − f (v)|2dµ(u)dµ(v)µ(B(o′,

3r
ρε

))

. Nr2
ˆ

B(o′, 3r
ρε )

dΓ( f , f )

where the last inequality follows from the assumption.

The second term can also be bounded using the same idea, even though it is

a bit more complicated. The map B 7→ WB is many to one but can be uniformly

bounded using doubling property. Since the radius of B and WB are roughly the

same, any Whitney balls that maps to the same WB must have roughly the same

radius. Moreover, the distance from this ball to WB is also roughly equal the
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radius of WB too. Therefore, the number of B that maps to WB must be uniformly

bounded by doubling property. Therefore,

ˆ
4B
| fB − fWB |

2dµ ≤ µ(4B)
 

4B

 
4WB

| f (u) − f (v)|2dµ(u)dµ(v)

. r2
B

ˆ
B(oB,rB/ε)

dΓ( f , f )

Denote Fk the set of all those balls in F with radius between 3r/2k and 3r/2k+1.

For any B, B′ ∈ Fk that B(oB, rB/ε)∩B(oB′ , rB′/ε) , ∅, the distance between B and

B′ must be roughly the same as the radius of B. This implies that
∑

B∈Fk
χB(oB,rB/ε)

can be uniformly bounded. Hence,

∑
B∈F

ˆ
4B
| fB − fWB |

2dµ =
∑

k

∑
B∈Fk

ˆ
4B
| fB − fWB |

2dµ

.
∑

k

∑
B∈Fk

(3r
2k

)2
ˆ

B(oB,rB/ε)
Γ( f , f )dµ

.
∑

k

(3r
2k

)2
ˆ

B(o′,κr)
dΓ( f , f )

. r2
ˆ

B(o′,κr)
dΓ( f , f )

Lastly, for the third term, we learned that there are only a finite number of

different WoB denoted Ai. Each B also pair up with only a finite number of WB,

therefore the third term is comparable to

∑
i

∑
A∈Ai

ˆ
4A
| fA − fAi |

2dµ

whereAi is the set of all WB such that WoB = Ai.

Denote Ri = ∪WoB =AiBoB . For each A ∈ Ai, A = Bo
k ∈ Bo for some o and k. Using

the fact that A ⊂ CBo
j for all j < k, we have

| fA − fAi |χA ≤

k∑
j=1

| fBo
j
− fBo

j−1
|χA
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.
k∑

j=1

r
( 1
µ(Bo

j)

ˆ
16Bo

j

dΓ( f , f )
)1/2

χAχCBo
j

.
∑
R∈Ri

r
( 1
µ(R)

ˆ
16R

dΓ( f , f )
)1/2

χAχCR

Here the second inequality follows from the following estimates

µ(Bo
j)| fBo

j
− fBo

j−1
|
2
∼ µ(4Bo

j∩4Bo
j−1)| fBo

j
− fBo

j−1
|
2

=

ˆ
4Bo

j∩4Bo
j−1

| fBo
j
− fBo

j−1
|
2dµ

.
ˆ

4Bo
j∩4Bo

j−1

| f − fBo
j−1
|
2dµ +

ˆ
4Bo

j∩4Bo
j−1

| fBo
j
− f |2dµ

.
ˆ

4Bo
j−1

| f − fBo
j−1
|
2dµ +

ˆ
4Bo

j

| fBo
j
− f |2dµ

. r2
ˆ

4Bo
j−1

dΓ( f , f ) +

ˆ
4Bo

j

dΓ( f , f )

. r2
ˆ

16Bo
j

dΓ( f , f )

It follows that

∑
A∈Ai

ˆ
4A
| fA − fAi |

2dµ ∼
∑
A∈Ai

ˆ
A
| fA − fAi |

2dµ

.
ˆ ∑

A∈Ai

( ∑
R∈Ri

r
( 1
µ(R)

ˆ
16R

dΓ( f , f )
)1/2

χAχCR

)2
dµ

. r2
ˆ ( ∑

A∈Ai

χA

)( ∑
R∈Ri

( 1
µ(R)

ˆ
16R

dΓ( f , f )
)1/2

χCR

)2
dµ

. r2
ˆ ( ∑

R∈Ri

( 1
µ(R)

ˆ
16R

dΓ( f , f )
)1/2

χCR

)2
dµ

. r2
ˆ ( ∑

R∈Ri

( 1
µ(R)

ˆ
16R

dΓ( f , f )
)1/2

χR

)2
dµ

where the last inequality follows from Lemma 3.3.5.

Since balls in Ri are disjoint

∑
A∈Ai

ˆ
4A
| fA − fAi |

2dµ . r2
ˆ ∑

R∈Ri

1
µ(R)

ˆ
16R

dΓ( f , f )χRdµ
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. r2
ˆ ∑

R∈Ri

χ16RdΓ( f , f )

. r2
ˆ

B(o′,κr)
dΓ( f , f )

�

Corollary 6.2.9 Let (E,D(E)) be a strongly local, regular, Dirichlet form in L2(X, µ)

with intrinsic metric d satisfies the usual assumptions. Let also Σ ⊂ X be a ρ-couniform

subset. If the measure µ is doubling and the local Poincare inequality holds for all Σ-

remote balls, then the local Poincare inequality holds for all balls.

Proof. The proof follows from the chain condition technique and the fact

that Σρ(o, r) are connected for all o ∈ Σ and r > 0.

�

Corollary 6.2.10 Let (E,D(E)) be a strongly local, regular, Dirichlet form in L2(X, ν)

with intrinsic metric d satisfies the usual assumptions. Let also Σ ⊂ X be a ρ-accessible

subset, dµ = hdν where h(x) = a(d(x,Σ)), and (Eh,D(Eh)) be the weighted Dirichlet

form corresponding to function h.

Assume (E,D(E)) satisfies parabolic Harnack inequality and a is nonincreasing,

and remotely constant. Then the local Poincare inequality for (Eh,D(Eh)) holds for all

balls whenever µ is doubling.

Proof. Since a is remotely constant,

 
B(x,εr)

 
B(y,εr)

| f (u) − f (v)|2dµ(x)dµ(y) ∼
 

B(x,εr)

 
B(y,εr)

| f (u) − f (v)|2dν(x)dν(y)
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The fact that a is nonincreasing implies a(r)
´

B(o,r) dΓ( f , f ) ≤
´

B(o,r) hdΓ( f , f ).

The doubling property a(r)ν(B(o, r)) ∼ µ(B(o, r)) then implies
ffl

B(o,r) dΓ( f , f ) ≤
ffl

B(o,r) hdΓ( f , f ).

�

Corollary 6.2.11 Let (E,D(E)) be a strongly local, regular, Dirichlet form in L2(X, µ)

with intrinsic metric d satisfies the usual assumptions. Let also Σ ⊂ X be a ρ-accessible

subset. Assume that the growth rate of µ on Σ is less than 2. If the measure µ is

doubling and the local Poincare inequality holds for all Σ-remote balls, then the local

Poincare inequality holds for all balls.

Proof. Let β < 2 denote the growth rate of µ. Fixed x ∈ Σρ(o, r). Let Bi be the

sequence of balls defined in Lemma 6.2.8. Then

| fB1 − f (o)|2 ≤
( ∞∑

i=1

| fBi − fBi+1 |
)2

.
( ∞∑

i=1

r
2i

( 1
µ(Bi)

ˆ
16Bi

hdΓ( f , f )
)1/2)2

∼ r2
( ∞∑

i=1

(2i(β−2)

µ(B1)

ˆ
16Bi

hdΓ( f , f )
)1/2)2

. r2 1
µ(B1)

ˆ
B(o,2r)

hdΓ( f , f )(
∞∑

i=1

2i(β−2))2

∼ r2 1
µ(B1)

ˆ
B(o,2r)

hdΓ( f , f )

This implies 1
µ(B1)

´
4B1
| f − f (o)|2dµ ≤ r2 1

µ(B1)

´
B(o,2r) hdΓ( f , f ) as well.

�
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