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Incomplete Multivariate Data



What This Talk is About

I Most common approach to handle missing data: assume the missing
data are missing at random (MAR)

I We developed an alternative: assume the missing data are itemwise
missing at random (IMAR)
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Example

I X : Would you lend me $1,000?

I Want to estimate P(X = yes)

I

P(X = yes) = P(X = yes|response)P(response)

+ P(X = yes|non-response)P(non-response)

I Most likely P(X = yes) << P(X = yes|response)

Inference impossible without extra, usually untestable, assumptions on
how missingness arises
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I Missingness indicators: M = (M1, . . . ,Mp) ∈ {0, 1}p

I Missingness mechanism: P(M|X)
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Given M = m
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P(M = m|X = x) = P(M = m|Xm̄ = xm̄)

I Missing completely at random:

P(M = m|X = x) = P(M = m)
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Under MAR

I ∫
P(M = m|X = x)f (X = x)dxm =

∫
P(M = m|Xm̄ = xm̄)f (X = x)dxm

= P(M = m|Xm̄ = xm̄)

∫
f (X = x)dxm

⇒ we can “ignore” the missingness mechanism

I

P(Mi = 1|X = x) = P(Mi = 1|X−i = x−i )

Missingness of an item cannot depend on the value of the item
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Missing at Random Example

Under MAR

I P(M1 = 1,M2 = 1|X1 = x1,X2 = x2) = c

I P(M1 = 0,M2 = 1|X1 = x1,X2 = x2) = u(x1)

I P(M1 = 1,M2 = 0|X1 = x1,X2 = x2) = v(x2)

I P(M1 = 0,M2 = 0|X1 = x1,X2 = x2) = 1− c − u(x1)− v(x2)
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Non-Ignorable Missingness Mechanisms

I Missing not at random:

P(M = m|X = x) 6= P(M = m|Xm̄ = xm̄)

I General interest in developing non-ignorable approaches to handle
missing data
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Identifiability Issues

I Generally speaking, inferences should be based on the full data
distribution

f (X,M)

I This distribution is not identifiable

I Examples of probabilities that cannot be estimated from the data
alone, without extra assumptions

I P(X1 = x1,M1 = 1)

I P(X1 = x1,X2 = x2,M1 = 1,M2 = 0)
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General Strategy

f (Xm̄ = xm̄,M = m)

f̃ (X = x,M = m)

f̃ (X = x)

Identifying assumption

Sum over m



Non-Parametric Saturated Modeling

If ∫
f̃ (X = x,M = m)dxm = f (Xm̄ = xm̄,M = m)

I Modeling assumption does not impose restrictions on observed data
distribution

I Robins (1997) refers to such modeling approach as being
non-parametric saturated

I Important property for sensitivity analysis
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Itemwise Missing at Random

Definition. The missing data are itemwise missing at random (IMAR)
if

Xj ⊥⊥ Mj | X−j ,M−j , for all j = 1, . . . , p.

Remark. Xj and Mj are conditionally independent but not necessarily
marginally independent.
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IMAR Distribution

Theorem 1. For each missingness pattern m ∈M ⊆ {0, 1}p, given
f (xm̄,m) > 0, let the function ηm : Xm̄ 7→ R be defined recursively as

ηm(xm̄) = log f (xm̄,m)− log

∫
Xm

exp

{ ∑
m′≺m

ηm′(xm̄′)I (m′ ∈M)

}
µ(dxm).

Then

f̃ (x,m) = exp

 ∑
m′�m

ηm′(xm̄′)I (m′ ∈M)


satisfies ∫

Xm

f̃ (x,m)µ(dxm) = f (xm̄,m),

for all (x,m) ∈ X ×M.

Theorem 2.The distribution induced by f̃ encodes the IMAR
assumption.
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IMAR Distribution for Categorical Variables

I Log-linear model without interactions involving jointly Xj and Mj

I In the case of two variables:

logP(x1, x2,m1,m1) = ηX1X2
x1x2

+ ηX1M2
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+ η
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The Slovenian Plebiscite Data Revisited

I Slovenians voted for independence from Yugoslavia in a plebiscite in
1991

I The Slovenian public opinion survey included these questions:

1. Independence: Are you in favor of Slovenian independence?
2. Secession: Are you in favor of Slovenia’s secession from Yugoslavia?
3. Attendance: Will you attend the plebiscite?

I Rubin, Stern and Vehovar (1995) analyzed these three questions
under MAR

I Plebiscite results give us the proportions of non-attendants and
attendants in favor of independence
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The Slovenian Plebiscite Data Revisited
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Figure: Samples from joint posterior distributions of pr(Independence = Yes,
Attendance = Yes) and pr(Attendance = No). Pattern mixture model (PMM) under
the complete-case missing-variable restriction.



IMAR Distribution for Continuous Variables

With continuous variables

f (Xm̄ = xm̄,M = m) = f (Xm̄ = xm̄|M = m)P(M = m)

I f (Xm̄ = xm̄|M = m) can be estimated parametrically or
non-parametrically

I IMAR distribution can be obtained following Theorem 1
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Self-Reporting Bias in Height Measurements

From the National Health and Nutrition Examination Survey —
NHANES (1999–2000 and 2001–2002 cycles):

I X1: self-reported height

I X2: actual height measured by survey staff

Informally, the IMAR assumptions are:

I the association between self-reported height and the reporting of
this value is explained away by the true height and whether this
measurement is taken

I the association between the true height and whether this
measurement is taken is explained away by the height that would be
self-reported and whether this value is reported
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Self-Reporting Bias in Height Measurements
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Figure: Estimated IMAR densities. Left: P̂(Mj = 1|xj) for actual height (solid
line), and for self-reported height (dashed line).

f (x1, x2|M1 = 0,M2 = 0), f (x2|M1 = 1,M2 = 0), and f (x1|M1 = 0,M2 = 1) estimated using
survey-weighted kernel density estimators



Further Uses of IMAR Assumption

I Monotone missingness patterns (dropout/attrition)

I Sensitivity analysis to departures from IMAR assumption

I Use marginal information (e.g. from the Census) to parameterize
departures from IMAR
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Take-Home Message

I Itemwise missing at random assumption provides an alternative to
MAR assumption

I Allows Mj to depend on Xj marginally

I Can be used with arbitrary missingness patterns and types of
variables



Questions?

msadinle@stat.duke.edu
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