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My dissertation focuses on economic studying of volatility issues. Three essays

are contained in my dissertation. Essay 1 extends a microstructure model to

explain the change of volatility and thus links traders’ belief to the volatility

change. Our model shows that when market is more uncertain about the value

of the stock, the higher the (return) volatility. Essay 2 turns to explore more

economic factors that could cause volatility regime switch. We find that US

stock return processes, including drift, diffusion, and jump, differ along with

US political cycle. Our results imply that the presidency in different parties has

distinct policy making processes and thus influence the way information flows

into the market, altering the return processes.

In the final essay, we document and explain a volatility Bid-Ask spread pat-

tern that increases as time to maturity decreases. Our research develops a model

that explains the volatility spread pattern. We show that, as time passes, the re-

quired hedging uncertainty premium charged by the liquidity providers decays

more slowly while the premium contained in the quoted options price decays

at an increasingly higher rate which is determined by the option pricing model.

Therefore, liquidity providers need to increase asking and decrease bidding

volatility to maintain the profit necessary to compensate slowly decaying hedg-

ing uncertainty premium. Our results strongly suggest that studies on volatility

spread should detrend the data to make the estimation models correct as well as

the series stationary. Without adjusting the trend and autocorrelation problems,



statistical results are inaccurate and misleading. More importantly, based on

our theoretical model, we also find that: (a) the implied volatility spread does

not increase in proportion to the increase of implied volatility, and (b) the in-

crease of volatility uncertainty is not a sufficient condition for an increase in the

percentage spread. Finally, to augment the validity of our claims, we provide

rigorous econometric tests which support our propositions.



BIOGRAPHICAL SKETCH

PeiLin Hsieh served as an equity derivatives trader before he entered the Eco-

nomics Ph.D. program at Cornell University in 2009. He had the Master in Fi-

nance degree from University of Maryland, College Park, as well as Bachelor of

Science degree in Management Science from National Chiao Tung University,

Taiwan. His interests include financial economics and econometrics, and his

current research focuses on theoretical and empirical works of volatility issues.

iii



To my wife, Lan-Chu, and my daughter, Ho-Ying.

iv



ACKNOWLEDGEMENTS

I would like to thank my graduate committee members, Professors Robert Jar-

row, YongMiao Hong, and David Easley for their teaching and advice during

my doctoral study. Especially for my committee co-chairmen Professors Jar-

row and Hong, I have been greatly inspired by the conversation and meeting

with them and have been feeling myself strongly supported in every progress

of Ph.D. program because of their encouragements. Finally, I would like to ex-

press my gratitude and thanks to my wife, LanChu Yang, for her understanding.

This dissertation can not be complete without her dedication to our family.

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1

2 Linking the Belief Base Quoting Strategy to Volatility 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Market Microstructure Model . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Trade Process . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Model Assumption . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Extension of Theoretical Work . . . . . . . . . . . . . . . . 13

2.3 Data and Empirical Work . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Advanced Analysis by Simulation . . . . . . . . . . . . . . . . . . 19
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 United States Political Cycle Impact on Drift, Volatility and Jump
Process of Stock Market Return 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Unconditional Moment and Impulsive Function Analysis . . . . 33
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Volatility Uncertainty, Time Decay, and Option Bid-Ask Spreads 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Uncertainty of Hedging . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Arbitrage Pricing . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Market Maker’s Problem . . . . . . . . . . . . . . . . . . . 57
4.3.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Equilibrium and Risk Neutral Probability . . . . . . . . . . 64
4.3.6 Equilibrium Implications . . . . . . . . . . . . . . . . . . . 66

4.4 Volatility Uncertainty and Volatility Spread . . . . . . . . . . . . . 71
4.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Empirical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



4.6.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Chapter 2 of appendix 87
A.1 Figure 2-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Figure 2-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Figure 2-3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.4 Figure 2-4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.5 Figure 2-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.6 Figure 2-4-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
98
A.8 Table 2-3-2 & Table 2-4-1 . . . . . . . . . . . . . . . . . . . . . . . . 99

B Chapter 3 of appendix 100
B.1 Table 3-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2 Table 3-4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.3 Table 3-5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4 Table 3-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.5 Table 3-5-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.6 Table 3-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.7 Higher order movement for GARCH Jump models . . . . . . . . 107

C Chapter 4 of appendix 108
C.1 Figure 4-1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C.2 Figure 4-2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.3 Figure 4-2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.4 Figure 4-2-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.5 Figure 4-2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
C.6 Figure 4-2-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.7 Figure 4-2-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.8 Figure 4-2-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.9 Figure 4-3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.10 Figure 4-3-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.11 Figure 4-4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.12 Figure 4-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.13 Table 4-5-1 & 4-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.14 Table 4-5-3 & 4-5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.15 Table 4-5-5 & 4-5-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.16 Table 4–6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.17 Table 4–6-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.18 Table 4-6-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.19 Table 4-6-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.20 Table 4-6-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.21 Table 4-6-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



C.22 Table 4-6-1-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.23 Table 4-6-2-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.24 Table 4-6-3-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.25 Table 4-6-4-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.26 Table 4-6-5-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.27 Table 4-6-6-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.28 Proof 4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.29 Proof 4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.30 Proof 4-3 & 4-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.31 Proof 4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.32 Proof 4-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.33 Proof 4-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.34 Proof 4-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.35 Proof 4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
C.36 Proof 4-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.37 Model Free Implied Volatility Calculation . . . . . . . . . . . . . . 153

Bibliography 155

viii



CHAPTER 1

INTRODUCTION

There has been a huge development gap between time series volatility mod-

els, which is capable of capturing volatility patterns, and economics models

in volatility, which are able to explain volatility changes. Since the ARCH

(Auto-Regression on Conditional Heteroskedasticity) model was proposed in

the 1970s to analyze the time varying volatility, extended and related economet-

rics models have been developed with extreme rapidity. However, in contrast

to econometrics, the financial economics literature exploring the insight about

what economic factors would affect return volatility is relatively sparse. My

dissertation focuses on enriching volatility issues with structure modeling and

with economics reasoning, filling the gap mentioned previously. Three essays

are contained in my dissertation, and they are illustrated with details in Chapter

2, Chapter 3 and Chapter 4 respectively.

In the first essay, I extend the structure of Probability of Information Base

Trade Model to explain the volatility change. By extrapolating Bayesian quot-

ing strategy of market makers, a tree with all possible closed prices is formed,

and I derive the general form for Bayesian base expected volatility, under the as-

sumption that buy and sell orders follow a mixed Poisson distribution. I show

that the return volatility increases as news arrival rate increases, peaking when

the probability of bad news, conditional on occurrence of the news, equals 50%,

reaching global maximum when market makers expect an event with certainty

but do not know whether the news will be bad or good.

The return volatility has two prominent stylized facts: volatility asymmetry

and volatility clustering. However only a little literature addresses economics
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reasons for these stylized facts. In 1976 Black Fisher used the leverage effect to

illustrate the volatility asymmetry. Not until 2006 did Clive Granger and Mark

Machina used the concept of structure change to account for volatility cluster-

ing, but no empirical work so far has tested this argument. While Bollerslev,

Sizova, and Tauchen (2010) developed a model incorporating prospects of fu-

ture economic growth and the current uncertainty about the future economic

conditions to explain stylized facts, this research approaches the topic differ-

ently. In the research, I link Bayesian updating process, describing trader’s

quoting behavior, to volatility, thus providing a new economic explanation for

the volatility change.

As predicted by our theoretical model, volatility increases as information

arrival rate increases. Thus we investigate if index return volatility increases

during the weeks of quarterly earnings announcement. During this period,

higher information arrival rate should induce higher volatility. We apply Spec-

tral Density analysis, which is the model independent mythology, and find that

volatility has 3 month cycle, corresponding to the cycle of quarterly earnings an-

nouncement. Furthermore, we also apply the Maximum Likelihood Estimation

method to estimate parameters and calculate expected volatility. Our empirical

results show that, out of 46 randomly picked stocks, 29 show their estimated

model volatility to be significant in explaining their historical volatility.

My second essay turns to explore political cycle effect on return. This topic

was been studied extensively before, but the literature all focuses on mean

rather than higher order movements. To investigate the impact of political cy-

cle on higher order movements of return, this study takes the perspective from

time series models and proposes numerous GARCH with jump models incor-
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porating exogenous economic factors to examine the political cycle effect on

return volatility. We also reexamine the return puzzle studied by Santa-Clara

and Valkanov (2003).

A great deal of literature documents the obvious difference in stock return

under Republican and Democratic presidents. The paper of Santa-Clara and

Valkanov (2003) is the first one formally testing it. They used monthly return to

regress on drift term, presidential dummy and other control variables. Apply-

ing the method of Newy-West variance and covariance estimation to overcome

the heteroskedasticity problem, they concluded positive excessive return in De-

mocratic presidential periods. To test if the abnormal return can be explained

by the return risk, they used monthly volatility (computed from within-month

daily returns) as a measure for return variation, and their result surprisingly

showed that volatility is significantly higher for Republican presidencies since

1956. In other words, in the long run, the higher return in Democratic presi-

dencies was not due to the higher risk (volatility) that requires higher return for

compensation.

Considering this finding, it is of particular interest to analyze the question

using time series models, which decompose the daily return processes into drift,

slow diffusion and jump. Thus we expand volatility with jump models, based

on GARCH(1,1) family models, allowing us to endogenize the risk problem and

to test volatility and return jointly. In our research, we find that the presidency

effect does affect the jump process and that the jump arrival rate is significantly

higher during Republican administrations. Additionally, the conditional daily

volatility is significant in explaining daily return, while enduring 1% daily de-

viation requires 0.1% to 0.14% index daily return to compensate. Finally, after

3



controlling volatility and business cycles, we also find that daily index return is

still lower by 0.0274%, approximately 6.9% annually, during Republican presi-

dencies. This result is consistent with conclusion of Santa-Clara and Valkanov

(2003).

My third essay advances to investigate the volatility implied by the trading

price of the options, given that volatility is the most prominent factor that prices

options and given that implied volatility thus contains the information of fu-

ture volatility. I first document the stylized fact that the Bid-Ask spread widens

at increasing rate as options contracts approach the expiration date. Distinct

from other research on this topic, the Bid-Ask spread calculated here is based

on model free implied volatility.

Chong, Ding and Tan (2003) wrote the first paper addressing maturity ef-

fect on the volatility Bid-Ask spread. They claimed there are two risks related

to maturity. First, market risk, higher gamma for short term options, drives

the market to demand larger Bid-Ask spread for shorter time to maturity op-

tions. Second, because their data is the trading record of OTC currency options,

the trading involves credit/default risk of opponents. Longer time to maturity

implies higher credit risk and thus needs larger Bid-Ask spread for compensa-

tion. Through their empirical work they found that volatility spread, measured

by Black-Shoes Merton Model, increases as time to maturity decreases. Hence

they concluded that market risk dominates credit risk. Other empirical works,

like Wei and Zheng (2010), used Ivy DB’s OptionMetrics data to inspect the im-

pact of trading activities on the liquidity of stock options. Instead of using the

volatility measure, those papers defined spread in terms of ratio of dollar mea-

sure and also concluded existence of the maturity effect. However, the spread

4



measurement and reasoning mentioned in those papers are not indisputable.

With a focus on the disparity between the decay rate of hedging portfolios of

derivatives and the decay of required premium for hedging risk, our research

develops a model which explains why the spread pattern occurs. Our results

strongly suggest two important issues that need to be considered in empirical

works on related topics. First, studies on volatility spread should detrend the

data to make the series stationary. Second, research should also consider the het-

eroskedasity issue of error terms. Without adjusting trend and autocorrelation

problems, statistical results are inaccurate and misleading. More importantly,

based on our theoretical model, we also find: (1) volatility spread measured in

percentage of implied volatility decreases as implied volatility increases. (2) an

increase in volatility uncertainty is not a sufficient condition leading to an in-

crease in volatility percentage spread. Finally, to augment the validity of our

claims, we provide rigorous econometric tests which support our findings.
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CHAPTER 2

LINKING THE BELIEF BASE QUOTING STRATEGY TO VOLATILITY

2.1 Introduction

Volatility has been an important issue in derivatives pricing and time series re-

search. This is because volatility decides the possible range of future price, and

thus it has been the most important factor in pricing of derivatives. In the 1970s,

the most influential finance model, the Black Scholes Merton model, was cre-

ated, and has since been utilized for options pricing. However, it was not until

the early 2000s began that most closed form models of derivatives pricing al-

lowed volatility to vary over the duration of derivatives. So, after the 1970s,

how to forecast volatility accurately became an important issue. Moreover, the

oil shock, high inflation rate, and implementation of a floating exchange rate

in seventies made the finance market so volatile that econometricians started

to use time series analysis to model volatility. In 1982, Robert Engle developed

the ARCH (Autoregressive Conditional Heteroskedasticity) model for analyz-

ing time varying volatility, and the model was quickly expanded to create nu-

merous versions of the General Autoregressive Conditional Heteroskedasticity

model.

GARCH related models can forecast the volatility more accurately because

time series models can capture the stylized facts. Volatility has a number of

important stylized facts, two of which are volatility clustering and volatility

asymmetry. Volatility clustering refers to the high auto-correlated movement

of the return. In other words, one dramatic jump or drop of return tends to be

followed by other large movements of the return. As for volatility asymmetry,
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it was first documented in 1963 by Mandelbrot. He found the return volatility

tends to be higher when stock price is decreasing and lower when stock price

is increasing. In time series, the GARCH and EGARCH models are designed

to respectively capture the stylized facts of volatility clustering and volatility

asymmetry and to further forecast the volatility.

However, the literature on reasoning stylized facts of volatility is very

sparse. In 1976 Black Fisher used the leverage effect to explain the volatility

asymmetry. Basically, the leverage effect refers to the operation risk of a com-

pany. A decrease in the company’s stock price would increase the debt ratio and

leverage ratio of the company, so in this case the company would run the busi-

ness in a more risky environment. The more risky a company, the more volatile

its stock. Though the leverage effect has been used extensively to explain the

volatility asymmetry, empirical works, for example Duffee (1995) and Bekaert

and Wu (2000), have not demonstrated strong support for this argument. Fur-

thermore, the literature addressing reasons for volatility clustering is even less.

In 2006, Clive Granger and Mark Machina used the concept of structure change

to explain volatility clustering, but no empirical work so far has tested this ar-

gument.

Recently Bollerslev, Sizova, and Tauchen are dealing with the same issues

identified above. Their research, whcih is the finest research addressing those

issues so far, incoporates prospects of future economic growth and the current

uncertainty about the future economic conditions to explain stylized facts. This

paper approaches the related topics differently. This research extend the market

microstructure model to derive the theoretical volatility and tests it. The au-

thor builds up a link between the market makers’ quoting strategy and volatil-
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ity, and thus provides a new economic explanation for the change in volatility.

The author is going to extend the model to explain the stylized facts in future

work. Additionally, empirical evidence demonstrates significance of theoretical

volatility, based on quoting strategy, in explaining the historical volatility.

In this chapter, we link the concept of Bayesian based beliefs to volatility.

It not only provides new economic reasoning for change in volatility but also

sheds light on improving volatility forecasting. Compared with the GARCH

related models, which primarily use information of price and return, the mi-

crostructure model extracts the information from the buy and sell numbers.1 So,

by incorporating the threshold model or regime switch model, it may improve

the forecasting ability of GARCH model.

This Chapter is organized as follows. In section 2.2, the author discusses the

market microstructure theoretical ground for this research and the extension

of theoretical work in the research. Section 2.3 describes the data set and the

empirical results. Section 2.4 shows an advanced theoretical model analysis by

simulation method. Finally, the conclusion and possible future development are

provided in section 2.5.

2.2 Market Microstructure Model

This section first addresses the main structure and assumptions of the PIN

model. Then the author discusses how the original structure is extended to link

1There are many researches, which analyze joint dynamics between trades and prices
or show evidence supporting information is contained in the order of trading. Examples
are Chordia, Roll, and Subrahmanyam (2000, 2001a, 2001b, 2002, 2005), Chordia and
Subrahmanyam (2004).
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the volatility.

2.2.1 Trade Process

The research is based on the structure created in the series of papers by David

Easley and Maureen O’Hara. These papers constructed the model that is now

known as the PIN model. In the model, everyday an information event occurs

with probability, �, and � is the probability of an information event that leads to

the lowest daily price V
�

. In previous papers, V
�

is defined more generally and,

for each day i, V
�

can be V
� i

, which could vary over time. Here the close price of

yesterday is scaled onto 1, and the research assumes V
�

fixed, for example V
�

=

0.9. Similarly, 1� � is the probability leading to the daily highest price,
�
V .

After the information event arrives, the market starts to trade. The transac-

tions arise from informed and uninformed traders. If information event occurs,

the expected number of total informed trades is �, and, no matter whether the

event occurs or not, uninformed sell and buy take place everyday at expected

total trading number ". Given the occurrence of an information event that sup-

plies bad news, the number of sells is � + ", and the number of buys is ". Simi-

larly, if the event is good, the number of buy orders is � + " and the number of

sell orders is ". For days when no information event occurs, the number of sell

orders and buy orders are " respectively. So each day the expected total number

of trades is ��+ 2".

Figure 2-1-1 shows how the trade process is in the model. For each coming

trade, the result could be a buy or sell transaction in bad news, good news or no

news. There are six possible results; 2 of the 6 results, initiated by informed and
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uninformed traders, occur at a probability of
~
"+

~
� = ("+�)=(��+2"). The por-

tion
~
� in the numerator is initiated by informed traders if the information event

occurs. The other 4 results are initiated by uninformed traders at a probability

of
~
" = "=(��+ 2"). So for each coming trade, the sum of the probabilities of the

6 possible results is equal to 1.

2.2.2 Model Assumption

In addition to the trade process, there are four assumptions made in the struc-

ture of the PIN Model. These assumptions are:

(1) Buy and sell orders follow the Poisson distribution

(2) The market has market makers to provide liquidity

(3) Trade size is not considered in the Model

(4) The market makers apply Bayes rule in their quoting strategy

From the equilibrium point of view, market makers suffer a loss when an in-

formation event occurs, whereas they, based on their beliefs, earn from spread of

selling at higher offer price and buying at lower bid price. Competitive market

makers should able to earn the opportunity cost by quoting at the best suitable

price.
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Buy and sell orders follow the Poisson distribution.

The Poisson distribution is characterized by the expected trading number. So

given certain expected number of informed and uninformed trades, people

know the probability that the certain number of buy orders and sell orders hap-

pens. In another way, people can collect the observations of buy and sell orders

each day. The expected number of informed and uninformed trades can be de-

rived by applying the maximum likelihood function incorporated with Poisson

distribution assumption. In the game tree, 2-1-1, there are three main scenarios,

including the occurrence of good news, bad news and no news. Each scenario

has its Poisson process on each day, and the joint Poisson distribution, that see-

ing number of buy, Bt, and sell, St, is

Pr[yt = (Bt; St)jIt=1]

=�(1� �)e�(�t�1+2"t�1) (�t�1+"t�1)
Bt ("t�1)St

Bt!St!
+ ��e�(�t�1+2"t�1)

(�t�1+"t�1)
St ("t�1)Bt

Bt!St!

+(1� �)e�2"t�1 "t�1
St+Bt

Bt!St!
; (2-1)

The maximum likelihood function is

$(fytgTt=1j�) =
TX
t=1

ln Prfyt = (Bt; St)jIt�1g;� = (�; �; �; ");

This research uses the maximum likelihood function proposed by Easley,

Engle, O’Hara and Wu in 2008.

$(fytgTt=1j�) =
TX
t=1

[�2"t�1 + (Bt + St) ln(�t�1 + "t�1)]

+

TX
t=1

ln[�(1� �)e=�t�1xStt�1 + ��e�ut�1xBtt�1 + (1� �)xBt+Stt�1 ]; (2-2)
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xt =
"t

"t+�t
;

The market has market makers to provide liquidity.

The model assumes the existence of market makers to provide liquidity for the

informed and uninformed trades. Market makers do not know in which sce-

nario they stand but they know the whole structure. Informed traders and un-

informed traders buy from, and sell stocks to, market makers. Market makers

earn the profit, when no information arrives, by selling stock at a higher price

and buying at a lower price. They lose the money once the information event

happens, but in the long run equilibrium, the profit earned when there is no

news should cover the loss, caused by the arrival of information events.

Though this assumption is a bit strong, the market maker mechanism did

prevail in previous times and, in market microstructure, it is the key that drives

the whole information learning process. This process is characterized by Bayes

rule, which is believed how investors learn the information of trades in the mar-

ket. The role and behavior of market makers have been extensively studied in

the literature (Hendershott and Seasholes, 2007; Comerton-Forde, Hendershott,

Jones, Seasholes and Moulton, 2010). Moreover, market makers are still playing

important roles to provide liquidity in some other markets, such as options and

ETF markets, so the structure of this assumption may be completely valid in

other finance markets.
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Trade size is not considered in the model.

The model assumes that every transaction, no matter what size it is, carries

equally weighted information. Trade is classified by the Lee-Ready algorithm

into sell or buy. Using the Lee-Ready algorithm, people define trades above the

previous midpoint of the bid-ask spread as buy orders, and trades below the

midpoint as sell orders. If the trade is at the mid point, then we compare the

trade price with the previous dissimilar transaction price which is nearest. The

trade is a buy order if the price moves up and a sell order if price moves down.

The market makers apply Bayes rule in quoting strategy.

Everyday market makers revise their beliefs, which are (�; �; �; "). This can be

derived by using the maximum likelihood function estimation method. Using

Bayes rule, for each coming intraday trade the expected value of stock price,

conditional on one buy(sell) observation, can be derived, and market makers

use the conditional expected stock price as the asking(offering) price. The con-

ditional expected value is also called the “regret free” price, because, once the

transaction happens, the market makers sell(buy) the stock at their expected

price.

2.2.3 Extension of Theoretical Work

In the extended structure, market makers keep revising their beliefs according to

past transaction data. For the trading day t, the market makers set up the quot-

ing strategy based on beliefs, (�t�1; �t�1; �t�1; "t�1). Those beliefs are derived
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from the maximum likelihood function. Figure 2-2-1 shows the Bayes quoting

strategy scheme for intraday, given beliefs, (�; �; �; "), which are revised after

close of market at day, t�1.2 Under the market maker’s assumption, all transac-

tions happen implicitly on the asking and bidding price, so the quoting strategy

scheme contains all possible price paths. Each price on the node of the tree can

be expressed in the generalized form below. H and L are the daily highest price

and lowest price respectively.3

Price(fBt;StgjIt�1)

=
H(

s
" t�1+

s
�t�1)

Bt (
s
"
St
t�1)�t�1(1��t�1)+(

s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]+L(

s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)�t�1�t�1

(
s
" t�1+

s
�t�1)

Bt (
~
"
St

t�1)�t�1(1��t�1)+(
s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]+(

s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)�t�1�t�1

, (2-3)

Given the beliefs forming the quoting strategy, the denominator is the prob-

ability of seeing number of buy,Bt, and sell, St. In the probability space fBt; Stg,

there are three possible subsets, in which stock value is equal to H , 1 or L, and

the probability for each subset is:

Pr(price=Hjf(Bt; St); (�t�1; �t�1; �t�1; "t�1)g)

=
(
s
" t�1+

s
�t�1)

Bt (
s
"
St
t�1)[�t�1(1��t�1)]

(
s
" t�1+

s
�t�1)

Bt (
~
"
St

t�1)[�t�1(1��t�1)]+(
s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]+(

s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)[�t�1�t�1]

;

Pr(price=1jf(Bt; St); (�t�1; �t�1; �t�1; "t�1)g)

=
(
s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]

(
s
" t�1+

s
�t�1)

Bt (
~
"
St

t�1)[�t�1(1��t�1)]+(
s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]+(

s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)[�t�1�t�1]

;

Pr(price=Ljf(Bt; St); (�t�1; �t�1; �t�1; "t�1)g)

=
(
s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)[�t�1�t�1]

(
s
" t�1+

s
�t�1)

Bt (
~
"
St

t�1)[�t�1(1��t�1)]+(
s
"
Bt
t�1)(

s
"
St
t�1)[1��t�1]+(

s
" t�1+

s
�t�1)

St (
s
"
Bt
t�1)[�t�1�t�1]

;

Therefore, the equation (2-3) is conditional expected price, given Bt and St

observed. Moreover, based on the assumption that buys and sells follow the

2This research calibrates the dynamic beliefs, �, �, � and " by past transaction data.
So in the equation we use �t�1, �t�1, �t�1 and "t�1 to denote the beliefs.

3Easley, Kiefer, O’Hara, and Paperman (1996) have the most well regarded discus-
sion on Bayes learning process in quoting strategy.
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Poisson distribution, each price in equation (2-3) can be assigned a probability

by using the joint Poisson distribution function. In other words, we use equa-

tion (2-1) to describe the distribution of the price,which is expressed in equation

(2-3). Thus for each day, incorporating price and probability, we can calculate

the theoretical model volatility, which is based on quoting strategy. This pa-

per accordingly links the market quoting strategy to the volatility and deems

quoting strategy an important factor affecting volatility. The theoretical model

variance can be written in its general form as,

E(RtjIt�1)

=
1X

Bt=0

1X
St=0

f[H(
s
" t�1+

s
�t�1)

Bt
~
"
St

t�1[�t�1(1��t�1)]+
s
"
Bt
t�1

s
"
St
t�1[1��t�1]+L(

s
" t�1+

s
�t�1)

St
s
"
Bt
t�1[�t�1�t�1]

(
s
" t�1+

s
�t�1)

Bt
~
"
St

t�1[�t�1(1��t�1)]+
s
"
Bt
t�1

s
"
St
t�1[1��t�1]+(

s
" t�1+

s
�t�1)

St
s
"
Bt
t�1[�t�1�t�1]

� 1]

�[�(1� �)e�(�t�1+2"t�1) (�t�1+"t�1)
Bt ("t�1)St

Bt!St!
+ ��e�(�t�1+2"t�1)

(�t�1+"t�1)
St ("t�1)Bt

Bt!St!

+(1� �)e�2"t�1 "t�1
St+Bt

Bt!St!
]g; (2-4)

E(R2t jIt�1)

=
1X

Bt=0

1X
St=0

f[H(
s
" t�1+

s
�t�1)

Bt
~
"
St

t�1[�t�1(1��t�1)]+
s
"
Bt
t�1

s
"
St
t�1[1��t�1]+L(

s
" t�1+

s
�t�1)

St
s
"
Bt
t�1[�t�1�t�1]

(
s
" t�1+

s
�t�1)

Bt
~
"
St

t�1[�t�1(1��t�1)]+
s
"
Bt
t�1

s
"
St
t�1[1��t�1]+(

s
" t�1+

s
�t�1)

St
s
"
Bt
t�1[�t�1�t�1]

� 1]2

�[�(1� �)e�(�t�1+2"t�1) (�t�1+"t�1)
Bt ("t�1)St

Bt!St!
+ ��e�(�t�1+2"t�1)

(�t�1+"t�1)
St ("t�1)Bt

Bt!St!

+(1� �)e�2"t�1 "t�1
St+Bt

Bt!St!
]g; (2-5)

V ar(RtjIt�1) = E(R2t jIt�1)� E(RtjIt�1)2;

Theoretical Model Standard Deviation=
p
V ar(RtjIt�1);

It hereby needs to be emphasized that the volatility we measure is interday

volatility, because the price in equation (2-3) refers to the close price in day t,
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and has the corresponding joint Poisson probability, so the theoretical model

standard deviation can be interpreted as the expected deviation of daily return

from the expected mean of daily return. The equation (2-4) is the expected daily

return, given the market makers beliefs and quoting strategy. The equation (2-5)

is the expected value of the square of the daily return and is the function which

captures the second movement of the daily return. Having equation (2-4) and

(2-5), we can apply the transformed formula of variance and take the square

root of variance to get the standard deviation.

In the empirical study of this paper, the beliefs of market makers are cal-

ibrated through MLE from the data set of day t � 1 to t � T , so it is plausi-

ble to consider the calibrated beliefs the same as the approximated beliefs held

by market makers throughout the data set period. Compared to the historical

standard deviation, which was interpreted as the sample averaged deviation of

daily return from the sample averaged daily return, this research considers the

theoretical volatility model a natural data generation process and the historical

volatility one of its possible realizations.

If the number of observations is large enough, the regression result can show

if theoretical volatility, based on quoting strategy, is significant enough to affect

historical volatility. In the empirical work, in order to derive the application of

theoretical volatility, I impose a stronger assumption. I assume the parameters

of H and L equal to 1.07 and 0.93. As long as the price of yesterday is scaled to

1, and the H and L are fixed over time, the statistics results show no difference.

The level of H and L would affect the theoretical volatility and coefficient of

regression in the scale.
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2.3 Data and Empirical Work

The research randomly selects 46 medium or small cap company stocks to test if

the theoretical model volatility is a significant factor in explaining the historical

volatility. The stocks include Kraft Foods, GAP, GARMIN, MOVADO, Chesa-

peake Utilities, Hospitality Properties and another 40 stocks. This research se-

lects mid and small cap company stocks ,which generally have less than 2000

trades each day, not only because each trade carries more meaningful informa-

tion, but also because they allow for easier computation of model parameters

and theoretical volatility. The sample period ranges from the beginning of 2001

to the end of 2006, and all the data are taken from the TAQ database. The data

shows the intraday price of quoting and transaction for every second. In order

to get the number of buy and sell orders each day, the Lee-Ready algorithm is

used to classify transactions into buy or sell orders.

I select a data window of 60 days from t � 1 to t � 60 and keep rolling over

to the next day to get estimators of (�t�1; �t�1; �t�1; "t�1) for each day. Given

daily estimators, the research calculates the theoretical volatility for day t and

compares it with the stock return volatility of 60 days, from t to t� 59.

The following features can be observed in Figure 2-3-1, which graphs the re-

lation between historical return standard deviation and theoretical return stan-

dard deviation for 46 stocks. First, for more than 25 stocks out of 46, the theo-

retical volatility demonstrates a significantly positive correlation with historical

return volatility, but the relation patterns of each stock looks very different. Sec-

ondly, the variation of theoretical volatility and historical volatility tends to be

larger when theoretical volatility is higher. The model seems capable of captur-
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ing correct beliefs when historical volatility is low. However, when theoretical

model volatility is high, data shows more noises. The research runs the follow-

ing regression model to investigate the significance of the theoretical volatility

in explaining historical volatility.

�Historical = C +B1 � �Model +B2 � PAveraged + "t , (2-6)

Where �Historical is the standard deviation of historical return, and �Model is

the theoretical standard deviation, generated by the model. Since the leverage

effect is a popular factor in explaining the volatility asymmetry, the research

puts averaged price, Paveraged, into the regression model as a benchmark com-

parison. The author chooses the 60-day data window, from t � 1 to t � 60, to

derive parameters of theoretical model volatility and assumes that the estimated

parameters from maxima likelihood function can give the best explanation for

the 60-day historical standard deviation, based on t to t � 59. Considering ob-

servations are highly auto-correlated, the paper uses the generalized method of

moment to estimate the regressions. The weighting matrix is calculated accord-

ing to Newey and West (1987) with lags, equal to the cube root of observations.

Table 2-3-1 and Table 2-3-2 report the regression results. If a 10% critical

value, which implies t=1.646, is used as the criteria the theoretical volatility

shows significance in explaining historical volatility in 29 out of the 46 stocks.

Though there are cases where the coefficient of theoretical volatility is insignif-

icant and negative, the coefficient tends to be positive for most stocks. The R

square ranges from 1.8% to 63%. The graphs of relation between theoretical

volatility and historical volatility are shown in Figure 2-3-1, the order of which

corresponds to the order of Table 2-3-1 and 2-3-2.
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2.4 Advanced Analysis by Simulation

In the theoretical model, four parameters, (�; �; �; "), play the main role in de-

termining the theoretical volatility. In this paper, how parameters,(�; �), affect

the volatility is of particular interest. However, the equation for the theoretical

model standard deviation is very complicated and not in closed form, so in-

stead I use simulation for advanced partial analysis. The parameters for simula-

tion are cross sectional and time averaged statistics from Easley, Hvidkjaer, and

O’Hara (2002). Table 2-4-1 shows the statistic data, where � = 0:283, � = 0:331,

� = 31:08 and " = 23:1.

I first fix the parameters, (�; �; "), and calculate the theoretical standard de-

viation at different levels of �; probability of event occurrence. Our simula-

tion finds that, given (�; �; ") fixed, theoretical volatility monotonically increases

over �, which is the probability of event occurrence. If only � varies, while

other (�; �; ") parameters remain constant, the theoretical volatility peaks when

� equals 0.5. The results above indicate that when the market makers are more

uncertain about the true value of the stock, the volatility will increase. If we take

a closer look at bidding and asking strategy, when the market makers are more

uncertain about the true value of the stock, market makers enlarge the quoting

spread in comparison to when market makers are more certain about the true

value. The graphs with partial single variable simulation are demonstrated in

Figure 2-4-1 and Figure 2-4-2.

If � and � are variables, while � and " are constants, we can derive a three

dimensional graph to investigate how theoretical volatility changes at different

levels of � and �. From the 3D graph, Figure 2-4-3, the theoretical volatility has
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global maximization when � and � are equal to 1 and 0.5 respectively. Again, the

graph shows that the more uncertain the market about the true stock value, the

more volatile the stock return will be. Theoretical volatility gradually increases

to maximization, where parameters � and � are equal to 1 and 0.5. In this case,

the market believes an information event certainly will occur but is not sure

whether the event will be good or bad.

It is worthwhile to note that there is an interesting pattern when � is close to 0

or 1. In this case, an increase in �, the probability of event occurrence, decreases

the volatility. Actually given that the information event is certainly good or

bad, an increase in �, the probability of event occurrence, synonymously raises

the certainty of the stock value. In this scenario, the theoretical volatility peaks

when � = 0:5. Based on the model, I further conclude that in financial crises, the

real factor driving volatility up may not be the bad news itself, but rather the

uncertainty surrounding the arrival of bad news. Once markets become more

sure about if the information event will occur, the volatility will decrease, even

if the news is bad.

2.5 Conclusion

This research extends the structure of the PIN model and links the belief base

quoting strategy to volatility. By doing this, the research provides a new eco-

nomic explanation and model for volatility, and additionally the empirical ev-

idence shows the significance of theoretical model volatility, which was based

on the quoting strategy. In 29 out of 46 stocks, the theoretical model volatility is

significantly correlated with historical volatility.
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Moreover, by the partial analysis, this research shows how market beliefs,

the probability of event occurrence and the probability that the event is bad

news, affect the theoretical volatility. These beliefs are key factors in the quoting

scheme of the market, and when the market is more uncertain about the true

value of stock, the spread of quoting prices is generally wider in every intra-

day tick. Hence, the quoting scheme tree is more extensive, and the theoretical

model volatility increases.

The research at this point has not expanded to explain volatility clustering

and volatility asymmetry. This research is going to allow the heterogeneity of

uninformed sell orders and uninformed buy orders, so the volatility asymmetry

can be explained by the model. Additionally, to explain volatility clustering, we

need to show that the beliefs demonstrate the pattern of high auto-correlation

which is consistent to volatility clustering.

This research also sheds light on developing the following research. First

of all, the orthodox time series volatility forecasting models mainly use infor-

mation of return. Incorporating our parameters, containing information from

buy and sell orders, into the time series threshold model or the regime switch-

ing model could improve the forecasting ability. Secondly, in this research the

author has not formally discussed the return distribution, generated by the Pois-

son distribution and Bayes rule. According to initial observation, the return dis-

tribution is bell shape with heavier tails than in normal distribution. Modifying

the Poisson distribution or Bayes rule in advance to better capture the dynamic

return distribution is a challenging future topic to explore. Finally, in options

markets, the phenomenon of the implied volatility smile (skew) has been fa-

mous since the late 1990s. The research structure of this paper may possibly be
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extended to explain the volatility smile.
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CHAPTER 3

UNITED STATES POLITICAL CYCLE IMPACT ON DRIFT, VOLATILITY

AND JUMP PROCESS OF STOCK MARKET RETURN

3.1 Introduction

The relation between stock market performance and political or economic

events started to gain attention since 1970s. Previous related discussion cen-

ters around explaining stock returns by factors such as election cycle, presi-

dency cycle and business cycle. Some examples are Niederhoffer, Gibbs, and

Bullock (1970), Riley and Luksetich (1980), Reilly and Drzycimski (1976), and

Siegel (1998). In addition to the relationship between short run performance of

stock return and presidential election, the literature also documented other in-

teresting return patterns. Allvine and O’Neil (1980) found significantly lower

returns in the first half of presidential administration than in the second half,

and Stovall (1992) claimed it is because the party in office usually implement

more accommodating and easier (money) policies to prepare the next election.

While some work focused on monetary policies to explain return patterns, Bizer

and Durlauf (1990; henceforth, BD) discovered that an eight year tax cycle pe-

riod, and taxes were reduced two year prior to successful presidential reelection

attempt.

Along with topics of election cycle, many researchers also addressed the re-

lation between presidency cycle and stock returns Smith (1992), Stovall (1992),

Hensel and Ziemba (1995), and Johnson, Chittenden and Jensen (1999) showed

that stock return is much higher during Democratic administration than Repub-

lican administration. In Table 3-1-1, we briefly summarize the conclusions of
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previous literature. However, most of the work did not proceed with a rigorous

statistical approach. The paper of Santa-Clara and Valkanov (2003; henceforth,

SCV) is the first attempts which formally test for the relation of return to presi-

dency effect, while BD utilizes the methodology of spectral analysis and focuses

on tax cycle.

In SCV, the authors regressed monthly return on drift term, presidential

dummy and other control variables. Applying Newey-West variance and co-

variance estimator to overcome heteroskedasticity problem, they concluded

positive excessive returns were usually associated with democratic presiden-

tial period. To test if abnormal returns can be explained by return risk, they

used monthly volatility (computed from within-month daily returns) as mea-

sure for return variation, and their result surprisingly showed that volatility is

significantly higher for Republican presidency since 1956. In other words, over

the 50 year time horizon, higher return in democratic presidency was not due

to higher risk (volatility) for compensation.

Considering this anomaly, it is of particular interest to analyze the question

in a time series model, decomposing the daily return dynamic process into drift,

slow diffusion and jump terms. Lots of time series researches have been de-

voted to analysis of the process of return,1 but only limited number of work

tried to combine time series volatility and jump models with economic and po-

litical factors. However, from the economics and finance point of views, it is

interesting to understand what components of return process are affected by in-

flow of economic factors and information, and hybrid models help us to answer

1Those models include ARCH, GARCH, stochastic volatility and jump diffusion models,
each of which can be widely extended. Additionally, instead of adding jumps in the return,
there were literatures working on modeling new distributions as well, for example skew t dis-
tribution, to capture stylized facts of higher order moments in return.
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this question. In this paper, because of the discrete nature of observed economic

data, we will focus on discrete time GARCH models. Papers which did sur-

vey and comparison among ARH typed models, include but are not limited to

Bollerslev (2010), Poon and Granger (2005), and Hensen and Lunde (2005). In

contrast to that literature, our work aims at proposing and comparing different

hybrid models that incorporate presidency anomaly.

In addition to pure GARCH typed models, we also introduce jumps and

investigate political cycle effect on volatility, jump and return. The diffusion

process can be considered as slow movement in volatility, while the jump

process represents sudden and big volatility changes. Hence adding jumps

empowers GARCH models to capture sudden large changes of volatility. Das

(2002) proposed an ARCH model with daily jump following a Bernoulli distri-

bution, and he allowed observed economic factors to enter the parameters of

jump intensity to investigate week effect and Fed Reserve meeting effect. He

concluded that the Fed Fund rate does not follow a martingale process owing

to market’s overreaction to large jumps. His model is a good paragon parallel-

ing to our research, while retaining the Bernoulli daily jump process assump-

tion but we extend his model to GARCH diffusion process. On the other hand,

Macheu and McCurdy (2003; henceforth, MM) proposed ARJI (Autoregressive

conditional jump intensity) model to capture jump clustering and modeled the

intraday jumps by a Poisson process. In this paper, we emt-stat economic fac-

tors into the parameters of Das’ model to inspect how this will affect the return

process.

The Chapter is organized as follows. In section 3.2, we discuss 18 proposed

models with their properties. Basing on those properties, we can have deeper

25



insight about what economic factor is suitable for the proposed model. We use

section 3.3 to discuss the unconditional moments of each model and give im-

pulsive function analysis of the model. Descriptive data statistics and empiri-

cal estimations results are covered in section 3.4 and 3.5. In section 3.6 we use

TGARCH in mean with jump as example to to explore the insight of exogenous

effect on jump and difussion process. Section 3.7 and 3.8 are robustness analysis

and conclusion.

3.2 Model Specification

We proposed 18 GARCH-typed models to explore the relationship between

presidency and business cycle effect on volatility and jump process. In addi-

tion to Threshold GARCH type model applied often to explore the economic

effect on volatility, we also extend standard GARCH(1,1) model to incorporate

political and economic factors to become prototype models, while those factors

are presumed to be exogenous. This implies that we assume no feedback ef-

fect from daily index return to presidency and contraction dummy variables.

The first 6 models are pure GARCH-typed and EGARCH-typed difussion mod-

els with exogenous factors, and then we include conditional mean into return

process of previous models for controlling the required compensation on return

uncertainty and label those models from (7) to (13). Finally we include the jump

process into model (7) to model (13) and test presidency and business cycle ef-

fect on return, diffusion and jump process together.

In the models followed, Xt is the vector containing the constant 1, the Re-

publican presidency dummy and contraction dummy at time t, and Yt contains
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only Republican presidency dummy and contraction dummy at time t. Ht de-

notes the vector containing the daily conditional standard deviation,
p
ht, from

the diffusion process and daily conditional standard deviation,
p
q2, from the

pure jump process. For simplicity, we let innovations, "t, be iid normal with

mean 0 and variance 1. Jump process follows Bernoulli distribution, B, with

intensity q and jump size 2.

8>>>>>>>>>><>>>>>>>>>>:

Xt = [1; d(R;t); d(C;t)]
0

Yt = [d(R;t); d(C;t)]
0

Ht = [
p
ht;
p
q2]

"t~IID N(0; 1); J~N(0; 
2)

B~Bernoulli(q); q = LXt�1

d(R;t) :dummy variable for Repubicant presidency

d(C;t) :dummy variable for business cycle

ht :conditional volatiltiy from difussion movement

q2 :conditional volatility from pure jump process

q :jump arrival rate

L :coefficients of economic factors affecting jump arrival rate

8>>>>>>>>>><>>>>>>>>>>:

Xt = [1; d(R;t); d(C;t)]
0

Yt = [d(R;t); d(C;t)]
0

Ht = [
p
ht;
p
q2]

"t~IID N(0; 1); J~N(0; 
2)

B~Bernoulli(q); q = LXt�1

The first model is the Threshold GARCH(1,1) model.(hereafter called

TGARCH(1,1)) The return process is decomposed into the drift term, AXt, and
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the diffusion term, h1=2t "t. According to previous literature, it is expected that

the coefficient vector A, [A0; AR; AC ], is significant such that constant drift term,

presidency and contraction dummies are able to explain the observed level re-

turn pattern. On the other hand, including dummy variables, Xt, in the condi-

tional volatility allows us to analyze the effects of political and business cycle

on conditional volatility. The coefficient vector C, [C0;CR; CC ], represents the ef-

fect of lag 1 squared innovation, and the corresponding incremental effects due

to political and business cycles. D0 in the vector D, [D0;DR; DC ], is the persis-

tence parameter for conditional volatility, ht. DR and DC are incremental effect

of political and business cycle indicators on the persistence of ht.

Model(1): TGARCH8><>: rt = AXt + h
1=2
t "t

ht = B0 + CXt�1(rt�1 � AXt�1)
2 +DXt�1ht�1

The second model is the pure GARCH(1,1) model with linear addition of po-

litical and economic dummy factors in to volatility of difussion process. (here-

after called GARCH(1,1)-LX) W is the coefficient vector, [W1;W2], representing

incremental effect on conditional volatility brought by dummy factors. In this

model the factors play a drift term effect on the volatility, compared to TGARCH

model in which exogenous factors take incremental effect through innovation

and lag conditional volatility.

Model(2): GARCH-LX8><>: rt = AXt + h
1=2
t "t

ht = B0 + C0(rt�1 � AXt�1)
2 +D0ht�1 +WYt�1

This model is also modified model from GARCH(1,1), but political and eco-

nomic factors affect volatility through exponential form, which imposes no ad-
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ditional constraint other than GARCH(1,1). That is to say we don’t need to put

any additional constraints other than B0 > 0, C0 > 0 and D0 > 0. The model is

denoted as GARCH(1,1)-E-X.

Model(3): GARCH-E-X8><>: rt = AXt + h
1=2
t "t

ht = (B0 + C0(rt�1 � AXt�1)
2 +D0ht�1) exp(WYt�1)

EGARCH is proposed by Nelson (1991) to capture volatility asymmetric styl-

ized fact. This fact indicates that volatility tends to be lower while return is

positive but higher when return is negative. Therefore parameter �0 should be

negative so that if rt � AXt < 0, g(rt � AXt) and ht are comparatively higher

than the case when rt � AXt > 0. Additionally, another appealing advantage

for EGARCH model is no need to consider conditions for insuring ht > 0,

and the economic factors can be naturally enclosed in original EGARCH set-

ting. Paralleling to GARCH(1,1), we also incorporate political and economic

factors addictively into volatility process, and name extended EGARCH model

as EGARCH(1,1)-LX.

Model(4): EGARCH-LX8>>>><>>>>:
rt = AXt + h

1=2
t "t

ln(ht) = B0 + C0g(rt�1 � AXt�1) +D0 ln(ht�1) +WYt�1

g(rt � AXt) = �0(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Following previous model, we furtherly decompose g(rt � AXt) to explore

effect of exogenous factors on the degree of assymetry. � represents coefficient

vector, [�0; �1; �2]. �0 is constant asymmetric effect from return innovation, and �1

and �2 correpond to incremental effect brought by exogenous factors on volatil-

ity asymmetry. We use E-X-GARCH(1,1)-LX to denote model (5).
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Model(5): E-X-GARCH-LX8>>>><>>>>:
rt = AXt + h

1=2
t "t

ln(ht) = B0 + C0g(rt�1 � AXt�1) +D0 ln(ht�1) +WYt�1

g(rt � AXt) = �Xt�1(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

In addition to applying linear addition form for incorporating exogenous

factors into log conditional volatility process, we also apply threshold model

concept into EGARCH model to investigate if political and economic factors

have incremental effect on volatility asymmetry and volatility clustering to-

gether. The model is denoted as E-X-TGARCH(1,1).

Model(6): E-X-TGARCH8>>>><>>>>:
rt = AXt + h

1=2
t "t

ln(ht) = B0 + CXt�1g(rt�1 � AXt�1) +DXt�1 ln(ht�1)

g(rt � AXt) = �Xt�1(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Model (7) to (12) were modified from model 1 to 6. Those models are called

GARCH-typed in Mean models and allow conditional volatility to explain the

return. We put h1=2t as explanatory factor in return drift process. Alternatively

speaking, the return process is now under the control of exogenous factors and

risk uncertainty.

In Model (7), � represents the risk premium on conditional volatility. By

economic intuition, � is expected to be positive because bearing higher risk re-

quires higher return for compensation. Model (7) is TGARCH in Mean model.

(hereafter called TGARCH-M).

Model(7): TGARCH-M8><>: rt = AXt + �h
1=2
t + h

1=2
t "t

ht = B0 + CXt�1(rt�1 � AXt�1 � �h1=2t�1)2 +DXt�1ht�1
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Paralleling to what we do to model (7), we modify prototype model (2) to (6)

into model (8) to (12) and list in the following. Those models are denoted with

letter M at the end.

Model(8): GARCH-LX-M8><>: rt = AXt + �h
1=2
t + h

1=2
t "t

ht = B0 + C0(rt�1 � AXt�1)
2 +D0ht�1 +WYt�1

Model(9): GARCH-EY-M8><>: rt = AXt + �h
1=2
t + h

1=2
t "t

ht = (B0 + C0(rt�1 � AXt�1)
2 +D0ht�1) exp(WYt�1)

Model(10): EGARCH-LX-M8>>>><>>>>:
rt = AXt + �h

1=2
t + h

1=2
t "t

ln(ht) = B0 + C0g(rt�1 � AXt�1) +D0 ln(ht�1) +WYt�1

g(rt � AXt) = �0(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Model(11): E-X-GARCH-LX-M8>>>><>>>>:
rt = AXt + �h

1=2
t + h

1=2
t "t

ln(ht) = B0 + Cg(rt�1 � AXt�1) +D ln(ht�1) +WYt�1

g(rt � AXt) = �Xt�1(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)
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Model(12): E-X-TGARCH-M Model8>>>><>>>>:
rt = AXt + �h

1=2
t + h

1=2
t "t

ln(ht) = B0 + CXt�1g(rt�1 � AXt�1) +DXt�1 ln(ht�1)

g(rt � AXt) = �Xt�1(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Starting from model (13), we add Bernoulli type jump into model (7), (8), (9),

(10), (11) and (12) and label new model as (13), (14), (15), (16), (17) and (18). The

Bernoulli type jump with ARCH difussion process is proposed by Das (2002),

and here we extend it to garch type jump process. Take Model (13) for exam-

ple, the notation, TGARCH-BJX-M, represents the model is TGARCH difussion

model with conditional volatility to explain mean return and with Bernoulli

jump incorporating exogenous factors, Xt, into jump pprobability, q. We as-

sume jump size, 2, is constant over time, but jump arrival probability, q, is the

function of exogenous factors. Alternatively speaking, models from (13) to (18)

are able to test the presidency effect and business cycle effect on return processes

of mean, diffusion volatility and jump together, while EGARCH-typed models

with jump also include the test of exogenous facotrs’ effect on volatility asym-

metry. The advantage of adding jump process will be discussed in the next

section.

Model(13): TGARCH-BJ-X-M8><>: rt = AXt + �Ht + h
1=2
t "t +BJ

ht = B0 + CXt�1(rt�1 � AXt�1 � �Ht)2 +DXt�1ht�1

Model(14): GARCH-LX Model8><>: rt = AXt + �H
1=2
t + h

1=2
t "t +BJ

ht = B0 + C0(rt�1 � AXt�1)
2 +D0ht�1 +WYt�1
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Model(15): GARCH-EY-BJ-X-M8><>: rt = AXt + �Ht + h
1=2
t "t +BJ

ht = (B0 + C0(rt�1 � AXt�1 � �Ht))2 +D0ht�1) � exp(WYt�1)

Model(16): E-X-GARCH-LX-BJ-X-M model8>>>><>>>>:
rt = AXt + �Ht + h

1=2
t "t +BJ

ln(ht) = B0 + CXtg(rt�1 � AXt�1)
2 +DXt ln(ht�1) +WYt�1

g(rt � AXt) = (rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Model(17): E-X-GARCH-LX-BJ-X-M8>>>><>>>>:
rt = AXt + �Ht + h

1=2
t "t +BJ

ln(ht) = B0 + Cg(rt�1 � AXt�1)
2 +D ln(ht�1) +WYt�1

g(rt � AXt) = �Yt(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

Model(18): E-X-TGARCH-BJ-X-M8>>>><>>>>:
rt = AXt + �Ht + h

1=2
t "t +BJ

ln(ht) = B0 + CXt�1g(rt�1 � AXt�1)
2 +DXt�1 ln(ht�1)

g(rt � AXt) = �Yt(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

3.3 Unconditional Moment and Impulsive Function Analysis

Unconditional moments can be considered as characteristics of distribution in

the long run. Checking unconditional movements generated by each dynamic
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process enable us to understand linkage between distribution and model para-

meters. Moreover, going through impulsive function analysis let us have clear

insight about how volatility is affected by exogenous factors in each model and

have comprehensive unerstanding what kind of economic factors can fit into

models. The first, second and fourth center moments and impulsive function

for each model follow.

(1)Model 1:T-GARCH(1,1)8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

V ar(rt � AXt) =
B0

(1�CXt�1�DXt�1)

E((rt � AXt)
4) =

3B20(1+CXt+DXt)

(1�CXt�1�DXt�1)(1�(DXt�1)2�2(CXt�1)(DXt�1)�3(CXt�1)2)

�ht
�D(R;t�1)

= C1(rt�1 � AXt�1)
2 + 2CXt�1(�A1)(rt�1 � A1Xt�1) +D1ht�1

�2ht
�D2

(R;t�1)
= C12(�A1)(rt�1 � AXt�1)� 2C1A1(rt�1 � A1Xt�1) + 2CXt�1A

2
1

�ht+n
�D(R;t�1)

= Dn
1 [C1(rt�1 � AXt�1)

2 + 2CXt�1(�A1)(rt�1 � A1Xt�1) +D1ht�1]

(2)Model 2:GARCH(1,1)-LX8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

V ar(rt � AXt) =
B0+WYt�1
(1�C0�D0)

E((rt � AXt)
4) = 3(B0+W )2(1+C0+D0)

(1�C0�D0)(1�D2
0�2C0D0�3C02)

�ht
�D(R;t�1)

= W1

�2ht
�D2

(R;t�1)
= 0

�ht+n
�D(R;t�1)

= Dn
1W1

(3)Model 3:GARCH(1,1)-EX
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8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

V ar(rt � AXt) =
B0+WYt�1

1�(C0+D0) exp(WYt�1)

E((rt � AXt)
4) = 3(B0+F )2(1+C0+D0)

[1�(C0+D0) exp(WYt�1)][1�(D2
0+2C0D0+3C0

2) exp(2WYt�1)]

�ht
�D(R;t�1)

= W1ht

�2ht
�D2

(R;t�1)
= W 2

1 ht

�ht+n
�D(R;t�1)

= W1D
n
0 exp(WYt�1)ht

(4)Model 4:EGARCH(1,1)-LX8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V ar(rt � AXt) = exp[
B0
1�D0 ]E(exp[

WYt
1�D0 ])E(exp[

C0g(rt�1�AXt�1)
1�D0 ])

E((rt � AXt)
4) = exp[ 2B0

1�D0 ]E(exp[
2WYt�1
1�D0 ])E(exp[

2C0g(rt�1�AXt�1)
1�D0 ])

�ht
�D(R;t�1)

= (�C0g
0
+W1)ht

�2ht
�D2

(R;t�1)
= (�C0g

0
+W1)

�ht
�D(R;t�1)

= (�C0g
0
+W1)

2ht

�ht+n
�D(R;t�1)

= (�C0g
0
+W1)D

n
0 (WYt�1)

nht

g0 = �[�(rt�AXt)+(jrt�AXtj�Ejrt�AXtj)]
�D(R;t�1)

(5)Model 5:E-X-GARCH(1,1)-LX8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

V ar(rt � AXt) = exp[
B0
1�D0 ]E(exp[

WYt
1�D0 ])E(exp[

C0g(rt�1�AXt�1)
1�D0 ])

E((rt � AXt)
4) = exp[ 2B0

1�D0 ]E(exp[
2WYt�1
1�D0 ])E(exp[

2C0g(rt�1�AXt�1)
1�D0 ])

�ht
�D(R;t�1)

= (�C0g
0
+W1)ht

�2ht
�D2

(R;t�1)
= (�C0g

0
+W1)

�ht
�D(R;t�1)

= (�C0g
0
+W1)

2ht

�ht+n
�D(R;t�1)

= (�C0g
0
+W1)D

n
0 (WYt�1)

nht

g0 = �[�Xt�1(rt�AXt)+(jrt�AXtj�Ejrt�AXtj)]
�D(R;t�1)

(6)Model 6:E-X-TGARCH(1,1)
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8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

V ar(rt � AXt) = exp[
B0

1�DXt ]E(exp[
CXtg(rt�1�AXt�1)

1�DXt ])

E((rt � AXt)
4) = exp[ 2B0

1�DXt ]E(exp[
2CXtg(rt�1�AXt�1)

1�DXt ])

�ht
�D(R;t�1)

= (C1g + CXt�1g
0
+D1 lnht�1)ht

�2ht
�D2

(R;t�1)
= (C1g + CXt�1g

0
+D1 lnht�1)

�ht
�D(R;t�1)

= (C1g + CXt�1g
0
+D1 lnht�1)

2ht

�ht+n
�D(R;t�1)

= (C1g + CXt�1g
0
+D1 lnht�1)D

n
0ht

g = �Xt�1(rt � AXt) + (jrt � AXtj � Ejrt � AXtj)

g0 = �[�Xt�1(rt�AXt)+(jrt�AXtj�Ejrt�AXtj)]
�D(R;t�1)

For the GARCH-family in mean models, including Model(7), (8), (9), (10),

(11) and (12), the center higher order movements are the same as model (1) to

(6).

As for the GARCH-typed and EGARCH-typed in Mean with jump models,

the form of unconditional second order and fourth order center movement are

very comlicated and hard to gain intuition inside so we will list those compli-

cated equation in formal paper. However, we still can gain some intuition from

a general form of unconditional variance, unconditional kurtosis and impulsive

function. For model(13), (14), (15), (16), (17) and (18), their second center move-

ment, fourth center order movement and impulsive function are,28>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

V ar(URt) = E[(h
1=2
t "t +BJ)

2] = E(ht) + q
2, URt = rt � AXt � �Ht

E(UR4t ) = E[(h
1=2
t "t +BJ)

4] = 3E(h2t ) + 3
2q[2E(ht) + 

2]

�V ar(rtjIt�1)
�D(R;t�1)

= �ht
�DR;t�1

+ �qr2

�DR;t�1

�2V ar(rtjIt�1)
�D2

(R;t�1)
= �2ht

�D2
R;t�1

�V ar(rt+njIt�1)
�D(R;t�1)

= �V ar(rt+njIt�1)
�ht+n

�ht+n
�ht+n�1

::: �ht+n
�D(R;t�1)

= (DXt�1)
n�V ar(rtjIt�1)

�D(R;t�1)

2More details are included in Chapter 3 Appendix.
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E(ht) and q2 are the unconditional volatility brought by difussion process

and jump process respectively. For pure difussion model like GARCH-typed

model, the conditional volatility is ht;garch and conditional kurtosis is 3h2t;garch,

totally bounded by ht;garch. However, for GARCH-typed model with jump, the

conditional volatility is ht;garch_J + q
2 and kurtosis is 3h2t;garch_J +3q

2r4. Becuase

we do not know the parameters before calibration, we can’t not compare condi-

tional volatility and conditional kurtosis directly. But the jump arrival probabil-

ity, q, is the function of exogenous factors, so jump models have more parame-

ters and flexibility to capture the dynamic conditional kurtosis.

The unconditional volatility for pure difussion and difussion with jump

models are dV ar(URt) = E(ht;garch) and gV ar(URt) = E(ht;garch_J) + q
2 and the

unconditional kurtosis of GARGH(1,1) is

EGARCH(1;1)(UR
4
t ) = 3dV ar(URt)2[ (1�( bDXt�1)2�2 bDXt�1 bCXt�1�( bCXt�1)2(1�( bDXt�1)2�2 bDXt�1 bCXt�1�(3 bCXt�1)2 ] > 3dV ar(URt)2,

and kurtosis of models with jump is

EJump(UR
4
t ) = 3E(h2t;garch_J) + 32q[2E(ht;garch_J) + 2] = 3gV ar(URt)2 +

3q4(1 + q) > 3(gV ar(URt)2).3.

Thus we can set up the sufficient and necessary conditions for jump model

to have fatter tails given the unconditional volatility is less, equal or greater than

that of pure diffusion model.

In summary, from the model analysis, we conclude that GARCH-typed and

EGARCH-typed in Mean with jump models have stronger power and flexibility

in describing the conditional and unconditional volatility and kurtosis such that

it is not suprised if performance of difussion with jump models is better than

3Assume B0;C;D > 0 to insure E(h)2 = E(h2).
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pure difussion models. The estimation results in section 5 will tell us how mcuh

difussion with jump models outperform pure difussion models.

3.4 Data

Our data sample starts from 1/21/1957, the inauguration date of President

Eisenhower, to 12/31/2010, and the underlying data are CRSP value weighted

daily returns with dividend included. There are eleven presidents, six of whom

are Republican and five are Democratic. To control the effect of business cycle,

we include the contraction indicator, defined by NBER, as one of explaining fac-

tors. Panel A of Table 3-4-1 contains the presidency information and descriptive

statistics for each presidency period. The averaged daily return is 0.042%, and

the daily standard deviation is 0.953% for the total sample size of 50 years. Panel

B compares the return statistics for different parties in White House. Democratic

presidencies have higher averaged daily return than Republican presidencies

(0.06% vs. 0.03%), and the standard deviation of daily return during Demo-

cratic administration is a bit lower than that during Republican administration

(0.886% vs. 0.995%). The result is robust if the sample was divided into subsam-

ple of (1957-2001, 1957-1989 and 1989-2010). Another interesting stylised fact in

Panel B is that the kurtosis is much larger during Republican presidencies both

in the whole sample and sub-samples.
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3.5 Empirical Results

The estimation results of pure difussion models, difussion models in mean, and

difussion model in mean with jump are demonstrated in Table 3-5-1, Table 3-

5-2 and Table 3-5-3. First, all of 18 models show that presidency factor affects

conditional volatility, as we can observe either C1; D1;;W1 or L1 is significant in

explaining the conditional volatility. Moreover, the conditional volatiltiy on di-

fussion process does play significant role to explain the return in GARCH-tpyed

models and marginal significant role in EGARCH-typed models, while we don’t

find volatility brought by jump has significant power to explain return except. If

we focus on jump models, there are strong evidences showing presidency effect

increases jump probability while it decrease the persistence of volatility cluster-

ing. Conversely, contraction generally has no incremental effect on jump proba-

bility or on volatility of difussion process except GARCH(1,1)-LX-BJ-M model.

As for the presidency and business cycle effect on mean return, after control-

ling the volatility risk premium, the political factor has negative and marginal

significant effect on return. We also have no evidence showing that presidency

and contraction have effect on volatility asymmetry.

From the perspective of model performance, GARCH-typed in Mean with

jump models outperforms GARCH-typed in Mean models and GARCH-typed

models. The log-likelihood increase at least more than 100 for jump models.

After adjusting the number of parameters, the best models among 18 models is

E-GARCH(1,1)-LX-BJ-M model. If we only compare within groups of difussion,

difussion in mean and difussion with jump, EGACH-typed models performe

better than GARCH-typed models by higher loglikelihood. On the other hand,

using T-GARCH model to incorporate political and business cycle factors beats
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the GARCH-typed models with linear addition or with expoential form which

incorporates exogenous factors.

One of the interesting results among models is risk premium on difussion

volatility. It can be observaed that the premium on GARCH-typed in mean and

GARCH-typed in mean with jump is about 0:12 and 0:1, while the premium is

about 0:04 or 0:05 for EGARCH-typed in mean and EGARCH-typed in mean

with jump models. Alternatively speaking, in grach typed model enduring 1%

conditional volatilty requires 0:1% or 0:12% return and 0:04% or 0:05% return

for EGARCH-typed models. The premium, 0:1, on conditional volatility can

be considered as the premium bearing short run risk while the Sharpe ratio on

US indexes, based on unconditional volatility, is generally about 0:4 and can be

considered as the premium to bear long run risk. However, estimated political

and economic effect delivered by different models to explain mean return move-

ment seems not consistent. For pure difussion in mean model contraction has

significant negative effect on mean return, but significance ceases when jump

is included into the models. On the other hand, the political factors are signif-

icant in GARCH-typed difussion models, but it is not the case with EGARCH

difussion models. After jump is incorporated, presidency effect is marginally

significant for all models with jump except E-X-GARCH-LX-BJ-M model.

The constant jump arrival probability also differs among models. Daily con-

stant arrival probability ranges from 0:05% to 3:3% and political factor increase

arrival probability by from 0:15% to 0:42% with t-stat greater than 2, while in

most models business cycle factor demonstrates insignificant effect on jump ar-

rival probability. After integrating jump process into the model, we also ob-

serve a decrease in the persistence of conditional variance of return in GARCH
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equation. However, it is amazing to find that risk premium on the jumps is in-

significant. The jump risk premium, �2, ranges from �2:38 to 46:21 with t-stat

lower than 1:64 for most models. If we check the arrival probability conditional

on political factors, the probability is from 0:31% to 3:63%, which implies that

expected jump frequency about 0:8 to 9:1 times a year. Additionally, estimated

jump size is from 0:000331 to 0:00049, which implies jump size is from 1:8% to

2:21% in return. Becuase of the nature of the data, if jump size is defined at

higher threshold, the arrival probability of the jump is certainly lower. We can

observe this negative pattern in arrival probability and jump sized estimated in

the model. Though we conclude that political factor affects conditional volatil-

ity, the presidency effect does not necessarily increase the conditional volatility,

and we will discuss this issue in the next section, model analysis.

3.6 Model analysis

Here, we pick TGARCH(1,1)-BJ-X for advanced model analysis, which can also

be applied to other models. The conditional return of TGARCH(1,1) follows a

normal mixture distribution:

f(rtjIt�1) = (1� q) exp(�(rt�AXt��Ht)
2

2ht
) 1p

2�ht
+ q exp(�(rt�AXt��Ht)

2

2(ht+2)
) 1p

2�(ht+2)

Model estimation can then be based on MLE(Maximum Likelihood Estima-

tion) with the following log-likelihood function:

Max
�=fA;B0;C;D;�;g

TP
t=1

log(f(rtjIt�1))
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The whole conditional variance, which can be decomposed into combina-

tions from diffussion and jump processes, is V ar(rtjIt�1) = ht + q2. The effect

of presidency dummy variable on conditional variance is

8><>:
�V ar(rtjIt�1)
�DR;t�1

= �ht
�DR;t�1

+ �qr2

�DR;t�1
= C1(rt�1�AX t�1��H t�1)

2+D1ht�1+L1
2

= �0:0168(URt�1)2 + 0:0021 � (2:21%)2, (3� 1)8><>:
�V ar(rt+kjIt�1)

�DR;t�1
= �ht+k
�ht+k�1

�ht+k�1
�ht+k�2

:: �ht
�DR;t�1

= (D0+D1+D2)
k[C1(rt�1�AX t�1��H t�1)

2]

= 0:89k[�0:0168 � (URt�1)2], (3� 2)
,

By estimation result, D1 = 0; D2 = 0; and we let URt�1 = rt�1 � AXt�1 � �Ht�1.

The term (rt�1�AX t�1��H t�1) can be considered as unexpected return and

is denoted by URt�1. Based on the model, we find that if the Republicant is

in presidency, the conditional volatility, ht, increases because of jump inten-

sity raised by presidency effect, while the effect by past unexpected innovation

is negative. In other words, if the unexpected innovation falls out of interval

(�
q

0:0021�(2:21%)2
0:0168

;+
q

0:0021�(2:21%)2
0:0168

), the Republicant presidency lowers the con-

ditional volatility. Conversely, if unexpected innovation lies inside the interval,

the Republicant presidency raises the conditional volatility.

We also derive the unconditional variance and unconditional kurtosis and

are able to compare them with those of other models.

E[(rt�1�AX t�1��H t�1)
2] = B0+qr2

1�B1�B2

E[(rt�1�AX t�1��H t�1)
4] = 3B0(1+B1+B2)+6B0qr2(1+B1)+3qr4(1+2q�B0)

(1�B1�B2)(1�B22�2B1B2�3B21)
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3.7 Robustness analysis

In this section, we alter presidency periods artificially and use TGARCH(1,1)-

BJ-X model to test the robustness of the significance of the political factor. First,

we set the political dummy variable 1 in odd dates and 0 in even dates. (here-

after called R1 experimental test.) Second, political dummy is set to 1 in odd

months and 0 in even months (hereafter called R2 experimental test.) Finally

we extend the real setting each of the actual the Republican presidency so that it

overlaps with the following Democratic presidency and check if the significance

of the coefficient decreases. Specifically, we first extend each Republican presi-

dency by 1 year longer than actual period and then gradually extend it to a total

of 6 years longer. If political parties really can explain returns, we will expect

a diminishing significance of presidency effect as we expand the Republican

presidency artificially.

Table 3-7-1 shows the estimation results. In experimental test R1 and R2,

the political effects in drift, diffusion and jump processes are all insignificant.

If we try to extend the Republican presidency artificially to over 4 years, the

presidency dummy becames insignificant in each process.

3.8 Conclusion

From economic perspective, the diffusion and jump processes represent very

different inflow of information. While diffusion process represents a relatively

slow shift of return dynamics, incorporating jumps can induce a sudden big

change in return. Our preliminary result shows that Republican presidency ef-

43



fect on volatility mainly goes through jump process, but at the same time it also

decreases the effect of unexpected innovation on conditional volatility. Presi-

dency effect only demonstrates its significant to have negative impact on mean

return after risk premium is incorporate into return. However, the result shows

that the political effect is significant at marginal level or insignificant in some

models. Our TGARCH(1,1)-BJ-X model analysis conclude that if unexpected

innovation is huge, the conditional volatility is relatively lower comparing to

Democratic presidency. As the previous literature documented an excessive

negative return during Republican presidency, our results confirm the previ-

ous conclusion after further controlling for business cycle, diffusion volatility

risk premium and jump risk premium.

The paper include the preliminary results of 18 models and we are still work-

ing on related issues. First we plan to use simulation to draw the return distribu-

tion diagram for each model and compare the return distributions among those

models. Secondly, we will draw the impulsive function of each model to check

political effect on conditional volatility for multiple periods. Third, we will use

CRSP 10 decimal capital size index returns to investigate politicla cycle effect on

stocks in different cap. Finally, as volatility risk premium is incorporated into

return, we derive a risk-neutral process and thus are able to price the political

uncertainty.
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CHAPTER 4

VOLATILITY UNCERTAINTY, TIME DECAY, AND OPTION BID-ASK

SPREADS

4.1 Introduction

While much of the literature is focused on investigating trading prices in the

options market, few studies have examined option quoting prices. Similarly,

the behavior of market makers in the stock market has been studied extensively,

but only a few works have specifically examined market making behavior in the

derivatives market. The sparsity of related studies can be attributed to the low

availability of high frequency data that includes quoting information; therefore,

compared to the studies about market making behavior in the stock market,

research related to the bid-ask volatility spread in the option market has yet to

be well explored.

Among the studies investigating quotation prices in the options market, the

majority focus on price discovery of the underlying asset. For example, Mu-

ravyev, Pearson and Broussard (2012), Hsieh, Lee and Yuan (2008), and Holow-

czak, Simaan, and Wu (2007) employed put-call parity to examine underlying

price information contained in options trading. On the other hand, Chakravarty,

Huseying, and Mayhew (2004) extended the work of Hasbrouck (1995) to ex-

amine the information contribution from the options market price discovery in

the stock market. They also concluded that the volume ratio and spread ratio

are significant in explaining information shares from the options market to the

stock market.1 In addition, Easley, O’Hara and Srinivas (1998) found that option

1Chakravarty, Huseying, and Mayhew (2004) defined a volume ratio as the ratio of option
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volumes lead stock price changes, and Pan and Poteshman (2006) showed that

a put-call ratio constructed using option volume has predictive power for the

weekly return of its underlying asset.

In contrast to the aforementioned research, our paper focuses on the volatil-

ity spread per se and constructs a micro-structure model to explain the occur-

rence of a periodic pattern. The pattern refers to an increasing spread in terms of

implied volatility, which was previously attributed to a maturity effect. Chong,

Ding and Tan (2003), henceforth, CDT (2003), wrote the first paper addressing

the maturity effect in the bid-ask volatility spread, the calculation of which is

based on the Black-Scholes-Merton model. They claim there are two risks re-

lated to maturity. First, higher gamma risk for short term options drives the

market to demand a higher volatility spread for compensation.1 Second, be-

cause they investigated OTC currency options, the trading involves counter

party credit (default) risk which increases when the contract duration increases.

Through their empirical work, CDT (2003) concluded that the implied volatil-

ity spread increases as maturity decreases, suggesting gamma risk dominates

counterparty risk.

Following CDT (2003), Cao and Wei (2010) and Wei and Zheng (2010) used

Ivy DB’s OptionMetrics data to investigate the impact of trading activities on the

liquidity of stock options. Instead of adopting a volatility measure, those two

papers utilized the spread defined in terms of a dollar ratio, dividing the dollar

spread by the midpoint of the bid and ask prices. Furthermore, although CW

(2010) did not investigate maturity effect in their regression models, WZ (2010)

volume to stock volume and defined a spread ratio as the ratio of effective option spread to
stock spread.

1CDT (2003) considered gamma risk as market risk, and they did not provide an explanation
for the source of gamma risk.
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also found the existence of the maturity effect for dollar ratio measure. How-

ever, this liquidity measure has problems. The first shortcoming is its weakness

to link the spread to options pricing factors, such as volatility. Therefore, inter-

preting the quoted spread is difficult. Second, the pattern of this ratio measure

can be the natural result of pricing models. For example, given fixed parame-

ters and using the Black-Scholes-Merton model, the dollar ratio spread exhibits

an upward trend as time approaches to expiration. This trend is generated nat-

urally by the non-linear relationship between the pricing factors and options

prices so that any empirical study, investigating options quotation spread in

dollar ratio measure, needs to control upward increasing trend in regression

models.2

In this Chapter, we provide empirical evidence confirming the "maturity ef-

fect" by using two different model-free IMV volatility estimations. Furthermore,

we explain the observed pattern, after introducing the concept of disparity be-

tween the time decay of derivatives and time decay of required hedging risk

premium. Along with our theoretical work, we provide empirical works testing

our theoretical findings. The paper is organized as follows. In section 4.2, the

volatility spread pattern in the option market is presented. Section 4.3 contains

details of the model setup, equilibrium, and propositions. We separate an analy-

sis of volatility uncertainty in section 4.4, because volatility uncertainty needs

to be defined before we connect it to quoting spread. In section 4.5, descriptive

statistics are summarized. Section 4.6 provides econometric tests on proposi-

tions listed in the previous sections. Finally conclusions as well as important

implications of this research are presented in section 4.7.

2An numerical example is given in Figure 4-1-1.
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4.2 Stylized Facts

Using implied volatility is usually considered the most valid way to study the

price of options. Until 2003, the CBOE still used the Black-Scholes-Merton

model to derive IMV. However, criticism had risen as more and more pricing

models, which assume more realistic assumptions, were developed. The CBOE

thus employed a model-free IMV method for VIX index calculation in 2003.

Now there are two methods published for model-free IMV calculation. The first

estimation method was proposed by Carr and Madan (1998), henceforth, CM.3 It

utilized only out of money (OTM) call and put options for implied volatility cal-

culation and was later slightly modified by the CBOE to become the VIX index

formula. This paper follows the CBOE modification to calculate CM IMV. While

the CBOE further weight-averages the first and second nearest term contracts

to construct the VIX index,4 we calculate implied volatility for only the nearest

month contract because our research is investigating the volatility spread pat-

tern over the time period of a contract. The second method is suggested by Jiang

and Tian (2005), henceforth, JT, who used all call options to estimate model-free

implied volatility.

In Figure 4-2-1, we plot CM IMV, JT IMV and high frequency intraday re-

alized volatility (RV) together.5 The underlying asset of those 3 volatility mea-

sures is the Taiwan weight averaged index. The index option is traded at the

Taiwan Futures Exchange and is the European-style option. Our data sample

period ranges from December 20, 2007 to July 21, 2010. During the sample pe-

3The formulas of CM IMV, JT IMV and original CM(1998) estimation are listed in Appendix
B.

4Becuase the calculation of CBOE VIX index is weight-averaged implied volatility of two
nearest term contracts, the VIX index is commonly considered an expected volatility for the
next 30 days.

5The calculation of RV is defined in the section 6, Empirical Work.
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riod, the number of daily observations is 630. For a given time, t, IMV can

be considered a forward looking and expected volatility for future time period

T � t, where T is the expiration date of the option, but RV is realized volatility

occurring for the past data window [t�(T�t); t]. If volatility follows the Markov

and diffusion process, then RV defined over [t� (T � t); t] is an unbiased estima-

tor for future volatility over time period T � t. As can be seen, three volatility

indexes move closely with each other and reached the peak, above 70%, during

the 2008 financial crisis. The related descriptive statistics are listed in Table 4-5-1

and will be discussed in a later section.

Figure 4-2-2 and 4-2-3 each contains two charts. The top and bottom charts

represent the volatility spread based on the CM and JT IMV measures respec-

tively. After demonstrating volatility spread in Figure 4-2-2, we divide volatility

spread by implied volatility and show spread in percentage of IMV in Figure 4-

2-3. In both figures, the vertical dashed lines represent expiration dates, and the

circle sign denotes the volatility spread in Figure 4-2-2 and percentage spread in

Figure 4-2-3 for 30 consecutive nearest-term contracts which have 18 to 25 days

to maturity. We also plot IMV with the plus symbol for reader’s reference. As

shown in Figure 4-2-2, volatility spreads of both IMV measures enlarge with in-

creasing magnitude when time approaches expiration date. Though quotations

in different IMV measures display the same pattern, spread widths are quite dif-

ferent for two measures. The spread of CM IMV measure starts approximately

at 0.2% and finally moves up to more than 0.5% a few days before expiration.

However, spread based on JT IMV measure generally starts above 1% and

reaches more than 10% at the last few trading days of a contract.6 No matter how

6CDT(2003) investigated ATM options of different currencies. They show that the volatility
spread starts from 2%~6% for options with 1 year TTM, increases gradually untill the last month,
enlarges rapidly during the last month and finally reaches 8-16%.
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implied volatility changes, the mentioned volatility pattern occurs for every

contract and obviously dominates any movement which other factors could re-

sult in. Following Figure 4-2-2, we further investigate if the pattern remains for

the percentage spread in Figure 4-2-3. The percentage spread, which employs

CM IMV measure, in the top chart starts commonly about 0.7% when time to

maturity is still a month and increases to over 10% at the final few days of a

contract, while the percentage spread by JT IMV measurement in the next chart

begins at about 2% and finally goes up to more than 40%. Moreover, we also

can observe convexity for pattern of both volatility and percentage spreads.7

Because calculation of model-free IMV requires information on contracts

over numerous strikes, we are not able to show spread pattern for a specific

strike. Given that JT IMV calculation requires prices of all call options over all

different strikes and that CM IMV calculation includes prices of all OTM op-

tions, the pattern must happen extensively over contracts of different strikes. In

Appendix C-35, we also modify CM formula so that we can extract information

only from all ITM options. Subsequently we can show that volatility spread

based on the prices of ITM options also demonstrates a similar pattern in Figure

4-2-4 and 4-2-5. Thus, this observed pattern is not limited to a specific strike

contract. Moreover, because CDT (2003) used currency options traded over the

counter in Singapore and documented the maturity effect, it is quite implausible

that the previously mentioned patterns are due to regulations; (e.g., minimum

tick). We also do not think the pattern is due to the decreasing participation

of traders, for it cannot account for why spread starts to enlarge in weeks with

heavy transactions.

7We also display the spread cross all contracts in the form of panel data in Figure 4-2-6 and
4-2-7.
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Volatility has been considered the most important factor in options pricing;

therefore, many researchers think of volatility bid-ask spread as either a good

indication containing volatility information or an indication containing the in-

formation of underlying return. As our graphs strongly imply that the maturity

effect dominates factors that in any other case could affect quoting spread, the

observed stylized facts point out the challenge for studies on related topics. To

verify the patterns thoroughly, our research validates the stylized facts through

constructing a theoretical model which explains the sources of the maturity ef-

fect and uses econometric methods to test our theoretical findings.

4.3 Model

In this section, we present a model describing the optimization problem for ho-

mogenous market makers, who give quotes on the options market and face two

possible estimated volatility states. Once a transaction occurs, market makers

immediately implement the delta hedge to remove price risk. If market makers

sell an option at the asking price, they buy the delta portion of the underlying

asset for hedging. Conversely, if they buy at the bidding price, they short the

delta portion of the underlying asset. With two volatility states, a 4-branch tree

can be constructed. On this tree, the inner and outer pairs are determined by low

and high volatility estimates. Unlike in a 2-branch tree, market makers cannot

perfectly hedge an option using its underlying asset. Therefore, when providing

the liquidity in the options market, market makers need extra profit in addition

to fair expected option value to compensate for the hedging variance.

Before addressing the model setup, we first explain the idea of the hedging

51



uncertainty under the structure where traders face volatility uncertainty in an

incomplete market. The Black-Scholes-Merton partial differential equation is

applied here for illustration.8 Next, we discuss arbitrage pricing when traders

face two possible volatility states and later connect it to the model equilibrium.

Equilibrium implications, including maturity effect, are provided in the final

subsection.

4.3.1 Uncertainty of Hedging

The Black-Scholes-Merton differential equation follows

@C
@�
+ 1

2
�2S2 @

2C
@S2

+ rS @C
@S
� rC = 0

) [@C
@�
]�t = �1

2
�2�tS2 @

2C
@S2

� r�tS @C
@S
+ r�tC , (4� 1)

C is the options price, which is a function of the parameters, (�2, � , S, r).

S represents the spot price, and parameters, (�2, � , r), are annualized return

volatility, time to maturity, and interest rate respectively. In this subsection, we

take the perspective of traders who write (sell) ATM options for illustrating the

concept of hedging uncertainty. As shown in Figure 4, the solid bold line stands

for the prices of call options with strike, X , and TTM, � 1, over different spot

prices. After the transaction occurs, market makers buy the delta, @C
@S

, portion

of the unit underlying asset for hedging and will rewind it at expiration. With

the cash inflow from selling an option and with the position for hedging, mar-

ket makers hedge the linear price movement of an option, while the curvature
8The stochastic volatility model also can be applied for illustration because it assumes con-

stant variance of volatility, and traders still face uncertainty of this parameter. For simplicity,
we use the Black-Scholes-Merton differential equation to explain the concept of hedging uncer-
tainty caused by volatility uncertainty.
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change of an options price, 1
2
�2�tS2 @

2C
@S2

, cannot be hedged by the underlying

asset. Moreover, the cost of constructing a hedging portfolio should be con-

sidered. This cost includes interest received from cash inflow, C, for selling

options and interest paid for buying the delta-hedging position. On the other

side, the probability that the final price will go further above X decreases as

time passes. Hence, the options price decreases, and writers have the advan-

tage of time value decay, @C
@�

, ceteris paribus. In equation (4-1), this value decay

of an option, [@C
@�
]�t, should equal the sum of hedging loss as well as cost of

constructing a hedge portfolio.

Considering time change from �1 to �2, new options prices on the solid line

shift to the dotted line in Figure 4-3-1. If an option was sold at a volatility higher

than the real volatility, the market makers earn from selling the options. This

case corresponds to the segment where a dotted-dashed line is above the dotted

line in Figure 4-3-1. Conversely, buying the options with hedging suffers from

time decay but benefits from large stock price movement. If real volatility is

higher than buying volatility, market makers earn from buying options. If the

options contract is short term and the interest rate is low, the time (decay) value

of options is mainly determined by the curvature, gamma; thus, the assumption

of return distribution decides the decay rate of an option.

In reality, market makers encounter volatility (model) uncertainty such that

they would charge extra profit over the fair options price to compensate for

hedging risk caused by volatility uncertainty.9 However, the decay of charged

premium in the option price is determined by return distribution and may be

different from the decay of required premium decided by utility function. The

9The analysis here assumes that traders cannot hedge continuously and the market is incom-
plete.
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disparity between two decay rates is the key ingredient in this paper. By using

mean-variance utility function, we show that the required markup for volatil-

ity uncertainty decays at a relatively lower speed.10 Therefore, as time passes,

market makers need to increase asking volatility and decrease bidding volatil-

ity to maintain quotation prices that satisfy the conditions allowing liquidity

providers to engage in quoting. Further details will be discussed in the follow-

ing subsections.

4.3.2 Arbitrage Pricing

In our model, market makers serve as risk-averse liquidity providers of bidding

and asking prices in the market. They apply the static delta hedge if an op-

tion transaction occurs. Market makers are given information from two volatil-

ity forecasting models, which could be ARCH/GARCH-in-Mean family typed

models or realized volatility forecasting models. Under no arbitrage, given that

our market is incomplete, there exist non-unique risk neutral probabilities such

that the price of an option is equal to a expected price discounted directly by

risk-free rate.

There are two different ways to explain the role of the binomial options pric-

ing model in our setup. First, traders can use different econometric methods,

either parametric or non-parametric, to estimate parameters of an option pric-

ing model and then plug estimated parameters into a pricing model. And we

use the binomial model as a representative model, for that binomial tree can

10Mean-variance utility function is based on exponential utility function and normal distrib-
ution assumption on future payoffs. It is extensively applied in the literature, and it helps us to
deliver the analytical results. Our results should be robust as long as exponential utility function
well characterizes risk-adverse behavior.
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intuitively illustrate the ideas and that the binomial model possesses every im-

portant characteristic that most option pricing models have. Alternatively, the

binomial model can be regarded as a simplification for the numerical method.

Because volatility models are also numerical methods for pricing options, plug-

ging volatility delivered by a certain volatility model into the binomial model

makes pricing of the binomial model close to the pricing of that specified volatil-

ity model.11 Here we should emphasize that the volatility forecasting models

need to be estimated directly from return data rather than calibrated by option

trading prices such that the estimated volatility does not necessarily deliver risk

neutral probability discounting fair option values to a trading (observed) price.

The observed IMV is � ,and �L and �H are volatility estimated by forecast-

ing models, in which L < 1 < H . While L and H are latent and exogenously

given, � can be thought of as IMV of the previous day. Conditional on one

volatility state, the tree is complete and the �-conditional risk neutral probabil-

ities are uniquely determined. Let ��L and ��H be these unique �-conditional

risk neutral probabilities. However, given that a 4-branch tree is contructed by

two possible volatility states, the market is incomplete. Let (�; 1 � �) be the

non-unique risk-neutral probabilities over the two volatility states (�L; �H). In

a subsequent section, it will be shown that market makers acting optimally, in

equilibrium, determine these risk neutral probabilities. Figure 4-3-2 demon-

strates the probabilistic structure and price movement of the underlying asset.

Following equations need to be satisfied by the conditional risk neutral proba-

bilities, (��L; ��H), of two volatility states. Without loss of generality, we assume

zero risk-free rate in our model.
11If the volatility model has the assumption that return follows normal distribution, then the

mean and variance can completely characterize the distribution.
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8><>: ��L � u�L + (1� ��L) � d�L = 1

��L � u2�L + (1� ��L) � d2�L � [��L � u�L + (1� ��L) � d�L]2 = (�L)2�
, (4� 2)

8><>: ��H � u�H + (1� ��H) � d�H = 1

��H � u2�H + (1� ��H) � d2�H � [��H � u�H + (1� ��H) � d�H ]2 = (�H)2�
,

(4� 3)

u�L and u�H are the returns corresponding to two upper nodes among four

branches, while d�L and d�H are the returns at two lower nodes. � is TTM on

yearly basis, so that, if time to maturity is 1 year, � equals 1. The initial price, P0,

can possibly end up with the prices and probabilities listed as follows.

8>>>>>>><>>>>>>>:

P0 � u�H with probability pu�H = (1� �) � ��H

P0 � u�L with probability pu�L = � � ��L

P0 � d�L with probability pd�L = � � (1� ��L)

P0 � d�H with probability pd�H = (1� �) � ��H

The arbitrage-free values for the call options are C(� ; V �) = �!C(� ; �L) +

(1 � �!)C(� ; �H), where V 2 fa; bg and ! 2 fA;Bg. a and b are asking and

bidding volatility multipliers such that V � is the quoting volatility. C(� ; �L) and

C(� ; �H) are fair values of call options over two possible volatility states and

will be explained in detail at next subsection. �A and �B denote the risk neutral

probabilities which discount fair options values to observed quoting call prices

valued at asking volatility and bidding volatility. The next section determins �!

such that equilibrium quoting price equals �!C(� ; �L)+(1��!)C(� ; �H). This

setup allows us to focus on the volatility (model) uncertainty, while it sets aside

the issue of premium on equity return risk by assuming that liquidity providers

adopt estimations delivered by volatility forecasting models.

56



4.3.3 Market Maker’s Problem

This section elucidates the problem faced by market makers. Based on their

subjective probabilities, (�; 1��), over (�L; �H), market makers maximize their

utility by choosing q and � at a given call price, valued at volatility, V �, where

V 2 fa; bg, and a and b are volatility multipliers for asking and bidding option

prices. q is the option quoting amount submitted by the market maker, and �A

and �B are the delta hedge ratios for writing and buying a unit of ATM option.

If a transaction happens, trader’s final wealth, W!, ! 2 fA;Bg, falls into four

outcomes, (W!;u�H ;W!;u�L ;W!;d�L ;W!;d�H ), at expiration date. WA and WB are

the final outcomes corresponding to writing (selling) and buying a ATM call

option with hedging. For a hedging portfolio containing a ATM call option that

was written, the outcomes are

8>>>>>>><>>>>>>>:

WA;u
�H
= C(� ; a�)� CN(u�H) + �AP0(u�H � 1) = C�;a � C1 +�AS1

WA;u
�L
= C(� ; a�)� CN(u�L) + �AP0(u�L � 1) = C�;a � C2 +�AS2

WA;d�L = C(� ; a�)� CN(d�L) + �AP0(d�L � 1) = C�;a � C3 +�AS3

WA;d�H = C(� ; a�)� CN(d�H) + �AP0(d�H � 1) = C�;a � C4 +�AS4

If market makers buy the ATM call option at a price valued at b�, the hedging

portfolio outcomes are

8>>>>>>><>>>>>>>:

WB;u
�H
= CN(u�H)� C(� ; b�) + �BP0(u�H � 1) = C1 � C�;b +�BS1

WB;u
�L
= CN(u�L)� C(� ; b�) + �BP0(u�L � 1) = C2 � C�;b +�BS2

WB;d�L = CN(d�L)� C(� ; b�) + �BP0(d�L � 1) = C3 � C�;b +�BS3

WB;d�H = CN(d�H)� C(� ; b�) + �BP0(d�H � 1) = C4 � C�;b +�BS4

where
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CN(u�H) = C1; CN(u�L) = C2; CN(d�L) = C3; CN(d�H) = C4

P0(u�H � 1) = S1; P0(u�L � 1) = S2; P0(d�L � 1) = S3; P0(d�H � 1) = S4

Ci =Max(Si + P0 �X; 0); i = f1; 2; 3; 4g ; X :exercise price

C(� ; V �) refers to the price of a call option with maturity � and priced at

volatility, V � �. CN(m) is the intrinsic value of options at expiration, where

m 2 fu�H ; u�L; d�L; d�Hg, and Ci and Si, i 2 f1; 2; 3; 4g, are used to denote final

call prices and stock dollar payoffs for four end nodes. In summary, WA (WB)

is the portfolio payoff at expiration, and the portfolio contains selling (buy-

ing) one call options to get (pay) the amount of C�;a (C�;b) as well as buying

�A(�B) shares of stock, which requires cash outflow (inflow) �AP0 (�BP0) at

the beginning. At the end, the total payoff includes the possible cash outflow

(inflow), CN(m), due to the obligation (right) of writing (buying) a call, and

inflow(outflow) from unwinding �A(�B) shares of stock.

In the following sections, our discussion primarily focuses on the maximiza-

tion problem of writing a call option. The problem of buying derivatives is an

analogy, and the results are both listed in the appendix. The optimization prob-

lem for liquidity providers is as follows:12

arg max
q;�A

qE(WA)� 1

V ar(qWA)� cq , (4� 4)

where E(.) and V (.) are expected profit and hedging variance of writing an

option with hedging. c is the transaction or opportunity cost for trading, and

WA is the profit for a portfolio at expiration. Each unit of the portfolio includes

12Constructing the optimization problem of giving the bidding price is analogous to giving
the asking price; however, the expected profit of buying options is not the same as writing a
call options. Expected profit is C(� ; a�)��C(� ; �L)� (1��)C(� ; �H) for writing a call option,
while it is �C(� ; �L) + (1� �)C(� ; �H)� C(� ; b�) for buying a call.
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shorting an option and buying�A shares of underlying asset.  is the risk aver-

sion coefficient, and q is the quoting amount. The model can also be refined

in an alternative way. We can use
_
q to represent inventory (open interest), such

that traders will take open interest into consideration. Equation (4-5) refines this

idea.

arg max
q;�A

qE(WA)� 1

[V ar((q +

_
q)WA)� V ar(

_
qWA)] , (4� 5)

) arg max
q;�A

qE(WA)� q2


V ar(WA)� 2q

�
q

V ar(WA)

Given that traders had open interest position
_
q, the hedging variance of the

new integrated position becomes V ar((q +
_
q)WA) as a whole. While V ar(

_
qWA)

is generated by the old position,
�
q , and is compensated by the previous transac-

tion, we subtract it from total variance. After we set 2
�
q

V ar(WA) equals c,13 the

maximization problem (4-5) now becomes (4-4). Hence, c can be related to the

inventory effect of existing open interest.

Because equation (4-2) and (4-3) need to be satisfied, the expected payoff

from stock is always zero.14 So, intuitively, expected payoff, E(WA), is the sell-

ing price minus expected fair values of options in two different volatility states.

After rearrangement, the expected payoff follows, and it is exactly the difference

between the selling (buying) price and expected intrinsic values of CN(m).

13We will later show that the optimal solution for � does not depend on q.
14Because the expected return is discounted by conditional risk neutral probability, it means

expected return is 0 after adjustment by equity return risk. Equations (2) and (3) allow us to
focus on analyzing volatility (model) uncertainty and setting the issue of equity return risk
aside.
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E(WA) = C(� ; a�)� �C(� ; �L)� (1� �)C(� ; �H)

E(WB) = �C(� ; b�) + �C(� ; �L) + (1� �)C(� ; �H)

and C(� ; �L) = ��LCN(u�L) + (1� ��L)CN(d�L)

C(� ; �H) = ��HCN(u�H) + (1� ��H)CN(d�H)

(Deduction is shown in Proof 4-1)

The expected price using the subjective probabilities is

�C(� ; �L) + (1� �)C(� ; �H). Unless liquidity providers are not risk averse,

subjectively expected price is supposed to be below the asking price because the

asking price, C(� ; a�), should contain the premium for volatility (model) risk.

The optimal solution needs to satisfy the following first order conditions, and

the solution refers to the optimal individual supply of writing the call options.

F.O.C of q : E(WA)� 2q�


V ar(WA)� c = 0 , (4� 6)

F.O.C of �A :
@V ar(WA)
@�A

= 0 , (4� 7)

8>>>>>>><>>>>>>>:

q� = fC(�;a�)��C(�;�L)�(1��)C(�;�H)�cg
2V ar(WA)

if C(� ; a�) > �C(� ; �L) + (1� �)C(� ; �H)� q�

2
V ar(WA)� c

q� = 0

if C(� ; a�) � �C(� ; �L) + (1� �)C(� ; �H)� q�

2
V ar(WA)� c

Moreover, �� is independent of q�, because expected payoff of holding un-

derlying is always zero; therefore, stock for hedging only affects the variance of

hedging results rather than expected payoff. The optimal delta position mini-

mizing hedging variance is mainly determined by volatility estimations, and its

formula is,

60



��
A =

4P
i=1
PiSiCi

4P
i=1
PiS2i

and ��
B = �

4P
i=1
PiSiCi

4P
i=1
PiS2i

(Detail is shown in Proof 4-2)

��
A and ��

B are the delta hedging positions for writing and buying a call op-

tion, and (P1; P2; P3; P4) are the subjective probabilities, ((1� �)��H ; ���L; �(1�

��L); (1� �)(1� ��H)), for each branch. While (c1; c2; c3; c4) are four possible in-

trinsic values of a call option, (S1; S2; S3; S4) are the stock payoffs at expiration.

We further check if delta, ��
! , makes sense for two particular strike prices. It

can be shown that��
A(�

�
B) is approximately 0:5(�0:5) for ATM call options. On

the other hand, ��
A(�

�
B) is approaching 1(�1) if the strike price drops to 0.15

There are other ways to construct the decision making problem for market

makers. For example, market makers may try to minimize the hedging risk,

while requiring minimum expected return.

Alternative Problem (1)

8><>:
arg min

q;�A
V ar(qWA)

s.t. E(qWA) � �

Additionally, market makers may set their priorities on pursuing minimized

variance. Then, after the portfolio that minimizes hedging variance is con-

structed, market makers can try to optimize profit.

Alternative Problem (2)

8><>:
arg min

�A
V ar(qWA)

arg max
q;�A=�

�
A

qE(WA)� 1

V ar(qWA)� cq

15The related deduction of optimal delta for the ATM option is included in Appendix D-4.

61



Intuitively, because expected pay off of stock is zero, solutions of optimized

delta portion are the same for those optimization problems. Quoting amount

increases variance through the quadratic term so that optimal quoting amount is

bounded by asking price and coefficient of risk averse. In Proof 4-3 and 4-4, we

show that newly proposed decision making problems have the same solution

as the optimization problem (4) has.

4.3.4 Equilibrium

To understand the disparity between derivatives decay and decay for volatility

risk premium, a static equilibrium rather than dynamic equilibrium is applied

for our analysis here. As the Exchange commonly regulates liquidity providers

to quote minimum amount everyday and then allows eligible market makers to

enjoy discounted fee, we set up a regulated quoting amount, Q, that M homo-

geneous market makers are required to quote each day.

It is noteworthy that the regulated quoting amount is not the same as mar-

ket demand, in which quantity is the amount that demanders commit to buy

at given prices. Hence, our model always refers to the equilibrium of quoting

amount and quoting price instead of trading volume and trading price. In our

model, liquidity providers mainly care about hedging risk resulting from esti-

mation uncertainty.16 In a competitive environment, they provide the supply

of writing and buying derivatives given that selling or bidding price can com-

pensate for required risk premium and cost. This set up should be close to the

reality of the index options market, and private information is not as large a con-
16The optimization problems of bidding and quoting behavior are separated in this paper.

This assumption implies that market makers do not consider the possibility that delta hedging
positions for selling and buying options could offsets with each other.
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cern as it is in other markets. In the equilibrium, M homogenous traders will

finally compete until utility equals zero in a non-cooperative game. Therefore

we have the following equilibrium condition for the asking price quotation.

E(WA)� Q

V ar(WA)� c = 0 , (4� 8)

) C(� ; a��) = �C(� ; �L) + (1� �)C(� ; �H) + Q

V ar(WA) + c , (4� 9)

Similarly, the equilibrium condition for the bidding price is

E(WB)� Q

V ar(WB)� c = 0

) C(� ; b��) = �C(� ; �L) + (1� �)C(� ; �H)� Q

V ar(WB)� c (4� 10)

According to Equation (9), price should cover three parts, including ex-

pected fair price, �C(� ; L) + (1 � �)C(� ;H), required premium for hedging

variance, V ar(WA), and transaction cost, c. That is, E(WA), which equals

C(� ; a��)�(�C(� ; L) + (1� �)C(� ;H)), is extra profit, sold at volatility a��, and

it should cover the premium of hedging uncertainty and transaction cost. In the

following section, we utilize comparative static analysis based on equilibrium

condition (4-8) to derive our propositions. After setting exercise price equal to

spot price, we derive the options price, expected extra profit, and the variance

of hedging results for writing and buying an ATM call option through the bino-

mial pricing model. The equations of options price, expected extra profit, and

the variance of hedging results follow.

C(� ; V � �) = P0�V �(u�;V � � 1) = P0(1�e�V �
p
� )

eV �
p
��e�V �

p
� (e

V �
p
��1) = P0(eV �

p
�+e�V �

p
��2)

eV �
p
��e�V �

p
�
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E(WA) = P0(
ea�

p
�+e�a�

p
��2

ea�
p
��e�a�

p
� � � e�L

p
�+e��L

p
��2

e�L
p
��e��L

p
� � (1� �) e�H

p
�+e��H

p
��2

e�H
p
��e��H

p
� )

V ar(WA) = P 20 f�
�2A(e

2�L
p
��2e�L

p
�+2e��L

p
��e�2�L

p
� )+(1�2�A)(e2�L

p
��3e�L

p
�+3�e��L

p
� )

e�L
p
��e��L

p
�

+(1� �)�
2
A(e

2�H
p
��2e�H

p
�+2e��H

p
��e�2�H

p
� )+(1�2�A)(e2�H

p
��3e�H

p
�+3�e��H

p
� )

e�H
p
��e��H

p
�

�(� e�L
p
�+e��L

p
��2

e�L
p
��e��L

p
� + (1� �) e�H

p
�+e��H

p
��2

e�H
p
��e��H

p
� )

2g

E(WB) = P0(� eb�
p
�+e�b�

p
��2

eb�
p
��e�b�

p
� + � e

�L
p
�+e��L

p
��2

e�L
p
��e��L

p
� + (1� �) e�H

p
�+e��H

p
��2

e�H
p
��e��H

p
� )

V ar(WB) = P 20 f�
�2B(e

2�L
p
��2e�L

p
�+2e��L

p
��e�2�L

p
� )+(1+2�B)(e

2�L
p
��3e�L

p
�+3�e��L

p
� )

e�L
p
��e��L

p
�

+(1� �)�
2
B(e

2�H
p
��2e�H

p
�+2e��H

p
��e�2�H

p
� )+(1+2�B)(e

2�H
p
��3e�H

p
�+3�e��H

p
� )

e�H
p
��e��H

p
�

�(� e�L
p
�+e��L

p
��2

e�L
p
��e��L

p
� + (1� �) e�H

p
�+e��H

p
��2

e�H
p
��e��H

p
� )

2g

4.3.5 Equilibrium and Risk Neutral Probability

Here we discuss the link between the subjective probability constituting equi-

librium and risk neutral probability. Given that the volatility state is either �L

or �H , the risk neutral probability, �A , is determined by the equilibrium value

of the options, C(� ; a��), i.e.

C(� ; a��) = �AC(� ; L) + (1� �A)C(� ;H)

= P0 f�A � ��L(u�H � 1) + (1� �A) � ��H(u�H � 1)g

) �A =
C(�;H)�C(�;a��)
C(�;H)�C(�;L) =

��L(u�H�1)���a(u�a�1)
��L(u�H�1)���L(u�L�1)

On the other hand given the subjective probability, set
n
Q

V ar(WA) + c

o
=

P0� > 0 and plug it into the equilibrium condition.

C(� ; a��) = �C(� ; L) + (1� �)C(� ;H) + P0�

= P0 f���L(uL � 1) + (1� �)��H(u�H � 1) + �g
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This yields the following relation.

� = C(�;H�)+P0��C(�;a��)
C(�;H�)�C(�;L�) = ��H(u�H�1)+����a(u�a�1)

��L(u�H�1)���L(u�L�1)

Therefore, �A is smaller than �, where � and �A are the subjective and risk

neutral probability assigned to lower estimated volatility state. We can find a

multiplier, RNA, such that �A = � �RNA and

RNA =
�A
�

= C(�;H)�C(�;a�)
C(�;H)+P0��C(�;a�) =

��L(u�H�1)���a(u�a�1)
��H(u�H�1)+����a(u�a�1) < 1

In the model, equilibrium asking price is higher than fair value because risk

averse traders require risk premium compensation. Therefore, intuitively, given

that the risk neutral probability directly discounts fair values at the options of

two volatility states, the risk neutral probability assigned to lower estimated

volatility should be lower in that it needs to discount two fair options value to

a higher price. Similarly, for the equilibrium of buying options, we derive risk

neutral probability for bidding price in the following and show �B = � � RNB,

where RNB > 1. The risk neutral probability for the lower estimated volatility

is higher in that it discounts two fair option values into a price that is lower than

expected fair option price.

�B = C(�;�H)�C(�;b��)
C(�;�H)�C(�;�L) =

��L(u�H�1)���b(u�b�1)
��L(u�H�1)���L(u�L�1)

� = C(�;�H)�P0��C(�;b��)
C(�;�H)�C(�;�L) = ��H(u�H�1)�����a(u�b�1)

��L(u�H�1)���L(u�L�1)

RNB = C(�;�H)�C(�;b��)
C(�;�H)�P0��C(�;b��) =

��L(u�H�1)���b(u�b�1)
��H(u�H�1)�����b(u�b�1) > 1
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4.3.6 Equilibrium Implications

Applying comparative static analysis, we can explore the quoting strategies of

market makers in a static environment. In this subsection, our model concludes

two major effects: (a) the maturity effect and (b) the level effect. In the follow-

ing section are advanced discussions about volatility uncertainty and volatility

spread.

Proposition 1 The spread increases as maturity decreases (@a
@�

< 0; @b
@�

> 0 and
@(a�b)
@�

< 0)

The proposition refers to the maturity effect and can explain the major puz-

zle. An implicit function, f(� ; �;H; L; V ), V = fa; bg, is defined over equilibrium

condition in which a is the function of exogenous variables, (� ; �;H; L).

f(� ; �;H; L; V ) = E(W!)� Q

V ar(W!)� c = 0 , (4� 11)

How the asking multiplier, a, changes given a small change of maturity, � , is

@f
@�
d� + @f

@a
da = 0) da

d�
=

� @f
@�
@f
@a

similarly db
d�
=

� @f
@�
@f
@b

The following are first derivative equations of f(� ; �;H; L; V ) on a and b re-

spectively.

@f
@a
= P0

2�
p
�(ea�

p
�+e�a�

p
��2)

(ea�
p
��e�a�

p
� )2

> 0;* ea�
p
� + e�a�

p
� � 2 > 0

@f
@b
= �P0 2�

p
�(eb�

p
�+e�b�

p
��2)

(eb�
p
��e�b�

p
� )2

< 0;* eb�
p
� + e�b�

p
� � 2 > 0
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Intuitively, the last equation tells us that selling options price at higher or

buying at lower volatility increases the value of implicit function. After taking

derivetives, we use the Taylor expansion to get equations for approximating the

derivatives of f(� ; �;H; L; V ) on � .

@f(�;�;H;L;a)
@�

= @E(WA)
@�

�Q

@V ar(WA)

@�

�= P0
4
p
�
fa� � ��L� (1� �)�Hg�Q



n
P 20 (2�

2
A�2�A+1)
2

[(1� �)(�H)2 + �(�L)2]
o

+Q


n
P 20
4
[��L+ (1� �)�H]2

o

@f(�;�;H;L;b)
@�

= @E(WB)
@�

�Q

@V ar(WB)

@�

�= P0
4
p
�
f�b� + ��L+ (1� �)�Hg�Q



n
P 20 (2�

2
B+2�B+1)

2
[(1� �)(�H)2 + �(�L)2]

o
+Q


n
P 20
4
[��L+ (1� �)�H]2

o
(Deduction in Proof 4-5)

The derivative of f(� ; �;H; L; V ) on � can be separated into two parts.

The first part is time decay of expected profit, @E(W!)
@�

, and the second part is

Q

@V ar(W!)

@�
, which is the decay rate of premium for hedging uncertainty over

time. If the required premium of hedging risk decays at a rate slower than de-

cay rate of extra profit of derivatives portfolio, then @f
@�
> 0 leads to da

d�
< 0.

According to the last equation, expected extra profit decays dramatically at a

rate of inverse
p
� , while the volatility uncertainty premium decays at a fixed

rate. As � gradually decreases, @f
@�

necessarily turns out be positive; thus, da
dt
< 0

will certainly happen at some time before expiration. Because the value decay

of extra profit is extremely large in final few days where � is very small, the

equation above also explains why outrageous quotation is commonly observed

a few days before expiration.

67



Figure 4-4-1 illustrates the dynamic between the change of expected profit

for writing options at volatility, a�, and the change of required premium for

hedging risk. Point E1 indicates the first equilibrium where expected profit,

E(WA;E1) valued at a1�, equals the required premium with transaction costs

(i.e., Q

V ar(WA;E1) + c). However, as time moves to maturity date, E(WA) val-

ued at shorter TTM decreases to a level on which the newly required premium

as well as transaction costs cannot be affoded. Therefore, to engage in quoting,

traders need to increase selling volatility such that, for shorter TTM, E(WA;E2),

which is priced with a2�, can cover newly required model risk premium and

transaction costs at equilibrium point E2. Here it should be emphasized that

a change of asking volatility doesn’t alter hedging variance so there is no line

shifting for hedging variance. Briefly, bid-ask spread quoting pattern is the re-

sult of the disparity between daily value decay of a hedging portfolio and daily

decay of required premium for hedging uncertainty. A more general condition

can be derived to insure @a
@�
< 0 for every � .

@f(�;�;H;L;a)
@�

= @E(WA)
@�

�Q

@V ar(WA)

@�
> 0 if and only if

c > P0
p
�(a����L�(1��)�H)

4
=E(WA)

2

) c >
Q

V ar(WA)+c

2
) c > Q


V ar(WA)

(Details are shown in Proof 4-6)

A general condition allowing @b
@�
> 0 for every � is similar.

@f(�;�;H;L;b)
@�

= @E(WB)
@�

�Q

@V ar(WB)

@�
> 0 if and only if

c > P0
p
�(�b�+��L+(1��)�H)

4
=E(WB)

2

) c >
Q

V ar(WB)+c

2
) c > Q


V ar(WB)

and V ar(WA) = V ar(WB)
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BecauseE(W!) shrinks as time passes, volatility spread is expected to widen

from a certain TTM, � . Although we are not able to test when this condition

starts to take hold, the condition seems to happen easily, as documented by CDT

(2003), in that the pattern starts months before the expiration date. Moreover, c

in the model can be defined more generally in terms of opportunity cost, (e.g.,

the profit that can be earned from devotion to other projects); therefore, c could

be large, allowing patterns to happen couple months before expiration.

Proposition 2 The spread enlarges with increasing magnitude. (@
2a
@�2

> 0; @
2b
@�2

< 0 and
@2(a�b)
@�2

> 0)

Another phenomenon worthy of our attention is that spread seems to widen

with increasing speed. We check second derivatives further based on equation

@a
@�

.

8>><>>:
@ @a
@�

@�
=

�@
@f(�;�;H;L;a)

@�
@f(�;�;H;L;a)

@a

@�
=

�
�
@2f

@�2
@f
@a
� @f
@�

@2f
@a@�

�
( @f
@a
)2

> 0

* @2f
@�2

< 0; @f
@a
> 0; @f

@�
> 0; @

2f
@a@�

> 08>><>>:
@ @b
@�

@�
=

�@
@f(�;�;H;L;b)

@�
@f(�;�;H;L;b)

@a

@�
=

�
�
@2f

@�2
@f
@b
� @f
@�

@2f
@b@�

�
( @f
@a
)2

< 0

* @2f
@�2

< 0; @f
@b
< 0; @f

@�
> 0; @

2f
@b@�

< 0

(Details are shown in Proof 4-7.)

Because required premium for hedging risk demonstrates no curvature over

TTM, the concavity of f(� ; �;H; L; a) is determined by extra profit, E(WA), and

we derive @2f(�;�;H;L;a)
@�2

+ @2E(WA)
@�2

in Proof 4-7. This result can also be attributed

to the characteristics of the pricing model. For ATM options, the value decays
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at an increasing speed as time approaches the expiration date, so extra profit

also decays with increasing speed as TTM decreases. While the inequations
@f(�;�;H;L;a)

@�
> 0 and @f(�;�;H;L;a)

@a
> 0 have been discussed previously, the inequa-

tion @2f(�;�;H;L;a)
@a@�

> 0 is another natural result of options pricing characteristics.

The effect of volatility on options price, known as V ega, increases (decreases) as

TTM increases (decreases). In other words, compared with selling 1% volatil-

ity higher for shorter TTM, increasing selling volatility 1% for longer term op-

tions has a stronger positive impact on expected profit. It should be noted that
@2f(�;�;H;L;b)

@b@�
is negative, because the extra profit for buying an option is the value

of fair options minus bidding price.

Proposition 3 The spread decreases as IMV level increases ( @a
@�

< 0; @b
@�

> 0 and
@(a�b)
@�

< 0)

A phenomenon not as obvious as the previous finding is termed "level ef-

fect" in this paper. To get rid of the noises of the maturity effect, we average the

percentage spread by CM IMV measures for each contract and plot averaged

percentage spread in Figure 4-4-2. A negative relationship between percentage

spread and IMV is thus depicted, implying that liquidity providers do not en-

large volatility quoting spread in proportion to an increase of IMV.

In the model, � refers to trading volatility level so that we derive the first

derivative of f(� ; �;H; L; a) on �. After approximating by the Taylor expansion,

we rearrange the equation in the following and will discuss further in proposi-

tion 5.
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(Details are shown in Proof 4-8.)

According to the equation, we find that the condition resulting in @f
@�
> 0 is

the same as the sufficient and necessary condition for maturity effect. Hence, as

long as, we observe the occurrence of the maturity effect, the level effect exists.

That is; if the following conditions are held,

c > P0
p
�(a����L�(1��)�H)

4
= E(WA)

2

c > P0
p
�(�b�+��L+(1��)�H)

4
= E(WB)

2

then level effect happens.

@a
@�
= �

@f
@�
@f
@a

< 0, @b
@�
= �

@f
@�
@f
@b

> 0 and @(a�b)
@�

< 0

4.4 Volatility Uncertainty and Volatility Spread

We provide some insights here about the relationship between volatility

percentage spread and volatility uncertainty. First of all, given variables
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(�; � ; �; L;H), we define volatility uncertainty as a variance of possible future

realization, and the equation is given as:

V ar(v) = �(�L)2� + (1� �)(�H)2� � E(v)2

v : f�L; �Hg and E(v) = ��L
p
� + (1� �)�H

p
�

Also, a change of parameters, f�; L;Hg, has the following effect on volatility

uncertainty.

@V ar(v)
@H

= 2�(1� �)�2�(H � L) > 0
@V ar(v)
@L

= 2�(1� �)�2�(L�H) < 0
@V ar(v)
@�

= 2���(1� �)(L�H)2 > 0

Volatility uncertainty increases as higher estimated volatility increases or

lower estimated volatility decreases. Additionally, an increase in trading volatil-

ity level also increases volatility uncertainty given that L and H are fixed. Be-

cause uncertainty is based on three parameters, (H;L; �),17 we can explore the

relationship between volatility uncertainty and volatility spread.

Proposition 4 The increase in volatility uncertainty by the change of volatility estima-

tion,H or L, results in larger volatility spread. If parameters, (H;L), move in the same

direction with same magnitude, the volatility spread and volatility uncertainty remain

the same. (@(a�b)
@H

> 0, @(a�b)
@L

< 0 and @(a�b)
@H

+ @(a�b)
@L

= 0)

The change in volatility estimation affects expected fair options price as well

as expected hedging risk. Based on implicit function, we can derive @a
@H

to under-

stand how asking volatility adjusts to new estimated volatility. First, the effect
17Here we do not discuss volatility uncertainty over �, becuase it is similar to the case where

H and L shift to opposite direction.
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from an increase of H results in a higher fair options value, and expected extra

profit decreases by P0�
p
�(1��)
4

, if an option is sold at original volatility a. Second,

a rise to higher estimated volatility also leads to higher hedging variance by
(P0�

p
�)
2
(1��)fH(2�2A�2�A+1)�(H+�(L�H)g

2
. Given a decreasing expected profit and an

increasing hedging risk, traders should increase the selling volatility to restore

the value function, engaging themselves in giving quotations again. Because a

small change of a increases f(� ; �;H; L; a) by P0�
p
�

2
, how much a needs to be

increased in response to a change of H is

@a
@H

= �
@f(�;H;L;a)

@H
@f(�;H;L;a)

@a
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P0�
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2

n
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2
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2
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2
+ QP0(1��)�

p
�


f2H(2�2

A � 2�A + 1)� (H + �(L�H)
o
> 0

* 2�2
A � 2�A + 1 � 0:5

The same argument applies to @b
@H

. However, the integrated effect on bidding

volatility from change of fair value together with hedging risk is unclear because

an increase in expected profit and an increase in hedging variance by higher H

move bidding volatility in opposite directions.

@b
@H

�= (1��)
2
� QP0(1��)�

p
�


f2H(2�2

B + 2�B + 1)� (H + �(L�H)g

Still, the total spread change is positive, because the effects from the change

of fair values cancel out, and hedging variance doubles.

@a
@H
� @b

@H
�=
n
(1��)
2
+ QP0(1��)�
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f2H(2�2
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* �B = ��A

= 2QP0(1��)�
p
�


f2H(2�2

A � 2�A + 1)� (H + �(L�H)g > 0
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In contrast to the previous case, how spread changes over lower estimated

volatility requires more assumptions on parameters, (H , L). The following

equations explain how the spread changes over lower volatility estimation.

@a
@L
� @b

@L
�=
n
�
2
+ Q�P0�

p
�


f2L(2�2

A � 2�A + 1)� (H + �(L�H)g
o

�
n
�
2
� Q�P0�

p
�


f2L(2�2

B + 2�B + 1)� (H + �(L�H)g
o

= 2QP0��
p
�


f2L(2�2

A � 2�A + 1)� (H + �(L�H))g8><>:
@a
@L
� @b

@L
> 0 if 2L(2�2

A � 2�A + 1) > (1� �)H + �L
@a
@L
� @b

@L
� 0 if 2L(2�2

A � 2�A + 1) � (1� �)H + �L

(Details are shown in Proof 4-9.)

Because we focus on ATM and setX = 1 in model analysis, here we consider

that �A is very close to 0:5, and change of spread, @a
@L
� @b

@L
tends to be negative

in response to an increase of L. The spread movement induced by either H or

L is consistent with the volatility uncertainty change. If (H;L)move together in

the same direction, the change of volatility uncertainty is 0 and is also 0 for the

change of volatility spread.

( @a
@H
� @b

@H
) + ( @a

@L
� @b

@L
)

�= 2QP0�
p
�


f2(2�2

A � 2�A + 1)((1� �)H + �L)� ((1� �)H + �L)g = 0

* 2(2�2
A � 2�A + 1) + 1 for ATM options.

However if the magnitudes for the changes ofH and L are different, then the

change of volatility spread and volatility uncertainty is positively correlated.

Proposition 5 The increase in volatility uncertainty by an increase of trading volatil-

ity level results in the lower volatility percentage spread, while volatility uncertainty

increases. (@(a�b)
@�

< 0 and @V ar(v)
@�

> 0)
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Here we provide a very interesting example where an increase of volatility

uncertainty does not lead to an increase of difference between volatility multi-

pliers. In other words, volatility uncertainty is apparently not a sufficient con-

dition for the percentage spread. To understand this proposition, we first de-

compose the effect on trading volatility level, �, into two parts. The level effect

increases expected fair value as well as hedging risk, pushing asking volatility

to move in the opposite direction. By using condition leading spread pattern

in proposition 1, we find @f
@�
> 0. The volatility level effect produces more ex-

pected fair value than adverse value which results from an increase in hedging

variance.

@f(�;H;L;a)
@�

�= 2
�
fP0

p
�

4
[a� � �H � �L]� Q


[
P 20 (�

2
A�2�A+1)
2

((1� �)(�H
p
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p
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+Q

[
P 20
4
(��L

p
�+(1� �)�H

p
�)2] > 0

Similarly, for the change of value function of optimal bidding volatility over

the change of trading volatility level, the equation follows.

@f(�;H;L;b)
@�

�= 2
�
fP0

p
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P 20 (�

2
B+2�B+1)

2
((1� �)(�H

p
�)2 + �(�L

p
�)2)]

+Q

[
P 20
4
(��L

p
�+(1� �)�H
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Because an rise of � would increases value function, in equilibrium, traders

would lower asking and increase bidding volatility multipliers. The effect of

volatility level on multipliers of asking and bidding volatility follows.
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The bid-ask spread change over the change of trading volatility level is

@a
@�
� @b

@�

�= 1
�2
f�[a� + b�]

+2Q

[2P0

p
�(�2

A�2�A+1)((1� �)(�H)2 + �(�L)2)]� 2Q
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p
�(��L+ (1� �)�H)2]g < 0

(Details are shown in Proof 4-9.)

In summary, we find that the change of volatility spread in percentage of

IMV is correlated with volatility uncertainty. However, we rule out that an in-

crease (decrease) of volatility uncertainty is a sufficient condition to increase

(decrease) percentage volatility spread.

4.5 Data

To test our propositions, we use trading and quoting data from the Taiwan In-

dex options traded in the Taiwan Futures Exchange. This data base contains

intraday high frequency trading and quoting information as well as daily open
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interests, and the sample period ranges from December 20, 2007 to July 21, 2010.

Because contracts with the shortest maturity are traded most intensively, this re-

search focuses on 30 consecutive nearest term contracts. Each contact becomes

nearest term on Thursday of the third week each month and expires on Wednes-

day of the third week in the following month. For those contracts, averaged

daily options quoting frequency and quoting volume are 93,845 and 686,087. On

the other hand, the averaged number of daily transaction and trading volume

are 133,856 and 314,281, while the averaged daily open interests are 248,960. All

of those figures indicate that this index option is heavily traded.

Because our data involve high frequency trading records, the best price quo-

tation is commonly updated once every few seconds. For each minute we aver-

age best quotations to calculate IMV and then average bidding and asking IMV

of each minute to get daily observations. If no ask or bid price is quoted at a

certain minute, the observations in that minute are dropped. If the best bidding

price is lower than intrinsic value, we use intrinsic value for IMV calculation;

otherwise, we could derive negative volatility, which cannot occur. Addition-

ally because the CBOE uses the midpoint of the asking and bidding option price

to derive a VIX index, the paper follows this rule to calculate effective IMV. Fi-

nally, we divide volatility spread by effective IMV to calculate volatility spread

in percentage of IMV and list descriptive statistics in Table 4-5-1 through Table

4-5-6. In each table, the statistics in sub-table (a) are derived from all data sets,

and statistics which exclude observations of every last 5 trading days are listed

in sub-table (b).

Table 4-5-1(a) contains the simple statistics for CM IMV, JT IMV and RV. After

deleting 8 days in which data are damaged or incomplete, we can derive 630
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daily IMV observations. The mean for both IMV measures is about 31:562%

and 37:249% for CM and JT IMV, while the mean for RV is 29.225%. To have a

more concrete idea about volatility, we can transform annual implied volatility

into expected one day return deviation by multiplying it by
q

1
365

. Hence the

mean of those volatility measures indicates 1.652%, 1.9497% and 1.5297% daily

return deviation.18 The volatility index is apparently very volatile, for three

volatility measures have quite high standard deviations. The maximum of JT

IMV can even reach 245:29%. When we delete observations of every final 5

trading days, the statistics of JT IMV approach those of CM IMV. It is obvious

that, in the final week, the prices of ITM options are relatively high and boost

the JT IMV. Although the maximum of RV also drops greatly from 100:595% to

65:097%, the situation in which RV reaches over 80% occurs only a few times

but not regularly. Compared to a 4:807% drop for JT IMV, the mean of RV only

decreases by 0:724% if every 5 trading days are dropped.19 Correlations among

three volatility measures are very high, especially for data excluding the final

5 trading days. The coefficient between two IMV measures is 0:9757, and it is

0:89574 (0:86907) between RV and CM (JT) IMV.

Table 4-5-3 and 4-5-4 are statistics and correlation matrices for volatility

spread based on two IMV measures. As demonstrated in Table 4-5-3(a) and

(b), the means of volatility spread defined by CM IMV are 0:569% and 0:337%

for two different sample sizes, while the means of volatility spread are about

9:892% and 3:718% for the JT IMV measure. Hence, the volatility spread does in-

crease dramatically, if we include ITM options into calculation of IMV measures.

18According to the RV formula, this measure implies that the expected return is 0. However,
CM and JT IMV use a forward index, derived from put-call parity equation by ATM options, as
the expected return to expiration.

19The number of times that RV climbs above 80% are rare. In our sample period, this rise
occurs at 10/14/2008, 12/17/2008 and 5/20/2009.
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The correlation of two volatility spreads is not high and is only marginally sig-

nificant, as Table 4-5-4(b) shows the coefficient is 0:07648with p-value at 0:0945.

Combining the information from Table 4-5-1(b), we expected that, for the CM

IMV measure, volatility spread is about 1% of CM IMV and 10% for JT IMV mea-

sure. The percentage measurement is particularly of interest in our research, for

the difference between the asking and bidding multipliers in our model corre-

sponds to volatility spread in percentage of IMV. The statistics and correlation

of two percentage spreads are shown in Table 4-5-5 and 4-5-6. In the tables,

two percentage spreads have a low but still significant positive correlation of

0:15837. In the following empirical work, the dependent variable is volatility

spread in percentage of IMV based on CM and JT IMV calculation, and we test

the maturity effect, level effect and volatility uncertainty effect on two measures

separately.

4.6 Empirical Work

4.6.1 Estimation Model

Based on Propositions 1 and 2, we consider modelsA and B to be our estimation

models, which are able to capture an increasing and convex spread pattern.

Model (A):

SpPctt = �+ �
1

TMt
+ �1 � IMVt�1 + �2 � V olatility Uncertaintyt + "t

Model (B):

SpPctt = �2D2 + �3D3 + �4D4 + �5D5 + �1 � IMVt�1 + �2 � V olatility Uncertaintyt + "t

79



One of them uses a reciprocal form of TTM, and the other uses dummy vari-

ables, Di, i 2 f2; 3; 4; 5g, indicating the i-th week before expiration. Again, the

dependent variable, SpPctt, in the model is defined as percentage spread, which

divides volatility spread by IMV and then multiples by 100.

Because of an increasing and convex spread pattern, the coefficients � and

�i; i 2 f2; 3; 4; 5g;are expected to be positive. In addition to the maturity effect,

we use one lag implied volatility, IMVt�1, to test the trading level effect. Our

theory shows that the spread in percentage decreases as trading level increases,

meaning volatility spread does not increase in proportion to the rise of implied

volatility. Hence, the coefficient of lag1 IMV is expected to be negative.

Additionally, Proposition 5 demonstrates that, due to level effect, volatility

uncertainty is not a sufficient condition for the change in percentage spread, but

proposition 4 shows that they should be correlated. Therefore, after controlling

for level effect, we would like to test their correlation. However, testing volatil-

ity uncertainty effect on the spread without an advanced assumption is difficult,

especially when we are not able to observe �H and �L. Therefore, we find a

proxy for volatility uncertainty, which is defined as

V olatility Uncetaintyt = fIMVt�1 � V olatility Premiumt�2 �Realized V olatilitytg2

The high frequency realized volatility over time (t � (T � t); t) is calculated

as

Realized V olatilityt =
1
�

nP
i=1

R2i +
1
�

4P
h=1

( n
n�h)RiRi�h
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While T�t is the number of days to maturity, n is the number of total trading

minutes during this period. Ri is the index return at i-th minute interval over

time period [t � (T � t); t]. Our paper uses 1-minute returns, which is highly

auto-correlated, so that we include the lags till 4 into RV calculation. Then, we

first assume that the volatility premium is zero such that IMVt�1 is the mar-

ket expectation for future volatility at time t � 1, and realized volatility can be

considered an unbiased estimator for future volatility if the volatility process is

assumed to be a Markov process. Any deviation of realized volatility occurring

at t from implied volatility at t � 1 can be considered as a shock to the market

and would increase the uncertainty of volatility.

After assuming zero volatility premium, we relax this assumption and allow

it to become dynamic. While JT (2006) shows that sample mean of IMV for S&P

index options is 1~2% higher than RV, the mean of IMV in our data set is also

2~3% higher than RV. Dufour, Garcia and Taamouti (2011) found that the volatil-

ity risk premium, considered as anticipated increase of volatility, does exist and

has an impact on returns. Therefore, in our paper we use the moving average

of difference between implied volatility and realized volatility to capture the

dynamic movement of volatility premium. It is defined as,

V olatility Premiumt =
1
T�t

�
T�tP
i=1

IMVt�i �Realized V olatilityt�i
�

T is option expiration date; thus, the number of days to expiration is T � t.

We then use a moving average of daily volatility premium for the past T�t days

as a volatility premium estimator for options with days to maturity, T�t. Given

Proposition 4, the volatility uncertainty and percentage volatility spread move

in the same direction if magnitudes for change of variables (H;L) are different.
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Hence, we expect positive �2. Our models are semi-nonparametric regressions,

because on the one hand we need to specify the form that incorporates structure

factors, including TTM, IMV and volatility uncertainty, while on the other hand

we impose no assumption on error terms and use the Newy-West nonparamet-

ric estimation to adjust statistical values.

Table 4-6-1 to 4-6-4 present the estimation results for models adopting two

different volatility premium assumptions and two different IMV measures.

Each table contains estimation results of Model (A) and Model (B) together.20

4.6.2 Estimation Results

Our results consistently agree on the existence of maturity effect and level ef-

fect, regardless of what volatility uncertainty proxy, IMV measure and regres-

sion model are used for estimation. Additionally, given JT IMV measure, both

volatility uncertainty proxies are significant in explaining the percentage spread

no matter what the regression model is, but, for CM volatility measures, the

volatility uncertainty effect needs to be investeigated further. Maturity effect is

a more prominent effect than the other two effects. Given CM IMV measure,

volatility uncertainty is significant when Model B and dynamic volatility risk

premium are applied for estimations. Given the proxy of volatility uncertainty

and the IMV measure, the coefficients for level effect and volatility uncertainty
20Our conclusion is based on a data set excluding the final 5 trading days. Additionally, we

also try to use RV 2 as factor of volatility uncertainty and list estimation results in 4-6-5 and 4-
6-6. RV 2 does perform better in explaining change of percentage spread. Estimation results for
total daily observations are demonstrated in 4-6-1-a, 4-6-2-a, 4-6-3-a, 4-6-4-a, 4-6-5-a and 4-6-6-a.
Factors of maturity effect and level effect are significant in those tables, but estimation results
do not broadly support our claim on volatility uncertainty factor. The empirical works based
on S&P 500 index options are also supplemented.The data is daily closing quoted prices, the
sample period ranges from January 2, 2001 to May 20, 2010. The estimations are listed in tables
4-6-7, 4-6-8 and 4-6-9.
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effect are quite close for both regression models.

Table 4-6-1 presents estimation results for ModelA and B based on CM IMV,

in which we assume zero volatility premium for volatility risk measures. The

percentage spread, implied volatility and realized volatility are all in terms of

percentages. Both models have adjusted R square values of 0.0386 and 0.0405

and show that a 1% increase in IMV results in decrease of percentage spread

by approximately 0.015. While percentage spread steadily increases at least by

0.5 percent of IMV from week 5 to week 2, a 10% increase in implied volatil-

ity only drops the percentage spread by about 0.15. Given that the occurrence

of a 10% increase in IMV happens quite rarely, a maturity effect mainly deter-

mines the pattern of spread. In comparison to the spread based on CM IMV, the

spread based on JT method is wider, and models A and B are able to explain

the movement better with an adjusted R-square at 0.1012 and 0.0968. Addition-

ally, volatility uncertainty becomes a significant factor affecting the spread, as

shown in Table 4-6-2. The coefficient of the volatility uncertainty is about 0.0006

in both models, meaning 10% of realized volatility deviation from IMV results

in a percentage spread increase of 0.06. The magnitude combining both effects

of volatility uncertainty and IMV level is generally not as large as the maturity

effect.

Table 4-6-3 and 4-6-4 list the estimation results adopting the proxy with the

MA dynamic premium. R-square decreases to 0:0386 and 0:0402 for CM IMV

measure and increases to 0:1045 and 0:0994 for JT IMV. Overall, the new proxy

does not improve the ability of the model to explain the movement of percent-

age spread. Whereas volatility uncertainty becomes a marginally significant fac-

tor, based on CM IMV, with a coefficient of 0:000093 in Model B. After adopting
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a new proxy, for the JT IMV measure, the magnitude of level effect greatly de-

creases from j�0:09021j to j�0:04073j in ModelA and j�0:08892j to j�0:03645j in

Model B, and volatility uncertainty effect increases from about 0:00065 to 0:0057.

Similar to Table 4-6-1 and 4-6-2, the maturity effect obscures the level effect and

volatility uncertainty effect.

For each regression model, we first estimate under an assumption presum-

ing independence of innovation, and then we release the i.i.d. assumption by

using NW variance and co-variance estimation with different bandwidth. As

suggested in Newey and West (1987), we use cube root through quintic root of

total observation for ideal bandwidth and make our conclusion based on statis-

tics adjusted by the NW estimation. Meanwhile, we do find that one model does

not dominate another. Because model B always has a higher adjusted R-square

for the CM IMV measure, while ModelA performs better if the JT IMV measure

is employed. Additionally, the volatility uncertainty proxy assuming dynamic

risk premium does not improve the model, because using different volatility

uncertainty proxy doesn’t greatly increase R-square.

4.7 Conclusion

In this paper, based on model-free implied volatility, we document the monthly

pattern of volatility bid-ask spread in the option market. We then introduce a

model using the disparity between the time decay of premium contained in an

option and the decay of the required premium of hedging risk to explain the in-

creasing and convex volatility spread pattern. Because the premium contained

in the derivatives decays faster, especially for options with short maturity, than
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the decay of required volatility risk premium, market makers need to keep rais-

ing the spread such that utility is maintained at a level on which market makers

want to engage in quoting. Additionally, our model shows that volatility spread

does not increase in proportion to IMV level, and we term this finding as “level

effect”. Finally, we show that the volatility uncertainty is highly correlated with

volatility spread but is not a sufficient condition to result in an increase of per-

centage volatility spread.

Along with a theoretical justification, we provide empirical evidence sup-

porting the existence of maturity effect and level effect. Although we do not

have generalized evidence that volatility uncertainty is a significant cause to

the increase of percentage volatility spread, we leave this effect for future re-

search because finding a proper proxy for volatility uncertainty is still an issue

that remains to be explored. As a whole, our results strongly suggest that de-

trending is vital for studying volatility spread in the options market. Without

proper trend adjustment, statistical results can be misleading. This is because

researchers tend to exaggerate the significance value by ignoring the high auto-

correlation of residuals, which is the result of ignoring the trend.

Our research also has strong implications for the following matters, some of

which need to be investigated further. First, using the transaction price to de-

rive model free implied volatility is certainly biased in forecasting future volatil-

ity, given that the premium of volatility uncertainty is included in the options

price. Meanwhile, our model also suggests that implied volatility estimation,

which is derived from the midpoint of bid and ask quotes, could also be biased,

because a midpoint method implicitly assigns bidding and asking prices with

equal weights which may not be true. Secondly, our paper also sheds light on
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the issues of pricing volatility (model) uncertainty for that we provide an ap-

plication showing volatility (model) uncertainty premium increases in a linear

way over time. We look forward to any advanced study and reexamination of

how people price volatility (model) uncertainty.
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APPENDIX A

CHAPTER 2 OF APPENDIX

A.1 Figure 2-1-1

This figure illustrates the structure of the trade process in the PIN Model. Each day,
an information event arrives with probability �, and � is the probability that leads to
the lowest price, V

�
. There are three possible scenarios, including (1) the occurrence of

a bad event; (2) the occurrence of a good event; (3) no information event. Based on
past transaction data, Market makers have the expectation on total number of informed
trades, uninformed buys and uninformed sells, which are �, " and " respectively. How-
ever market makers do not know what scenario they stand at any given point in time.
The informed traders will certainly arrive when an event occurs, and whether event
occurs or not the uninformed traders will trade. So the total expected number of trades
is �� + 2". For each coming intraday trade, buy(sell) arrival rates of 6 possible out-
comes are defined as the expected number of buy(sell) in each scenario divided by the
expected total number of trades. The sum of probabilities of 6 possible outcomes equals
1.

Trade Process of

PIN Model
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A.2 Figure 2-2-2

Tree of Trades

Figure 2-2-1 demonstrates the Tree of Trades. The market makers have the beliefs
of (�; �; �; ") and use the beliefs to form the quoting scheme, based on Bayes rule. In
the model, market makers are assumed to provide the liquidity for the market, so the
transaction price exclusively occurs on the quoting price. The general form for each
note on the tree follows equation (2-3). Yesterday’s close price is scaled to 1, and H
and L are the daily highest price and lowest price. The Poisson probability distribution
can assign probability to each note of the tree, such that we can calculate the theoretical
model volatility by equation (2-4) and (2-5).
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A.3 Figure 2-3-1

sd

0.015

0.016

0.017

0.018

0.019

0.020

0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.030

0.031

0.032

0.033

esd

0.01 0.02 0.03 0.04 0.05 0.06 0.07

KAI
sd

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.020

ESD

0.03 0.04 0.05 0.06 0.07 0.08 0.09

CPK

sd

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

0.052

0.054

0.056

esd

0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068

dave
sd

0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039

esd

0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063

PCYO

sd

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

esd

0.036 0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064 0.066 0.068 0.070

FC
sd

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

esd

0.047 0.048 0.049 0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068

DTLK

Relation Between Historical and Theoretical Volatility for each stock
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Figure 2-3-1 (Continued)
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Figure 2-3-1 (Continued)
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A.4 Figure 2-4-1

Theoretical Partial Analysis on � by Simulation

Figure 2-4-1 shows how theoretical volatility is affected by the �, probability of
event occurrence. In the simulation, parameters,(�,�,"), are assumed equal to 0.331,
31.08, and 23.1 respectively. These numbers are the cross-sectional statistic result in,
“Is information Risk a Determinant of Asset Return?” by Easley, D., S. Hvidkjaer, and
O’Hara. The theoretical volatility monotonically increases as � increases. In other
words, given � = 0:331; � = 31:8 and " = 23:1, the higher probability of event
occurrence, the higher the theoretical volatility.
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A.5 Figure 2-4-2

Theoretical Partial Analysis on � by Simulation

This figure shows how theoretical volatility is affected by �, the probability
of the event leading stock price to the lowest daily price, V

�
. In the simulation,

parameters,(�,�,"), are assumed equal to 0.283, 31.08, and 23.1 respectively. The theo-
retical volatility peaks at � = 0:5 and decreases gradually on both sides. That is, given
� = 0:283, � = 31:08 and " = 23:1, the theoretical volatility reaches its maximum
when market makers are not sure if the information event is good or bad news.
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A.6 Figure 2-4-3

Theoretical Partial Analysis on � and � by Simulation

Figure 2-4-3 shows how � and � affect the theoretical volatility together. In the
simulation, parameters,(�; "), are assumed equal to 31.08, and 23.1 respectively. The
global maximum happens when � = 1 and � = 0:5, in which the market makers know
with certainty that information event is going to occur but don’t know whether it will
be good news or bad news. Additionally, another interesting pattern can be observed
when � closes to 0 or 1. When news is good or bad for certain, the theoretical volatility
peaks as probability of event occurrence, �, is equal to 0.5.
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A.7 test.

Stock with Regression Showing Factor of Theoretical Volatility is Significant.
�Historical = C +B1 � �Model +B2 � PAveraged + "t

STOCK ID C B1 B2 R2 Stock Name
KAI
t-stat

0.0052
2.57

0.1114
8.65

0.000573
6.15 0.259 KADANT INC

CPK
t-stat

-0.0016
-0.77

0.1539
6.39

-0.000024
0.43 0.158 CHESAPEAKE UTILITIES

DAVE
t-stat

-0.0891
-4.71

2.151
6.67

-0.0019
-9.68 0.334 FAMOUS DAVES OF AMERICA

PCYO
t-stat

-0.0738
-4.81

1.5263
5.6

0.0013
5.11 0.455 PURECYCLE CORP

FC
t-stat

-0.0004
-0.03

1.0200
5.32

-0.0048
-13.03 0.398 FRANKLIN COVEY CO

DTLK
t-stat

-0.0034
-2.17

1.2520
4.70

0.0016
3.65 0.178 DATALINK CORP

JOUT
t-stat

-0.0283
-1.58

1.5101
4.64

-0.0027
-20.08 0.555 JOHNSON OUTDOORS INC

SABA
t-stat

-0.0249
-3.60

4.8873
4.19

-0.0016
-1.05 0.127 SABA SOFTWARE INC

LB
t-stat

0.0213
6.67

0.2912
4.12

-0.0005
-2.96 0.178 LABARGE INC

KEI
t-stat

-0.0496
-3.14

0.7063
3.17

-0.0022
7.72 0.401 KEITHLEY INSTRS INC

NYM
t-stat

-0.0111
4.4

0.1669
3.15

-0.00015
-2.65 0.046 NYMAGIC INC

UACL
t-stat

-0.0693
-2.69

1.3184
3.11

0.0006
6.11 0.609 UNIVERSAL TRUCKLOAD SVC

RZ
t-stat

-0.1962
-2.09

4.3906
3.09

-0.0009
0.95 0.319 RASER TECHNOLOGIES IN

TRR
t-stat

-0.0258
-1.76

0.7418
3.00

0.0005
7.72 0.158 TRC COS INC

SMP
t-stat

0.0231
5.69

0.1881
2.96

-0.0010
-7.24 0.259 STANDARD MOTOR PRODUCTS

SLI
t-stat

0.0454
1.68

1.4933
2.79

-0.0070
-5.44 0.293 SL INDUSTRIES INC

WMAR
t-stat

-0.0377
-1.19

1.4059
2.6

-0.0014
-6.36’ 0.398 WEST MARINE INC

BBSI
t-stat

0.0715
17.75

0.2301
2.39

-0.0026
-14.28 0.638 BARRETT BUSINESS SERVIC

VOL
t-stat

0.0059
0.72

0.3367
2.39

0.00002
0.23 0.334 VOLT INFORMATION SCI

VSR
t-stat

0.0452
5.84

0.4467
2.3

-0.0078
-3.87 0.455 VERSAR INC

OSIS
t-stat

0.0069
-1.12

0.0283
2.26

-0.0002
-3.56 0.052 OSI SYSTEMS INC

ATRI
t-stat

0.0028
3.59

0.0695
2.03

-0.0006
-1.16 0.553 ATRION CORP

GIFI
t-stat

0.0135
0.66

0.7200
2.02

-0.0015
-9.88 0.38 GULF ISLAND FABRICATION

IDSY
t-stat

-0.0134
-0.42

1.0448
1.98

-0.0015
-6.7 0.248 I D SYSTEMS INC

IUSA
t-stat

0.0078
0.24

1.0019
1.95

-0.0052
-12.36 0.598 INFOGROUP INC

KFT
t-stat

-0.0030
-0.42

0.2002
1.82

-0.0009
8.91 0.45 KRAFT FOODS INC KFT

JTX
t-stat

-0.0120
-0.76

0.3883
1.79

-0.0001
1.3 0.095 JACKSON HEWITT TAX SVC

HPT
t-stat

0.0114
1.43

0.1804
1.83

-0.0004
-5.87 0.24 HOSPITALITY PPTYS TRUST HPT

GRMN
t-stat

-0.0138
-0.62

0.5349
1.82

-0.00006
-0.98 0.055 GARMIN LTD GRMN
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A.8 Table 2-3-2 & Table 2-4-1

Table 2-3-2 Stock with Regression Showing Factor of Theo. Vol. is Not Significant.
�Historical = C +B1 � �Model +B2 � PAveraged + "t

STOCK ID C B1 B2 R2 Stock Name
MOV
t-stat

-0.0043
-0.39

0.3184
1.64

0.00004
0.87 0.018 MOVADO GROUP INC

NADX
t-stat

0.0023
0.75

0.0695
1.35

0.0006
3.2 0.061 NATIONAL DENTEX CORP

GPS
t-stat

0.0284
2.96

0.1516
1.22

-0.0006
-2.83 0.100 GAP INC GPS

INET
t-stat

0.037
6.89

0.1094
1.21

-0.0002
-0.91 0.038 INTERNET BRANDS INC

OLP
t-stat

0.0069
6.58

0.0283
1.13

0.0002
1.57 0.052 ONE LIBERTY PROPERTIES

OFLX
t-stat

0.0681
3.45

-0.0283
-0.27

-0.0016
-4.62 0.352 OMEGA FLEX INC

PTC
t-stat

0.0365
3.42

-0.1642
-0.77

0.0004
2.38 0.058 PAR TECHNOLOGY CORP

HAST
t-stat

0.0875
4.49

-0.4198
-1.1

-0.0042
-5.08 0.237 HASTINGS ENTERTAINMENT

MPX
t-stat

0.0204
9.94

-0.0635
-1.14

-0.0010
4.42 0.194 MARINE PRODUCTS CORP

RJET
t-stat

0.0798
6.06

0.3752
-1.41

-0.023
-5.99 0.621 REPUBLIC AIRWAYS HLD

PRM
t-stat

0.0978
3.23

-0.6569
-1.42

-0.0027
-4.23 0.063 PRIMEDIA INC

KRG
t-stat

0.1892
3.28

-2.3517
-1.66

-0.0015
-0.57 0.335 KITE REALTY GROUP TRUST

SBGI
t-stat

0.1203
2.31

-1.6198
-2.08

0.0012
2.03 0.091 SINCLAIR BROADCAST GROU

UFI
t-Stat

0.0716
3.91

-0.6735
-2.29

0.0016
4.21 0.138 UNIFI INC

KTEC
t-Stat

0.0817
7.84

-0.4587
-2.31

-0.00246
-11.52 0.589 KEY TECHNOLOGY INC

PLX
t-Stat

0.0590
3.56

-0.5223
-2.64

-0.0003
-0.85 0.417 PROTALIX BIOTHERAPEUTIC

TSYS
t-Stat

0.2465
5.09

-3.2570
-4.12

0.0029
2.04 0.156 TELECOMMUNICATION SYSTE

Table 2-4-1: Statistic Data for Simulation

Variable Mean
�(probability of event occurrence) 0.283
�(probability of that event leads to Daily Lowest price) 0.331
� (expected number of informed trade) 31.08
"(expected number of uninformed trade) 23.1
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APPENDIX B
CHAPTER 3 OF APPENDIX

B.1 Table 3-1-1

Summary of Previous Political Cycle Research

Literature Conclusions and Findings
Niederhoffer, Gibbs, and Bullock. (1970) Stock market performed far better in days

or weeks following Republican presiden-
tial victories than following Democratic.

Riley and Luksetich (1980) Stock market demonstrates consistently
positive cumulative average residuals for
the election of a Republican president and
negative cumulative averaged residuals for
a Democratic victory.

Reilly and Drzycimski (1976) Similar finding as Riley and Luksetich
(1980).

Siegel (1998) Similar finding as Riley and Luksetich
(1980).

Stovall (1992) Fed was more accommodating and played
easier money policy prior to an election.

Allvine and O’Neil (1980) From 1948 to 1978, S&P 400 returns average
0.6% and 0.7% for first and second years
of a presidential administration, but 22.1%
and 9.2% for third and fourth years.

Huang (1985) Similar patterns, as Allvine and O’Neil
(1980) dcument, within sample period of
1933-1979.

Smith (1992) S&P500 returns were 2.5% higher during
Democratic administration than Republi-
can administration, but not statistically sig-
nificant.

Johnson, Chittenden and Jensen (1999) For large-cap, there was no statistically dif-
ference in Republican or Democratic presi-
dencies. For small-cap there was substan-
tially 20% higher return during Democratic
administrations. Additionally, stock return
was significantly higher in the second half
of a presidency.

Stovall (1992) Averaged return in Dow Jones Industry
during a Republican term was 30.5% ver-
sus 34.9% for a Democratic term for more
than 100 years data sample.

100



Table 3-1-1 (Continued)

Literature Conclusions and Findings
Hensel and Ziemba (1995) From 1937 to 1993, investing small-cap

in Democratic and large-cap in Republi-
can administrations has higher mean re-
turn with higher standard deviation.

Bizer and Durlauf (1990) This paper uses frequency domain exami-
nation to find that there is a tax cycle with
a period of 8 years. It was suggested by re-
gression analysis that taxes were reduced
2 years prior to successful presidential re-
election attempts.

Santa-Clara and Valkanov (2003) This paper was the first one formally test-
ing the excessive return claim. Excess re-
turn in Democratic administrations was 6-
20% higher than in Republican administra-
tions. Monthly volatility was higher in Re-
publican administrations as well.
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B.2 Table 3-4-1

Descriptive Statistics for each Presidency

Panel A P. N A.R. St. Sk. Kur.
President In Office Period X10�4 X10�3 X10�2

Dwight D. Eisen-
hower

Jan./21/1957–
Jan./20/1961

R 1010 4.76 6.46 -3.89 3.74

John F. Kennedy Jan./21/1961–
Nov./22/1963

D 715 3.24 7.29 -100.04 16.93

Lyndon B. Johnson Nov./23/1963–
Jan./20/1969

D 1271 5.10 5.41 -2.35 4.58

Richard M. Nixon Jan./21/1969–
Aug./9/1974

R 1401 -0.91 8.17 24.34 2.65

Gerald Ford Aug./10/1974–
Jan./20/1977

R 619 6.57 9.72 27.15 1.46

Jimmy Carter Jan./21/1977–
Jan./20/1981

D 1009 5.84 7.76 -21.34 2.30

Ronald Reagan Jan./21/1981–
Jan./20/1989

R 2024 5.60 9.73 -280.00 54.84

George H. W. Bush Jan./21/1989–
Jan./20/1993

R 1011 5.58 7.51 -50.65 4.30

Bill Clinton Jan./21/1993–
Jan./20/2001

D 2020 6.40 9.69 -33.69 5.64

George W. Bush Jan./21/2001–
Jan./20/2009

R 2010 -0.40 13.36 -7.22 9.82

Barack Obama Jan./21/2009-(data
ends at Dec./31/2010) D 492 12.21 14.72 6.80 2.50

Panel B Sub-Sample periods . N A.R. St. Sk. Kur.
Republican Jan./21/1957–

Dec./31/2010
8073 2.99 9.95 -68.99 21.61

Democratic Jan./21/1957–
Dec./31/2010

5509 6.03 8.86 -23.28 7.40

Republican Jan./21/1957–
Jan./20/2001

6064 4.03 8.55 -134.04 32.15

Democratic Jan./21/1957–
Jan./20/2001

5016 5.53 8.05 -37.36 7.48

Republican Jan./21/1957–
Jan./20/1989

5054 3.71 8.75 -143.73 34.77

Democratic Jan./21/1957–
Jan./20/1989

2995 4.96 6.73 -42.59 8.00

Republican Jan./21/1989–
Dec./31/2010

3019 1.79 11.69 -11.68 11.77

Democratic Jan./21/1989–
Dec./31/2010

2514 7.30 10.91 -17.82 5.14

Total Jan./21/1957–
Dec./31/2010

13582 4.23 9.53 -54.76 17.56

This table reports the descriptive statistics for each presidency. The columns with ab-
breviations (P, N, A.R., St., Sk., Kur.) stand for political party, sample size, averaged
daily return, standard deviation, skewness and kurtosis

102



B.3 Table 3-5-1

Estimation of Model (1) -Model (6)

(1)TGARCH(1,1) (2)GARCH(1,1) (3)GARCH(1,1) (4)E-

GARCH(1,1)

(5)E-X-

GARCH(1,1)

(6)E-X-

TGARCH(1,1)

-LX -EX -LX -LX

A0X10
�4 7:67

(9:78)���
7:39

(9:49)���
7:41

(9:37)���
5:30

(6:81)���
5:13

(6:32)���
5:41

(6:09)���

A1X10
�4 �1:40

(�1:24)
�1:00
(�0:86)

�1:1
(�0:95)

�0:7
(�0:64)

�0:5
(�0:44)

�0:9
(�0:70)

A2X10
�4 �3:1

(�1:32)
�3:3
(�1:42)

�3:0
(�1:28)

�4:9
(�2:18)��

�4:7
(�2:05)�

�4:5
(�1:98)�

�1
�2
B0

1:03�10�6
(9:50)���

6:90�10�7
(7:58)���

9:56�10�7
(9:39)���

�0:24
(�13:40)���

�0:25
(�12:1)���

�0:25
(�10:03)

C0
1:29�10�1
(13:69)���

0:97�10�1
(18:85)���

0:95�10�1
(19:15)���

0:18
(23:29)���

0:18
(23:02)���

0:20
(15:93)���

C1X10
�2 �5:48

(�5:20)���
�0:04
(�2:12)�

C2X10
�2 1:09

(0:85)
�0:02
(�0:67)

D0X10
�1 0:86

(102:27)���
0:891

(163:25)���
0:89

(156:87)���
0:97

(527:92)���
0:97

(469:40)���
0:97

(373:64)���

D1X10
�2 5:13

(5:81)���
�0:4�10�3
(�1:4)

D2X10
�3 �1:72

(�0:16)
�1:1�10�3
(�2:6)��

W1
6:67�10�7
(5:89)���

8:89�10�3
(3:43)��

6:06�10�3
(2:24)�

5:09�10�3
(1:83)�

W2
6:30�10�7
(2:06)��

6:61�10�3
(1:83)

12:16�10�3
(2:83)���

12:24�10�3
(2:90)��

� �0:47
(�15:51)���

�0:54
(�12:02)���

�0:49
(�9:75)���

�1
0:10
(1:90)�

0:3�10�2
(0:05)

�2
0:02
(0:35)

0:2�10�2
(0:02)

log-likelihood 46907 46908 46891 46980 46983 46988
*In the parenthesis are t-stat, and (���;�� ;� ) denotes the p-value falling in
the,(0; 0:01); (0:01; 0:05); (0:05; 0:1) respectively.
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B.4 Table 3-5-2

Estimation of Model (7) -Model (12)

(7)TGARCH(1,1) (8)GARCH(1,1) (9)GARCH(1,1) (10)E-

GARCH(1,1)

(11)E-X-

GARCH(1,1)

(12)E-X-

TGARCH(1,1)

-M -LX-M -EX-M -LX-M -LX-M -M

A0X10
�4 0:93

(0:56)
0:85
(0:50)

0:94
(0:56)

2:87
(1:78)

2:29
(1:30)

3:12
(1:91)�

A1X10
�4 �3:00

(�2:43)��
�2:80

(�2:29)��
�2:50

(�2:09)��
�1:40
(�1:19)

�1:20
(�0:98)

�1:60
(�1:21)

A2X10
�4 �5:80

(�2:38)��
�6:00

(�2:45)��
�5:40

(�2:25)��
�5:50

(�2:40)��
�5:4

(�2:34)��
�5:2

(�2:21)��

�1
0:12

(4:62)���
0:12

(4:46)���
0:12

(4:42)���
0:05
(1:79)�

0:05
(1:81)�

0:04
(1:51)

�2
B0

10:27�10�7
(9:61)���

6:90�10�7
(7:58)���

9:44�10�7
(9:07)���

�0:26
(�12:04)���

�0:26
(�11:06)���

�0:26
(�10:06)

C0
1:29�10�1
(11:94)���

0:96�10�1
(18:52)���

0:95�10�1
(19:23)���

0:18
(22:78)���

0:18
(22:43)���

0:21
(15:39)���

C1X10
�2 �5:50

(�4:23)���
�3:78

(�2:37)��

C2X10
�2 1:02

(0:65)
�1:40
(�0:59)

D0X10
�1 0:86

(90:61)���
0:89

(163:25)���
0:89

(156:85)���
0:97

(456:92)���
0:97

(411:01)���
0:97

(372:07)���

D1
0:51�10�1
(4:87)���

�0:5�10�3
(�1:56)

D2
�0:92�10�3
(�0:07)

�1:26�10�3
(�2:76)��

W1
6:52�10�7
(5:78)���

8:80�10�3
(3:40)���

6:73�10�3
(2:36)��

5:90�10�3
(2:03)��

W2
6:74�10�7
(2:20)���

6:69�10�3
(1:85)�

12:70�10�3
(2:91)���

12:85�10�3
(2:93)���

� �0:47
(�15:43)���

�0:54
(�12:35)���

�0:48
(�11:39)���

�1
0:11

(2:19)��
0:46�10�2
(0:07)

�2
0:02
(0:38)

0:60�10�2
(0:07)

log-likelihood 46917 46918 46901 46982 46985 46989
*In the parenthesis are t-stat, and (���;�� ;� ) denotes the p-value falling in
the,(0; 0:01); (0:01; 0:05); (0:05; 0:1) respectively.
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B.5 Table 3-5-3

Estimation of Model (13) -Model (18)

(13)TGARCH(1,1) (14)GARCH(1,1) (15)GARCH(1,1) (16)E-

GARCH(1,1)

(17)E-X-

GARCH(1,1)

(18)E-X-

TGARCH(1,1)

-BJ-M -LX-BJ-M -EX-BJ-M -LX–BJ-M -LX–BJ-M -BJ-M

A0X10
�2 �1:45

(�1:17)
�4:98
(�0:63)

�1:17
(�1:16)

�0:22
(1:71)

0:17
(1:76)

�0:18
(�1:29)

A1X10
�2 �0:59

(�1:74)�
�0:28

(�2:16)��
�0:74
(�1:66)�

�0:34
(�2:30)��

0:16
(1:32)

�0:27
(�1:79)�

A2X10
�2 �0:95

(�1:50)
�9:38
(�0:66)

�0:57
(�1:26)

�0:25
(�2:11)��

�0:10
(�1:42)

�0:18
(�1:59)

�1
0:10

(3:55)���
0:09

(3:35)���
0:10

(3:59)���
0:04
(1:74)�

0:04
(1:51)

0:05
(1:96)�

�2
17:11
(1:29)

46:21
(0:72)

14:76
(1:25)

4:46
(2:08)��

�2:38
(�1:38)

3:57
(1:67)

B0
2:92�10�12
(0:01)

�4:09�10�7
(�1:02)���

3:25�10�10
(0:01)

�0:14
(�6:61)���

�0:14
(�6:47)���

�0:15
(�6:22)���

C0
1:07�10�1
(11:50)���

0:88�10�1
(15:90)���

0:89�10�1
(16:91)���

1:88�10�1
(20:83)���

0:18
(20:35)���

0:18
(13:95)���

C1X10
�2 �3:44

(�3:06)���
1:04
(0:56)

C2X10
�2 1:68

(1:13)
�2:40
(�0:89)

D0
0:88

(90:14)���
0:89

(130:98)���
0:90

(137:77)���
0:99

(447:52)���
0:99

(421:17)���
0:99

(373:94)���

D1
0:02
(1:68)

2:07�10�3
(2:85)���

D2
�0:02
(�0:97)

�1:16�10�3
(�1:25)

W1
5:18�10�7
(2:16)��

�1:36�10�2
(�1:8)

�2:36�10�2
(�3:81)���

�2:34�10�2
(�3:64)���

W2
�7:42�10�6
(2:3)��

0:30�10�2
(0:38)

1:01�10�2
(1:22)

2:76�10�2
(3:77)���

L0
1:65�10�3
(2:71)���

3:3�10�2
(2:18)��

1:48�10�3
(2:65)��

1:00�10:�3
(2:40)��

0:58�10:�3
(2:20)��

0:94�10:�3
(2:46)��

L1
1:52�10�3
(2:31)��

0:33�10�2
(0:77)

2:36�10�3
(2:38)��

4:21�10�3
(2:93)���

2:48�10�3
(2:43)��

3:67�10�3
(2:81)���

L2
3:26�10�3
(1:56)

2:43�10�2
(2:21)��

2:19�10�3
(1:47)

3:6�10�3
(1:90)�

�0:58�10�3
(�0:8)

2:62�10�3
(1:52)

� �0:51
(�15:03)���

�0:54
(�11:05)���

�0:54
(�10:54)���

�1
0:03
(0:52)

0:08
(1:07)

�2
0:08
(1:18)

�0:02
(�0:23)

2x10�4
4:49

(3:74)���
3:55

(3:87)���
4:40

(3:46)���
3:31

(3:98)���
5:49

(3:09)���
3:57

(4:45)���

log-likelihood 47075 47075 47070 47128 47126 47126
*In the parenthesis are t-stat, and (���;�� ;� ) denotes the p-value falling in the,(0; 0:01);
(0:01; 0:05); (0:05; 0:1) respectively.
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B.6 Table 3-7-1

Robustness Test on TGARCH(1,1)-EX-BJ-X-M for Artificial Republican
Presidency Period

Artificial extension of Republican presidency period
R1 test R2 test 0 3 4 5 6

A0X10
4

A1X10
4 �1:05

(0:99)
�1:60
(�1:08)

�3:40
(�2:29)��

�4:70
(�3:39)��

�1:80
(�0:93)

0:54
(0:29)

�0:80
(�0:29)

A2X10
4 �8:50

(�3:51)���
�9:30

(�3:69)���
�7:90

(�3:18)���
�9:40

(�3:56)���
�9:30

(�3:61)���
�8:60

(�3:45)���
�9:20

(�3:32)���

�1
0:09

(3:36)���
0:09

(2:97)���
0:10

(3:63)���
0:09

(3:57)���
0:09

(3:44)���
0:09

(3:43)���
0:09

(3:38)���

�2
0:15
(0:86)

0:31
(1:27)

0:31
(1:59)

0:52
(2:01)��

0:37
(1:45)

0:16
(0:62)

0:29
(0:89)

B0X10
7 0:00

(0:01)
0:00
(0:01)

0:00
(0:01)

0:00
(0:01)

0:00
(0:01)

0:00
(0:01)

0:00
(0:01)

C0X10
0:83

(11:46)���
0:88

(14:87)���
1:07

(11:46)���
1:19

(8:85)���
1:30

(7:80)���
1:20

(4:53)���
1:04

(6:29)���

C1X10
2 1:04

(1:18)
0:02
(0:01)

�3:17
(�2:84)��

�3:85
(�2:63)���

�4:85
(�2:80)���

�3:67
(�1:39)

�1:73
(�1:07)

C2X10
2 �0:40

(�0:58)
�0:35
(�0:47)

0:57
(0:84)

0:34
(0:5)

0:10
(0:13)

�0:10
(�0:20)

�0:22
(�0:33)

D0X10
8:98

(80:77)���
9:02

(92:10)���
8:82

(94:74)���
8:81

(73:03)���
8:70

(59:03)���
8:70

(30:74)���
8:91

(57:90)���

D1X10
2 �0:45

(�0:16)
�1:03
(�1:28)

1:78
(1:47)

1:62
(1:16)

2:95
(1:86)�

2:60
(0:90)

0:55
(0:37)

D2X10
3

W1X10
3

W2X10
3

L0X10
3 2:44

(2:50)��
1:85
(1:54)

1:62
(3:20)���

1:07
(2:80)���

1:50
(2:41)��

2:52
(1:53)

1:64
(2:14)��

L1X10
3 �0:69

(�0:72)
0:51
(0:75)

1:65
(2:38)��

1:71
(2:77)��

0:82
(1:41)

�0:42
(�0:30)

0:58
(0:84)

L2X10
3 3:04

(2:01)��
2:99
(1:44)

0:46
(1:39)

2:18
(1:75)

2:52
(1:70)

2:84
(1:85)�

2:97
(2:15)��

2X104 4:43
(3:68)���

4:42
(2:58)��

4:58
(3:96)���

4:55
(4:13)���

4:43
(3:94)���

4:38
(3:58)���

4:33
(4:12)���

log-likelihood 47052 47052 47072 47071 47059 47054 47052
*R1 test is the experimental test that sets odd dates to dummy 1 as Republican presidency
and even dates to 0 as Democratic presidency. For R 2 test, days in odd months are set as
Republican dummy 1, and days in even months are set as dummy 0. Column 4 titled with 0
is the estimation based on real presidency data. Column 5,6,7 and 8 are results on 3,4,5,6 years
experimental extension on each Republican period.
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B.7 Higher order movement for GARCH Jump models

(13)Model 13:T-GARCH(1,1)-BJX-M

8>>>><>>>>:
V ar(URt) =

B0+CXt�1q2

(1�CXt�1�DXt�1) + q
2

E(UR4t ) =
3[B0+2B0CXt�1E(UR2t�1)+2B0DXt�1E(ht�1)+2CXt�1DXt�1E(UR

2
t�1ht�1)]

1�D2Xt�1�3C2Xt�1
URt = rt � AXt � �Ht, E(ht) = B0+CXt�1q2

1�CXt�1�DXt�1 , E(UR2t�1) = V ar(URt)
E(UR2t�1ht�1) = (1� q + q2)E(ht�1) + qE(h2t�1)8>><>>:

�V ar(rtjIt�1)
�D(R;t�1)

= �ht
�DR;t�1

+ �qr2

�DR;t�1
= C1(URt�1)

2 � 2CXt�1(URt�1)A1 +D1ht�1 + L1
2

�2V ar(rtjIt�1)
�D2

(R;t�1)
= �2C1(URt�1)A1 � 2C1(URt�1)A1 + 2CXt�1A

2
1

�V ar(rt+njIt�1)
�D(R;t�1)

= (DXt�1)
n[C1(URt�1)

2 � 2CXt�1(URt�1)A1 +D1ht�1 + L1
2]

(14)Model 14: GARCH-LX-BJX-M

8>>>><>>>>:
V ar(URt) =

B0+CXt�1q2

(1�CXt�1�DXt�1) + q
2

E(UR4t ) =
3[B0+2B0CXt�1E(UR2t�1)+2B0DXt�1E(ht�1)+2CXt�1DXt�1E(UR

2
t�1ht�1)]

1�D2Xt�1�3C2Xt�1
URt = rt � AXt � �Ht, E(ht) = B0+CXt�1q2

1�CXt�1�DXt�1 , E(UR2t�1) = V ar(URt)
E(UR2t�1ht�1) = (1� q + q2)E(ht�1) + qE(h2t�1)8>><>>:

�V ar(rtjIt�1)
�D(R;t�1)

= �ht
�DR;t�1

+ �qr2

�DR;t�1
= C1(URt�1)

2 � 2CXt�1(URt�1)A1 +D1ht�1 + L1
2

�2V ar(rtjIt�1)
�D2

(R;t�1)
= �2C1(URt�1)A1 � 2C1(URt�1)A1 + 2CXt�1A

2
1

�V ar(rt+njIt�1)
�D(R;t�1)

= (DXt�1)
n[C1(URt�1)

2 � 2CXt�1(URt�1)A1 +D1ht�1 + L1
2]

107



APPENDIX C
CHAPTER 4 OF APPENDIX

C.1 Figure 4-1-1

(a) (b)

(c) (d)

Figure 4-1-1: Example of Dollar Measure Spread. (Black-Schole-Merton Model)

Figure 4-1-1 illustrates an example that the pattern of dollar measure spread
can be the natural result of pricing models. We assume a 1% risk free interest
rate and 30% volatility. Market makers use 29% and 31% volatility for quoting
asking and bidding prices. As seen in chart (c), for ATM options, the dollar
spread naturally decays to 0 given that all other factors are fixed, including spot
price and volatility. More importantly, the percentage spread in dollar measure-
ment demonstrates an upward trend with convexity. The example shows that
the increasing percentage spread based on dollar measure can be the natural
result of pricing models.
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C.2 Figure 4-2-1

Implied Volatility

Figure 4-2-1 demonstrates two model-free IMV indexes, proposed by CM
and JT, as well as historical daily high frequency realized volatility (RV). For
any given time, t, IMV is forward looking expected volatility for the period of
time to maturity, T � t, where T is the expiration date. We adopt data window,
[t � (T � t); t] for RV calculation and consider it a good reference for future
volatility. As shown in the graph, those three measures are highly correlated,
and they all reached the highest volatility, approximately 80%, during the 2008
financial crisis. Moreover, IMV is frequently higher than RV in our data sample.
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C.3 Figure 4-2-2

Implied Volatility Spread

Figure 4-2-2 shows the pattern of implied volatility spread over the sample
period. The implied volatility in the first chart is calculated by the CM method,
and in the second chart it is calculated by JT method. As shown in each chart,
the volatility spread enlarges with increasing magnitude when the contract pro-
gresses toward the expiration date, denoted by dashed lines.
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C.4 Figure 4-2-3

Implied Volatility Spread in the PCT of Implied Volatility

Figure 4-2-3 shows the pattern of the percentage spread, dividing volatility
by IMV. The pattern is similar to implied volatility spread demonstrated in Fig-
ure 4-2-2, but it is very obvious that the width of the spread is very different for
two different IMV measures.
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C.5 Figure 4-2-4

Implied Volatility Spread by CMITM & CM (1998) IMV

Graphs above show the pattern of volatility spread over sample period. In
comparison with Figure 4-2-2, estimations of implied volatility here are CMITM
and CM (1998) IMV. The implied volatility in the first chart is calculated by the
CMITM method and by CM (1998) in the second chart. As shown in first chart,
the volatility spread based on the ITM options prices also enlarges with increas-
ing magnitude when the contract progresses toward expiration date, denoted
by dashed lines.
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C.6 Figure 4-2-5

Implied Volatility Spread in the PCT of Implied Volatility by CMITM & CM (1998)

Figure 4-2-5 shows the pattern of the percentage spread, dividing volatil-
ity spread by IMV. In comparison with Figure 4-2-3, the calculations of implied
volatility here are CMITM and CM (1998) methods. As shown, the volatility per-
centage spreads based on CMITM IMV and CM (1998) also demonstrate same
pattern.

113



C.7 Figure 4-2-6

Implied Volatility Spread over days to maturity

Figure 4-2-6 displays panel data of volatility spread calculated by CM and
JT IMV. Instead of showing 30 consecutive nearest month contracts over the
sample period, the charts lay out spread data cross all 30 contracts over different
days to maturity. The Y axis is volatility spread, and the X axis is day to maturity.
The days to maturity for a nearest term contract generally starts from 20 to 25
days. As can be seen, quoting spread increases with convexity when time to
maturity decreases.
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C.8 Figure 4-2-7

Pct Volatility Spread over days to maturity

Here we display panel data of volatility spread in percentage of IMV over
days to maturity. Again we find that the volatility spread in percentage enlarges
with increasing magnitude as time approaches to maturity.
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C.9 Figure 4-3-1

Delta Hedging and Hedging Uncertainty

Figure 4-3-1 depicts the example of Delta hedging for ATM call options un-
der the model of Black-Scholes-Merton which assumes the following differential
equation:

@C
@�
= �1

2
�2S2 @

2C
@S2

� rS @C
@S
+ rC

) [@C
@�
]�t = �1

2
�2�tS2 @

2C
@S2

� r�tS @C
@S
+ r�tC

The solid line denotes the prices of an ATM call options, which has strike,
X , and TTM, �1, over various spot prices. Instantaneous spot price movement
drives call price to move along the solid line. An option is a contract in which
writers (sellers) sell the right to buyer and allow options purchasers to buy stock
at price X or to enjoy payoff Max(0; ST � X) at expiration. As time passes,
the probability of asset price goes above exercise price decreases; therefore, call
prices shift to the dashed line when TTM is �2. Delta hedge is the liner dupli-
cation of call options, which hedges the linear movement of options price. For
the writer, the cost of buying the underlying asset and cash inflow from receiv-
ing the call price is (�rS @C

@S
+ rC)�t. On the other side, the curvature denoted

as a, which equals 1
2
�2�tS2 @

2C
@S2

, can not be hedged. Time decay, @C
@�
�t, should
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be able to cover curvature and cost of hedging portfolio if volatility is certain,
meaning the decay rate is completely determined by the model and the assump-
tion of distribution of return. However, in an incomplete market, traders add a
markup for volatility uncertainty which is not considered by the pricing mod-
els. Because the possible range of underlying asset price movement shrinks as
TTM decreases, the markup decreases because of the reduced hedging variance.
However, this decay of required markup does not necessarily follow with the
the decay of chraged premium which is contained in the quoted option price.
The decay of the charged premium contained in the quoted option price is de-
termined by assumed return distribution.
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C.10 Figure 4-3-2

The Structure of Underlying Asset Price Movement and Probability.

The diagram shows the probabilistic structure of an option trading. Given
two volatility estimations, (�L; �H), we have conditional risk neutral probabil-
ities (��L; ��H) over two volatility states. � is the subjective probability that liq-
uidity providers assign to two volatility models, and �w is the risk neutral prob-
ability which discounts fair options value into equilibrium (observed) quoting
prices. Combining two 2-branch trees, we can form a 4-branch tree in which the
prices of each node are (P0 � u�H ; P0 � u�L; P0 � d�L; P0 � d�H).
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C.11 Figure 4-4-1

Quotation Dynamic

Figure 4-4-1 illustrates the dynamics of asking price quotations for selling
options. When expected extra profit equals risk premium, traders engage in
quoting. As shown, intersection E1 is the first equilibrium where selling the
options at volatility a1 can have extra profit to afford risk premium. However,
the expected profit decays faster than required premium so that expected profit
falls below risk premium as time to maturity decreases. To compensate the re-
quired premium for quotation at the next round, traders need to increase selling
volatility to a2, shifting the expected extra profit curve upward, while increas-
ing selling volatility doesn’t shift the hedging variance. Even though our result
is based on a binomial options pricing model, the characteristic of profit decay
should remain the same for all other options pricing models.
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C.12 Figure 4-4-2

Averaged Volatility Spread in Pct. of IMV V.S. Trading Volatility

In Figure 4-4-2, we demonstrate a negative relationship between volatility
percentage spread and implied volatility. Because the increasing pattern ob-
scures the level effect, this negative relationship is not clearly observed if every
data point is displayed. Here we averaged daily data and plot averaged daily
volatility percentage spread for each contract at expiration date. As can be seen,
when implied volatility is high, spread in percentage of implied volatility tends
to be low. The pattern implies that volatility spread does not increase in propor-
tion to trading volatility.
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C.13 Table 4-5-1 & 4-5-2

Table 4-5-1(a): Statistics of IMV and RV
Obs. Mean Std. Dev. Minimum Maximum

CM IMV 630 0.31562 0.10231 0.14217 0.74136
JT IMV 630 0.37249 0.22794 0.16408 2.45290
RV 630 0.29225 0.12702 0.11678 1.00595

Table 4-5-1(b): Statistics of IMV and RV (excl. days to maturity<6 trading days)
Obs. Mean Std. Dev. Minimum Maximum

CM IMV 479 0.31117 0.09952 0.15753 0.69426
JT IMV 479 0.32442 0.09901 0.16908 0.69747
RV 479 0.28501 0.11269 0.12788 0.65097

Table 4-5-2(a): Correlation Coefficients
CM IMV JT IMV RV

CM IMV
P-value 1.0000 0.53582

<0.001
0.83573
<0.001

JT IMV
P-value 1.0000 0.63947

<0.001
RV
P-value 1.0000

Table 4-5-2(b): Correlation Coefficients
(excl. days to maturity<6 trading days)

CM IMV JT IMV RV
CM IMV
P-value 1.000 0.97570

<0.001
0.89574
<0.001

JT IMV
P-value 1.000 0.86907

<0.001
RV
P-value 1.000

We exclude the data of following dates becuase the files in these dates
are either damaged or incomplete: 2008/10/13, 2008/11/21, 2008/12/11,
2008/12/25, 2009/11/18, 2010/4/19, 2010/5/7, 2010/6/2
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C.14 Table 4-5-3 & 4-5-4

Table 4-5-3(a): Statistics of Volatility Spreads
Obs. Mean Std. Dev. Minimum Maximum

Vol. Spd (CM) 630 0.00569 0.00937 0.00151 0.08908
Vol. Spd (JT) 630 0.09892 0.27746 0.00270 2.7508

Table 4-5-3(b): Statistics of Vol. Spread
(excl. days to maturity<6 trading days)

Obs. Mean Std. Dev. Minimum Maximum
Vol. Spd (CM) 479 0.00337 0.00284 0.00151 0.03758
Vol. Spd (JT) 479 0.03718 0.03847 0.00298 0.21567

Table 4-5-4(a): Correlation Coefficients of Volatility Spreads
Vol. Spd (CM) Vol.Spd (JT)

Vol. Spd (CM)
P-value 1.000 0.69542

<0.0001
Vol. Spd (JT)
P-value 1.000

Table 4-5-4(b): Correlation Coefficients of Volatility Spreads
(excl. days to maturity<6 trading days)

Vol. Spd (CM) Vol.Spd (JT)
Vol Spd (CM)
P-value 1.000 0.07895

0.0843
Vol.Spd (JT)
P-value 1.000
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C.15 Table 4-5-5 & 4-5-6

Table 4-5-5(a): Statistics of Volatility Spreads in Percentage of IMV
Obs. Mean(%) Std. Dev(%) Minimum(%) Maximum(%)

Vol. Spd
in Pct of
IMV (CM)

630 1.71856 2.37930 0.53511 26.32054

Vol. Spd
in Pct of
IMV (JT)

630 18.17716 21.9723 0.76191 125.62653

Table 4-5-5(b): Statistics of Volatility Spreads in Percentage of IMV
(excl. days to maturity<6 trading days)

Obs. Mean(%) Std. Dev(%) Minimum(%) Maximum(%)
Vol. Spd
in Pct of
IMV (CM)

479 1.11808 1.02286 0.53511 15.14102

Vol. Spd
in Pct of
IMV (JT)

479 11.36921 10.62312 0.76191 63.07412

Table 4-5-6(a): Correlation Coefficients for Vol. Spds in Pct of IMV
CM JT

CM
P-value 1.000 0.57476

<0.0001
JT
P-value 1.000

Table 4-5-6(b): Correlation Coefficients for Vol. Spds in Pct of IMV
(excl. days to maturity<6 trading days)

CM JT
CM
P-value 1.000 0.15837

0.0015
JT
P-value 1.000
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C.16 Table 4–6-1

Estimation Based on CM IMV and 0 Volatility Risk Premium.
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(T-stat)

1.252475
(6.77)���

0.011438
(3.18)���

-0.01516
(-3.18)���

-0.00036
(-0.52) 0.0386 i.i.d.

Estimation
(T-stat)

1.252475
(6.55)���

0.011438
(5.52)���

-0.01516
(-3.97)���

-0.00036
(-1.03) 0.0386 heteroscedasticity1

Estimation
(T-stat)

1.252475
(5.87)���

0.011438
(5.23)���

-0.01516
(-3.47)���

-0.00036
(-0.97) 0.0386 heteroscedasticity2

Estimation
(T-stat)

1.252475
(5.26)���

0.011438
(5.02)���

-0.01516
(-3.07)���

-0.00036
(-0.93) 0.0386 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

1.735036
(10.42)���

1.708992
(10.37)���

1.44112
(8.67)���

1.247435
(5.89)���

-0.01498
(-3.14)���

-0.00035
(-0.51) 0.0405 i.i.d.

Estimation
(t-stat)

1.735036
(12.37)���

1.708992
(6.94)���

1.44112
(8.58)���

1.247435
(9.62)���

-0.01498
(-3.94)���

-0.00035
(-1.01) 0.0405 hete.1

Estimation
(t-stat)

1.735036
(10.83)���

1.708992
(6.25)���

1.44112
(7.82)���

1.247435
(8.47)���

-0.01498
(-3.46)���

-0.00035
(-0.96) 0.0405 hete.2

Estimation
(t-stat)

1.735036
(9.61)���

1.708992
(5.7)���

1.44112
(7.08)���

1.247435
(7.55)���

-0.01498
(-3.07)���

-0.00035
(-0.92) 0.0405 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.17 Table 4–6-2

Estimation Based on JT IMV and 0 Volatility Risk Premium.
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

5.612757
(2.88)���

0.28526
(7.29)���

-0.09021
(-2.05)��

0.000646
(2.14)�� 0.1012 i.i.d.

Estimation
(t-stat)

5.612757
(2.36)��

0.28526
(4.46)���

-0.09021
(-1.93)�

0.000646
(2.29)�� 0.1012 heteroscedasticity1

Estimation
(t-stat)

5.612757
(2.04)��

0.28526
(3.94)���

-0.09021
(-1.66)�

0.000646
(1.95)� 0.1012 heteroscedasticity2

Estimation
(t-stat)

5.612757
(1.87)�

0.28526
(3.74)���

-0.09021
(-1.48)

0.000646
(1.72)� 0.1012 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

19.1538
(11.16)���

13.96775
(8.33)���

11.6982
(6.69)���

7.616757
(3.38)���

-0.08892
(-2.01)��

0.000673
(2.22)�� 0.0968 i.i.d.

Estimation
(t-stat)

19.1538
(7.76)���

13.96775
(6.50)���

11.6982
(6.13)���

7.616757
(4.64)���

-0.08892
(-1.91)�

0.000673
(2.36)�� 0.0968 hete.1

Estimation
(t-stat)

19.1538
(6.64)���

13.96775
(5.53)���

11.6982
(5.28)���

7.616757
(4.08)���

-0.08892
(-1.64)�

0.000673
(2.00)�� 0.0968 hete.2

Estimation
(t-stat)

19.1538
(6.02)���

13.96775
(5.06)���

11.6982
(4.68)���

7.616757
(3.67)���

-0.08892
(-1.45)��

0.000673
(1.76)� 0.0968 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.18 Table 4-6-3

Estimation Based on CM IMV and MA Dynamic Volatility Risk Premium.
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

1.264867
(6.83)���

0.01163
(3.19)���

-0.0163
(-3.44)���

0.000057
(0.27) 0.0381 i.i.d.

Estimation
(t-stat)

1.264867
(6.5)���

0.01163
(5.49)���

-0.0163
(-3.97)���

0.000057
(1.29) 0.0381 heteroscedasticity1

Estimation
(t-stat)

1.264867
(5.81)���

0.01163
(5.2)���

-0.0163
(-3.46)���

0.000057
(1.24) 0.0381 heteroscedasticity2

Estimation
(t-stat)

1.264867
(5.21)���

0.01163
(5)���

-0.0163
(-3.05)���

0.000057
(1.19) 0.0381 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (Hight Frequency Volatility)tg2

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

1.76228
(10.39)���

1.732693
(10.35)���

1.463301
(8.75)���

1.255782
(5.93)���

-0.01633
(-3.45)���

0.000093
(0.44) 0.0402 i.i.d.

Estimation
(t-stat)

1.76228
(11.98)���

1.732693
(6.83)���

1.463301
(8.51)���

1.255782
(9.47)���

-0.01633
(-3.93)���

0.000093
(2.02)� 0.0402 hete.1

Estimation
(t-stat)

1.76228
(10.44)���

1.732693
(6.14)���

1.463301
(7.72)���

1.255782
(8.31)���

-0.01633
(-3.43)���

0.000093
(1.94)� 0.0402 hete.2

Estimation
(t-stat)

1.76228
(9.22)���

1.732693
(5.6)���

1.463301
(6.95)���

1.255782
(7.38)���

-0.01633
(-3.03)���

0.000093
(1.84)� 0.0402 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.19 Table 4-6-4

Estimation Based on JT IMV and MA Dynamic Volatility Risk Premium.
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

3.493824
(2.20)��

0.289991
(7.38)���

-0.04073
(-1.70)�

0.005743
(2.60)��� 0.1045 i.i.d.

Estimation
(t-stat)

3.493824
(1.69)�

0.289991
(4.59)���

-0.04073
(-2.17)��

0.005743
(2.08)�� 0.1045 heteroscedasticity1

Estimation
(t-stat)

3.493824
(1.47)

0.289991
(4.06)���

-0.04073
(-1.97)��

0.005743
(2.15)�� 0.1045 heteroscedasticity2

Estimation
(t-stat)

3.493824
(1.38)

0.289991
(3.88)���

-0.04073
(-1.79)�

0.005743
(2.25)�� 0.1045 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (Hight Frequency Volatility)tg2

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

17.21005
(14.74)���

11.80949
(10.43)���

9.552206
(7.62)���

5.755409
(2.89)���

-0.03645
(-1.50)

0.005709
(2.58)�� 0.0994 i.i.d.

Estimation
(t-stat)

17.21005
(9.36)���

11.80949
(8.57)���

9.552206
(6.72)���

5.755409
(6.46)���

-0.03645
(-1.93)�

0.005709
(2.10)�� 0.0994 hete.1

Estimation
(t-stat)

17.21005
(8.10)���

11.80949
(7.32)���

9.552206
(5.89)���

5.755409
(5.78)���

-0.03645
(-1.77)�

0.005709
(2.18)�� 0.0994 hete.2

Estimation
(t-stat)

17.21005
(7.57)���

11.80949
(6.68)���

9.552206
(5.45)���

5.755409
(5.33)���

-0.03645
(-1.64)�

0.005709
(2.29)�� 0.0994 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.20 Table 4-6-5

Estimation Based on CM IMV and Squared RV Volatility Uncertainty
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

1.354496
(6.17)���

0.011589
(3.23)���

-0.02155
(-2.57)���

0.000085
(0.80) 0.0394 i.i.d.

Estimation
(t-stat)

1.354496
(6.63)���

0.011589
(5.58)���

-0.02155
(-3.98)���

0.000085
(1.87)� 0.0394 heteroscedasticity1

Estimation
(t-stat)

1.354496
(5.89)���

0.011589
(5.28)���

-0.02155
(-3.47)���

0.000085
(1.66)� 0.0394 heteroscedasticity2

Estimation
(t-stat))

1.354496
(5.29)���

0.011589
(5.07)���

-0.02155
(-3.12)���

0.000085
(1.53) 0.0394 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

1.840913
(8.95)���

1.81179
(8.90)���

1.54772
(7.48)���

1.341013
(5.59)���

-0.02121
(-2.53)���

0.000083
(0.78) 0.0412 i.i.d.

Estimation
(t-stat)

1.840913
(11.14)���

1.81179
(6.88)���

1.54772
(8.36)���

1.341013
(9.13)���

-0.02121
(-3.87)���

0.000083
(1.73)� 0.0412 hete.1

Estimation
(t-stat)

1.840913
(9.72)���

1.81179
(6.16)���

1.54772
(7.55)���

1.341013
(8.00)���

-0.02121
(-3.38)���

0.000083
(1.52) 0.0412 hete.2

Estimation
(t-stat))

1.840913
(8.67)���

1.81179
(5.61)���

1.54772
(6.80)���

1.341013
(7.14)���

-0.02121
(-3.03)���

0.000083
(1.39) 0.0412 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.21 Table 4-6-6

Estimation Based on JT IMV and Squared RV Volatility Uncertainty
(Data sample excludes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

5.612757
(2.88)���

0.28526
(7.29)���

-0.09021
(-2.05)��

0.000646
(2.14)�� 0.1012 i.i.d.

Estimation
(t-stat)

5.612757
(2.36)��

0.28526
(4.46)���

-0.09021
(-1.93)�

0.000646
(2.29)�� 0.1012 heteroscedasticity1

Estimation
(t-stat)

5.612757
(2.04)��

0.28526
(3.94)���

-0.09021
(-1.66)�

0.000646
(1.95)� 0.1012 heteroscedasticity2

Estimation
(t-stat)

5.612757
(1.87)�

0.28526
(3.74)���

-0.09021
(-1.48)

0.000646
(1.72)� 0.1012 heteroscedasticity3

Model :

�
SpPctt = �2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
�2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

19.1538
(11.16)���

13.96775
(8.33)���

11.6982
(6.69)���

7.616757
(3.38)���

-0.08892
(-2.01)��

0.000673
(2.22)�� 0.0968 i.i.d.

Estimation
(t-stat)

19.1538
(7.76)���

13.96775
(6.50)���

11.6982
(6.13)���

7.616757
(4.64)���

-0.08892
(-1.91)�

0.000673
(2.36)�� 0.0968 hete.1

Estimation
(t-stat)

19.1538
(6.64)���

13.96775
(5.53)���

11.6982
(5.28)���

7.616757
(4.08)���

-0.08892
(-1.64)�

0.000673
(2.00)�� 0.0968 hete.2

Estimation
(t-stat)

19.1538
(6.02)���

13.96775
(5.06)���

11.6982
(4.68)���

7.616757
(3.67)���

-0.08892
(-1.45)��

0.000673
(1.76)� 0.0968 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.22 Table 4-6-1-a

Estimation Based on CM IMV and 0 Volatility Risk Premium.
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt= fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

1.599353
(6.51)���

0.017825
(15.95)���

-0.03346
(-4.64)���

0.000544
(1.28) 0.3852 i.i.d.

Estimation
(t-stat)

1.599353
(7.07)���

0.017825
(8.44)���

-0.03346
(-5.54)���

0.000544
(0.82) 0.3852 heteroscedasticity1

Estimation
(t-stat)

1.599353
(6.55)���

0.017825
(8.50)���

-0.03346
(-5.26)���

0.000544
(0.81) 0.3852 heteroscedasticity2

Estimation
(t-stat)

1.599353
(6.20)���

0.017825
(8.52)���

-0.03346
(-5.11)���

0.000544
(1.28) 0.3852 heteroscedasticity3

Model :

�
SpPctt= �1D1+�2D2+�3D3+�4D4+�5D5+�1IMV t�1+�2Shockt+"t
Shockt= fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

4.323302
(14.55)���

2.349584
(7.92)���

2.302003
(7.82)���

2.032064
(6.80)���

1.811517
(4.54)���

-0.03815
(-4.86)���

0.00287
(7.01)��� 0.2705 i.i.d.

Estimation
(t-stat)

4.323302
(9.58)���

2.349584
(10.06)���

2.302003
(7.75)���

2.032064
(8.39)���

1.811517
(7.66)���

-0.03815
(-5.25)���

0.00287
(3.99)��� 0.2705 hete.1

Estimation
(t-stat)

4.323302
(9.85)���

2.349584
(9.61)���

2.302003
(7.38)���

2.032064
(8.06)���

1.811517
(7.32)���

-0.03815
(-5.11)���

0.00287
(3.93)��� 0.2705 hete.2

Estimation
(t-stat)

4.323302
(10.12)���

2.349584
(9.46)���

2.302003
(7.19)���

2.032064
(8.01)���

1.811517
(7.17)���

-0.03815
(-5.12)���

0.00287
(3.89)��� 0.2705 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.23 Table 4-6-2-a

Estimation Based on JT IMV and 0 Volatility Risk Premium.
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

17.49044
(9.01)���

0.204591
(24.18)���

-0.38425
(-6.59)���

-0.00306
(-0.96) 0.5251 i.i.d.

Estimation
(t-stat)

17.49044
(5.84)���

0.204591
(10.42)���

-0.38425
(-4.92)���

-0.00306
(-0.48) 0.5251 heteroscedasticity1

Estimation
(t-stat)

17.49044
(4.97)���

0.204591
(9.93)���

-0.38425
(-4.20)���

-0.00306
(-0.48) 0.5251 heteroscedasticity2

Estimation
(t-stat)

17.49044
(4.35)���

0.204591
(9.68)���

-0.38425
(-3.71)���

-0.00306
(-0.48) 0.5251 heteroscedasticity3

Model :

�
SpPctt = �1D1+�2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

49.76579
(19.41)���

28.63694
(11.25)���

23.14229
(9.22)���

20.81895
(8.04)���

17.20998
(4.95)���

-0.41756
(-6.10)���

0.017193
(4.91)��� 0.3462 i.i.d.

Estimation
(t-stat)

49.76579
(10.85)���

28.63694
(8.11)���

23.14229
(7.39)���

20.81895
(6.71)���

17.20998
(5.95)���

-0.41756
(-4.59)���

0.017193
(2.17)�� 0.3462 hete.1

Estimation
(t-stat)

49.76579
(9.81)���

28.63694
(6.95)���

23.14229
(6.41)���

20.81895
(5.85)���

17.20998
(5.29)���

-0.41756
(-4.09)���

0.017193
(2.19)�� 0.3462 hete.2

Estimation
(t-stat)

49.76579
(9.09)���

28.63694
(6.14)���

23.14229
(5.77)���

20.81895
(5.26)���

17.20998
(4.82)���

-0.41756
(-3.72)���

0.017193
(2.23)�� 0.3462 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.24 Table 4-6-3-a

Estimation Based on CM IMV and MA Dynamic Volatility Risk Premium.
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

1.578849
(6.42)���

0.018275
(18.10)���

-0.0331
(-4.55)���

0.000247
(0.90) 0.3842 i.i.d.

Estimation
(t-stat)

1.578849
(6.98)���

0.018275
(9.41)���

-0.0331
(-5.39)���

0.000247
(0.68) 0.3842 heteroscedasticity1

Estimation
(t-stat)

1.578849
(6.49)���

0.018275
(9.49)���

-0.0331
(0.67)���

0.000247
(0.67) 0.3842 heteroscedasticity2

Estimation
(t-stat)

1.578849
(6.16)���

0.018275
(9.53)���

-0.0331
(-5.03)���

0.000247
(0.66) 0.3842 heteroscedasticity3

Model :

�
SpPctt= �1D1+�2D2+�3D3+�4D4+�5D5+�1IMV t�1+�2Shockt+"t
Shockt= fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

4.545148
(15.04)���

2.3717224
(7.77)���

2.309912
(7.65)���

1.972528
(6.46)���

1.671424
(4.12)���

-0.03655
(-4.53)���

0.00145
(4.93)��� 0.2423 i.i.d.

Estimation
(t-stat)

4.545148
(9.99)���

2.3717224
(10.14)���

2.309912
(7.82)���

1.972528
(8.32)���

1.671424
(7.03)���

-0.03655
(-5.05)���

0.00145
(3.49)��� 0.2423 hete.1

Estimation
(t-stat)

4.545148
(10.48)���

2.3717224
(9.93)���

2.309912
(7.55)���

1.972528
(8.17)���

1.671424
(7.07)���

-0.03655
(-5.06)���

0.00145
(3.47)��� 0.2423 hete.2

Estimation
(t-stat)

4.545148
(10.90)���

2.3717224
(9.80)���

2.309912
(7.34)���

1.972528
(8.12)���

1.671424
(7.05)���

-0.03655
(-5.09)���

0.00145
(3.45)��� 0.2423 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth para-
meter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth para-
meter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth para-
meter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.25 Table 4-6-4-a

Estimation Based on JT IMV and MA Dynamic Volatility Risk Premium.
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

18.28002
(9.37)��

0.200069
(24.63)���

-0.41039
(-6.99)���

0.001094
(0.48) 0.5243 i.i.d.

Estimation
(t-stat)

18.28002
(5.83)��

0.200069
(10.35)���

-0.41039
(-4.85)���

0.001094
(0.22) 0.5243 heteroscedasticity1

Estimation
(t-stat)

18.28002
(4.98)��

0.200069
(9.86)���

-0.41039
(-4.19)���

0.001094
(0.22) 0.5243 heteroscedasticity2

Estimation
(t-stat)

18.28002
(4.39)��

0.200069
(9.62)���

-0.41039
(-3.74)���

0.001094
(0.22) 0.5243 heteroscedasticity3

Model :

�
SpPctt = �1D1+�2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = fIMVt�1 � (Volatility Premium)t�1 � (High Frequency Volatility)tg2

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

50.86253
(19.75)���

29.36456
(11.45)���

23.75971
(9.42)���

21.21307
(8.18)���

16.85814
(4.87)���

-0.43231
(-6.29)���

0.013709
(5.28)��� 0.3496 i.i.d.

Estimation
(t-stat)

50.86253
(10.98)���

29.36456
(8.35)���

23.75971
(7.68)���

21.21307
(6.93)���

16.85814
(6.03)���

-0.43231
(-4.90)���

0.013709
(2.71)��� 0.3496 hete.1

Estimation
(t-stat)

50.86253
(9.92)���

29.36456
(7.10)���

23.75971
(6.60)���

21.21307
(5.99)���

16.85814
(5.38)���

-0.43231
(-4.29)���

0.013709
(2.69)��� 0.3496 hete.2

Estimation
(t-stat)

50.86253
(9.18)���

29.36456
(6.23)���

23.75971
(5.87)���

21.21307
(5.34)���

16.85814
(4.87)���

-0.43231
(-3.85)���

0.013709
(2.68)��� 0.3496 hete.3

1: Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and band-
width parameter of 3.
2: .Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and band-
width parameter of 5.
3: Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and band-
width parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.26 Table 4-6-5-a

Estimation Based on CM IMV and Squared RV Volatility Uncertainty
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

1.951533
(7.20)���

0.01751
(17.52)���

-0.05376
(-5.49)���

0.000344
(3.25)��� 0.3938 i.i.d.

Estimation
(t-stat)

1.951533
(8.03)���

0.01751
(9.72)���

-0.05376
(-5.33)���

0.000344
(2.49)�� 0.3938 heteroscedasticity1

Estimation
(t-stat)

1.951533
(7.83)���

0.01751
(9.90)���

-0.05376
(-5.49)���

0.000344
(2.57)�� 0.3938 heteroscedasticity2

Estimation
(t-stat)

1.951533
(7.58)���

0.01751
(10.01)���

-0.05376
(-5.59)���

0.000344
(2.61)�� 0.3938 heteroscedasticity3

Model :

�
SpPctt= �1D1+�2D2+�3D3+�4D4+�5D5+�1IMV t�1+�2Shockt+"t
Shockt= (High Frequency Volatility)2t

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(T-Stat)

5.101932
(16.38)���

2.937483
(9.14)���

2.892663
(9.08)���

2.648502
(8.16)���

2.384066
(5.73)���

-0.07536
(-7.09)���

0.000738
(6.61)��� 0.2645 i.i.d.

Estimation
(T-Stat)

5.101932
(10.75)���

2.937483
(9.97)���

2.892663
(8.35)���

2.648502
(8.72)���

2.384066
(8.12)���

-0.07536
(-5.58)���

0.000738
(3.95)��� 0.2645 hete.1

Estimation
(T-Stat)

5.101932
(11.50)���

2.937483
(10.29)���

2.892663
(8.38)���

2.648502
(9.08)���

2.384066
(8.38)���

-0.07536
(-5.77)���

0.000738
(3.91)��� 0.2645 hete.2

Estimation
(T-Stat)

5.101932
(12.16)���

2.937483
(10.67)���

2.892663
(8.37)���

2.648502
(9.39)���

2.384066
(8.60)���

-0.07536
(-5.97)���

0.000738
(3.88)��� 0.2645 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.27 Table 4-6-6-a

Estimation Based on JT IMV and Squared RV Volatility Uncertainty
(Data sample includes last 5 trading days.)

Model :

�
SpPctt = �+ �

1
TTMt

+ �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
� � �1 �2 R-Sq assumption

Estimation
(t-stat)

20.64115
(10.05)���

0.19466
(24.31)���

-0.55214
(-7.38)���

0.002493
(2.98)�� 0.5311 i.i.d.

Estimation
(t-stat)

20.64115
(6.13)���

0.19466
(10.26)���

-0.55214
(-4.82)���

0.002493
(1.91)� 0.5311 heteroscedasticity1

Estimation
(t-stat)

20.64115
(5.41)���

0.19466
(9.82)���

-0.55214
(-4.54)���

0.002493
(1.94)� 0.5311 heteroscedasticity2

Estimation
(t-stat)

20.64115
(4.85)���

0.19466
(9.65)���

-0.55214
(-4.29)���

0.002493
(1.96)� 0.5311 heteroscedasticity3

Model :

�
SpPctt = �1D1+�2D2+�3D3+�4D4+�5D5 + �1IMVt�1 + �2Shockt + "t
Shockt = (High Frequency Volatility)2t

Parameters Adj. Innovation
�1 �2 �3 �4 �5 �1 �2 R-Sq assumption

Estimation
(t-stat)

53.78476
(20.48)���

31.9205
(12.18)���

26.48654
(10.24)���

24.99762
(9.25)���

21.17399
(6.00)���

-0.68985
(-7.96)���

0.006117
(6.48)��� 0.3637 i.i.d.

Estimation
(t-stat)

53.78476
(11.21)���

31.9205
(8.87)���

26.48654
(8.29)���

24.99762
(7.73)���

21.17399
(6.93)���

-0.68985
(-5.96)���

0.006117
(3.73)��� 0.3637 hete.1

Estimation
(t-stat)

53.78476
(10.26)���

31.9205
(7.69)���

26.48654
(7.31)���

24.99762
(6.93)���

21.17399
(6.26)���

-0.68985
(-5.70)���

0.006117
(3.71)��� 0.3637 hete.2

Estimation
(t-stat)

53.78476
(9.53)���

31.9205
(6.81)���

26.48654
(6.59)���

24.99762
(6.34)���

21.17399
(5.73)���

-0.68985
(-5.48)���

0.006117
(3.68)��� 0.3637 hete.3

1:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 3.
2:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 5.
3:Variance-covariance matrix is adjusted by NW estimation with Bartlett Kernel and bandwidth
parameter of 8.
*** significant at 1% level. ** significant at 5% level. * significant at 10% level.
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C.28 Proof 4-1

E(WA)
= (1� �)��HfC(� ; a�)� CN (u�H) + �AP0(u�H � 1)g

+���LfC(� ; a�)� CN (u�L) + �AP0(u�L � 1)g
+�(1� ��L)fC(� ; a�)� CN (d�L) + �AP0(d�L � 1)g
+(1� �)��HfC(� ; a�)� CN (d�H) + �AP0(d�H � 1)g

* (1� �)��H + (1� �)��H + ���L + �(1� ��L) = 1
= C(� ; a�)� (1� �)��H fCN (u�H)��AP0(u�H�1)g � ���L fCN (u�L)��AP0(u�L�1)g

��(1� ��L) fCN (d�L)��AP0(d�L�1)g � (1� �)��H fCN (d�H)��AP0(d�H�1)g
Assuming 0 risk free interest rate
Therefore ��L � u�L + (1� ��L) � d�L = 1; ��H � u�H + (1� ��H) � d�H = 1
= C(� ; a�)� (1� �)��HCN (u�H)� ���LCN (u�L)� �(1� ��L)CN (d�L)� (1� �)��HCN (d�H)
= C(� ; a�)� �C(� ; �L)� (1� �)C(� ; �H)
* C(� ; �L) = ��LCN (u�L) + (1� ��L)CN (d�L) and C(� ; �H) = ��LCN (u�L) + (1� ��L)CN (d�L)

Following the same procedure, we can derive E(WB) = �C(� ; �b) + �C(� ; �L) + (1 �
�)C(� ; �H):

C.29 Proof 4-2

V ar(WA)
= p1W

2
A;u

�L
+ p2W

2
A;u

�L
+ p3W

2
A;d�L

+ p4W
2
A;d�H

� (p1WA;u
�H
+ p2WA;u

�L
+ p3WA;d�L + p4WA;d�H )

2

= C2�;a(p1 + p2 + p3 + p4) + 2C�;a fp1(�AS1�C1) + p2(�AS2�C2) + p3(�AS3�C3) + p4(�AS4�C4)g
+
n
p1(�AS1�C1)2+p2(�AS2�C2)

2
+p3(�AS3�C3)

2
+p4(�AS4�C4)

2
o

�fC�;a�(p1C1+p2C2+p3C3+p4C4) + (p1�AS1+p�AS2+p3�AS3+p4�AS4)g
2

* p1�AS1 + p�AS2 + p3�AS3 + p4�AS4 = 0 (This holds becuase equation (2) and (3) tells that
expected return of underlying is 0.)
and [p1W1 + p2W2 + p3W3 + p4W4]

2 = [C�;a � �C(� ; L)� (1� �)C(� ;H)]2

=
n
p1(�AS1�C1)2+p2(�AS2�C2)

2
+p3(�AS3�C3)

2
+p4(�AS4�C4)

2
o
� f�C(� ; �L) + (1� �)C(� ; �H)g2

For ATM options, X = 1; C1 = S1; C2 = S2; C3 = 0; C4 = 0

=
n
p1(�A�1)2S21+p2(�A�1)

2
S22+p3�

2
AS3

2+p4�
2
AS4

2
o
� f�C(� ; �L) + (1� �)C(� ; �H)g2

V ar(WB)
= p1W

2
B;u

�H
+ p2W

2
B;u

�L
+ p3W

2
B;d�L

+ p4W
2
B;d�H

� (p1WB;u
�H
+ p2WB;u

�L
+ p3WB;d�L + p4WB;d�H )

2

=
n
p1(�BS1 + C1)

2
+p2(�BS2 + C2)

2
+p3(�BS3 + C3)

2
+p4(�BS4 + C4)

2
o

�f�C(� ; �L) + (1� �)C(� ; �H)g2
For ATM options

=
n
p1(�B + 1)

2
S21+p2(�B + 1)

2
S22+p3�

2
BS3

2+p4�
2
BS4

2
o
� f�C(� ; L) + (1� �)C(� ;H)g2
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@V ar(WA)
@�a = 0

) 2p1WA;u
�H
S1 + 2p2WA;u

�L
S2 + 2p3WA;d

�L
S3 + 2p4WA;d�HS4

�2(p1WA;u
�H
+ p2WA;u

�L
+ p3WA;d�L + p4WA;d�H ) � fp1S1 + p2S2 + p3S3 + p4S4g

* p1S1 + p2S2 + p3S3 + p4S4 = 0
) 2p1WA;u

�H
S1 + 2p2WA;u

�L
S2 + 2p3WA;d

�L
S3 + 2p4WA;d�HS4 = 0

) C�;a(p1S1 + p2S2 + p3S3 + p4S4) + �A(p1S
2
1 + p2S

2
2 + p3S

2
3 + p4S

2
4)

�(p1S1C1 + p2S2C2 + p3S3C3 + p4S4C4) = 0

) �A =
p1S1C1+p2S2C2+p3S3C3+p4S4C4

p1S21+p2S
2
2+p3S

2
3+p4S

2
4

Similarily
@V ar(WB)

@�B
= 0

) �C�;b(p1S1 + p2S2 + p3S3 + p4S4) + �B(p1S21 + p2S22 + p3S23 + p4S24)
+(p1S1C1 + p2S2C2 + p3S3C3 + p4S4C4) = 0

) ��B = �
p1S1C1+p2S2C2+p3S3C3+p4S4C4

p1S21+p2S
2
2+p3S

2
3+p4S

2
4

Therefore, we conclude that ��A = ���B , and V ar(WA) = V ar(WB)

Here we can show for ATM,��A = ���B + 0:5 by Taylor expansion

��A =
p1S1C1+p2S2C2+p3S3C3+p4S4C4

p1S21+p2S
2
2+p3S

2
3+p4S

2
4

= p1S1C1+p2S2C2
p1S21+p2S

2
2+p3S

2
3+p4S

2
4
+

1
2

n
(�H

p
�)

2
+(�L

p
�)

2
o

(�H
p
�)

2
+(�L

p
�)

2
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C.30 Proof 4-3 & 4-4

Proof 4-3:

First it can be show that alternative optimization problem (1) has same solution as second
alternative optimization model. For first alternative optimization problem, lagrange multiplier
condition is

@V ar(qWA)
@�A

+ �@qE(WA)
@�A

= 0) @V ar(WA)
@�A

= 0.

Therefore 3 optimization problems have same delta solution.

Proof 4-4:

If � can be equal or smaller than 0, then the optimal solution to alternative problem (1) is
q� = 0: This optimization problem then becomes meaningless.

If � > 0; � = 2V ar(qWA)
 + cq, then first alternative problem has the same solution as opti-

mization problem (3) does. Given specified constraint payoff for writing call options, a positive
� implies problem has solution q� > 0 if solution exists. Conditions for optimized solutions are:

8>>>><>>>>:
$ = �V ar(qWA) + �(�E(qWA) +

2V ar(qWA)
 + cq)

@$
@�A

= (�q�2 + �q�2

 ) 2@V ar(q
�WA)

@�A
= 0

@$
@q = �2q

�V ar(WA) + �(�E(WA) +
4q�V ar(WA)

 + c) = 0
@$
@� = �E(q

�WA) +
V ar(q�WA)

2 + cq� = q�[�E(WA) +
2q�V ar(WA)

 + c] = 0

Because @$
@� = 0 and q� > 0, condition E(WA) =

2qV ar(WA)
 + c needs to be satisfied for

optimal q�. And we can plug this condition into @$
@q to have following equation.

@$
@q = V ar(WA)(�2q + 2�q

 ) = 0) q(�1 + �
 ) = 0) � =  > 0

Then � can be substituted into @$
@� such that @$@� = q

2 @V ar(qWA)
@� = 0. Condition, @V ar(WA)

@� =

0, needs to be held in maximization, and E(WA) =
2q�V ar(WA)

 + c. All optimal conditions for
first alternative optimization are the same as optimization problem (3), if � is set to be equal to
2V ar(qWA)

 + cq.

It is trivial to show the second alternative optimization problem has the same optimal con-
dition. Traders first minimize the hedging variance; therefore the condition is @V ar(WA)

@� = 0:
The second step is maximizing profit by choosing q, given ��, and the F.O.C. condition is
E(WA) =

2q�V ar(WA)
 + c.
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C.31 Proof 4-5

By introducing binomial model and assuming X = 1, each component in implicit function is:

C(� ; a � �) = P0�a�(u�;a��1) =
P0(1�e�a�
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*�A= ��B ;@V ar(WA)
@� =@V ar(WB)
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We can derive approximation of the equation by Taylor expansion theory. Generally, the
annualized volatility ranges from 20% to 40% and � is always less than 0:1 for nearest month
contracts, so �

p
� and ��

p
� is around 0. Because we apply Taylor theory to expand around 0,

the higher order terms is dominated lower order term. Hence, we drop the higher order terms
if the lower order term is non zero.

Taylor expansion series follows.
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Expanding exponential functions from x equal to 0, we can derive approximation for previ-
ous functions, including E(WA); E(WB); V (WA); V (WB);

@E(WA)

@� ;
@E(WB)

@� ;
@V (WA)

@� ;
@V (WB)

@� : In
other words, we derive equation above first and then apply Taylor expansion theory on derived
equation to get approximation around zero x. The following is the result after approximation.
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C.32 Proof 4-6

First, the equilibrium condition is
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C.33 Proof 4-7
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C.34 Proof 4-8
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Given equilibrium condition, we derive the condition below making @f(�;L;H;a)
@� > 0 and

@a
@� =

� @f(�;L;H;a)
@�

@f(�;L;H;a)
@a

< 0.
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@f(�;L;H;a)
@� = @E(WA)

@� �Q
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@� > 0 iff C > P0
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4 [a� � ��L� (1� �)�H]

The condition is the same as that making @a
@� =

� @f(�;L;H;a)
@�

@f(�;L;H;a)
@a

< 0
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C.35 Proof 4-9

Here we are going to show how asking volatility and bidding volatility change over different
volatility estimation. ( @a@H �

@b
@H > 0)
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* 1> �A> 0; 2�2A � 2�A + 1�A > 0:5 ) @f
@H < 0
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Becuase @f(b;L;H;�)
@H = @f(a;L;H;�)

@H , we directly plug previous result into @b
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On the other hand, we are also interested in @a
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We can not claim if @a
@L is greater than 0 or not, because 2L(2�2A � 2�A + 1) � (H +

�(L�H) < 0 for ATM call.

if 2L(2�2A�2�A+1)� (H + �(L�H) � 0 then
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However, we can derive conclusion for @a
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@L , if X=1.
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Becuase 2L(2�2A�2�A+1)� (H + �(L�H) < 0 for ATM call,

We conclude @a
@L �

@b
@L < 0.

Finally, in proposition 5, we want to know effect of H and L together on the spread.
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C.36 Proof 4-10
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C.37 Model Free Implied Volatility Calculation

(a)CM IMV

The following is the CBOE formula for VIX index, denoted as CM IMV in this paper.

�2CM = 2
�

X
i

�Ki

K2
i
er�Q(Ki)� 1

� [
F
K0
� 1]2

CM IMV = �CM � 100
� :Time to expiration
F :Forward index level derived from index option prices
K0 :First strike below the forward index level, F
Ki :Strike price of ith out-of-the-money options; a call if Ki > K0; and a put if

Ki < K0; both put and call ifKi = K0
�Ki :Interval between strike prices.

�Ki =
Ki+1�Ki�1

2
r :Risk-free interest rate to expiration
Q(Ki) :The asking price/bidding price for each options with strikeKi.1

For the lowest strike,�K is simply the difference between the lowest strike and next higher
strike. Similarly, �K for the highest strike is the difference between the highest strike and next
lower strike. Additionally, the forward index is calculated by put-call-parity equation.

F = strike price + er� ( Call price � Put price )

For VIX calculation, the CBOE identifies the strike price at which the absolute difference
between the call and put prices is smallest. The call and put prices in equation are prices of
the contracts with identified strike. In our empirical work, we directly pick up the nearest term
contracts with the strike that is closest to the spot price to calculate forward index. Sometimes
this index is also called effective forward price.

(b)JT IMV

The formula of JT IMV follows.

�2JT =
M

1
�

X
j=1

[g(� ;Ki) + g(� ;Kj�1)]�K

JT IMV = �JT � 100
m : The number of toal toal strike
�K : Interval between strike prices

�K = (Kmax�Kmin)
m

Kj = Kmin + j�K

g(� ;Kj) =
[CF (�;Kj)�max(0;F0�Kj)]

K2
j

F0 :Forward asset price at time 0
F0 = S0 � er�

CF (� ;K) = C(� ;K) � er�

1In VIX index calculation,Q(Ki) is midpoint of the bid-ask spread for each option with strike
Ki:

153



The formula of JT IMV is similar to CM IMV. However, while CM used OTM put options,
JT employed the value, the difference between call options price and its intrinsic value. The
loading of �K is the same as CM IMV calculation, if all intervals between two consecutive
strikes are the same. Because the interval between two consecutive strikes could change over
different price level, using fixed loading �K specified in JT is not as ideal as using real interval
between strike prices. Therefore we use Ki+1�Ki�1

2 to calculate JT IMV. Furthermore, Because
the payoff of the derivatives contracts excludes the dividend of the underlying asset, the spot
price, containing the dividend, is not a good reference for forward price. Again, we use the
effective forward price rather than use S0�er� to be the forward asset price in JT IMV calculation.

(c)CM (1998) IMV

Here we also include original formula proposed by Carr and Madan. The variance for time
[0; � ] is

�2(0;�) = e
r�

8<:
KZ
0

2
K2P (K; �)dK +

1Z
k

2
K2C(K; �)dK

9=;
�2(0;�) = 2

(
K0X
Kmin

�Ki

K2
i
er�P (K; �) +

1X
K0

�Ki

K2
i
er�C(K; �)

)
�2CMO =

�2(0;�)
�

CMO IMV = �cmo � 100
K0:First strike below the forward index level, F
Ki:Strike price of ith out-of-the-money options; a call if Ki > K0;
and a put ifKi < K0; both put and call ifKi = K0

In comparison with the formula of CBOE IMV, the original formula doesn’t include ex-
pected return, [ FK0

� 1]. We denote this IMV as CM (1998) and show that the spread based on
CM (1998) also demonstrates the same patterns in Appendix C-1.

(d)CMITM IMV

We can also utilize information of ITM options. After deriving effective forward price, F , we
apply put-call-parity equation again to get implicit prices of OTM from prices of ITM options.
Then we plug implicit OTM prices into the CBOE VIX formula to calculate new IMV measure,
denoted as CMITM IMV . The similar patterns are found and plotted in Appendix C-1.
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