
Optimizing 
Restaurant-table 
Configurations: 
Specifying Combinable Tables 

Having the right-size tables in a position to be combined with other tables to serve large parties 
can yield additional revenue at virtually no added cost. 

BY GARY M. THOMPSON 

T his article focuses on restaurants with walk-in cus- 
tomers (no reservations are taken), where a host or 
hostess seats the parties and where parties are seated 

separately. Restaurants of this kind are common in the United 
States (e.g., TGIF, Chili’s, Applebee’s). Specifically, this ar- 
ticle examines the issue of which tables should be combin- 
able with which other tables. “Combinability” is the ability 
to create a larger table from adjacent smaller tables. For ex- 
ample, combinability would allow two adjacent 4-top tables 
to be combined to seat parties of up eight people.’ In an ear- 
lier investigation I found that, in many cases, having tables 
dedicated to specific party sizes was preferable to having com- 
binable tables.* The reason for this was that placing tables on 

’ In this paper I assume the conservation of seats for combined tables. 

* G.M. Thompson, “Optimizing a Restaurant’s Seating Capacity: Use Dedi- 
cated or Combinable Tables?,” Cornell Hotel and Restaurant Administra- 
tion Quarterly, Vol. 43, No. 3 (August 2002), pp. 48-57. 

hold, while waiting for customers to depart an adjacent table 
that can then be combined with the empty on-hold table, 
imposes a non-productive idle time for the on-hold tables. 

In that previous study I assumed a maximum party size of 
eight people, which allows a restaurant to use tables that seat 
up to eight customers. Many restaurants, however, serve par- 
ties larger than that and have compelling reasons to use com- 
binable tables. For example, when the party sizes get large 
(such as over 10 people), a restaurant is unlikely to have on 
hand a single table that is large enough to seat such large par- 
ties. Further, for aesthetic reasons, restaurant managers may 
choose to limit the size of tables to be no larger than a 6- or 
8-top. Therefore, the goal of this paper is to identify which 
tables should be combinable. For example, is it better to be 
able to combine two 4-tops or a Z-top and a 6-top to seat a 
party of eight? 

0 2003, CORNELL UNIVERSITY 

FEBRUARY 2003 Cornell Hotel and Restaurant Administration Quarterly 53 



RESTAURANT MANAGEMENT I TABLE MIX 

I distinguish between the mix of tables in a 
restaurant-the number of each size table-and 
the restaurant’s configuration-that is, identify- 
ing which tables should be easily combined with 
which other tables. My primary goal for the cur- _ - 
rent investigation is to develop guidelines that 
can help restaurant managers and designers to 
configure restaurants. To accomplish my primary 
objective I had first to investigate several second- 
ary issues, namely: 

l Defining restaurant-configuration measure- 
ments specifically related to combinable 
tables; and 

l Identifying which configuration measure- 
ments are associated with high-performing 
restaurants. 

To address those goals I designed an experi- 
ment and used a restaurant-table-simulation 
model. In this paper I measure performance us- 
ing the contribution margin per available seat 
hour (CMPASH) that is delivered by the restau- 
rant based on its ability to seat and process cus- 
tomers. First, though, I review the relevant 
literature, describe my TABLEMIX restaurant- 
simulation model, and define restaurant- 
configuration measurements. Then I describe 
the simulation experiment I performed, present 
the results of that experiment, and close with 
managerial implications. 

Literature Review 
The use of tables in a restaurant is a component 
of the broader issue of capacity optimization- 
that is, seating as many people at one time as 
possible (given that unrelated parties will be 
seated separately). “Optimizing capacity” means 
using available tables in a way that maximizes 
profitability. In some of my earlier work I ap- 
proached capacity optimization from a 
workforce-scheduling perspective.3 Capacity 
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3 See: G.M. Thompson, “Labor Scheduling Using NPV 
Estimates of the Marginal Benefit ofAdditional Labor Ca- 
pacity,” Journal of Operations Management, Vol. 13, No. 1 
(July 1995), pp. 67-86; G.M. Thompson, “Labor Sched- 
uling, Part 2: Knowing How Many On-duty Employees to 
Schedule,” Cornell Hotel and Restaurant Administration 
QtMrter&, Vol. 39, No. 6 (December 1998), pp. 26-37; 
and G.M. Thomoson. “Labor Scheduline, Part 3: Devel- 
oping A Workfoice Schedule,” Cornell I&e1 and Restau- 
rant Administration Quarter13 Vol. 40, No. 1 (February 
1979), pp. 86-76. 

management also has been approached from the 
perspective of finding the least costly way of de- 
livering a specified level of customer service.* 

In a restaurant setting, optimizing capacity 
means structuring the facility in a way that al- 
lows profitability to be maximized. In other 
words, with respect to the table-configuration 
component of capacity, it means designing the 
restaurant space that is allocated to tables to al- 
low for maximum profitability5 

Capacity optimization is related to restaurant 
revenue management, a topic that has only re- 
cently started to receive attention in the academic 
literature. A series of papers by Kimes and her 
coauthors first presented a time-based revenue- 
performance measurement-RevPASH (revenue 
per available seat hour)-and then followed it 
with strategies for restaurant revenue manage- 
ment and steps for implementing restaurant rev- 
enue management.’ 

A limitation of the RevPASH measure is that 
it tends to result in revenue maximization, rather 
than profitability maximization. A better mea- 
sure of performance than RevPASH would be 
CMPASH. CMPASH is a more appropriate 
measure than RevPASH, since CMPASH factors 
in the variable production costs of menu items. 
For example, an expensive special may have a high 
price, which drives RevPASH up, but if it also 
has a high cost of goods sold, it would have a low 
contribution margin. Using CMPASH as a per- 
formance measure would result in the wait staff’s 
focusing on upselling the most profitable menu 
items, rather than the most-expensive menu 
items. The importance of a contribution-based 

* B. Sill and R. Decker, uApplying Capacity-management 
Science: the Case of Browns Restaurants,” Cornell Hotel and 
Restaurant Administration Quarterly, Vol. 40, No. 3 (June 
1799), pp. 22-30. 

5A broader capacity-management issue is, How much space 
should be allocated to waiting rooms, back-of-the-house, 
bar, and other non-seating areas? 

6 See: S.E. Kimes, R.B. Chase, S. Choi, E.N. Ngonzi, and 
I?Y. Lee, “Restaurant Revenue Management,” Cornell Ho- 
tel and Restaurant Administration Quarterly, Vol. 40, No. 3 
(June 1798), pp. 40-45; S.E. Kimes, D.I. Barrash, and J.E. 
Alexander, “Developing a Restaurant Revenue-management 
Strategy,” Cornell Hotel and Restaurant Administration 
Quart&y, Vol. 40, No. 5 (October 1999), pp. 18-30; and 
S.E. Kimes, “Implementing Restaurant Revenue Management: 
A Five-step Approach,” Cornell Hotel and Restaurant Admin- 
istration Quarterb, Vol. 40, No. 3 (June 1999), pp. 16-2 1. 
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measure of performance has been recognized pre- 
viously,7 but clearly the need is for a time-based 
measure such as CMPASH. 

I am aware of only three papers addressing 
the issue of restaurants’ table-mix optimization. 
Sherri Kimes and I examined the mix of table 
sizes for a specific mid-scale, full-service restau- 
rant.* Compared to that restaurant’s pre-study 
table mix, we found that the restaurant’s ideal 
table mix would allow it to process 50 percent 
more customers without increasing customers’ 
waiting time. In a follow-up paper, Kimes and I 
presented and evaluated a variety of quantitative 
techniques for identifying the ideal table mix in 
restaurants.’ We found that a modified version 
of the simple method which I presented in my 
earlier table-optimization paper typically per- 
forms well.‘o 

In a recent paper I examined the issue of table 
combinability in restaurants like those I consider 
in this paper. ” Though I found that dedicated 
tables were better for a 200-seat restaurant and 
for a 5O-seat restaurant with a large average party 
size, there are times when tables should be com- 
binable. This current paper thus extends my ear- 
lier research by looking at which tables should 
be easily combined with which other tables. 

TABLEMIX Simulation Model 
A key tool in this investigation was the 
TABLEMIX simulation model.12 TABLEMIX 
models restaurant-table use under a wide variety 
of conditions that can be controlled by manag- 

7 B. Quain, M.W. Sansbury, and S.M. LeBruto, “Revenue 
Enhancement, Part 4-Increasing Restaurant Profitability,” 
Cornell Hotel and Restaurant Administration Quarterly, 
Vol. 40, No. 3 (June 19991, pp. 38-47. 

s  S.E. Rimes and G.M. Thompson, “Restaurant Revenue 
Management at Chevys: Determining the Best Table Mix,” 
working paper, School of Hotel Administration, Cornell 
University, 2002. 

9 S.E. Rimes and G.M. Thompson, “A Comparison of 
Techniques for Identifying Optimal and Near-optimal 
Restaurant Table Mixes,” working paper, School of Hotel 
Administration, Cornell University, 2002. 

lo Thompson, 2002; op. cit. 
” Thompson, 2002; op. cit. 

I2 Thompson, G. M. and R. Verma, “Computer Simula- 
tion in HospitalityTeaching, Practice and Research.” Forth- 
coming in the Cornell Hotel and Restaurant Administration 
Quarter& 2003. 

ers. The model assumes that the time between 
party arrivals is exponentially distributed;13 that 
the space occupied by a table is proportional to 
the number of its seats; and that parties are not 
combined at tables (so, for example, two sepa- 
rate two-person parties would not be seated to- 
gether at a 4-top). 

TABLEMIX’s inputs are the length of the din- 
ing time one wishes to simulate; the number of 
parties one expects to arrive during the dining 
period (at 15-minute intervals); the number of 

In this paper I measure performance using 
the contribution margin per available seat 
hour-a better gauge of profitability than 
revenue per available seat hour. 

days one wishes to simulate; the probabilities of 
different size parties; the maximum number of 
waiting parties; the distribution of dining dura- 
tions (normal or log-normal); and the table- 
assignment rule (assign an available table to the 
largest party or to the party waiting the longest). 
TABLEMIX inputs that are specified for each size 
party are the mean and standard deviation of din- 
ing time by party size, the maximum wait the 
party will tolerate, and the party’s revenue (or 
contribution value). 

Outputs of the TABLEMIX model are the 
average wait by party size, the number and value 
of customers served and lost, the use of each size 
table by I5-minute periods, and seat use by 
15-minute periods. 

TABLEMIX evolved from a simulation model 
I originally developed for use by my students at 
Cornell University’s School of Hotel Adminis- 
tration. In a teaching context, I use a basic ver- 
sion of TABLEMIX to illustrate concepts of sim- 
ulation and process design (bottleneck analysis) 
in a restaurant setting. The teaching version does 
not allow tables to be combined, nor does it find 
the best mix of tables; rather it simply simulates 
the performance of a user-specified table mix. 

I3 This is actually a very common situation in practice. What 
it means is that there is a higher likelihood of parties arriv- 
ing close together in time, but a lower likelihood of there 
being a long time between party arrivals. 
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Table Combinability: Vital Measurements 
To help describe the measurements, Exhibit 1 illustrates two different 
configurations of a 50-seat restaurant that has the same mix of tables. 
Combinable tables are linked by lines. For example, in Configuration 1 
tables 16 and 17 can be combined to make a 4-top. Both configura- 
tions have a 50-percent combinability level.’ 

Mean chain length (CLM). This measurement assesses the extent 
to which a series of tables can be combined. I define a “chain” as a se- 
ries of adjacent tables that can be combined. For example, consider 
tables 11, 12, and 13 in Configuration 1. Since those tables are all 
combinable, a chain may comprise tables 11-12-13. Subchains would 
be tables 11-12 and tables 12-13. The table chain of 11-12-13 would 
have a length of 3, since it comprises three component tables. Configu- 
ration 1 in Exhibit 1 has four chains: 3-4-5 (length 3), 8-9 (length 2), 
11-12-13 (length 3), and 16-17 (length 2). The mean chain length 
for this configuration is 2.5 tables: (3+2+3+2) + 4. 

Standard deviation of chain lengths (CLSD). This measurement 
tracks the variability of chains. Using Confi uration 1, the CLSD is 
0.5 tables: {[((3 - 2.5)’ t (2-2.5)2 + (3-2.5) P t (2-2.5)2) +4]“.5}.2 

Mean chain seats (CSM). This is another measurement designed to 
capture the extent to which a series of tables can be combined. From 
Configuration 1, the four chains comprise a total of six seats (2+2+2, 
for tables 3-4-5), four seats (2+2, for tables 8-9) twelve seats (4+6+2, 
for tables 11-12-13) and four seats (2+2, for tables 16-17). CSM, 
then, equals 6.5 seats: (6+4+12+4) + 4. 

Standard deviation of chain seats (CSSD). Similar to CLSD, this is 
another measurement of chain variability, though this measurement 
calculates the variation in the number of seats per chain. Configuration 
1 in Exhibit 1 would have a CSSD of 3.28 seats {[((6-6.5)2 t (4-6.5)2 
t ( 12-6.5)2 t (4-6.5)2) + 4]“.5]. 

Mean table size difference within chains (TSDM). This measure- 
ment is designed to assess the extent to which the chains comprise 
similar- or dissimilar-size tables. It is calculated from the absolute value 
of the difference in seating capacity between adjacent combinable 
tables. For example, in Configuration 1, combinable adjacent table 
pairs are 3-4,4-5, 8-9, 11-12, 12-13, and 16-17. The difference in 
table sizes within these tables pairs are 0, 0, 0, 2, 4, and 0 seats, respec- 
tively. Thus, TSDM is 1 .O seats: (0+0+0+2+4+0) + 6. 

Standard deviation of table-size differences within chains 
(TSDSD). This measurement determines the extent to which adjacent 
combinable tables have consistent differences in size. Using Configura- 
tion 1, TSDSD is 1.53 seats: {[((O-1)2 t (O-1)2 + (O-1)2 t (2-1)2 t (4- 
1)2 t (o-1)2) + 6]“.5}. 

Unique seat count from chains and subchains (USC). This mea- 
surement calculates the number of unique table sizes that can be cre- 
ated from the chains and subchains of the combinable tables. For ex- 
ample, Configuration 1 has five unique table sizes that can be created 
from the combinable tables: four seats (from tables 3-4, 4-5, 8-9, and 
1617), six seats (from tables 3-4-5), eight seats (from tables 12-13), 
ten seats (from tables 1 l-12), and twelve seats (from tables 11-12-13). 

Chain and subchain count (CSC). CSC counts the total number 
of chains and subchains that are created from the combinable tables. It 
represents a measurement of the total flexibility offered by the combin- 
able tables. Configuration 1 has a total of eight chains and subchains 
(tables 3-4,3-l-5,4-5,8-9, 11-12, 11-12-13, 12-13, and 16-17). 

Exhibit 2 scores the two configurations from Exhibit 1 using the 
configuration measurements identified above. Configuration 2 scores 
higher on all measurements because it has more total seats for the com- 
binable tables, a larger maximum chain length, and more variability in 
the sizes of the combinable tables.-G.M. ir: 

r As defined in: Thompson, 2002; op. cit. 
* For this formula (and others in the paper) I am using the formula for the 
population standard deviation (not the sample standard deviation), since 
I am using the entire population of chains within the configuration. 

Sample configurations for a 50-seat restaurant 

033 6 

14 15 

m8 

A A 

8 

l . .  

8 

. 

17 

In both examples above, the restaurant comprises eleven 2-tops, 
four 4-tops and two 6-tops. Combinable tables are linked by lines. 

Scoring the configurations from Exhibit 1 
(above) using the configuration measurements 
Exhibit 1 configurations: I 1 I 2 
Configuration measure- CLM 2.5 tables 
ments (as described in CLSD 0.5 tables 
the text on this page) CSM 6.5 seats 

CSSD 3.28 seats 
TSDM 1 .O seats 

TSDSD 1.53 seats 
USC 5 sizes 
csc 8 chains 

1 3.0 tables 
1.41 tables 
10.0 seats 
5.89 seats 

~ 2.0 seats 
1.63 seats 

7 sizes 
12 chains 
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Probability of different-size parties, 
under the two levels of party-size 
range 

Party 
size 

1 
2 
3 
4 
5 
6 
7 
a 
9 
10 
11 
'2 

Average 

Party-size range 
1 to9 1 to 12 

0.23 0.2900 
0.43 0.4000 
0.15 0.1200 
0.10 0.0900 
0.04 0.0350 
0.02 0.0200 
0.01 0.0125 
0.01 0.0100 
0.01 0.0075 
0.00 0.0075 
0.00 0.0050 
0.00 0.0025 - ~ 
2.50 2.5000 

Party-arrival rates, at 15-minute intervals 

5:00 PM 6:00 PM 7:00 PM a:oo PM 

Measurements Related to 
Combinable Tables 
To evaluate the effect of combinable tables on a 
restaurant’s capacity, one first must be able to 
measure different aspects of a restaurant’s seat- 
ing configuration(s). Specifically, I identified 
eight measurements, which are described in the 
box on the facing page. My measurements as- 
sume that the restaurant tables are set up in rows 
and that tables can be combined within rows but 
not across rows. 

Experimental Design 
The particular restaurant environment in which 
I conducted the simulation study of restaurant 
configurations was based somewhat on the 
Chevys restaurant that Sherri Kimes and I re- 
ported on in our earlier study.” For the current 
study, however, I modified the environment as I 
deemed necessary to create a broadly applicable 
study. 

The simulation experiment had two factors: 
party-size range (two levels) and allowed table 
size (two levels). Party sizes ranged from one to 
nine people and from one to twelve people in 
the two levels, and followed the probability dis- 

I6 Kimes and Thompson, “Restaurant Revenue Manage- 
ment at Chevys: Determining the Best Table Mix,” op. cit. 

tributions shown in Exhibit 3. The probabilities 
for the party size range of one to nine people are 
from an actual restaurant.” I modified those data 
to create the probabilities for party sizes of one 
to twelve, so that the mean party size would re- 
main the same, at 2.5 people. 

One level of table sizes allowed the use of 
2-tops, 4-tops, and 6-tops, while the other 
allowed the use of 2-tops, 4-tops, G-tops, and 
S-tops. Since I simulated a 2OO-seat restaurant, 
there are a total of 884 unique table mixes using 
only 2-tops, 4-tops, and 6-tops, while there are 
a total of 8,037 unique table mixes using 2-, 4-, 
6- and B-tops. 

I created party-arrival rates that would result 
in the restaurant experiencing a seat utilization 
of 95 percent during the peak period of customer 
arrivals, as illustrated in Exhibit 4. Since achiev- 
ing a seat utilization beyond 85 percent tends to 
be impractical for the kind of restaurants I am 
examining, the 95-percent level represents a situ- 
ation where the restaurant is most likely losing 
customers because of insufficient capacity (i.e., 
the restaurant is unable to satisfy all customer 
demand) and so it is designed to highlight any 
differences in configurations. 

‘7 Ibid. 
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Stepwise-regression-model results, 
by factor-level category 

configuration 
measurements 

Notes: 

CLM = mean chain length, in tables; 
CLSD = chain length standard deviation, in tables; 
CSM = mean chain seats; 

CSSD = standard deviation of chain seats; 
TSDM = mean absolute difference in sizes of adjacent combinable tables; 

TSDSD = standard deviation of size differences of adjacent combinable tables; 
USC = number of unique table sizes from chains and subchains; and 
CSC = number of chains and subchains. 

Unless otherwise noted, coefficients are significant at the 0.001 level. 

* p-co.01 

In my earlier investigation I examined the is- 
sue of table combinability by including an ex- 
perimental factor for the level of combinability.18 
In the current paper I use a 5O-percent table 
combinability level. As an example, the two res- 
taurant configurations in Exhibit 1 both have a 
5O-percent combinability level. In that earlier 
investigation I (1) enumerated all possible table 
mixes for each size restaurant and (2) randomly 
selected one possible configuration of the restau- 
rant for each table mix. However, the set of pos- 
sible configurations is large, based on which tables 
are combined with which other tables. For ex- 
ample, Exhibit 1 illustrates two possible configu- 
rations for a 50-seat restaurant with a table mix 
of eleven 2-tops, four 4-tops, and two 6-tops. 

Since my goal in this paper is to identify the 
characteristics of best-performing configurations, 
I first simulated one randomly selected configu- 
ration for each possible table mix. I then selected 
the best 50 of the 2-4-6 table-size scenario (or 
about 5.6 percent of the total) and the best ZOO 
of the 2-4-6-8 table-size scenario (or about 2.5 
percent of the total). For example, with party sizes 
ranging from one to nine and table sizes of 2-4- 
6, the best-performing mix of the 884 alterna- 
tives had forty-five 2-tops, twenty 4-tops, and 
five 6-tops. For each of the best-performing table 
mixes, I randomly generated 100 different con- 
figurations and simulated the restaurant perfor- 
mance. In doing so, I was able to control for the 
influence of table mix and isolate the effects due 
to the actual configuration of the restaurant. 

For this investigation I made the following 
assumptions: a 55-minute mean dining time for 
all parties; a log-normal distribution of dining 
times;” a $1 O-per-person contribution value for 
all parties; a maximum tolerable wait of 90 min- 
utes for all parties; a table-assignment rule that 
assigned available tables to the largest waiting 
party; simulating 150 days of operation (equiva- 
lent to about 1.5 year’s worth of operation, where 
there were two peak days per week); that no more 
than 40 parties could be waiting at any one time; 
and that tables would be combined only for par- 

I8 Thompson, 2002. 

I9 Lo F5 -normal distributions of service times occur quite com- 
monly in restaurants. Log-normal distributions look much 
like a normal distribution, except that one tail is elongated. 
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ties larger than six. I also only collected data af- 
ter the simulated restaurant had been operating 
for 90 minutes each day (this ensured that it was 
in its peak period, as can be seen from Exhibit 4). 

Results 
In analyzing the results, I used least-squares lin- 
ear regression, as described in the sidebar on this 
page. Exhibit 5 presents the results of running a 
stepwise least-squares linear regression on sched- 
ule profitability as a function of restaurant con- 
figuration (using the configuration measurements 
presented earlier), while controlling for the spe- 
cific table mix. Only those statistically signifi- 
cant predictor variables are included in the table. 
Exhibit 5 also includes the R2 and adjusted R2 
for the regression models. 

Unless otherwise indicated, the variable coef- 
ficients in Exhibit 5 are statistically significant at 
the 0.00 1 level. Since the dependent variable was 
in dollars, the coefficients are in dollars. So, for 
example, increasing the mean chain length by one 
table, where party sizes ranged from one to nine 
people and tables had two, four, and six seats 
would increase daily restaurant contribution by 
$37.68, assuming all other variables remained 
unchanged. 

As a way to judge the relative explanatory abil- 
ity offered by the configuration measurements, I 
also developed stepwise least-squares linear re- 
gression models that only included the table-mix 
coding variables. The R* and adjusted R2 for these 
regression models are also included in Exhibit 5. 
By subtracting the adjusted R2 for the table-mix- 
only model from the adjusted R2 for the com- 

plete regression model, I arrived at a measure- 
ment of the explanatory ability of the restaurant 
configuration. The greatest explanatory power of 
the restaurant configuration occurred with a 
party-size range of one to nine, and the lowest 
occurred with a party-size range of one to twelve, 
using Z-top, 4-top, and 6-top tables. 

Exhibit 6 shows the mean restaurant contri- 
bution by experimental-factor levels. It also shows 
the range in contribution predicted by the linear 
regression equations. For example, with party 
sizes ranging from one to nine and using Z-top, 
4-top, and 6-top tables, the best restaurant con- 
figuration generated $74.48 more contribution 
than the worst restaurant configuration (as pre- 

Different Restaurant Configurations: The Effects 

The contribution of the jth restaurant configuration having the ith table mix is 
given by: 

Contributioq = 

py+p CLM~ CLM, + /3 cLsDx CLSDb + p CSM x 
CSMg + pcssD X CSSD, + pTsDM X TSDM,+ pTsDsD 
x TSDSD, + pusc x USCJ + pcsc x csc,, + E/j 
where: 

p,“” = 
CLM 

P = 
CLMy = 

P 
CLSD = 

CLSD, = 

P CSM = 

CSMii = 

P 
CSSD = 

CSSD, = 

P 
TSDM = 

TSDMu = 

P 
TSDSD = 

TSDSDii = 

P USC = 

USC, = 

P csc = 

csc, = 

&ij = 

contribution coefficient for table mix i 

contribution coefficient for the mean chain length 

mean chain length for restaurant configuration jfor table mix i 

contribution coefficient for the chain length standard deviation 

chain length standard deviation for restaurant configuration j 
for table mix i 

contribution coefficient for the mean chain seats 

mean chain seats restaurant configuration jfor table mix i 

contribution coefficient for the standard deviation of chain 
seats 

standard deviation of chain seats restaurant configuration j 
for table mix i 

contribution coefficient for the mean absolute difference in 
seats of adjacent combinable tables 

mean absolute difference in seats of adjacent combinable 
tables for restaurant configuration jfor table mix i 

contribution coefficient for the standard deviation of the 
differences in seats of adjacent combinable tables 

standard deviation of differences in seats of adjacent 
combinable tables for restaurant configuration jfor table mix i 

contribution coefficient for the count of unique table sizes 
from chains and subchains 

count of unique table sizes from chains and subchains for 
restaurant configuration jfor table mix i 

contribution coefficient for the count of chains and subchains 

count of chains and subchains restaurant configuration j 
for table mix i 

error coefficient for restaurant configuration jfor table mix i 

The first term of the regression equation is a coding variable to capture the 
effect associated with the particular table mix.-G.M.T: 
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Predicted contribution range from restaurant con- 
figuration and mean restaurant contribution, 
by level of the experimental factors Range in predicted 

contribution from 
Range in predicted configuration as a 

Table Table Mean contribution from percent of mean 
Size sizes contribution configuration’ contribution* 

I This is the difference between the highest and lowest predicted contribution effects 
from restaurant configurations. 

2For example, 74.48 + 5,734.73 x 100 percent = 1.30 percent. 

Seven Steps to Enhanced Profitability 
Using Table-capacity Optimization 

Identify peak periods during the week. 
Using data from POS (supplemented perhaps with data from time 
studies), identify probabilities of different-size parties and the dining 
duration by party size for the peak dining periods, and estimate the 
contribution margin by party size. 
Identify a table mix that provides a good match between capacity 
and customer demand during the peak periods,’ and that meets 
any company policy on maximum table sizes. 
Have a restaurant designer develop alternative configurations that 
come as close as possible to the ideal table mix. The designer should 
be instructed to create the longest possible series of variable-size 
combinable tables. 

5. Simulate the alternative configurations to see how they perform. 
6. Pick the best configuration and implement it. 
7. Be prepared to adjust front- and back-of-the-house labor and 

work methods to support the increased table capacity.-GMT: 

l See, for e, rample: Thompson, 2002, op. cit.; and 
Kimes and Thompson, “A Comparison of Tech- 
niques for 1 Identifying Optimal and Near-optimal 
Restaurant Table Mixes,” op. cit. 

Gary M. Thompson, Ph.D., 
is an associate professor of 
operations management at 
the Cornell University School 
of Hotel Administration 
(gmtl@cornell.edu). 

dieted by the regression equation). This $74.48, 
which is approximately equivalent to serving 
three additional parties per day (at the average 
size of 2.5 people), represents I .3 percent of the 
mean daily contribution of $5,734.73 for res- 
taurants with these experimental factor levels. 
The predicted contribution attributable to res- 
taurant configuration ranged from 1.1 to almost 
1.4 percent. 

Managerial Implications 
The results in Exhibits 5 and 6 indicate that 
getting the right table mix is of paramount im- 
portance (based on the variation explained- 
the adjusted R*-by the complete regression 
model compared to that explained by the model 
using only the table-mix coding). 

Nonetheless, restaurant configuration does 
matter, since identifying a good restaurant con- 
figuration can improve contribution by about 
1. I- to 1.4-percent over a poor configuration. 
Since a good configuration can be identified 
with little additional effort beyond that required 
to identify the best table mix, there is a high 
benefit for the minimal cost. 

Looking at my overall findings, some gen- 
eral guidelines become apparent. In general, res- 
taurants should be constructed as follows: 

(1) 

(2) 

(3) 

With relatively long table chains. For 
example, a chain of 2-tap/4-top/b-top/ 
2-top tables would be preferable to two 
separate chains of 2-tap/4-top tables and 
6-top/Ztop tables. 
With smaller, rather than larger, com- 
binable tables. For example, a chain 
of 2-tap/4-top/G-top tables would be 
preferable to a chain of 4-tap/4-top/ 
6-top tables. 
With relatively large size differences be- 
tween adjacent combinable tables. For 
example, a chain of 2-tap/4-tap/2-top/ 
6-top tables would be superior to a chain 
of 2-tap/2-tap/4-top/G-top tables. 

The specific benefits will vary by the range 
of party sizes and the size of tables one allows. 
Putting the findings in context, however, it is 
important to realize that a good configuration 
cannot overcome a poor table mix. The greatest 
benefits will be achieved by using a good con- 
figuration and a good table mix. n 
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