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Abstract 

Jiypotheses tested by the F-sta.tistics available in familiar analyses of 

variance of balanced data are well known. However, when data are unbalanced the 

exact form of comparable hypotheses is not well known. For example, consider the 

model yijk = 1.1. + o:i + t3j + yij + eijk with nij observations in the ith row and jth ..,. 

column, there being a rows and b columns in the data. The reduction in sum of 

squares due to fitting rows a~ter fitting the mean and columns can be symbolized 

as R(o:IJ..L,t3) = R(1J.,O:,t3) - R(J..L,t3). The F-statistic using this a.s the numerator sum 

of squares, with a-1 degrees of freedom, tests the hypothesis 

b 
r. n~ a b b 2 a b 

(n. -
j=l ~j)a -I (I nijni'j)o: I ( nij) -I I nijni 'j 

yi'j = 0 
~· ni· 1 n i' + 0 ij - n. yij n . 

i'fi j=l ·j j=l •J i 'fi j=l •J 

fori= 1, 2, ••• a.-1. 

The importance of this and allied results is tha.t in fitting constants to un-

balanced data the resulting partitioning of sums of squares (as sometimes summarized 

in an analysis of variance table) does not provide F-tests of simple, and useful, 

hypotheses such as H: equality of row effects. 
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I " Analysis of variance is "'ne of the ()ldest tools of statistics. Prior to the 

advent of high-speed computers its use could entail many hours !"lf desk calculator 

work, but with present-day computing eq_uipment the computational effort can be 

minimal, and as a. result we are seeing mere and more calculation of analyses of 

variance of larger and larger volumes of data. 

Analyses of variance can be thought of as coming in one of two forms: of 

balanced data or of unbalanced data. Balanced data are those in which there is 
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the same number of observations in every subclass of the data. Their usual ~-- \ ;, I , 

~ ,\ "·-
~" ' 

occurrence is in designed experiments, such as randomized complete blocks, split '-

plots, factorial experiments, and so on. In these situations the corresponding 

analyses of variance are well known and widely documented, as is also their 

interpretation. 

Unbalanced data are those wherein the different subclasses of the data do 

not all have the same number of observations but have varying numbers, some of 

which may be zero---i.e., no observations in some subclasses. This may arise 

from designed experiments in which, for example, some of the animals died, or some 

experimental units were lost. More usually, unbalancedness arises with survey 
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data, not just data_ derived from conseiously-taken surveys but also data that can 

be got from currently available experimental units, such a.s the patients in a 

hospital or those that come to an out-patient.clinic. Illustrative examples are 

shown in Table 1~ 

Table l. Examples of balanced and unbalanced data. 

Data collected to investigate the effect on basic metabolic rate 
of 3 different dosages of 4 brands of tranquilizers. 

Numbers of Patients 
Brand 

of ·Balanced Data Unbalanced Data. 
(designed experiment) _(bed-patients available in a hospital) 

Tranquilizer 
Dose Rate Dose Rate ---- ---

1 2 3 1 2 3 

A "4 4 4 6 0 5 
B 4 4 4 0 7 8 

c 4 4 4 3 10 4 

D 4 4 4 0 5 0 

Analyses of unbalanced data. are more difficult to carry out than those of 

balanced data. for three reasons: 

(i) Description of the analysis methods for unbalanced data. is n"'t a.s 

widely available in texts as is that for ba.la.nced data---nor are 

the methods taught so widely. 

( ii) The methods for unbalanced data are themselves, when carried out 

correctly, inherently more difficult than those for ba.la.nced data; 

i.e., the calculations a.re more complex. For example, in most cases 

matrix ma.nipula.tions are required rather than just straightforward 

summations. 

(iii) Even when carried out correctly the results of unbalanced data. analyses 

axe more difficult to interpret than are those of balanced data. 
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The additional dif':t'iculty o:t' analyzing unbalanced data over balanced data. 

almost surely means that mere errors are made with unbalanced data than with 

balanced. Errors o:t' calculation may be minimal because a. researcher 1 having 

obtained correct advice on what to do, will usually go to a computing facility to 

get his calculations carried cut. Assuming that all lines o:t' communication in 

this procedure operate successfully (ofttimes an unwarranted assumption, un-

fortunately) the researcher will receive as computer output th~ correct analysis 

of his data. Unhappily, interpretation o:t' this output may not always be correct 1 

beca:use interpretation of unbalanced data analyses does not follow "obviously" 

from that of balanced data. Examples follow. 

Table 2. Summary of hypothesis testing in linear models 

Model: 

N observations, with r = rank of X. 

Normal equations: X'Xb0 = !'l 

Solution to normal equations: bo = ~!'l, with X1XGX 1X = x'x - --- -
Sum of squares due to fitting model: R(~) = l 1~~~ 1l 

Residua.l sum of squares: SSE = l 1l- ;r'!q!'l 

Estimated variance: (;'2 = SSE/ (N - r) 

Hypothesis to be tested: H: K'b = !!1-' with ~ 1 having :t'ull row rank s 

F-statistic: F(H) = (~'~0 !!1-) '(~ 'qzsrl<~ ,~o ~)/ scr2 
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CASE 1: The simplest model. 

Description: 

Model: 

The model contains just a. mean. 

Yi = IJ + ei 

Sum of squares: R(l..l) = sum of squares due to fitting (1) 

= Ny2 , where y = mean of ally's 

Analysis of Variance 

Source d. f. Sum of Squares F-statistic 

Mean 1 Ny2 F(IJ) = Nr/a2 

Residual N-1 SSE = "l.'"l. - Ny2 

Total N 'l'l 

Hypothesis: F(IJ) tests H: IJ = 0. 

(1) 
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CASE 2: The completely randomized experiment (the 1-way classification). 

Description: a classes with ni observations in ith class 

Model: (2) 

i = 1, 2 ••• 
} ' a and j = 1, 2, ···, ni, with n. = N 

Sums l')f squares: R(!-l) = sum of squares due to fitting (l) 

Source 

Mean 

Classes 

Residual 

Total 

F-statistic 

R(!-l,a) = sum of squares due to fitting (2) 

= f yf. 
n. 

i=l ~ 

Analysis £! Variance 

d.f. Sum of Squares F-statistic 

1 R(!-l) = Ny2 F(!-l) = R(!-l)(cr2 

a-1 R(al!-l) == R(!-l,a) - R(!-l) F(o:! !-l) = R(a!!-l)/ (a - 1)02 

N-a SSE == y:'y:- R(!-l,a) 

N l''l 

Hypotheses corresponding to F-statistics 

Unbalanced Data 

H: a.ll ai 's equal 

Balanced Data 

a 
using r. a 1 = 0 

i=l 

H: 1-l = 0 

H: all a 1 's equal 
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CASE 3: Rows and columns (no interaction) -- 2-wa.y classificaticn. 

Descriptinn: a rows and b columns, 0 or 1 observation in the 

ith row and jth column. 

Model: (3) 

1 = 1, 2, ···, a, j = 1, 2, , b, and n1 j = 0 or 1 

SUms of squares: R(~) 

Source 

Mean, ~ 

a: af'ter ~ 

~ after ~ and a 

Residual 

Total 

Mean, ~ 

~ after ~ 

a after ~ and ~ 

Residual 

Total 

d.f. 

R(~1a) = sum of squares due to fitting (2) 

R(~,~) = sum of squares due to fitting 

yij = ~ + ~j + eij analogous to (2) 

R(~,a:,~) = sum of squares due to fitting (3) 

Analyses of Variance 

Sum of Squares F-statistic 

I: Fitting ~' a after J:1 and ~ after ~ and a. 

1 R(~) = Ny2 F(~) = R(~)/cr2 

a-1 R(a:l~) = R(~,a) - R(~) F(a:l~) = R(al~)/(a-l)cr2 

b-1 R(~l~,a) = R(~,a,~) - R(~,a:) F(~l~,a) = R(~l~,a)/(b-l)cr2 

N-a-b+l SSE 

N 

II: Fitting ~' f3 after ~, and a after ~ and f3. 

l R(~) = Ny2 F(~) = R(~)/~2 

b-1 R(~~~) = R(~ 1 f3) - R(!J) F(~lll) = R(~ 1 ~)/ (b-l)cr2 

a-1 R(al~,~) = R(!J,a,~) - R(~,~) F(a:l!l,f3) = R(a:l~,~)/(a.-l)cr2 

N-a-b+l SSE = "l'"l - R(~,a,t3) 

N 1.'1. 



F-statistic 

F(f31 j..L), from II 

F(f3lll';a:), from I 
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Hypotheses ~esponding to F-statistics 

Unbalanced Data 
. . . 

.Eni.f3. 
. J J 

H: a:. + ~J __ 
~ 

all equal 

H: all a:. 's equa.l 
~ 

.En. ja: . . ~·. ~ 

H: 13 j + ~-- ·-~-' . all equal 
•J 

H: all f3.'s equal 
J 

Balanced Data 

using .Ea. = 0 = .Ef3. 
~ J 

H: j..L = 0 

H: all f3.'s equal 
J 
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CASE 4: R(1Ws and columns (with interaction) -- 2-way classification. 

Description: 

Model: 

a :rows·, b columns, nij obse-rvations, nij ~ o. 

i = 1, 2, ···,a; j = 1, 2, 

n .. I= 0 for s subclasses. 
~J 

... , b; k = 1, 2, 

(4) 

···, nij; 

Sums of squares: R(~) 

Source 

I: 

Mean, ~ 

a; after ~ 

~ after ~ and a; 

R(~,o:) = sum of squares for y ijk = ~ + o:i + eijk 

R(~,~) = sum of squares for yijk = ~ + ~j + eijk 

R(~,o:,~) = sum of squares for yijk = ~ + o:i + ~j + eijk 

R(~,o:,~,v) = sum of squares due to fitting (4) 

Analyses of Variance 

d.f. Sum of Squares F-statistics 

Fitting ~, ~o:l~)z (~l~zo:~, and ( v !l!:,o:, ~). 

1 R(~) =Ny2 F(~) =R(~)/a2 

a-1 R(~jo;) =R(~,o:) - R(~) F(o:l~) =R(o:l ~)/ (a-l)a2 

b-1 R(~~~,o:) =R(~,o:,~) - R(~,o:) F(~~~,o:) =RC~I~,o:)/(b-l)cr2 

V after ~' a; and~ s-a.-b+l R( vi ~,o:,~ )=R(~,o:,~,V )-R(~,o:,~) F( vl~,o:,~ )=R( vi ~,o:,~)/ s 1a2 

Residual error N-s SSE (with s' = s-a-b+l) 

Total N 

Mean, ~ 1 R(~) =Ny2 F(~) as in I. 

13 after ~ b-1 R(l31~) =R(I-11 13) - R(l-1) F(13j~) = R(l3!1-1)/ (b-l)a2 

a; after ~ and 13 a.-1 R(o: I ~,13) =R(J-1. 1 0: 1 ~) - R(J-~.,13) F(o:l~,~) = R(o:ll-1,~)/(a-l)a2 

y after ~' a; and 13 s-a-b+l R(yjJ-1.,0:1 ~) as in I. F(vl~,o:,l3) as in I. 

Residual error N-s SSE as in I. 

Total N 



F-statistic 

F(a!~-t), from I 

F(al~-t,~), from II 

F(B 1~-t), from II 
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Hypothes~ corresponding to F-statistics 

Balanced Data 

using Eai=O, ~~j=O, 

~y1 .=0 for all i and 
j J 

Unbal.ci.nced Data ~yi .=0 for all j. 
1 J 

H: 1J. + ~ni a./N + ~n .S ./N + L.En .. y . ./N = 0 H: 1J. = 0 
. • 1 •J J 1J 1J 
1 

+ ~(nij - nf/n.j)yij 

- ~ L:(n .. n. 1./n .)y. 1. = 0 
i lfi j 1J 1 J • J 1 J 

fori= 1, 2, ···, a-1 

~nij(ai + Yij) 
H: S. + all equal '~ 

J n . • J 

n~. n n 
H: (n . - E 2:Q. )s. - E c~ ij ij I )S. I 

'J i ni• J j 1fj i ni· J 

- ~ E(n. jn .. 1/n1 )yi. = 0 
• I J. • . 1 1J ' J 
J rJ l. 

for j = 1, 2, •••, b-1 ~ 

Any column vector of s-a.-b+l linearly 
independent functions of 

H: 9ij,i'j' = Yij- Yi'j- Yij 1 + 'Yi'j' 

where the y's in such functions are 
all from cells that contain 
observations. 

'I 
I 

H: all S. 's equal 
J 

= 0 H: all y. . equal 
l.J 
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CASE 5: 3-way classification (no interactions) 

Description: a classes, b rows, and c columns. 

Model: 

6 Partitionings of total sum of squares, l.'l. 

(1) (2) (3) (4) (5) (6) 

R(~) R(~) R(~) R(~) R(~) R(~) 

R(al~) R(al~) R(f31~) R(f3!~) R(y,~) R(y,~) 

R(t3l~,a) R(yl~,a) R(al~,t3) R(YI~,t3) R(al~,y) R(t3!~,y) 

R( Yl ~,a,t3) R(t3l~,a,y) R(YIIl,et,t3) R(al~,t3,Y) R(!3l~,a,y) R(aj!l,t3,y) 

SSE SSE SSE SSE SSE SSE 
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