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Abstract 

The cell means formulation of a mixed model has the fixed effects part 
of the model as cell means and the random effects part gives structure to 
the dispersion matrix. For balanced data, the best linear unbiased estima
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holds for unbalanced data. Specific expressions are derived for unbalanced 
data from randomized complete blocks designs, of which balanced incomplete 
blocks are a special case. 
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1. INTRODUCTION 

a. Fixed effects models 

Analysis of variance models are traditionally formulated in terms of 

additive main effects and additive interaction effects that usually result 

in there being more parameters in the model than there are means to esti

mate them from. For example, suppose y .. k is the k'th observation on treat-
~J 

ment i of variety j in a horticultural experiment. A customary model for 

this is 

11 + a. + B. + "( .. +e. "k 
~ J ~J ~J 

(1) 

where y. "k is the k' th observation on treatment i and variety j, and 11 is 
q 

a general mean, Ci.. is the effect due to the i'th treatment, B. is the ef-
~ J 

feet due to the j'th variety, "( .. is the interaction effect between treat
~J 

ment i q.nd variety j, and e .. k is the residual error term defined as 
~J 

11 + a. + B. + r .. 
~ J ~J 

where E denotes expectation over repeated sampling. For an experiment of a 

treatments and b varieties, with s of the ab cells containing data (s < ab), 

the number of parameters in (1) is 1 + a + b + s, whereas the number of 

observed cell means available from the data is s. Thus there are more pa-

rameters in the model than there are cell means to estimate them from. 

Hence (1) is an example of what is known as an over-parameterized model. 

In contrast to (1) there has in recent years been a growing interest 

in modeling y. "k solely in terms of its underlying population mean, i.e., 
q 

in taking 

and J.l •• + e. "k 
~J q 

(2) 

where they .. k fork= 1, ..• ,n .. are deemed to be a random sample of n .. 
~J ~J ~J 

observations from a population having mean ).l ••• This formulation is known 
q 

as the cell means model. It has been promoted extensively by Speed and 

Hocking and co-workers [e.g., Speed (1969), Hocking and Speed (1975), Speed 
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and Hocking (1976), and Speed, Hocking and Hackney (1978)] and its feature 

of having exactly the same number of parameters to estimate as there are 

observed cell means has proven to be particularly useful, especially for 

unbalanced data, namely those having unequal numbers of observations in 

the subclasses, i.e., for which then .. are not all equal. Compared to (1), 
lJ 

we find that with (2) estimation is easier, estimable functions are sim

pler, and a variety of hypotheses commonly considered are more easily des

cribed and understood. Urquhart and Weeks (1978) exemplify these advantages 

in an analysis of weight gains in beef cattle. 

The use of (2) as an alternative to (1) tacitly implies incorporation 

of interactions as part of the model. When wanting to use a no-interaction 

form of the cell means model it is necessary to use (2) together with re

strictions of the form 

~ij - ~i'j - ~ij' + ~i'j' 0 , (3) 

which specify absence of interaction. We return to this in section 5. 

Models like (1), where point and interval estimation of (and testing of 

hypothesis about) parameters are the features of interest, are known as 

fixed effects models, and in such models the customary assumptions about 

variances and covariances are that each observation has the same variance 

and that every pair of observations has zero covariance. The dispersion 

matrix V of the vector of observations y then has the form 

v (4) 

I being an identity matrix and 0 2 being the variance of every observation. 

An assumption about V more general than (4) is that it is simply a symme-

tric, positive semi-definite matrix; and in many cases that it be not just 

positive semi-definite but positive definite, and hence non-singular. 

b. Mixed models 

Variations of (1) are models where some or all of the~., ~. and~ .. 
1 J lJ 

terms are assumed not to be parameters to be estimated, but are modeled 

as being random variables with zero means and some assumed variance-cova

riance structure. For example, suppose in the no-interaction form of (1), 
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y .. = ~+Ct. + B. +e .. , 
q l J q 

(5) 

that the data are from a randomized block experiment, with the B. represen
J 

ting block effects. Then the B. for 
J 

variables with zero mean E(B.) = 0 
J 

effects and, along with the random 

j = l, .•. ,b, are modeled as random 

¥ j. The B. are then called random 
J 

error terms eij' usually have the 

following variance-covariance structure attributed to them: 

2 
var(B.) OB ¥ j cov ( B . , B . , ) 0 ¥ jtj I 

J J J 

2 
varCe .. ) 0 ¥ i' j' COV (e .. , e. 1 , 1 ) 0 except for i=i' and j=j' 

lJ e ]_ J l J 

and 

cov (B. , e .. 1 ) 0 ¥ • . • I 

]_ ' J ' J . 
J ]_ J 

(6) 

Then with ~and the Ct. in (5) being fixed effects and the B. being random 
]_ J 

effects, (5) and (6) are together known as a mixed model. And the variances 

o2 and o 2 of (6) are the variance components. The structure of (6) then leads 
B e 

to V having elements that are either zero, o~ + o;, or oB; in general to 

elements that are either zero, or one of the variance components or a sum of 

them. 

Example 1 Consider the case of 2 treatments and 3 blocks, with one 

observation on treatment l in blocks l, 2 and 3, and on treatment 2 in just 

blocks l and 2. Then, where an element of a matrix that is zero is shown as 

a dot, 

Yn 102+02 B e 
02 

B 

yl2 
02 +02 

B e 
02 

B 

v var Yu 02 +02 
B e 

y2l 02 02+02 

o' ~o' j ly22 

B B e 

02 
B B e 
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Despite merits of the cell means formulation of fixed effects models, 

such as (2) as an alternative to (1), minimal formulation has been made to 

mixed models such as (S) and (6). Indeed, Steinhorst (1982), for the rando

mized complete blocks design, writes that he is"··· at a loss to see how 

J..l •• carries the right meaning if blocks are random •..• " And regarding the 
q 

split-plot design he continues "The cell-means model is not of much help in 

such cases. The classic split-plot model ... cannot be replaced by a varia

tion of y .. k = J..l •• k +e .. k." In contrast to such remarks, we show in this 
lJ lJ lJ 

paper that all of the cases (and more) that Steinhorst refers to can be 

formulated as cell means models. For balanced data we show why the cell 

means formulation always yields the same BLUEs as does an overparameterized 

model; we also give conditions under which this situation is true for un

balanced data; and for unbalanced randomized block designs, when the condi

tions are not satisfied, we give explicit expressions for the BLUEs of 

treatment means; and we show how these expressions simplify for balanced 

incomplete block designs, and are then consistent with results given in 

Scheffe . 

2. A general formulation of cell means models 

Consider the case of m factors, with the t'th having Nt levels, for 

t = 1,2, •.. ,m. Then the k'th observation in the cell defined by the i 'th 
t 

level of the t'th factor can be represented as yik for i = [i1 i 2 •.. im] 

and with k = 1,2, ••• ,n. where n. is the number of observations in the i'th 
l. l. 

cell, where i = 1' , ... ,N' for 1• being a row vector of m unities and N' 
m m 

being a row vector [N1 N2 ••. Nm]. Then the cell means model (2) for yijk 

of the 2-factor case extends very naturally to yik: 

J..l • • 
l 

For y, ~and e being the vectors, respectively, of the y.k, J..l. and e.k' 
1 1 1 

arranged in lexicon order in each case, we write 

y X~ + e . 

Then X is a direct sum of vectors 1 , 
n. 

l 

(7) 
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i=N' 
X = (+) 1 

i=1' ni 
m 

(8) 

where (+) represents the direct sum operation; and X has full column rank. 

Example For m 2 and N1 2 and N2 2 

1 
nll 

i=[2 2] 1 
X (+) 1 nl2 

i=[l l] ni 1 
n21 

1 
n22 

The OLS estimator of J1 in (7) is 

OLSE(p.) (X'X)-lX'y - (9) y 

with, from (8), the matrix X'X being D{n.}, the diagonal matrix of then., 
1 1 

and X'y being the vector of cell totals y .. Hence OLSE(p.) = D{l/n.}{y. } 
1" 1 1" 

{y. } = y, the vector of observed cell means, as in (9). 
1• 

Adapting the cell means model to models where the dispersion matrix of 

y is other than o2 I, i.e., for a mixed model, involves using the cell means 

formulation for only the cells defined by the fixed effects. For example, 

with randomized complete blocks as in (5), where blocks are random, the 

cell means model is 

y .. = lJ, +e .. 
l.J 1. l.J 

(10) 

where, in terms of (5), the l-1 1. of (10) is lJ. = lJ + a. for the fixed effects 
1. 1. 

part of the model and E,. = ej. +e ..• The difference is, though, that we 
l.J l.J 

do not formally identify e .. as e. + e .. , but merely attribute some form 
l.J J l.J 

to the dispersion matrix of the observations, namely for (7) 

v var(y) = var(e) • (11) 

The V follwing (6) is an example. 
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Estimation of fixed effects in mixed models using OLSE takes no account 

of the random effects part of the mixed model. It is as if the random effects 

were totally ignored. An alternative, that takes the random effects into 

account by way of their variances, is to use BLUEs. With y = Xp + e and 

V = var(e) of (1) and (11), respectively, and assuming Vis positive de-

finite, we then have 

BLUE(p) (12) 

where p is estimable because X of (8) has full column rank. And the 

sampling variances of these estimators are 

var[OLSE(p)] 

Thus as an alternative to any over-parameterized model, (1) and (8) re

present a cell means model formulation, and for that formulation the BLUE(~) 

of (12) and (13) is a suitable method of estimation. We now consider cer-

tain aspects of that procedure. 

3. Estimation from balanced data 

Zyskind (1967) has shown for any linear model having E(y) = XB and 

var(y) = V, non-negative definite, that for any estimable function of ele

ments of B, the BLUE and the OLSE are the same if and only if 

vx XQ (14) 

for some Q. This condition is directly applicable to cell means models. We 

consider balanced data first. 

For over-parameterized models and a broad class of balanced data we 

know (Searle, 1984) that the BLUEs of estimable functions of the fixed ef

fects are the same as the OLSEs. Furthermore, with balanced data, all po

pulation cell means c~ .. s) are estimable functions of the parameters in an 
~J 

over-parameterized model. Hence, with balanced data, the BLUE(p) that we 

obtain from the cell means formulation of these models is the same as is 

obtained from the BLUE of appropriate estimable functions of the fixed 
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effects parameters in the comparable over-parameterized model. Thus for 

balanced data the cell means model gives the same estimation results as 

does the over-parameterized model. 

4. Estimation from unbalanced data 

a. The general case 

The general estimation procedure is 

BLUE(p) 

of (12). This is the procedure for estimation of fixed effects in mixed 

models whether J1 is a vector cell means with X as in (8), or is a vector 

of fixed effects parameters in an over-parameterized model. Using BLUE 

rather than OLSE as a method of estimation is what takes account of the 

random effects. 

One can rightly ask: when are BLUE and OLSE the same? (It might be 

thought, perhaps - and incorrectly so - that OLSE is what one would use 

for over-parameterized models.) The answer is (14): when Q exists such 

that VX = XQ. 

5. Some fixed effects interactions omitted 

a. Unbalanced data 

The formulation Xp in (7), with X of (8), for the fixed effects part 

of a mixed model implicitly includes interactions; e.g., for two fixed ef-

fects factors ~ij in terms of the over-parameterized model implicitly in-

eludes interaction between the two factors. To use a cell means formula-

tion for the no-interaction model requires defining an absence of inter

actions among the ~- .s. This is done by using an appropriate number of equa
q 

tions of the form 

~--- ~ ... - ~ .. ,- ~ ... , 
lJ l J lJ l J 

0 (15) 
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fori t i' and j f j'. This is tantamount to imposing restrictions on the 

elements of P, which we now do by the representation 

Hp 0 . (16) 

H is of full row rank and every element of any Hp is estimable, so that, 

following Searle, (1971, p. 206) the OLSE of p for the restricted model 

E(y) = Xp and Hp = 0 is 

OLSE(p ) 
r 

after using (9). Similarly the BLUE is 

BLUE(p ) 
r 

(X'V- 1X)- 1x·v-1y 

(17) 

(18) 

- (X'V- 1X)- 1H'[H(X'V- 1X)- 1H•]- 1H(X'V- 1X)- 1X·V- 1y. (19) 

Let us now consider when BLUE(~ ) and OLSE(~ ) can be equal. As a first 
r r 

condition we impose (14), and in so doing confine attention to situations 

in which VX = XQ for some Q. Then (19) reduces to 

BLUE(p ) 
r (20) 

Th (14) ( -1 )-1 -1 1 en, on using to derive X'V X = Q(X'X) = (X'X)- Q', the latter 

equality arising from symmetry, we find that (20) equals (18) if and only 

if 

(21) 

i.e., if and only if, in using VX XQ and the full row rank property of H, 
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A sufficient condition for this equality to hold is 

HQ PH for some non-singular P . (22) 

Thus (22) is a condition for mixed models E(y) = X~ with var(y) = V, 

and restrictions H~ = 0 under which with VX = XQ, the BLUE of ~ is the 

same as the OLSE. Two situations when (22) is trivially true are as fol

lows: (i) models that include all interactions among their fixed, main 

effects factors, because then His null and so (22) is obviously satisfied; 

and (ii) models in which V = 0 2 I, for then Q and P can both be taken as 

0 2 I and (22) is satisfied. In general, though, (22) is a sufficient condi

tion, along with VX = XQ, for cell means models with some interactions 

omitted (represented by H~ = 0) to have the BLUE and OLSE of p be the same. 

b. Balanced data 

Section 3 describes why estimation using BLUE gives the same results 

for a cell means model as does its over-parameterized equivalent. Never

theless, for the case of some interactions omitted it is convincing to see 

that (22) is satisfied. 

We begin with an example. 

Example Consider a four-way crossed classification, with one factor 

random and with the third order and one set of second order interactions 

among fixed effects being zero. Thus the over-parameterized model could 

be 

for a, b, c, and d levels of the four main effects factors, respectively, 

and n observations per cell. For the~., 6. and yk effects taken as fixed, 
1 J 

and the 6£ effects as random, the cell means formulation would be 

~ijk + Eijk (23) 
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with restrictions of the form 

~i·k- ~i 1 ·k- ~i-k 1 + ~i 1 •k 1 0 (24) 

for i t i 1 and k t k 1 ; and 

0 , ( 25) 

fori t i 1 , j t j 1 and k t k 1 • In writing (23) as 

y XJJ + e , 

with elements of y, J1 and e in lexicon order, we have 

X (26) 

and 

v (J * J * J * I * J )o 2 + I o2 
a b c d n 6 abcdn e 

(2 7) 

where * represents the Kronecker product (KP) operator. Then, on defining 

T as the (a-1) x a matrix 
a 

T = [1 1 a a-
with T J 

a a 
0 , 

the absence of the (~y) and c~er) interactions can be written as 

0 for 

and 

and 

Then from (26) and (27), VX = XQ for 

Q 

* T ] c 

(28) 

(29) 

(30) 

(31) 
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Hence in both H1 Q and ~Q we get, from (30) and (31), products T J 
a a 

hence HQ = I o 2 H which satisfies (22). 
abcdn e ' 

0· 
' 

The result just obtained for the example is true in general. X, like 

(26), is always a KP of matrices for which those corresponding to the main 

effects that define the fixed effects are identity matrices. V, like (23), 

is always o~IN plus a weighted sum (using variance components as weights) 

of KPs, in which the matrices corresponding to the main effects that define 

fixed effects are J-matrices (with two exceptions that shall be considered 

shortly). Hence VX equals XQ for Q being o2 I plus a weighted sum of KPs 
e 

each of which has J-matrices corresponding to the main effects that define 

fixed effects. Also, H can always, as in (29) and (30), be partitioned 

into subsets of rows, each subset being a KP of Ts and (l')s. Hence HQ 

involves products TJ which are null, plus o 2 H. Thus (22) is always satisfied. 
e 

The two exceptions are for nested random factors, and for random fac

tors that are interactions between fixed and random factors. Each of these 

affect V by changing some of the Js corresponding to main effects that de

fine fixed effects to be Is. This affects Q by replacing its term o 2 I by 
. e 
1S · 

AI where is A (scalar) a linear combination of variance components. Thus, 

by the same argument as previously, HQ involves null products of the form 

TJ, plus AH; and so again, (22) is satisfied. 

6. Randomized blocks with unbalanced data 

We consider the case of testing a treatments in b blocks with n .. ob-
1J 

servations on treatment i in block j fori= 1, •.• ,a and j = l, ••• ,b. The 

cell means formulation for the k'th observation (k = 1,2, .•• ,n .. ) on treat-
1J 

ment i in block j is 

(32) 

We assume that all observations in the same block have a common covariance, 

oe say, and more specifically that the variance-covariance structure among 

the observations is 
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v(yijk) 02 + 02 
e B 

cov(y. 'k'y .. k 1 ) 
02 for k + kl = 

lJ lJ B 

COV ( y. • k' y • I • k I ) 
02 for i + • I l , 

lJ l J B 

and 

COV ( y. • k I y • I • I k I ) = 0 lJ l J 
for j t j 1 • 

The consequence of this is that for 

z 

and 

z 
a 

with Z. 
l 

1,2, ••. ,n .. 
lJ 

(33) 

k 1, •.. ,n .. and kl 
lJ 

1, ... ,n. 1 • 

l J 

(34) 

(35) 

•k 
In (34) the symbol (+) represents the direct sum operator with the 

adaptation that every z. l 
always in column j of z. l 
nil = 4, ni2 = 0 and ni3 

Furthermore, from (32) 

has 

for 

= 5, 

z. 
l 

b 

j 

X 

columns, and for every n .. + lJ 

= 1, ••• ,b. Thus, for example, 

0 

0 

Applying to (35) the general result 

0, 1 is 
n .. 

lJ 
with b = 3 and 

(36) 

from, for example, Searle (1982, p. 261) gives, after a little simplifi-

cation, 
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b (12 

v-1 = [I - z [c +) 2 13 2 Jz I ] I C1 2 

. 1 cr +n . cr 0 e 
J= e •J ,_, 

Then X'V - 1 utilizes X'Z which from (34) and (36) is 

X'Z {n .. } 
lJ 

for i 

for j 

1, .•. ,a and j = 1, ..• ,b, 

1, ... ,b on defining c. 
J 

Elements of X'Z and c. do, of course, include values n .. 
J lJ 

0 when they 

exist. Thus we find that 

BLUE(~) 

and for p 

BLUE ( ~) 

cx·v- 1x)-1x·v- 1y 
b 

[X'X- {c.}(+) 
J j=1 

a 
[(+)n. 

i=1 l• 

D{nd;=1 

r 
X ~ 

l y a·· 

b 

I 
j=1 

b 
- I 

j=1 

1 
p+n • j 

n . 
aJ 

n~. ... J 

n2jn1j 

n ajn 1j 

n1jn2j 

2 
n2j 

n ajn2j 

b 
{c.} (+) 

J j=1 

b 

I 
j=1 

n1jnaj 

n2jnaj 

n2 . 
aJ 

-1 

(37) 

Z'y] 

(39) 

(40) 

This is a general result for estimating treatment effects from randomized 

blocks when the treatments have different numbers of observations within 

a block, and also from block to block. And,of course 
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a 
o 2 [ ( + )n. 

e i=1 ~. 

b 

I 
j=1 

] -1 
c.c~ 

J J 

which is o2 multiplying the inverted rna trix in (39) and (40). 
e 

in (40) 
a 

(41) 

that case, though, that the matrix to bebinverted 

-because its row sums are zero: n. - \ (1/n .) ~. L • J n.. L 
~J i=1 

n .. 
~J 

= 0. Instead 
j =1 

of the regular inverse, a generalized inverse must be used. 

An extension of these results would be to include in the variance-cova

riance structure of (33) a covariance among observations in the same cell 

0 2 • and 
'Y ' 

so that v(y .. k) = 0 2 + o~ of 
~ J e ~-' 

(33) would become o2 + o2 + 
e 13 

0~ + 0~. cov(y .. k,y .. k,) = o~ fork t k' = 1, .•. ,n .. 
~J ~J jJ q 

would become The 

other terms in (33) would remain unaltered. 

7. Balanced incomplete blocks (BIB) 

Data from a balanced incomplete blocks experiment can be arrayed as a 

2-way crossed classification with values of n .. being 0 and 1 in a patterned 
q 

manner determined by the nature of the experiment. The estimation of treat-

ment effects in a BIB experiment is therefore a special case of (39). 

Example Consider four treatments (a = 4) used in a BIB experiment of 

six blocks (b = 6) with two treatments in each block. The pattern of n .. 
~J 

values can be arrayed as in Table 1, where a dash represents no observation. 



Treatment 

I 

II 

III 

n . 
• J 

IV 

k 

1 

1 

1 

2 
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Table 1 

B 1 o c k 
2 3 4 5 

1 1 

1 1 

1 1 

1 1 

2 2 2 2 

6 n. r 
~-

3 

3 

1 3 

1 3 

2 12 n ar kb 

Characteristics of a BIB experiment, with values for the example, are 

as follows: 

Number of blocks: b = 6. 

Number of different treatments used in each block: k 

Number of treatments: a = t = 4. 

Number of blocks containing each particular treatment: 

n . 
• J 

2. 

= 3. 

Number of times each treatment pair occurs iP the same block: A = 1. 

Total number of observations: n = ar = bk = 12. 

Total number of within-block treatment pairs that contain a 

particular treatment: A(a-1) = r(k-1) = 3. (42) 

To simplify (34) first note that any cell containing data has only one 

observation (BIB designs with more than one can be considered, but are not 

dealt with here), and so we denote it by y ... Then (39) is 
~] 

[rl 
a 

1 
p+k 

The notation used in 

b 
-1 1 ~ }i=a 

c . c ~ J { y . - p+k L n . . y . . 1 J J ~. q . J ~= 
j=1 

(43) 

(43) is _BLUE(~.) an element of BLUE(p) 
~ 
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of (39), and the notation on the left-hand side indicates a column vector 

of P.s, fori= 1,2, ••. ,a; and analogously so, on the right-hand side, 
~ 

also. (43) also involves p = o2 /o 2 . 
e 8 

Simplifying (43) involves two summations, the nature of which are best 

developed from (40). The first is 

2 
n1j n1jn2j n .. n 

aj q 

b. b 2 

s 1 I c.c~ 
1 I 

n2jn1j n2j n2jnaj 

p+k 
j=1 J J p+k 

j=1 

n ajn1a n ajn2j n2. 
aJ 

and from the definitions of A and r this is seen to be 

s 1 
p+k 

r A A A 

A r A 

A A A r 

1 
p+k [(r-A)Ia + AJ ] 

a 

Using this in the first term of (43) gives that term as 

[ri - r-AI - ~J T 1 = (p+k)[(rp + rk - r + A) I - AJ r 1 
a p+k a p+k a a a 

(p+k)[(rp + Aa)I - AJ J- 1 , from (42), 
a a 

(44) 

p+k (I + 2_ J ) ( 45) 
rp+Aa a rp a 

The second summation for (43) is 

1 
b 

1 
b 

kr 
b 

t I I n .. ky . I n .. y . /r_ 
i p+k 

n .. y . 
p+k = p+k 

j=1 
q • J 

j=l 
~ J • J 

j=1 
~J • J 

kr -
p+k y i ( j) (46) 

where 
b 

I - /r of block for the Yi(j) n .. y . = mean means y • j • 
j=l 

q • J. 
blocks that contain treatment i. (47) 
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Using this in the second term of (43), along with (45) for the first gives 

( 43) as 

Hence, 

{Ct.}~ 1 
p+k (I A 

J ){y. ~- }i=a +- -]_ ]_= rp+>..a a rp a l . p+k yi(j) i=1 

a b 
using l: y i ( j) l: n . y . /r y /r derived from 

i=l j=1 
• J • J • 

p+k A kr - >.. kr 
rp+Aa [yi• + rp Y .. - p+k yi(j) - rp p+k Y .• /r] 

r ( p+k) [
rp+>..a Yi. 

k >..a 
p+k YiCj) + rCp+k) Y .. J 

_E_£_ [- - J r(p+k) [- - J 
Y .. + rp+>..a yi(j)- Y .. + rp+Aa Yi.- yi(j) · 

(4 7)' 

As shown in the Appendix, this result is consistent with Scheffe (1959, 

pp 161-175). 

Furthermore, from (41) and (45), using 

Hence 

v(CI.) 
]_ 

and 

for i t h • 

Thus the estimated difference between treatments i and h is, from (48) 

r(p+k) kr 
(y. - y ) - [yl.(J")- yh(J")] rp+Aa 1_· h· rp+Aa 

with, from (50) and (51) 

(48) 

(49) 

(50) 

(51) 
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2( o2 +ko2 ) 
e 13 

r(rp+ka) (rp+A+A) 
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APPENDIX: Analysis of BIB Data 

a. Reconciliation of P. with Scheffe 
----------------------~1-------------

0ne of the few places where the randomness of the blocks in a BIB de-

sign has been taken into account in estimating treatment effects is in 

Scheffe (1959) at pages 165-178. We show that the result given there, for 

estimation using recovery of interblock information, is consistent with P. 
l 

of (70). We begin with displaying equivalent notation. 

p. 161 

p. 162 

Cline 3 up) 

p. 164 

(1 ines 8-9) 

(after 5.2.9): 

(5.2.10): 

p. 166 

(5.2.17) 

p. 165 

Clast line) 

Scheffe 

:f! of treatments I 

:f! of blocks J 

11 of replications r 

block size k 

4ft of occurrences of K .. 
lJ 

treatment i in block j 

i'th treatment total gi 

j'th block total h. 
J 

i'th adjusted treat-
ment total 

G. 
l 

-1 
g. - k L:.K .. h. 

l J lJ l 

sum of block totals 
in which treatment i 
occurs 

T. = L:.n .. h. 
l J lJ J 

efficiency factor 

6 
rk - r + 

= rk 

r6&. G. 
l l 

&. G. /r6 
l l 

A. (k 

T. 
l 

6 

-
k( I -

= 0 or 1 

l)I 
l) 

This paper 

a = t 

b 

r 

k 

n .. 
lJ 

y. 
l• 

y . 
• J 

y. - L:.n .. y . 
1• J lJ • J. 

A.a (k - 1 )a 
rk k(a - 1) 

Y. - ry. (.) 
l. l J 

r6 

= r k ( y. - y . ( . ) ) I A. a 
l• l J 



p. 172 

(5.2.33) 

(5.2.32b): 

Cline 5 up): 

p. 174 

(5.2.41) 

p. 175 

(5.2.42) 

02 
f 

<!> 

<!>' 

w 

w' 

q, .,., 
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-1 
T - rJ L.h. 

i J J 
r - A. 

k2 02 + ko2 
B e 

L.C.~. 
l l l 

L.C. 
l l 

L.c.&~ 
l l l 

r6/o 2 
e 

(r - A.) I of 

w4 + w'<jl' 
w + w' 

0 

kryi(j)- rLjY·j/b 

r - A. 

kryi(j) - ry •. /b 

r - A. 

krC y i ( j) - y ) 

r - A. 

k(e + kf3), with 
e = 02 and 13 = 02 - e - 13 

A.a/ke 

(r - A.)/k(e + kl3) 

<!>* is described by Scheffe as being unbiased and having minimum variance. 

It therefore corresponds to an element in our ~- Since <Y is a contrast of 

~ terms it is also a contrast of (~+~.)terms. The consistency of <j>* 
i l 

with ~will therefore be shown by adapting the i'th element q,* to be 

).1~ 
l 

and showing that J.l~ = ~- • 
]_ l 

w(~ + &.) + w'(~' + &.~) 
]_ l 

w + w' 

Scheffe gives &. on page 165 - as shown above. Nowhere there does he 
l 

show the corresponding ~- But in the last line of page 164 he mentions the 

"correction term for the grand mean". From that we infer that 

~ y •• 

The expression for &.! is given at (5.2.34) on page 172. From (5.2.33) we 
l 

get the corresponding 
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L .y . /ka y 
J • J 

Thus, using jl il' 
methodology, 

Y .. and w, w', &, &1 as above we have, from Scheffe's 

kr <Y i ( j) 
- ) 

Aa krc - y 

YiCj)) 
r - A 

ke Aa yi· - + k~e k~~ A - + r -
ll~ y + A a A ~ r -- + k~e kl3) ke + 

r[ (y. yi(j))/e + (yi(j) 
- )/(e + kl3)] - - y - ~- .. 

y + 
[Aa(e + kl3) + (r - A)e]/ke(e + kl3) 

rk[(e + k13Hy. Yi(j)) e<Yi(j) 
- ) ] - + - y - ~. 

y + Aak13 + rke 

because Aa + r - A rk 

- r(e + kl3) [y. kl3 - e - ] y + 
aA13 - e + kl3 yi(j) + kl3 y •• re + ~- e 

r(e + kl3) [- _ kl3 aAI3 - ] 
re + aAI3 Yi. e + kl3 yi(j) + r(e + kl3) Y .. 

r ( p + k) [- k - A a - ] 
rp + Aa Yi. - p+k yi(j) + r~p + k~ Y •• jli of (48). 

b. The Variance of Pi 

From (48) 

kl3 - Aal3 -
e + kl3 yi(j) + r(e + kl3) Y ]} 
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r 2 (e + kl3) 2 {r(e + 13) k2 132 rk(e + kl3) .:\ 2 a 2 132 arCe + kl3) 
Cre + Aal3)2 r 2 + (e + kl3) 2 r 2 k2 + r 2 (e + kl3)2 a2 r 2 

[ -kl3 r(e + kl3) 
+ 2 e + kl3 rrk 

Akal32 kr( e + kl3) 
-r '( e-+--'-7k-::13").,...2 k r a r 

+ Aa13r(e + kl3)]} 
rCe + kl3)rar 

(e + kl3) 
(re + Aal3)2 {re2 + 132 (rk+rk+A2 a/r-2rk+2Ak-2kA) + 13e(r+rk-2r+2A)} 

(e + kl3) A2 a 
- -r-- [re2 + -- 132 + f3e(rk - r + 2A)] - \re + Aaf3)2 r 

(e + kf3) 
Cre + Aal3)2 [r2 e 2 + rA(a + l)f3e + A2 al32 ]/r, because rk-r+2A 

(e + kl3) 
( Aal3)2 (re + Aal3) (re + Al3) r re + 

(e + kl3)(re + Al3) 
rCre + Aal3) 

( r p+ A ) ( cr2 k 2 ) h 
rCrp+Aa) e + cr 13 , whic is (so). 

A (a +U 


