Itemwise Missing at Random Modeling for Incomplete Multivariate Data ${ }^{1}$

Mauricio Sadinle

Duke University and NISS

Incomplete Multivariate Data

Gender	Age	Income	\ldots
F	25	60,000	\ldots
M	$?$	$?$	\ldots
$?$	51	$?$	\ldots
F	$?$	150,300	
\ldots	\ldots	\ldots	\ldots

What This Talk is About

- Most common approach to handle missing data: assume the missing data are missing at random (MAR)
- We developed an alternative: assume the missing data are itemwise missing at random (IMAR)

What This Talk is About

- Most common approach to handle missing data: assume the missing data are missing at random (MAR)
- We developed an alternative: assume the missing data are itemwise missing at random (IMAR)

Outline

Inference with Missing Data

Itemwise Missing at Random

Take-Home Message

Example

- X : Would you lend me $\$ 1,000$?
- Want to estimate $\mathbb{P}(X=$ yes $)$

$$
\begin{aligned}
\mathbb{P}(X=\text { yes })= & \mathbb{P}(X=\text { yes } \mid \text { response }) \mathbb{P}(\text { response }) \\
& +\mathbb{P}(X=\text { yes } \mid \text { non-response }) \mathbb{P}(\text { non-response })
\end{aligned}
$$

- Most likely $\mathbb{P}(X=$ yes $) \ll \mathbb{P}(X=$ yes \mid response $)$

Inference impossible without extra, usually untestable, assumptions on how missingness arises

Example

- X : Would you lend me $\$ 1,000$?
- Want to estimate $\mathbb{P}(X=$ yes $)$

$$
\begin{aligned}
\mathbb{P}(X=\text { yes })= & \mathbb{P}(X=\text { yes } \mid \text { response }) \mathbb{P}(\text { response }) \\
& +\mathbb{P}(X=\text { yes } \mid \text { non-response }) \mathbb{P}(\text { non-response })
\end{aligned}
$$

- Most likely $\mathbb{P}(X=$ yes $) \ll \mathbb{P}(X=$ yes \mid response $)$

Inference impossible without extra, usually untestable, assumptions on how missingness arises

Example

- X : Would you lend me $\$ 1,000$?
- Want to estimate $\mathbb{P}(X=$ yes $)$

$$
\begin{aligned}
\mathbb{P}(X=\text { yes })= & \mathbb{P}(X=\text { yes } \mid \text { response }) \mathbb{P}(\text { response }) \\
& +\mathbb{P}(X=\text { yes } \mid \text { non-response }) \mathbb{P}(\text { non-response })
\end{aligned}
$$

- Most likely $\mathbb{P}(X=$ yes $) \ll \mathbb{P}(X=$ yes \mid response $)$

Example

- X: Would you lend me $\$ 1,000$?
- Want to estimate $\mathbb{P}(X=$ yes $)$

$$
\begin{aligned}
\mathbb{P}(X=\text { yes })= & \mathbb{P}(X=\text { yes } \mid \text { response }) \mathbb{P}(\text { response }) \\
& +\mathbb{P}(X=\text { yes } \mid \text { non-response }) \mathbb{P}(\text { non-response })
\end{aligned}
$$

- Most likely $\mathbb{P}(X=$ yes $) \ll \mathbb{P}(X=$ yes \mid response $)$

Inference impossible without extra, usually untestable, assumptions on how missingness arises

Notation

Gender	Age	Income	$\boldsymbol{M}_{\text {Gender }}$	$\boldsymbol{M}_{\text {Age }}$	$\boldsymbol{M}_{\text {Income }}$	\ldots
F	25	60,000	0	0	0	\ldots
M	$?$	$?$	0	1	1	\ldots
$?$	51	$?$	1	0	1	\ldots
F	$?$	150,300	0	1	0	\ldots
\ldots						

ln general

- Study variables: $\mathrm{X}=\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{X}$
- Missingness indicators: $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right) \in\{0,1\}^{p}$
- Missingness mechanism: $\mathbb{P}(\mathbf{M} \mid \mathbf{X})$

Notation

Gender	Age	Income	$\boldsymbol{M}_{\text {Gender }}$	$\boldsymbol{M}_{\text {Age }}$	$\boldsymbol{M}_{\text {Income }}$	\ldots
F	25	60,000	0	0	0	\ldots
M	$?$	$?$	0	1	1	\ldots
$?$	51	$?$	1	0	1	\ldots
F	$?$	150,300	0	1	0	\ldots
\ldots						

In general

- Study variables: $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{X}$
- Missingness indicators: $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right) \in\{0,1\}^{p}$
- Missingness mechanism: $\mathbb{P}(\mathbf{M} \mid \mathbf{X})$

Notation

Gender	Age	Income	$\boldsymbol{M}_{\text {Gender }}$	$\boldsymbol{M}_{\text {Age }}$	$\boldsymbol{M}_{\text {Income }}$	\ldots
F	25	60,000	0	0	0	\ldots
M	$?$	$?$	0	1	1	\ldots
$?$	51	$?$	1	0	1	\ldots
F	$?$	150,300	0	1	0	\ldots
\ldots						

In general

- Study variables: $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{X}$
- Missingness indicators: $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right) \in\{0,1\}^{p}$
- Missingness mechanism: $\mathbb{P}(\mathbf{M} \mid \mathbf{X})$

Notation

Gender	Age	Income	$\boldsymbol{M}_{\text {Gender }}$	$\boldsymbol{M}_{\text {Age }}$	$\boldsymbol{M}_{\text {Income }}$	\ldots
F	25	60,000	0	0	0	\ldots
M	$?$	$?$	0	1	1	\ldots
$?$	51	$?$	1	0	1	\ldots
F	$?$	150,300	0	1	0	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	

In general

- Study variables: $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{X}$
- Missingness indicators: $\mathbf{M}=\left(M_{1}, \ldots, M_{p}\right) \in\{0,1\}^{p}$
- Missingness mechanism: $\mathbb{P}(\mathbf{M} \mid \mathbf{X})$

Notation

Given $\mathbf{M}=\mathbf{m}$

- $\mathbf{X}_{\mathbf{m}}$: missing values (often written as $\mathbf{X}_{\text {mis }}$)
- $\mathbf{X}_{\bar{m}}$: observed values (often written as $\mathbf{X}_{o b s}$)

Example:

- $\mathbf{X}=\left(X_{1}, x_{2}, x_{3}\right)$
- If $\mathbf{m}=(1,0,1), \mathbf{X}_{\mathbf{m}}=\left(X_{1}, X_{3}\right)$, and $\mathbf{X}_{\overline{\mathbf{m}}}=X_{2}$

Notation

Given $\mathbf{M}=\mathbf{m}$

- $\mathbf{X}_{\mathbf{m}}$: missing values (often written as $\mathbf{X}_{\text {mis }}$)
- $\mathbf{X}_{\overline{\mathbf{m}}}$: observed values (often written as $\mathbf{X}_{o b s}$)

Example:

- $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)$
- If $\mathbf{m}=(1,0,1), \mathbf{X}_{\mathbf{m}}=\left(X_{1}, X_{3}\right)$, and $\mathbf{X}_{\bar{m}}=X_{2}$

Notation

Given $\mathbf{M}=\mathbf{m}$

- $\mathbf{X}_{\mathbf{m}}$: missing values (often written as $\mathbf{X}_{\text {mis }}$)
- $\mathbf{X}_{\overline{\mathrm{m}}}$: observed values (often written as $\mathbf{X}_{\text {obs }}$)

Example:

- $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)$
- If $\mathbf{m}=(1,0,1), \mathbf{X}_{\mathbf{m}}=\left(X_{1}, X_{3}\right)$, and $\mathbf{X}_{\overline{\mathbf{m}}}=X_{2}$

Missing at Random Assumption

After Rubin (1976):

- Missing at random:

$$
\mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x})=\mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}\right)
$$

- Missing completely at random:

$$
\mathbb{P}\left(\mathbb{M}=\mathrm{m}^{\prime} \mathbb{X}=\mathrm{x}\right)=\mathbb{P}(\mathrm{M}=\mathrm{m})
$$

Missing at Random Assumption

After Rubin (1976):

- Missing at random:

$$
\mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x})=\mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}\right)
$$

- Missing completely at random:

$$
\mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x})=\mathbb{P}(\mathbf{M}=\mathbf{m})
$$

Missing at Random Assumption

Under MAR

$$
\begin{aligned}
\int \mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x}) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} & =\int \mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\bar{m}}\right) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} \\
& =\mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}\right) \int f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}}
\end{aligned}
$$

\Rightarrow we can "ignore" the missingness mechanism

$$
\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}=\mathbf{x}\right)=\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}_{-i}=\mathbf{x}_{-i}\right)
$$

Missing at Random Assumption

Under MAR

$$
\begin{aligned}
\int \mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x}) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} & =\int \mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\bar{m}}\right) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} \\
& =\mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}\right) \int f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}}
\end{aligned}
$$

\Rightarrow we can "ignore" the missingness mechanism

$$
\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}=\mathbf{x}\right)=\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}_{-i}=\mathbf{x}_{-i}\right)
$$

Missing at Random Assumption

Under MAR

$$
\begin{aligned}
\int \mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x}) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} & =\int \mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\bar{m}}\right) f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}} \\
& =\mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\bar{m}}\right) \int f(\mathbf{X}=\mathbf{x}) d \mathbf{x}_{\mathbf{m}}
\end{aligned}
$$

\Rightarrow we can "ignore" the missingness mechanism

$$
\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}=\mathbf{x}\right)=\mathbb{P}\left(M_{i}=1 \mid \mathbf{X}_{-i}=\mathbf{x}_{-i}\right)
$$

Missingness of an item cannot depend on the value of the item

Missing at Random Example

Under MAR

- $\mathbb{P}\left(M_{1}=1, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=c$
$\Rightarrow \mathbb{P}\left(M_{1}=0, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=u\left(x_{1}\right)$
- $\mathbb{P}\left(M_{1}=1, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=v\left(x_{2}\right)$
$\Rightarrow \mathbb{P}\left(M_{1}=0, M_{2}=0^{\prime} X_{1}=x_{1}, X_{2}=x_{2}\right)=1-c-u\left(x_{1}\right)-v\left(x_{2}\right)$

Missing at Random Example

Under MAR

- $\mathbb{P}\left(M_{1}=1, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=c$
- $\mathbb{P}\left(M_{1}=0, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=u\left(x_{1}\right)$
- $\mathbb{P}\left(M_{1}=1, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=v\left(x_{2}\right)$
- $\mathbb{P}\left(M_{1}=0, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=1-c-u\left(x_{1}\right)-v\left(x_{2}\right)$

Missing at Random Example

Under MAR

- $\mathbb{P}\left(M_{1}=1, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=c$
- $\mathbb{P}\left(M_{1}=0, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=u\left(x_{1}\right)$
- $\mathbb{P}\left(M_{1}=1, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=v\left(x_{2}\right)$

Missing at Random Example

Under MAR

- $\mathbb{P}\left(M_{1}=1, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=c$
- $\mathbb{P}\left(M_{1}=0, M_{2}=1 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=u\left(x_{1}\right)$
- $\mathbb{P}\left(M_{1}=1, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=v\left(x_{2}\right)$
- $\mathbb{P}\left(M_{1}=0, M_{2}=0 \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=1-c-u\left(x_{1}\right)-v\left(x_{2}\right)$

Non-Ignorable Missingness Mechanisms

- Missing not at random:

$$
\mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x}) \neq \mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}\right)
$$

- General interest in developing non-ignorable approaches to handle missing data

Non-Ignorable Missingness Mechanisms

- Missing not at random:

$$
\mathbb{P}(\mathbf{M}=\mathbf{m} \mid \mathbf{X}=\mathbf{x}) \neq \mathbb{P}\left(\mathbf{M}=\mathbf{m} \mid \mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\bar{m}}\right)
$$

- General interest in developing non-ignorable approaches to handle missing data

Identifiability Issues

- Generally speaking, inferences should be based on the full data distribution

$$
f(\mathbf{X}, \mathbf{M})
$$

- This distribution is not identifiable
- Examples of probabilities that cannot be estimated from the data alone, without extra assumptions
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$

Identifiability Issues

- Generally speaking, inferences should be based on the full data distribution

$$
f(\mathbf{X}, \mathbf{M})
$$

- This distribution is not identifiable
- Examples of probabilities that cannot be estimated from the data alone, without extra assumptions
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$

Identifiability Issues

- Generally speaking, inferences should be based on the full data distribution

$$
f(\mathbf{X}, \mathbf{M})
$$

- This distribution is not identifiable
- Examples of probabilities that cannot be estimated from the data alone, without extra assumptions
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$

Identifiability Issues

- Generally speaking, inferences should be based on the full data distribution

$$
f(\mathbf{X}, \mathbf{M})
$$

- This distribution is not identifiable
- Examples of probabilities that cannot be estimated from the data alone, without extra assumptions
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$

Observed Data Distribution

- The observed data distribution is all we can identify from samples
- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=\int_{\mathcal{X}_{\mathbf{m}}} f(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}$
- For example with two categorical variables:
- $\mathbb{P}\left(M_{1}=1, M_{2}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=0, M_{2}=1\right)$
$-\mathbb{P}\left(X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=0, M_{2}=0\right)$

Observed Data Distribution

- The observed data distribution is all we can identify from samples
- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=\int_{\mathcal{X}_{\mathbf{m}}} f(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}$
- For example with two categorical variables:
- $\mathbb{P}\left(M_{1}=1, M_{2}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=0, M_{2}=1\right)$
- $\mathbb{P}\left(X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=0, M_{2}=0\right)$

Observed Data Distribution

- The observed data distribution is all we can identify from samples
- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=\int_{\mathcal{X}_{\mathbf{m}}} f(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}$
- For example with two categorical variables:
- $\mathbb{P}\left(M_{1}=1, M_{2}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=0, M_{2}=1\right)$
- $\mathbb{P}\left(X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=0, M_{2}=0\right)$

Observed Data Distribution

- The observed data distribution is all we can identify from samples
- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=\int_{\mathcal{X}_{\mathbf{m}}} f(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}$
- For example with two categorical variables:
- $\mathbb{P}\left(M_{1}=1, M_{2}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=0, M_{2}=1\right)$
- $\mathbb{P}\left(X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=0, M_{2}=0\right)$

Observed Data Distribution

- The observed data distribution is all we can identify from samples
- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=\int_{\mathcal{X}_{\mathbf{m}}} f(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}$
- For example with two categorical variables:
- $\mathbb{P}\left(M_{1}=1, M_{2}=1\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, M_{1}=0, M_{2}=1\right)$
- $\mathbb{P}\left(X_{2}=x_{2}, M_{1}=1, M_{2}=0\right)$
- $\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, M_{1}=0, M_{2}=0\right)$

General Strategy

$$
f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)
$$

Identifying assumption
$\tilde{f}(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m})$

Sum over m

$$
\tilde{f}(\mathbf{X}=\mathbf{x})
$$

Non-Parametric Saturated Modeling

If

$$
\int \tilde{f}(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}=f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)
$$

- Modeling assumption does not impose restrictions on observed data distribution
- Robins (1997) refers to such modeling approach as being non-parametric saturated
- Important property for sensitivity analysis

Non-Parametric Saturated Modeling

If

$$
\int \tilde{f}(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}=f\left(\mathbf{X}_{\bar{m}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)
$$

- Modeling assumption does not impose restrictions on observed data distribution
- Robins (1997) refers to such modeling approach as being non-parametric saturated
- Important property for sensitivity analysis

Non-Parametric Saturated Modeling

If

$$
\int \tilde{f}(\mathbf{X}=\mathbf{x}, \mathbf{M}=\mathbf{m}) d \mathbf{x}_{\mathbf{m}}=f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)
$$

- Modeling assumption does not impose restrictions on observed data distribution
- Robins (1997) refers to such modeling approach as being non-parametric saturated
- Important property for sensitivity analysis

Outline

Inference with Missing Data

Itemwise Missing at Random

Take-Home Message

Itemwise Missing at Random

Definition. The missing data are itemwise missing at random (IMAR) if

$$
X_{j} \Perp M_{j} \mid \mathbf{X}_{-j}, \mathbf{M}_{-j}, \text { for all } j=1, \ldots, p
$$

Remark. X_{j} and M_{j} are conditionally independent but not necessarily marginally independent.

Itemwise Missing at Random

Definition. The missing data are itemwise missing at random (IMAR) if

$$
X_{j} \Perp M_{j} \mid \mathbf{X}_{-j}, \mathbf{M}_{-j}, \text { for all } j=1, \ldots, p
$$

Remark. X_{j} and M_{j} are conditionally independent but not necessarily marginally independent.

IMAR Distribution

Theorem 1. For each missingness pattern $\mathbf{m} \in \mathcal{M} \subseteq\{0,1\}^{p}$, given $f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)>0$, let the function $\eta_{\mathbf{m}}: \mathcal{X}_{\overline{\mathbf{m}}} \mapsto \mathbb{R}$ be defined recursively as
$\eta_{\mathbf{m}}\left(\mathbf{x}_{\overline{\mathbf{m}}}\right)=\log f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)-\log \int_{\mathcal{X}_{\mathbf{m}}} \exp \left\{\sum_{\mathbf{m}^{\prime}<\mathbf{m}} \eta_{\mathbf{m}^{\prime}}\left(\mathbf{x}_{\overline{\mathbf{m}}^{\prime}}\right) l\left(\mathbf{m}^{\prime} \in \mathcal{M}\right)\right\} \mu\left(d \mathbf{x}_{\mathbf{m}}\right)$.
Then

$$
\tilde{f}(\mathbf{x}, \mathbf{m})=\exp \left\{\sum_{\mathbf{m}^{\prime} \leq \mathbf{m}} \eta_{\mathbf{m}^{\prime}}\left(\mathbf{x}_{\bar{m}^{\prime}}\right) l\left(\mathbf{m}^{\prime} \in \mathcal{M}\right)\right\}
$$

satisfies

$$
\int_{\mathcal{X}_{\mathbf{m}}} \tilde{f}(\mathbf{x}, \mathbf{m}) \mu\left(d \mathbf{x}_{\mathbf{m}}\right)=f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)
$$

for all $(\mathbf{x}, \mathbf{m}) \in \mathcal{X} \times \mathcal{M}$.

TheOrem 2. The distribution induced by \tilde{f} encodes the IMAR assumption.

IMAR Distribution

Theorem 1. For each missingness pattern $\mathbf{m} \in \mathcal{M} \subseteq\{0,1\}^{p}$, given $f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)>0$, let the function $\eta_{\mathbf{m}}: \mathcal{X}_{\overline{\mathbf{m}}} \mapsto \mathbb{R}$ be defined recursively as
$\eta_{\mathbf{m}}\left(\mathbf{x}_{\overline{\mathbf{m}}}\right)=\log f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)-\log \int_{\mathcal{X}_{\mathbf{m}}} \exp \left\{\sum_{\mathbf{m}^{\prime} \prec \mathbf{m}} \eta_{\mathbf{m}^{\prime}}\left(\mathbf{x}_{\overline{\mathbf{m}}^{\prime}}\right) l\left(\mathbf{m}^{\prime} \in \mathcal{M}\right)\right\} \mu\left(d \mathbf{x}_{\mathbf{m}}\right)$.
Then

$$
\tilde{f}(\mathbf{x}, \mathbf{m})=\exp \left\{\sum_{\mathbf{m}^{\prime} \leq \mathbf{m}} \eta_{\mathbf{m}^{\prime}}\left(\mathbf{x}_{\bar{m}^{\prime}}\right) l\left(\mathbf{m}^{\prime} \in \mathcal{M}\right)\right\}
$$

satisfies

$$
\int_{\mathcal{X}_{\mathbf{m}}} \tilde{f}(\mathbf{x}, \mathbf{m}) \mu\left(d \mathbf{x}_{\mathbf{m}}\right)=f\left(\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{m}\right)
$$

for all $(\mathbf{x}, \mathbf{m}) \in \mathcal{X} \times \mathcal{M}$.
Theorem 2. The distribution induced by \tilde{f} encodes the IMAR assumption.

IMAR Distribution for Categorical Variables

- Log-linear model without interactions involving jointly X_{j} and M_{j}
- In the case of two variables:

IMAR Distribution for Categorical Variables

- Log-linear model without interactions involving jointly X_{j} and M_{j}
- In the case of two variables:

$$
\begin{aligned}
\log \mathbb{P}\left(x_{1}, x_{2}, m_{1}, m_{1}\right)= & \eta_{x_{1} x_{2}}^{X_{1} x_{2}}+\eta_{x_{1} m_{2}}^{X_{1} M_{2}}+\eta_{x_{2} m_{1}}^{X_{2} M_{1}}+\eta_{m_{1} m_{2}}^{M_{1} M_{2}} \\
& +\eta_{x_{1}}^{X_{1}}+\eta_{x_{2}}^{X_{2}}+\eta_{m_{1}}^{M_{1}}+\eta_{m_{2}}^{M_{2}}+\eta
\end{aligned}
$$

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

- Slovenians voted for independence from Yugoslavia in a plebiscite in 1991
- The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia's secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

- Rubin, Stern and Vehovar (1995) analyzed these three questions under MAR
- Plebiscite results give us the proportions of non-attendants and attendants in favor of independence

The Slovenian Plebiscite Data Revisited

Figure: Samples from joint posterior distributions of pr(Independence $=$ Yes, Attendance $=$ Yes $)$ and pr(Attendance $=$ No). Pattern mixture model (PMM) under the complete-case missing-variable restriction.

IMAR Distribution for Continuous Variables

With continuous variables

$$
f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}} \mid \mathbf{M}=\mathbf{m}\right) \mathbb{P}(\mathbf{M}=\mathbf{m})
$$

- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathrm{m}}} \mid \mathbf{M}=\mathbf{m}\right)$ can be estimated parametrically or non-parametrically
- IMAR distribution can be obtained following Theorem 1

IMAR Distribution for Continuous Variables

With continuous variables

$$
f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}}, \mathbf{M}=\mathbf{m}\right)=f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}} \mid \mathbf{M}=\mathbf{m}\right) \mathbb{P}(\mathbf{M}=\mathbf{m})
$$

- $f\left(\mathbf{X}_{\overline{\mathbf{m}}}=\mathbf{x}_{\overline{\mathbf{m}}} \mid \mathbf{M}=\mathbf{m}\right)$ can be estimated parametrically or non-parametrically
- IMAR distribution can be obtained following Theorem 1

Self-Reporting Bias in Height Measurements

From the National Health and Nutrition Examination Survey NHANES (1999-2000 and 2001-2002 cycles):

- X_{1} : self-reported height
- X_{2} : actual height measured by survey staff

Informally, the IMAR assumptions are:
\rightarrow the association between self-reported height and the reporting of this value is explained away by the true height and whether this measurement is taken

- the association between the true height and whether this measurement is taken is explained away by the height that would be self-reported and whether this value is reported

Self-Reporting Bias in Height Measurements

From the National Health and Nutrition Examination Survey NHANES (1999-2000 and 2001-2002 cycles):

- X_{1} : self-reported height
- X_{2} : actual height measured by survey staff

Informally, the IMAR assumptions are:

- the association between self-reported height and the reporting of this value is explained away by the true height and whether this measurement is taken
- the association between the true height and whether this measurement is taken is explained away by the height that would be self-reported and whether this value is reported

Self-Reporting Bias in Height Measurements

From the National Health and Nutrition Examination Survey NHANES (1999-2000 and 2001-2002 cycles):

- X_{1} : self-reported height
- X_{2} : actual height measured by survey staff

Informally, the IMAR assumptions are:

- the association between self-reported height and the reporting of this value is explained away by the true height and whether this measurement is taken
- the association between the true height and whether this measurement is taken is explained away by the height that would be self-reported and whether this value is reported

Self-Reporting Bias in Height Measurements

Figure: Estimated IMAR densities. Left: $\hat{\mathbb{P}}\left(M_{j}=1 \mid x_{j}\right)$ for actual height (solid line), and for self-reported height (dashed line).
$f\left(x_{1}, x_{2} \mid M_{1}=0, M_{2}=0\right), f\left(x_{2} \mid M_{1}=1, M_{2}=0\right)$, and $f\left(x_{1} \mid M_{1}=0, M_{2}=1\right)$ estimated using survey-weighted kernel density estimators

Further Uses of IMAR Assumption

- Monotone missingness patterns (dropout/attrition)
- Sensitivity analysis to departures from IMAR assumption
- Use marginal information (e.g. from the Census) to parameterize departures from IMAR

Outline

Inference with Missing Data

Itemwise Missing at Random

Take-Home Message

Take-Home Message

- Itemwise missing at random assumption provides an alternative to MAR assumption
- Allows M_{j} to depend on X_{j} marginally
- Can be used with arbitrary missingness patterns and types of variables

Questions?

msadinle@stat.duke.edu

