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Incomplete Multivariate Data

Gender Age Income
F 25 60,000
M ? ?
? 51 ?

F ? 150,300




What This Talk is About

» Most common approach to handle missing data: assume the missing
data are missing at random (MAR)



What This Talk is About

» Most common approach to handle missing data: assume the missing
data are missing at random (MAR)

> We developed an alternative: assume the missing data are itemwise
missing at random (IMAR)



Outline

Inference with Missing Data
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Example

v

X: Would you lend me $1,000?
Want to estimate P(X = yes)

v

P(X = yes) = P(X = yes|response)P(response)
+ IP(X = yes|non-response)P(non-response)

v

Most likely P(X = yes) << P(X = yes|response)

Inference impossible without extra, usually untestable, assumptions on
how missingness arises
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Notation

Gender Age Income Mgender Myge Mincome
F 25 60,000 0 0 0
M ? ? 0 1 1
? 51 ? 1 0 1
F ? 150,300 0 1 0
In general
» Study variables: X = (Xy,...,X,) € X

» Missingness indicators: M = (My,..., M,) € {0,1}?

» Missingness mechanism: P(M|X)
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Notation

Given M =m

> Xn: missing values (often written as X,;s)

> Xm: observed values (often written as Xops)

Example:
> X = (Xl,XQ,X3)

> Ifm= (1,0, ].), Xm = (Xl,X3), and X5 = X5



Missing at Random Assumption
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> Missing at random:

P(M =m|X =x) = P(M = m|Xs = x7)



Missing at Random Assumption

After Rubin (1976):

> Missing at random:

P(M =m|X =x) = P(M = m|Xs = x7)

> Missing completely at random:

P(M =m|X =x) =P(M =m)



Missing at Random Assumption
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Missing at Random Assumption

Under MAR
>

/P(M =m|X = x)f(X = x)dxm = /IP’(M = m|Xm = xm)f (X = x)dxm
= P(M=m|Xs = xﬁ.)/f(X = X)dXm

= we can “ignore” the missingness mechanism

]P(M,' = 1‘X = X) = ]P)(M,' = 1|X_,' = X_,')

Missingness of an item cannot depend on the value of the item
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Missing at Random Example

Under MAR
> P(Ml = 1, M, = 1|X1 = X1,X2 = X2) =cC

> P(My =0,My = 1|X; = x1, X2 = x2) = u(x1)
> ]P(Ml = 1, M, = O|X1 = X1,X2 = X2) = V(Xg)

> P(Ml =0, M, = O|X1 = X1,X2 = X2) =1—c— U(Xl) — V(X2)
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Non-Ignorable Missingness Mechanisms

> Missing not at random:

]P’(M = m|x = X) #P(M = m|Xﬁ, = Xﬁ,)

> General interest in developing non-ignorable approaches to handle
missing data
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|dentifiability Issues

> Generally speaking, inferences should be based on the full data
distribution
f(X,M)

» This distribution is not identifiable

» Examples of probabilities that cannot be estimated from the data
alone, without extra assumptions

> ]P)(Xl = X1, M1 = 1)

> P(Xl = X1,X2 = X2, M1 = 17 M2 = 0)
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Observed Data Distribution

» The observed data distribution is all we can identify from samples
> f(Xa =xa,M=m) = [, f(X=xM=m)dxm

» For example with two categorical variables:
> P(Ml :1,M2: 1)
> ]P)(Xl :Xl,Ml :0, M2:1)

> ]P)(XQ :XQ,Ml = ].,MQ :0)



Observed Data Distribution

» The observed data distribution is all we can identify from samples
> f(Xa =xa,M=m) = [, f(X=xM=m)dxm

» For example with two categorical variables:
>

My =1,M, = 1)

>

X1 X1,M1 :0, M2:1)

>

Xo

X2,M1 = ].,MQ :0)

>

B
B(
B(
B(

X1 :X1,X2 :XQ,Ml :07 M2 :0)



General Strategy

[f(Xﬁ, = Xm, M= m)}

Identifying assumption

[F(X =x,M = m)}

Sum over m

| fx=n |
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Non-Parametric Saturated Modeling

/f(x =%, M = m)dxpy = f(Xa = Xm, M = m)

» Modeling assumption does not impose restrictions on observed data
distribution

» Robins (1997) refers to such modeling approach as being
non-parametric saturated

» Important property for sensitivity analysis



Outline

[temwise Missing at Random



ltemwise Missing at Random

DEFINITION. The missing data are itemwise missing at random (IMAR)
if
X; 1L M; | X_j M

_j, forallj=1,...,p.



ltemwise Missing at Random

DEFINITION. The missing data are itemwise missing at random (IMAR)
if
X AL M; [ X

_j,M_;, forall j=1,...,p.

REMARK. Xj and M; are conditionally independent but not necessarily
marginally independent.



IMAR Distribution

THEOREM 1. For each missingness pattern m € M C {0,1}P, given
f(xm, m) > 0, let the function 1y, : Xsm — R be defined recursively as

Nm(Xm) = log f(x@, m) — Iog/ exp{ Z N (X )1 (M’ € M)} p(dxm).

Then

f(x,m) = exp Z N (X ) (M’ € M)

m’<m
satisfies

/ F(x, m)pa(dxm) = F(xi, m).

m

for all (x,m) € X x M.



IMAR Distribution

THEOREM 1. For each missingness pattern m € M C {0,1}P, given
f(xm, m) > 0, let the function 1y, : Xsm — R be defined recursively as

Nm(Xm) = log f(x@, m) — Iog/ exp{ Z N (X )1 (M’ € M)} p(dxm).

Then

f(x,m) = exp Z N (X ) (M’ € M)

m’<m
satisfies

/ F(x, m)pa(dxm) = F(xi, m).

m

for all (x,m) € X x M.

THEOREM 2. The distribution induced by f encodes the IMAR
assumption.
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IMAR Distribution for Categorical Variables

> Log-linear model without interactions involving jointly X; and M;

» In the case of two variables:
— X1 X2 X1 M3 Xo My My My
|Og P(Xla X2, My, ml) = M + MNxims + Momy + Mmym,

2 L 4+



The Slovenian Plebiscite Data Revisited

» Slovenians voted for independence from Yugoslavia in a plebiscite in
1991

» The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia’s secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

» Rubin, Stern and Vehovar (1995) analyzed these three questions
under MAR



The Slovenian Plebiscite Data Revisited

v

Slovenians voted for independence from Yugoslavia in a plebiscite in
1991

» The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia’s secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

» Rubin, Stern and Vehovar (1995) analyzed these three questions
under MAR

> Plebiscite results give us the proportions of non-attendants and
attendants in favor of independence



The Slovenian Plebiscite Data Revisited

IMAR MAR PMM
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Figure: Samples from joint posterior distributions of pr(Independence = Yes,
Attendance = Yes) and pr(Attendance = No). Pattern mixture model (PMM) under
the complete-case missing-variable restriction.
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IMAR Distribution for Continuous Variables

With continuous variables

f(X,ﬁ = Xm, M= m) = f(X,ﬁ = Xﬁ]|M = m)P(M = m)

> f(Xm = x@m|M = m) can be estimated parametrically or
non-parametrically

» IMAR distribution can be obtained following Theorem 1
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> Xi: self-reported height
> X5: actual height measured by survey staff
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Self-Reporting Bias in Height Measurements

From the National Health and Nutrition Examination Survey —
NHANES (1999-2000 and 2001-2002 cycles):

> Xi: self-reported height
> X5: actual height measured by survey staff

Informally, the IMAR assumptions are:

> the association between self-reported height and the reporting of
this value is explained away by the true height and whether this
measurement is taken

> the association between the true height and whether this
measurement is taken is explained away by the height that would be
self-reported and whether this value is reported



Self-Reporting Bias in Height Measurements

Actual height in inches

Figure: Estimated IMAR densities. Left: P(M; = 1|x;) for actual height (solid

f(x1, xp|My =0, My = 0)

flxg xp|My =1, My = 1)
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f(Xl,X2|M1 =0,M, = 0), f(XZlM] =1,M, = 0), and f(XllMl =0,M, = 1) estimated using
survey-weighted kernel density estimators



Further Uses of IMAR Assumption

» Monotone missingness patterns (dropout/attrition)
» Sensitivity analysis to departures from IMAR assumption

» Use marginal information (e.g. from the Census) to parameterize
departures from IMAR
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Take-Home Message

> |temwise missing at random assumption provides an alternative to
MAR assumption

> Allows M; to depend on X; marginally

» Can be used with arbitrary missingness patterns and types of
variables



Questions?

msadinle@stat.duke.edu
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