$B 4-295-14$

A GENERALIZED METHOD OF ANALYSIS OF FACTORIAL EXPERIMENT WITH UNEQUAL NUMBER OF OBSERVATIONS*
U. B. Paik and W. T. Federer

Cornell University, Ithaca, New York

Abstract

A calculus of factorials was developed by Kurkjian and Zelen [1962]. A series of papers on the application and extensions were presented by M. Zelen and coworkers [1963-66]. One of the remaining problems associated with the application of the calculus for factorials is to relate standard contrasts in factorials to the calculus for both equal and unequal numbers of observations on each treatment or combination. This problem is resolved in the present paper. A computing procedure using the calculus is presented for any estimable linear contrast or any set of estimable linear contrasts. A Kronecker product representation of the $\mathrm{v}-\mathrm{l}$ single degree of freedom contrasts is given wherein the linear contrasts of the levels of each effect are utilized. A new operation is introduced which simplifies the method of construction of contrasts and compotation thereof. A numerical example is used to illustrate the procedure.

A second unsolved problem in the analysis of factorials pertains to less than full model situations. E.g., consider the situation wherein a set of factorial treatments is designed in a randomized complete block design. Also,

[^0]suppose that no observations are present for a treatment in some but not all of the blocks. This problem is resolved in the present paper and a numerical example is used to illustrate the computations. Other related results are obtained in connection with the above two main problems.

A GENERALIZED METHOD OF ANALYSIS OF FACTORIAL EXPERIMENT WITH UNEQUAL NUMBER OF OBSERVATIONS*

U. B. Paik and W. T. Federer

Cornell University, Ithaca, New York

1. Introduction

A calculus of factorials was developed by Kurkjian and Zelen [1962]. A series of papers on the application and extensions was presented by M. Zelen and co-workers. The first paper on applications (Kurkjian and Zelen [1963]) was devoted to analyses of a large class of experimental designs with one-way elimination of heterogeneity which included b.i.b. and p.b.i.b. designs and designs obtained as direct products of these designs. The second paper on application (Zelen and Federer [1964]) dealt with the analyses of a large class of experimental designs for two-way elimination where the row-treatment and the column-treatment associations were each of the type discussed by Kurkjian and Zelen [1963]. The third paper (Zelen and Federer [1965]) dealt with the analysis of an n-factor factorial treatment design with unequal numbers (nonzero) of observations. The principal theoretical result of this paper enables the sums of squares for any main effect or interaction to be written as a simplified explicit form. Utilizing this form the necessary calculations for interaction sums of squares in an analysis of variance may be performed by inverting relatively small matrices. The main effect sums of squares are obtained without inverting a matrix. A two-factor interaction sum of squares associated with q_{1} levels of one factor and q_{2} levels of the second factor for

[^1]$q_{1} \geq q_{2}$, requires the inversion of a $\left(q_{2}-1\right) \times\left(q_{2}-1\right)$ matrix. A three factor interaction sum of squares with the three factors at levels q_{1}, q_{2}, and q_{3} $\left(q_{1} \geq q_{2} \geq q_{3}\right)$ requires the inversion of $q_{1}+q_{2}\left(q_{3}-1\right) \times\left(q_{3}-1\right)$ matrices and an additional square matrix of side $\left(q_{2}-1\right)\left(q_{3}-1\right)$; etc. In a fourth paper Federer and Zelen [1966] applied the theory of the third paper to the analysis of multifactor (factorial) experiments; a $4 \times 3 \times 2$ factorial with unequal numbers of observations and a method of procedure were utilized to illustrate the computam tions.

One of the remaining problems associated with the application of the calcuIus for factorials is to relate standard contrasts in factorials to the calculus for both equal and unequal numbers of observations on each treatment or combination. This problem is resolved in the present paper. A computing procedure using the calculus is presented for any estimable linear contrast or any set of estimable linear contrasts. (The single degree of freedom contrast procedure is given by Zelen and Federer [1965]). In presenting the procedure, heavy use was made of the results and notations in the third and fourth papers. A Kronecker product representation of the $v-1$ single degree of freedom contrasts is given wherein the linear contrasts of the levels of each effect are utilized. A new operation is introduced which simplifies the method of construction of contrasts and computation thereof. A numerical example is used to illustrate the procedure.
. A second unsolved problem in the analysis of factorials pertains to less than full model situations. E.g., consider the situation wherein a set of factorial treatments is designed in a randomized complete block design. Also, suppose that no observations are present for a treatment in some but not all of the blocks. This problem.is resolved in the present paper and a numerical
example is used to illustrate the computations. Other related results are obtained in connection with the above two main problems.

2. Notations and Operations

2.1. Introduction.

Consider a factorial experiment with n factors $\left\{A_{h}\right\}$ such that the $h^{\text {th }}$ factor A_{h} has q_{h} levels. Then the number of treatment combinations is $v=\prod_{n=1}^{n} q_{h}$. Let the $i^{\text {th }}$ treatment combination be denoted by the n-tuple

$$
i=\left(i_{1}, i_{2}, \cdots, i_{n}\right),
$$

where i_{h} denotes a parameter level from factor A_{h} and $i_{h}=0,1, \cdots, q_{h}-1$.
Let $y_{j i}=y_{j}\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ be the $j^{\text {th }}$ observation made on the treatment combination ($\left.i_{1}, i_{2}, \cdots, i_{n}\right)$, where $j=1,2, \cdots r_{i},\left(r_{i} \geq 1\right)$ and let N be the total number of observations. Furthermore, we assume that the $\left.\left\{y_{j\left(i_{1}, i_{2}\right.}, \ldots, i_{n}\right)\right\}$ are to be independently distributed following a normal distribution with

$$
\begin{aligned}
& \left.\operatorname{Ey}_{j\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)=\tau\left(i_{1}, i_{2}, \cdots, i_{n}\right) \\
& \left.\operatorname{var} y_{j\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)=\sigma^{2}
\end{aligned}
$$

We shall denote the main effect, two factor interaction, \cdot. , n-factor interaction parameter by

$$
\alpha_{h}\left(i_{h}\right), \alpha_{h k}\left(i_{h}, i_{k}\right), \cdots, \alpha_{1,2, \cdots, n}\left(i_{1}, i_{2}, \cdots, i_{n}\right),
$$

furthermore, because of the factorial structure of the experiment for $i^{\text {th }}$ treatment combination $i=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$, we have

$$
\begin{aligned}
\left.\tau_{\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)
\end{aligned}=\mu+\sum_{h=1}^{n} \alpha_{h}\left(i_{h}\right)+\sum_{\substack{h \\
1 \leq h<k \leq n}} \sum_{k} \alpha_{h k}\left(i_{h}, i_{k}\right)+\cdots .
$$

We may assume the following without loss in generality:

$$
\begin{align*}
& \sum_{i_{h}=0}^{q_{h}-1} \alpha_{h}\left(i_{h}\right)=0 \\
& \sum_{i_{h}=0}^{q_{h}-1} \alpha_{h k}\left(i_{h}, i_{k}\right)=\sum_{i_{k}=0}^{q_{k}-1} \alpha_{h k}\left(i_{h}, i_{k}\right)=0 \tag{2.1}\\
& \because q_{1}-1 \\
& \sum_{i_{1}=0}^{1} \alpha_{1,2}, \cdots, n
\end{align*}
$$

$$
=\sum_{i_{n}=0}^{q_{n}-1} \alpha_{1,2}, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right)=0
$$

2.2. Vectors, Matrices and Kronecker product.

We shall write the model in matrix notation. For this purpose define

$$
\begin{aligned}
& Y^{\prime}=\left(y_{11}, y_{21}, \cdots, y_{r_{1}, 1}, \cdots, \cdot y_{r_{v}, v}\right) \\
& \underline{\tau}^{\prime}=\left(\tau_{1}, \tau_{2}, \cdots, \tau_{v}\right)
\end{aligned}
$$

where $\tau_{i}=\tau_{\left(i_{1}, 1_{2}, \cdots, i_{n}\right)}$. Then the model may be written as

$$
\begin{equation*}
E Y=X I \tag{2.2}
\end{equation*}
$$

$\operatorname{var} Y=I \sigma^{2}$
where X is an $\mathrm{N} \times \mathrm{v}$ design matrix and I is an $\mathrm{N} \times \mathrm{N}$ identity matrix. Let

$$
\begin{aligned}
\underline{\alpha}_{h}^{1} & =\left[\alpha_{h}(0), \alpha_{h}(1), \cdots, \alpha_{h}\left(q_{h}-1\right)\right] \\
\underline{\alpha}_{h k}^{\prime} & =\left[\alpha_{h k}(0,0), \alpha_{h k}(0,1), \cdots, \alpha_{h k}\left(q_{h}-1, q_{k}-1\right)\right] \\
\underline{\alpha}_{-1,2, \cdots, n}^{\prime}= & {\left[\alpha_{1,2}, \cdots, n\right.} \\
& \left.\alpha_{1,2, \cdots, n}\left(q_{1}-1, \cdots, \cdots, q_{n}-1\right)\right]
\end{aligned}
$$

and let $E_{h}\left(i_{h}\right)$ be a unit coordinate row vector in a q_{h}-dimensional vector space such that

$$
\begin{aligned}
\mathrm{E}_{\mathrm{h}}(0) & =(1,0, \cdots, 0) \\
\mathrm{E}_{\mathrm{h}}(1) & =(0,1, \cdots, 0) \\
& \cdots \\
E_{h}\left(q_{h}-1\right) & =(0,0, \cdots, 1)
\end{aligned}
$$

$$
(2.4)
$$

then

$$
\begin{aligned}
{ }^{\tau}\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\mu & +\sum_{h=1}^{n} E_{h}\left(i_{h}\right) d_{h}+\sum_{\substack{h \\
1 \leq h<k \leq n}} \sum_{k_{h k}} E_{n}\left(i_{h}, i_{k}\right) \alpha_{h k}+\cdots \\
& +E_{1,2, \cdots, n}\left(i_{1}, i_{2}, \cdots, i_{n}\right) \underline{\alpha}_{1}, 2, \cdots, n
\end{aligned}
$$

where

$$
E_{h k}\left(i_{h}, i_{k}\right)=E_{h}\left(i_{h}\right) \otimes E_{k}\left(i_{k}\right)
$$

$$
E_{1,2, \cdots, n}\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\prod_{h=1}^{n} \otimes E_{h}\left(i_{h}\right)
$$

where \otimes refers to the Kronecker product and define the product order as follows:

$$
\begin{aligned}
\prod_{h=1}^{n} \otimes E_{h}\left(i_{h}\right) & =E_{1}\left(i_{1}\right) \otimes\left(\prod_{h=2}^{n} \otimes E_{h}\left(i_{h}\right)\right) \\
& =E_{1}\left(i_{1}\right) \otimes\left(E_{2}\left(i_{2}\right) \otimes\left(\prod_{h=3}^{n} \otimes E_{h}\left(i_{h}\right)\right)\right)
\end{aligned}
$$

Assumption (2.1) may be represented as

$$
\begin{aligned}
& \sum_{i_{h}=0}^{q_{h}-1} E_{h}\left(i_{h}\right) \underline{\alpha}_{h}=0 \\
& \sum_{i_{h}=0}^{q_{h}-1} E_{h k}\left(i_{h}, i_{k}\right) \underline{\alpha}_{h k}=\sum_{i_{k}=0}^{q_{k}-1} E_{h k}\left(i_{h}, i_{k}\right) \alpha_{h k}=0 \\
& q_{1}-1 \\
& \sum_{i_{1}=0} E_{1,2}, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right) \underline{\alpha}_{1,2}, \cdots, n \\
& q_{2}-1 \\
& =\sum_{i_{3}=0} E_{1,2}, \cdots, n^{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \alpha_{1}, 2, \cdots, n} \\
& =\cdots=\sum_{i_{n}=0}^{q_{n}-1} E_{1,2, \cdots, n}\left(i_{1}, i_{2}, \cdots, i_{n}\right) \underline{\alpha}_{1,2, \cdots, n}=0
\end{aligned}
$$

2.3. Orthogonal Contrast Matrix

If we denote the contrast matrix K_{h} for the $h^{\text {th }}$ factor having q_{h} levels, the representation of contrast matrix among n factors is:

$$
\begin{equation*}
K=\underset{h=1}{n} \otimes K_{h} \tag{2.6}
\end{equation*}
$$

where

$$
K_{h}=\left[\begin{array}{llll}
1 & \gamma_{01} & \cdots & \gamma_{0, q_{h}-1} \tag{2.7}\\
1 & \gamma_{11} & \cdots & \gamma_{1, q_{h}-1} \\
1 & \gamma_{q_{h}-1,1} & \cdots & \gamma_{q_{h}-1, q_{h}-1}
\end{array}\right]
$$

where

$$
\sum_{i_{h}=0}^{q_{h}-1} \gamma_{i_{h}, j_{h}}=0 \text { for } j_{h}=1,2, \cdots, q_{h}-1
$$

and

$$
\sum_{i_{h}=0}^{q_{h}-1} \gamma_{i_{h}, j_{h}} \gamma_{i_{k}, k_{h}}=0 \text { for } j_{h} \neq k_{h} \quad \text { and } j_{h}, k_{h}=1,2, \cdots, q_{h}-1 .
$$

The treatment combination order corresponding to the row order of K is regarded as an n-tuple $i=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$, the ordering is to fix all levels at the first level ($i_{h}=0, h=l, 2, \cdots, n$) and run through the q_{n} levels A_{n}; then put $i_{n-1}=1$ and run through the levels of A_{n-1}; repeat for $i_{n-1}=2,3, \cdots, q_{n}-1$. After running through these $q_{n-1} q_{n}$ combinations, change $i_{n-2}=1$ and continue as before. After disposing of $q_{n-2} q_{n-1} q_{n}$ combinations, change $i_{n-3}=1$ and this process continues until all combinations have been enumerated.

In (2.7), let

$$
\begin{aligned}
K_{h} & =\left(\begin{array}{lll}
k_{h}^{0} & \underline{k}_{h}^{1} & \cdots
\end{array} \underline{k}_{h}^{q_{h}-1}\right) \\
& =\left[\begin{array}{c}
t_{h}^{0} \\
t_{h}^{1} \\
\vdots \\
t_{h}^{q_{h}-1}
\end{array}\right]
\end{aligned}
$$

where $\underline{k}_{h}^{i_{h}}$ and $t_{h}^{i_{h}}$ are $q_{h} \times I$ column vector and $I \times q_{h}$ row vector respectively. Then the $i^{\text {th }}$ column vector $\left.\underline{f}^{i} \underline{E}^{\left(i_{1}, i_{2}\right.}, \cdots, \cdots, i_{n}\right)$ and $i^{\text {th }}$ row vector $\underline{t}_{i}=\underline{t}\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ in K may be represented respectively as:

$$
\begin{aligned}
& \left.\underline{f}^{i}=\underline{f}^{\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)=\prod_{h=1}^{n} \otimes \underline{\underline{k}}_{h}^{i_{h}} \\
& \underline{t}_{i}=\underline{t}\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\prod_{h=1}^{n} \otimes \underline{t}_{h}
\end{aligned}
$$

Particularly,

$$
\begin{aligned}
\underline{f}_{h}^{i_{h}} & =\underline{I^{\prime}}\left(0,0, \cdots, i_{h}, \cdots, 0\right) \\
& =1_{t} \otimes \underline{k}_{h}^{i_{h}} \otimes 1_{u} \\
& =1_{t} \otimes\left[\begin{array}{cc}
\gamma_{0 i_{h}} & 1_{u} \\
\gamma_{l i_{h}} & 1_{u} \\
\vdots & \\
\gamma_{q_{h}-1, i_{h}} & 1_{u}
\end{array}\right]
\end{aligned}
$$

where 1_{t} and 1_{u} are $t \times 1$ and $u \times 1$ column vectors with all elements equal to one and where $t=\sum_{j=1}^{h-1} q_{j}, u=\sum_{j=h+1}^{n} q_{j}$.

If we define a product of two matrices $A_{m \times n}=\left(a_{i j}\right)$ and $B_{m \times n}=\left(b_{i j}\right)$ such

$$
\begin{gather*}
-10- \\
A: B=\left[\begin{array}{cccc}
a_{11} \otimes b_{11} & a_{12} \otimes b_{12} & \cdots & a_{1 m} \otimes b_{1 m} \\
a_{21} \otimes b_{21} & a_{22} \otimes b_{22} & \cdots & a_{2 n} \otimes b_{2 n} \\
a_{m 1} \otimes b_{m 1} & a_{m 2} \otimes b_{m 2} & \cdots & a_{m n} \otimes b_{m n}
\end{array}\right] \tag{2.8}
\end{gather*}
$$

 represented as

$$
\begin{equation*}
{\underset{-1}{f}\left(i_{h+k}, i_{h+k}\right)}_{\left(f_{h}^{i_{h}}\right.}^{i_{h}}:{\underset{f}{i_{h+k}}}_{i_{h}} \tag{2.9}
\end{equation*}
$$

where unit is $j_{i_{b}} j_{h}$. Equation (2.9) follows from the fact that

$$
{\underset{-h}{f}, k+k}_{\left(i_{h}, i_{h+k}\right)}^{n_{s}} 1_{s} \otimes \underline{k}_{h}^{i_{h}} \otimes 1_{t} \otimes \underline{k}_{h+k}^{i_{h+k}} \otimes 1_{u}
$$

where

$$
s=\sum_{j=1}^{h-1} q_{j}, \quad t=\sum_{j=h+1}^{h+k-1} q_{j} \text { and } u=\sum_{j=h+k+1}^{n} q_{j} .
$$

While

$$
1_{s} \otimes \underline{k}_{h}^{i_{h}} \otimes 1_{t} \otimes \underline{k}_{-h+k}^{i_{h}+k} \otimes 1_{u}=1_{s} \otimes \underline{k}_{-h}^{i_{h}} 1_{u^{\prime}}: 1_{t^{\prime}} \otimes \underline{k}_{h+k}^{i_{h}+k} \otimes 1_{u}
$$

where

$$
u^{\prime}=v / s q_{h} \text { and } \quad t^{\prime}=v / u q_{h+k}
$$

In general,

$$
\begin{equation*}
\left.\underline{f}^{\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)=f_{-1}^{i_{1}}: \underline{f}_{-}^{i_{2}}: \cdots: f_{-n}^{i_{n}}, \tag{2.10}
\end{equation*}
$$

where unit is $\gamma_{i_{h}} j_{n}$. The representation in (2.10) is useful for constructing the contrast matrix K .

Using (2.4) and (2.8) defining

$$
E_{h}^{\prime}=\left[E_{h}(0), E_{h}(1), \cdots, E_{h}\left(q_{h}-1\right)\right]
$$

and defining

$$
\begin{aligned}
& Z_{h} \quad=1_{t} \otimes F_{h} \otimes 1_{u}, \\
& Z_{h k} \quad=Z_{h}: Z_{k},
\end{aligned}
$$

and

$$
Z_{1,2}, \cdots, n=Z_{1}: z_{2}: \cdots: Z_{n},
$$

where unit is E_{h}; then (2.5) may be represented as

$$
\underline{I}=\mu 1_{v}+\sum_{h=1}^{n} z_{h-h}^{\alpha}+\sum_{\substack{h \\ l \leq h<k \leq n}} \sum_{k} z_{h k-h k}+\cdots+z_{1,2}, \cdots, n-1,2, \cdots, n
$$

Now, define the $q_{h} \times\left(q_{h}-1\right), q_{h} q_{k} \times\left(q_{h}-1\right)\left(q_{k}-1\right), \cdots, v \times \prod_{h=1}^{n}\left(q_{h}-1\right)$ and
$v \times\left(\sum_{h=1}^{n} q_{h}-1\right)$ submatrices $P_{h}, P_{h k}, \cdots, P_{1,2}, \cdots, n$ and C of $K, K_{h} \otimes K_{k}, \cdots$, and K respectively as follows:

$$
\begin{align*}
& P_{h} \quad=\left[k_{h}^{1}, k_{h}^{2}, \cdots, \underline{k}_{h}^{q_{h}-1}\right] \\
& P_{h k} \quad=\left[\underline{k}_{h}^{1} \otimes \underline{k}_{h}^{1}, \underline{k}_{h}^{1} \otimes \underline{k}_{h}^{2}, \cdots, \underline{\underline{k}}_{h}^{q_{h}-1} \otimes \underline{\underline{k}}_{h}^{q_{h}-1}\right] \\
& P_{1,2}, \cdots, n=\left[\underline{k}_{1}^{I} \otimes \underline{\underline{k}}_{2}^{I} \otimes \cdots \otimes \underline{k}_{n}^{I}, \underline{k}_{1}^{I} \otimes \underline{\underline{k}}_{2}^{I} \otimes \cdots \otimes \underline{k}_{n}^{2}, \cdots,\right. \\
& \left.\underline{k}_{1}^{q_{1}-1} \otimes \underline{k}_{-2}^{q_{2}-1} \otimes \cdots \otimes \underline{k}_{n}^{q_{n}-1}\right] \tag{2.11}\\
& \text { C } \quad=\left[\underline{l}_{1}(1), \underline{l}_{1}(2), \cdots, \underline{l}_{1}\left(q_{1}-1\right), \underline{\ell}_{2}(1), \cdots\right. \text {, } \\
& \underline{\ell}_{1,2}, \cdots, n^{\left.\left(q_{1}-1, \cdots, q_{n}-1\right)\right]} \\
& =\left[c_{1}, c_{2}, \cdots, c_{1,2}, \cdots, n\right]
\end{align*}
$$

where

$$
\begin{aligned}
& \underline{l}_{h}\left(i_{h}\right) \quad=f_{h, k}^{\left(i_{h}, i_{k}\right)}, i_{h}=1,2, \cdots, q_{h}-1 \\
& \ell_{h k}\left(i_{h}, i_{k}\right)={\underset{f}{h}, k}_{\left(i_{n}, i_{k}\right)}, h<k ; \quad i_{h}=1,2, \cdots, q_{h}-1 ; \quad i_{k}=1,2, \cdots, q_{k}-1
\end{aligned}
$$

and

$$
\begin{aligned}
C_{h}= & {\left[\underline{l}_{h}(1), \underline{l}_{h}(2), \cdots, \underline{\ell}_{h}\left(q_{h}-1\right)\right] } \\
C_{h k}= & {\left[\underline{l}_{h k}(1,1), \underline{l}_{h k}(1,2), \cdots, \underline{l}_{h k}\left(q_{h}-1, q_{k}-1\right)\right] } \\
& \cdots \\
C_{1,2}, \cdots, n= & {\left[\underline{l}_{1}, 2, \cdots, n(1,1, \cdots, 1), \underline{\ell}_{1}, 2, \cdots, n(1,1, \cdots, 2), \cdots\right.} \\
& \left.\underline{\ell}_{1,2}, \cdots, n\left(q_{1}-1, \cdots, q_{n}-1\right)\right] \cdots
\end{aligned}
$$

It is understood that $C^{1} C$ is ($v-1$) $\times(v-1)$ diagonal matrix from the definition of the contrast matrix K_{h}; from (2.9) and 2.10) we obtain

$$
\begin{align*}
& \underline{\ell}_{h k}\left(i_{n}, i_{k}\right)=\underline{\ell}_{h}\left(i_{h}\right): \underline{\ell}_{k}\left(i_{k}\right) \\
& \cdots \cdots \tag{2.12}\\
& \underline{\ell}_{1}, 2, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\underline{\ell}_{1}\left(i_{1}\right): \underline{\ell}_{2}\left(i_{n}\right): \cdots: \underline{\ell}_{n}\left(i_{n}\right),
\end{align*}
$$

where unit is $\gamma_{i_{n} j_{k}}$ and $i_{h}=1,2, \cdots, q_{h}-1$.
3. Estimation of Interactions and Variances of Contrasts

From (2.2) and the least squares method

$$
X^{\prime} X \underline{\underline{\imath}}=X^{i} Y
$$

Since X'X is invertible

$$
\begin{aligned}
\hat{\underline{I}} & =S^{-1} X^{\prime} Y \\
\operatorname{var} \hat{\tilde{I}} & =S^{-1} \sigma^{2}
\end{aligned}
$$

where $S=X^{\prime} X$.
We know that $C^{\prime} \underline{I}$ is estimable and its unbiased linear estimator is $C^{\prime} \hat{\underline{\tau}}$ and also

$$
\operatorname{var} C^{\prime} \underline{\hat{I}}=C^{\prime} S^{-1} C \sigma^{2}
$$

Theorem 1. Under assumption (2.1), using notations (2.3) and (2.11), the linear contrast C'I may be represented as

Proof:

$$
\begin{aligned}
& C_{h}^{\prime} I=\left[\begin{array}{c}
\underline{\ell}_{h}^{\prime}(I) \underline{I} \\
\underline{\ell}_{h}^{\prime}(2) \underline{I} \\
\vdots \\
\underline{\ell}_{h}^{\prime}\left(q_{h}-1\right) \tau
\end{array}\right] \\
& \underline{e}_{h}^{\prime}\left(i_{h}\right) \underline{\tau}=\underline{l}_{h}^{\prime}\left(i_{h}\right)\left[\mu 1_{v}+\sum_{h=1}^{n} z_{h-h}^{\alpha_{h}}+\sum_{\substack{h \\
l \leq h<k \leq n}} \sum_{\substack{k \\
h k-h k}} z_{h} \alpha_{n}+\cdots\right. \\
& +Z_{1,2}, \cdots, n^{\alpha}-1,2, \cdots, n^{]} \\
& \ell_{h}^{\prime}\left(i_{h}\right)\left(\mu 1_{v}\right)=0 \text { from the definition of } C_{h}^{\prime}\left(i_{h}\right) \text {. } \\
& \underline{\ell}_{h}^{\prime}\left(i_{h}\right) z_{j}^{\alpha} \underline{-j}_{j}=\left(1_{t_{h}} \otimes \underline{k}_{h}^{i_{h}} \otimes 1_{u_{h}}\right)^{\prime}\left(1_{t_{j}} \otimes \underline{-}_{j} \otimes 1_{u_{j}}\right) \\
& = \begin{cases}\left(\frac{v}{q_{h}}\right)\left(k_{h}^{i_{h}}\right)^{\prime} \underline{\alpha}_{h} & \text { if } j=h \\
b_{1} \sum_{g=0}^{q_{h}-1} \gamma_{g i_{h}}\left(\sum_{s=0}^{q_{j}-1} \alpha_{j}(s)\right)=0 & \text { if } j<h \\
b_{2} \sum_{s=0}^{g_{j}-1} \alpha_{j}(s)\left(\sum_{g=0}^{q_{h}-1} \gamma_{g i_{h}}\right)=0 & \text { if } j>h\end{cases}
\end{aligned}
$$

where b_{1} and b_{2} are constants.

$$
\ell_{h}^{g}\left(i_{h}\right) z_{g j-g j}^{\alpha}= \begin{cases}d_{I} \sum_{r} \gamma_{r i_{h}} \sum_{s} \alpha_{g j}(r ; s)=0 & \text { if } h<g \\ d_{2} \sum_{r} \sum_{u} \gamma_{u i_{h}} \sum_{s} \alpha_{g j}(r, s)=0 & \text { if } g<h<j \\ \alpha_{3} \sum_{r} \sum_{s} \alpha_{g j}(r, s) \sum_{u} \gamma_{u i_{h}}=0 & \text { if } j<h\end{cases}
$$

where d_{1}, d_{2}, and d_{3} are constants. Similarly

$$
\underline{\ell}_{h}^{\prime}\left(i_{h}\right) z_{1,2}, \cdots, n_{1,2}^{\alpha}, \cdots, n=0
$$

Then

$$
\underline{l}_{h}^{\prime}\left(i_{h}\right) \underline{\tau}=\left(\frac{v}{q_{h}}\right)\left(\underline{k}_{h} i^{i_{h}}\right)^{\prime} \underline{\alpha}_{h}
$$

Hence

$$
c_{h}^{t} \underline{ }\left(\frac{v}{q_{h}}\right) p_{h-h}^{\prime \alpha}
$$

Other situations are similarly proven.

From this Theorem, we obtain the following:

$$
\underline{\ell}_{h}^{\prime}\left(i_{h}\right) \underline{I}=0 \text { implies }\left(\underline{\underline{k}}_{h}^{i_{h}}\right)^{\prime} \underline{\alpha}_{h}=0
$$

$$
\begin{aligned}
& C_{h} \tau=0 \text { implies } p_{h-h}^{\prime}=0 \text {, i.e., } \\
& \alpha_{h}(0)=\alpha_{h}(1)=\cdots=\alpha_{h}\left(q_{h}-1\right) \\
& \text { ••• } \\
& C_{1,2, \cdots, n^{\top}}=0 \text { implies } P_{1,2, \cdots, n}^{\prime}{\underset{1}{1}, 2, \cdots, n}^{\prime}=0 \text {, i.e., } \\
& \alpha_{1,2, \cdots, n}(0,0, \cdots, 0)=\alpha_{1,2, \cdots, n}(0,0, \cdots, 1)=\cdots
\end{aligned}
$$

4. Sums of Squares for Factorial Effects

We shall present the following well known Lemma without proof.

Lemma 1. If Y is distributed $N\left(\mu, I \sigma^{2}\right)$, then $Y^{1} A \sigma^{-2} Y$ is distributed as X^{2} with k degrees of freedom if and only if $\mu^{\prime} A \mu=0$ and A is an idempotent matrix of rank k.

Theorem 2. The quadratic forms $\tau^{\prime} \underline{\ell}_{h}\left(i_{h}\right)\left[{\underset{h}{h}}_{\prime}\left(i_{h}\right) S^{-1} \underline{\ell}_{h}\left(i_{h}\right)\right]^{-1} \sigma^{-2} \underline{l}_{h}^{\prime}\left(i_{h}\right) \hat{\tau}$, $\hat{I}_{h k}\left(i_{h}, i_{k}\right)\left[\underline{\ell}_{h k}^{\prime}\left(i_{h}, i_{k}\right) S^{-1} \underline{\ell}_{h k}\left(i_{n}, i_{k}\right)\right]^{-1} \sigma_{\ell_{h k}}^{-2}\left(i_{h}, i_{k}\right) \hat{\underline{\tau}}^{\prime}, \cdots$, $\hat{T}^{\prime} \underline{l}_{1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right)\left[\ell_{-1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right) S^{-1} \ell_{1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right)\right]^{-1} \sigma^{-2}$
 $\underline{\ell}^{\prime} 1,2, \cdots, n\left(i_{1}, \cdots, i_{n}\right) \underline{I}=0$ are distributed as X^{2} with one degree of freedom respectively and quadratic forms $\hat{\underline{I}}^{\prime} C_{h}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} \sigma^{-2} C_{h}^{\prime} \hat{\underline{\tau}}, \hat{I}^{\prime} C_{h k}\left[C_{h k}^{\prime} S^{-1} C_{h k}\right]^{-1} \sigma^{-2} C_{h k} \hat{\tau}$, $\cdots, \hat{\underline{T}}^{\prime} C_{1,2}, \cdots, n^{\left[C_{1}^{\prime}, 2, \cdots, n^{-1} C_{1,2}, \ldots, n\right]^{-1} \sigma^{-2} C_{1,2}} \ldots, n^{\hat{T}}$ subject to restrictions
$C_{h}^{\prime} \underline{\tau}=0, C_{h k}^{\prime} \underline{I}=0, \cdots, C_{I, 2}^{1}, \cdots, n^{\tau}=0$ are distributed as x^{2} with $q_{h}-1$, $\left(q_{h}-1\right)\left(q_{k}-1\right), \cdots, \prod_{n=1}^{a}\left(q_{h}-1\right)$ degrees of freedom respectively.

Proof: We shall prove only one case, e.g., $\hat{\underline{T}}^{\prime} C_{h}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} \sigma^{-2} C_{h} \hat{\tau}$. The other cases can be proven similarly.

Since

$$
\begin{aligned}
& \hat{\underline{\tau}}=S^{-1} X^{\prime} Y \\
& \hat{\underline{\tau}}^{\prime} C_{h}\left[C_{h}^{1} S^{-1} C_{h}\right]^{-1} \sigma^{-2} C_{h}^{\prime} \hat{\tau}=Y^{\prime} X S^{-1} C_{h}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} C_{h}^{\prime} S^{-1} X^{\prime} \sigma^{-2} Y
\end{aligned}
$$

Let

$$
A=X S^{-1} C_{h}\left[C_{h}^{1} S^{-1} C_{h}\right]^{-1} C_{h}^{1} S^{-1} X^{\prime} .
$$

then

$$
\begin{aligned}
& \left.\left.A A=X S^{-1} C_{h}\right] C_{h}^{1} S^{-1} C_{h}\right]^{-1} C_{h}^{1} S^{-1} X^{\prime} X S^{-1} C_{h}\left[C_{h}^{1} S^{-1} C_{h}\right]^{-1} C_{C^{\prime}} S^{-1} X, \\
& =\mathrm{XS}^{-1} \mathrm{C}_{\mathrm{h}}\left[\mathrm{C}_{\mathrm{h}} \mathrm{~S}^{-1} \mathrm{C}_{\mathrm{h}}\right]^{-1}\left[\mathrm{C}_{\mathrm{h}}^{1} \mathrm{~S}^{-1} \mathrm{C}_{\mathrm{h}}\right]\left[\mathrm{C}_{\mathrm{h}}^{1} \mathrm{~S}^{-1} \mathrm{C}_{\mathrm{h}}\right]^{-1} \mathrm{C}_{\mathrm{h}}^{-1} \mathrm{~S}^{-1} \mathrm{x} \text {, } \\
& =\mathrm{XS}^{-1} \mathrm{C}_{\mathrm{h}}\left[\mathrm{C}_{\mathrm{h}}^{1} \mathrm{~S}^{-1} \mathrm{C}_{\mathrm{h}}\right]^{-1} \mathrm{C}_{\mathrm{h}} \mathrm{~S}^{-1} \mathrm{X} \\
& =\mathrm{A}
\end{aligned}
$$

and

$$
r(A)=q_{h}-1
$$

Next, since $E Y=X I$

$$
\begin{aligned}
(E Y)^{t} A(E Y) & =I^{\prime} X^{\prime} X S^{-1}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} C_{h}^{\prime} S^{-1} X^{\prime} X \tau \\
& =I^{\prime} C_{h}\left[C_{h}^{1} S^{-1} C_{h}\right]^{-1} C_{h}^{\prime} \tau \\
& =0
\end{aligned}
$$

because

$$
C_{h}^{\prime} \underline{I}=0
$$

This proves that the quadratic form $\hat{\tau}^{\prime} C_{h}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} \sigma^{-2} C_{h} \hat{\underline{\tau}}$ subject to restriclion $C_{h}^{\prime} \tau=0$ is distributed as X^{2} with $\left(q_{h}-1\right)$ degrees of freedom.

From this theorem, the sums of squares for each factorial effect may be represented as follows:

$$
\begin{align*}
& \text { def. } \\
& \operatorname{SS}\left(A_{h}\right)=\hat{\underline{\tau}}^{\prime} C_{h}\left[C_{h}^{\prime} S^{-1} C_{h}\right]^{-1} C_{h} \hat{\underline{\tau}} \\
& S S\left(A_{h}^{i_{h}}\right)=\underline{\underline{T}}^{T} \underline{\underline{t}}_{h}\left(i_{h}\right)\left[\underline{\ell}_{h}^{\prime}\left(i_{h}\right) S^{-1} \underline{\ell}_{h}\left(i_{h}\right)\right]^{-1} \underline{\ell}_{h}^{\prime}\left(i_{h}\right) \hat{\underline{\underline{T}}} \\
& S S\left(A_{h k} A_{k}\right)=\hat{\tau}^{2} C_{h k}\left[C_{h k}^{t} S^{-1} C_{h k}\right]^{-I_{C!}} \hat{h k} \\
& q^{-1} \\
& 1 \\
& \operatorname{SS}\left(A_{h}^{i_{h}} A_{k}^{i_{k}}\right)=\hat{I}^{\prime} \underline{l}_{h k}\left(i_{h}, i_{k}\right)\left[\underline{l}_{h k}^{\prime}\left(i_{h}, i_{k}\right) S^{-l_{\ell}} \underline{h}_{h k}\left(i_{h}, i_{k}\right)\right]^{-1} \underline{l}_{h k}^{\prime}\left(i_{h}, i_{k}\right) \hat{\underline{I}} \tag{1}\\
& \left(q_{h}-1\right)\left(q_{k}-1\right) \\
& \operatorname{SS}\left(A_{1} A_{2}, \cdots A_{n}\right)=\hat{\underline{T}}^{\prime} C_{1}, 2, \cdots, n^{[C}{ }_{1}, 2, \cdots, n^{S^{-1} C_{1}}, 2, \cdots, n^{-1} \\
& C_{1}^{\prime}, 2, \cdots, \hat{\underline{I}} \\
& \prod_{h=1}^{n}\left(q_{h}-1\right) \\
& \operatorname{SS}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} A_{n}^{i_{n}}\right)=\hat{\tau}^{\prime} \underline{\ell}_{1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right)\left[\underline{l}_{1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right)\right. \\
& \left.S^{-1} \underline{l}_{1}, 2, \cdots, n\left(i_{1}, \cdots, i_{n}\right)\right]^{-1} \tag{I}\\
& \times \underline{\ell}_{1}^{\prime}, 2, \cdots, n^{\left(i_{1}, \cdots, i_{n}\right) \hat{\tau}}
\end{align*}
$$

5. Numerical Example 1

Table 1
Data for Example
A $4 \times 3 \times 2$ factorial experiment for four levels of lysine, A_{1}, three levels of methionine, A_{2}, and two levels of protein, A_{3}. The data (average daily gains, in pounds, of swine) are selected frcm Table 1 of Federer and Zelen [1966].

Level of Lysine	Level of Methionine					
	$a_{2}(0), 0$		$a_{2}(1), 0.025$		$a_{2}(2), 0.050$	
	Level of Protein		Level of Protein		Level of Protein	
	$a_{3}(0), 12$	$a_{3}(1), 14$	$a_{3}(0), 12$	$a_{3}(1), 14$	$a_{3}(0), 12$	$a_{3}(1), 14$
$a_{2}(0), 0$	1.11	1.52	1.09	1.27	-	-
	0.97	1.45	0.99	1.22	1.21	1.24
$a_{1}(1), 0.05$	1.30	1.55	1.03	1.24	1.12	-
	1.00	1.53	1.21	1.34	0.96	1.27
$a_{1}(2), 0.10$	1.22	1.38	1.34	1.40	1.34	1.46
	1.13	1.08	1.41	1.21	1.19	1.39
$a_{1}(3), 0.15$	1.19	-	1.36	1.42	1.46	1.62
	1.03	1.29	1.16	1.39	1.03	-

In this example

$$
\begin{aligned}
& S^{-1}=\operatorname{diag}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right) \\
& \hat{\underline{I}}^{1}=\left(S^{-1} X^{\prime} Y\right)
\end{aligned}=(1.040,1,485,1.040,1.245,1.210,1.240,1.150,1.5400
$$

$1.120,1.290,1.040,1.270,1.175,1.230,1.375,1.305$
$1.265,1.425,1.110,1.290,1.260,1.405,1.245,1.620)$

Define the following orthogonal contrast matrices (in the sense of $K_{h} K_{h}$ $=$ diagonal) for A_{1}, A_{2}, A_{3}.

$$
K_{1}=\left[\begin{array}{rrrr}
1 & -3 & 1 & -1 \\
1 & -1 & -1 & 3 \\
1 & 1 & -1 & -3 \\
1 & 3 & 1 & 1
\end{array}\right], \quad K_{2}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 0 & -2 \\
1 & 1 & 1
\end{array}\right], \quad K_{3}=\left[\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right]
$$

From (2.11) and (2.12), we obtain the following orthogonal contrast matrix C:

$$
\begin{aligned}
& \mathrm{C}_{1}(\cdot) \\
& \mathrm{C}_{2}(\cdot) \quad \mathrm{C}_{3}(\cdot) \\
& \mathrm{C}_{12}(\cdot) \\
& C_{13}(\cdot) \\
& \mathrm{C}_{23}(\cdot) \\
& C_{123}(\cdot) \\
& {\left[\begin{array}{r}
-3 \\
-3 \\
-3 \\
-3 \\
-3 \\
-3 \\
-1 \\
-1 \\
-1 \\
-1 \\
-1 \\
-1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
3 \\
3 \\
3 \\
3 \\
3 \\
3
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& \begin{array}{rrr}
-1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & -2 & -1 \\
0 & -2 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & -2 & -1 \\
0 & -2 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & -2 & -1 \\
0 & -2 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & -2 & -1 \\
0 & -2 & 1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array} \\
& \begin{array}{rrrrrr}
3 & -3 & -1 & 1 & 1 & -1 \\
3 & -3 & -1 & 1 & 1 & -1 \\
0 & 6 & 0 & -2 & 0 & 2 \\
0 & 6 & 0 & -2 & 0 & 2 \\
-3 & -3 & 1 & 1 & -1 & -1 \\
-3 & -3 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & -3 & 3 \\
1 & -1 & 1 & -1 & -3 & 3 \\
0 & 2 & 0 & 2 & 0 & -6 \\
0 & 2 & 0 & 2 & 0 & -6 \\
-1 & -1 & -1 & -1 & 3 & 3 \\
-1 & -1 & -1 & -1 & 3 & 3 \\
-1 & 1 & 1 & -1 & 3 & -3 \\
-1 & 1 & 1 & -1 & 3 & -3 \\
0 & -2 & 0 & 2 & 0 & 6 \\
0 & -2 & 0 & 2 & 0 & 6 \\
1 & 1 & -1 & -1 & -3 & -3 \\
1 & 1 & -1 & -1 & -3 & -3 \\
-3 & 3 & -1 & 1 & -1 & 1 \\
-3 & 3 & -1 & 1 & -1 & 1 \\
0 & -6 & 0 & -2 & 0 & -2 \\
0 & -6 & 0 & -2 & 0 & -2 \\
3 & 3 & 1 & 1 & 1 & 1 \\
3 & 3 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{rrr}
3 & -1 & 1 \\
-3 & 1 & -1 \\
3 & -1 & 1 \\
-3 & 1 & -1 \\
3 & -1 & 1 \\
-3 & 1 & -1 \\
1 & 1 & -3 \\
-1 & -1 & 3 \\
1 & 1 & -3 \\
-1 & -1 & 3 \\
1 & 1 & -3 \\
-1 & -1 & 3 \\
-1 & 1 & 3 \\
1 & -1 & -3 \\
-1 & 1 & 3 \\
1 & -1 & -3 \\
-1 & 1 & 3 \\
1 & -1 & -3 \\
-3 & -1 & -1 \\
3 & 1 & 1 \\
-3 & -1 & -1 \\
3 & 1 & 1 \\
-3 & -1 & -1 \\
3 & 1 & 1
\end{array} \\
& \begin{array}{rr}
1 & -1 \\
-1 & 1 \\
0 & 2 \\
0 & -2 \\
-1 & -1 \\
1 & 1 \\
1 & -1 \\
-1 & 1 \\
0 & 2 \\
0 & -2 \\
-1 & -1 \\
1 & 1 \\
1 & -1 \\
-1 & 1 \\
0 & 2 \\
0 & -2 \\
-1 & -1 \\
1 & 1 \\
1 & -1 \\
-1 & 1 \\
0 & 2 \\
0 & -2 \\
-1 & -1 \\
1 & 1
\end{array} \\
& \left.\begin{array}{rrrrrr}
-3 & 3 & 1 & -1 & -1 & 1 \\
3 & -3 & -1 & 1 & 1 & -1 \\
0 & -6 & 0 & 2 & 0 & -2 \\
0 & 6 & 0 & -2 & 0 & 2 \\
3 & 3 & -1 & -1 & 1 & 1 \\
-3 & -3 & 1 & 1 & -1 & -1 \\
-1 & 1 & -1 & 1 & 3 & -3 \\
1 & -1 & 1 & -1 & -3 & 3 \\
0 & -2 & 0 & -2 & 0 & 6 \\
0 & 2 & 0 & 2 & 0 & -6 \\
1 & 1 & 1 & 1 & -3 & -3 \\
-1 & -1 & -1 & -1 & 3 & 3 \\
1 & -1 & -1 & 1 & -3 & 3 \\
-1 & 1 & 1 & -1 & 3 & -3 \\
0 & 2 & 0 & -2 & 0 & -6 \\
0 & -2 & 0 & 2 & 0 & 6 \\
-1 & -1 & 1 & 1 & 3 & 3 \\
1 & 1 & -1 & -1 & -3 & -3 \\
3 & -3 & 1 & -1 & 1 & -1 \\
-3 & 3 & -1 & 1 & -1 & 1 \\
0 & 6 & 0 & 2 & 0 & 2 \\
0 & -6 & 0 & -2 & 0 & -2 \\
-3 & -3 & -1 & -1 & -1 & -1 \\
3 & 3 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$\operatorname{SS}\left(A_{1}\right), \operatorname{SS}\left(A^{\prime}\right.$ or $\left.L_{A_{1}}\right), \operatorname{SS}\left(A_{1} A_{2}\right)$ and $\operatorname{SS}\left(A_{1}^{2} A_{2}^{2} A_{3}^{1}\right.$ or $\left.Q_{A_{1}} \times Q_{A_{2}} \times L_{A_{3}}\right)$, for example, are as follows:
$\operatorname{SS}\left(\mathrm{A}_{1}\right)$:

$$
\begin{aligned}
& \hat{\underline{I}}^{\prime} C_{1}=(2.375,0.005,-0.425 \\
& C_{1}^{1} S^{-1} C_{1}=\left[\begin{array}{rrr}
78.5 & 0.5 & 4.5 \\
0.5 & 14.5 & -1.5 \\
4.5 & -1.5 & 66.5
\end{array}\right] \\
& {\left[C_{1}^{1} S^{-1} C_{1}\right]^{-1}=\left[\begin{array}{rrr}
0.0127925 & -0.0005319 & -0.0008777 \\
-0.0005319 & 0.0691489 & 0.0015957 \\
-0.0008777 & 0.0015957 & 0.01513298
\end{array}\right]}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{SS}\left(A_{1}\right) & =\hat{\underline{I}}^{\prime} C_{1}\left[C_{1} S^{-1} C_{1}\right]^{-1} C_{1} \hat{\underline{I}} \\
& =0.076645 .
\end{aligned}
$$

$\operatorname{SS}\left(\mathrm{L}_{\mathrm{A}_{1}}\right):$

$$
\begin{aligned}
& \underline{\underline{I}}^{\prime} \underline{\ell}_{1}(1)=2.375 \\
& \underline{\ell}_{1}^{\prime}(1) S^{-1} \underline{\ell}_{1}(1)=78.5 \\
& {\left[\underline{\ell}_{1}^{\prime}(1) S^{-1} \underline{\ell}_{1}(1)\right]^{-1}=0.0127389 .}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{SS}\left(I_{A_{1}}\right) & =\hat{I}^{\prime} \ell_{1}(I)\left[\underline{\ell}_{1}(I) S^{-1} \underline{\ell}_{1}(I)\right]^{-1} \underline{\ell}_{1}^{\prime}(1) \hat{I} \\
& =0.071855 .
\end{aligned}
$$

$S S\left(A_{1} A_{2}\right):$

$$
\hat{\underline{I}}^{\prime} C_{12}=(2.285,-1.855,0.485,0.425,-1.455,0.865)
$$

$$
C_{12}^{1} S^{-1} C_{12}=\left[\begin{array}{rrrrrr}
58.5 & 9.5 & 0.5 & -2.5 & 4.5 & 1.5 \\
9.5 & 138.5 & -2.5 & 0.5 & 1.5 & 4.5 \\
0.5 & -2.5 & 10.5 & 1.5 & -1.5 & -2.5 \\
-2.5 & 0.5 & 1.5 & 26.5 & -2.5 & -1.5 \\
4.5 & 1.5 & -1.5 & -2.5 & 46.5 & 5.5 \\
1.5 & 4.5 & -2.5 & -1.5 & 5.5 & 126.5
\end{array}\right]
$$

$$
\left[C_{12}^{1} S^{-1} C_{12}\right]^{-1}=\left[\begin{array}{rrr}
0.0175000 & -0.0012143 & -0.0016071 \\
-0.0012 .43 & 0.0073449 & 0.0018010 \\
-0.0016071 & 0.0018010 & 0.0973023 \\
0.0016071 & -0.0003724 & -0.0053380 \\
-0.0016071 & -0.0000561 & 0.0027487 \\
-0.0001071 & -0.0002133 & 0.0016952
\end{array}\right.
$$

$$
\left.\begin{array}{rrr}
0.0016071 & -0.0016071 & -0.0001071 \\
-0.0003724 & -0.0000561 & -0.0002132 \\
-0.0053380 & 0.0027487 & 0.0016952 \\
0.0383737 & 0.0017156 & 0.0002691 \\
0.0017155 & 0.0219452 & -0.0008584 \\
0.0002691 & -0.0008584 & 0.0079880
\end{array}\right]
$$

Then

$$
\begin{aligned}
S S\left(A_{1} A_{2}\right) & =\hat{\underline{I}}^{\prime} C_{12}\left[C_{12}^{\prime} S^{-1} C_{12}\right]^{-1} C_{12} \hat{\underline{I}} \\
& =0.212323
\end{aligned}
$$

$S S\left(Q_{A_{2}} \times Q_{A_{2}} \times L_{A_{3}}\right):$

$$
\begin{aligned}
& \hat{\tau}^{1} \underline{\ell}_{123}(2,2,1)=-0.305 \\
& \underline{\ell}_{123}(2,2,1) S^{-1} C_{123}(2,2,1)=26.5 \\
& \left.\underline{\ell}_{123}(2,2,1) s^{-1} \underline{\ell}_{123}(2,2,1)\right]^{-1}=0.0377358
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{SS}\left(Q_{A_{1}} \times Q_{A_{2}} \times L_{A_{3}}\right) & =\hat{\underline{\tilde{T}}}^{\prime} \underline{\ell}_{123}(2,2,1)\left[\underline{\ell}_{123}(2,2,1) S^{-1} \underline{\ell}_{123}(2,2,1)\right]^{-1} \\
& \underline{\ell}_{123}(2,2,1) \underline{\underline{I}} \\
& =0.003510 .
\end{aligned}
$$

Thus we obtain the following Table 2.

Table 2.
Analysis of Variance

Source of variation	d.f.	s.s.
Total	43	69.3586
CFM	1	68.115684
Among groups	23	0.936266
Within groups	19	0.306650
A_{1}	3	0.076645
$\mathrm{L}_{\text {A }}$	1	0.071855
$Q_{A_{1}}$	1	0.000002
$\mathrm{C}_{\mathrm{A}_{1}}$	1	0.002716
A_{2}	2	0.010012
$\mathrm{I}_{A_{2}}$	1	0.008288
$Q_{A_{2}}$	1	0.002454
A_{3}	1	0.369602
$\mathrm{A}_{1} \times \mathrm{A}_{2}$	6	0.212323
$\mathrm{L}_{\mathrm{A}_{1}} \times \mathrm{I}_{\mathrm{A}_{2}}$	1	0.089252
$L_{A_{1}} \times Q_{A_{2}}$	1	0.024845
$Q_{A_{1}} \times L_{A_{2}}$	1	0.022402
$Q_{A_{1}} \times Q_{A_{2}}$	1	0.006816
$\mathrm{C}_{\mathrm{A}_{1}} \times \mathrm{L}_{\mathrm{A}_{2}}$	1	0.045527
$C_{A_{1}} \times Q_{A_{2}}$	1	0.005915
$A_{1} \times A_{3}$	3	0.080971
$L_{A_{1}} \times L_{A_{3}}$	1	0.004360
$Q_{A_{1}} \times L_{A_{3}}$	1	0.013657
$C_{A_{1}} \times I_{A_{3}}$	1	0.057474

Table 2. Continued

Source of variation	d.f.	s.s.
$A_{2} \times A_{3}$	2	0.045573
$L_{A_{2}} \times L_{A_{3}}$	1	0.007202
$Q_{A_{2}} \times L_{A_{3}}$	1	0.035141
$A_{1} \times A_{2} \times A_{3}$	6	0.083617
$L_{A_{1}} \times I_{A_{2}} \times L_{A_{3}}$	1	0.075026
$L_{A_{1}} \times Q_{A_{2}} \times I_{A_{3}}$	1	0.003290
$Q_{A_{1}} \times L_{A_{2}} \times L_{A_{3}}$	1	0.002593
$Q_{A_{1}} \times Q_{A_{2}} \times L_{A_{3}}$	1	0.003510
$C_{A_{1}} \times L_{A_{2}} \times L_{A_{3}}$	1	0.000736
$C_{A_{1}} \times Q_{A_{2}} \times L_{A_{3}}$	0.000005	

6. Randomized Complete Block Design with Missing Plots

Let $y_{j g i}=y_{j g\left(i_{1}, i_{2}, \cdots, i_{n}\right)}$ be the $j^{t h}$ observation made on the treatment combination ($i_{1}, i_{2}, \cdots, i_{n}$) in the $g^{t h}$ block, where $j=1,2, \cdots, r_{g i}\left(r_{g i} \neq 0\right.$ for some g); $g=1,2, \cdots, b ; i=1,2, \cdots, v$ and let N be the total number of observations. 6.1. Block Effect is Fixed

Assume the $\left\{y_{j g i}\right\}$ are assumed to be independently distributed following a normal distribution with

$$
\begin{align*}
& \left.\left.E y_{j g\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right)=\beta_{g}+\tau_{\left(i_{1}, i_{2}\right.}, \cdots, i_{n}\right) \tag{6.1}\\
& \operatorname{var} y_{j g i}=\sigma^{2} . \tag{6.2}
\end{align*}
$$

Using the same notation as section 2

$$
\begin{aligned}
\tau\left(i_{1}, i_{2}, \cdots, i_{n}\right) & =\mu+\sum_{h=1}^{n} \alpha_{h}\left(i_{h}\right)+\sum_{\substack{h \\
l \leq h<k \leq n}} \sum_{\substack{k \\
h k}}\left(i_{h}, i_{k}\right)+\cdots \\
& +\alpha_{1,2}, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum_{i_{h}=0}^{q_{h}-1} \alpha_{h}\left(i_{h}\right)=0, \sum_{i_{h}=0}^{q_{h}-1} \alpha_{h k}\left(i_{h}, i_{k}\right)=\sum_{i_{k}=0}^{q_{k}-1} \alpha_{h k}\left(i_{h}, i_{k}\right)=0 \\
& \sum_{i_{1}=0}^{q_{1}-1} \alpha_{1}, 2, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right)=\sum_{i_{n}=0}^{q_{n}-1} \alpha_{1,2}, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right)=0
\end{aligned}
$$

By matrix notation

$$
\begin{align*}
& E Y=X\left(\frac{B}{\underline{I}}\right) \tag{6.3}\\
& \operatorname{var} Y=I \sigma^{2} \tag{6.4}
\end{align*}
$$

where X is an $N \times(b+v)$ matrix and I is an $N \times N$ unit matrix.

Let $X=\left[X_{1} X_{2}\right]$, where X_{1} is an $N X$ b matrix and X_{2} is an $N X$ matrix, then by the least squares method

$$
\begin{aligned}
& {\left[\begin{array}{ll}
X_{1} X_{1} & X_{1}^{\prime} X_{2} \\
X_{2}^{\prime} X_{1} & X_{2}^{\prime} X_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{\underline{\hat{}}} \\
\underline{\hat{\tau}}
\end{array}\right]=\left[\begin{array}{c}
X_{1}^{1} Y \\
X_{2}^{\prime} Y
\end{array}\right]} \\
& \left(x_{2}^{\prime} x_{2}-x_{2}^{\prime} X_{1}\left(x_{1}^{\prime} x_{1}\right)^{-1} X_{1}^{\prime} X_{2}\right) \hat{I}=x_{2}^{\prime} Y-X_{2}^{\prime} x_{1}\left(x_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} Y
\end{aligned}
$$

Let G be a g-inverse of $X_{2}^{!}\left[I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2}$, then

$$
\hat{\tau}=G X_{2}^{1}\left[I-X_{1}\left(X_{1}^{1} X_{1}\right)^{-I_{X}}{ }_{1}^{p}\right] Y+[H-I] Z,
$$

where $H=G X_{2}^{1}\left[I-X_{1}\left(X_{1}^{1} X_{1}\right)^{-I_{X}}\right]_{1} X_{2}$ and Z is an arbitrary $v X I$ column vector of components $z_{1}, z_{2}, \cdots, z_{v}$.

Searle [1965] proved the following Lemma.
 $\left.i_{n}\right) G \ell=1,2, \cdots, n\left(i_{1}, i_{2}, \cdots, i_{n}\right), C_{h}^{1} C_{h}, C_{h k}^{1} G_{h k}, \cdots, C_{1}^{1}, 2, \cdots, n^{G C_{1}, 2, \cdots, n}$, and $C^{\prime} G C$ is a non-singular matrix.

Corollary: In Theorem 2 we can replace S^{-1} by G.
Proof: Since $C_{h}^{\prime} \tau$ is estimable $C_{h}^{\prime} H=C_{h}^{\prime}$ then

$$
C_{h}^{\prime}(H-I)=0
$$

then

$$
C_{h}^{\prime} \tau=C_{h}^{\prime} \operatorname{EX}_{2}^{\prime}\left[I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{\left.-I_{X_{1}^{\prime}}\right] Y} .\right.
$$

Hence

$$
\begin{aligned}
& \hat{\underline{\tau}}^{\prime} C_{h}\left[C_{h}^{\prime} G C_{h}\right]^{-1} \sigma^{-2} C_{h}^{\prime} \hat{\tau} \\
& \quad=Y^{\prime}\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h}^{\prime} G X_{2}^{\prime}\left[I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\right] \sigma^{-2} Y .
\end{aligned}
$$

Let

$$
A=\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} x_{1}\right] X_{2} G_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h}^{\prime} G x_{2}^{\prime}\left[I-X_{1}\left(x_{1}^{\prime} x_{1}\right)^{\left.-I_{X_{1}}^{\prime}\right],}\right.
$$

then

$$
\begin{aligned}
& A A=\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G_{h}\left(C_{h}^{\prime} G_{h}\right)^{-1} C_{h}^{\prime} G_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h} G X_{2}^{!}[I- \\
& \left.X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\right] \\
& =\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-I} X_{1}\right] X_{2} G C_{h}\left(C_{h}^{\prime G} C_{h}\right)^{-I} C_{h} G X_{2}\left[I-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-I} X_{1}^{\prime}\right] \\
& =\mathrm{A} \\
& (E Y)^{\prime} A(C Y)=\left(\underline{\beta}^{\prime} X_{1}^{\prime}+\underline{\tau}^{\prime} X_{2}^{2}\right) A\left(X_{1} \underline{\beta}+X_{2} \tau\right) \\
& =\underline{\beta}^{\prime} X_{1}^{\prime} A X_{1} \underline{\beta}+\underline{\beta}_{1}^{\prime} A X_{2} \tau+\underline{I}^{\prime} X_{2}^{\prime} A X_{1} \underline{\beta}+I^{\prime} X_{2}^{\prime} A X_{2} \tau \\
& \underline{\beta}^{\prime} X_{1}^{\prime} A X_{1} \underline{\beta}=\underline{\beta}^{\prime} X_{1}^{\prime}\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G C_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h}^{\prime} X_{2}^{\prime}[I- \\
& \left.X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1}\right] X_{1} B
\end{aligned}
$$

$$
\begin{aligned}
& =\underline{X X}_{1}^{\prime}\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G C_{h}\left(C_{h}^{\prime} G G_{h}\right)^{-1} C_{h} G X_{2}\left[X_{1}-X_{1}\right] \underline{B} \\
& =0
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\underline{I}^{\prime} X_{2}^{\prime} A X_{2} \beta & =0 \\
\underline{\beta}^{\prime} X_{1}^{2} A X_{2} \tau & =\underline{\beta}^{\prime} X_{1}\left[I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G C_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h}^{\prime} H \tau \\
& =\underline{\beta}^{\prime} X_{1}\left(I-X_{1}^{\prime}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}\right] X_{2} G C_{h}\left(C_{h}^{\prime} G C_{h}\right)^{-1} C_{h}^{\prime} \tau \\
& =0
\end{aligned}
$$

since $C_{h}^{\prime \tau}=0$. Similarly

$$
\underline{I}^{?} X_{2}^{1} A X_{2} I=0 .
$$

Hence

$$
(E Y) \cdot A(E Y)=0
$$

and

$$
r(A)=q_{h}-1 .
$$

This proves the corollary,

6.2. Block Effect is Random

Assuming $E \beta_{g}=0$ and $\operatorname{var} \beta_{g}=\sigma_{\beta}^{2}$ for $g=1,2, \cdots, b$, we obtain

$$
\begin{aligned}
& E y_{j g i}=\tau_{i} \\
& \operatorname{var} y_{j g i}=\sigma_{\beta}^{2}+\sigma^{2} \\
& \operatorname{cov}\left(y_{j g i}, y_{j \prime g i^{\prime}}\right)=\sigma_{\beta}^{2} \quad \text { for } j \neq j^{\prime} \text { or } i \neq i^{\prime}
\end{aligned}
$$

and

$$
\operatorname{cov}\left(y_{j g i}, y_{j^{\prime} g^{\prime} i^{\prime}}\right)=0 \text { for } g \neq g^{\prime}
$$

By matrix notation

$$
E Y=X\left[\begin{array}{l}
\underline{0} \tag{6.5}\\
\underline{\tau}
\end{array}\right]
$$

$$
\begin{equation*}
\operatorname{cov} Y=I \sigma^{2}+X_{I} X_{I}^{\prime} \sigma_{B}^{2} \tag{6.6}
\end{equation*}
$$

Now we need the following Lemma 3.

Lemma 3: If Y is distributed $N(\mu, V)$, then $Y^{\prime} B Y$ is distributed as X^{2} with k degrees of freedom if and only if $\mu^{\prime} B \mu=0$ and $B V$ is an idempotent matrix of rank k.

In our case,

$$
\begin{align*}
& V=I \sigma^{2}+X_{1} X_{1} \sigma_{B}^{2} \tag{6.7}\\
& B=A \sigma^{-2} \tag{6.8}
\end{align*}
$$

Then, since $B V=A$, clearly the corollary in 6.1 holds in our case.

7. Numerical Example ?

Suppose in the Example 1 the factor A_{1} is a block factor, and suppose we missed the observation $y_{1,4(3,2,1)}$; then we shall obtain

$$
X_{1} X_{1}=\left[\begin{array}{ccc}
10 & & \\
& 11 & 0 \\
0 & 12 & \\
& &
\end{array}\right] \quad X_{1} x_{2}=\left[\begin{array}{llllll}
2 & 2 & 2 & 2 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 \\
2 & 1 & 2 & 2 & 2 & 0
\end{array}\right]
$$

$X_{2}^{\prime} X_{2}=\left[\begin{array}{lllll}8 & & & \\ & 7 & & 0 \\ & 8 & & \\ & & 8 & \\ & & & 7 & \\ & & & & \end{array}\right]$

$$
\mathrm{X}_{1} \mathrm{Y}=\left[\begin{array}{c}
12.07 \\
13.55 \\
15.55 \\
11.33
\end{array}\right] \quad \mathrm{X}_{2}^{\prime} \mathrm{Y}=\left[\begin{array}{r}
8.95 \\
9.80 \\
9.59 \\
10.49 \\
8.31 \\
5.36
\end{array}\right]
$$

$$
x_{2}^{\prime}\left[I-x_{1}\left(x_{1}^{\prime} X_{1}\right)^{\left.-I_{X_{1}}\right] x_{2}}\right.
$$

$$
=\left[\begin{array}{rrrrrr}
6.458586 & -1.319192 & -1.541414 & -1.545414 & -1.341414 & -0.715152 \\
-1.319192 & 5.791919 & -1.319192 & -1.319192 & -1.119192 & -0.715152 \\
-1.541414 & -1.319192 & 6.458586 & 01.541414 & -1.341414 & -0.715152 \\
-1.541414 & -1.319192 & -1.541414 & 6.458586 & 01.341414 & -0.715752 \\
-1.341414 & -1.119192 & -1.341414 & -1.341414 & 5.758586 & -0.615152 \\
-0.715152 & -0.715152 & -0.715152 & -0.715152 & -0.615152 & 3.475758
\end{array}\right]
$$

$$
X_{2}\left[I-X_{1}\left(X_{1} X_{1}\right)^{\left.-I_{X_{1}}\right] Y}=\left[\begin{array}{r}
-1.037081 \\
1.071808 \\
-0.397081 \\
0.502919 \\
-0.470081 \\
0.329515
\end{array}\right]\right.
$$

$$
G=\left[\right]
$$

$$
H=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & & & 0 & \\
-1 & & 1 & & & \\
-1 & & & 1 & & \\
-1 & 0 & & & 1 & \\
-1 & & & & & 1
\end{array}\right]
$$

$$
C=\left[\begin{array}{rrrrr}
-1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1 \\
0 & -2 & -1 & 0 & 2 \\
0 & -2 & 1 & 0 & -2 \\
1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Table 3.
 Analysis of Variance

Source of variation	d.f.	s.s.
Total	42	66.7342
C.F.M.	1	65.625
$\begin{aligned} & \text { Block (ignoring } \\ & \text { treatment effect) } \end{aligned}$	3	0.04805
Among treatment (eliminating block effect)	5	0.415723
Remainder	33	0.645327
A_{1}	2	0.000369
$\mathrm{I}_{\mathrm{A}_{1}}$	1	0.000031
$Q_{A_{2}}$	1	0.000306
A_{2}	1	0.3327 .48
$\mathrm{A}_{1} \times \mathrm{A}_{2}$	2	0.060747
$L_{A_{1}} \times L_{A_{2}}$	1	0.023990
$Q_{A_{1}} \times L_{A_{2}}$	1	0.028877

References

Federer, W. T., and Zelen, M. [1966]. "Analysis of multifactor classification with unequal numbers of observations." Biometrics 22:525-552.

Graybill, F. A. [1961]. An Introduction to Linear Statistical Models. McGrawHill Book Company, New York.

Kurkjian, B., and Zelen, M. [1962]. "A calculus for factorial arrangements." Annals of Mathematical Statistics 33:609-619.

Robson, D. S. [1959]. "A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced." Biametrics 15:187-191.

Searle, S. R. [1965]. "Additional results concerning estimable functions and generalized inverse matrices." The Journal of the Royal Statistical Society, Series B, 27:486-490.

Zelen, M., and Federer, W. T. [1965]. "Application of the calculus for factorial arrangements. III. Analysis of factorial with unequal numbers of observations." Sankhyā 27:383-400.

[^0]: * Paper No. BU-151 in the Biometrics Unit series and No P.B.-539 in the Departmont of Plant Breeding and Biometry series.

[^1]: * Paper No. BU-151 in the Bicmetrics Unit series and No. P.B.-539 in the Department of Plant Breeding and Biometry series.

