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Abstract

Matrix factorizations are important in many real-time signal processing ap-
plications. In order to improve the performance of these algorithms, special-
purpose VLSI processor arrays are being developed. Recently, the Coordinate
Rotation Digital Computer (CORDIC) algorithms have been applied to the QR
Decomposition (QRD) and the Singular Value Decomposition (SVD). In this
paper, the CORDIC arithmetic algorithms are extended to deal with complex
data. Novel CORDIC VLSI architectures for the QRD of a complex matrix, the
Eigenvalue Decomposition of a Hermitian matrix, and the SVD of a complex

matrix are presented. These architectures are suitable for VLSI implementa-
tion.
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1 Introduction

Real-time signal processing and image processing algorithms use various matrix factor-
izations steps. In order to improve the time performance of these specialized algorithms,
custom VLSI processor arrays are being designed. These arrays use parallel numerical
algorithms and incorporate high-speed arithmetic. Many problems in signal processing
utilize complex matrix factorizations and can benefit from a complex CORDIC SVD ar-
ray. In particular, several adaptive beamforming algorithms [13,14] which determine the
direction or bearing of a signal source, require complex matrix factorizations.

The coordinate rotation digital computer algorithms (CORDIC) are useful for elemen-
tary function evaluation. In particular, CORDIC is capable of vector rotation by an angle,
6, and inverse tangent and radius calculation. The algorithms are based upon a regular
scheme that only uses shifts and additions. These features of CORDIC are very beneficial
in designing custom hardware for parallel matrix operations.

.The most direct application of CORDIC is to the Givens rotation. The Givens rotation
is an orthogonal and norm preserving rotation from which we can build systolic arrays
to perform several matrix decompositions. The QR decomposition involves a sequence of
one-sided rotations, whereas the eigenvalue decomposition (limited to symmetric matrices)
is a one angle, two-sided rotation approach. This decomposition uses the Jacobi algorithm
which requires a square array and the ability to exchange matrix data as several sweeps
are performed. A single rotation angle for each 2 x 2 submatrix is required. The real
Singular Value Decomposition (SVD) also utilizes the Jacobi algorithm. Here two rotation
angles are computed for each diagonal 2 x 2 submatrix.

An architecture for the real QRD which uses CORDIC arithmetic was presented by
Ahmed, Delosme, and Morf [1]. Recently, CORDIC was applied to the real SVD by Cav-
allaro and Luk [3]. Both of these architectures use a group of interconnected CORDIC
modules to first calculate rotation angles, and then apply them via vector rotations. This
eliminates the need for multiplication and square root units.

In this paper, these CORDIC algorithms will be extended to the complex case. We will
discuss how the Eigenvalue Decomposition of a symmetric matrix becomes the Eigenvalue
Decomposition of a Hermitian matrix, and how the QRD and the SVD take on complex
form. The goal is to formulate the algorithms in terms of inverse tangent and vector
rotation operations by using only unitary rotation matrices.

The rotations in the CORDIC arithmetic algorithms extend elegantly to the complex
case. In section 2, the CORDIC algorithms are briefly reviewed. Section 3 introduces
the Complex Givens rotation as an extension of the real Givens rotation. In section 4,
CORDIC is applied to the complex Givens rotation. The remaining sections discuss in turn
the application of CORDIC to the complex QRD, Eigenvalue Decomposition of a Hermitian
Matrix, and the complex SVD. Architectures are presented and an evaluation of the area
and time complexity is also included.



2 CORDIC Algorithms

The CORDIC algorithms provide a fast hardware implementation of the inverse tangent and
vector rotation operations. These algorithms have traditionally been described for the real
case for a rotation in a two-dimensional plane. Volder [15] and Walther [16] provided the
initial description of CORDIC. The CORDIC algorithms are based upon defining a vector
(%o, Yo) in the 2-plane, and then applying a rotational transformation. That is, the vector
(7o, Yo) is rotated through an angle 6, in the clockwise direction, to (z¢, yo'). In general,
the CORDIC equations can describe a rotation in one of three modes: circular, linear, or
hyperbolic. For the QRD, Eigenvalue Decomposition, and the SVD, the rotations are in
the circular mode and the real rotation equations are:

[wo”]sz)[wo]z[ cos é sinﬁ][xo]' (1)

Yo Yo — sinf cosé Yo

- In the CORDIC algorithms the rotation angle is decomposed into a sequence of n known
smaller angles, such that

n-1
0 = +6 + 6,.+£ 06, , = 25;6?{ , (2)
1=0
where §; > 0 and §; = +1. From the geometry of the rotations, it is clear that the

result of n rotations using the sequence of 6;’s is equivalent to that of one rotation using
6. The number of known angles in the sequence determines the accuracy of the CORDIC
algorithms. In order to achieve n bits of accuracy, at least n rotations must be performed.
In order to convert the rotation equations into a form which is suitable for VLSI imple-
mentation, the equations are first divided by the cosine. A further simplification is then
made by setting tan §; = B~' where 8 is the machine radix. In most applications, binary
arithmetic is used, so 8 = 2, and therefore multiplication by tan 6; becomes a simple
arithmetic shift operation. With this modification, the recurrence equations become:

Tit1

= z; + y,'2_i (3)
cos 8;
Yi+1 -
—_— =y — 7,27,
cos 6; 4 :c
For example, when ¢ = 0, then 2-' = 1 and §; = tan=1(2-%) = 45°. Again,fori = 1,
6; = 26.7°. It can be seen that as 7 increases, 6; decreases toward 0.

In practice, the cosine terms are collected into a scale factor constant which is removed
in a final correction step. The recurrence equations then become:

Tip1 = z; + 6y~ (4)

Yitr = Yi — 6;2;27"



zigr = zi + 6;0;.
It should be noted that §; determines the direction of rotation at a given step and that
the z equation accumulates the total rotation, §. These equations can be implemented

efficiently in VLSI using registers, barrel shifters, adders, and a small ROM. The CORDIC
algorithms can be further pipelined through the use of on-line arithmetic [9].

3 Complex Givens Rotations

The Givens rotation [12] is an important technique which is used to selectively introduce a
zero into a matrix. Givens rotations can be used in the QR Decomposition and are similar
to the rotations used in the Jacobi method for Eigenvalue Decomposition and the SVD. A
real Givens rotation is given by:

[_cs:][z]z[(’;] where9=tan—l<§>. (5)

Rotations can be generalized by considering the case of complex arithmetic. A complex

Givens rotation can be described by two rotation angles as formulated in Coleman and
Van Loan [6],

[ Cc1 81(62 + iSz) ] [ a; + ta; ] _ [ e+ iy ] (6)
—81(62 - iSz) C1 b1 + Zbg - 0 )

The above rotation matrix is derived from applying the simple unitary transformation:

v=[<"0 7

- 0 eiab ( )

to get r, and a real Givens rotation(5) to zero out the second component. Notice that
the result is now real. However, in order to avoid four complex rotations, the complex
conjugate of (7) is applied to the left side of the real Givens rotation, giving the complex
Givens rotation in (6).

The angles 0, and 0, can be determined from the input vector as follows:

R, = \Ja}] + a} , 6, = tan~! (2) (8)

ax

Ry = (/b + b, 6 = tan‘l(Z—f>

Then from the above angles and radii,

6, = tan‘l(%> 6, =6, — 6. (9)



4 Application of CORDIC to Complex Givens Rota-
tions

The CORDIC algorithms describe a vector, (a,b), in terms of the radius, R = /a? + b2,
and angle, § = tan~!(b/a). It will be important to exploit this ability in the Complex
CORDIC algorithms. The real Givens rotation can be rather simply computed by CORDIC.
The angle 6 is found using the inverse tangent mode. The rotation can then be applied by
using the vector rotation mode.

Stating Euler’s Formula as:

e? = cosf + isinf, (10)
a complex number, z = z; 4 7z, can then be written as:
: z
z = R,e'’* where R, = Vz2 + 22, 0, = tan‘l(i) ) (11)
21

These facts allow for the use of the CORDIC inverse tangent and vector rotation algorithms
to calculate and apply complex Givens rotations without the need for multiplication and
square root.

The above algorithm for finding 6; and 6, can be converted into the interconnected
CORDIC modules shown in Figure 1. The input vector is (a1 + iaz by + iby). At the
first time step, two CORDIC modules in parallel find the angle and radius expressions for
each of the complex numbers. At the second time step, a CORDIC module finds 6; from
the computed radii, and 6, by subtracting 6, from 6,.

The two rotation angles can then be applied using only CORDIC modules. Figure 2
shows the CORDIC implementation. In the first time step, a rotation by 6, is applied to
both complex numbers in parallel. These results are used in the second time step, along
with 6; to produce the final output vector, (z; + 122), (1 + 1y2).

5 Complex CORDIC QR Decomposition Array

The QR Decomposition algorithm can be formulated in terms of Givens rotations. The
algorithm applies orthogonal rotations to make a matrix upper triangular. The QRD
systolic array has been presented by Gentleman and Kung [11]. The CORDIC algorithms
have been applied to the QRD by Ahmed [1]. Figure 3 shows a triangular array for the
QR decomposition. Each processor contains a CORDIC unit which calculates and applies
the appropriate rotation.

The basic real Givens rotation can be replaced by the complex Givens rotation shown
above. The complex CORDIC implementation can be used here for each QR processor

5



a., +a
1 2
1
0
CORDIC CORDIC 1
arctan ea arctan
a
2
b, 2 2
_ b 1 7 by
CORDIC — o,
b, arctan 0 b o a 0 b

Fig. 1. CORDIC Complex Givens Rotation Angle Calculation.



Q  o—e—
1 CORDIC
cb_+sb Vector
LD — 21 22 0 Rotation
b == CORDIC 1
Vector .
Rotation c2b2 s» a 2™
0 2 CORDIC
Vector
Rotation
e ———
1
b R
1 CORDIC
ca +sa Vector
a, 21 2 0 Rotation
CORDIC 1
a N
2
Vector ca-sa
Rotation -
0, ~ | 22 21 b2 CORDIC
Vector
Rotation

Fig. 2. CORDIC Complex Givens Rotation Application.
For angle computation, see Fig. 1.

(Real)

(Imag)

(Imag)



Fig. 3. Triangular Systolic Array for the QRD.



element. The array structure and communication remain the same. An similar array of
this type has been discussed by Rader [14]. However, Rader’s structure is specialized to
deal with an updating procedure for the QR Decomposition. The complex CORDIC Givens
procedure presented here is a more general implementation of the QR Decomposition.

6 Eigenvalue Decomposition of a Hermitian Matrix

The Eigenvalue Decomposition of a real symmetric matrix factors the matrix into an
orthogonal matrix and a diagonal matrix of eigenvalues. The Eigenvalue Decomposition
and the SVD share a similar systolic architecture due to Brent, Luk, and Van Loan [2].
This square array is shown in Figure 4. In the real Eigenvalue Decomposition, the same
angle is passed from a diagonal processor along its row and column. The basic 2 x 2 step

is
T ab r 0 -
R(G)[cd]R(9)=[0r2J. (12)
In the diagonal processors, the 2 x 2 matrix will be symmetric, that is, > = c¢. In contrast,
in the SVD, the diagonal processor generates one angle which moves along the row and a
different angle which mores along the column.

The eigenvalues of a Hermitian matrix may be found by a Jacobi-type algorithm. It is
important to note that the Jacobi algorithm has not been successfully applied to find the
eigenvalues of a general complex matrix. Other schemes, such as the Schur decomposition
which uses shear transformations in addition to unitary transformations to create an upper
triangular matrix have been proposed. Eberlein [7] has recently described a parallel Schur
decomposition algorithm.

7 Singular Value Decomposition

The singular value decomposition [12] of a p X p matrix M is
M = UZVT, (13)

where U and V are orthogonal matrices and ¥ is a diagonal matrix of singular values.
The Jacobi method for the SVD partitions a square matrix, where p is even, into 2 x 2
submatrices. A real 2 x 2 SVD can be described as

o [24 Jmer - [50]. o
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where 6; and 6, are the left and right rotation angles, respectively. The rotation matrix is

cosf siné
R(9) = [ — sinf cos @ ] ’ (15)
and the input matrix is
ab
M = [ a? ] . (16)

Efficient computation of the rotation parameters is essential. Several methods are possible
to solve this problem. The two-step method first applies @syy = (6, — 6,) to symmetrize
M and then utilizes 6, to diagonalize M. Another method, the direct two-angle approach,
uses a parallel calculation of §; and 6, to diagonalize M.

8 Complex SVD Algorithm

The complex SVD can be approached by using the Jacobi algorithm [10] and converting
the complex 2 x 2 matrix into a real matrix. Given a complex 2 x 2 input matrix

ay +tay b + ib; ]
= . ) 17
M [ a1 +ic; dy + td, ’ (a7
several transformations are performed in order to make the 2 x 2 matrix diagonal.
First apply a complex Givens rotation [6] to introduce a zero into the 2 x 2 submatrix
M. This is essentially a QR decomposition of M. The computation is as follows:

[ 1 s1(ca + is3) ] [ ar +t1az b + iby ] _ (18)
—81(02 - ng) Cq (5] + 7:62 d] + ’Ld2
[ w1 + Z"U)g T + i$2 ]
0 21 + iZQ )
Then apply a unitary transformation to make the diagonal elements real:
e 0 ] [ R, e’ R e*= ] _

U= [ (19)

0 et 0 R,e¥
[ W  R,e'l: +6) ] _ [ W oz + iz ]
0 VA - 0 Z '
Here 6, = —6, and §, = —#, are the two angles which can be found using CORDIC.

The entries W and Z are now real. The above transformation can also be considered as
CORDIC vector rotations by 6; and 6,.
Next, apply a two-sided unitary transformation to make the 2 x 2 matrix real:
[10][WR,;:6”¢'][10]_[WX] (20)
0 e'a 0 Z 0 e - 0 Z )
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where 6, = 6, and §, = —6,.

Since the 2 x 2 matrix is now real, we can now proceed by performing a real 2 x 2
SVD. The algorithm then proceeds in a similar manner using the structure of the Brent
Luk Van Loan systolic array for the Jacobi method. In the real case, only two angles are
produced by each diagonal processor. However, in the complex problem presented here six
additional angles are created in (17) through (20) and must be propagated through the
array to update the rest of the matrix.

9 Complex CORDIC SVD and the Complex Array

The CORDIC algorithms are applied to the Complex SVD by building upon the complex
CORDIC Givens rotation scheme. The final real SVD is then performed by using the
architecture presented in Cavallaro and Luk [3]. Figure 5 shows the block diagram of a
complex CORDIC SVD processor element.

The systolic array architecture of Brent, Luk, and Van Loan [2] uses an expandable
square array of processors to compute the SVD of a large matrix. Figure 4 shows the
systolic array structure. In the Brent, Luk, Van Loan array, the matrix is divided into
2 x 2 submatrices. Each processor element contains a 2 x 2 submatrix. The array
architecture is scalable. There are two types of data flowing in this array. Rotation
angles generated by the diagonal processors flow systolically along the rows and columns
of the array. Matrix data elements are exchanged diagonally, after the diagonal neighbor
has received and applied the necessary rotation angles. This leads to "waves” of activity
moving diagonally away from the main array diagonal. Each wave is separated in time
from the next by two time periods.

10 Area and Time Complexity of the CORDIC Ar-
rays

In order to measure the effectiveness of the implementation, it is useful to evaluate the
area and time complexity. Expressions for the area, A¢, and time, Tg, complexity of a
CORDIC processor which reflect the internal arithmetic organization have previously been
presented [3]. In the real Givens case, the angle calculation will require one CORDIC

processor, Agga = Ac, and take one CORDIC time unit, Trgy = 7. In the complex
case, the area is Acga = 2Ac and the time is Toga = 2T¢. For the real Givens rotation
application, the time is TrRgr = T¢, and the area is Apgr = 2A¢, if we use parallel

hardware to operate on each element. For the complex Givens rotation application, the
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time and area are:
Togr = 2T¢, Acer = 4Ac, (21)

respectively, since a CORDIC module is needed for the real and imaginary parts of each
complex number.

It is possible to pipeline the angle calculation with the rotation application, since 6,
is not needed until the second step in the complex Givens rotation application. This will
save T¢ and the area and time complexity of the total Complex Givens rotation will then
be:

Teg = 3Te, Ace = 4Ac, (22)

respectively. The time complexity can be further reduced if on-line CORDIC modules [9]
are used.

11 Summary and Current Work

In this paper, the CORDIC algorithms for the real QR Decomposition and Singular Value
Decomposition were extended to handle complex data. An extension of the real Givens
rotation to a general complex Givens rotation was introduced. A CORDIC algorithm was
then applied to this complex rotation. The CORDIC application was extended to the
complex QRD, Eigenvalue Decomposition of a Hermitian Matrix, and the complex SVD.
The area and time costs, in terms of basic CORDIC processor area and time units were
presented. Currently, a VLSI implementation of a CORDIC processor array element for
the real SVD is in progress at Rice University.

The analysis presented here for the complex CORDIC SVD can be extended from fixed-
point to floating-point arithmetic. The complex floating-point CORDIC SVD processor
would possess a hybrid structure as in the real floating-point case [4]. Many real-time signal
processing applications would benefit from fault-tolerant matrix computation. Several
techniques for dynamic fault reconfiguration developed for hypercubes [8] and the real
CORDIC SVD array [5] can be adapted to complex matrix factorizations.
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