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Abstract

This paper uses intraday U.S. bond transaction and stock quote data to investigate

whether corporate bonds lead stocks in price discovery of underlying firm value. I use

Hasbrouck’s (1995) “information share” approach to determine the relative contribu-

tion of corporate bond to price discovery. Based on a sample of 214 firms, I find that

corporate bond markets contribute 12.6% on average to price discovery from 2009 to

2011. Corporate bond market price discovery increases with the riskiness of the under-

lying firm value, and is related to contemporaneous market conditions. The findings

are consistent with the informed trading theory and Merton (1973) model.
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1 Introduction

Most corporate bonds are traded on the over-the-counter (OTC) market, where opacity and

complexity offer an attractive enviroment for sophisticated investors. In addition, without

disclosure requirement1, “bond traders could exploit inside information without worrying

that they would be caught”2. However, the fixed cash flow associated with corporate bond

(in case of no default) might deter informed traders from trading in the corporate bond

market. Given these conflicting trading attributes, it is not clear where informed traders are

likely to initiate transactions. Hence, it is of interest for us to detect whether there is price

discovery and the level of it (if there is) in the corporate bond market.

The price discovery literature is vast, while a large portion of this research is naturally

focused on equity markets, the proliferation of alternative securities suggests a myriad of

mechanisms through which price discovery may be delivered. For example, the tremendous

growth of the contingent claim market during the 1970s suggests that options may be critical

to price discovery. However, findings show surprisingly little price discovery in the option

market. Chakravarty, Gulen and Mayhew (2004) find the option market’s contribution to

price discovery to be only 17%, and Muravyev, Pearson and Broussard (2012) argue that

the price discovery in the option market is not economically significant. Given the findings

of relatively low price discovery in option and high price discovery in stock, it is even more

interesting to investigate corporate bond as a new channel which might dilute price discovery

in the stock market.

The improved transparency of the corporate bond market facilitates my study. On July

1, 2002, the National Association of Securities Dealers’ (NASD’s) implemented the Trade

Reporting and Compliance Engine (TRACE) in response to the growing demand for more

1There is disclosure requirement under insider trading laws for stock, option and equity-linked bond
transactions by insiders. However, there is no disclosure requirement for insider-trading activity in regular
corporate bonds.

2Michael Lewis, 2010, ”The Big Short”, Page 62.

1



Electronic copy available at: http://ssrn.com/abstract=2140186Electronic copy available at: http://ssrn.com/abstract=2140186

transparent corporate bond market. The NASD members were required to report over-the-

counter bond transactions through the TRACE system over different phases of the TRACE

development. On February 7, 2005, Financial Industry Regulatory Authority (FINRA)’s re-

quirement on reporting approximately 99% of all corporate bond public transactions became

effective. Furthermore, on November 3, 2008, liquidity-demander buy-sell side information

is disseminated. This buy-sell indicator dissemination is important for my study on corpo-

rate bond. Since without intraday bond quotes information, I need to estimated effective

spreads of bond transactions with econometric models, and buy-sell indicator improves the

estimation precision.

With the greater accessibility of corporate bond data, there has been a growing literature

which looks at the relative informational efficiency of corporate bonds to stocks. However,

the methodology employed has mostly focused on the lead-lag relationship between stock

and bond returns, and the results have been inconclusive. There is no conclusive evidence

that bonds lead stocks; Kwan (1996) argue that stock lead bond, while Hotchkiss and Ronen

(2002) argue that stocks do not lead bonds.

A possible reason for the different conclusions is rooted in the short coming of the lead-

lag method. The lead-lag relationship in returns is a general measure, which captures the

relation between both the permanent and temporary changes of the prices. To determine

price discovery, which is only related to the permanent changes of prices, a Granger lead-

lag regression is not enough. Furthermore, as Hasbrouck (1995) has pointed out, from an

econometric viewpoint, the lead-lag relationship models are misspecified in that convergent

representations are assumed in situations where it can be proven that no such representations

exist. Under his information share approach, only a minimal structure is imposed on the

dynamics of the prices in multiple markets, which achieves most of the functional generality

of the lead-lag regression approach. As Hasbrouck (1995) shows in the paper, the information

share measure is based on the common permanent component of all the market prices, and the
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component of a market’s innovation that helps forecast only transient price disturbances is

ignored. In the context of stock and corporate bond, the prices of which are not cointegrated,

Hasbrouck (1995)’s information share method could still be applied after first converting

stock midpoint quotes to implied bond midpoint quotes by Merton’s (1973) model. However,

I face some empirical challenges in the special context of corporate bond trading.

First, there is no intraday bond quote information. In an OTC market, there is no

centeralized trading place for market makers to update their quotes. Investors get informed

about bond quotes by calling around and asking. The lack of quotes brings up two problems.

The first one is the presence of microstructure noise such as bid-ask bounce in the transaction

prices. I approach this problem by estimating effective spreads with buy-sell indicator and

transaction prices using Huang and Stoll (1997) model. Then I adjust the transaction prices

to midpoint quotes using effective spread estimates.

The second problem is a large discrepancy in the frequency of bond transactions data

with stock quotes data. I approach this problem by matching the closest prior stock quotes

to each bond transaction. One concern is that missed stock quotes might contain information

and hence the findings of price discovery level in the corporate bond market would be biased

upwards. However, this concern implicitly assumes that every bond trading is informative,

which is not the case in reality. There are bond transactions due to liquidity, hedging and

reasons other than information, and it is unlikely that my study only matches more informed

bond trading with uninformed stock trading.

Finally, Merton’s model assumes a simple capital structure of one bond for each firm,

while most of firms issue more than one bond. I approach this problem in three ways. First,

I group multiple bond issues as one bond for each firm. That is, I pool the transactions

of each bond issued by one firm together and sort their transactions by trading time. All

these transactions are viewed as transactions of one bond. If the bonds issued by the firm

are homogeneous in terms of the amount of informed trading, then the method applies well.
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However, if the price discovery process in each bond is very different, then the method is

confusing. So I run robustness checks in two ways. In one way, I select the bond which is

most likely to have the fastest price discovery for each firm. However, this method is likely to

miss price discovery in the bond market and hence bias the results. As another alternative,

I pick firms with simple bond structures, that is, firms that issue no more than three bonds.

My findings can be summarized as follows. I find that corporate bonds contribute ap-

proximately 12.6% to price discovery. Then I find that the proportion of corporate bond

price discovery varies over time. For example, in my sample period, the proportion of price

discovery in bonds peaks in 2009, coinciding with the financial crisis. Cross-sectionally, cor-

porate bond in the low credit rating firms contribute more to price discovery. Moreover, the

contribution to price discovery is related to the trading volume and effective spreads of the

bond and stock, and the firm volatility.

This paper is the first one which studies the relative informational efficiency of the stock

and the bond market using an informational share approach. Different from the lead-lag

return relationship approach, the study specifically captures the informed trading in the two

markets in this way. In addition, this paper introduces a new way of applying the Merton

model with high-frequency data. It is both of practical use and future academic interest.

Finally, with the development in TRACE dataset, especially the dissemination of buy-sell

information after December 3, 2008, I am able to adjust the transaction prices for the bid-ask

bounce using trade indicator models. Due to the data limit, the previous literature did not

consider this market microstructure bias using TRACE data in their studies of the stock and

the bond market efficiency.

The remainder of the paper is organized as follows. Section 2 discusses the related litera-

ture. Section 3 explores the underlying theory and hypotheses development. Section 4 shows

empirical methodologies used. Section 5 describes data selection and sample construction.

Section 6 exhibits empirical results. Section 7 checks the robustness of results. Section 8
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concludes.

2 Related Literature

Despite many theoretical studies on the informed trading in the stock and option markets

(for example, Back (1993)), the ones directly analyzing informed trading in the stock and

corporate bond market are sparse. One argument is that too many informed traders in the

equity market could drive the transaction cost too high to a point that they switch to trade

in the corporate debt market (Chang and Yu (2010)).

General studies on informed trading of correlated assets in (noisy) rational expectations

equilibrium settings also provide insights. Caballe and Krishman (1994) derive the equilib-

rium in a K-trader, N-asset model of insider trading. They show that the informed traders

need to determine the demand for each security independently, since market makers can

potentially learn about every security from each order flow. Admati (1985) astudy the noisy

rational expectations equilibrium for a class of economies with many risky assets. They find

phenomena that do not arise in models with a single risky asset arises in this equilibrium due

to the various interactions between assets. Recently, Goldstein, Li and Yang (2012) study

a model of informed trading with market segmentation of the correlated assets. They find

that adding more informed traders may reduce price informativeness due to different trading

motives of different traders.

The current study is also related to the security design literature, where the firms issue

securities to induce information. Starting from Boot and Thakor (1993), the basic argument

is that firms’ revenue-maximizing strategy is to split the claims on the cash flow from the

asset into an information-sensitive security (equity) that promotes informed trading and a

second claim that is less information-sensitive (corporate bond). Furthermore, Habib and

Johnsen (2000) establish a theoretical model which views the placement of debt and outside
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equity as a way to elicit information from equity valuation specialists and debt valuation

specialists, respectively. In addition, Fulghieri and Lukin (2001) find that a firm’s preference

for equity rather than debt depends on the costs of information production, the precision of

the information-production technology and the extent of the information asymmetry.

Apart from the theoretical results, the empirical evidence related to price discovery in

the corporate bond market usually suffers from lack of high-frequency bond trading data

and imprecise method using a granger regression framework.

Using data from Bloomberg and the Center for Research in Stock Prices (CRSP), Kwan

(1996) examines the correlation between weekly stock returns and weekly yield changes of

bonds issued by the same firm between January 1986 and December 1990, and finds a strong

contemporaneous correlation. He argues that this finding suggests the effect of firm-specific

information on both stock and bond returns. Furthermore, stocks lead bonds in reflecting

firm-specific information but not vice versa, since the lagged stock returns have explanatory

power for current bond yield changes, while current stock returns are unrelated to lagged

bond yield changes.

However, Hotchkiss and Ronen (2002) reach a different conclusion using daily and hourly

high-yield bond transaction prices between January 3, 1995 and October 1, 1995. Their

bond returns are obtained from the fixed income pricing system (FIPS) under the reporting

requirements of NASD. They find that stocks do not lead bonds in reflecting firm-specific

information, information is quickly incorporated into both bond and stock prices after earn-

ings news announcements, and measures of market quality are no poorer for the bonds than

for the underlying stocks.

Furthermore, in light of the improvements in transparency of the corporate bond market

(the development of TRACE), Downing, Underwood and Xing (2009) examine the lead-

lag return relation between hourly and daily returns on individual stocks and bonds from

October 1, 2004 to December 31, 2005. They obtain bond data from TRACE, and stock
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returns data from the NYSE Trade and Quote (TAQ) database. Their results suggest that

stock returns lead nonconvertible bond returns for riskier firms (junk-rated and, to a lesser

extent, BBB-rated) and not vice versa, though there is no evidence of a lead-lag relation

between the equity and nonconvertible bond returns for safer firms.

There are also studies which investigate the informational role of the corporate bond

market using approaches different from lead-lag relationship. Blanco, Brennan and Marsh

(2005) test the theoretical arbitrage relation between Credit Default Swap (CDS) prices and

credit spreads for a sample of 33 U.S. and European investment-grade firms from January 2,

2001 to June 20, 2002. They find that the investment bond market contributes on average

80% of price discovery for 27 firms where the equilibrium arbitrage condition holds. They

use daily ask and bid prices of CDS and match them with bond yields. Given that CDS

trading is expected to be attract a fair amount of informed traders, the existence of price

discovery in the investment bond market relative to CDS is a clear evidence of informed

trading in the corporate bond market.

Overall, this paper provides direct evidence of price discovery in the corporate bond

market, and it contributes to literature at two levels. First, it contributes to literature on

price discovery in fragmented markets, using corporate bond as a new testing ground. Given

the size of and trading frequency in the corporate bond market3, bond is an important

channel for information revelation. It is also fundamentally different from options on stock,

which use stock as an underlying asset.

Second, it reconciles the conflicts in the findings in the lead-lag literature on stock and

bond returns, by documenting the exact amount of time that bond leads stock.

3Corporate bond market has a market value of 7.9 trillion dollars and 11.1 billion dollars trading
per day in the end of 2011, while the equity market has a market value of 15.6 trillion dollars and 7.8
billion dollars trading per day then.According to Securities Industry and Financial Markets Association
(SIFMA)http://data.worldbank.org/indicator/CM.MKT.LCAP.CD
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3 Theoretical Framework and Hypotheses Development

Price discovery in different markets is a reflection of trading choices of informed traders.

Informed traders would profit more by trading in the asset with a higher information sen-

sitivity, given information production cost about the underlying firm value is the same for

the corporate bond and stock. A small elaboration of Merton’s model gives the information

sensitivity of the corporate debt4 and stock under different states of firm asset. Now let me

show the derivation in more detail.

Let Vt represent the market value of the firm’s assets at time t. Assume the equity value

is related to the firm’s value by a theoretical pricing model f(.):

Et = f(Vt;σ), (1)

where σ represents one or more parameters governing the volatility of the underlying asset.

An estimated market value of total assets is calculated by inverting the model with respect

to the underlying asset price:

Vt = f−1(Et;σ). (2)

By definition,Vt is the sum of the total equity value and the total debt value, so theoretically

the corporate debt value Dt should be

Dt = Vt − Et = f−1(Et;σ)− Et, (3)

where Et is the observed market value of the total equity. Now let us derive the pricing

4In the context of this paper, I use corporate bond to proxy for corporate debt in my empirical analysis.
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function f(.). Assume V follow a geometric Brownian motion:

dV = µV dt+ σvV dW, (4)

where µ is the instantaneous drift on V , σV is the instantaneous volatility and dW is the

increment of a standard Wiener process. Moreover, the market value of the firm’s total

equity at time T can be viewed as a call option on the underlying value of the firm with a

strike price equal to the face value of the firm’s debt and a time-to-maturity T :

ET = Max(VT − F, 0), (5)

where F is the face value of the firm’s debt. Thus, the equity value at time t is given by the

Black-Scholes formula:

Et = f(Vt;σ) = VtN(d1)− Fe−rTN(d2), (6)

where r is the instantaneous risk-free rate, N() is the cumulative standard normal distribu-

tion function, d1 is given by

d1 =
ln(Vt/Ft) + (r + 0.5σ2

v)T

σv
√
T

, (7)

and d2 = d1 − σV
√
V . So the debt value is given by

Dt = Vt − Et = Vt(1−N(d1)) + Fe−rTN(d2), (8)
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So the sensitivity of equity value to changes in the mean value of the firm’s assets is:

∆E = (∂Et)/(∂Vt) = N(d1), (9)

And the sensitivity of debt value to changes in the mean value of the firm’s assets is:

∆D = (∂Dt)/(∂Vt) = 1−N(d1). (10)

As long as N(d1) is strictly positive and smaller than 1, both equity and debt would contem-

poraneously react to new information about the underlying mean value of the firm’s assets.

In addition, from microstructure theory we know that when informed traders are trading

multiple correlated assets, their optimal trading strategy will be to trade in all information-

ally sensitive markets. So the informed trading theory and Merton’s model together predict

that there should be informed trading in both corporate bond market and stock market. I

would test a null hypothesis which says:

Null Hypothesis 1: Price discovery that happens first in the corporate bond market5

is zero.

If the null is rejected, the evidence would support both Merton’s theory and informed

trading theory.

However, there are also cases when only one of the two securities reacts to new information

arrival. For example, when the firm is extremely safe, that is, when the firm value Vt is way

larger than the face value of debt F, d1 would be so big that N(d1) is 1. In this case,

only equity is sensitive to mean value changes of the firm asset. In other cases which are

not so extreme, the information sensitivity of debt and equity is associated how risky the

underlying firm asset is. For example, a lower V/F ratio, which could roughly proxy for how

risky the underlying firm asset is, would result in a lower d1, hence a lower equity information

5It is measured as bond information share, which would be introduced in the methodology part.
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sensitivity but a higher debt information sensitivity. From microstructure theory, that when

informed traders are trading multiple correlated assets, their optimal trading strategy will

be to trade a larger quantity when one of the assets is more informationally sensitive, hence

I have the second hypothesis:

Hypothesis 2: Price discovery that happens first in the corporate market is higher for

firms with lower credit ratings.

4 Empirical Methodology

According to Hasbrouck (1995), information share associated with a particular market is “the

proportional contribution of that market’s innovations to the innovation in the common

efficient price”. Intuitively, information share proxies for ”who moves first” in the price

discovery. I estimate the bond information share following three steps. First, I estimate the

effective bid-ask spread and use it to adjust the bond transaction price to the implied bond

midpoint price. Second, I compute the implied bond midpoint price from the midopoint

stock quotes using Merton’s formula. Third, I use the implied bond midpoint price and the

actual bond midpoint price estimated from the trade indicator model in part I to calculate

information shares as in Hasbrouck (1995).

4.1 Effective Spreads

I estimate the effective bid-ask spread for each bond in each year during my sample period

following Huang and Stoll (1997) (denoted as HS from now on), who regress price changes

on a buy/sell change indicator and lagged buy/sell indicator. In their generalized model,

11



they consider the effect of trade size on effective spreads. Their model is

∆pt =
SS

2
DS

t + (λS − 1)
SS

2
DS

t−1 +
SM

2
DM

t + (λM − 1)
SM

2
DM

t−1 +
SL

2
DL

t + (λL − 1)
SL

2
DL

t−1 + et,

(11)

where SS,SM and SL are effective spreads for small, medium and large trades respectively,

and λS represents the percentage inventory cost and adverse selection component of the

effective spread.

Di
t (i = S,M,L) are variables taking the value of trade indicator Qt depending on whether

it is a small (i = S), medium (i = M) or large i = L size trade. Qt = 1 if it is a customer

buy, and Qt = −1 if it is a customer sell. Specifically, DL
t = Qt if it is a large trade, and

DL
t = 0 otherwise; DM

t = Qt if it is a medium size trade, and DM
t = 0 otherwise; DS

t = Qt if

it is a small size trade, and DS
t = 0 otherwise. The cutoff points that I use to separate small,

medium and large trades are different for investment grade bonds and high yield bonds6.

For investment grade bonds, the cutoff points are 2.5 million and 5million, while for high

yield bonds the cutoff points are 0.5 million and 1 million respectively7.

After estimating the effective spreads for different trade sizes of each bond in each year, I

use them to adjust the bond transaction prices to midpoint quotes. If it is a sell transaction,

I deduct the effective spread from the transaction price; if it is a buy transaction, I add the

effective spread to the transaction price. If it is an interdealer transaction, I do not adjust

the transaction price.

6In TRACE, a bond is investment grade if it is Baa3 or better by Moody’s investors service or BBB- or
better by Standard & Poor’s Corporation. A bond is rated as high yield if it is Ba1 or lower by Moody’s
Investors Services or BB+ or below by Standard & Poor’s Corporation.

7For investment grade bonds, TRACE only reports ”+5MM” for a transaction with a volume larger than
5 million. For high yield bonds, TRACE only reports ”+1MM” for a transaction with a volume larger than
5 million
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4.2 Implied Bond Price

Chakravarty, Gulen and Mayhew (2004) use Black-Scholes formula to convert option prices

to implied stock prices, and then make use of the cointegration between the implied stock

prices and the observed stock prices to compute information shares. They argue that ”the

stock and option prices may be linked by arbitrage, but this does not mean that one can

find a constant cointegration vector for the time series of stock and option prices.” After

converting the option price to the implied stock price, they could compare the two time

series on the same scale. Under the same consideration, I use Merton (1974)’s formula to

estimate the implied bond price from midpoint stock quotes.

First I compute asset Vt using Merton’s model at each bond transaction, then I back out

debt value at each bond transaction as

Dt = Vt − Et = Vt(1−N(d1)) + Fe−rTN(d2) (12)

The implied bond price is estimated as the total market value of the debt divided by the

debt face value at each bond transaction:

B̂t =
Dt

F
(13)

A frequently used method to obtain the estimates of V and σV is by solving simultaneous

equations. One equation is Merton’s model itself, and the other one is obtained by applying

Ito’s lemma under the assumptions of Merton’s formula. This one shows that the volatilities

of the total asset and the equity part are related by the leverage ratio:

σE =
Vt
Et

N(d1)σV , (14)

However, as argued by Crosbie and Bohn (2003), ”The model linking equity and asset
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volatility by (12) holds only instantaneously. In practice the market leverage moves around

far too much for the volatility equation to provide reasonable results.” To avoid the problem,

I adopt the method used in Crosbie and Bohn (2003), Vassalou and Xing (2004)8 and Bharath

and Shumway (2008). These methods do not use equation (12), instead, they only use

Merton’s model (equation (6)) itself for iteration.

The iteration steps are as follows: I start from an initial value σV = 1 and use this value

of σV and Equation (6) to infer V for each transaction in a month. Then I use this time

series of V to estimate asset volatility σV in the month, and substitute it back into equation

(6) to back out V . I keep iterating until the values of σV from two consecutive iterations

converges. My tolerance level is 10−4.

The other inputs to the iteration include the face value of debt F , the instantaneous

risk-free rate r, the time to maturity T , the market value of the equity value at time t, Et.

For r, the risk-free rate, I use the 1-year Treasury Constant Maturity Rate at the end of

each month obtained from the Board of Governors of the Federal Reserve system. E, the

market value of each firm’s equity (in millions of dollars), is computed as the closest prior

one to each bond transaction. Specifically, I calculate the product of midpoint stock price

quotes and the number of shares outstanding (from CRSP) at the same time with each bond

transaction. The time to maturity, T − t, is the face-value-weighted time to maturity of

all outstanding bonds at each transaction. Face value, F , is the book value of long-term

liabilities taken from the balance sheet.

However, there are several empirical problems associated with this approach in the con-

text of corporate bonds. One assumption of the Merton model is that the firm only issues

one zero-coupon bond with a maturity date T , but it is not the case most of the time. For

firms that issue multiple bonds, I approach the problem in three ways. In the first way and

the main analysis, I pool all the transactions of bonds issued together for each firm, and treat

8I would like to thank Yuhang Xing for sharing their coding for iteration of Merton’s model with me.
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them as transactions for one bond. In this case, time to maturity is the face-value-weighted

time to maturity of all outstanding bonds at each transaction. In the second way, I select

a representative bond each firm, and match its transactions with closest stock quotes. In

this case, time to maturity is of this individual bond. In the third way, I restrict analysis

a subsample of firms with simple bond structures, that is, firms that only issue one or two

bonds.

4.3 Information Share

As pointed out by Hasbrouck (1995), securities with the same underlying value traded in

different markets are linked by arbitrage and short-term equilibrium considerations, and

“arbitrage relationships can be used to transform the derivative price into an implicit stock

price that may meaningfully be compared with the actual stock price”.

With a linear arbitrage relationship between the prices in different markets, we could

make use of the cointegration to estimate information shares. However, when it comes to

the stock and the bond price of the same issuer, it is not clear whether they are cointe-

grated. Furthermore, as predicted by Merton’s formula, they are more likely to be linked in

a nonlinear way. Hence, the bond price series is transformed to an implied stock price series

in the last session by the arbitrage relation between them, and then I apply Hasbrouck’s

information share approach to analyze the transformed series.

As estimated in the last session, B̂t is the implied bond price from the Merton’s formula,

and assume Bt is the estimated bond midpoint quotes (bond transaction price adjusted by

effective spreads). For the information share approach to work, Bt − B̂t does not diverge

over time. In other words, they are cointegrated.

Let price vector p include both the estimated bond midpoint quote and the implied bond
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price

pt =

 Bt

B̂t

 =

 mt + eb,t

m̂t + eb̂,t

,

 (15)

Where mt is the underlying common efficient price; eb,t and eb̂,t are zero-mean disturbances

that are independently and identically distributed and uncorrelated. Assume mt follow a

random walk:

mt = mt−1 + ωt, (16)

where ωt is the random error at time t. E(ωt) = 0, E(ω2
t ) = σ2

ω, and E(ωt, ωs) = 0 for t 6= s.

By Granger Representation Theorem, the cointegrated series can be formulated as a

vector error correction model of order M:

∆pt = A1∆pt−1 + A2∆pt−2 + ...+ AM∆pt−M + γ(zt−1 − µ) + ut, (17)

where Bi(i = 1, 2, ,m) matrices are autoregressive coefficients, γ(zt−1 − µ) is the error cor-

rection term, zt−1 is a column vector documenting price difference, zt−1 = [(p1t − p2t), (p1t −

p3t)(p1t − pn,t)]′, µz = E(zt−1), γ is an adjustment coefficient and ut is the disturbance. The

covariance matrix of the disturbances is

Cov(ut) = Eutu
′

t = Ω, (18)

Alternatively, the price vector can be represented as a vector moving average model:

∆pt = ut + A1ut−1 + A2ut−2 + ..., (19)
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where Ai (i = 1, 2, ,m) coefficients are the impulse response parameters. The cumulative

impulse response function is :

Ck = Σk
i=0Ai, (20)

and C = limk→∞Ck. The rows of C dare all identical. Let c be any row of C. So the

random-walk component of the prices is:

ωt = cut, (21)

So the innovation variance is:

σ2
ω = cΩc

′
, (22)

The information share of the jth market is defined as

ISj =
c2jΩjj

cΩc′
(23)

5 Data and Sample Construction

5.1 Data

I obtain bonds’ transaction data from the Financial Industry Regulatory Authority’s (FINRA)

TRACE9. TRACE consolidates transaction data for all eligible over-the-counter corporate

bonds. After February 7, 2005, FINRA’s requirement on reporting approximately 99% of all

corporate bond public transactions is effective . In addition, liquidity demander buy-sell side

9For information regarding TRACE, visit its homepage: http://www.finra.org/industry/compliance/markettransparency/trace/.
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information is disseminated for trades after November 3, 200810. My sample period covers

January 1, 2009 to December 31, 2011, given that buy-sell information is crucial for me to

estimate effective spreads of the trace bonds in the analysis below. The only trades that are

omitted from TRACE are those that occurred on exchanges.

I also use Mergent Fixed Income Securities Database (FISD) to obtain bond issuing

date, maturity date, original offering price, original offering amount and convertible bond

indicator. But Mergent FISD does not identify completely TRACE eligible bonds11, for

those bonds that are not identified by Mergent FISD, I do not include them in the analysis.

I also take stocks’ trade and quote data from NYSE Trade and Quote (TAQ), obtain

total liability from COMPUSTAT and get 1-year Treasury Constant Maturity Rate at the

end of each month obtained from the Board of Governors of the Federal Reserve System12.

5.2 Sample Construction

Table 1 describes the sample selection process. I start with 56,050 bonds and 5,428 firms

with transactions reported in TRACE from January 1, 2009 to December 31, 2011. Then I

match bond characteristics and ratings information in MFISD with this group of bonds using

the bond’s eight-digit CUSIP number. The sample reduces to 38,733 bonds and 3,219 firms

after I delete bonds without characteristics or ratings information identified by MFISD.

In the second step, I match the bond issuers to the equity issuers identified in TAQ13.

Since many bond issuers in TRACE are private firms or subsidiaries with out publicly-traded

10Information is from http://www.finra.org/web/groups/industry/@ip/@reg/@notice/documents/notices/p039093.pdf.
11TRACE eligible securities include all U.S. dollar-denominated debt securities that are depository eligible

under NASD Rule 11310(d). Mergent FISD securities include publicly-offered U.S. bonds. Since the data
collection system is not the same for the two datasets, there are some bonds which are only included in one
of them.

12Here is the link to the dataset: http://www.federalreserve.gov/releases/h15/update/.
13I do not directly match the two groups together. Instead, I use a CRSP linking table called DSENAMES

to facilitate the match. That is, I match the bond issuers to DSENAMES using six-digit CUSIP number
and date, while I match the equity issuers in TAQ to DSENAMEs using eight-digit CUSIP number and
date. Then I use permno number to match bond issuers with equity issuers.In addition, I delete firms with
changing TAQ names during the sample period.
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equity, this step reduces the sample dramatically to 5,039 bonds and 1,050 firms.

In the third step, I retain domestic bonds and only bonds issued by industrial firms14. I

also delete convertible bonds, the pricing of which is too complicated for the current study15.

There are 2,989 bonds and 649 firms left after this step.

From the fourth to seventh step, I filter the bond transactions reported in TRACE follow-

ing the standard criteron. First, I delete trades if they are reported before the trade report

effective date and after bond maturity date. Then I follow the screening steps documented in

Dick-Nielsen (2009). First, I apply three reporting error filters to correct for duplicate trade

reports, reversal reports, trade cancellations and corrections16. Second, I filter out abnormal

price sequences17. The next step is special about over-the-counter bond trading. Double

reports happen when there are agency transactions. In an agency transaction, the dealer

does not have enough inventory to sell bonds to the customer in demand, so he buys from

another dealer and passes it to the customer. In this situation, TRACE receives three re-

ports from the two dealers and the customer, and disseminates one dealer transaction report

and one customer transaction report18. Since I wish to detect informed trading, I should

the dealer’s trade report in this situation. Finally, I apply the trade bunching19 approach

14I delete bonds with country domicile outside USA, yankee bonds, and bonds identified by MFISD as
finance, utility, government or miscellaneous bonds.

15I do not delete callable, redeemable or putable bonds, since most of the rest bonds are belong to these
categories. If I delete all of them, not many bonds are be left for my analysis.

16The trade reports are true duplicates if they have the same message sequence number each day. For
these duplicates, I only keep one of them. Reversal trades are trade cancellations for a trade report that was
originally submitted into TRACE on a previous day. In this case, I delete both the reversal trade and the
original trade identified by looking for the same trade-related information in the previous day (TRACE data
in WRDS does not include the filing date of the reports, so I could not directly identify the trades that are
reversed). In addition, there are trade cancelations and corrections in the same day. For trade cancellations,
I delete both the cancellation trade report and the original trade. For trade corrections, I only delete the
original trade.

17The price is considered as being abnormal if: price is less than 1 or greater than 500; price is more than
20% away from the previous trading price; price is more than 20% away from the median price of the day.

18In addition to double counting, there might be commission fees in an agency transaction. TRACE
incorporates the commission into the disseminated price, but I could not adjust for commission fees in this
case since its amount is not reported.

19If trades happening at the same time have the same transaction price and trade initiation side, I aggregate
the trading quantities of them and view them as one trade.
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used by Huang and Stoll (1997), since a customer/dealer might split his orders in order to

reduce information revelation. After bond transactions filtering, there are 2984 bonds and

648 firms left.

From the eighth to the ninth step, I filter out firms without enough trading frequency

both ex ante and ex post. Ex ante, before estimating implied bond prices, for bonds that

have been issued and not matured yet, I require each of them to be traded at least 10

times to be included in the sample20.In addition, I pool bond transactions for each firm

together, and require a firm to have at least 100 bond transactions each year to be included

in the sample21. Ex post, after estimating implied bond prices, the value of which is missing

for some bond transactions due to missing observations, I apply the frequency filter to the

nonmissing observations again. In the end, the sample reduces to 214 firms, 1644 bonds and

transactions.

Table 2 shows the cross-sectional distribution of bond features for my sample and TRACE

dataset during the sample period. As reported by this table, most of bonds in my sample

are senior bonds, and they are distributed across different age, maturity and credit quality

categories.

6 Results

The basic issue I wish to address is whether there is significant price discovery happening

in the corporate bond market. As discussed above, the results from lead-lag literature are

inconclusive. The results from Kwan (1996) suggest stock returns lead bond bond returns

and not vice versa, while Hotchkiss and Ronen (2002) show that stock returns do not lead

bond returns. In addition, the subsample studies from Downing, Underwood and Xing (2009)

20Effective spreads estimation is done at the bond level each year. Without each observations, the regres-
sion coefficients estimates would not be reliable

21I estimate information shares annually, so I need to ensure a fair amount of observations each year.
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suggest that stock returns lead nonconvertible bond returns for riskier firms, and there is no

evidence of lead-lag relation between stock and nonconvertible bond returns for safer firms.

I address this question directly by examining the estimated information share for corporate

bond markets. The results reported in Section 6.1, indicate that there is significant price

discovery occuring in the corporate bond market.

6.1 Information Share in Stock and Corporate Bond Markets

My results indicate that significant price discovery does occur in corporate bond markets.

Summary statistics of bond information shares are reported in Table 3. When the innovations

in the two markets are correlated, Hasbrouck’s (1995) methodology reports upper- and lower-

bounds for information shares. The upper- and lower- bounds in Table 3 are estimated at

annual frequency for each firm. The midpoints are the averages of the upper- and lower-

bounds. Across the 214 stocks in my sample, the average lower bound on the information

share attributable to corporate bond markets is 6%, the average upper bound is 19.2%, and

the average midpoint is 12.6%. Based on the standard error of the mean of information share

estimates as reported in the table, these averages are significantly different from zero at one

percent level.

In the subsequent two sections, I examine the time-series and cross-sectional determinants

of variation in estimates of information shares.

6.2 Time-series Variation in Information Share

Table 4 reports lower bounds, upper bounds and midpoints of bond information shares

each year between 2009 and 2011. The information share attributable to corporate bond

market appear to peak in 2009, which coincide with financial crisis. This might be related

to riskier underlying firm asset during the financial crisis. According to Hypothesis 2, bond
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information share is higher when underlying firm asset is riskier. The findings in Table

support Hypothesis 2.

6.3 Cross-sectional Variation in Information Share

In this section, I first directly test Hypothesis 2 by investigating bond information shares for

firms with different credit ratings. I separate firms to three credit rating groups. The first

group include firms that are rated as AA or up. The second group are firms rated between

BBB and AA. Both groups of firms are considered as investment-grade firms. The third

group is the high-yield group, which are firms rated below BBB. Table 5 shows corporate

bond information shares across different credit ratings. As can be seen from the table, the

bond information shares decrease with an improvement in credit quality as proxied by credit

ratings. Furthermore, a t test of means of bond information shares from high yield firms

and investment-grade firms (BBB-AA, not including the superior group) shows that the

difference between the two groups is significant at 1 percent level. The results from z test of

the median also indicates a significant difference in price discovery in different credit ratings

groups.

In addition, I examine whether the amount of price discovery in corporate bond market

is related to observable market condition. Since trading volume is sometimes used as a proxy

for disagreement in literature, I expect to see a relation between trading volume and bond

information shares in both markets. There may also be relation between bid-ask spread and

price discovery. One one hand, a wider bid-ask spread would increase the transaction costs

for informed traders, which would deter them from entering the market. On the other hand,

a wider bid-ask spread might be the result of market makers’ reaction to a higher probability

of informed trading. Finally, I test if there is a relation between firm asset volatility and

the level of price discovery in corporate bond markets. I obtain firm asset volatility as a

side product from the iteration of Merton’s (1973) model in section 4.2. Table 6 reports
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coefficient estimates. The results from this table suggest that bond information share is

higher when effective spreads in the stock market is higher relative to the bond market,

the trading volume in the stock market is higher relative to the bond market, and the firm

volatility is higher.

7 Robustness Checks

In order to investigate the sensitivity of my results to empirical design choices, I conduct

several robustness checks. In my main analysis, I pool the transactions of bonds issued by the

same firm together as one bond. This method is problematic when bonds are heterogenous

in terms of price discovery. As one robustness check, I pick the most frequently-traded bond

of each firm, and match their transactions with corresponding stock quotes. Table 7 reports

bond information shares under this methodology. Under this method, the contribution to

price discovery from corporate bond markets is even larger on average, with a mean of 29.3%

during the sample period. The regression results also hold.

As an alternative robustness check, I pick firms which issue no more than three corporate

bonds during the sample period. These firms would have more homogenous bonds than other

firms by definition. For this subsample, the average contribution to price discovery from

corporate markets is 33.3%. However, most of the regression coefficients are not significant,

which could be due to the small sample size.

8 Conclusion

This article has applied Hasbrouck’s (1995) methodology to the joint time series of estimated

midpoint bond prices and stock-implied bond prices, to measure the relative contribution to

price discovery from the stock market and the corporate bond market.
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Significant evidence of price discovery in the corporate bond market is found. In addition,

corporate bond market tends to be more informative on average when the credit ratings of

the firms are lower. Evidence also shows that the relative price discovery in the corporate

bond market is higher when the trading volume of stocks relative to bonds is higher, the

effective spreads of stocks relative to bonds is higher, and the volatility of underlying firm

value is higher.

I also investigate whether the price discovery level in the corporate bond market is robust

to empirical designs. I pick the most frequently traded bond for each firm and match their

transactions with corresponding stocks. The contribution to price discovery from corporate

bond markets is even higher than 29.3% on average under this matching methodology. Fur-

thermore, I pick firms which issue no more than three corporate bonds during the sample

period. The average bond information shares for this subsample are 33.3%.
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Table 1. Sample Construction
This table reports the number of firms, bonds and trades left after each step of data

cleaning. The sample period is January 1, 2009 to December 31,2011. In step 1, bonds
without information from MFISD are excluded. In step 2, bonds without publicly-traded
equity in TAQ are excluded. In step 3, financial firms, utility firms and convertible bonds
are excluded. In step 4, corrections for reporting errors (trades which are executed before

trade report effective date and after bond maturity date, duplicate reports, reversal
reports, same-day correction and cancelation) are performed. In step 5, the abnormal

prices are deleted. Step 6 includes corrections for agency transactions. In step 7, there is
trade bunch. Step 8 is performed after screening transactions and before computing

implied bond prices. Each firm included in this step is required to have at least 100 bond
transactions each year. Step 9 is done after applying effective spread regressions and

computing implied bond prices. Again, each firm included in this step is required to have
at least 100 bond transactions each year.

Firms Bonds Tades
Panel A Bond selection
All bonds in TRACE 5428 56050 32258677
Step (1) Match with MFISD 3219 38733 29766723
Step (2) Match with TAQ 1050 5039 14575901
Step (3) Exclude special bond types 649 2989 7856417
Panel B Bond transaction screening
Step (4) Correct for reporting errors 649 2985 7112793
Step (5) Correct for abnormal price sequence 649 2984 7109325
Step (6) Correct for agency transaction 648 2984 6113286
Step (7) Trade bunch 648 2984 5898905
Panel C Bond trading frequency screening
Step (8) Ex ante 404 2444 5683258
Step (9) Ex post 214 1664 3722044
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Table 2. Cross-Sectional Bond Characteristics
This table characterizes the cross-sectional distributions of various bond features in my
sample and in TRACE dataset. The information about bonds characteristics is from
MFISD. The bonds are classified into age categories based on their average age in the

sample period. The bond credit ratings are based on average Moody’s rating during the
sample period.

Bonds in Sample Bonds in TRACE
Number Percent Number Percent

Total number of Bonds 1644 1 38733 1
Industry

Industrial 1644 1.0 6767 17.5
Finance 0 0.0 20868 53.9
Utility 0 0.0 1496 3.9
Government 0 0.0 9565 24.9
Miscelleous 0 0.0 37 0.1

Level
Senior secured 22 1.2 843 1.3
Senior 1606 96.1 35654 97.7
Senior subordinate 33 2.4 985 2.0
Junior 0 0.0 2 0.0
Junior subordinate 3 0.1 54 0.1
Subordinate 0 0.0 938 2.4

Bond complexity features
Convertible 0 0.0 337 0.9
Callable 1411 85.8 23061 59.5
Putable 19 1.2 443 1.14
Redeemable 1478 89.9 24492 63.2
Exchangeable 0 0.0 196 0.5
Sinking fund 1 0.1 123 0.3
Floating rate coupon 64 3.9 2583 6.7
With covenant 1623 98.7 8613 22.2
Combination of floating/fixed 3 0.2 1100 2.8
Asset Backed 0 0.0 69 0.2
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Bonds in Sample Bonds in TRACE
Number Percent Number Percent

Type of issue
Global 766 46.6 3949 10.2
Foreign 0 0.0 4610 11.9
Rule 144a issue 0 0.0 124 0.3

Country domicle
USA 1644 100.0 33283 85.9
Foreign 0 0.0 5450 14.1

Age
0 — 1 year 201 12.2 9032 23.3
1— 3 year 433 26.3 8790 22.7
3 — 5 year 312 19.0 4241 10.9
> 5 year 509 31.0 8595 22.2

Maturity
0 — 1 year 111 6.8 3491 9.0
1— 3 year 257 15.6 7044 18.2
3 — 5 year 238 14.5 6153 15.9
> 5 year 849 51.6 13970 36.1

Orignial maturity
≤ 10 year 909 55.3 27269 70.4
> 10 year 755 45.9 11417 29.5

Credit Quality
Superior (AA and up) 173 8.2 17819 46.0
Other investment grade (BBB-A) 1245 75.7 13086 33.8
High yield (below BBB) 246 15.0 7828 20.2

Issue size
Small (< $100 million) 26 1.6 26553 68.6
Medium ($100 to $500 million) 946 57.5 8353 21.6
Large (> $500 million) 692 42.1 3827 9.9
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Table 3. Corporate Bond Market Information Shares
This table reports upper bounds, lower bounds and midpoints of corporate bond

information shares during the sample period. Stderr refers to standard errors of means.

Upper Bound Lower Bound Midpoint
N 642 642 642
Mean 0.192 0.060 0.126
Stderr 0.009 0.006 0.007
Min 0.000 0.000 0.000
1st Quartile 0.035 0.003 0.023
Median 0.099 0.012 0.060
3rd Quartile 0.243 0.034 0.144
Max 1.000 1.000 1.000
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Table 4. Corporate Bond Market Information Shares Over Time
This table shows the time variation of the bond information shares. Stderr refers to

standard errors of means.

2009 2010 2011
N 214 214 214

Upper Bound
Mean 0.297 0.132 0.147
Median 0.202 0.066 0.071
Stderr 0.019 0.012 0.014

Lower Bound
Mean 0.092 0.039 0.048
Median 0.022 0.008 0.009
Stderr 0.014 0.008 0.011

Midpoint
Mean 0.195 0.085 0.098
Median 0.120 0.042 0.041
Stderr 0.015 0.01 0.012
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Table 5. Corporate Bond Market Information Shares across Credit Ratings
This table reports the distribution of midpoint bond market information shares across different

credit ratings. Panel A shows summary statistics for three groups of firms. The superior group of
firms is rated AA or up, the other investment-grade firms are rated BBB-AA, and the high yield
group is rated below BBB. Panel B shows the results for t test of mean information share, and z

test of median information share between the investment group (BBB-AA) and the high yield
(below BBB) group of firms. Credit ratings are based on the average Moody’s rating during the

sample period. *** indicates significance at 1% level.

Panel A

2009 2010 2011
Superior (AA and up)

N 12 12 12
Median 0.076 0.021 0.031
Mean 0.12 0.044 0.054
Std err 0.039 0.015 0.019

Other Investment grade (BBB-AA)
N 137 137 137
Median 0.108 0.037 0.036
Mean 0.166 0.082 0.08
Std err 0.017 0.011 0.013

High yield (Below BBB)
N 64 64 64
Median 0.194 0.059 0.069
Mean 0.272 0.098 0.143
Std err 0.032 0.02 0.027

Panel B

Difference in Mean T value
Ttest 0.062*** 3.78

Difference in Median Z value
Ztest 0.032*** 3.521
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Table 6. Determinants of Corporate Bond Market Price Discovery
This table reports coefficient estimates and t-statistics for the following regression model:

ISit = a1 + b1SpreadRatioit + b2V olumeRatioit + b3AssetV olit + b4CreditRatingi

where ISit is the time-series average midpoint of the lower and upper bound on the
corporate bond market information share, SpreadRatioit is the ratio of effective stock
spread to effective bond spread, V olumeRatioit is the ratio of stock volume to bond

volume, AssetV olit is the annualized volatility of underlying firm asset, and CreditRatingi
is the average credit rating of firm i during the sample period. The numbers in parentheses

are t values. *** indicates significance at 1% level.

Intercept Credit Rating Volume Ratio Spread Ratio Asset Volatility
0.12*** -0.01*** 5.58*** 3.3*** 0.07***
(3.92) (-3.15) (6.26) (3.63) (11.89)
Number of obs.:639
Adj. R square: 0.302
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Table 7. Information Shares on Individual Bonds
This table reports corporate bond information shares when only the most-frequently-traded

bond is selected for each firm. Panel A shows the summary statistics for upper bounds,
lower bounds and midpoints. Stderr refers to standard errors of means. Panel B reports

coefficient estimates and t-statistics for the following regression model:

ISit = a1 + b1SpreadRatioit + b2V olumeRatioit + b3AssetV olit + b4CreditRatingi

where ISit is the time-series average midpoint of the lower and upper bound on the
corporate bond market information share, SpreadRatioit is the ratio of effective stock
spread to effective bond spread, V olumeRatioit is the ratio of stock volume to bond

volume, AssetV olit is the annualized volatility of underlying firm asset, and CreditRatingi
is the average credit rating of firm i during the sample period. The numbers in parentheses

are t values. *** indicates significance at 1% level.

Panel A

Upper Bound Lower Bound Midpoint
n 477 477 477
mean 0.293 0.49 0.095
stderr 0.008 0.012 0.007
min 0.004 0.006 0.000
1st Quartile 0.171 0.269 0.009
median 0.275 0.476 0.034
3rd Quartile 0.374 0.692 0.105
max 0.964 0.999 0.946

Panel B

Intercept Credit Rating Volume Ratio Spread Ratio Asset Volatility
0.12*** 0.01*** 4.03*** 4.54*** 0.03***
(3.19) (3.57) (4.51) (3.84) (4.68)
Number of obs.:477
Adj. R square: 0.1364
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Table 8. Bond Information Shares for Subsample Firms
This table reports corporate bond information shares for a subsample of firms which issue
no more than three corporate bonds in the sample period. Panel A shows the summary

statistics for upper bounds, lower bounds and midpoints. Stderr refers to standard errors
of means. Panel B reports coefficient estimates and t-statistics for the following regression

model:

ISit = a1 + b1SpreadRatioit + b2V olumeRatioit + b3AssetV olit + b4CreditRatingi

where ISit is the time-series average midpoint of the lower and upper bound on the
corporate bond market information share, SpreadRatioit is the ratio of effective stock
spread to effective bond spread, V olumeRatioit is the ratio of stock volume to bond

volume, AssetV olit is the annualized volatility of underlying firm asset, and CreditRatingi
is the average credit rating of firm i during the sample period. The numbers in parentheses

are t values. *** indicates significance at 1% level.

Panel A

Upper Bound Lower Bound Midpoint
n 165 165 165
mean 0.333 0.104 0.219
stderr 0.023 0.017 0.018
min 0 0 0
1st Quartile 0.091 0.003 0.059
median 0.233 0.021 0.14
3rd Quartile 0.487 0.076 0.283
max 1 0.993 0.995

Panel B

Intercept Credit Rating Volume Ratio Spread Ratio Asset Volatility
0.11 -0.00 3.12 3.49 0.09***
(1.55) (-0.19) (0.29) (1.07) (5.46)
Number of obs.:165
Adj. R square: 0.1610
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