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Abstract: 

The Hedgehog (HH) signaling pathway has been identified to play an essential role in cell 

differentiation, cell fate determination and cell proliferation in both Drosophila and 

mammalian models. While much is known regarding HH actions in the Drosophila ovary, its 

role in the developing mammalian ovary remains a mystery. In the days following birth, the 

mouse ovary transitions from an organ filled with ovigerous cords to one filled with 

primordial follicles, which are oocytes surrounded by a layer of flattened pre-granulosa 

epithelial cells, enclosed by a basement membrane, and associated with mesenchymal cells. 

The purpose of this study was to determine the role HH plays in primordial follicle formation 

in the mouse ovary. HH signaling was blocked by injecting cyclopamine, a plant alkaloid 

known to inhibit HH signaling, on days 0, 1, 2 and 3 after birth. Immunohistochemistry using 

an antibody for laminin, a common basement membrane protein, revealed a significantly 

higher number of discontinuous basement membranes around primordial follicles in ovaries 

extracted from cyclopamine-treated mice. H&E staining revealed a significantly lower ratio 

of mesenchymal cells to oocytes in ovaries from cyclopamine-treated mice, as compared to 

controls. The reduced HH signaling in this study is thought to have disrupted proper 

ovigerous cord breakdown and interfered with normal cell communication among oocytes, 

epithelial cells and mesenchymal cells, suggesting that the HH signaling pathway does play a 

critical role in directing correct primordial follicle development. This study provides valuable 

insight into the role HH plays in the developing mouse ovary.  
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Introduction: 

In mice, the formation of ovarian follicles occurs during the first few days of life. At 

birth, the mouse ovary contains structures referred to as ovigerous cords which are 

membrane-bound sacs of oocytes and epithelial cells surrounded by mesenchymal cells.  

Functional and structural organization of the ovary occurs during the first 4 to 8 days 

postpartum.  During this time, ovigerous cords breakdown and somatic cells associate with 

oocytes to form primordial follicles [1].  Primordial follicles are composed of a quiescent 

oocyte surrounded by a flattened layer of pre-granulosa cells, enclosed by a basement 

membrane.  Mesenchymal cells in the region surrounding primordial follicles are eventually 

incorporated into an outer theca layer as the follicle grows and develops [1].  Primordial 

follicle formation is directed by cell to cell signaling by locally produced autocrine and 

paracrine growth factors [2].  Inappropriate expression and action of these factors can lead to 

incomplete cord break down and altered ovarian physiology [2].  Primordial follicles 

represent the total follicular reserve.  This is the total number of follicles available for 

development and ovulation during a female’s lifespan, and as such is a critical indicator of 

fertility.  

The HH signaling pathway was first identified in Drosophila, and was shown to play 

an important role in cell differentiation, cell fate determination and cell proliferation.  It was 

also shown to be essential for proper ovarian function.  In addition, the HH pathway was 

found to play an important role in numerous aspects of development in mammals.  Its 

function in the mammalian ovary is just beginning to be studied [3, 4, 5].  

In mammals, the HH signaling pathway utilizes three protein ligands:  sonic (SHH), 

desert (DHH) and Indian (IHH) [6].  These ligands bind to the transmembrane receptor 
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patched (PTCH).  In the absence of the HH ligand, PTCH blocks the activity of the 

transmembrane signal transducer protein smoothened (SMO) [7].  The binding of HH to 

PTCH removes the inhibition of SMO, resulting in activation of downstream transcription 

factors that then alter gene transcription [7].   

Results of several studies have demonstrated that a functional HH pathway is present 

in the theca and granulosa cells of the mouse ovary [3, 4].  Research to date has focused on 

the role of HH in developing follicles in the immature and adult ovary [3, 4, 5].  Yet, 

components of the HH signaling pathway are also expressed in the newborn ovary [3], 

suggesting a potential role for HH in the formation of primordial follicles. Preliminary data 

from Dr. Quirk’s lab suggest that early follicle development in the neonatal ovary is altered 

when HH signaling is reduced experimentally.  The goal of the research reported in this 

thesis was to determine the role of the HH signaling pathway in the development of the 

mouse ovary.   The strategy used was to examine the effects of reducing HH signaling in the 

neonatal mouse ovary on the assembly of primordial follicles.  The hypothesis tested is that 

HH signaling is required to direct correct primordial follicle formation.    

 

Literature Review: 

The mouse ovary is incompletely developed at the time of birth.  During the first 4 to 

8 days postpartum the ovary undergoes substantial functional and structural organization as it 

completes development.  This process involves the rearrangement of associations among 

somatic cells and germ cells to form primordial follicles.  This is a dynamic process that is 

just beginning to be fully understood, but is believed to be directed by a variety of cell 
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signaling pathways.  The focus of the research reported in this thesis is to determine whether 

the hedgehog (HH) signaling pathway is involved in this early ovarian development.  

 

Hedgehog Signaling 

 The HH signaling pathway was first found in Drosophila while screening for 

mutations that disrupt the larval body plan [6]. Since its discovery, HH has been studied 

extensively in Drosophila and shown to be important for development of wings, legs, eyes, 

abdomen, gut, trachea and gonads [6].  In the gonad, it is involved in germ cell migration, 

cell proliferation and polarization [6]. 

The HH pathway also plays an important role in mammals.  It is essential for proper 

embryonic development and adult tissue maintenance.  In the embryo, HH is involved in the 

development of multiple organs by regulating cell proliferation and differentiation, as well as 

directing cell fate [6].  In adult tissue, the HH pathway can be reactivated by tissue damage 

and stimulates tissue repair [8].   

HH signals are received, transmitted and interpreted using pathways that have been 

highly conserved during the divergent evolution of insects and mammals [7].  While only one 

HH ligand has been found in Drosophila, three HH ligands exist in the mammal: sonic 

(SHH), Indian (IHH), and desert (DHH), with the DHH ligand being most closely related to 

the Drosophila ligand [6].  All three HH ligands are secreted proteins that bind to the 

transmembrane receptor patched (PTCH).   In the absence of the HH ligand, PTCH blocks 

the activity of the transmembrane signal transducer protein smoothened (SMO) [7].  The 

binding of HH to PTCH removes the inhibition of SMO.  SMO is then able to undergo a 
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conformational change that allows it to activate a downstream group of transcription factors 

which act to alter target gene expression [7].   

In Drosophila, the target transcription factor is the segment-polarity gene: cubits 

interruptus (Ci) [7].  In resting cells, Ci is phosphorylated, which serves to repress 

transcription of target genes.  In the presence of HH signaling, however, Ci is not 

phosphorylated and is able to activate transcription of HH target genes [7].   In mammals 

transcription factors include three Ci-related proteins from the GLI-Kruppel family, GLI1, 

GLI2, and GLI3, which act as either repressors or activators depending on posttranslational 

processing [6].  GLI1 serves as an activator of HH target gene transcription, while GLI3 acts 

as a repressor of both HH target gene transcription and Shh expression [6].  HH target genes 

include Ptch and Gli1 [6], suggesting that the HH signaling pathway works to modulate its 

own activity. 

Disruption of HH signaling has been shown to have devastating effects upon an 

individual.   In mice, the absence of HH signaling prenatally results in embryo lethality [9]. 

Mutation and deregulation of the HH pathway plays a role in tumorigenesis, with over 

expression of the HH pathway being linked to basal cell carcinomas and other cancers [8].  

Furthermore, in male mice in which the Dhh gene has been deleted, abnormal testes 

development and sterility are observed [10, 11].  

In Drosophila, HH signaling stimulates proliferation of ovarian somatic stem cells, 

promotes polarization of follicle cells, and migration of the primordial germ cells to the 

gonads in the embryo [6, 12, 13].  Since HH is essential for proper ovarian function in 

Drosophila, it has been postulated that it is also essential in the mammalian ovary.  
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Primordial Follicle Formation in the Mouse Ovary 

At birth, the mouse ovary consists of structures called ovigerous cords, which are 

basement-membrane-enclosed sacs of oocytes and epithelial-type somatic cells surrounded 

by mesenchymal-type cells [1].  The basement membrane surrounding the cords is not 

thought to be a permanent continuous structure, and as such, intermingling between cells in 

different regions may occur [1].  The oocytes within the cords are interconnected via 

intracellular bridges, creating a cyst-like structure [13].  Research suggests this cyst-like 

structure is the result of synchronous division of a progenitor germ cell during the embryonic 

time period [13].  Cyst breakdown occurs around the time of birth; however before it occurs 

mitochondria migrate via intracellular bridges to adjacent oocytes [14].  It has been 

postulated that this ensures that oocytes destined for future primordial follicle formation 

acquire functional mitochondria [14].  

During the first few days of life, the ovigerous cords become fragmented and tissue 

remodeling leads to the formation of the first follicles, primordial follicles.  Epithelial-type 

pre-granulosa cells envelop individual oocytes to form primordial follicles.  A primordial 

follicle is composed of a quiescent oocyte surrounded by a flattened layer of epithelial pre-

granulosa cells and enclosed by a newly synthesized basement membrane [1].  Mesenchymal 

cells in the region surrounding primordial follicles eventually become incorporated into an 

outer theca cell layer of the follicle as it grows and develops, in a process that is poorly 

understood [1].   Recent research suggests that HH signals from granulosa cells may act on 

the mesenchymal cells to promote development of the theca [4]. 

Synthesis of the basement membrane around follicles is a poorly understood process. 

It has been suggested that the basement membrane components (type I collagen, type IV 
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collagen, laminin and fibronectin) may all be primarily synthesized by the theca 

compartment surrounding the outside of the basement membrane of the follicle [1, 15].  In 

the testis, it has been suggested that epithelial and mesenchymal cells interact to assemble the 

basement membrane [16]; however the appearance of a similar mechanism in the ovary has 

yet to be investigated.  Laminin appears to be the only protein present in basement membrane 

surrounding primordial follicles in mice [17].  In primordial follicles, laminin forms a ring 

around each granulosa cell compartment, which functions to define the basement membrane 

that separates the primordial follicle from the surrounding area.  Each laminin molecule is 

composed of one α, one β, and one γ chain, yet multiple varieties of each chain occur.  The 

composition of the laminin chain affects the fate of the associated cells, and thus laminin 

chain composition varies in different tissues [18].  Previous studies suggest that the α1, β1, 

and γ1 laminin chains are present in the basement membrane surrounding primordial follicles 

in cows, pigs and rabbits [18, 19].  

Primordial follicle formation does not occur in a uniform pattern throughout the 

ovary. At birth, ovigerous cords are more densely packed in the medulla of the ovary [20].  

These cords contain a high number of oocytes with few epithelial cells.  As the cords break 

down, primordial follicles first develop in the medulla [21].  These first primordial follicles 

are characterized by round, cubodial pre-granulosa cells.  Primordial follicles in the cortex 

appear a little later and differ in the fact that the pre-granulosa cells are flattened, squamous 

cells [21].  In the first few days postpartum, it is common to see areas of fully enclosed 

follicles neighboring areas still exhibiting cord-like patterns [20]. 

Primordial follicle formation is under the control of cell to cell signaling; however 

which cells are signaling is still debatable.  An old idea suggests that signaling between pre-



 11

granulosa cells and the oocyte directs primordial follicle formation [22].  A second idea 

suggests that signals from mesenchymal cells direct primordial follicle formation since their 

presence is thought to be required for the organization of the basement membrane that 

encloses the primordial follicle [22].  In general, a basement membrane is thought to be 

organized when epithelial cell and mesenchymal cell interactions occur, suggesting the 

possibility that epithelial pre-granulosa cells and mesenchymal cells interact to form the 

basement membrane that surrounds primordial follicles [22].   

Recent research suggests both of these ideas may be correct, with cell signaling 

occurring between the pre-granulosa cells and oocyte, as well as the pre-granulosa cells and 

the mesenchymal cells.  Primordial follicle formation is coordinated by locally produced 

paracrine and autocrine growth factors [2, 9].  Interactions between the pre-granulosa cells 

and the oocyte as well as interactions between the pre-granulosa cells and mesenchymal cells 

may be needed for proper primordial follicle assembly, such that inappropriate expression 

and actions of these factors may result in abnormal ovarian physiology [2].  

Primordial follicles represent the follicular reserve, the total number of follicles 

available for development during a female’s lifespan, and are thus critical for fertility. 

Primordial follicles become quiescent once formed.  Throughout an individual’s lifetime, 

primordial follicles are continuously recruited from this follicle reserve to undergo further 

growth and development.  Previous studies suggest that the overall number of quiescent 

follicles in the ovary affects the rate at which follicles are recruited into the growing pool 

[23].  There is an inverse correlation between the number of primordial follicles and the rate 

at which they are stimulated to grow [23].  A reduction in the size of the primordial stockpile 

will result in an increase in the proportion of follicles beginning to grow.  If too many 
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follicles are recruited at once it could have devastating effects on fertility, as the animal may 

run out of follicles prematurely.  A complex network of cell to cell signaling, including the 

actions of locally produced growth factors, is required for the transition from primordial to a 

growing primary follicle [2].  If disruption of these signals occur, potentially too many 

primordial follicles could be recruited into the growing pool leading to depletion of the 

follicle reserve.  

 

Hedgehog’s Role in the Mouse Ovary 

The HH pathway has previously been found to be expressed in the adult mouse ovary. 

Granulosa cells express all three HH ligands, while granulosa and theca cells express PTCH 

and SMO [3].  The oocyte is thought to be unable to respond to HH because it doesn’t 

express Smo [4].  Granulosa cells of primary follicles have been found to secrete HH, which 

can act upon the surrounding pre-theca compartment [4].  Granulosa cells have also been 

identified as a target for HH signaling, with an increase in HH signaling causing a small 

increase in granulosa cell proliferation and increased expression of the transcriptional target 

gene Gli1 [3].  Components of the HH signaling pathway are also expressed in the newborn 

ovary, with Shh, Ihh and Dhh all being expressed in low levels on day 0 [3].   This suggests a 

potential role for HH in the formation of primordial follicles. 

 

Materials and Methods: 

Inhibition of HH signaling 

Cyclopamine is a plant alkaloid and a known pharmacological inhibitor of HH 

signaling. Cyclopamine (BioMol, Plymouth Meeting, PA) was dissolved in 2-hydroxypropyl-
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β-cyclodextrin solution (Sigma-Aldrich Inc., St. Louis, MO). CD-1 female pups were 

injected i.p. with two different doses of cyclopamine (2mg/kg or 5mg/kg) or vehicle (2-

hydroxypropyl-β-cyclodextrin solution) on days 0 (day of birth), 1, 2 and 3 of age. Ovaries 

were then isolated on day 4 for analysis. Ovaries were also isolated from uninjected control 

pups on day 0. In addition, some mice that were treated with either vehicle or high dose 

cyclopamine from days 0-3 were allowed to reach puberty and were then caged with an adult, 

fertile CD-1 male. At day 30, ovaries from these mice were collected for analysis.  

 

Immunohistochemistry: 

 Day 4 ovaries from vehicle-injected and cyclopamine-injected mice (2mg/kg and 

5mg/kg) were fixed in 2% paraformaldehyde. Fixed ovaries were embedded in paraffin wax 

and 5µM sections were cut by the Histology Core Facility, Cornell University, NYS College 

of Veterinary Medicine.  Sections were deparaffinized in xylene, rehydrated by stepwise 

incubation in 100% ethanol, 90% ethanol, 70% ethanol, 50% ethanol and then rinsed twice in 

PBS. Nonspecific binding was blocked at room temperature for 30 minutes in 2% normal 

goat serum in PBS.  Sections were incubated with rabbit polyclonal antiserum (8 µg/mL) 

raised against laminin-1 isolated from Englebreth Holm-Swarm (EHS) tumors (Sigma-

Aldrich Inc., St. Louis, MO)  in PBS + 2% BSA in a humidified chamber for 2 hrs at room 

temperature.  Sections were rinsed with PBS four times and then incubated with 

AlexaFluor555 goat anti-rabbit IgG (0.25 µg/mL; Molecular Probes, Eugene, OR) in PBS + 

2% BSA for 1 hr at room temperature. Slides were rinsed 4 times in PBS and then 

counterstained with Hoechst (Molecular Probes, Eugene, OR). Staining was performed on 
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ovary sections from day 4 control and cyclopamine-injected mice, as well as day 0 uninjected 

control ovaries (n =3 per treatment).  

 Stained sections were evaluated using a fluorescence microscope. Pictures of 4 

unique fields were taken from 2 to 4 ovary sections per mouse. The completeness of the 

laminin rings around primordial follicles was then evaluated in each field, such that each 

mouse had four fields evaluated. The number of complete and incomplete laminin rings 

found in the four fields was summed and a percent of incomplete and complete laminin rings 

was calculated for each mouse.  

Laminin encapsulation of primordial follicles was considered to be complete if there 

were no gaps or fragmentation of the laminin ring around the primordial follicle. Laminin 

encapsulation was scored as incomplete if there were gaps or fragmentation present in the 

laminin ring. The degree to which the laminin ring was incomplete was then graded on a 

rubric scale to assign the following scores: 0, presence of a complete laminin ring; 1, 

presence of a laminin ring around an oocyte that is greater than 50% complete; 2, presence of 

a laminin ring around an oocyte that is half complete; 3, presence of a laminin ring around an 

oocyte that is less than 50% complete.  

 

Hematoxylin & Eosin staining: 

 Morphology of the developing follicles was evaluated in sections of day 4 ovaries 

fixed in Bouin’s solution and stained with hematoxylin and eosin. Ovaries from three control 

and three high dose cyclopamine-treated (5mg/kg) mice were evaluated. The number of 

oocytes, pre-granulosa (epithelial) cells and mesenchymal cells were counted in 4 unique 

fields per mouse to yield average epithelial: oocyte and mesenchymal: oocyte ratios for each 



 15

mouse. Epithelial cells were identified by their dark, central nucleus and the fact that staining 

by hematoxylin was lighter than that for mesenchymal cells. Mesenchymal cells were 

identified by their more flattened shape and darker staining with hematoxylin. Day 30 ovaries 

from control and high-dose cyclopamine-treated mice (n =3 per treatment) were also stained. 

The morphology of these ovaries was then observed. 

 

RT-PCR for Gli1 expression: 

 In order to determine whether HH signaling had been inhibited through this model, 

Gli1 expression in the ovary was evaluated. RNA was prepared from whole ovaries from day 

4 control and high dose cyclopamine-treated mice (5mg/kg) using a RNeasy MiniKit. 

Reverse transcription was performed using a High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA).  Real time PCR for Gli1 was performed on an ABI 

Prism 7000 using kits purchased from Applied Biosystems, Foster City, CA (assay number 

Mm00494645_m1). The assay used spans exons 2 and 3. cDNA from RNA will be amplified 

with this assay, but genomic DNA will not be amplified because of the large introns present 

in genomic DNA between exons 2 and 3. A standard curve was constructed from cDNA 

prepared from RNA of pooled whole ovaries. 18s rRNA concentration was also measured 

(assay number 4319413E). Results were standardized by dividing by the 18s rRNA 

concentration and multiplying by 100. 

 

Fertility Evaluation: 

Some mice that were treated with low and high doses of cyclopamine from days 0-3 

were allowed to reach puberty and were then caged with an adult, fertile CD-1 male. 
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Litter sizes were recorded for all females that became pregnant.  

 

Statistical Analysis: 

A T-test was used to test the difference in the total number of incomplete laminin rings in 

control versus cyclopamine-treated mice. A t-test was also used to test differences in the 

ratios of epithelial cells: oocytes and mesenchymal cells:  oocytes in control and 

cyclopamine-treated mice.  The differences in ovarian Gli1 expression in cyclopamine-

treated and control mice were tested by a t-test.   

 

Results: 

Quantitative real time RT-PCR was used to 

evaluate Gli1 expression levels in vehicle-injected and 

high dose cyclopamine-injected ovaries.  This was done to 

determine if HH signaling had been inhibited by the 

cyclopamine injections.  18s ribosomal RNA, a 

“housekeeping” gene, was used to standardize the values.  

High dose cyclopamine-treated ovaries had a significantly 

lower expression level of Gli1 (p= 0.05) (Fig 1).  This 

shows that cyclopamine injections reduced expression of 

the HH transcriptional target gene Gli1, suggesting that 

cyclopamine treatment did reduce HH signals.  

Immunohistochemistry to detect laminin in ovaries of uninjected mice on day 0 

revealed the presence of ovigerous cords, as expected.  Oocytes were arranged mainly in long 
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chains that were surrounded by somatic cells and enclosed by a laminin-containing basement 

membrane (Fig 2A).  The ovigerous cords varied in size, with sections through some 

containing only two oocytes and others containing as many as 10 to 15. 

Ovaries from vehicle-injected mice on day 4 showed expected cord breakdown and 

primordial follicle development.  Single oocytes were surrounded by a flattened ring of 

somatic cells and a laminin-containing basement membrane (Fig 2B).  On average, 69.8% of 
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primordial follicles were enclosed by a complete basement membrane, with a score of 0 

(Table 1).  There were few areas of the ovaries in which basement membranes surrounding 

primordial follicles were incomplete.  Only 3.7% of follicles had basement membranes that 

were very discontinuous, with a score of 3.  Primary follicles were present in day 4 ovaries 

and were concentrated in the center, medullary region of the ovary.  

In contrast to control mice, mice treated with low and high doses of cyclopamine had 

an increased frequency of primordial follicles surrounded by basement membranes that were 

incomplete.  This effect was most pronounced in mice treated with the higher dose of 

cyclopamine in which 24.9% of follicles had discontinuous membranes with a score of 3 and 

only 26.1% of follicles had complete basement membranes with a score of  0 (Table 1).  As 

shown in Figure 3C, ovaries consisted mainly of primordial follicles enclosed by incomplete 

basement membranes with large gaps.  In addition, a portion of oocytes seemed to have 

associations with only a few somatic cells and had minimal amounts of laminin surrounding 

them.  The effect was less pronounced in mice treated with a low dose of cyclopamine 

(2mg/kg) in which only 10.2% of follicles had discontinuous basement membranes with a 

score of 3 and 60.8% of follicles had complete basement membranes with a score of 0.  As 

shown in Fig 3B, areas of primordial follicles with complete basement membranes and areas 

with incomplete basement membranes were both apparent.  

The phenotype observed in mice treated with the high dose of cyclopamine was 

variable. Ovaries from two of the mice had the phenotype described above.  The ovary from 

a third mouse had areas of relatively normal primordial follicle development in which 

oocytes were surrounded by a ring of flattened somatic cells and enclosed by a basement 

membrane that was often incomplete.  However, the same ovary had areas of densely packed 
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cells containing mostly somatic cells and a few 

scattered oocytes, surrounded by a basement 

membrane (Fig 4B).  

Despite some variation in the phenotype of 

mice treated with the high dose of cyclopamine, the 

percentage of follicles with basement membranes that 

were incomplete was significantly higher than in 

control mice (p<0.05) (Fig 5).  A similar statistical 

analysis was not possible for mice treated with the low 

dose of cyclopamine because the sample size was too 

small (n=2).  
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H&E sections of day 4 ovaries from control and high dose cyclopamine-treated 

mice (n=3) were evaluated for differences in the ratio of epithelial and mesenchymal cells 

to oocytes present.  In control and cyclopamine-treated mice, primordial follicles were 

surrounded by a layer of flattened pre-granulosa (epithelial) cells (Fig 6).  In controls, a 

layer of mesenchymal cells is often found surrounding the epithelial layer associated with 

an individual oocyte (Fig 6A and C).   Mesenchymal cells appeared to be interspersed 

between individual follicles.  Contrastingly, in cyclopamine-treated animals 

mesenchymal cells were most often in long chains or clumps, rather than interspersed 

between and associating with individual follicles (Fig 6B and D).   

The epithelial cell to oocyte 

ratio was not different between 

controls and cyclopamine-treated mice 

(p>0.05) (Fig 7).  The mesenchymal 

cell to oocyte ratio was significantly 

less in cyclopamine-treated mice 

compared to controls (p<0.05) (Fig 7).   

Ovaries from day 30 vehicle-

injected and high dose cyclopamine 

injected mice (n =3), stained with 

H&E, were obersevered to identify any 

striking morphology abnormalities due 

to cyclopamine-treatment. Ovaries 

from both vehicle-injected and high 
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dose cyclopamine injected mice had follicles at all stages of development. Some ovaries 

had corpus luteua present suggesting the mouse had ovulated previously. Neither the 

number of follicles at each stage of development nor the total number of primordial 

follicles present was counted. 

 The fertility study conducted found that low dose (n= 6) and high dose (n =1) 

cyclopamine-treated mice had litter sizes similar to those of vehicle-injected mice (n = 2). 

Average litter size ranged between 13 and 15 pups for controls, 12 to 15 pups for low 

dose cyclopamine-treatment and 9 pups for high dose cyclopamine-treatment. These are 

within the normal range for CD-1 mice suggesting all cyclopamine-treated mice were still 

fertile and able to become pregnant.  

 

Discussion: 

Primordial follicle formation is a complex process involving multiple cell types 

and cell signals. The findings of this study suggest that the HH signaling pathway plays 

an important role in directing correct primordial follicle formation in the mouse. 

Inhibiting HH signaling through cyclopamine injections resulted in improper primordial 

follicle formation, as characterized by incomplete basement membranes and altered 

association of mesenchymal cells with primordial follicles.  

As expected, control mice showed a normal phenotype, with normal cord 

breakdown and primordial follicle formation occurring between day 0 and day 4. Day 4 

ovaries exhibited proper assembly of primordial follicles. The disappearance of cord 

structures and the presence of primordial follicles as well as growing primary follicles in 
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these mice suggest that the period of primordial follicle formation is almost complete by 

day 4.  

An altered phenotype, however, was seen in cyclopamine-treated mice, including 

poor basement membrane formation around primordial follicles. High dose cyclopamine-

treatment resulted in the most severe phenotype, while low-dose cyclopamine treatment 

resulted in more moderate changes. There was variation in the phenotype in both groups, 

with the most variation among the high dose cyclopamine-treated mice. The variation in 

the phenotype in the mice treated with the high dose of cyclopamine suggests that 

cyclopamine may have affected some animals more drastically than others. The areas of 

densely packed somatic cells surrounded by basement membranes observed in one mouse 

may have once been cords in which all the oocytes underwent apoptosis. Further research 

is needed to determine if cyclopamine treatment causes oocyte apoptosis. This could be 

accomplished by increasing the number of replicate mice and by studying the time course 

of the effects after cyclopamine treatment to determine if loss of oocytes occurs. 

Interestingly, in day 4 ovaries stained for laminin from transgenic mice 

(Amhr2Cre/+smoM2) that have a continually activated HH pathway, similar areas of 

densely-packed somatic cells were observed. In those mice, there are areas containing 

densely-packed somatic cells with no apparent oocytes enclosed by a basement 

membrane, as well as areas of relatively normal primordial follicle development. This 

suggests that altering HH signaling by either depressing it or up-regulating it can have 

similar effects on follicle development and suggest that precisely regulated HH signaling 

is required for proper primordial follicle development.  
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  Since Gli1 expression analysis shows that HH was inhibited in the cyclopamine-

treatment model, it can be suggested that reduced HH signaling caused incomplete 

basement membranes to be formed. While there is no previous study regarding the effects 

of HH signaling on basement membrane formation in the ovary, prior studies support the 

idea that Dhh modulates the production of the basal lamina around seminiferous tubules 

[10]. When HH signaling was inhibited in the testes of Dhh knockout mice the basal 

lamina around seminiferous tubules contained numerous areas with small gaps, giving the 

appearance of a discontinuous and incomplete basal lamina [10]. Prior studies have 

shown all three HH ligands to be present in granulosa cells [3].  Furthermore granulosa 

and theca cells have been shown to exhibit PTCH and SMO [3], suggesting that HH acts 

on both granulosa and theca cells. It is thought that theca cells may synthesize basement 

membrane components [1], when they interact with epithelial cells via cell signaling 

pathways [22]. The finding that granulosa cells of primary follicles secrete HH, which 

can then act upon the surrounding mesenchymal-derived theca cells [4], suggests that 

perhaps HH acts on mesenchymal cells surrounding cords to initiate basement membrane 

formation around primordial follicles. Reduction of HH signaling in cyclopamine-treated 

mice may have prevented a signal from being expressed by the pre-granulosa cells, 

resulting in disrupted communication between the mesenchymal and epithelial cells. The 

mesenchymal cells may not have been able to synthesize basement membrane 

components, including laminin, in appropriate quantities due to this blocked cell 

interaction. Thus a lack of cell communication between epithelial and mesenchymal cells 

may have caused the high incidence of discontinuous basement membranes around 

primordial follicles observed in the cyclopamine-treated mice.  
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The decreased ratio of mesenchymal cells to oocytes in cyclopamine-treated mice 

suggests that HH also plays a role in this part of primordial follicle formation. HH has 

been identified as a key player in regulating cell proliferation in multiple organs, 

including the ovary [5]. This suggests a potential role for HH in regulating mesenchymal 

cell proliferation in the ovary. In the developing palate, epithelial-expressed SHH was 

found to regulate palatal mesenchyme cell proliferation through the maintenance of 

cyclin D1 and D2 expression [24]. HH also regulates mesenchyme cell proliferation in 

the gut [25] and in the developing lungs [26] through epithelial cell and mesenchymal 

cell interactions. In these studies, the absence of HH led to decreased mesenchymal cell 

proliferation. Since HH is an important regulator of cell proliferation in other organs and 

a decreased ratio of mesenchymal cells to oocytes was observed in this study, it is 

possible that reduced HH signaling in the ovary inhibited mesenchymal cell proliferation. 

Mesenchymal cells proliferate extensively in both the embryonic and neonatal ovary [20]. 

In the present study, cyclopamine was used to inhibit HH signaling after birth and thus 

may have prevented mesenchymal cells from proliferating during that period. The ratio of 

epithelial cells to oocytes was similar between controls and cyclopamine-treated mice. 

Epithelial cells only appear to proliferate in the embryonic ovary, not after birth [20]. 

Since HH was blocked by cyclopamine treatment after birth, and epithelial cells are not 

proliferating at this time, it is not surprising that the epithelial cell to oocyte ratio was not 

reduced.  

The reduced mesenchymal cell to oocyte ratio in cyclopamine-treated mice could 

have also been caused by failure of the mesenchymal cells to localize appropriately 

around primordial follicles. In the day 0 ovary, mesenchymal cells are arranged in long 
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chains surrounding the ovigerous cords, but by day 4 these cells become localized around 

primordial follicles. The fact that these cells were still arranged in chains in ovaries of 

cyclopamine-treated mice on day 4 rather than localized around individual primordial 

follicles suggests that HH signaling is necessary to control the localization of 

mesenchymal cells around primordial follicles. 

Preliminary studies were performed in which mice treated with high dose 

cyclopamine on days 0 -3 were examined at 30 days of age. Cyclopamine-treated mice 

caged with fertile adult males had litter sizes similar to controls, indicating that the 

cyclopamine-treated mice were fertile. Histology of day 30 ovaries from cyclopamine-

treated mice showed that follicles at all stages of development were present. This is as 

expected, since all cyclopamine-treated mice still had a certain percentage of correctly 

formed primordial follicles. These primordial follicles would be able to enter the growing 

pool, develop normally and ovulate.  The mice had normal sized litters, suggesting that 

the number of follicles that ovulated was not affected. This result may be due to a 

compensatory mechanism within the ovary. The ovary generates the species-specific 

number of ovulatory follicles, even when the size of the primordial follicle pool is 

reduced. There is an inverse correlation between the number of primordial follicles and 

the rate at which they are stimulated to grow, such that a reduction in the size of the 

primordial stockpile will result in an increase in the proportion of follicles beginning to 

grow [23]. This occurs to ensure that the correct number of follicles ovulate.  

A number of cell signaling pathways have been shown to be involved in 

primordial follicle development [9]. For example, the Notch pathway has been shown to 

be expressed in oocytes and pre-granulosa cells prior to the assembly of primordial 
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follicles [27]. Furthermore, when Notch signaling was suppressed in cultured newborn 

mouse ovaries, there was a marked reduction in primordial follicles and an increase in the 

number of germ cells that remained in cords [27]. Thus, multiple pathways may direct 

primordial follicle formation and the inhibition of one may result in decreased efficiency 

of primordial follicles formation rather than complete inhibition.  Even if HH is 

effectively blocked, some primordial follicles may form as the other required pathways 

remain intact.  

This study is the first to examine the effects of HH signaling on primordial follicle 

formation in the mouse ovary. While this study offers evidence for an important role of 

HH signaling in primordial follicle formation, additional research is necessary to support 

this. Cyclopamine should be administered for 8 days after birth to fully understand HH’s 

role in primordial follicle development. While a majority of primordial follicle formation 

occurs during the first four days of life, primordial follicle formation is not absolutely 

complete at this time.  This leaves open the possibility that additional follicle formation 

could occur after termination of cyclopamine treatment on day 3. Inhibition of the HH 

signaling pathway through day 8 might be expected to generate a more severe reduction 

in primordial follicle formation.  

Whether the treatment of newborn mice with cyclopamine resulted in a reduced 

number of primordial follicles at day 30 was not examined, but ovaries have been 

collected and fixed for future study.  In the future, the number of primordial follicles and 

follicles at various other stages of development will be assessed to confirm an effect on 

reduced follicle formation and to determine if inhibition of HH signaling early in life 

affects the dynamics of follicle development in the mature ovary. Levels of follicle 
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atresia in day 30 cyclopamine-treated mice should also be evaluated. Preliminary studies 

with Amhrcre/+Smoflox/null mice, a transgenic mouse model in which the Smo gene has been 

conditionally deleted in the ovary and reproductive tract, show an abnormally high level 

of atresia in primary follicles. Therefore, it would be interesting to determine whether this 

effect also occurs in adult mice that had been treated with cyclopamine neonatally.  

The results of this study are consistent with the hypothesis that HH signaling 

plays a role in primordial follicle formation in the mouse ovary. It appears to do so by 

affecting the mesenchymal cell to oocyte ratio as well as basement membrane formation.  

When HH signaling is reduced, it appears that mesenchymal cells may not proliferate as 

extensively or that they may not localize normally around developing primordial follicles. 

This may result in decreased signaling between epithelial and mesenchymal cells, such 

that primordial follicle formation and basement membrane deposition is disrupted. Future 

research is necessary to support these findings.   
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