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For animal pollinated plants, flowers are highly interactive organs expected to be 

under strong and potentially diverse selection pressures.  Plants not only need to 

attract their pollinators but also deter their enemies, as well as keep the costs of these 

structures low.  Thus natural selection on floral characters is an important area of 

inquiry.  The following series of studies examines multiple aspects of natural selection 

on plants with a focus on floral characters.  The first paper asks whether natural 

selection is more variable in space or time for both a focal species (Penstemon 

digitalis) and for in plants in general.  Indeed, selection is variable, but not more so in 

either of these dimensions, suggesting that constraints to local adaptation and 

speciation are equally as likely as their occurrence.  Knowing the agents of selection 

on traits can inform the direction and expectations for evolutionary change.  The 

second paper discusses the finding that pollinators were driving selection for larger 

flowers and displays in P. digitalis.  Furthermore, selection on floral traits was 

generally stronger when pollinators are present than when they were excluded for 

multiple species for which there is data.  These results suggest that pollinators may 

indeed be major agents of natural selection on flowers.  However, with so few studies 

directly testing agents of selection, this assumption should be applied with caution in 

contemporary populations.  The third paper looks at an understudied trait in an 



 

evolutionary context.  Although scents have been characterized for many plant 

species, very few studies examine the variation in this trait or how natural selection 

acts on it.  Scents vary among populations of P. digitalis on a small geographic scale 

and there was significant natural selection to produce more scent in a common garden.  

Finally, the last paper examines the expected outcomes of selection for later flowering 

in Lobelia siphilitica by pre-dispersal seed predators.  As predicted by optimal defence 

theory, flowering time and latex are correlated in this system suggesting that selection 

on flowering time could also effect selection on defence.   
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CHAPTER 1 

Comparing spatial and temporal variation in natural selection: a field example 

with Penstemon digitalis and a meta-analysis of plants 
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Abstract 

Variation in natural selection can have important evolutionary implications.  Spatial 

variation in selection can lead to local adaptation and ultimately speciation.  However, 

temporal variation may constrain such adaptation, leading to phenotypic variation 

and/or plastic phenotypes.  The majority of natural selection studies measure selection 

in a single location and time, making comparisons of spatial and temporal variation 

difficult.  Here we measured natural selection in Penstemon digitalis across space and 

time to explicitly ask whether selection is more variable in one of these components.  

We then reviewed the literature for studies that measured selection in multiple 

locations and/or times to examine the same question across many plant species.  

Selection was variable in both space and time for P. digitalis and plants in general.  

However selection was no more variable in space than in time, suggesting that local 

adaptation is no more likely than constraints to it.  

  

Introduction 

That environments vary spatially and temporally is a truism and this variation can 

have profound effects on evolutionary processes.  For example, one mechanism of 

speciation can be the differential adaption of populations to local environments 

(Schluter, 2000) and divergent selection can lead to genomic divergence although this 

is often heterogeneous (reviewed in Nosil et al., 2009).  Within species, spatial 

heterogeneity can lead to variation in biotic interactions and therefore coevolutionary 

processes (Thompson, 1999; Thompson & Cunningham, 2002).  For example, abiotic 

variation can impact biotic interactions and natural selection by pre-dispersal seed 

predators on a perennial herb (Kolb & Ehrlen, 2010).  An important caveat to these 

outcomes of spatial variation in selection is that degree of divergence can depend on 

gene flow and phenotypic plasticity (Crispo, 2008).  Phenotypic variation within 
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species is common and populations are frequently but not always locally adapted to 

their environment (Hereford, 2009).  If the phenotypes represented in a particular 

location are the result of adaptive natural selection, rather than other processes such as 

genetic drift or microhabitat variations, then we would expect a link between 

phenotypes and divergent natural selection (e.g. Alcantara et al., 2010). 

 A recent review of temporal variation in selection suggests that the strength of 

selection varies considerably between years and that shifts in the direction of selection 

may also be common (Siepielski et al., 2009).  Furthermore, natural selection in a few 

years might not be informative over longer time scales because of stochastic 

environmental variation (e.g. Grant & Grant, 2002).  Temporal variation, depending 

on its scale relative to the life span of individuals, can result in the maintenance of 

genetic variation in populations or phenotypic plasticity (e.g. Agrawal, 2001) and may 

limit or slow local adaptation.  Temporal change in the environment that exceeds the 

lifespan of individuals can lead to genetic polymorphism, especially when there is 

storage of dormant stages across generations (e.g., seed banks), while environmental 

change during the lifespan of individuals can favor phenotypic plasticity. 

 Both spatial and temporal variation in natural selection could therefore be 

important determinants of micro-evolutionary processes.  Furthermore, spatial and 

temporal variation in selection can result in evolutionary divergence, a generalist 

phenotype or phenotypic plasticity, depending on their scale relative to the life history 

of an organism.  However, little is know about the relative magnitude and strength of 

these two sources of variation.  Because variation across space and time are expected 

to have different outcomes for the phenotypes present within and among populations, 

an important question for predicting phenotypic variation is whether one is more 

variable than the other.  

 In this paper, we use a wild flower (Penstemon digitalis) to ask whether 
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phenotypes and patterns of natural selection varied across populations and three 

consecutive years, and whether selection was more variable in space or in time.  The 

populations were chosen deliberately to be near each other and in similar habitats to 

test whether phenotypes and selection varied despite no obvious differences in 

environment.  We then compared our findings to an analysis of spatial and temporal 

variation in selection coefficients drawn from a survey of the literature.  We compiled 

a database of selection coefficients in plants from studies that either measured 

selection over multiple time periods (life history stages or years) and/or across 

multiple sites, including across a “randomly” chosen set of populations, and a set 

populations from distinct habitats.  We used the database to quantify and compare the 

magnitude of variation in the pattern (direction) and strength of selection in space and 

time. We also asked, with respect to time, whether selection is as variable among life 

history stages as inter-annually, and, with respect to space, whether selection is 

equally variable across “random” locations vs. across locations chosen specifically for 

habitat differences.  

 

Methods 

Field Study 

Study System—Penstemon digitalis (Plantaginaceae) Nutt. ex Sims is a native 

wild flower found in the meadows and prairies of North America (Wolfe et al., 2006).  

The flowers are protanderous and visited generally by small and large bodied bee 

pollinators (Clinebell & Bernhardt, 1998; Mitchell & Ankeny, 2001; Dieringer & 

Cabrera, 2002).  An unidentified micro-lepidopteran is a known pre-dispersal seed 

predator in both Ohio (Mitchell & Ankeny, 2001) and New York (Parachnowitsch, 

personal observation).   

Data Collection—We measured phenotypic traits and fitness in four different 
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populations of P. digitalis for three years.  Populations were chosen based on the 

presence of P. digitalis and the accessibility of the site rather than any particular 

hypothesis for differences among them.  All populations were in old fields and within 

10 km of each other (Table 1.1).  In each population, 99 plants were flagged after the 

plants had bolted and formed flower buds but prior to flowering with the exception of 

TH in 2008.  In 2008, 150 plants were measured in TH and used for an experiment 

examining pollinators as selective agents (Parachnowitsch & Kessler, 2010), however 

in all other respects these plants were treated the same as our other collections.  Plant 

loss, often due to missing flags and late season mammal herbivory, led to variation in 

final sample sizes (see Appendix 2).  Mammalian herbivory led to a complete loss of 

fitness estimates for TH in 2006 and therefore we added BB to the data collection in 

2007.   
 

Table 1.1 List and locations of Penstemon digitalis populations used in our survey of 

variation in natural selection.  

 

 

 

 

 

 

 

 

We measured six phenotypic traits that we hypothesized could be under natural 

selection in this species: flower size, flower colour, number of flowers, inflorescence 

Population Name Abbreviation Location 

BB Hunting Club BB N 42° 30.965’, W 76° 22.522’ 

Neimi Road NR N 42° 30.092’, W 76° 26. 204’ 

Turkey Hill TH N 42° 26.428’, W 76° 25.743’ 

Whipple Farm WF N 42° 26.436’, W 76° 25.892” 
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length, aborted flowers, and plant height.  We measured flower size by taking six 

dimensions of the flower as in Parachnowitsch and Kessler (2010).  To avoid 

additional variation in measurements, one researcher took all floral measurements.  

We attempted to measure at least three flowers per plant and calculated the mean of 

the measured dimensions that were then reduced into a single flower size trait by 

taking the geometric mean of the six mean flower dimensions (as in Williams & 

Conner, 2001; Parachnowitsch & Caruso, 2008).  

 Penstemon digitalis flowers can be white or have purple striping that appears 

black under UV light and may act as nectar guides for pollinators (Silberglied, 1979).  

To estimate colour, we counted the number of lines on the corolla for flowers 

measured for size and scored the intensity of the colour on a four-point scale (no 

colour, 0; light, 1; medium, 2; dark purple, 3).  Flower colour was then estimated by 

multiplying the number of lines by the intensity and averaged across flowers on the 

same plant.  

We also measured display size by counting the number of flowers per plant.  

Display size is commonly assumed to be attractive to pollinators and the number of 

flowers a P. digitalis plant produces was correlated with daily display size for WF in 

2006 when daily display size was also measured (r = 0.637, P < 0.0001, N = 61).  We 

measured flower/fruit abortion because plants may respond to pre-dispersal seed 

herbivory by aborting infested fruits rather than investing in them (e.g. Thompson & 

Cunningham, 2002).  Plant height can be a target of selection (e.g. Cariveau et al., 

2004; Parachnowitsch & Caruso, 2008) therefore we measured the final plant height 

and inflorescence length at the end of the growing season.  

We estimated pre-dispersal seed predator damage by opening mature fruits and 

scoring them as undamaged or damaged.  In 2006 we examined all fruits produced by 

plants but in subsequent years we randomly selected five fruits per plant to assess 
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damage and used this proportion to estimate the number of fruits damaged on the 

plant.  

Female fitness was estimated by measuring fruit diameter (mm) of all the 

fruits.  In 2006, we measured fruit diameter and length, as well as seed number for all 

WF fruits.  Fruit diameter was an accurate predictor of seed number when plant 

identity is included as a random factor in a general linear model for both undamaged 

(R2 = 0.75, F1,526 = 710, P < 0.0001), and damaged fruits (R2 = 0.72, F1,116 = 26, P < 

0.0001).  Additionally, seed predators consumed on average half the seeds 

(undamaged fruits: 111 ± 2 seeds, N = 527; damaged fruits: 56 ± 5 seeds, N = 116).  

Thus we used the fruit width and damage frequencies to estimate female fitness in all 

other populations and years and the estimates we present are total fruit volume.  

Although we have the actual seed number for WF fruits in 2006, we use the volume 

estimate of female fitness to allow for comparisons to the other populations and years.  

Statistical Analyses—To test whether phenotypic traits, seed predator damage 

and fitness measures varied across populations and/or years, we used ANOVA.  

Models included traits as the dependent variable and population, year and the 

population by year interaction term as explanatory variables.  To summarize variation 

in our six traits, one damage estimate, and two fitness estimates, we calculated the 

coefficients of variation (CV).  To compare variation among populations with 

variation among years, we first averaged across the one factor (e.g. populations) and 

then calculated the CV for the other and repeated in the reciprocal.  

We estimated natural selection on the six phenotypic traits following the 

methods outlined in Lande and Arnold (1983) where selection gradients (β) measure 

selection by accounting for correlations among traits through multivariate regressions 

of standardized traits on relative fitness.  Models calculating selection gradients 

included the six phenotypic traits and were done for each population and year 
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separately.  Because our sample sizes were small in many populations and years and 

therefore we lack power to detect non-linear selection, we do not include it.  To test 

whether selection differed across years and/or populations we used an ANCOVA 

model which included the six phenotypic traits, a term for population, year and their 

interaction, the interactions between traits and population, the interactions between 

traits and year, and the three-way interaction terms.  To visualize the variation in 

selection across years and populations, we calculated the SD averaged across the one 

factor (e.g. years) and repeated in the reciprocal for the other factor.  

 

Literature Survey 

Survey—We compiled studies of natural selection from the literature that 

included measurements of standardized selection differentials and/or gradients on the 

same traits at multiple times, or different spatial locations.  We refer hereafter to time, 

space or experimental treatments as “factors” and to the multiple times/spatial 

locations or experimental treatments within a study as “levels”.  Our purpose was to 

estimate variation in the pattern (i.e., direction) and strength of selection among levels 

of a factor and compare whether variation in pattern or strength differs between 

factors. 

We used only studies conducted in natural environments or in common 

gardens that, according to the authors, approximated natural environments for the 

species.  Studies in the database were a subset of those used in Geber and Griffen 

(2003) that included papers published between 1985 and 2002 and that reported 

selection on vegetative characters. This database was supplemented with studies of 

selection on reproductive characters and extended to include studies published since 

2002 until 2008 found using the search engine ‘Web of Science’.  Our database was 

also supplemented by studies sent to us by Dr. John Stinchcombe.  We do not claim to 
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have been exhaustive in our identification of suitable papers.   

Database compilation—There were two sources of temporal variation in 

selection.  The first was variation across episodes in a life history, including such 

stages as survival to reproduction, survival from flowering to fruiting, and components 

of male or female mating success (e.g., pollen removed from a flower and pollen 

deposited on a stigma), fruit set (fruits per flower or total fruit number), seed set (seeds 

per fruit or total seed number).  The second temporal source was inter-annual variation 

(i.e., years).  There were also two sources of spatial variation in selection.  (1) 

variation across “sites” chosen by the authors without regard to habitat differences or 

(2) across “habitats” selected specifically for differences in abiotic or biotic 

conditions.  

For each study, we recorded the species (a few studies included two species 

which were analyzed separately), the plant family, life form (annual, herbaceous 

perennial, woody), the specific characters under selection, the type of character (see 

below), type of factor (time: episode/year and/or space: site/habitat), and, within each 

source factor, the level of the factor (e.g., year 1, year 2), the standardized selection 

differentials ( ) and/or gradients ( ) measured on each character, i, and level k of 

a factor, and whether the selection coefficients were estimated from phenotypic or 

genotypic analysis.  Thus, for a given study and species, the database contained i x k 

lines, for each species in a study, one line for each specific character and level of the 

factor(s).  For studies that included multiple crossed factors (e.g., episode and site, or 

episode and year) with levels k and m, respectively, there were i x k x m lines in the 

database; if the multiple factors were not crossed, the database contained i x (k + m) 

lines.  Specific characters were also classified into broader types: chemistry, 

physiology, morphology, phenology, size, and herbivory (resistance or tolerance).  

This database was then used to calculate measures of variation in the pattern 

! 
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and strength of selection, for each study, species within a study, and factor(s).  The 

pattern or direction of selection refers to both positive and negative values of selection 

coefficients while the strength is equal to the absolute value of the selection 

coefficients.  Although mean standardized, rather than variance standardized selection 

coefficients have been suggested as a better way to compare differences in selection 

our database contains publications before this recommendation (Hereford et al., 2004).  

However, as in Siepielski et al. (2009), rather than focusing on whether selection is 

strong or not, we are interested in the comparison between groups and do not expect 

this to limit our interpretation.  Variation in selection for each character (i) was 

measured as the standard deviation ( ) of selection coefficients (actual or absolute 

values).  For studies that included only one factor (e.g., episodes) the standard 

deviation ( ) was calculated across the k levels of the factor. In studies that included 

two factors, such as episodes and years, with levels k and m, respectively, we 

estimated variation in selection across factor 1 as follows: selection coefficients for 

each character were averaged across the m levels of factor 2 and then calculated the 

standard deviation of these averages across the k levels of factor 1.  The reverse order 

was used to calculate variation in selection across factor 2. 

As a final step, we averaged the standard deviations of the characters of the 

same type (e.g., vegetative morphology, vm).  We did so in order to reduce the 

influence of studies in which many individual characters were measured.  In sum, the 

data for our analyses included only one estimate of variation in the pattern and 

strength of selection per character type and per factor for each species in a study. 

Statistical analyses—We used multivariate mixed model ANOVAs to 

determine whether variation (SD) differed in our series of comparisons.  The factors 

recorded for each study were considered independent fixed effects, with study 

included as a random effect.  We log transformed values (+ 1) to meet the assumptions 

! 
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of normality.  For each question, we asked whether variation differed for the pattern of 

selection and strength of selection.  All analyses were used SAS (v. 9.1) and had an α–

level of 0.05. 

Standard deviations did not depend on whether the selection estimates were 

calculated using phenotypic or genotypic selection analyses, therefore we pooled 

across these analyses to increase our sample size.  To avoid double counting any 

studies, we only included selection estimates from the genotypic analyses when both 

estimates were reported.  To determine whether we could pool estimates from both 

selection differentials and gradients, we compared the 30 studies that reported both 

types of coefficients.  Selection type was the independent variable and study was a 

random effect.  Variation between differentials and gradients differed significantly for 

the pattern of selection (F1,149 = 6.30, P = 0.01) and marginally for the strength of 

selection (F1,149 = 3.89, P = 0.0503), therefore we analyzed these selection estimates 

separately for all subsequent questions.  

We first tested whether plant family, life form, environment (natural or 

artificial), or character type were able to explain any of the variation in selection.  

With the exception of environment in one comparison (strength of differentials), none 

of these variables significantly explained the variation in selection and including them 

did not alter the main effects of our models, therefore we present the models without 

these factors for simplicity (but retain study as a random effect).  We tested whether 

selection was more variable across episodes of the life history or across multiple years, 

and separately whether selection was more variable among "random" sites or habitats 

explicitly chosen for some difference (abiotic or biotic).  When we found no 

differences in SD for either of these comparisons, we pooled episodes and years to 

create a ‘time’ variable and sites and habitats to create a ‘space’ variable.  These were 

then used to ask whether there was greater variation in selection across space or time.  
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Results 

Field Study 

 We found significant phenotypic variation across years and populations for 

every measured trait of P. digitalis (Figure 1.1).  Although there were significant 

population by year interactions in our models, the rank patterns of populations were 

consistent among years for most traits (Appendix 1).  We could not test explicitly 

whether the CV's of the traits across years differed from the coefficients of variation 

across space, however the CV's among populations were generally greater than the 

CV's across years for most traits suggesting that inter-population differences were 

more greater than inter-annual variation.   
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Figure 1.1  Coefficient of variation for six phenotypic traits, one fruit 

damage estimate and two fitness estimates of Penstemon digitalis from 

four populations in three consecutive years. FS= flower size, FC = 

flower colour, FN = number of flowers, IL = inflorescence length, A = 

aborted flowers, H = plant height, D = number of fruits with pre-

dispersal seed predator damage, FR = fruit set, R = female fitness. 
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We found significant natural selection on four of the six phenotypic traits in at 

least one population and/or year (Appendix 1).  There was selection for larger flowers, 

longer inflorescences, more flowers and fewer aborted flowers (Figure 1.2).  However, 

there was significant population by year variation in natural selection for inflorescence 

length (P = 0.006), the number of flowers produced (P < 0.0001) and aborted (P < 

0.0001), suggesting that selection was variable across both time and space.  

Additionally, temporal and spatial variation in selection was higher for these 

compared to other traits, with selection more variable across populations for the 

number of flowers and across years for inflorescence length and aborted flowers 

(Figure 1.2).   
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Figure 1.2 Variation (standard deviations) in selection gradients on six 

traits of Penstemon digitalis across four populations and three years. 

FS= flower size, FC = flower colour, FN = number of flowers, IL = 

inflorescence length, A = aborted flowers, H = plant height. 
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Literature Survey 

The literature survey yielded 69 studies that reported selection in two or more 

levels of at least one of our factors of interest.  These studies represented a wide range 

of plant taxa although the dataset was biased towards herbaceous plants (Table 1.2).  

We calculated 57 standard deviations of selection differentials across time and 69 

across space.  Selection gradients yielded 73 standard deviations of time and 92 of 

space (Appendix 2). 
 

Table 1.2 Summary of literature included in the database of selection coefficients.  

 

 

 

 

 

Overall, the pattern and strength of selection varied for both differentials and 

gradients (Figure 1.3).  Because the pattern of selection includes both positive and 

negative values, it was more variable than the strength selection (Figure 1.3).  

However the general outcome of all comparisons of temporal and spatial variation in 

selection was the same whether we used the pattern or strength of selection.  In 

particular, selection was equally variable between life history episodes vs. inter-

annually, and between "random" sites vs. across habitats chosen to be distinct 

(Appendix 2).  Moreover, selection was no more variable in time vs. space.  

Number in survey Differentials Gradients 

Studies 41 56 

Species 29 36 

Families 20 25 
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DISCUSSION 

That natural selection is variable is not overly surprising, for both our study 

system and those in the literature.  Many authors have noted that natural selection 

varies across space (e.g. Campbell & Dooley, 1992; Caruso et al., 2003; Gómez et al., 

2008) and a recent review has examined temporal variation (Siepielski et al., 2009).  

However, the general pattern that selection was no more variable in space than in time 

for plants warrants some consideration.  As we outlined in our introduction, variation 

across space and time can have very different evolutionary outcomes.  That we find 

equal variation in these two factors, suggests they may balance one another in nature.  
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Figure 1.3 Mean variation (standard deviations) in selection 

coefficients for both the pattern and strength of selection.  Errors 

are not included but were completely overlapping for all 

comparisons and standard deviations do not differ between space 

and time for any of the comparisons (P > 0.75). 
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On a broad scale, this could mean that local adaptation and population differentiation 

via spatially differential selection are no more likely than within population 

maintenance of genetic variation via temporally variable selection.   

Clearly, plant ecotypes and species have arisen from spatially different natural 

selection (Linhart & Grant, 1996).  For example, pollinator adaptation and differential 

selection pressures by pollinators is thought to have led to much of the plant diversity 

we see (e.g. Fenster et al., 2004; Harder & Johnson, 2009).  However, it is also clear 

that species are both phenotypically and genetically variable (e.g. Jansen et al., 2009; 

Keurentjes, 2009).  Our survey of the available selection coefficients for plants 

suggests that for any given system, the ecology will need to be explored before any 

predictions of whether selection would be more variable across space or time can be 

made.   

We examined natural selection in P. digitalis and found that there was 

variation in selection across both space and time for three traits (flower number, 

inflorescence length and aborted flowers).  However, it is important to note that 

selection was always in the same direction for each of these traits and only the 

strength, not direction, was altered (Appendix 1).  This suggests that selection would 

continue to push the populations in a particular direction although it would vary in the 

speed in different populations and years.  Like Siepielski et al. (2009), we also found 

that variation in selection was greater for those traits with stronger selection.  We did 

not have any a priori predictions for variation in selection among these populations.  

The populations were all in old fields with some disturbance, pollinators were 

generally observed to be the same and although many differences likely exist among 

the sites, no obvious factors stand out to predict differential selection.  Therefore we 

would not expect strong local adaption to be operating in P. digitalis at this scale.  

Thus, it may be surprising that we found phenotypic variation as well as variation in 
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natural selection across these populations.   

The three years we measured selection varied as they would be expected to.  

For example, June (when P. digitalis flowers) in Tompkins County varied across all 

three years; 2006 was cooler but wet (monthly mean temperature = 18.2°C, total 

precipitation = 191mm), 2007 was hot and dry (19°C, 73mm), and 2008 was hot and 

moderately dry (19.9°C, 113mm) (based on weather data from the Northeast Regional 

Climate Center).  Generally selection was stronger in 2006, although it is not known 

whether temperature or precipitation drive these patterns.  For example in contrast to 

June, July 2006, when fruits are maturing, was the hottest and wettest of the three 

years and April 2006 (growth period) had moderate temperatures but low 

precipitation.  

Patterns in natural selection were not sufficient to explain the patterns of 

phenotypic differences we found.  For example, there was a strong pattern of 

population variation in flower colour, however natural selection was never detected on 

this trait (Appendix 1, 2).  Furthermore, for traits under selection such as flower 

number, which was consistently under positive natural selection in all populations and 

years, the populations that produced the most flowers were not necessarily those with 

the strongest selection coefficients (Appendix 1, 2).  However, the closer these 

populations are to an optimum will reduce our ability to detect selection.  Therefore 

these differentiated phenotypes may reflect past selection pressures rather than the 

current ones we observed. 

Our survey suggests that variation in selection is no more variable in space or 

time for plants.  However, our data could be limited and/or biased.  First, like many 

reviews of selection in plants, our survey is strongly biased towards herbaceous and 

annual species (e.g. Geber & Griffen, 2003).  Unfortunately, estimating lifetime 

fitness in long-lived organisms is beyond the scope of most research projects, so the 
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focus of many studies remains on short-lived species but this does limit our ability to 

generalize these patterns for all plants with confidence.  Second, it is important to 

consider that it is possible to have largely differentiated phenotypes across 

populations, which are the result of past selective sweeps and that do not experience 

current natural selection because they are adapted to their current location.  If this 

were the case, than we would expect that selection would not vary across these 

populations (zero in both cases), although it would have, if we had caught the 

populations during the adaptive selection pressure.  Therefore the variation in 

selection we surveyed may underestimate the importance of divergent selection across 

space.  

If we are to predict the distribution of phenotypes across landscapes, it is 

essential to know something about how natural selection has acted on those 

phenotypes.  Variation in biotic and abiotic environment across space and time may 

give us a hint as to what trajectory populations will have.  Our survey suggests, at least 

for herbaceous plants, that temporal variation in natural selection is just as likely to 

constrain population differentiation, as spatial variation is to drive it. 

 

Acknowledgements 

This work would not be possible without all the help from Cornell undergraduates 

who assisted with data collection in P. digitalis.  Thanks also to John Stinchcombe 

who shared his database of natural selection studies with us.  Fieldwork was supported 

by funds from the Department of Ecology and Evolutionary Biology, an Andrew W. 

Mellon Grant, a Keickhefer Research Grant and the Botanical Society of America 

Graduate Student Research Award. 



 

 19 

 

REFERENCES 

 

Agrawal AA. 2001. Phenotypic plasticity in the interactions and evolution of species. 

Science 294(5541): 321-326. 

Alcantara JM, Bastida JM, Rey PJ. 2010. Linking divergent selection on vegetative 

traits to environmental variation and phenotypic diversification in the Iberian 

columbines (Aquilegia). Journal of Evolutionary Biology 23(6): 1218-1233. 

Campbell DR, Dooley JL. 1992. The spatial scale of genetic differntiation in a 

hummingbird-pollinated plant- comparison with models of isolation by 

distance. American Naturalist 139(4): 735-748. 

Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, von der Ohe A. 2004. 

Direct and indirect effects of pollinators and seed predators to selection on 

plant and floral traits. Oikos 104(1): 15-26. 

Caruso CM, Peterson SB, Ridley CE. 2003. Natural selection on floral traits of 

Lobelia (Lobeliaceae): Spatial and temporal variation. American Journal of 

Botany 90(9): 1333-1340. 

Clinebell RR, Bernhardt P. 1998. The pollination ecology of five species of 

Penstemon (Scrophulariaceae) in the tallgrass prairie. Annals of the Missouri 

Botanical Garden 85(1): 126-136. 

Crispo E. 2008. Modifying effects of phenotypic plasticity on interactions among 

natural selection, adaptation and gene flow. Journal of Evolutionary Biology 

21(6): 1460-1469. 

Dieringer G, Cabrera L. 2002. The interaction between pollinator size and the bristle 

staminode of Penstemon digitalis (Scrophulariaceae). American Journal of 

Botany 89(6): 991-997. 



 

 20 

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. 

Pollination syndromes and floral specialization. Annual Review of Ecology 

Evolution and Systematics 35: 375-403. 

Geber MA, Griffen LR. 2003. Inheritance and natural selection on functional traits. 

International Journal of Plant Sciences 164(3): S21-S42. 

Gómez JM, Bosch J, Perfectti F, Fernandez JD, Abdelaziz M, Camacho JPM. 

2008. Spatial variation in selection on corolla shape in a generalist plant is 

promoted by the preference patterns of its local pollinators. Proceedings of the 

Royal Society B-Biological Sciences 275(1648): 2241-2249. 

Grant PR, Grant BR. 2002. Unpredictable evolution in a 30-year study of Darwin's 

finches. Science 296(5568): 707-711. 

Harder LD, Johnson SD. 2009. Darwin's beautiful contrivances: Evolutionary and 

functional evidence for floral adaptation. New Phytologist 183(3): 530-545. 

Hereford J. 2009. A quantitative survey of local adaptation and fitness trade-offs. 

American Naturalist 173(5): 579-588. 

Hereford J, Hansen TF, Houle D. 2004. Comparing strengths of directional 

selection: How strong is strong? Evolution 58(10): 2133-2143. 

Jansen RC, Tesson BM, Fu JY, Yang YJ, McIntyre LM. 2009. Defining gene and 

QTL networks. Current Opinion in Plant Biology 12(2): 241-246. 

Keurentjes JJB. 2009. Genetical metabolomics: closing in on phenotypes. Current 

Opinion in Plant Biology 12(2): 223-230. 

Kolb A, Ehrlen J. 2010. Environmental context drives seed predator-mediated 

selection on a floral display trait. Evolutionary Ecology 24(2): 433-445. 

Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. 

Evolution 37(6): 1210-1226. 

Linhart YB, Grant MC. 1996. Evolutionary significance of local genetic 



 

 21 

differentiation in plants. Annual Review of Ecology and Systematics 27: 237-

277. 

Mitchell RJ, Ankeny DP. 2001. Effects of local conspecific density on reproductive 

success in Penstemon digitalis and Hesperis matronalis. Ohio Journal of 

Science 101(2): 22-27. 

Nosil P, Funk DJ, Ortiz-Barrientos D. 2009. Divergent selection and heterogeneous 

genomic divergence. Molecular Ecology 18(3): 375-402. 

Parachnowitsch AL, Caruso CM. 2008. Predispersal seed herbivores, not 

pollinators, exert selection on floral traits via female fitness. Ecology 89(7): 

1802-1810. 

Parachnowitsch AL, Kessler A. 2010. Pollinators exert natural selection on flower 

size and floral display in Penstemon digitalis. New Phytologist: in press. 

Schluter D. 2000. The ecology of adaptive radiation. New York, NY, USA: Oxford 

University Press. 

Siepielski AM, DiBattista JD, Carlson SM. 2009. It's about time: The temporal 

dynamics of phenotypic selection in the wild. Ecology Letters 12(11): 1261-

1276. 

Silberglied RE. 1979. Communication in the ultraviolet Annual Review of Ecology 

and Systematics 10: 373-398. 

Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution. 

American Naturalist 153: S1-S14. 

Thompson JN, Cunningham BM. 2002. Geographic structure and dynamics of 

coevolutionary selection. Nature 417(6890): 735-738. 

Williams JL, Conner JK. 2001. Sources of phenotypic variation in floral traits in 

wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of 

Botany 88(9): 1577-1581. 



 

 22 

Wolfe AD, Randle CP, Datwyler SL, Morawetz JJ, Arguedas N, Diaz J. 2006. 

Phylogeny, taxonomic affinities, and biogeography of Penstemon 

(Plantaginaceae) based on ITS and cpDNA sequence data. American Journal 

of Botany 93(11): 1699-1713. 
 



 

 23 

CHAPTER 2 

Pollinators exert natural selection on flower size and floral display in Penstemon 

digitalis 
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Abstract 

A major gap in our understanding of floral evolution, especially micro-evolutionary 

processes, is the role of pollinators in generating patterns of natural selection on floral 

traits.  Here we explicitly test the role of pollinators in selecting floral traits in an 

herbaceous perennial, Penstemon digitalis.  We manipulated the effect of pollinators 

on fitness through hand pollinations and compared phenotypic selection in open- and 

hand-pollinated plants.  Despite the lack of pollen limitation in our population, 

pollinators mediated selection on floral size and floral display.  Hand pollinations 

removed directional selection for larger flowers and stabilizing selection on flower 

number, suggesting that pollinators were the agents of selection on both of these traits.  

We review studies that measure natural selection on floral traits by biotic agents and 

generally find stronger signatures of selection imposed by pollinators as compared to 

herbivores and co-flowering plant species. 

 

Introduction 

Pollinators are often thought to be driving floral evolution (Fenster et al., 2004).  

Indeed, pollinator specialization seems to have driven rapid evolution in some systems 

(e.g. Kay et al., 2005) and is the main hypothesis put forth to explain the diversity of 

flowering plants (e.g. Fenster et al., 2004).  Moreover, key innovations that allow for 

greater pollinator specialization seem to lead to diversification, as is the case for nectar 

spurs in Aquilegia (Hodges, 1997). Pollination syndromes (a collection of floral traits 

associated with attracting a particular group of pollinators) can also explain floral trait 

variation (Wilson et al., 2004), suggesting that pollinator specialization has been an 

important driver in floral evolution.  Although pollinators seem to be important drivers 

of floral evolution on a macro-evolutionary scale and natural selection on floral traits 

is common (although not consistent) on a micro-evolutionary scale (Harder & 
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Johnson, 2009), a major gap in our knowledge is whether pollinators are the agents of 

natural selection within populations (Ashman & Morgan, 2004).  

Because flower size and display size are likely to be attractive to pollinators, 

these floral phenotypes are often assumed to be the result of selection by pollinators 

(Barrett & Harder, 1996; Ashman & Morgan, 2004).  Furthermore, a recent review of 

phenotypic selection on floral traits shows that selection for larger flowers is common 

and flower production even more so (Harder & Johnson, 2009).  However, it is also 

clear that floral signals used for pollinator attraction can be perceived and used by 

other organisms (Raguso, 2009), making them particularly vulnerable to conflicting 

selection (Strauss & Irwin, 2004).  For example, antagonists such as herbivores and 

pre-dispersal seed predators, as well as abiotic factors can drive natural selection on 

floral traits (Strauss & Whittall, 2006).  To conclusively determine the agents of 

selection, the selective environment must be manipulated (Wade & Kalisz, 1990; 

Conner & Hartl, 2004).  However, there are only six studies that employ this approach 

to testing the role of pollinators in natural selection.   

We explicitly set out to test whether pollinators were acting as agents of 

selection on floral traits of Penstemon digitalis.  Pollinators are thought to have played 

an important role in the diversification of the genus Penstemon (Wilson et al., 2004) 

and following the traditional pollination framework this could suggest that pollinators 

are acting as selective agents in particular Penstemon species.  Therefore, we 

compared natural selection in open- and hand-pollinated P. digitalis to assess whether 

pollinators were exerting selection on floral traits.  To gauge the generality of our 

findings, we evaluated the role of pollinators as selective agents for multiple species 

by reviewing studies that specifically manipulated pollination and measured natural 

selection.  We then compared pollinators to two other potential agents of selection 

(herbivores and co-flowering species).   
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Materials and Methods 

Study system 

Penstemon digitalis Nutt. ex Sims (Plantaginaceae) is a native wild flower found in 

the meadows and prairies of North America. The flowers are protandrous and, while 

bagged to prevent pollinators, do not set fruit although geitonogamy within a plant is 

possible (Parachnowitsch, unpublished).  This plant can also be pollen-limited (Zorn-

Arnold & Howe, 2007).  Flowers are visited by small- to large-bodied bees throughout 

the geographic range (Clinebell & Bernhardt, 1998; Mitchell & Ankeny, 2001; 

Dieringer & Cabrera, 2002).  The flowers are mainly white with variable purple 

striping and sticky trichomes covering the flowers and flowering stems (but not 

leaves).  An unidentified micro-lepidopteran is a pre-dispersal seed predator in both 

Ohio (Mitchell & Ankeny, 2001) and New York (Parachnowitsch, personal 

observation).  

 

Field Experiment 

In June 2008, we selected a total of 300 P. digitalis plants in an old-field population in 

Tompkins County, New York (N 42° 26.428’ W 76° 25.743’).  To limit biases, we 

used transects to choose individuals for inclusion in the study.  Plants were paired (5m 

apart) along four parallel transects in two spatial blocks of 150 plants (~ 25m apart) 

and assigned to either an open-pollinated or hand-pollinated treatment.  The spatial 

blocks were chosen to encompass variation within the population.  Our population is 

situated on a gentle slope ending in a valley, and the two blocks were qualitatively 

different from each other.  The lower block floods more frequently, is generally more 

open but P. digitalis density is higher (Parachnowitsch, personal observation). 

 Open-pollinated plants were left unmanipulated.  Hand-pollinated plants were 
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supplemented with pollen every 2-3 days throughout flowering (eight times for 

approximately three weeks).  Field-collected pollen was applied to the stigmas with 

wooden toothpicks.  We collected pollen from plants at least 5m away to ensure 

outcrossing on the day of the pollinations.  Generally 2-4 donors were used per plant 

per day, depending on the number of open flowers.  Pollinated flowers were also 

marked with correction fluid at the base to ensure each flower was supplemented at 

least once.  Hand-pollination allowed us to 1) assess whether plants were pollen 

limited (Ashman et al., 2004) and 2) determine whether pollinators were the agents of 

selection on floral traits (Conner & Hartl, 2004).  We expected that selection on floral 

traits would be stronger in open- rather than hand-pollinated plants if pollinators were 

the agents of selection because hand-pollinations remove the benefit of being 

attractive to pollinators through two mechanisms.  Hand-pollinated plants are no 

longer pollen limited but in addition to receiving excess pollen, hand-pollinations 

provide “haphazard” contributions of pollen that may differ from that pollinator-

deposited pollen. 

 

Phenotypic Measurements 

We estimated seven phenotypic traits that we hypothesized could be under natural 

selection in this species: flower size, flower colour, total number of flowers, flower 

density, aborted flowers, plant height and biomass.  These traits were not chosen to 

represent an exhaustive list of traits potentially under selection by pollinators in this 

species but rather were the hypothesized pollinator-selected traits that we were able to 

measure in addition to manipulating pollination.  For example, floral scents could also 

be cues under selection by pollinators (Raguso, 2009) and we are studying selection 

on scents as a part of a separate study.  We did not measure flowering phenology 

which could also experience pollinator-mediated selection (Sandring & Ågren, 2009) 
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because we wanted to limit our impacts on pollinator behaviour by reducing our 

visitation to the plants (e.g. Cahill et al., 2001; Hik et al., 2003). 

We measured flower size by recording six dimensions of the flower for three 

haphazardly chosen flowers per plant (Figure 2.1).  Whenever possible the three 

flowers were measured over multiple days to capture variation within a plant 

(generally two days per plant).  Moreover, one researcher did all floral measurements 

to reduce error.  To estimate the visual display of the petals, we measured the width 

and length of the centre lower lip where the petals are not fused.  Pollinating bees 

enter the flower tube, brushing the sexual organs with their backs (Dieringer and 

Cabrera, 2002), therefore we measured the width and length of the bell of the tube 

where the pollinator body fits into the flower, as well as the full length of the tube.  

Penstemon flowers have a constricted floral tube around the ovary, which could limit 

access to the nectaries, as well as the ovaries (potentially important for pre-dispersal 

seed predators), therefore we measured the width of the constriction.  We then took a 

plant average for the measured flowers and reduced the six measurements into a single 

size variable by calculating the geometric mean (as in Williams & Conner, 2001; 

Parachnowitsch & Caruso, 2008).  The geometric mean was strongly correlated with 

the first principle component of the six flower measurements (r = 0.85, P < 0.0001) 

and the patterns of selection were similar whether we used the geometric mean or 

principle component (data not shown).  However, we present the geometric mean for 

its ease of interpretation (i.e. selection on the mean is selection on overall size).  
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Penstemon digitalis flowers vary in the presence, quantity and intensity of 

purple striping on the corolla (Figure 2.1).  The purple appears black under UV light 

and may act as a nectar guide for pollinators (Silberglied, 1979) and therefore could be 

under selection (e.g. Irwin & Strauss, 2005).  We counted the number of purple lines 

on flowers measured for size and scored the intensity of the colour on a four-point 

scale (0 = no lines, 1 = light, 2 = medium, 3 = dark purple).  To give a single numeric 

value to colour, we multiplied the number of lines by the intensity.  Again, these 

values were averaged per plant to give a plant estimate of colour.   

We also measured display size by counting the total number of flowers per 

plant based on end of the season estimates (easily assessed from the senesced 

flowering stalk).  Display size is commonly assumed to be attractive to pollinators and 

the total number of flowers was positively correlated with daily display size for a close 

Figure 2.1 Floral morphology and colour variation in Penstemon 

digitalis.  The two flowers represent extremes of the floral colour 

phenotypes. 
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population of P. digitalis in 2006 (r = 0.637, P < 0.0001, N = 61).  Penstemon digitalis 

floral architecture varies from dense inflorescences to a more open plan 

(Parachnowitsch, personal observation) and we estimated this trait as the number of 

flowers/length of the inflorescence.  Pre-dispersal seed herbivores may select for 

higher abortion rates (Thompson & Cunningham, 2002) and because P. digitalis has 

both high abortion rates and pre-dispersal seed herbivores, we measured the total 

number of aborted flowers.  Plant height can be a target of selection (Cariveau et al., 

2004; Parachnowitsch & Caruso, 2008) and we measured the final plant height at the 

end of the growing season.  Some pollinator attractive traits such as flower size and 

display size could be correlated with general plant vigour and therefore selection on 

these traits maybe due to correlations with vigour rather than selection by pollinators 

(Andersson, 1996).  We estimated selection on vigour by measuring above ground 

biomass (dry mass in g).  

 After senescence when all fruits had matured, we collected plants for estimates 

of fitness and pre-dispersal seed damage.  To estimate the number of damaged fruits, 

we assessed five randomly chosen fruits per plant and then multiplied the proportion 

of damaged fruits by the total number of fruits to give the number of damaged fruits 

per plant.  Pre-dispersal seed predator damage was scored as either present or absent 

based on evidence found within the fruit (larvae, pupae and/or frass).  Female fitness 

was estimated by first measuring fruit diameter (mm) of all the fruits.  Fruit diameter 

was an accurate predictor of seed number when plant identity was treated as a random 

factor for both undamaged (R2 = 0.75, F1,526 = 710, P < 0.0001), and damaged fruits 

(R2 = 0.72, F1,116 = 26, P < 0.0001) in a nearby population counted in 2006.  Pre-

dispersal seed herbivores consumed on average half the seeds (undamaged fruits: 111 

± 2 seeds, N = 527; damaged fruits: 56 ± 5 seeds, N = 117).  Therefore, we calculated 

female fitness as the total diameter of undamaged fruits plus one half the diameter of 
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damaged fruits.  Although P. digitalis is perennial, local populations in Tompkins Co., 

NY generally are semelparous (Parachnowitsch, personal observation), suggesting that 

our measures were lifetime fitness for all but the most robust plants.  We divided 

fitness by the treatment mean to give relative fitness values for each plant.  

 

Statistical Analyses 

Plant loss and missing data led to a total sample size of 281 plants (N = 141 open-

pollinated; N = 140 hand-pollinated).  We used Pearson’s correlations to test for 

relationships among our traits.  All analyses were conducted using SAS version 9.02.   

Pollinators could affect absolute fitness in our plants in two ways that we 

measured.  First, they could alter the number of fruits to successfully mature (fruit set 

= successful fruits/total number of flowers).  Second, they could alter the seeds per 

fruit (fruit size).  We used these two measures to determine whether there was 

pollinator limitation in P. digitalis.  We compared fruit set and mean fruit size 

between open- and hand-pollinated plants using an ANOVA model with spatial block 

and plant pair (within block) as random effects.  Both fruit set and mean fruit size met 

the assumptions of ANOVA and therefore were not transformed.  Additional ANOVA 

models of the same form tested for block differences in the seven phenotypic traits. 

 We measured directional (β) and non-linear or quadratic (γ) selection gradients 

using multivariate regression models of standardized traits (mean of 0, variance of 1) 

on relative fitness as in Lande and Arnold (1983).  The multivariate models control for 

correlations among the traits included in the analysis and therefore measure direct 

rather than total selection on each trait.  Thus, selection gradients allow identification 

of the targets of selection among the measured traits (Conner & Hartl, 2004).  

Standardized traits, relative fitness and selection coefficients were calculated within 

each pollination treatment.  Directional selection models included the seven 
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phenotypic traits.  Non-linear selection measures potentially stabilizing or disruptive 

selection and was estimated with regression models that included the linear and 

quadratic terms for the seven traits.  The non-linear selection gradients reported are a 

doubling of the regression coefficients (Stinchcombe et al., 2008).  The patterns of 

selection were qualitatively the same whether we included block as a random factor in 

the model or not, so we present selection estimates from the models without block for 

simplicity.   

To determine whether pollinators were selecting on our seven phenotypic 

traits, we used ANCOVA to compare the selection between treatments (Sokal & 

Rohlf, 1995).  If pollinators were the agents of selection then we would expect 

selection to be weaker in the hand-pollinated treatment (Figure 2.2a).  The 

multivariate model included the linear and quadratic terms for all of the traits as well 

as a categorical term for the treatment and all the interaction terms with pollination 

treatment.  Again, block did not affect the pattern of selection so the models without 

block are presented.   

 

Literature Survey 

To assess the general effect of pollinator-driven phenotypic selection across many taxa 

and studies, we reviewed selection studies that specifically tested for pollinators as 

selective agents by manipulating pollination through open- and hand-pollinated plants 

using Lande and Arnold’s methods (1983).  This method allows for comparisons 

among studies and has been used in a number of broad surveys of natural selection 

(Kingsolver et al., 2001; Geber & Griffen, 2003; Harder & Johnson, 2009; Siepielski 

et al., 2009).  We first searched papers included in a recent review of phenotypic 

selection on flowers (Harder & Johnson, 2009), as well as an expanded dataset of 

Geber and Griffen (2003) collected to examine variation in selection (Geber & 
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Parachnowitsch, unpublished).  An additional literature search with Web of Science 

used the key words ‘selection’ and ‘pollen limitation’ or ‘hand pollination’.  

To compare selection by pollinators to other agents of selection on floral traits, 

we searched for papers which manipulated an agent of selection in an analogous way 

to hand pollinations (agent present/agent absent) and measured some aspect of 

selection on floral traits.  Here we first searched through the expanded database for 

appropriate studies (Geber & Griffen, 2003).  Additional papers were found searching 

papers citing Lande and Arnold (1983) because we assumed that papers which 

measured selection using their methodology would cite the paper.  We then examined 

papers with titles that suggested they would meet our criteria.  We do not assert that 

this is an exhaustive search of all published examples, however, we attempted to be as 

complete as possible.  Although there are examples that manipulate abiotic factors 

(such as nutrients or shade) and measure selection on floral traits we excluded these 

from our comparisons for two reasons.  Manipulations of abiotic factors examine a 

gradient of a selective agent (not the complete absence versus presence) and 

predictions about the strength of selection in each treatment are difficult to generalize.  

We then categorized studies by the three agents with reported selection 

estimates on floral traits: pollinators, herbivores or co-flowering species.  Whenever 

possible, we used selection gradients (β) which controlled for correlations among 

traits and estimated direct selection.  We recorded selection estimates in the presence 

and absence of the agent of selection and categorized traits as: display (generally 

number of flowers), flower morphology (estimates of flower size and distances within 

a flower), phenology, flower type (male or female or protandry), colour, and nectar 

(nectar production).  For three studies, selection was estimated in multiple 

populations, years and/or treatments, and we averaged across the replicates to avoid 

biasing our dataset to any particular study.  To increase our power to detect trends in 
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the pollinator manipulations, we included our results from P. digitalis.  

We estimated the general trend of the relationship of selection between 

treatments with and without agents by regression.  To test whether the regression slope 

was significantly different than one (the equivalency line where selection was equal in 

the presence and absence of the agent), we used the ‘test’ option in PROC REG 

(Littell et al., 2002).  If the slope was significantly greater than one, selection was 

stronger in the presence rather than absence of the agent.  The opposite was true if the 

slope was significantly less than one. 

 

Results  

General Biology 

The seven phenotypic traits were variable within the population.  Our flower size 

estimate ranged from 6.48 – 9.44 mm (mean: 7.78).  Flower colour varied from 0 – 48 

on our numeric scale, with an average of 21.  Interestingly, flower colour was the only 

trait that did not correlate with any of the others (P > 0.48).  The mean flower 

production was 26 flowers/plant, however this trait was quite variable (range: 7 – 73).  

Plants generally aborted 9 flowers, although some aborted zero while others aborted as 

many as 23.  Those plants with higher flower numbers generally had higher abortion (r 

= 0.661, P < 0.0001).  Plants were on average 76 cm tall (range: 38 – 119), with 13 cm 

of that the inflorescence (range: 3.5 – 29).  Biomass ranged from 0.40 – 5.29 g (mean: 

1.89) and generally all the size measurements were positively correlated with each 

other (flower size, flower number, two lengths and biomass).   

We also found phenotypic variation between the two blocks.  Plants produced 

smaller (7.71 versus 7.86 mm) and fewer flowers (24 versus 28) in the lower part of 

the field.  The lower block was also generally significantly smaller (for inflorescence 

length, height and biomass).  Conversely, aborted flowers and flower colour did not 
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vary across the field.   

Pre-dispersal seed predator damage was extremely low in this population; only 

five plants had damage, each with only one of five fruits attacked.  Although all of 

these plants were in the hand-pollinated treatment and most were in the upper block 

(4/5), there are too few damaged plants to interpret whether our hand-pollinations 

increased attack or whether damage was spatially variable.  

 

Pollen limitation 

We found no pollen limitation in our population of P. digitalis.  Fruit set did not differ 

between open- and hand-pollinated plants (F1, 280 = 1.22, P = 0.27), however there was 

spatial variation in fruit set between our two blocks (F1, 280 = 26.11, P < 0.0001).  

Likewise, the mean fruit size per plant did not differ between the pollination 

treatments (F1, 280 = 0.46, P = 0.50), but also differed at the block level (F1, 280 = 15.62, 

P < 0.0001).  Fruit set (0.60 versus 0.70) and mean fruit size (4.77 versus 4.57 mm) 

was higher in lower block.   

 

Natural Section  

Natural selection differed between the open- and hand-pollinated plants (Table 2.1).  

In open-pollinated plants, we found significant directional selection on four of seven 

phenotypic traits.  Plants with larger, more, and fewer aborted flowers, as well as 

larger size had higher relative fitness.  We found no detectable directional selection on 

flower colour, inflorescence length or plant height.  There was also significant 

stabilizing selection on flower number and disruptive selection on floral density in the 

open-pollinated plants but no significant quadratic selection was detected on the other 

five traits.  However, sample size in our treatments may have limited our power to 

measure non-linear selection.  Conversely, we found significant phenotypic selection 
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on only three of seven traits in the hand-pollinated plants.  There was directional 

selection for more flowers, fewer aborted flowers and larger plants but no significant 

quadratic selection in the hand-pollinated population.  Furthermore, natural selection 

was significantly stronger in the open-pollinated plants for flower size and flower 

number as well as stabilizing selection on flower number, suggesting that pollinators 

were agents of selection on these traits.  Selection on flower size was marginally 

different between our two treatments (P < 0.06), but when we used inflorescence 

length rather than our composite flower density trait, selection on flower size was the 

same within treatments and was significantly different between treatments (P < 0.05).  

We found that selection for fewer aborted flowers and greater biomass did not differ 

between pollination treatments, suggesting that pollinators were not the agents of 

selection for these two traits.   
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Table 2.1 Comparisons of natural selection gradients (directional, β and quadratic, γ) 

between open- (N = 141) and hand-pollinated (N = 140) Penstemon digitalis.  

Phenotypic selection (± 1SE) is followed by statistics from an ANCOVA testing 

whether the selection estimates differed between treatments.  Bold indicates 

significant selection within a pollination treatment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Survey of Experimental Evidence for Biotic Agent-mediated Natural Selection 

In addition to the current study, we found 15 studies that manipulated an agent of 

selection and measured selection on floral traits for 12 species spanning 11 plant 

families (Table 2.2).  Six additional studies explicitly tested whether pollinators were 

Phenotypic Trait Open-pollinated Hand-pollinated F P 

 β 

Flower size 0.030 ±  0.010 0.0007 ± 0.008 3.58 0.06 

Flower colour -0.003 ± 0.009 -0.005 ± 0.007  0.08 0.78 

Number of flowers 0.745 ±  0.018 0.601 ±  0.014  43.85 <0.0001 

Floral density -0.004 ± 0.010 0.009 ± 0.009 0.72 0.40 

Aborted flowers -0.319 ±  0.012 -0.306 ±  0.010 0.93 0.34 

Plant height -0.014 ± 0.012 -0.0002 ± 0.011 1.54 0.22 

Biomass 0.077 ± 0.017 0.060 ± 0.012 0.00 0.99 

 γ 

Flower size 0.008 ± 0.005 -0.012 ± 0.007 1.17 0.28 

Flower colour 0.004 ± 0.007 -0.006 ± 0.007 0.00 0.98 

Number of flowers -0.068 ±  0.009 -0.006 ± 0.006 9.05 0.03 

Floral density 0.026 ±  0.009 0.012 ± 0.006 0.68 0.41 

Aborted flowers -0.008 ± 0.007 -0.006 ± 0.006 0.04 0.84 

Plant height -0.0006 ± 0.006 0.014 ± 0.007 0.58 0.45 

Biomass 0.024 ± 0.009 -0.012 ± 0.007 2.52 0.11 
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agents of selection by manipulating the pollination environment (Andersson, 1996; 

Galen, 1996; Totland et al., 1998; Fishman & Willis, 2008; Parachnowitsch & Caruso, 

2008; Sandring & Ågren, 2009), five manipulated herbivory (Juenger & Bergelson, 

1998; Juenger & Bergelson, 2000; Gómez, 2003; Juenger et al., 2005; Wise & 

Cummins, 2007) and a further four studies manipulated the presence of co-flowering 

species (Caruso, 2000; 2001; Moeller & Geber, 2005; Smith & Rausher, 2008), 

although one study examined facilitation by congeners rather than competition for 

pollinators (Moeller & Geber, 2005).  Measures of flower morphology were by far the 

most common, followed by display and phenology.  Very few studies examined 

flower type, colour or nectar traits.   

 Natural selection was stronger when pollinators were present rather than absent 

(Figure 2.2b) and the slope of the regression line was significantly different from one 

(F1,22 = 5.78, P = 0.026).  Conversely, selection in the absence of co-flowering species 

was stronger than in their presence, and this trend was not affected by the nature of the 

study (competition versus facilitation) (Figure 2.2d; F1,20 = 5.85, P = 0.026).   Finally, 

natural selection on flower traits was equivalent in the presence or absence of 

herbivory (Figure 2.2c; F1,9 = 0.33, P = 0.58).  Among the differences in selection 

observed, most biotic alterations of selection resulted in changes in the strength (not 

direction) of selection; reversals in the direction of selection were most prevalent 

when comparing the presence and absence of co-flowering species (7 comparisons; 

Figure 2.2d).  
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Table 2.2 Summary of a literature survey of experimental manipulations of agents of 

natural selection on floral traits.  Pollinator manipulation refers to experiments with 

open- vs. hand-pollinated treatments (and include this study), herbivores were 

manipulated either by simulating herbivory or excluding herbivores, co-flowering 

species were experimentally present or absent.  Selection gradients (which control for 

correlations among traits) are presented when available.   

 

  Manipulation 

Number in survey Complete dataset  Pollinators Herbivores Co-flowering 

species 

Studies 16 7 5 4 

Plant Families 11 7 3 3 

Species 12 7 3 3 

Selection estimates: 53 23 9 21 

  Display 10 6 1 3 

  Floral morphology 29 12 3 14 

  Phenology 9 4 5 0 

  Flower type 3 0 1 2 

  Colour 1 1 0 0 

  Nectar 2 0 0 2 
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Discussion  

We found pollinator-mediated selection in P. digitalis on two traits thought to be 

important for pollinator attraction: flower size and display size (Table 2.1).  Selection 

for larger flowers was present in the open- but not hand-pollinated plants.  Natural 

Figure 2.2 Comparisons of directional selection (s or β) on floral traits in 

experiments that manipulated an agent of selection; either pollinators (b), 

herbivores (c) or co-flowering species (d).  The general pattern of the plots 

follows (a): + selection is stronger when the agent is present, – selection is 

stronger when the agent is absent, reversals = change in the direction of 

selection.  Trait classifications: flower display , flower morphology (size) , 

nectar , flower type , phenology , petal colour . 
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selection on flower morphology selected for larger values (Figure 2.2; Harder & 

Johnson, 2009) and fits with the general hypothesis that pollinators select for larger 

flowers because they are more conspicuous and/or maybe associated with larger 

rewards (e.g. Blarer et al., 2002).  Natural selection for larger displays is also common 

(Figure 2.2; Harder & Johnson, 2009) and we found stronger directional selection on 

flower number in open-pollinated P. digitalis (Table 2.1).  Because flower number sets 

the upper limit for fruit number, in many systems such as P. digitalis, there is a direct 

positive relationship between flower and fruit number.  Thus, positive selection would 

be expected on flower number independent of pollinator-mediated selection.  

However, we found stronger directional selection in the open-pollinated plants, 

suggesting that the difference in strength of selection was due to an added benefit of 

larger displays attracting pollinators.  We also found stabilizing selection on flower 

number in the open- but not the hand-pollinated plants, suggesting a cost to having too 

many flowers.  Large displays can have increased geitonogamy, which could be costly 

through reduced fitness of selfed seeds (Harder & Barrett, 1995).  Because hand- 

pollinations likely minimized the number of selfed seeds, we would expect the cost of 

large displays to be likewise reduced, suggesting that the difference in stabilizing 

selection between our treatments was due to stabilizing selection by pollinators.   

 We found natural selection by pollinators despite the lack of pollen limitation.  

Although stronger selection via female fitness can be correlated with a greater degree 

of pollen limitation (Ashman & Morgan, 2004), selection by pollinators is not always 

associated with pollen limitation.  Galen (1996) found selection by pollinators without 

pollen limitation and two studies found pollen limitation but no selection by 

pollinators (Andersson, 1996; Totland et al., 1998).  Thus it may be more likely to 

find selection by pollinators in pollen-limited populations because selection is likely to 

be stronger.  However it cannot be assumed to be true for all populations.   
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Field estimates of phenotypic selection can be biased due to environmental 

covariance between traits and fitness (Rausher, 1992).  We attempted to control for 

this bias by both physically pairing our treatments and using a blocked design.  There 

were phenotypic differences between our two blocks that suggest pollination, 

competition, and/or resources may have differed in these parts of the population.  

However, when we included block as a random factor in our selection models, the 

significant patterns remain, suggesting that an environmental gradient was not 

responsible for the overall selection we found.   

 If biotic agents frequently exert natural selection on plants, than we would 

expect stronger selection when the agents are interacting with the plant, compared to 

when they are experimentally removed.  For pollinators specifically, we expect 

selection on floral traits to be stronger when pollinators are selecting plants than when 

experimenters hand-pollinate them.  Indeed, we found that natural selection on floral 

traits was stronger in the presence rather than absence of pollinators (Figure 2.2b).  

Furthermore, we do not necessarily expect herbivores to be strong selective agents on 

flowers although they could influence floral evolution in a number of ways (Strauss & 

Irwin, 2004).  We found that selection on floral traits was equivalent whether 

herbivores were present or absent (Figure 2.2c).  However, there were few selection 

coefficients to test this hypothesis so these findings should be interpreted with caution.  

Co-flowering species could either have competitive or facilitative effects on the focus 

species, which could lead to divergent or convergent evolution of floral traits (Caruso, 

2001).  Therefore, it is difficult to predict across systems whether selection should be 

stronger with or without a co-flowering species.  When co-flowering species have 

been manipulated, selection was stronger in the absence of the co-flowering plant 

(Figure 2.2d).  However, there were also many more reversals when co-flowering 

species were removed (i.e. positive selection became negative or vice versa), 
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suggesting that community context could alter selection on floral traits (Caruso, 2000).  

Surprisingly, we found significant trends for both pollinator and co-flowering species 

manipulations despite our small sample size and the fact that selection is frequently 

weak in natural populations (Kingsolver et al., 2001; Knapczyk & Conner, 2007).  

Indeed, the majority of the selection coefficients included were close to zero and non-

significant.  However, our ability to detect trends suggests that these patterns could be 

strong in nature.     

Our survey data could be biased by three major limitations.  First, although our 

complete dataset included plants spanning multiple functional pollinator groups, 

pollinator manipulations have been limited to hymenopteran and dipteran pollinators.  

Pollinator shifts have been proposed as a major driver of speciation (e.g. Fenster et al., 

2004) and some shifts seem more common than others.  For example, bee to bird 

pollination is more common than the reverse (Thomson & Wilson, 2008).  However, it 

is uncertain whether one functional group would exert stronger selection on floral 

traits than another.  Thus, the addition of plants pollinated by other functional groups 

such as birds, beetles, moths, etc. may alter the pattern we detected.  Second, although 

our data set spans almost as many families and species as studies, it only includes 

herbaceous plants.  Studying selection in herbaceous plants is a bias common to the 

plant literature, however, it is important to note that it may affect our ability to 

generalize to all flowering plants (e.g. Geber & Griffen, 2003).  Because natural 

selection by pollinators is of general interest in floral evolution, this suggests that 

measuring selection by pollinators in non-herbaceous plants and/or non-bee/fly 

pollinated plants will provide further insights into their role as agents of natural 

selection.  Lastly, our survey was necessarily limited to studies that measured Lande 

and Arnold (1983) selection coefficients and directly manipulated an agent of 

selection.  This allowed for direct comparisons across studies but could also introduce 
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biases.   

We were unable to directly compare the impacts of pollinators with selection 

by other floral visitors such as florivores (McCall & Irwin, 2006) or pre-dispersal seed 

herbivores (these data have simply not been collected, but see Wise & Cummins, 

2007).  In particular, pre-dispersal seed predators are expected to conflict with 

pollinator selection on floral traits because they should visit fertilized flowers (or those 

that will be fertilized).  Moreover, they can exert selection on floral traits in multiple 

systems (Pilson, 2000; Cariveau et al., 2004; Rey et al., 2006; Parachnowitsch & 

Caruso, 2008), making a direct comparison between seed predator- and pollinator-

mediated selection a relevant question.  For our population of P. digitalis, we found no 

evidence that pre-dispersal seed predators influenced selection on flower size or 

number, nor were they affecting selection on aborted fruits.  Only five of the 281 

plants in this experiment received any fruit damage and our results were robust to 

excluding these plants (data not shown).  Pre-dispersal seed herbivores can be much 

more frequent in P. digitalis (Mitchell & Ankeny, 2001; Parachnowitsch, unpublished) 

and it is possible that they do exert natural selection in other populations and/or years.   

An important limitation of our and the studies reviewed here is that they 

generally only measure female fitness in hermaphroditic plants in one season.  Natural 

selection can vary in time (Siepielski et al., 2009).  Therefore, to fully understand the 

evolutionary trajectory for a population, selection should be measured in multiple 

years.  Moreover, if most of the natural selection on flowers by pollinators or other 

agents is via male function, then these types of experiments may fail to detect their 

impact (see Conner (1997) for a theoretical discussion and counter example).  

Although few natural selection studies examine both male and female fitness 

estimates, the general pattern from the literature does not support the male function 

hypothesis.  That is, selection on attractive floral traits was not always stronger via 
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male fitness but rather selection through male and female fitness was context 

dependent (Ashman & Morgan, 2004).  Thus, hand-pollinations can provide valuable 

information about selection by pollinators but are still only half of the story.  

Manipulations of the agents of selection via both male and female fitness are 

necessary to give a more complete picture and reveal functional differences.   

 

Conclusion 

Flowers offer a conundrum to evolutionary ecologists.  On one hand it seems fairly 

obvious that flowers are adapted to their pollinators (reviewed in Harder & Johnson, 

2009) and that shifts in pollination systems have lead to diversification in plants (e.g. 

Kay et al., 2005).  Moreover, there are a limited number of examples of pollinator-

mediated natural selection such as we found in P. digitalis.  However, the majority of 

selection estimates on floral traits from manipulations of pollination do not support 

selection by pollinators (Figure 2b) and studies which have used path analyses often 

find that pollinators weakly effect fitness (Conner et al., 1996; Gómez, 2000; Rey et 

al., 2006; Ashman & Penet, 2007).  Harder and Johnson (2009) argue that natural 

selection studies may be measuring the effects of pollinators during periods of relative 

stasis and that we should expect selection by pollinators on novel traits or in new 

environments.  In other words, the lion’s share of pollinator-mediated natural selection 

shaping flowers may have occurred during and shortly after speciation.  While this 

view needs further testing, we are left to explain what the agents of selection are in 

cases when there is significant selection on floral traits, but not by pollinators (e.g. 

Andersson, 1996; Totland et al., 1998; Fishman & Willis, 2008; Parachnowitsch & 

Caruso 2008; Sandring & Agren, 2009).  If pollinators truly exert most of their 

selection on flowers during cladogenesis, then an interesting question follows.  During 

a period of stasis, how far from these adaptive peaks can non-pollinator agents push 
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floral traits within a particular population or species?   

 

Acknowledgements 

We thank A. Freitag for field assistance, C. Elston, J. Porter, and W. Tomascelli for 

data collection, A. Agrawal, M. Geber, and K. Zamudio for discussions and feedback, 

and three anonymous reviewers for helpful comments on the manuscript.  Our study 

was funded by the Botanical Society of America (Graduate Student Research Award), 

the Cornell Department of Ecology and Evolutionary Biology (Student Research 

Fund) and the National Science Foundation (NSF-DEB 0717139).  



 

 47 

REFERENCES 1 

 2 

Andersson S. 1996. Floral variation in Saxifraga granulata: Phenotypic selection, 3 

quantitative genetics and predicted response to selection. Heredity 77: 217- 4 

223. 5 

Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, 6 

Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson 7 

WG. 2004. Pollen limitation of plant reproduction: Ecological and 8 

evolutionary causes and consequences. Ecology 85(9): 2408-2421. 9 

Ashman TL, Morgan MT. 2004. Explaining phenotypic selection on plant attractive 10 

characters: male function, gender balance or ecological context? Proceedings 11 

of the Royal Society of London Series B-Biological Sciences 271(1539): 553- 12 

559. 13 

Ashman TL, Penet L. 2007. Direct and indirect effects of a sex-biased antagonist on 14 

male and female fertility: Consequences for reproductive trait evolution in a 15 

gender-dimorphic plant. American Naturalist 169(5): 595-608. 16 

Barrett SCH, Harder LD. 1996. Ecology and evolution of plant mating. Trends in 17 

Ecology & Evolution 11(2): A73-A79. 18 

Blarer A, Keasar T, Shmida A. 2002. Possible mechanisms for the formation of 19 

flower size preferences by foraging bumblebees. Ethology 108(4): 341-351. 20 

Cahill JF, Castelli JP, Casper BB. 2001. The herbivory uncertainty principle: 21 

Visiting plants can alter herbivory. Ecology 82(2): 307-312. 22 

Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, von der Ohe A. 2004. 23 

Direct and indirect effects of pollinators and seed predators to selection on 24 

plant and floral traits. Oikos 104(1): 15-26. 25 

Caruso CM. 2000. Competition for pollination influences selection on floral traits of 26 



 

 48 

Ipomopsis aggregata. Evolution 54(5): 1546-1557. 1 

Caruso CM. 2001. Differential selection on floral traits of Ipomopsis aggregata 2 

growing in contrasting environments. Oikos 94(2): 295-302. 3 

Clinebell RR, Bernhardt P. 1998. The pollination ecology of five species of 4 

Penstemon (Scrophulariaceae) in the tallgrass prairie. Annals of the Missouri 5 

Botanical Garden 85(1): 126-136. 6 

Conner J, Hartl D. 2004. A primer of ecological genetics. Sunderland, 7 

Massachusetts: Sinauer Associates. 8 

Conner JK. 1997. Floral evolution in wild radish: The roles of pollinators, natural 9 

selection, and genetic correlations among traits. International Journal of Plant 10 

Sciences 158(6): S108-S120. 11 

Conner JK, Rush S, Jennetten P. 1996. Measurements of natural selection on floral 12 

traits in wild radish (Raphanus raphanistrum). 1. Selection through lifetime 13 

female fitness. Evolution 50(3): 1127-1136. 14 

Dieringer G, Cabrera L. 2002. The interaction between pollinator size and the bristle 15 

staminode of Penstemon digitalis (Scrophulariaceae). American Journal of 16 

Botany 89(6): 991-997. 17 

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. 18 

Pollination syndromes and floral specialization. Annual Review of Ecology 19 

Evolution and Systematics 35: 375-403. 20 

Fishman L, Willis JH. 2008. Pollen limitation and natural selection on floral 21 

characters in the yellow monkeyflower, Mimulus guttatus. New Phytologist 22 

177(3): 802-810. 23 

Galen C. 1996. Rates of floral evolution: Adaptation to bumblebee pollination in an 24 

alpine wildflower, Polemonium viscosum. Evolution 50(1): 120-125. 25 

Geber MA, Griffen LR. 2003. Inheritance and natural selection on functional traits. 26 



 

 49 

International Journal of Plant Sciences 164(3): S21-S42. 1 

Gómez JM. 2000. Phenotypic selection and response to selection in Lobularia 2 

maritima: importance of direct and correlational components of natural 3 

selection. Journal of Evolutionary Biology 13(4): 689-699. 4 

Gómez JM. 2003. Herbivory reduces the strength of pollinator-mediated selection in 5 

the Mediterranean herb Erysimum mediohispanicum: Consequences for plant 6 

specialization. American Naturalist 162(2): 242-256. 7 

Harder LD, Barrett SCH. 1995. Mating cost of large floral displays in 8 

hermaphrodite plants. Nature 373(6514): 512-515. 9 

Harder LD, Johnson SD. 2009. Darwin's beautiful contrivances: Evolutionary and 10 

functional evidence for floral adaptation. New Phytologist 183(3): 530-545. 11 

Hik DS, Brown M, Dabros A, Weir J, Cahill JF. 2003. Prevalence and 12 

predictability of handling effects in field studies: Results from field 13 

experiments and a meta-analysis. American Journal of Botany 90(2): 270-277. 14 

Hodges SA. 1997. Floral nectar spurs and diversification. International Journal of 15 

Plant Sciences 158(6): S81-S88. 16 

Irwin RE, Strauss SY. 2005. Flower color microevolution in wild radish: 17 

Evolutionary response to pollinator-mediated selection. American Naturalist 18 

165(2): 225-237. 19 

Juenger T, Bergelson J. 1998. Pairwise versus diffuse natural selection and the 20 

multiple herbivores of scarlet gilia, Ipomopsis aggregata. Evolution 52(6): 21 

1583-1592. 22 

Juenger T, Bergelson J. 2000. The evolution of compensation to herbivory in scarlet 23 

gilia, Ipomopsis aggregata: Herbivore-imposed natural selection and the 24 

quantitative genetics of tolerance. Evolution 54(3): 764-777. 25 

Juenger T, Morton TC, Miller RE, Bergelson J. 2005. Scarlet gilia resistance to 26 



 

 50 

insect herbivory: the effects of early season browsing, plant apparency, and 1 

phytochemistry on patterns of seed fly attack. Evolutionary Ecology 19(1): 79- 2 

101. 3 

Kay KM, Reeves PA, Olmstead RG, Schemske DW. 2005. Rapid speciation and the 4 

evolution of hummingbird pollination in neotropical Costus subgenus Costus 5 

(Costaceae): Evidence from nrDNA ITS and ETS sequences. American 6 

Journal of Botany 92(11): 1899-1910. 7 

Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, 8 

Hoang A, Gibert P, Beerli P. 2001. The strength of phenotypic selection in 9 

natural populations. American Naturalist 157(3): 245-261. 10 

Knapczyk FN, Conner JK. 2007. Estimates of the average strength of natural 11 

selection are not inflated by sampling error or publication bias. American 12 

Naturalist 170(4): 501-508. 13 

Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. 14 

Evolution 37(6): 1210-1226. 15 

Littell RC, Stroup WW, Freund RJ. 2002. SAS for linear models. Cary, NC, USA: 16 

SAS Institute. 17 

McCall AC, Irwin RE. 2006. Florivory: The intersection of pollination and 18 

herbivory. Ecology Letters 9(12): 1351-1365. 19 

Mitchell RJ, Ankeny DP. 2001. Effects of local conspecific density on reproductive 20 

success in Penstemon digitalis and Hesperis matronalis. Ohio Journal of 21 

Science 101(2): 22-27. 22 

Moeller DA, Geber MA. 2005. Ecological context of the evolution of self-pollination 23 

in Clarkia xantiana: Population size, plant communities, and reproductive 24 

assurance. Evolution 59(4): 786-799. 25 

Parachnowitsch AL, Caruso CM. 2008. Predispersal seed herbivores, not 26 



 

 51 

pollinators, exert selection on floral traits via female fitness. Ecology 89(7): 1 

1802-1810. 2 

Pilson D. 2000. Herbivory and natural selection on flowering phenology in wild 3 

sunflower, Helianthus annuus. Oecologia 122(1): 72-82. 4 

Raguso RA. 2009. Floral scent in a whole-plant context: Moving beyond pollinator 5 

attraction. Functional Ecology 23(5): 837-840. 6 

Rausher MD. 1992. The measurement of selection on quantitative traits – biases due 7 

to environmental covariances between traits and fitness. Evolution 46(3): 616- 8 

626. 9 

Rey PJ, Herrera CM, Guitián J, Cerdá X, Sánchez-Lafuente AM, Medrano M, 10 

Garrido JL. 2006. The geographic mosaic in predispersal interactions and 11 

selection on Helleborus foetidus (Ranunculaceae). Journal of Evolutionary 12 

Biology 19(1): 21-34. 13 

Sandring S, Ågren J. 2009. Pollinator-mediated selection on floral display and 14 

flowering time in the perennial herb Arabidopsis lyrata. Evolution 63(5): 1292- 15 

1300. 16 

Siepielski AM, DiBattista JD, Carlson SM. 2009. It's about time: The temporal 17 

dynamics of phenotypic selection in the wild. Ecology Letters 12(11): 1261- 18 

1276. 19 

Silberglied RE. 1979. Communication in the ultraviolet. Annual Review of Ecology 20 

and Systematics 10: 373-398. 21 

Smith RA, Rausher MD. 2008. Experimental evidence that selection favors character 22 

displacement in the ivyleaf morning glory. American Naturalist 171(1): 1-9. 23 

Sokal RR, Rohlf FJ. 1995. Biometry. New York, NY, USA: Freeman. 24 

Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW. 2008. 25 

Estimating nonlinear selection gradients using quadratic regression 26 



 

 52 

coefficients: Double or nothing? Evolution 62(9): 2435-2440. 1 

Strauss SY, Irwin RE. 2004. Ecological and evolutionary consequences of 2 

multispecies plant-animal interactions. Annual Review of Ecology Evolution 3 

and Systematics 35: 435-466. 4 

Strauss SY, Whittall JB 2006. Non-pollinator agents of selection on floral traits. In: 5 

Harder LD, Barrett SCH eds. Ecology and evolution of flowers. Oxford, UK: 6 

Oxford University Press, 120-138. 7 

Thompson JN, Cunningham BM. 2002. Geographic structure and dynamics of 8 

coevolutionary selection. Nature 417(6890): 735-738. 9 

Thomson JD, Wilson P. 2008. Explaining evolutionary shifts between bee and 10 

hummingbird pollination: Convergence, divergence, and directionality. 11 

International Journal of Plant Sciences 169(1): 23-38. 12 

Totland O, Andersen HL, Bjelland T, Dahl V, Eide W, Houge S, Pedersen TR, 13 

Vie EU. 1998. Variation in pollen limitation among plants and phenotypic 14 

selection on floral traits in an early-spring flowering herb. Oikos 82(3): 491- 15 

501. 16 

Wade MJ, Kalisz S. 1990. The causes of natural selection Evolution 44(8): 1947- 17 

1955. 18 

Williams JL, Conner JK. 2001. Sources of phenotypic variation in floral traits in 19 

wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of 20 

Botany 88(9): 1577-1581. 21 

Wilson P, Castellanos MC, Hogue JN, Thomson JD, Armbruster WS. 2004. A 22 

multivariate search for pollination syndromes among penstemons. Oikos 23 

104(2): 345-361. 24 

Wise MJ, Cummins JJ. 2007. Herbivory as an agent of natural selection for floral- 25 

sex ratio in horsenettle (Solanum carolinense). Evolutionary Ecology Research 26 



 

 53 

9(8): 1319-1328. 1 

Zorn-Arnold B, Howe HF. 2007. Density and seed set in a self-compatible forb, 2 

Penstemon digitalis (Plantaginaceae), with multiple pollinators. American 3 

Journal of Botany 94(10): 1594-1602. 4 

 5 

 6 

7 



 

 54 

CHAPTER 3 1 

Variation and natural selection of plant volatile emission in Penstemon digitalis 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

Authorship to be published as: Amy L. Parachnowitsch, Robert A. Raguso and André 25 

Kessler 26 



 

 55 

Abstract 1 

Floral scent is an important and complex character of flowering plants.  However, 2 

little is known about its evolutionary ecology.  We characterized floral scents in a wild 3 

flower, Penstemon digitalis, in a common garden planted with individuals from three 4 

near-by source populations.  We found that even on a small geographic scale, floral 5 

scents vary among populations, suggesting that scents can be highly variable and 6 

maybe under differential selection pressures.  Moreover we found natural selection to 7 

increase five different volatiles of the blend, suggesting that smelling stronger can be 8 

beneficial in this plant.  Our data suggest that different components of a scent can be 9 

under natural selection.  However, further research is needed to integrate scents into 10 

our broader understanding of floral evolution.  11 

 12 

Introduction 13 

Floral scent is an important but frequently ignored component of the floral phenotype 14 

(Raguso, 2008a).  Although scents have been cataloged for many species (e.g. 15 

Knudsen et al., 2006) and their direct and indirect roles in plant-animal interactions 16 

have been elucidated (e.g. Dobson, 2006; Raguso, 2008b; Junker et al., 2010), far less 17 

is known about the variation of floral volatile organic compound (VOC) emission 18 

within a species and the ecological and evolutionary consequences of that variation 19 

(Whitehead & Peakall, 2009).  Floral traits that have been extensively studied, such as 20 

morphology and colour, tend to vary within a species, even to the extent that variation 21 

and natural selection can be seen on family diagnostic characters (e.g. Conner et al., 22 

2003).  Thus, one could predict that scents would be no different.  However, like much 23 

of the phenotypic variation in morphological traits, environment can play a large part 24 

in phenotypic differences.  Volatile compounds can be particularly sensitive to 25 

microhabitat and climate variables, making it challenging to assess the magnitude of 26 



 

 56 

observed differences (Majetic et al., 2009). 1 

 To date, natural selection on plant secondary chemicals has focused mainly on 2 

compounds with suggested direct defensive function.  There are few studies that have 3 

empirically examined natural selection on chemical defences, and thus far, the results 4 

have been varied.  Selection can act in favor of increasing secondary compounds 5 

(Berenbaum et al., 1986; Latta & Linhart, 1997; Johnson et al., 2009) or to decreasing 6 

them (Zangerl & Berenbaum, 1997; Shonle & Bergelson, 2000; Johnson et al., 2009).  7 

Furthermore, natural selection on chemical defences can depend on the community 8 

context (Lankau & Strauss, 2008), whether herbivores were present (Zangerl & 9 

Berenbaum, 1997) and whether the herbivores were specialists or generalists (Lankau 10 

& Strauss, 2007).  Chemical defences are predicted to be costly although this is not 11 

always empirically evident (e.g. Strauss et al., 2002), therefore researchers have 12 

predicted that these chemicals should only be selected for in the presence of 13 

herbivores.  It has been suggested that some of the costs associated with defensive 14 

secondary metabolite production are ecological and may, for example, compromise 15 

interactions with mutualistic organisms, such as predators and parasitoids of 16 

herbivores (Kessler & Halitschke, 2007 and citations therein) or pollinators (Kessler & 17 

Halitschke, 2009).  The organisms mediating ecological cost of secondary metabolite 18 

production are therefore potential agents of selection on those traits.  Thus, the 19 

production of floral VOCs, as part of the overall secondary metabolite production may 20 

be under similar diffuse natural selection.  21 

Similar to non-volatile secondary metabolites, VOCs can be costly if they 22 

attract antagonists (e.g. Raguso, 2009; Baldwin, 2010).  Volatile compounds can 23 

certainly be used as cues or signals by many and diverse organisms interacting with 24 

the plant.  Pollinators can use volatile cues to locate plants (Wright & Schiestl, 2009), 25 

however,  antagonists such as herbivores can use floral volatiles to cue into a suitable 26 
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host (e.g. Baldwin et al., 1997).  Therefore we might expect diverse selection 1 

pressures on scents depending on the community context.  However, to date, no study 2 

has measured natural selection on volatile compounds, which is key to understand 3 

their function as signals or cues (Allison & Hare, 2009).  4 

 We used a native North American wild flower, Penstemon digitalis, to explore 5 

the evolutionary ecology of its scent.  This species has no strong obvious scent 6 

chemistry therefore we had no a priori expectations of the role of scent in the system.  7 

The genus Penstemon contains a diverse array of species with multiple transitions 8 

from bee to humming-bird pollinated plants (Wolfe et al., 2006).  The role of flower 9 

colour and morphology both within species and across pollination syndromes has been 10 

studied extensively (e.g., Castellanos et al., 2004; Wilson et al., 2004; Thomson & 11 

Wilson, 2008).  However, to date, no study has examined floral scent in this genus and 12 

it is unknown whether scent plays any role in the transitions from bee to bird 13 

pollination.  Bee-pollinated flowers are generally expected to have stronger scents and 14 

insects likely use floral scents as foraging cues and may play a role in their evolution 15 

(Wright & Schiestl, 2009).  Therefore, we measured scents in bee-pollinated P. 16 

digitalis.  Specifically in a common garden experiment, we asked:  17 

1. How much do plant volatiles vary within this species? 18 

2. Do floral scents correlate with pigment variation?  19 

3. Is there natural selection on plant volatiles? 20 

 21 

Materials and Methods 22 

Study system  23 

Penstemon digitalis Nutt. ex Sims (Plantaginaceae) is a native wild flower found in 24 

the meadows and prairies of North America.  Penstemon digitalis is visited by a 25 

number of bee pollinators throughout its range varying in size from small to large 26 
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bodied bees (Clinebell & Bernhardt, 1998; Mitchell & Ankeny, 2001; Dieringer & 1 

Cabrera, 2002).  Flowers are protandrous and self-compatible (Zorn-Arnold & Howe, 2 

2007), however, bagged flowers fail to set seed in our NY populations, suggesting that 3 

pollinators are necessary for seed set.  An unidentified micro-lepidopteran is a pre- 4 

dispersal seed predator in both Ohio (Mitchell & Ankeny, 2001) and New York 5 

(Parachnowitsch, personal observation).  The flowers are mainly white with variable 6 

purple striping inside the throat of the corolla tube.  Sticky trichomes cover the flowers 7 

and flowering stems but not leaves (Thomas, 2003).  8 

 9 

Field Experiment  10 

We planted a common garden population of P. digitalis in 2007, made up of plants 11 

from 3 populations (NR, TH, WF) known to differ in morphological floral traits 12 

Parachnowitsch et al. (Chapter 1).  The common garden was used to eliminate 13 

environmental variation in scent among our populations.  Population descriptions, 14 

locations, phenotypic variation in morphological traits and natural selection on those 15 

traits can be found in Chapter 1.  Plants were dug from each population after bolting 16 

but prior to flowering to prevent biased collecting.  There was at least a meter between 17 

each plant to ensure each plant was from a separate genet and plants were collected 18 

from across each population.  In the transplant population, plants were arranged in a 19 

complete block design with 35 plants from each population.  Spacing was 0.5 meters 20 

between plants in rows of 15 plants with a meter between each row.  Plants flowered 21 

for approximately seven weeks and were visited by naturally recruited bumblebees 22 

(Bombus spp. generally Bombus impatiens) and other small bodied bees, as well as the 23 

occasional hummingbird (Archilochus colubris) (personal observation).  Plant 24 

mortality, failure to flower and missing data led to a sample size of 88 plants (NR = 25 

30, TH = 26, WF = 32).  26 



 

 59 

  1 

Flower colour variation 2 

Penstemon digitalis flowers can be white or have purple striping that appears black 3 

under UV light and may act as nectar guides for pollinators (Silberglied, 1979).  To 4 

estimate colour, we counted the number of lines on the corolla for flowers measured 5 

for size and scored the intensity of the colour on a four-point scale (no colour, 0; light, 6 

1; medium, 2; dark purple, 3).  Flower colour was then estimated by multiplying the 7 

number of lines by the intensity and averaged across flowers on the same plant. 8 

 9 

 10 

Plant volatile collections  11 

We collected volatile organic compounds (VOC) using an open-flow dynamic 12 

headspace trapping design described in Kessler and Baldwin (2001) where 13 

inflorescences and leaves are separately enclosed in 500ml polyethylene cups that 14 

functioned as trapping chambers.  Air is pulled through the chambers and activated 15 

charcoal absorbent vials (ORBO-32, SIGMA-Aldrich) at about 450-500ml min-1.  16 

Collections were made over four days at the peak of flowering and the number of 17 

flowers open was recorded for each plant.  For each day two air controls and three leaf 18 

controls (one from each population) were collected in addition to the 27 floral 19 

bouquets.  On the fourth day, in addition to sampling plants that had yet to be 20 

measured, we re-sampled six plants that had been measured previously to assess 21 

temporal and environmental variation in volatile emission. 22 

   23 

VOC quantification  24 

ORBO-32 absorbent vials were each eluted with 350µL and samples were stored in 25 

1.5ml GC-vials with glass inserts.  Samples were analyzed using a Varian 2200 26 
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GC/MS equipped with an Altech WAX-column (30 m, 0.25 mm internal diameter, 1 

0.25 µm film thickness; Alltech, USA).  Helium was used as carrier gas at a constant 2 

flow of 1 ml/min and the following column temperature gradient: 45 °C for 6 min, 3 

increased to 130 °C at 10 °C/min, increased to 180 °C at 5 °C/min, increased to 230 4 

°C at 20 °C/min with a 5 min hold at 230 °C, increased to 250 °C followed by a final 5 

hold at 250 °C for 5 min.  Peak area was used for VOC quantification and 6 

standardized with tetraline as an internal standard.  We then subtracted the average of 7 

the two air controls from the samples for a given day and assigned the peaks as either 8 

a floral or leaf volatile.  Floral volatiles were defined as those peaks emitted from the 9 

flower samples on average three times that of the emission in the leaf controls.  10 

Because scent emissions from a plant could simply be a function of differences in the 11 

number of flowers open at a given time, in addition to examining total scent, for floral 12 

specific compounds we also looked at emission per flower by dividing the total scent 13 

by the number of flowers open. 14 

 15 

VOC identification 16 

 We identified compounds by comparing the mass spectra with those in the NIST 17 

compound library (National Institute of Standards and Technology, Gaithersburg, 18 

MD) and by comparing retention times and mass spectra with known standards. 19 

 20 

Fitness and damage estimates  21 

After the fruits had matured (mid-August), we collected plants to assess fitness and 22 

pre-dispersal seed predation.  We measured fruit diameter (mm) of all the fruits and 23 

then assessed fruits for damage by opening them and scoring damage as present or 24 

absent.  As in Parachnowitsch and Kessler (2010), we estimated female fitness as the 25 

diameter of undamaged fruits plus one half the diameter of damaged fruits.  Fruit 26 
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diameter is correlated with seed set and on average, pre-dispersal seed predators 1 

consume half of the seeds of undamaged fruits (Parachnowitsch & Kessler, 2010). 2 

  3 

 4 

Statistical Analyses  5 

To determine whether population origin influenced volatiles (total emission and 6 

emission per flower), we used two approaches.  First we applied traditional methods of 7 

a MANOVA followed by ANOVAs on individual compounds.  Both block and day of 8 

measurement were included in the models as controls and the Ryan, Elinot, Gabriel, 9 

Welsh’s post hoc test was used to determine the differences among populations.  10 

However, plants produce many volatiles and this method gives population differences 11 

for the single compounds but does not give a picture of the complete odour plume.  12 

Furthermore, it can be difficult to ascertain with of the volatiles are driving differences 13 

among the populations.  Classification methods such as principle component analyses 14 

(example) and non-metric multidimensional scaling analyses (e.g. Majetic et al., 2008) 15 

have been used to address these issues.  However, they too have their drawbacks and 16 

new methodology borrowed from bioinformatics has been suggested as a way to deal 17 

with the vast quantity of data generated by volatile collections (van Dam & Poppy, 18 

2008).   19 

Thus to determine global differences in volatile profiles among our three 20 

populations we used a Random Forests classification algorithm as described in 21 

Ranganathan and Borges (2009).  This technique determines a minimum set of 22 

predictor volatiles that distinguish each population from the others and gives objective 23 

criteria for determining the relative importance of each volatile in population 24 

differentiation.  To find the predictor volatiles that separated each population from the 25 

others we ran three Random Forest analyses with two categories 1) the population of 26 
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interest and 2) the other two populations classified as others.  This allowed us to 1 

determine the unique set of volatiles that distinguished a population from the rest.  We 2 

used 200 bootstrap iterations in each analyses as recommended in Ranganathan and 3 

Borges (2009).  The package varselRF in R was used to compute these values.  The 4 

probability of a sample belonging to a group (population or others) was calculated 5 

using the average out of bag probability of membership (Ranganathan & Borges, 6 

2009).  This procedure assigns a mean probability of group membership to each plant.  7 

The mean decrease in accuracy for removal from the models was calculated for each 8 

VOC.  9 

To examine female fitness, we first tested whether seed set and seed herbivore 10 

damage differed among populations using ANOVA with block included in the model.  11 

We used Pearson correlations followed by the Dunn-Šidák correction for multiple 12 

comparisons to determine whether seed herbivore damage was correlated with plant 13 

volatiles.   14 

We used selection differentials (S) to measure the strength and direction of the 15 

total natural selection on plant volatiles.  For these analyses, we simply regressed 16 

relative fitness on each standardized volatile using univariate generalized linear 17 

models.  Due to the large number of volatiles, we did not have the power to detect 18 

direct selection (selection gradients, β) using multivariate regression including all 19 

volatiles (Lande & Arnold, 1983).  However, we did measure direct selection on the 20 

individual volatiles by controlling for correlations with total flower number.  21 

 22 

Results 23 

Volatile emissions 24 

We found 21 plant VOCs emitted by P. digitalis; 12 leaf volatiles and 9 floral specific 25 

volatiles.  Many compounds we detected are common floral scents.  Linalool, methyl 26 
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salicylate and trans-β-ocimene are some of the most common floral volatiles across all 1 

flowering plants (Knudsen et al., 2006).  In addition, we found the cis- isomer of β- 2 

ocimene, β-citronellol, cis-jasmone, α-cedrene, α-copaene, an unknown alkene and an 3 

unknown compound that were all higher in the flower bouquets relative to the leafs.  4 

The bouquets also emitted the following compounds that were equivalent in the leaf- 5 

only samples: germacrene-D, bergamotene, α-farnesene, trans-2-octenal, cis-6- 6 

nonenal, thujol, nerolidol, methyl benzoate, as well as one unidentified sesquiterpene 7 

and two unknown compounds (Table 3.1).  All of these compounds or compound 8 

classes have been found in floral scents in other species (Knudsen et al., 2006) and 9 

therefore may be informative to general pollinators such as bumblebees.  Corolla 10 

and/or other reproductive tissue likely produce the floral specific volatiles and the 11 

octenals appear to be emitted from the sticky trichomes exudates.  Volatile emission 12 

was variable among individuals (Table 3.1), however the mean variation in all 13 

volatiles was higher across sampling days (CV = 1.271) than within plants (CV = 14 

0.949), for those plants with two sampling days (N = 6 plants). 15 

 16 

 17 

 18 

 19 
 20 

21 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

Table 3.1  (following page) Volatile compounds from Penstemon digitalis quantified 12 

with GC-MS.  Results from ANOVAs testing population differences in VOCs among 13 

plants from three populations planted in a common garden are shown for the total 14 

emission and emission per flower.  For simplicity, only those compounds with 15 

significant differences are included (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 16 

0.0001), differences between populations were determined using Ryan, Elinot, 17 

Gabriel, Welsh’s post hoc test.  Peak area was standardized to an internal standard (N 18 

= 88). 19 

20 
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 1 
 2 

Compound Retention 

time 

Mean peak 

area ± SE 

Total emission 

Leaf VOCs    

bergamotene  15.83 0.396 ± 0.063  

germacrene-D* 17.76 0.254 ± 0.046 NR>WF≥TH* 

alpha-farnesene 18.03 0.097 ± 0.019 NR>TH=WF**** 

thujol* 19.62 0.098 ± 0.013 NR≥WF≥TH** 

nerolidol 23.39 0.045 ± 0.010 NR>WF=TH**** 

unknown 24.26 0.082 ± 0.015 WF=NR=TH* 

trans-β-ocimene 10.58 0.352 ± 0.065  

unknown-2 22.65 0.111 ± 0.021  

methyl benzoate 16.50 0.136 ± 0.045 NR>TH=WF** 

unknown sesquiterpene 16.15 0.174 ± 0.043 NR>TH=WF**** 

Floral VOCs    

Corolla    

unknown 11.61 0.849 ± 0.141 NR=TH=WF* 

cis-β-ocimene 10.25 0.086 ± 0.012 NR=WF>TH** 

linalool 15.26 0.467 ± 0.068  

β-citronellol 18.41 0.140 ± 0.023 WF=NR=TH* 

methyl salicylate 19.04 0.233 ± 0.068 NR>TH=WF*** 

cis-jasmone 21.8 0.012 ± 0.002 NR>TH=WF* 

alpha-cedrene 15.58 0.096 ± 0.017 NR>WF=TH** 

alpha-copaene 14.53 0.085 ± 0.010 NR>WF=TH** 

Trichomes    

unknown alkene 14.45 1.552 ± 0.779  

trans-2-octenal 13.58 0.610 ± 0.086 TH>WF=NR**** 

cis-6-nonenal 13.87 0.527 ± 0.102  

 3 
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Population variation in scent 1 

Our three P. digitalis populations differed in the amounts of the 21 VOCs emitted in a 2 

common garden (P = 0.0093) and the population differences remained when we 3 

examined the per flower emissions (P = 0.032).  Moreover, populations did not differ 4 

in the number of open flowers on the sampling days (P = 0.096) nor in the total 5 

number of flowers produced over the season (P = 0.85), suggesting that the 6 

differences in scent were not simply driven by flower production.  Eight of the leaf 7 

volatiles and seven of the floral specific volatiles varied among populations in total 8 

emission (Table 3.1).  However, many fewer volatiles were found to be predictors for 9 

their respective populations in the Random Forest analyses (Table 3.2).  Three 10 

volatiles were necessary to distinguish NR (α-farnesene, methyl benzoate and the 11 

unknown floral VOC) and WF (trans-2-octenal, α-farnesene and the unknown 12 

sesquiterpene) from the other populations, and only two were necessary for TH (trans- 13 

2-octenal and nerolidol).  14 

Not surprisingly, due to their close proximity, there was considerable overlap 15 

in the scents from the three populations.  In general, each population has a number of 16 

plants that were likely to be classified as ‘other’ and not belonging to their own 17 

population in the average out of the bag probability (Figure 3.1).  However, for both 18 

NR and TH, more than half of the individuals were on average considered different 19 

than the others and few of the others were classified as belonging to that population.   20 

 21 

 22 

 23 

 24 

 25 

 26 
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 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Table 3.2 Predictor volatiles that distinguish each population of Penstemon digitalis 10 

from the other two, their frequency in the Random Forest models, and the mean 11 

percentage in the headspace.   12 

 13 

 14 

 15 
 16 
 17 
 18 
 19 
 20 
 21 

22 

Population Predictor volatile Model frequency % in the headspace 

NR α-farnesene 

unknown floral VOC 

methyl benzoate 

0.970 

0.845 

0.650 

1.52 

13.26 

2.12 

TH trans-2-octenal 

nerolidol 

1.000 

0.245 

9.53 

0.70 

WF trans-2-octenal 

α-farnesene  

unknown sesquiterpene 

0.810 

0.710 

0.245 

9.53 

1.52 

2.72 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

Figure 3.1 (following page) Comparisons of volatile emissions from three populations 13 

of Penstemon digitalis grown in a common garden using the out of the bag probability 14 

of membership.  Each population was compared to the other two in a separate 15 

analysis.  Each point represents a single plant sample (the same position in each of the 16 

graphs) and the focal population is in filled circles in their respective graph.  Complete 17 

separation of populations would have all samples from each treatment falling on 18 

opposite sides of the 0.5 line. 19 

20 
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Flower colour and scent 1 

The amount of flower colour (as estimated from the number and intensity of purple 2 

lines) was positively correlated with four P. digitalis volatiles.  Plants with more 3 

pigmented flowers also had higher emission of cis-jasmone (r = 0.28), bergamotene (r 4 

= 0.24), α-farnesene (r = 0.26), the unknown leaf sesquiterpene (r = 0.22).  5 

 6 

Fitness and predispersal seed predator damage 7 

Female fitness did not differ among populations (P = 0.52) grown in the common 8 

garden, however seed predator damage did and followed the pattern found in the 9 

natural populations (Chapter 1).  WF plants had the most damage, followed by NR, 10 

with TH receiving the least amount of damage (P < 0.0001).  However, after 11 

controlling for multiple comparisons seed predator damage was not correlated with 12 

any of the plant volatiles, suggesting that volatile emission did not drive the patterns of 13 

damage.   14 

 15 

Natural selection  16 

We found significant total natural selection on one leaf and four floral volatiles 17 

(Figure 3.2).  Plants that produced more linalool, cis-β-ocimene, β-citronellol, the 18 

unknown alkene and cis-6-nonenal had higher relative fitness than those that produced 19 

low amounts of these compounds.  When we controlled for correlations between these 20 

volatiles and the total number of flowers a plant produced, selection remained for 21 

linalool, cis-β-ocimene, and the unknown alkene.  However, after controlling for 22 

correlations with flower number, there was no significant selection on β-citronellol 23 

and cis-6-nonenal.  24 
 25 
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Figure 3.2 Natural selection (± 1 SE) on plant volatiles in Penstemon 

digitalis.  Grey bars represent univariate selection differentials, whereas white 

bars represent selection gradients (β) controlling for correlations between 

scents and the total number of flowers produced.  All selection coefficients 

are significant with the exception of for –citronellol and cis-6-nonenal. 
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 1 

Discussion 2 

Population variation in scent 3 

Three geographically close populations of P. digitalis differed in the amounts of scent 4 

produced when grown in a common garden (Table 3.1).  Furthermore, because 5 

different scent compounds showed different patterns in amounts among the three 6 

populations (Table 3.1), not only would overall scent differ but the ratios among the 7 

volatiles would as well.  Taken together, these plants would likely be perceived as 8 

smelling differently (Raguso, 2008b).  We also found within population variation for 9 

all compounds and if this variation were heritable then we would expect populations to 10 

be able to respond to natural selection on scents.   11 

 Geographic variation in floral scents has been characterized for only a few 12 

species thus far, however variation within and among populations may be common.  13 

Floral scents are variable among populations of Geonoma macrostachys (Arecaceae) 14 

(Knudsen, 2002), Herperis matronalis (Brassicaceae) (Majetic et al., 2008), Linanthus 15 

dichotomus (Polemoniaceae) (Chess et al., 2008), Magnolia kobus 16 

(Magnoliaceae)(Azuma et al., 2001), Orchis mascula and O. pauciflora (Orchidaceae) 17 

(Salzmann et al., 2007) and Silene latifolia (Caryophyllacceae) (Dötterl et al., 2005).  18 

However, this population variation was generally found over much larger geographic 19 

ranges than the P. digitalis populations we sampled (but see Salzmann et al., 2007).  20 

Conversely, Yucca filamentosa (Agavaceae) scents do not vary over a large 21 

geographic range despite pollinator and presumed abiotic differences (Svensson et al., 22 

2005).  Much like morphological variation in floral phenotypes, we would expect 23 

volatiles to vary both within and among populations depending on the ecological 24 

interactions and evolutionary history of the species.  However, unlike morphological 25 

and visual traits, very little is known about the general patterns and/or any causal links 26 
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for floral volatiles. 1 

 2 

Scent and corolla colour 3 

Four scents were positively correlated with corolla colour in P. digitalis.  Phenolic 4 

compounds could be related to the amount of anthocyanins in the corolla tissue 5 

through shared pathways, however none of the volatiles correlated with colour where 6 

phenolic.  The relationship between cis-jasmone, bergamotene and terpenoids with 7 

colour is generally unknown.  Penstemon species generally contain much more 8 

pigment than P. digitalis, with hymenopteran flowers generally having yellow or blue- 9 

violet petals (Wilson et al., 2004), suggesting that the mostly white petals of this 10 

species may represent a loss of pigment.  However, we did not observe selection to 11 

reduce colour (not shown) or any of these volatiles, suggesting that in this current 12 

mixed population, colour is a stable trait.  13 

 14 

Natural selection on Penstemon digitalis scents 15 

There was natural selection to linalool, cis-β-ocimene, β-citronellol, cis-6-nonenal and 16 

the unknown floral alkene in the common garden (Figure 3.2).  These are common 17 

floral scents, and may experience direct pollinator-mediated selection in some 18 

systems.  For three of these volatiles, selection was independent of correlations with a 19 

strong predictor of fitness, flower number, suggesting direct selection on these 20 

volatiles.  However, when we included total flower number in our selection models, 21 

selection on two volatiles was close to zero, suggesting that selection on volatile 22 

production of these compounds was driven by correlations with flower number.  23 

Because selection for more flowers is common in wild populations of P. digitalis 24 

(Chapter 1), correlations with flower number may drive natural selection for increased 25 

production of these volatiles as well.  Additionally, none of these volatiles were 26 
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predictor compounds that distinguished the populations from each other (Table 3.2) 1 

suggesting that these compounds may play consistent role in all the populations.  2 

Electrophysiologically active compounds can show more variation and higher 3 

population differentiation than non-active ones in deceptive orchids (Mant et al., 4 

2005).  The activity of the different compounds is likely to effect any pollinator- or 5 

seed predator-mediated selection in P. digitalis.  However, unlike the orchid system, 6 

the pollinators present in the three wild populations are similar (personal observation).  7 

Thus, key compounds that are tied to basic functions may not vary but compounds not 8 

so strongly correlated to these other traits may be free to vary due to differential 9 

selection in the populations or to random processes such as genetic drift.  10 

 11 

Implications of natural selection on floral scents 12 

The finding of natural selection on floral scents leads to questions on how we interpret 13 

these results.  Like morphology, correlations among traits may constrain responses to 14 

selection (e.g., Caruso, 2004).  However, floral scents may act differently than other 15 

traits.  Changes in emission to just one compound can alter the entire scent of the plant 16 

(Raguso, 2008b), suggesting that selection on a single compound could lead to 17 

dramatically different scent bouquets, as perceived by pollinators and possibly 18 

antagonists.  Depending on whether pollinators discriminate against new phenotypes 19 

or not, this could constrain the evolution of scents by reducing pollinator visits to 20 

novel forms.  Pollinator discrimination could also accelerate population change if 21 

pollinator constancy functions as a mechanism of assortative mating.   22 

In addition to increasing our ability to detect population variation by growing 23 

plants in a common garden, we were able to increase our power to detect natural 24 

selection on scents by expanding the phenotypes available for selection to act on by 25 

including variation from three populations.  However, it is important to note that 26 
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natural selection is context dependent and scents under natural selection in the 1 

common garden may not be those that experience selection in the wild populations.   2 

 3 

Conclusions 4 

Natural selection is thought to have shaped the expression of scents in the angiosperms 5 

(and other contexts).  However, we are a long way from understanding how selection 6 

functions in current populations.  This study shows that there can be variation in floral 7 

scent over very short distances, even without obvious divergent selection pressures in 8 

the different populations.  Additionally, we could detect natural selection on scents.  9 

However, how these pressures play out in wild populations and who the agents of 10 

selection are, is largely unknown.  Furthermore, our data suggest that selection can act 11 

on single compounds.  But we know from empirical work that changes to single 12 

compounds in a blend can alter the perception of scent (Raguso, 2008b), making the 13 

evolution of scents within populations an interesting and open question.  14 
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CHAPTER 4 2 

Two ways to lose your seed herbivore? Consequences of flowering phenology for 3 

the evolution of latex in Lobelia siphilitica 4 

 5 
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Abstract 1 

Optimal defence theory predicts that plants which escape herbivory should reduce 2 

costly and unnecessary defences.  This prediction has been tested in plants that escape 3 

herbivory in space by growing in novel environments.  However, plants may also 4 

escape in time by exposing vulnerable tissues when herbivores are absent.  We 5 

examined whether delaying flowering, which allows escape from pre-dispersal seed 6 

herbivory in Lobelia siphilitica, affected the production of a latex defence.   We 7 

estimated phenotypic and genetic correlations among flowering phenology, latex 8 

production and four fitness correlates for L. siphilitica growing in the absence of seed 9 

herbivores.  Consistent with optimal defence theory, later flowering was 10 

phenotypically and genetically correlated with reduced latex.  In addition, delayed 11 

flowering, but not latex production, was negatively correlated with fitness, suggesting 12 

that escaping herbivory in time is costly.  Our results suggest that when herbivores 13 

attack reproductive tissues, changes in flowering phenology can also influence the 14 

evolution of herbivore defences. 15 

 16 

Introduction 17 

Although chemical defences allow plants to resist herbivores, these defences can vary 18 

between individuals, both within and among populations (e.g., Stamp, 2003).  Optimal 19 

defence theory suggests that this variation can be explained by the relative costs and 20 

benefits of defence: plants that can escape herbivory should invest less in costly 21 

defences and more in growth and reproduction, relative to plants that cannot escape 22 

attack (Feeny, 1976; McKey, 1979; Rhoades, 1979).  Spatial escape from herbivory 23 

has been extensively studied (e.g., Orians & Ward, 2010).  In contrast, variation in 24 

defence in plants that escape herbivory in time has received less attention, even though 25 

temporal escape may also be common (Elzinga et al., 2007).  For example, plants can 26 
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escape herbivory by outgrowing your herbivores (Allcock & Hik, 2004) or presenting 1 

vulnerable tissues such as young, expanding leaves (Kursar & Coley, 2003) and 2 

reproductive structures (Juenger et al., 2005; Atlan et al., 2010) when herbivores are 3 

absent.  4 

A plant’s reproductive structures may be particularly likely to escape herbivory 5 

in time for two reasons.  First, flowers, unlike many vegetative structures, are often 6 

present for only a portion of the plant’s adult life cycle.  Consequently, altering 7 

flowering phenology can allow plants to escape herbivory on reproductive structures, 8 

even if it means switching pollinators (e.g., Kessler et al., 2010).  In contrast, escape 9 

in time from herbivores that attack structures such as stems and roots may be more 10 

difficult due to the continuous exposure of those tissues.  Second, because damage to 11 

reproductive structures directly affects fitness, plants should be under particularly 12 

strong selection to either escape or resist this damage.  There can be strong selection 13 

against flowering when florivores or pre-dispersal seed herbivores are abundant 14 

(Schemske, 1984; Pilson, 2000; Parachnowitsch & Caruso, 2008), supporting the 15 

escape hypothesis.  However, floral tissues can also be highly defended (e.g., Strauss 16 

et al., 2004), supporting the resistance hypothesis.  If these alternatives are costly, than 17 

we would predict a correlation between flowering phenology and physical and/or 18 

chemical defences.  Specifically, plants that flower when herbivores are abundant 19 

should invest more heavily in defences than plants that flower when herbivores are 20 

rare.  However, the relationship between flowering phenology and defence has rarely 21 

been studied (but see Berenbaum et al., 1986; Juenger et al., 2005).  22 

We used the wildflower Lobelia siphilitica L. (Lobeliaceae) to test whether 23 

flowering phenology is correlated with herbivore defences.  Lobelia siphilitica is 24 

attacked by the specialist pre-dispersal seed herbivore Cleopmiarus hispidulus 25 

LeConte (Coleoptera: Curculionidae; Anderson, 1973) throughout much of its range in 26 
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eastern North America.  This herbivore attacks significantly more flowers on L. 1 

siphilitica plants that flower earlier (Figure 4.1), resulting in direct selection for later 2 

flowering (Parachnowitsch & Caruso, 2008).  Consequently, delayed flowering is a 3 

mechanism by which L. siphilitica can escape C. hispidulus herbivory.  Lobelia 4 

siphilitica also produces an alkaloid-rich latex exudate upon damage (Kesting et al., 5 

2009), which likely functions as a plant defence (Agrawal & Konno, 2009).  Latex can 6 

act as a physical defence by gumming insect mouth parts, in addition to containing 7 

defensive compounds (Agrawal & Konno, 2009).  Vegetative damage by other 8 

herbivores is generally low (Parachnowitsch, personal observation), suggesting that 9 

seed herbivores may be a strong selective force for L. siphilitica defence in addition to 10 

escape.  11 

We measured flowering phenology and latex production in greenhouse-grown 12 

L. siphilitica to test the predictions of optimal defence theory when plants escape 13 

herbivory in time.  Using a known family structure we estimated phenotypic  and 14 

genetic correlations between the number of days to flower and latex production, as 15 

well as the heritability for these traits.  We hypothesized that the number of days to 16 

flower and latex production would be negatively correlated because in the field late- 17 

flowering L. siphilitica escape most C. hispidulus damage (Parachnowitsch & Caruso, 18 

2008) and therefore should produce less latex than early-flowering plants.  In addition, 19 

we measured four fitness correlates to test whether delayed flowering and high latex 20 

production are costly in the absence of C. hispidulus, a key assumption of defence 21 

theories.   22 

23 
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 1 

3 

Figure 4.1.  Relationship between flowering phenology and pre-dispersal 

seed herbivore damage in Lobelia siphilitica from a 2004 field experiment.  

Each point represents a maternal mean of two to eight plants (N = 29) from 

which 23 families were drawn for this study.  Figure redrawn from 

Parachnowitsch & Caruso (2008).  Day refers to Julian date where January 

1 = 1. 

 



 

 87 

Materials and methods 1 

Study system 2 

Lobelia siphilitica is a short-lived, herbaceous perennial native to eastern North 3 

America.  It reproduces by a single racemose inflorescence, although some individuals 4 

produce additional lateral inflorescences.  Lobelia siphilitica is self-compatible but 5 

cannot autonomously self-fertilize, making pollinators essential for seed set (Johnston, 6 

1992).  In Ontario, Canada, plants flower from late July into September and fruits 7 

ripen from September to early October (Parachnowitsch & Caruso, 2008).  Although 8 

L. siphilitica is gynodioecious (Dudle et al., 2001), female plants are rare in the 9 

northern part of its range (Caruso & Case, 2007).   10 

 11 

Study design 12 

The seeds used for our study were offspring of L. siphilitica included in a field 13 

experiment designed to estimate the strength of phenotypic selection on flowering 14 

phenology and identify the agents of this selection (Parachnowitsch & Caruso, 2008).  15 

To generate plants for this field experiment, we collected open-pollinated seeds 16 

(hereafter grand-maternal families) from an L. siphilitica population near Guelph, 17 

Ontario, Canada.  The seeds were grown to flowering in the greenhouse and then 18 

returned to their source population, where they were also open-pollinated.  We 19 

selected 46 of these open-pollinated maternal families, two from each of 23 grand- 20 

maternal families, for the experiment described in this paper.  Given this design, 21 

offspring of each maternal family  were half- or full-siblings.  The offspring within 22 

each grand-maternal family were cousins.  23 

We rinsed seeds in a distilled water, bleach and ethanol solution (16:1:1) to 24 

break dormancy (Dudle et al., 2001).  All seeds from each fruit were germinated on 25 

wet filter paper in Petri dishes and the day of first germination for each dish was 26 
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recorded.  To ensure that we had enough seedlings, we germinated seeds from two 1 

fruits per maternal family.  If both dishes had successful germination, we chose the 2 

fruit that began germinating earlier.  However, both fruits were used from two of the 3 

maternal families to ensure that we had enough seedlings.  We transplanted 24 4 

seedlings per maternal family to 72-well plug trays and replaced any dead seedlings 5 

after four days.  Families were randomly assigned to a position within trays and trays 6 

were rotated within the greenhouse weekly.  Seedlings were grown for six weeks 7 

before transplanting 12 plants per maternal family to 10 cm diameter pots filled with 8 

greenhouse potting soil (Promix®).  We randomly assigned plants to trays and bottom- 9 

watered to maintain flooded soil conditions.  Plants were treated for common 10 

greenhouse pests (thrips, whiteflies and fungi) and fertilised as necessary.   11 

 12 

Phenotypic measurements 13 

To determine whether herbivore escape and defence were correlated in L. siphilitica, 14 

we measured flowering time and latex production.  We censused plants daily to 15 

determine the day of first flower.  To estimate latex production, we clipped two of the 16 

first 5-10 flowers per plant with scissors and collected the latex exudate on pre-dried 17 

and pre-weighed filter paper (Whatman’s No. 1; as in Agrawal et al., 2008).  We 18 

weighed the latex-soaked filter paper both prior to and after drying at 60°C for at least 19 

24 h to estimate wet and dry latex mass, respectively.  Wet and dry latex mass were 20 

strongly positively correlated in L. siphilitica (r = 0.735, 95% CI = 0.691 – 0.773, N = 21 

478, P < 0.0001), and therefore we only present dry mass.  Because flowers within a 22 

plant are not independent of each other, we used the mean latex exuded by the two 23 

flowers collected from each plant for all of our analyses.  24 

In addition, we non-destructively estimated three traits that are correlates of 25 

female fitness in L. siphilitica: flower size, inflorescence height, and rosette number. 26 
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Lobelia siphilitica plants with larger flowers produce more seeds (Caruso & 1 

Yakobowski, 2008; Parachnowitsch & Caruso, 2008).  We measured petal width, petal 2 

length and corolla tube width (as in Parachnowitsch & Caruso, 2008) for at least five 3 

flowers per plant.  We then took the geometric mean of these three measurements (e.g. 4 

Williams & Conner, 2001) to get an overall estimate of flower size.  Height is also 5 

positively correlated with total seed set in L. siphilitica (Parachnowitsch & Caruso, 6 

2008).  When all plants had finished flowering, we measured inflorescence height and 7 

the number of rosettes produced.  Because rosettes can overwinter and produce a 8 

flowering stalk in the following year (Beaudoin Yetter, 1989), they estimate the 9 

potential for asexual reproduction in L. siphilitica.   10 

When all plants had finished flowering, we destructively estimated final 11 

biomass as an additional fitness correlate.  Unlike the field, in the greenhouse, the 12 

flowering season was not ended by frost, therefore we  likely overestimate the fitness 13 

of late-flowering plants by allowing them to fully flower.   We clipped the 14 

inflorescence and any rosettes and dried them at 45 °C for 24 h to measure 15 

aboveground biomass.  To estimate belowground biomass, we washed, dried, and 16 

weighed the roots of a subset of the plants (N = 90) in the study.  Initially, mass was 17 

estimated separately for the roots that were contained in the pot and those that 18 

emerged out of the pot into the water-filled tray.  Because the mass of contained and 19 

emerged roots was positively correlated (r = 0.411, df = 89, P < 0.0001), we estimated 20 

belowground biomass for the remaining plants based on the mass of their emerged 21 

roots (belowground root biomass = 2.79 + 1.88 × emerged root mass + emerged root 22 

mass).  We estimated final biomass as the sum of the aboveground and estimated 23 

belowground biomass for each plant.  This estimate of final biomass was strongly 24 

positively correlated with the sum of aboveground biomass and emerged root biomass 25 

(r = 0.976, df = 89, P < 0.0001).  26 
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 1 

Statistical analysis 2 

Our final data set (N = 483 plants) was unbalanced, with 7-12 offspring per dam.  We 3 

eliminated 16 female plants plus one unsexed plant from our data set because female 4 

L. siphilitica can differ phenotypically from hermaphrodites (Caruso et al., 2003).  In 5 

addition, 48 plants died prior to the end of the study and four plants were excluded 6 

because of missing flowering time data.  Finally, some traits were not measured on all 7 

plants and thus had an N < 483 (see Table 1).  All analyses were done using either 8 

SAS (version 9.1) or SPSS (version 18).   9 

Prior to analyzing our data, we used ANOVA to confirm that differences in 10 

flowering time between grand-maternal families or nested maternal families were not 11 

due to differences in germination time.  Germination time did not differ significantly 12 

among grand-maternal families (F22,86 = 2.10, P = 0.09) or nested maternal families 13 

(F21,86 = 1.94, P = 0.11).  Consequently, we did not include germination time as a 14 

covariate in any of our analyses.  15 

We also used ANOVA to test whether there was a genetic basis to variation in 16 

flowering phenology, latex, and our four fitness correlates (flower size, inflorescence 17 

height, rosette number, and total biomass).  Our model included terms for grand- 18 

maternal family and maternal family nested within grand-maternal family.  In 19 

addition, we included a term for planting tray to control for any effect of location in 20 

the greenhouse on phenotype.  If the term for grand-maternal family and/or maternal 21 

family was significant, then we concluded that there was a genetic basis to variation in 22 

that trait.   23 

We estimated phenotypic correlations  among flowering phenology, latex and 24 

four fitness correlates (flower size, inflorescence height, rosette number, and biomass) 25 

as the Pearson correlation coefficient.  To test whether there was a genetic basis to 26 
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these phenotypic correlations, we estimated the genetic correlation as the Pearson 1 

correlation coefficient among maternal family means.  Family mean correlations can 2 

be biased estimates of the true genetic correlation (Lynch & Walsh 1998).  However, 3 

for our data set family mean correlations were quite similar to genetic correlations 4 

estimated using restricted maximum likelihood approaches (data not shown), 5 

suggesting that our conclusions are robust to the estimation technique used.  We 6 

maintained an experiment-wide error rate of α = 0.05 for each matrix of correlations 7 

using the sequential Bonferroni correction by the Dunn-Šidák method (Sokal & Rohlf, 8 

1995).  We expect day of first flower and latex mass to be negatively phenotypically 9 

and/or genetically correlated.  If herbivore escape or defence is costly, then also we 10 

expect these traits to be negatively phenotypically and/or genetically correlated with 11 

one or more fitness correlates in the absence of seed herbivory.   12 

Four features of our design could have inflated our estimates of genetic 13 

variation and genetic correlations.  First, because we have maternal rather than 14 

paternal families, our estimates of these genetic parameters include not only additive 15 

genetic variance, but also common maternal effects.  If common maternal effects are 16 

substantial, then our estimates will be inflated relative to estimates of genetic 17 

parameters calculated from paternal family designs (reviewed in Lynch & Walsh, 18 

1998).  Second, because we germinated seeds from open-pollinated plants, our 19 

families consist of an unknown mixture of full- and half-siblings.  Consequently, our 20 

estimates of genetic variation and genetic correlations may include dominance genetic 21 

variance in addition to additive genetic variance (reviewed in Lynch & Walsh, 1998).  22 

Third, our open-pollinated families could have included offspring produced through 23 

geitonogamous self-pollination.  Such inbreeding is expected to decrease the standing 24 

genetic variation within populations (e.g., Kristensen et al., 2005).  Fourth, we 25 

measured genetic variation and genetic correlations for plants grown in a greenhouse 26 
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environment.  Greenhouse estimates of genetic variation for plant functional (Geber & 1 

Griffen, 2003) and floral (Conner et al., 2003).traits are generally higher than 2 

greenhouse estimates.  However, greenhouse and field estimates of genetic 3 

correlations are quite concordant, at least relative to estimates of genetic variation 4 

(Conner et al., 2003).  5 

 6 

Results 7 

There was considerable phenotypic (Table 4.1; Figure 4.2a) and genetic (Table 4.2; 8 

Figure 4.2b) variation in flowering phenology, latex production, and fitness correlates 9 

of L. siphilitica.  Day of first flower and dry latex mass varied significantly among 10 

both grand-maternal families and maternal families.  In addition, we detected effects 11 

of grand-maternal family and maternal family on three of the four fitness correlates 12 

(flower size, inflorescence height, and biomass).  In contrast, rosette number varied 13 

significantly among maternal families, but not among grand-maternal families.   14 

 15 

 16 
Table 4.1 Summary statistics for flowering phenology, latex defence and four fitness 17 

correlates of greenhouse-grown Lobelia siphilitica.  18 

Phenotypic traits Mean (SD) Range N 

Days to first flower 123 (11) 101-153 483 

Dry latex mass (mg) 0.32 (0.33) 0-2.25 478 

Flower size (mm) 12.00 (0.87) 9.89-14.91 483 

Inflorescence height (cm) 61 (12) 28-106 477 

Rosette number 10 (5) 0-25 477 

Total biomass (g) 16.76 (5.49) 5.40-36.17 397 
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 1 

Table 4.2 Effects of grand-maternal family, maternal family and planting tray on 2 

variation in flowering phenology, latex defence and four fitness correlates of 3 

greenhouse-grown Lobelia siphilitica.  4 

* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. 5 

 6 

Both genetic and phenotypic correlations suggest that flowering time and latex 7 

production are correlated in L. siphilitica, as predicted by optimal defence theory 8 

(Table 3; Figs. 2a, b).  Lobelia siphilitica plants and families that flowered later had 9 

significantly lower latex mass.   10 
 11 

 12 

Phenotypic traits Grand-maternal 

family  

Maternal family Planting tray  

Days to first 

flower 

F22,454 = 4.15**** F23,454 = 4.47**** F93,454 = 1.38* 

Dry latex mass  F22,451 = 1.88* F23,451 = 2.61**** F93,451 = 1.36* 

Flower size F22,454 = 2.74**** F23,454 =2.00** F93,454 = 1.13 

Inflorescence 

height  

F22,450 = 2.83**** F23,450 = 2.34*** F93,450 = 2.21**** 

Rosette number F22,450 = 1.04 F23,450 = 21.73* F93,450 = 1.24 

Total biomass  F22,372 = 2.49*** F23,372 = 3.45**** F93,372 = 1.63** 
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 2 

 4 

Plants that flowered earlier produced larger flowers, taller inflorescences and 5 

accumulated a greater final biomass than L. siphilitica that flowered later (Table 4.3).  6 

In contrast, day of first flower was not phenotypically correlated with rosette number.  7 

Of the three fitness correlates that were phenotypically correlated with day of first 8 

flower, final biomass was significantly genetically correlated after Bonferroni 9 

correction.  10 

In contrast, latex mass was not significantly negatively correlated with any of 11 

the four fitness correlates that we measured (Table 4.3).  Instead, plants with greater 12 

latex mass produced significantly taller inflorescences and greater biomass.  The 13 

correlation between inflorescence length and latex mass was independent of positive 14 

Figure 4.2 Relationship between flowering phenology and latex defence in 

greenhouse-grown Lobelia siphilitica.  (a) Phenotypic correlation between days 

to first flower and dry latex mass (N = 478).  (b) Grandmaternal family mean 

correlation between days to first flower and dry latex mass (N = 23). 
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correlations between these traits and day of first flower (partial correlation: 0.003, P = 1 

0.009, N = 472), however the relationship between biomass and latex was not (0.0007, 2 

P = 0.8, N = 392) .  Neither correlation between latex mass and the two fitness 3 

correlates (inflorescence height and biomass) had a significant genetic basis.   4 
 5 

Table 4.3  Phenotypic and genetic correlations for flowering phenology, latex 6 

defence, and four fitness correlates of greenhouse-grown Lobelia siphilitica.  7 

Phenotypic correlations are above and genetic correlations are below the diagonal.  N 8 

= 392-483 for phenotypic correlations.  N = 46 for genetic correlations.  Phenotypic 9 

and genetic correlations in bold are significantly (P < 0.05) different from zero after 10 

Bonferroni correction by the Dunn-Sidak method.  Genetic correlations in italics were 11 

significant prior to but not after Bonferroni correction.   12 

13 

 Days to 

first 

flower  

Dry latex 

mass 

Flower 

size 

Inflorescence 

height 

Rosette 

number 

Total 

biomass 

DF - -0.31 -0.17 -0.29 -0.07 -0.50 

LM -0.56 - 0.11  0.20  -0.03  0.16  

FS -0.31 0.19 - 0.17  -0.04  0.10  

IH -0.36 0.22 0.31 - -0.06 0.35  

RN -0.09 0.01 0.15 -0.13 - 0.26  

TB -0.54 0.40 0.25 0.41 0.31 - 
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Discussion 

As we predicted based on optimal defence theory (Rhoades, 1979), L. siphilitica plants 

that flowered later and therefore would escape pre-dispersal seed herbivory in the field 

(Parachnowitsch & Caruso, 2008) also produced less latex defence.  To our 

knowledge, this is the first study to detect a significant, genetically-based negative 

correlation between herbivore escape in time and defence.  Our results contrast with 

those of Juenger et al. (2005) and Berenbaum et al. (1986), who found that plants that 

escaped herbivory in time produced more, rather than less, chemical defence against 

these herbivores.  One potential explanation for why a negative correlation between 

herbivore escape and defence is evident in L. siphilitica, but not in Ipomopsis 

aggregata (Juenger et al. 2005) or Pastinaca sativa (Berenbaum et al. 1986) is that L. 

siphilitica flowers later in the season.  In fall-flowering species such as L. siphilitica, 

any selection to delay flowering to escape herbivores might leave inadequate time to 

mature seeds prior to the onset of winter.  Thus the biotic and seasonal selection 

pressures may oppose one another in L. siphilitica.  This could result in strong 

selection for resistance to herbivory among early-flowering L. siphilitica plants, a 

hypothesis that could be tested by measuring phenotypic selection on latex production 

in the field.    

Escaping herbivory through delayed flowering could be costly for L. siphilitica 

plants.  Plants that flowered later produced smaller flowers, shorter inflorescences and 

accumulated a lower final biomass than L. siphilitica that flowered earlier (Table 3).   

Lobelia siphilica plants may need to acquire a certain size before they will flower, 

therefore biomass or resource acquisition may drive flowering time.  The reduced 

biomass of the later flowering plants suggest that this is possible.  However, our plants 

were harvested after flowering was completed, suggesting that whether it is biomass or 

some other mechanism determining flowering time, those plants which flower later are 
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unable to obtain the same fitness as early flowering plants in a herbivore free 

environment.   Escape in time, particularly from herbivores that attack reproductive 

tissue, has been documented in other species (e.g., English-Loeb & Karban, 1992; 

Bishop & Schemske, 1998), however, this is the first study to demonstrate that such 

escape can be costly.  Moreover, our estimate of the cost of herbivore escape in time 

for L. siphilitica is likely an underestimate because it only reflects resource-based 

trade-offs (“direct costs”; Strauss et al., 2002).  Costs can also arise from interactions 

with the biotic or abiotic environment (“ecological costs”; Strauss et al., 2002).  In L. 

siphilitica, we hypothesize that delayed flowering would also incur such ecological 

costs because in this fall-flowering species, plants that flower later might not have 

adequate time to mature seeds before the onset of winter.  More generally, our results 

suggest that in addition to the direct and ecological costs of defence traits such as 

phytochemicals (Strauss, 1997), traits that allow plants to escape herbivory in time 

may also carry costs.   Thus, plant phenology maybe an important factor to consider 

when examining the correlated evolution of alternative defence strategies ("defence 

syndromes"; Agrawal & Fishbein, 2006). 

In contrast to herbivore escape, we found no evidence that latex production 

was costly in L. siphilitica.  Instead, L. siphilitica with high latex production had taller 

inflorescences and a larger final biomass than plants with low latex production (Table 

3).  However, like most studies of costs of herbivore resistance (reviewed in Strauss et 

al., 2002), we tested whether these costs were expressed through female fitness 

correlates.  It is possible that costs of latex production in L. siphilitica are expressed 

through pollen production, a male fitness correlate.  Both L. siphilitica pollen (Dudle, 

1999) and the alkaloids in Lobelia spp. latex (Kesting et al., 2009) are rich in nitrogen.  

In addition female L. siphilitica plants, which by definition do not incur male fitness 

costs, had 64% higher latex production than hermaphrodites (unpaired t-test assuming 
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unequal variances; t = 2.413, df = 15, P = 0.029), as expected if they allocate nitrogen 

not used for pollen production to herbivore resistance.   

Although latex production has evolved multiple times in the angiosperms and 

is a key innovation in some clades, little is known about its evolutionary ecology 

(Agrawal & Konno, 2009).  We found that there was significant genetic variation for 

latex production of L. siphilitica (Table 2).  The only other study (Agrawal, 2005) that 

estimated quantitative genetic parameters for latex production also detected significant 

genetic variation for this trait, suggesting that it could evolve in response to selection 

by herbivores.  However, Agrawal (2005) found that herbivore-mediated selection for 

increased latex production was weak, even though latex has no known functions other 

than as a defence against herbivory (Agrawal & Konno, 2009).  Measuring selection 

on latex production in species such as L. siphilitica could indicate whether this weak 

relationship between latex and fitness is common in plant populations.       

 Our studies on L. siphilitica suggest that changes in flowering phenology can 

not only affect interactions with herbivores, but may also alter natural selection on 

chemical defences.  Specifically, any herbivore-mediated selection for later flowering 

in L. siphilitica should result in indirect selection for reduced latex production.  

Flowering phenology has often been considered only in terms of its ecological and 

evolutionary effects on interactions for pollinators (Elzinga et al., 2007).  However, 

our data suggest that a broader view is necessary to understand the full implications of 

changes to flowering time. 
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APPENDIX 1 

Phenotypic variation and selection gradients in Penstemon digitalis 
 

Table A1.1 Phenotypic variation for six traits, pre-dispersal seed predator damage, 

and two measures of female fitness across four populations of Penstemon digitalis in 

three years.  Population abbreviations and locations found in Table 1.1.  There was a 

significant population by year interaction for all traits, except for inflorescence length 

that varied across populations and years but had no interaction.  

 Populations 

Phenotypic traits BB NR TH WF 

 2006 

  N = 57  N = 55 

Flower size  - 7.36 ± 0.08 - 7.06 ± 0.08 

Flower colour - 22 ± 1.2 - 17 ± 1.5 

Number of flowers - 48 ± 4 - 29 ± 2 

Inflorescence length - 19.5 ± 1 - 15 ± 1 

Aborted flowers - 23 ± 2 - 16 ± 1 

Plant height - 78.5 ± 2 - 72.5 ± 1.5 

Damage - 2.14 ± 0.31 - 2.13 ± 0.27 

Fruit set - 0.53 ± 0.02 - 0.42 ± 0.03 

Female fitness - 113.51 ± 11.58 - 53.43 ± 5.36 

 2007 

 N = 65 N = 83 N = 85 N = 48 

Flower size 6.69 ± 0.05 6.98 ± 0.05 8.02 ± 0.08 6.35 ± 0.08 

Flower colour 12 ± 1  20 ± 1 18 ± 1 19 ± 2 

Number of flowers 31 ± 2 32 ± 2 32 ± 2 28 ± 3 

Inflorescence length 10.5 ± 0.5 13 ± 1 14.5 ± 0.5 10.5 ± 1 

Aborted flowers 9 ± 1 13 ± 1 8 ± 1 14 ± 1 
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Plant height 64 ± 1.5 68.5 ± 1.5 76.5 ± 1.5 72 ± 2.5 

Damage 0.46 ± 0.12 2.12 ± 0.30 0.40 ± 0.08 1.63 ± 0.29 

Fruit set 0.72 ± 0.02 0.61 ± 0.21 0.73 ± 0.16 0.47 ± 0.03 

Female fitness 92.16 ± 7.15 82.33 ± 4.85 100.60 ± 7.06 61.35 ± 8.12 

 2008 

  N = 88 N = 145 N = 73 

Flower size - 6.96 ± 0.05 7.84 ± 0.04 6.70 ± 0.05 

Flower colour - 24 ± 1 21 ± 1 14 ± 1 

Number of flowers - 33 ± 2 28 ± 1 24 ± 1 

Inflorescence length - 16 ± 0.5 14 ± 0.5 11 ± 0.5 

Aborted flowers - 19 ± 1 9 ± 0.5 12 ± 1 

Plant height - 68 ± 1 77.5 ± 1 68 ± 1.5 

Damage - 2.68 ± 0.34 0  3.07 ± 0.46 

Fruit set - 0.41 ± 0.02 0.67 ± 0.01 0.50 ± 0.02 

Female fitness - 61.76 ± 5.39 86.90 ± 3.75 50.48 ± 3.93 

 

Notes: Flower size is the geometric mean of six floral dimensions, colour was 

obtained by multiplying the number of lines by the intensity, inflorescence length and 

height are in cm, damage is the number of fruits with pre-dispersal seed predator 

damage, and female fitness is the number of fruits multiplied by fruit size (accounting 

for damaged fruits) see text for further details.
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Table A1.2 Selection gradients (± 1 SE) in four populations of Penstemon digitalis for 

three consecutive years.  There was significant population by year variation in natural 

selection on inflorescence length (P = 0.006), the number of flowers produced (P < 

0.0001) and aborted (P < 0.0001).  Bold values represent significant selection 

gradients within a particular population and year (* P < 0.05; ‡	
  P	
  <	
  0.10),	
  sample	
  

sizes	
  follow	
  Table	
  A1.1.  

 
 

 Populations 

Phenotypic traits BB NR TH WF 

Flower size  - 0.02 ± 0.09 - 0.006 ± 0.01 

 0.01 ± 0.03 0.03 ± 0.02 -0.001 ± 0.02 -0.02 ± 0.02 

 - -0.02 ± 0.02 0.05 ± 0.01* -0.03 ± 0.02 

Flower colour - 0.03 ± 0.08 - -0.02 ± 0.01 

 -0.04 ± 0.02‡ 0.02 ± 0.02 -0.005 ± 0.01 -0.02 ± 0.02 

 - 0.01 ± 0.02 -0.008 ± 0.013 0.03 ± 0.02 

Number of flowers - 2.5 ± 0.21* - 1.3 ± 0.03* 
 1.4 ± 0.04* 1.3 ± 0.03* 0.08 ± 0.02* 1.5 ± 0.03* 

 - 1.5 ± 0.03* 1.1 ± 0.03* 1.0 ± 0.03* 
Inflorescence length - 0.33 ± 0.15* - 0.03 ± 0.02‡ 

 -0.007 ± 0.04 0.01 ± 0.02 0.01 ± 0.002 -0.04 ± 0.02‡ 

 - 0.008 ± 0.03 0.02 ± 0.02 -0.000 ± 0.03 

Aborted flowers - -1.4 ± 0.2* - -0.83 ± 0.02* 
 -0.62 ± 0.03* -0.67 ± 0.03* -0.28 ± 0.02* -0.74 ± 0.02* 

 - -0.75 ± 0.03* -0.45 ± 0.02* -0.49 ± 0.03* 
Plant height - 0.030 ± 0.13 - -0.005 ± 0.02 

 0.02 ± 0.04 -0.007 ± 0.03 0.02 ± 0.17 0.07 ± 0.03 

 - -0.05 ± 0.03‡ 0.01 ± 0.02 -0.01 ± 0.02 
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APPENDIX 2 

Summary of selection survey data and comparisons 

 

Table A2.1. Number of estimates of variation in selection across multiple levels time 

or space.  Episodes refer to selection across life history stages vs. years.  "Sites" refers 

to multiple populations of a given species without regard to habitat differences 

whereas "habitat" refers to populations from locations that were specifically chosen by 

the authors based on some abiotic or biotic difference. 

 Selection differentials Selection gradients 

Factor Number of 

estimates 

Number of 

studies 

Number of 

estimates 

Number of 

studies 

Time 57 23 73 29 

   

Episode 

31 15 41 18 

   Year 26 12 32 15 

Space 69 28 92 35 

     Site 31 13 38 16 

Habitat 38 15 54 19 
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Table A2.2 Mean standard deviations and statistics from mixed model ANOVAS 

comparing temporal and spatial variation in selection. 

 Differential  Gradient 

Comparison  Pattern of selection 

Episode versus year 0.132 vs 0.233 

F1,33 = 2.78, P = 0.10 

0.141 vs 0.264 

F1,43 = 1.57, P = 0.22 

Site versus habitat 0.316 vs 0.174 

F1,41 = 0.98, P = 0.33 

0.283 vs 0.203 

F1,57 = 0.46, P = 0.50 

Space versus time 0.237 vs 0.179 

F1,84 = 1.10, P = 0.30 

0.236 vs 0.239 

F1,112 = 0.93, P = 0.34 

 Strength of selection 

Episode versus year 0.114 vs 0.205 

F1,33 = 1.35, P = 0.25 

0.112 vs 0.311 

F1,43 = 1.23, P = 0.27 

Site versus habitat 0.258 vs 0.136 

F1,41 = 0.80, P = 0.38 

0.204 vs 0.167 

F1,57 = 0.21, P = 0.65 

Space versus time 0.191 vs 0.155 

F1,84 = 0.89, P = 0.35 

0.201 vs 0.199 

F1,112 = 0.03, P = 0.87 
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