
THE PROBABILITY DISTRIBUTION OF NEAR-MATCHES OF BALLS 

IN AN ORDERED SEQUENCE OF CELLS 

Steven J. Schwager 

Biometrics Unit, Cornell University, Ithaca, NY 

BU-1028-M May, 1989 

Abstract 

A set of n balls are distributed independently at random into r ordered cells, numbered 1 to r. 

Fix a nonnegative integer threshold m; a near-match is said to occur when two balls are 

assigned to cells whose distance is m or less. The probability distribution of the number of 

near-matches is derived. This model arises in connection with experiments in genetic 

mapping of ripening-related eDNA clones in tomatoes. Implications of the results for genetic 

data are discussed, using a particular experiment for which m=5, n=38, and r=1200. For 

m=O, this situation reduces to a classical occupancy problem, finding the distribution of the 

number of empty cells. For m>O, this problem is a discrete analogue to a problem addressed 

for continuous variables by the theory of spacings. Computational formulas for probabilities 

developed here do not suffer from the extreme numerical instability shown to be inherent in 

the classical formulas for both the empty cells problem and the continuous-variable spacings 

problem. However, computational complexity increases with the number of near-matches. 
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1. Introduction 

The well-known class of occupancy problems is based on the distribution of n balls into r 

cells. In the situation of interest here, which is known as Maxwell-Boltzmann statistics, both 

the balls and the urns are distinguishable. The number of possible outcomes, or 

arrangements of the balls in the urns, in this formulation, is rn. The balls may be distributed 

independently and at random, so that each ball has probability 1/r of going into any of the r 

cells. In this case, all of the possible outcomes are equally likely. Probabilities of events 

involving the numbers of cells containing given numbers of balls are often of interest. For 

example, we may wish to obtain the probability that the number of empty cells is j for 

various values of j, or the probability that at least one cell contains two or more balls. When 

r=365, the latter is the solution to the simplest version of the birthday problem, which is to 

find the probability of at least one match among the birthdays of n people. For a detailed 

treatment of occupancy problems, see Johnson and Kotz (1977). 

In the occupancy problem, there is no geometric structure among the cells. In the usual 

formulation of the birthday problem, for instance, birthdays occurring on May 5 and May 7 

have the same relation as birthdays on May 5 and November 7, namely, they are not a 

match; the closeness of the cells is not relevant. However, there are many applied situations 

in which the cells do have a geometric structure and the distance between the occupied cells 

matters. In the birthday problem, we may wish to find the probability of at least one near­

match among the birthdays of n people, where a near-match is defined to mean birthdays 

occurring within three days of one another. This is the problem addressed in this paper. Its 

general formulation is now given. 

A set of n distinguishable balls are distributed independently and at random into r cells 

numbered from 1 to r, forming an ordered sequence. Fix a nonnegative integer threshold m; 

a near-match is said to occur when two balls are assigned to cells whose distance is m or less. 

We seek the probability distribution, or equivalently the probability density function (p.d.f.), 

of the number of near-matches. For m=O, this situation reduces to the classical occupancy 
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problem. 

For m>O, the situation is a discrete analogue to a problem that the theory of spacings 

addresses for continuous variables. If n points are independently and uniformly distributed 

on the unit interval (0,1), the probability distributions of various functions of the n+1 

resulting subintervals will be of interest. A slight modification is to replace the unit interval 

by the unit circle, which the n points will divide into n subintervals. The problem for these 

continuous situations that corresponds to the discrete model's p.d.f. of the number of near­

matches is the p.d.f. of the number of subintervals smaller than a given size. This problem 

has been studied by several authors, whose work is described by Solomon (1978). The 

version involving the unit circle can be restated as the following problem of coverage on the 

circle: n arcs, each of length m/r, are thrown at random onto a circle whose circumference is 

1; find the probability that there are exactly n-i gaps left uncovered between these arcs, 

where i=0,1, ... ,n-1. There are i near-matches whenever there are n-i gaps, e.g., n gaps 

correspond to no near-matches, n-1 gaps to 1 near-match, ... , and 1 gap to n-1 near-matches. 

One practical application in which the number of near-matches arises is experiments in 

genetic mapping. The discussion here will focus on the mapping of ripening-related eDNA 

clones in tomatoes. This mapping results in the detection of one or more loci on the tomato 

genome for each clone. The genome may be viewed as a sequence of r ordered cells. It is of 

interest to know whether the loci occur independently at random locations on the genome or 

cluster on the genome. The value chosen for the threshold m could be based on the smallest 

resolvable distance of recombination, about 5 centimorgans (em); or it could be 0, 

corrsponding to the occurrence of cosegregating pairs. Data from a genetic mapping 

experiment involving n=38 loci will be analyzed later in this paper. 

Computational formulas for m=O have long been known. These give the probability of 

having r-n+i empty cells, which corresponds to having i exact matches, for i=0,1, ... ,n-1. 

From Hoel, Port, and Stone (1971, p.45, equation {16)) or Feller (1968, p. 60, equation 

(11.7)), the probability that exactly k cells are empty is 
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{1) P[exactly k cells empty] = P[k+n-r match"'] = (;; )~ (-1~(rjk )( 1 - j t k r 
Formulas for the arc coverage problem on the unit circle, a continuous analogue of the m>O 

case, are also known. These give the probability of having i gaps in coverage among arcs on 

the unit circle. From Solomon (1978, p. 80, equation (14.4)), after defining g to be the 

greatest integer that is less than r/m, 

{: )g-n+i( ) .[ C + ") Jn-1 
(2) P[exactly n-i gaps] = P[i near-matches] = \i j~O ~ (-1Y 1- J nr- 1 m 

Both formulas (1) and (2) suffer from extreme numerical instability. They involve sums 

whose terms grow increasingly large as we move through the summation. Many of these 

terms are several orders of magnitude greater than 1. In theory, the terms have alternating 

signs, so the positive and negative terms cancel almost exactly, leaving a probability as the 

overall series sum. In practice, however, problems arise when formulas (1) and (2) are used 

with parameter values suitable for gene mapping problems, e.g., n=20 to 50, r=1200 or 1500, 

and m=O or 5. The presence of round-off errors, underflows, overflows, and similar numerical 

difficulties results in computed "probabilities" that can be much greater in magnitude than 1, 

and can also be negative in sign. Thus, these formulas are computationally unsatisfactory for 

obtaining the probabilities of given numbers of near-matches or matches. 

Thus a more effective procedure for obtaining these probabilities is needed. Such a 

procedure is developed in Section 2. It is applied in Section 3 to an example using data from 

a gene mapping experiment. 

2. Near-Match Probabilities 

Assume that n balls are distributed independently at random among r cells. Because the 

rn possible outcomes are equally likely under these conditions, classical equal likelihood 
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probability methods can be used to find event probabilities. We will derive formulas for 

counting the number of ways a given number of near-matches can occur. The analysis here 

applies to the case of m=O as well as to m>O, so it applies to events involving matches as 

well as those involving near-matches. 

Let the locations of the n balls be given by the vector X = (x1,x2, ... ,xn), and let Y = 

(y1, ... ,yn) denote the vector of order statistics of X, arranged in increasing order, so y1 ~ y2 

~ ... ~ Yn· Define di = yi+1 - yi for i=1,2, ... ,n-1, so each di ~ 0, and let D denote the 

vector (d1, ... ,dn_1). Then each vector X can be transformed to Y and then to the pair 

(y1,D); each Y corresponds to a single (y1,D), and vice versa. Note that some Y's are 

obtained from more X's than others. To see this, observe that if all elements of Y are 

distinct, then n! different X's correspond to that Y, and thus to the pair (y1,D). However, if 

two elements of Y, yi and yi+1 for some i, are equal, then only n!/2! different X's correspond 

to that Y; and if all n elements of Y are equal, then only n!/n! = 1 vector X corresponds to 

that Y. 

A near-match occurs for the ith pair of locations, yi and yi+l' if di ~ m. Let Ak denote 

the event that exactly k of these near-matches occur. By convention, this specifies that the 

greatest possible number of near-matches is n-1 (rather than n(n-1)/2). For example, if 5 

balls go into the same cell, the result will be counted as 4 matches, not as 10. This is a 

conservative approach, as it limits the influence of observing more than two balls in close 

proximity. If desired, it could be modified to increase the influence of such an occurrence. 

It will be useful to divide the di 's into two categories and to introduce additional 

notation. For a given X, let k be the number of near-matches that have occurred. Those k 

di 's that are less than or equal to m, resulting in near-matches, will be denoted by 

e1,e2, ... ,ek, where the ei's are arranged in nondecreasing order, so 0 ~ e1 ~ e2 ~ ... ~ ek ~ 

m. Let E denote the vector ( e1' ... ,ek); it is implicit in this notation that the length of E 

represents the number of near-matches. Lett = e1 + ... + ek. Let n0, n1, ... , nm denote the 

number of O's, 1's, ... , m's in E. Those n-1-k di's that are more than m, which do not give 
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near-matches, will be denoted by f1,f2 , ... ,fn_1_k· Lets= f1 + ... + fn_ 1_k. 

We now develop a counting argument to allow us to compute #(Ak), the number of 

vectors X that result in the occurrence of event Ak. This number is the sum of the numbers 

#(E), where E ranges over all possible vectors of length k with 0 ~ e1 ~ ... ~ ek ~ m. For 

a given E, a range of values of s may occur. This range spans from a minimum of (n-1-

k)(m+1), when each of the f.'s is just large enough to avoid a near-match, to a maximum of 
1 

r-1-t, when the observed locations in X include 1 and r. 

For given E and s, four aspects of the vector X must be considered: 

1. The number of possible position sequences within D occupied by E. Of the n-1 positions 

in D, n0 must contain O's, n1 must contain 1's, ... , and nm must contain m's, so the 

number of possible sequences within D occupied by E is given by the multinomial 

coefficient #(D,E) given by 

If m=O, this reduces to 1. 

2. The number of distinct sequences f1, ... ,f 1 k whose sum equals s. Each of the f.'s must n- - 1 

be at least m+1, so we need to know how many ways the excess, s - (n-1-k)(m+1), can 

be distributed among the n-1-k elements f.. By an elementary combinatorial argument, 
1 

the number of ways this can be done, #(Fis), is equal to 

( (n-2-k) + (s - (n-1-k)(m+1))) 
n-2-k · 

3. The number of distinct values of y1 compatible with the value of s. Since y1 can range 

from 1 to r-s-t, this number is obviously r-s-t. 

4. The number of orderings of X compatible with Y, or equivalently, with (y1,D). If all of 

the ei's are greater than 0, this number is n!. If some of the ei's are 0, though, the 

corresponding elements of Y are equal, so the number of orderings must be reduced. Let 
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a1,a2 , ... ,am be the number of times in D that a sequence of exactly 1,2, ... ,m consecutive 

O's occurs. The number of orderings of X compatible with Y is then 

Combining these aspects of X and summing over all E and s compatible with Ak gives 

LL #(D,E) x #(Fjs) x (r-s-t) x #(X,D) 
E s 

where summation over E ranges over all E with 0 S. e1 S. e2 S. ... S. ek S. m, and 

summation over s ranges from s = (n-1-k)(m+1) to s = r-1-t. This computation is feasible 

for many combinations of r, n, m, and k of practical importance in genetic mapping and other 

applications. The calculation becomes more laborious as the value of k increases, because 

summing over E involves a k-fold sum. The probability of exactly k near-matches is then 

given by 

(4) 

3. Application to Genetic Mapping 

We now examine the practical application mentioned earlier, the genetic mapping of 

ripening-related eDNA clones in tomatoes. This mapping results in the detection of one or 

more loci on the tomato genome for each clone. We will treat the genome as a sequence of r 

ordered cells. The value of r has been estimated at 1200 em ( centimorgans ), but more recent 

data indicate a genome size of r = 1500 em, so we will use both values in our analysis. Two 

values were chosen for the threshold m: m = 5, based on the smallest resolvable distance of 

recombination; and m = 0, corresponding to the occurrence of cosegregating pairs. A genetic 

mapping experiment generated data involving n = 38 loci, the number of loci homologous to 

the ripening clones. The loci may occur independently, at random locations on the genome, 

or their locations on the genome may exhibit clustering. We would like to determine which 
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of these hypotheses is supported by the observed locations of the 38 loci. These observed 

locations included three cosegregating pairs, so k = 3 when we use the threshold m = 0. The 

locations included ten pairs of tightly linked (within 5 em) loci, so k = 10 when we use the 

threshold m = 5. 

Under the null hypothesis, the n balls (loci) are distributed independently at random 

among the r cells. Under the alternative hypothesis, that there is clustering among the 

locations of the n balls, the number of near-matches will be stochastically greater than it is 

under the null hypothesis. We therefore reject the null hypothesis if the observed k lies in the 

upper 5% tail of the distribution of k under the null hypothesis. We now obtain the 

probability of observing k near-matches under the null hypothesis, for the specified m and r. 

For k=0,1, ... ,4, this was obtained from a computer implementation of formula ( 4) above. 

For k L. 5, the computer algorithm is still under development, so a simulation of the process 

was performed. A set X of 38 independent random integers was generated, each uniformly 

distributed between 1 and r, and the number k of near-matches with threshold m was 

determined for X; probabilities in the table here are based on 100,000 repetitions of the 

simulation. As a check on the accuracy of the simulation, it agreed with the exact values 

found from ( 4) to within .0015 or less for all values of k ~ 4, m, and r. 
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Probability of exactly k near-matches under the null hypothesis 

m=O m=O m=5 m=5 

k r=1200 r=1500 r=1200 r=1500 

0 .5532 .6233 .0008 .0039 

1 .3343 .2995 .0074 .0253 

2 .0939 .0669 .0299 .0772 

3 .0163 .0092 .0760 .1476 

4 .0020 .0009 .1360 .1989 

5 .0003 .0002 .1829 .2000 

6 .0000 .0000 .1890 .1591 

7 .0000 .0000 .1617 .1006 

8 .0000 .0000 .1085 .0524 

9 .0000 .0000 .0616 .0221 

10 .0000 .0000 .0299 .0074 

11 .0000 .0000 .0114 .0022 

12 .0000 .0000 .0039 .0006 

13 .0000 .0000 .0013 .0002 

14 .0000 .0000 .0004 .0000 

The observed value k = 3 has a p-value of .0186 for r = 1200, .0103 for r = 1500. The 

observed value k = 10 has a p-value of .0469 for r = 1200, .0104 for r = 1500. From these 

results, we would reject the null hypothesis and conclude that significant evidence of 

clustering is present. (In the actual analysis of these data, it was suspected that 1 of the 3 

matches (using m = 0) and 4 of the 10 near-matches (using m = 5) occurred within 

suspected areas of reduced recombination. This required an adjustment in the observed 

values to k = 2 (for m = 0) and k = 6 (for m = 5), and resulted in acceptance of the null 

hypothesis, reversing the earlier conclusion.) 
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