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1 Introduction 

Data involving recurrent events arise in a wide variety of settings, including public health, 

biomedicine, psychology, psychiatry, engineering, sociology and economics. Examples of such 

events in the health and biomedical sciences are drug abuse of teenagers or adults, recurrent hos­

pitalization of patients with chronic diseases, bouts with migraine headaches, epileptic seizures, 

and episodes of hypoglycemia in diabetics. In psychiatric studies the onset of depression and 

dementia are instances of recurring events; in the engineering and reliability settings, the break­

down of mechanical or electronic systems, computer software crashes, stoppages of nuclear power 

plants, and warranty claims for manufactured products are all examples of recurrent phenom­

ena. Examples in sociology and economics include serious disagreements in a marriage, onset of 

labor strikes, and auto insurance claims. The development of stochastic models and statistical 

methods appropriate for analyzing recurrent data is therefore of considerable importance. 

The problem of nonparametric estimation and inference for recurrent event data has, among 

others, been by considered Gill (1980, 1981), Lin, Wei and Ying (1998), McClean and Devine 

(1995), Soon and Woodroofe (1996), Sellke (1988), Vardi (1982ab), and Wang and Chang (1999). 

Gill (1981) dealt with the problem of nonparametric inference for renewal processes in a life­

testing setting. Assuming a fixed observation window, he derives analogs of the Nelson-Aalen 

and Kaplan-Meier estimators for the event interoccurrence time distribution and establishes 

consistency and weak convergence using empirical process techniques similar to those used in Gill 

(1980), where related results are established in a considerably more general setting. Sellke (1988) 

considered the problem of establishing weak convergence of a Nelson-Aalen-type estimator in 

the case where a single renewal process is observed over an infinite time period. Vardi (1982b) 

presented an algorithm for obtaining the maximum likelihood estimator of the distribution 

function when the underlying event times are arithmetic under a data accrual scheme in which 

the first event time for each subject is a left-truncated observation; see also McClean and Devine 

(1995) for related results. Soon and Woodroofe (1996) extended Vardi's algorithm to allow for 

the situation where the event time distribution is not arithmetic, and prove the consistency of 

their estimator under the assumption that the length of the observation period converges to some 

fixed interval. Wang and Chang (1999) considered a weighted moment estimator for the event 

time distribution that ignores the last censored observation on all cases experiencing at least 

one event, and argue for consistency and weak convergence of their estimator using empirical 

process techniques. 

The data accrual and censoring schemes to be considered in this paper are straightforward. 

In particular, except in Section 5, we assume that event interoccurrence times represent inde­

pendent and identically distributed observations from a fixed distribution function, and that 

each subject is observed for a random length of time. Save the independence assumption, the 

situation being considered is identical to that in Wang and Chang (1999), and is appropriate 

e.g. when the initial occurrence of the event is also the criterion for admission in the study. It 
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also differs from that Vardi (1982) and Soon and Woodroofe (1996), who impose the simplifying 

assumption that the renewal processes under study are stationary (e.g., Resnick, 1994, §3. 9). 

The i.i.d. model is actually quite reasonable in many engineering and reliability settings, and 

has been the subject of extensive studies in the probability and stochastic processes literature. 

Nevertheless, our assumptions are acknowledged as being restrictive in the biomedical context, 

and here we point out at least three interesting avenues of generalization: (i) correlated interoc­

currence times through the use of frailty-type models; (ii) the dependence of the interoccurrence 

time distribution on relevant covariates; and (iii) allowing the distribution of the first event 

occurrence to be different from the succeeding interoccurrence time distributions, but without 

imposing that it be the stationary distribution. This paper provides a useful starting point for 

developing appropriate likelihood-based estimation procedures for each of these generalizations; 

the case of correlated recurrence times is considered in further detail in Section 5. 

The seemingly straightforward nature of the data accrual scheme belies some important technical 

issues that differentiate the single event and recurrent event settings. For example, since the 

observation period for a given subject is random, the frequency of event occurrences is a random 

variable whose distribution depends on the event time distribution. This remains true even when 

the distribution of the random termination time does not depend on the event time distribution. 

Thus, aside from the event times themselves, the number of events during the observation period 

is also informative concerning the distribution of interest. Moreover, the last observation for 

each subject is always right-censored, and depends both on the length of the observation interval 

and on previous event times for that subject. Consequently censoring is in general informative. 

These features prevent the usual tools from martingale theory from being used in studying 

the asymptotic behavior of estimators that use all of the available information. An excellent 

example of this type of data is the gastroenterology data presented in Aalen and Husebye (1991). 

Other papers that deal with related problems under this basic data accrual scheme include 

Prentice, Williams and Peterson (1981), Andersen and Gill (1982) and Keiding, Andersen and 

Fledelius (1998). Still other papers dealing with recurrent data and motivated by engineering 

and reliability problems are those by Kalbfleisch, Lawless and Robinson (1991), Lawless and 

Nadeau (1995), and Hu and Lawless (1996). 

Perhaps the most important difference between the present paper and Wang and Chang (1999) 

is the way in which the right censored observations are handled. The moment estimator of 

Wang and Chang (1999) only utilizes the right-censored observation for a subject if there are 

no complete observations for that subject, hence ignores information. The present paper pro­

vides asymptotic theory for the nonparametric maximum likelihood estimator (NPMLE) of the 

underlying interoccurrence time distribution, and utilizes the right-censored observations on all 

subjects. This is accomplished by embedding the problem into a nonstandard counting process 

framework that employs both calendar time and duration time. In addition to allowing for 

easy likelihood construction, this approach allows us to employ tools from martingale theory 

that would be otherwise unavailable. The idea of considering a bivariate time scale is borrowed 
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from Sellke (1988); however, the problem being considered here differs in a fundamental way. 

In particular, Sellke (1988) considers the observation of a single renewal process, and studies 

the asymptotics of the resulting Nelson-Aalen estimator of the interarrival time distribution as 

the length of a deterministic observation period becomes unbounded. In contrast, we desire 

to estimate the event time distribution based on n independently censored realizations of a re­

newal process. The observation period for each process is governed by a censoring distribution 

that can have finite support (i.e., the length of the observation period can be, and usually is, 

bounded) and the asymptotics in question relate to the number of subjects under study, not 

time on observation. These changes complicate technical matters significantly. Our work here 

complements that of Gill (1980), who considers nonparametric estimation for a class of semi­

Markov renewal processes. Careful inspection shows that his results also apply to the present 

problem; however, consistency and weak convergence are proved under stronger and less famil­

iar technical conditions. Restricting attention to estimation of the interoccurrence distribution 

from recurrent event data makes the problem and corresponding solution more transparent, and 

in particular places inference for the interoccurrence time distribution in terms that effectively 

parallel the single event setting. For example, in addition to establishing consistency and weak 

convergence of our proposed estimators, we obtain closed-form expressions for the limiting vari­

ance of these estimators that properly takes informative stopping into account. The renewal 

function associated with interoccurrence time distribution plays a central role in these results. 

These various contributions fill what we perceive to be an important void in the current theory 

of estimation for recurrent event data, and the formulation to be presented allows for reasonably 

straightforward extensions to both regression and frailty models for recurrent event data. 

We now outline the contents of this paper. In Section 2 we define relevant processes and summa­

rize important results that will be used throughout the remainder of this paper. Derivations of 

our estimators, as well as corresponding finite sample and asymptotic properties, are facilitated 

through this stochastic process formulation and a general weak convergence result in a related 

paper by Peiia, Strawderman and Hollander (PSH) (2000). Section 3 considers nonparametric 

estimation of the hazard function A and the survival function P. An estimator for A is motivated 

using method-of-moments, and product-integration is used to obtain an estimator for P. These 

estimators turn out to be natural generalizations of the Nelson-Aalen and the product-limit es­

timators, as has also been seen in related recurrent models, cf., Gill (1980, 1981), Andersen and 

Gill (1982), Vardi (1982b), Sellke (1988), and Keiding, et al. (1998). We establish that these 

estimators are NPMLEs, and derive their asymptotic properties; in particular, bias, variance, 

uniform consistency and weak convergence are all established under conditions that parallel 

those required for the single event setting (e.g. Andersen, Borgan, Gill and Keiding, 1993). In 

Section 4, we evaluate the consequences of ignoring (i) all but the first and (ii) the right-censored 

observations, approaches common to the medical literature involving recurrent event data (cf., 
Aalen and Husebye, 1991). In Section 5, we evaluate the consistency of the product limit esti­

mator in the case where the interoccurrence times are correlated within each unit and propose 

a new estimator for the marginal survivor function. Finally, in Sections 6 and 7 we respectively 
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summarize the results of a simulation study and illustrate these estimation procedures using the 

gastroenterology data of Aalen and Husebye (1991). The simulation study compares biases and 

mean-squared errors of our estimators to those of an estimator recently proposed in Wang and 

Chang (1999). 

2 Stochastic Process Formulation 

2.1 Introduction 

In order to formally describe the problem of interest let us introduce some notation. We suppose 

that n independent units (e.g., subjects) are available in the study. For the ith unit, we denote 

the successive interoccurrence times of the recurrent event of interest by { Tik, k = 1, 2, ... } . 

The interoccurrence times are assumed to be independent and identically distributed (i.i.d.) 

nonnegative random variables with a common absolutely continuous distribution function F(t) = 
P{Tij :::; t} and associated renewal function p(t) = 2::r=1 F*k(t)I{t 2 0}, where F*k denotes the 

kth convolution ofF with itself. The cumulative hazard function associated with F(·) is given 

by A(t) = JJ :A(s)ds, where >.(s) = f(s)/F(s), f(s) = dF(s)/ds, and F(s) = 1- F(s) is the 

survival function. We assume that monitoring of the ith unit ceases at a possibly random time 

7i, where 71, 72, ... , 7 n are i.i.d. with a common distribution function G ( w) = P { 7i :S w}. We 

also assume that the 7i 's and the Tij 's are mutually independent. We allow for the possibility 

that G is degenerate, as would be the case if the observation window for all units were restricted 

to be of the same length; hence, for F continuous our results contain those of Gill (1981) as a 

special case. Finally, we will assume that E[p( 7)] < oo. This condition basically requires that 

the average number of events observed is finite. Note, however, that such a condition does not 

necessarily imply G( ·) has finite support since it is satisfied in the trivial case where Tij and 7 

represent mutually independent exponential random variables. 

For each i = 1, ... , n, let SiD = 0 and Sij = 2::{=1 Tij, j = 1, 2, . . . . The number of event 

occurrences for the ith unit is 

Ki = max{k E {0, 1, ... } : Sik :S 7i}, (1) 

and the observable random variables for the ith unit are 

(2) 

Specification of the last observation time 7i - siK; is redundant since it is determined by the 

other observable variables. It is retained, however, to emphasize the fact that this variable 

right-censors TiK;+l· Assuming the data take the form (2) for i = 1, 2, ... , n, we rigorously 

develop and obtain the properties of various non parametric estimators of F. We will require 

some further notation to facilitate this analysis, and present this in the next section. 

5 



2.2 Counting Processes and Martingales 

In this section we recast the mathematical setup into a stochastic process setting. We let 

(n, F, P) denote the probability space on which all random entities are defined. Before pro­

ceeding with the appropriate stochastic process formulation, we first describe an intuitively 

appealing way of defining the stochastic processes and filtration. This construction turns out 

to have an important flaw that prevents the direct use of martingale methods. It also serves to 

introduce some useful notation, and allows us to gain crucial understanding into where some of 

the important technical issues arise. 

For j = 1, 2, ... and i = 1, 2, ... 'n define cij = Ti - Sij-1, 

where the processes Nij(t) and Y;j(t) are defined for t 2': 0, and we assume Nij(O) = 0 and 

Y;j(O) = 1 almost surely. Furthermore, with Fo being the CT-field containing all information 

available at time zero including Ti, define Fijt = o-{(Nij(s), Y;j(s+)) : 0::; s::; t} V F0• Since 

Tij and Cij are independent, Nij ( ·) and Y;j ( ·) are just the usual counting and at-risk processes 

associated with a failure time Tij possibly right-censored by Cij. As a consequence, 

(3) 

is a local square-integrable martingale with respect to the filtration {Fijt, t ;::=: 0} (cf., Fleming 

and Harrington, 1991). Finally, for the ith unit, we may the define aggregated processes 

00 

Ni(t) = L Nij(t), 
j=l 

00 

Yi(t) = :L Yij(t), 
j=l 

and the associated filtration {Fit = VJ=1 Fijt, t 2': 0}. 

00 

and Mi(t) = L Mij(t), 
j=l 

(4) 

The time scale under consideration in the above construction refers solely to "gap times" between 

successive events, and hence {Ft, t 2': 0} really represents a "gap time" filtration. Although 

this is clearly the natural time scale from the point of view of making inference about the 

interoccurrence time distribution, the stochastic processes and the filtration just defined do not, 

in fact, correspond to the way the recurrent event data are truly observed. This proves to be 

the main source of difficulty with the present construction, as Mi(t) need not be a martingale 

with respect to the filtration {Fit: t 2': 0}, and thus M(t) = (M1(t), ... ,Mn(t)) need not be a 

vector of martingales with respect to the filtration F = {Ft : t 2': 0} for Ft = Vf=1 Fit· To see 

where the martingale property breaks down, notice first that 

However, 

E{Mij(t + s)IFit} = E[E{Mij(t + s) IFijt v V Fikt}IFit] -I E[E{Mij(t + s)IFijt}IFit] = Mij(t), 
k#-j 
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since, for k > j, Mij ( t + s) is not independent of :Fikt by virtue of the fact that Cik depends on 

Til, ... , Tij· Thus, in general, E{Mij(t + s)!Fit} need not equal Mij(t), implying that {Mi(t) : 
t;::: 0} is not an F-martingale. Although it is not difficult to come up with a concrete example 

illustrating the above situation, we leave this task to the reader. 

As shown in Sellke (1988), the stochastic processes one should consider turn out to be those 

indexed by both gap time and calendar time. These processes arise by first considering the 

processes that keep track of event occurrences as calendar time progresses. We begin by defining 

the following processes, which consider calendar time only. Fori= 1 ... nand s;::: 0 set 

00 

Nit(s) = l::I{Sij ~ s,Sij ~ Ti} and lit(s) = I{Ti;::: s}, 
j=l 

and let G = { g 8 : s ;::: 0} be a filtration such that { ( Nl ( s), lit ( s)) : s ;::: 0} is G-adapted. More­

over, let Al (s) = J~ lit (v)>.(v- SiNl(v- ))dv, and suppose Mit (s) = Nl (s)- Al (s ), s ;::: 0 is a local 

square-integrable G-martingale with predictable quadratic covariation process (Mit, Mi~)(s) = 

Al(s)I{i = i'}. In particular, this holds if G is taken to be the natural filtration generated by 

{(Nit(s), lit(s)) : s;::: O,i = 1,2, ... ,n}, i.e., gs = :F} = :Fo V o-{(Nl(v), lit(v+)) : v ~ s,i = 

1, 2, ... , n }, with :Fo being the a--field containing all information at time zero. In fact, as implied 

in Gill (1980), iflims-HXJE{AJ(s)} < oo, {Ml(s),s;::: 0} is a square integrable G-martingale. 

The assumption that E{p( T)} < oo ensures this as E{ A! ( s)} = E{ N/ ( s)} = E{:L~1 I { Sij ~ 
s 1\ Ti}} = E{p(T 1\ s)}. 

We now introduce appropriate processes that are indexed by calendar time s and gap time t. 
These are the basic processes considered in PSH (2000; see also Sellke, 1988) and provide the 

crucial connection between the gap time formulation and that based on calendar time. For 

i = 1,2, ... ,n, let Zi(s,t) = I{s- SiN;t(s-) ~ t}. For a given unit (e.g., individual) and calendar 
times, this indicates whether at most t time units have elapsed since the time of the last event. 

Note that for fixed t, Zi(·, t) is a G-adapted, bounded, and has left-continuous paths, hence is 

a G-predictable bounded process. For s, t;::: 0 we may thus define 

Ni(s,t) =los Zi(v,t)dNl(dv); 

Ai(s, t) =los Zi(v, t)A! (dv); 

rs t 
Mi(s, t) = lo Zi(v, t)Mi (dv) = Ni(s, t)- Ai(s, t). 

(5) 

(6) 

(7) 

Evidently, for the ith unit, Ni(s, t) counts the number of observed events occuring over the 

calendar period [0, s] whose event times (i.e., interoccurrence times) are at most t. The notation 

would suggest that Ai(s, t) is the compensator of Ni(s, t) and therefore Mi(s, t) is a martingale. 

This is true, in a sense to be discussed later. However, we first provide an alternative form 

for (6), which as written does not have the "usual" multiplicative form of a counting process 
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compensator (cf. Fleming and Harrington, 1991). Towards this end, define 

Nit ((sAT;)-) 

Yi(s, t) = L I {Tij 2 t} +I { (s 1\ Ti) - siNt((s/\T;)-) 2 t} 'i = 1, 2, ... 'n. (8) 
j=l ' 

Then, it can be shown that (PSH, 2000, Proposition 1) 

Ai(s, t) =lot Yi(s, w)>..(w)dw, (9) 

which is of the usual multiplicative intensity form. Notice that Yi(s, t) counts the number of 

observed events on calendar period [0, s] whose event times were at least t. Moreover, for each 

fixed t, the s-indexed stochastic process Yi(·, t) has left-continuous sample paths and is therefore 

G-predictable. These facts, combined with the relation (9), show that Yi(s, t) serves as the basic 

"at-risk" process corresponding to the ith doubly-indexed process Ni(s, t). 

It should also be apparent that the processes Ni(s, t) and Yi(s, t) are related to the original 

processes Ni(t) and Yi(t) defined in (4). In particular, notice that Ni(s, t) = Ni((s 1\ ri), t) for 

each s 2 0, t 2 0; thus, as s---+ oo, Ni(s, t) ~ Ni(ri, t) = Ni(t). Moreover, Nit ((s 1\ ri)-) ~ 
N/(ri-) a:J>. Ki ass---+ oo; hence, Yi(s,t) ~ :Lf~1 I{Tij 2 t} + I{ri- SiK; 2 t} := Yi(t) as 

s---+ 00. 

PSH (2000) develop key properties of the aforementioned processes in further detail. The fol­

lowing important result is one that we shall use repeatedly, and connects stochastic integrals 

over calendar time to those over gap times. The proof is a direct consequence of the argument 

used to prove Proposition 1 of PSH (2000) and is therefore omitted. 

Proposition 1 Let Ri(v) = v- SiN/(v-)' and let Hi(s, Ri(v)) be a bounded G-predictable pro­

cess. Then, for Qi(s, t) given by one of Ni(s, t), Ai(s, t), or Mi(s, t) (and Qj defined analogously), 

A trivial consequence of these results is g Hi(s,Ri(v))Mi(dv,t) = JJHi(s,w)Mi(s,dw); (7) 

and (9) then imply J~ Hi(s, Ri(v))Mi(dv, t) = JJ Hi(s, w)Ni(s, dw)- JJ Hi(s, w)Yi(s, w)>..(w)dw. 
With this basic framework in place, we may now define the aggregated processes 

n n n 

N(s, t) = L Ni(s, t), A(s, t) = L Ai(s, t), and M(s, t) = L Mi(s, t). (10) 
i=l i=l i=l 

By (9), A(s, t) = :Li=1 Ai(s, t) = JJ Y(s, w)>..(w)dw, where Y(s, t) = :Li=1 Yi(s, t); consequently, 

M(s, t) = ~ Mi(s, t) = N(s, t)- A(s, t) = N(s, t)- lot Y(s, w)>..(w)dw (11) 

has the usual martingale form. In fact, the following holds under the assumptions ofthis paper. 
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Proposition 2 For each fixed t;:::: 0, the aggregated process {M(s,t),s ;:::: 0} is a square­

integrable G-martingale with predictable quadratic variation process 

(M(·, t), M(·, t))(s) = A(s, t) =fat Y(s, w)>.(w)dw < oo. 

Importantly, M(s, t) is not a martingale process in t for any fixed s. Nevertheless, in light of 

earlier results, stochastic integrals of the form JJ H(s,w)M(s,dw) can still be handled using 

martingale methods. In particular, by Proposition 1, 

where the right-hand side is, for each fixed t ;:::: 0, a square-integrable G-martingale process. 

For reasons to be explained in Section 3, the relationships between the various processes just 

established are of limited utility in the case where F is to be modeled parametrically. However, 

they prove to be essential in developing nonparametric estimators for F. 

2.3 Expectation of the At-Risk Processes 

In order to study the finite sample and asymptotic properties in the nonparametric setting, we 

require the expectation of the at-risk processes Yi(s, t) and Yi(t). We recall that the aggregated 

at-risk processes for the ith unit can be expressed as follows: 

NJ ((siiTi)-) 

Yi(s, t) = L I {Tij ;:::: t} +I { (s 1\ Ti)- SiNt((s!ITi)-) ;:::: t} 
j=l ' 

(12) 

Ki 
Yi(t) = 2:::: I{Tij;:::: t} + I{Ti- siKi;:::: t}, (13) 

j=l 

where Ki is as defined in (1). Evidently, since Y1 (·), ... , Yn(-) are independent and identically 

distributed processes and Yi(t) = Yi(oo,t), i = 1. . . n, it suffices to consider Y1(s,t),s,t;:::: 0. 

Let Ti ( s) = s 1\ Ti; then, if Ti has distribution function G (-), the distribution function of Ti ( s) 
is G8 (w) = G(w)I{w < s} + I{w ;:::: s}. The following result is analogous to Lemma 1 of Gill 

(1981) and is proved in the Appendix using a renewal argument; it is helpful to recall here that 

p(t) denotes the renewal function associated with the event interoccurrence time distribution. 

Proposition 3 Suppose F(O) = 0. Then, for each s, t 2 0 and with Gs(t) = 1- G8 (t), 

E{Y1 (s, t)} = y(s, t) F(t)Gs(t-) {1 + E{p(T(s)- t)iT(s) 2 t}} 

F(t)G5 (t-) + F(t) 100 p(w- t)dG8 (w). 

Furthermore, y(s,t) = 0 for s < t, y(s,t) > 0 ift E {u:F(u-) < 1,G(u-) < 1,u:::; s}, and 

lim y(s, t) = y(t), where y(t) = E{Y1 (t)} = F(t)G(t-) + F(t) Jt p(w- t)dG(w) and y(O) < oo. 
s-+oo 
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Notice that the form of the expected at-risk process y(t) directly generalizes that under the 

usual single-event setting, and in particular demonstrates how the extra information available 

from having multiple events per unit increases the effective number at risk. The presence of the 

renewal function is quite natural here, as p(t) simply equals the expected number of events on 

[0, t] for one unit. The following Glivenko-Cantelli-type theorem shows we may estimate y(s, t) 
via n- 1Y(s,t): 

Proposition 4 For each s ~ 0 SUPtE[O,oo] J ~ I:i=l Yi(s, t) - y(s, t) J---+ 0 a.s. as n---+ oo. 

The fact that this holds uniformly in t ~ 0 is a consequence of the condition E[p(r)] < oo and 

the uniform law of large numbers of Hoffman-Jorgensen (1994, §9.15 ); for details see PSH (2000, 

Proposition 2). 

Finally, in order to examine the bias that occurs if right-censored observations are not included 

in the analysis, we shall also need E{Yj*(oo, t)}, where Yt(oo, t) = 2:::~ 1 I{T1j ~ t} denotes 

the at-risk process that ignores the right-censored observation. Recognizing that Yt ( oo, t) 

Y1 ( oo, t) -I { r 1 - S1K 1 ~ t}, the following result provides the requisite expectation. 

Proposition 5 Suppose t ~ 0 and F(O) = 0. Then, 

E{Yt(oo, t)} = y*(oo, t)::::: y(oo, t)- P{r1- S1K1 ~ t}, 

where P{rl- slK! ~ t} = G(t-)E { F(rl) + J;!-t F(rl- w)dp(w)h ~ t}. 

2.4 A General Weak Convergence Result 

(14) 

To establish the weak convergence of various martingale transforms we will come across, we shall 

need a result due to PSH (2000, Theorem 1). Theorem 1 of PSH (2000) actually assumes the 

length of the observation period on the calendar time scale (i.e., s) to be finite. Careful inspection 

of their proof shows that this assumption is unnecessary, and that with minor changes the results 

continue to hold as the calendar time s ---+ oo. For convenience, a more general version of their 

result is thus presented below. 

With n indexing sample size, consider a sequence of processes of the form 

(15) 

where Mi(n)(s,t) is defined analogously to (7) and H~n)(s,t) = (Hi~)(s,t), ... ,H~~)(s,t))t is, 

for each n, a vector-valued process such that (i) H)?\,·) is almost surely bounded;, and (ii) 

H~n) (s, t) is G-predictable for each t. As described in Section 2.2, w(n)(s, t) is not a martingale 

transform since we are integrating dMi(n)(s, dw) over gap times w, fixing calendar times, rather 
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than integrating over calendar time s, fixing w. Despite this fact, the following general weak 

convergence result still holds. 

Theorem 1 LetS= [0, s*], s* :::; oo and y(s, t) be defined as in Proposition 3. Fix s E S and 

suppose the following conditions are satisfied fort, t1, t2 E [0, t*], where t* < oo: 

(a) The processes {Hi(v,w): 0:::; v:::; s;O:::; w:::; t*} are left-continuous and bounded, and 

there exists a continuous bounded deterministic function h(v, w) on [0, s] x [0, t*] such that 

{b) infwE[O,t*] y(s, w) > 0; 

max sup IHi(s, w)- h(s, w)l ~ 0; 
l9:Sn o::;w::;t* 

(16) 

{c) The matrix function E(s, t) = Jri h(s, w)02y(s, w).A(w)dw is such that for each t1, t2 E 

(0, t*] with t1 < t2, 0 < det{E(s, t2)- :E(s, t1)} < oo; 

{d) For each t, lly(n)(s,t)- E(s,t)ll ~ 0 as n -7 oo, where 

Then, as n -7 oo, the process {W(n) (s, t) : t E [0, t*]} converges weakly on Skorohod's space 

V[O, t*] to a mean zero Gaussian process {W(oo) (s, t) : t E [0, t*]} with covariance function 

{ (oo)( (oo) )} _ [ :E(s, t1) E(s, it) ] 
Cov W s, it), W (s, t2 - :E(s, tt) :E(s, t2) for t1 :::; t2. 

Conditions (a)-( d) ensure convergence of the finite dimensional distributions and tightness, and 

in particular establish that the limit process is a multidimensional Gaussian process with a 

continuous variance function. However, despite apparent similarities, the above result is not a 

simple consequence of Rebolledo's martingale central limit (Rebolledo, 1980; see also Andersen 

et al, 1993, Theorem II.5.1). Moreover, it is important to note here that the above result does 

not establish that {W(n)(s, t): t E [0, t*]} converges weakly as a process in both sand t; rather, 

it only establishes weak convergence in t, given a fixed value of s E S. 

3 Non parametric Estimation 

In this section we derive nonparametric estimators for the hazard function A and the interoccur­

rence distribution F. We first establish Nelson-Aalen and Kaplan-Meier-type estimators using 

the method of moments, and then motivate why these are respectively NPMLEs for A(·) and 

F(·). In what follows, we allow for the possibility that s = oo. 
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3.1 Method-of-Moments Estimators 

Let M(s, t) be defined as in (11). Then, with Hi(s, t) = 1, i = 1, 2, ... , n, results presented in 

Section 2.2 imply that { M(v, t) = N(v, t)- J~ Y(v, w).\(w)dw: 0 ~ v ~ s}, is a square-integrable 

martingale for each fixed t;::::: 0 (PSH, 2000, Proposition 3). Let J(v, w) = I{Y(v, w) > 0}. With 

the usual convention that 0/0 = 0, we may thus write 

rt J(s, w) r J(s, w) rt 
lo Y(s, w) M(s, dw) = lo Y(s, w) N(s, dw)- lo J(s, w)A(dw). (17) 

Let us examine the left-hand side of (17). By Proposition 1, 

lot J(s, w) ~lot J(s, w) ~los J(s, ~(v)) 
Y( ) M(s, dw) = ~ Y( ) Mi(s, dw) = ~ Y( R-( )) Mi(dv, t), 

0 s, w i=l 0 s, w i=l 0 s, z v 

where we recall the notation Ri(v) = v- SiNl(v-)' i = 1, 2, ... , n. Since the integrand is a 

bounded predictable process by virtue of the left-continuity of Yi(s, t) in both s and t, we have 

that {l::::f=1 f~ [ J(s, Ri( v)) jY(s, Ri( v) )] Mi(dv, t) : 0 ~ s < oo} is a zero-mean square-integrable 

martingale for each fixed t 2:: 0. Hence, 

E {lot~~:',:~ N(s, dw)} = E {lot J(s, w)A(dw)}. (18) 

This moment identity suggests a Nelson-Aalen-type estimator of A(t); specifically, for a given 

study period [0, s], set 

A r J(s,w) 
A(s, t) = lo Y(s, w) N(s, dw), 0 ~ t < 00. (19) 

Since F(t) = f1w::;t[1- A(dw)], a product-limit estimator for F is then easily obtained: 

"" II { A } II { N(s,b.w)} F(s,t)= 1-A(s,dw) = 1- Y( ) , 
w::;t w::;t s, W 

(20) 

where F(s, t) = F(s, Bn,s) for t > Bn,s = inf{ w : Y(s, w) = 0}. It is evident that A(s, t) and 

F(s, t) are left-continuous ins and right-continuous in t. These properties are crucial, and allow 

us to exploit stochastic integration theory for obtaining finite sample and asymptotic properties 

in the sequel. 

REMARK: By (19) and results from Section 2.2, 

lim A(s, t) = rt [J(w)JY(w)] dN(w) = A(t). a.s .. 
s-+oo Jo (21) 

Then, 

F(oo, t) = F(t) = II { 1- A(dw)} = II {1- N(f~)}, 
w::;t w::;t Y W 

(22) 

where F(t) = F(Bn) fort> Bn = inf{w : Y(w) = 0}. These estimators continue to remain 

applicable even if ties are present. They also constitute a special case of those considered by 

Gill (1980), and generalize those derived in Gill (1981). 
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3.2 A(s, t) & F(s, t) are NPMLEs 

Following Jacod (1975) (see also Section II.7 of Andersen et al., 1993), define 

(23) 

This general partial likelihood process over the study period [0, s] is proportional to the relevant 

point process likelihood for the problem being considered. From this, we obtain the associated 

log-likelihood process 

This log-likelihood does not correspond to a multiplicative intensity model for the intensity 

process. Moreover, it is difficult to maximize (24) with respect to A(·) directly. However, 

similarly to the single event setting, it is intuitively clear that nonparametric estimation of A(t) 

for a fixed t should involve only those gap times that are less than or equal t. 

Let us therefore consider a modified log-likelihood process based on the information that has 

accrued in the study (or real) time [0, s] and duration (or gap) time [0, t] space. Specifically, let 

where we recall that Zi(v, t) = I{v-SiNJ(v-) :S t}. Notice that (25) is just a gap-time-restricted 

version of (24). Using the fact that Mit (dv) = N/ (dv)- Y/ (v).A(v- SiNit(v-))dv and applying 
Proposition 1, (25) is easily shown to be equivalent to 

l(s, t) = t lot log .A(w)Ni(s, dw)- Yi(s, w).A(w)dw. 
i=l 0 

(26) 

The restricted likelihood (25) establishes an interesting and useful link between (24) and (26). 

For example, from (26), it can be seen directly that (19) and hence (20) are NPMLEs based on 

the information collected to calendar times. Moreover, (21) and (22) are respectively NPMLEs, 

since A(t) maximizes the log-likelihood function 

l(oo, t) = t lot log .A(w)Ni(dw)- Yi(w).A(w)dw. 
i=l 0 

(27) 

It is not difficult to see that l ( oo, t) may also be derived by considering all gap times as inde­

pendent, possibly right-censored observations from the interoccurrence distribution F( ·), as is 

implied in the discussions of Aalen and Husebye (1991), Andersen et al. (1993, Example X.l.8), 

Gill (1983), and Keiding et al. (1998, §5.1). 

At this point we digress for a moment and point out an interesting distinction between the para­

metric and nonparametric settings. In the case where .A(·) is parametrically specified, parametric 
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maximum likelihood estimation can be carried out based on either (24) or (26); see Andersen 

et al. (1993, Example X.l.9) for more discussion regarding the use of (24). Above, we have 

established that (26) and (25) are equivalent, and it can thus be seen that inference based on 

(25) will generally be less efficient than that based on (24). Passing to the limit (i.e., ass -7 oo) 

should not alter this ordering of efficiency, and hence estimators based on (24) for s = oo should 

be more efficient than those based on (27). 

3.3 Bias and Variance 

By following the derivation of the bias of the Nelson-Aalen estimator when the data consist of 

right-censored times to the first event occurrence, (e.g., see Fleming and Harrington, 1991), the 

bias of A(s,t) in (19) may be directly obtained. Let A*(s,t) = f~ J(s,w)A(dw). Then, since 

E{A(s,t)- A*(s,t)} = 0, Bias{A(s,t)} = E{A*(s,t)- A(t)} =- f~[P{Y1(s,w) = O}]nA(dw). 

Evidently Bias{A(s, t)} :::; 0. Furthermore, since 1r(s, t) = P{Y1 (s, t) = 0} is increasing in t 
for fixed s, Bias{A(s,t)}?: -[P{Y1(s,t) = O}]nA(t). The bias of (19) as an estimator for A(·) 

therefore satisfies the familiar inequality 

-[1r(s, t)]n A(t) :::; Bias{A(s, t)} :::; 0, 

and converges to zero exponentially fast for (s, t) such that 1r(s, t) > 0. 

For the estimator in (20), a representation analogous to that of the usual product-limit estimator 

(e.g., see Chapter 3 of Fleming and Harrington, 1991) can be established. In particular, 

F(s, t) - F(t) = - rt F(s, w-) J(s, w) M( d ) rt F(s, w-) I{Y( ) = O}A(d ) (28) 
F(t) lo F(w) Y(s, w) 8 ' w + }0 F(w) 8 ' w w · 

Using Proposition 1, 

{t F(s, w-) J(s, w) M(s. dw) 
lo F(w) Y(s, w) ' 

n "-
= L rs F(s, ~(v)-) J(s, Ri(v)) dMi(dv, t). 

i=l lo F(Ri(v)) Y(s,Ri(v)) 

Since the integrand is a bounded and left-continuous (hence predictable) process, the process 

on the right-hand side is, for fixed t, a zero-mean martingale in s. Consequently, 

"- "- _ _ { ft P(s w-) } 
Bias{F(s, t)} = E{F(s, t)- F(t)} = F(t)E Jo F(w) I{Y(s, w) = O}A(dw) . 

The same arguments used to establish bounds for the bias of the usual product-limit estimator 

(e.g., see Fleming and Harrington, 1991, pp. 98-99) now lead to 

0 :::; Bias[F(s, t)] :::; [1 - F(t)]P{Y(s, t) = 0} = [1 - F(t)][1r(s, t)]n. 

The estimator Pis therefore positively biased; however, this bias converges to zero exponentially 

fast for (s, t) such that 1r(s, t) > 0. 
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We also seek approximations to the finite-sample variances of A(s, t) and F(s, t) for fixed s E 

(O,oo) and t E [O,t*], where t* E (O,oo) is such that A(t*) < oo and 1r(s,t*) > 0. Define 

2 { A * 2 } { ( rt J ( s, w) ) 2
} aNA (s, t) = E [A(s, t) -A (s, t)] = E Jo Y(s, w) M(s, dw) . 

Since the bias of A(s, t) vanishes exponentially fast, it follows by direct analogy to the usual 

survival analysis setting (e.g., see Fleming and Harrington, 1991, pp. 92-94) that Var{A(s, t)} ~ 
a~A(s, t). Employing Proposition 1 and known results for martingale process, 

{ ( 
n ('9 J(s, Rt(v)) ) 2

} 
a~A(s,t) = E ~Jo Y(s,Ri(v))Mi(dv,t) 

E {It r J(s, Ri(v)) Mi(dv, t)) (s)} = E { rt J(s, w) A(dw)}. \i=l lo Y(s,Ri(v)) Jo Y(s,w) 

As in the case of the Nelson-Aalen estimator for right-censored data (e.g., see Fleming and 

Harrington, 1991, p. 94), one can estimate this variance using 

~2 ( ) = ft J(s, w) [Y(s, w) - N(s, b..w)] N( d ) 
aNA s, t Jo Y(s, w)2 Y(s, w) - 1 s, w . (29) 

Using the representation in (28), similar arguments to Fleming and Harrington (1991, p. 104) 

also show that one may estimate the variance of F(s, t) by 

~2 "" 2 {t N(s, dw) 
aPL(s, t) = F(s, t) Jo Y(s, w)(Y(s, w)- N(s, b..w)) · (30) 

These estimators are identical in form to the estimators for the usual Nelson-Aalen and product­

limit estimators for right-censored data; however, it is important recognize that the at-risk 

processes are necessarily more complex. For example, the computational form of &~A ( s, t) when 

there are no tied interoccurrence times is 

(31) 

3.4 Uniform Consistency and Weak Convergence 

Next we consider limiting properties of our estimators, specifically consistency and weak con­

vergence. The following theorem demonstrates uniform consistency of A(s, t) and F(s, t), and 

is proved in the Appendix. 
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Theorem 2 Fix s E [0, oo], and let y(s, t) = F(t)Gs(t- }[1 + E{p((T 1\ s)- t)j(T 1\ s) ;::: t}] be 

the function in Proposition 3. If t* E (0, oo) is such that y(s, t*) > 0 and A(t*) < oo, then, as 

n-+ oo, SUPo:s;t:s;t·IA(s, t) - A(t) I ~ 0 and sup099.IF(s, t) - F(t) I ~ 0. 

As an aside, we point out that the usual technique of employing Lenglart's inequality to estab­

lish uniform consistency for the Nelson-Aalen and product-limit estimators in standard right­

censored models is not possible here because the processes of interest with respect to the duration 

time t are not submartingales. The next theorem presents weak convergence results for the es­

timators; it is also proved in the appendix. 

Theorem 3 Under the same conditions as Theorem 2, as n -+ oo, 

(i) the process {V(s, t) = fo[A(s, t) - A(t)] : t E [0, t*]} converges weakly on 'D[O, t*] to a 

zero-mean Gaussian process {V00 (s, t) : t E [0, t*]} whose covariance function is 

Cov{V00 (s, tl), V 00 (s, t2)} = d(s, min(t1, t2)) for h, t2 E [0, t*], 

where d(s, t) = J;0t A((dw)); and 
y s,w 

(ii) the process {W(s, t) = fo[F(s, t) - F(t)] : t E [0, t*]} converges weakly on 'D[O, t*] to a 

zero-mean Gaussian process {W00 (s, t) : t E [0, t*]} with covariance function 

For purposes of constructing confidence intervals or confidence bands for A or F, as well as for 

testing hypotheses concerning these functions, possible estimators of the asymptotic variances 

of A(s, t) and F(s, t) are those presented in (29} and (30}, respectively. Confidence bands for 

A or F may then be constructed using standard techniques such as in Hall and Wellner (1980}; 

see also Nair (1984} and Hollander and Peiia (1989}. 

To assess the quality of the normal approximation suggested by our weak convergence result 
A A 

for F(t) = F(oo, t}, we performed a simulation study under the independence interoccurrence 

times model. The true parameters for simulation model were F = EXP(O) and G = EXP(77), 

with e = 6 and 7] = 1. On the basis of 1000 replications, the means, standard errors, and 

sampling distribution of fo[F(t)- F(t)] fortE {.10,.20,.30,.40} and n E {20,50,80} were 

obtained. Table 1 provides a summary of the results of this simulation. In this table we have 

also indicated the theoretical asymptotic standard errors under this specific simulation model. 

Using the results of Theorem 3(ii}, this asymptotic standard error is simply 

e l 

{ (e +77
77)2 exp { -(e- 77)t} [1- exp { -(e + 77)t}]} 2

• 

Looking at the means, we note a slight positive bias, with this bias decreasing as n increases. 

Notice also that the simulated standard errors are quite close to the theoretical values except 
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when t is large and n is small. Examining the simulated sampling distributions, which are 

presented as boxplots in Figure 1, the normal approximation is satisfactory for n;::: 20, as well 

as for n small but with t not too large. For this exponentially distributed Iii's and Ti 's and for 

the chosen simulation parameter values, these simulation results provide additional empirical 

support to the theoretical results. 

4 Consequences of Ignoring Some Observations 

A common approach to dealing with recurrent event data in the medical literature has been 

to restrict attention to the first, possibly right-censored observation of each renewal process, 

or to simply delete the last censored observation and base the analysis only on the complete 

observations (Aalen and Husebye, 1991). A bit of reflection shows that the former analysis 

should be inefficient and that the latter analysis is biased towards shorter interoccurrence times. 

Below we respectively characterize the loss in efficiency and the form of the bias. For simplicity, 

we consider only the case where 8 ---+ oo; analogous results are easily shown to hold for any 

8 < oo. 

Consider first the problem of estimating F nonparametrically using only the possibly right­

censored times of first event occurrences. In this case, we are in a standard right-censored data 

setting, and the asymptotic variance of the cumulative hazard process (i.e., analogous to d( oo, t) 

of Theorem 3) is simply 
t _ {t A(dw) 

d (t) - lo F(w)G(w-) 

(e.g., see Andersen et al., 1993, Thm. IV.1.2). The effect of taking into account the other event 

interoccurrence times for the units is thus contained in the function 1 + E{p(r - t)lr ;::: t} 

which appears in the denominator of the integrand in d(t). Since this function is bounded below 

by 1, its effect is to decrease the asymptotic variance of the Nelson-Aalen and product-limit 

estimators relative to estimators using only the first observations for each unit. Indeed, the 

asymptotic relative efficiency of F(t) to F(t) at timet is 

{ {t A(dw) } { {t A(dw) }-1 

ARE= lo F(w)G(w-) lo F(w)G(w-)[1 + E{p(r- w)lr;::: w}] 

Define the function m : 3?+ ---+ 3?+ via 

m(t;F,G) = infE{p(r- w)lr;::: w} = inf {a(w-)-1 f p(u- w)dG(u)}. 
w9 w9 l[w,oo) 

Then, it is easy to see that ARE ;::: 1 + m( t; F, G), with equality if and only if E{p( r- w) lr ;::: w} 
is constant in w. Suppose, for example, that the Tij's are distributed according to F = EXP(B) 

and the Ti's are distributed according to G = EXP(17). Then, E{p(r- w)lr ;::: w} = B/11 
is constant in w, and consequently ARE = 1 + 8 /11· One may interpret this last result as 
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saying that the loss in efficiency becomes increasingly more severe as the expected length of the 

observation period becomes large relative to the expected interoccurrence times. 

Let us now consider the effects of ignoring the right-censored observation for each unit. Let the 

"at-risk" process be given by Y*(t) = Ei=1 }i*(oo, t) = Ef=1 I:;JiT;-) I{Tij ;:::: t}, and define 

Nelson-Aalen and product-limit type estimators of A(t) and P(t) as 

A(t) = {t N(dw) 
lo Y*(w) 

t 

and F(t) = II [1- A(dw)]. 
w=O 

Define y*(t) = E{Yt(oo,t)} = y(t)- P{T- SNt(-r-);:::: t} and 

B(t) = {t [y(w)- y*(w)] A(dw) = {t [P{T- SNt(-r;-);:::: w}] A(dw), (32) 
Jo y*(w) Jo y*(uw) 

and suppose t* satisfies y*(t*) > 0. Then, SUPo::;t::;t·IA(t) - A(t) - B(t)i = op(1). Since the 

integrand in (32) is strictly positive, it follows that A(t) is inconsistent for A(t). Moreover, it is 

clear that analogous results hold for the estimator F(t). In particular, since B(·) is continuous, 

then by virtue of the product-integral representation, we have 

sup IF(t) -P(t)exp{-B(t)}i =op(1). 
O:Sf:St* 

It follows that F(t) will be inconsistent for P(t), and in fact underestimates it fort:::; t*. 

5 Correlated Recurrence Time Data 

The product limit estimators (20) and (22) are valid assuming that the interoccurrence times 

represent an i.i.d. sample from some underlying distribution function F. This assumption is 

clearly restrictive in biomedical applications, and one obvious generalization allowing association 

between interoccurrence times is a frailty model. Specifically, suppose that for a given unit or 

subject, there exists a random variable Z with distribution Hz such that given Z = z, the event 

interoccurrence times {Tj,j;:::: 1} are i.i.d. with some distribution F(·iz). In the case where Z 

is not observed, the goal of the analysis is generally to estimate the marginal survivor function 

F(·) = fF(·iz)dHz(z). 

The product-limit estimator, which was developed under the i.i.d. model, is expected to yield 

a biased estimator of the marginal interoccurrence time distribution in such a setting. As a 

referee has pointed out, a unit with many short recurrence times will contribute more terms 

to the likelihood function (i.e., see Section 3.2). Thus, the likelihood will tend to emphasize 

shorter recurrence times, causing problems in situations where this does not occur completely 

at random (i.e., outside the i.i.d. setting). Indeed, the problem is more serious, for in Section 

5.1 we shall demonstrate that the product-limit estimator is inconsistent in the case where the 

within-unit recurrence times satisfy a multiplicative frailty model, and derive the asymptotic 
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bias of the product-limit estimator in the case where the within-unit recurrence times follow a 

mixed Poisson process. In Section 5.2 we provide an estimator of the marginal interoccurrence 

time distribution under the assumption that the frailty variable Z follows a gamma distribution. 

Finally, in Section 5.3 we briefly discuss an estimator recently proposed by Wang and Chang 

{1999) that is valid for both i.i.d. and correlated recurrence times. We compare the performance 

of the product-limit estimator to these other estimators under various degrees of correlation in 
Section 6. 

5.1 Inconsistency of the PLE 

A specific type of model that results in correlated within-unit interoccurrence times is a mul­

tiplicative frailty model; see, for instance, Vaupel {1990), Heckman and Singer {1984), Oakes 

{1989, 1991), Andersen, Borgan, Gill and Keiding {1993) and Murphy {1995). In this model it 

is postulated that there exists for each unit an unobservable positive-valued frailty Zi such that, 

conditionally on Zi = z, the interoccurrence times 1i1, Ti2, ... are i.i.d. with common conditional 

survivor function 

F(tiZi = z) = [Po(tW = exp { -z ht .Xo(u)du}, {33) 

where .Xo{·) is the hazard function associated with Fo{·). The frailties Z1, Z2 , ... , Zn are assumed 

to be i.i.d. from an unknown distribution function Hz. Under this model, the marginal survivor 

function of Tij is 

F(t) = E{Ff1 (t)} = 'f/;[Ao(t)] (34) 

where 'f/;(u) = E{ exp( -uZ1)} is the Laplace transform of Z1 and Ao(t) = -log[F0{t)] is the 

cumulative hazard function of Fo. The marginal cumulative hazard function under the multi­

plicative frailty model can be written 

A(t) =- {t '1/!'(Ao(u)) .Xo(u)du = {t E[Z1FoZt (u)] .Xo(u)du 
Jo '1/!(Ao(u)) Jo E[Ff1 (u)] ' 

both representations following immediately from the definition of '1/1(·). 

In both non- and semi-parametric settings the survivor function Fo, hence P, are left unspecified. 

The following result characterizes the asymptotic behavior of the product-limit estimator in the 

case where the recurrence times satisfy a multiplicative frailty model. For convenience we focus 

on the limiting behavior of the Nelson-Aalen estimator and consider the case where s = oo only. 

Theorem 4 Lett ~ t* where t* satisfies E[n-1Y(t*)] > 0 and A(t*) < oo. Then, under the 

frailty model {33}, A(t) ~ JJ 'Y(w).Xo(w)dw as n -too, where 

'Y(t) = 
E { Z1Fo(t) 21 [ 1 + G(t-)-1 ft00 p(w- t1Ff1 )dG(w)]} 

E { F0 (t)Zt [ 1 + G(t- )-1 ft00 p(w- ti.Ff1 )dG(w)]} ' 

19 

(35) 



and p(-IF0z 1 ) is the renewal function associated with the conditional survivor function F(·IZ1 ) = 

Fo(·)z1 • Moreover, A(t) is consistent for A(t) if and only if 

E[Z1 exp{ -Z1Ao(t)}'lf(t, ZI)] 
E[exp{ -Z1Ao(t)}w(t, Z1)] 

where w(t, Z) = 1 + a-1(t-) ftoo p(w- tiFl)dG(w). 

E[Z1 exp{ -Z1Ao(t)}] 
E[exp{ -Z1Ao(t)}] ' 

(36) 

The proof of this theorem is presented in the appendix. Because the renewal function uniquely 

determines the interoccurrence time distribution, a necessary and sufficient condition for the 

recurrence times to be i.i.d. is that p(wi.Fl1 ) is constant as a function of Z1. This occurs if 

Z1 has a degenerate distribution function, in which case (36) clearly holds. We conjecture, 

but have not yet been able to prove, that a necessary condition for (36) is that p(wiFcf) is 

a constant function of z. The following corollary establishes that the product-limit estimator 

is inconsistent when Fo(t) = exp{ -Ot}, or equivalently, when the within-unit recurrence times 

denote the waiting times of a mixed Poisson process and the renewal function p(wiFcf) is a linear 

function of z. 

Corollary 1 Suppose Fo(t) = exp{ -Ot} for 0 > 0. Let 'lj;(u) = E{ exp( -uZ1)} denote the 

Laplace transform of zl, and suppose that zl is not degenerate. Then, with rt = (]-l (t- )0 ft00 (w­

t)dG(w) and !*(t) = -'1/J'(Ot)j'lj;(Ot), 1(t) = [!*(t) + rt ~~~~~)] / [1 + rn*(t)] fort::; t*. More­

over, A(t) is not a consistent estimator of A(t) fort::; t*. 

An exact formula for the asymptotic bias of the product-limit estimator may be obtained by 

specifying the frailty distribution Hand the censoring distribution G. Below we consider choices 

pertinent to our simulation study in Section 6. Corollary 2 will allow us to compute the asymp­

totic bias and compare it to the simulated bias under the different levels of association between 

within-unit interoccurrence times considered in Section 6. 

Corollary 2 Suppose Fo(t) = exp{ -Ot} for 0 > 0, and suppose further that the frailty dis­

tribution is Gamma(a,a) so that the density function isA h(z) = aaza-lexp{-az}/f(a), and 

G(t) = exp{ -ryt}. Then the asymptotic bias of the PLE F(t) fort such that y(t) > 0 is 

AsyBias(t; a, 0, ry) =-(a~ et) (e! 7J) (a; et) a (37) 

The bias formula (37) is informative. For example, as a --+ oo (i.e., the independence model), 

the limiting bias converges to zero, as expected. For a < oo, we see that F(t) underestimates 

the true marginal distribution, with the bias becoming more severe as the level of association 

increases (i.e., a decreases). Interestingly, as the mean period of observation per unit increases 

(i.e., 7J decreases, which also implies an increase in the observed number of recurrences per unit) 

the magnitude of the asymptotic bias increases. 
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5.2 Estimation under a Gamma Frailty Model 

A common and convenient choice of frailty distribution is a gamma distribution with shape and 

scale parameters set equal to an unknown parameter a; cf., Corollary 2. With this choice the 

common marginal survivor function (34) simplifies to 

(38) 

As alluded to in the previous section, the parameter a controls the degree of association between 

interoccurrence times within a unit. Specifically, as a increases (decreases), association decreases 

(increases); letting a -7 oo, we obtain a model with independent interoccurrence times in which 

the Ti/s have a common survivor function of Fo. In fact, Zi ~ 1 fori= 1 ... n as a -7 oo. 

We consider here the case for general s ::::; oo. When the gamma frailty model holds, then 

conditional on Zi = Zi, the compensator of Nl (s) is Aj (slzi) = Zi I~ Y/ (v )Ao [Ri(v )]dv, i = 1 ... n. 

Therefore, analogously to Section 3.2, the conditional likelihood over [0, s] is 

The conditional NPMLE of A0 (t) based on the preceding likelihood is easily ,shown to be 

A ~it Ni(s,dw) 
Ao(s,tizl,Z2, ... ,zn) = ~ Y:( )' 

i=l 0 Zi i S, W 

Since zl, z2, ... 'Zn are unobservable, neither L(slzl, Z2, ... 'Zn) nor Ao(s, tizl, Z2, ... 'Zn) can 

be computed. Multiplying L(sizl, Z2, ... 'Zn) by the joint density of (Zl, z2, ... 'Zn) yields 

Therefore, given a, Ao(·), and {(Nl{v),Y/(v)): v E [O,s],i = 1,2, ... ,n}, it follows that 

Z1, Z2, ... , Zn are independent, with Zi having a gamma distribution with shape parameter 

a+ Nl(s) and scale parameter a+ I~ Y/(v)dAo[~(v)]. Hence 

{ t t . ._ }- a+Nl(s) E Zila,Ao(·),{(Ndv),Yi(v)).vE[O,s],~-1,2, ... ,n}- 8 t · 
a+ Io Yi (v)dAo[~(v)] 

Integrating out z1, z2, ... , Zn in L(s, z1, z2, ... , Zn), we obtain the likelihood function 

Lp(s) =IT r(a + Ni (s)) s t a ' II Yi (v)Ao (Ri(v)) ' . t [ lo+Nt(s) ( [ t ]Nt(b.v)) 
i=l f(a) a+ Io Yi (w)_A.o(Ri(w))dw v~s a 
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Given Ao(·), this likelihood can be maximized to obtain an estimate of a. However, joint maxi­

mization of this likelihood with respect to a and Ao(·) is more difficult. Fortunately, the prop­

erties demonstrated above, together with ideas in Nielsen, Gill, Andersen and Sorensen (1992), 

suggest using the EM algorithm (Dempster, Laird and Rubin, 1977) for obtaining maximum 

likelihood estimates of a and Ao(·). We describe one such implementation below. 

Given the data in (2), denote the distinct ordered observed interoccurrence times by t(l) < t(2) < 
... < t(Q)• and the number of observed failures at t(l) until calendar times for unit i by 

Furthermore, denote the estimates of the baseline hazard probabilities at t(l) by .\(l) ( s), l 

1, 2, ... , Q, and the corresponding cumulative hazard estimate 

Ao(s, t) = L \l)(s). (39) 
{l: t(l):Sf} 

The E-Step of the algorithm proceeds as follows: Given estimates & and .\(l) ( s), l = 1, 2, ... , Q, 
obtain estimates of the unobserved frailties via 

A &+N/(s) 
zi = Q A ' i = 1, 2, o o o 'n. 

& + 2::1= 1 >.(l) ( s )Yi(s, t(l)) 

The M-Step of the algorithm requires two steps. First, given Zi, i 
updated estimates 

1, 2, ... , n, obtain the 

\ ( ) _ L~1 d(l)i(s) 
A(l) S - n A , 

Li=l ZiYi(s, t(l)) 
l = 1, 2, ... 'Q. 

Then, obtain an updated estimate & of a by maximizing the log-profile likelihood function 

l(s;~) 

(40) 

with respect to~= a/(1 +a), where Cis a constant independent of~ (i.e., a). 

This alternating E-step and M-step iterative process is terminated when the values of &, 

.\(t)(s),l = 1,2, ... ,Q, and Zi,i = 1,2, ... ,n, have stabilized. Upon convergence, the common 

marginal survivor function of the interoccurrence times is estimated via 

[ 

A ] & "" a F s t = 
( ' ) & + Ao(s, t) ' 

(41) 

where A0 (s, t) is defined in (39). One may view this estimator as directly generalizing F(s, t) 
to the gamma frailty model. The i.i.d. model is achieved by letting a --r oo, which forces the 
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A -

Zi's to converge in probability to unity. Thus, P and P are expected to be close under the 

i.i.d. model. However, these two estimators need not coincide under the i.i.d. model due to the 

need to estimate a, whose estimate may be finite in a given sample. The fact that a must be 

estimated indicates, at least intuitively, that there will be a consequent loss in efficiency when P 
is applied to data generated under an i.i.d. model. Under the i.i.d. model and ~s the sample size 

n increases, we expect that a will converge in probability to a = oo and F - F will converge in 

probability to zero. Nevertheless, further work is needed to understand both the finite sample 

and asymptotic behavior of P(s, t). The asymptotic behavior of this estimator can potentially 

be characterized by extending the results of Murphy (1995); see also Parner (1998). For now, 

we content ourselves by investigating its finite sample behavior through simulation in Section 6, 

where we also compare it to F and another estimator to be described in the next section. 

5.3 Estimator of Wang and Chang (1999) 

Wang and Chang (1999) proposed an estimator of the common marginal survivor function 

in the case where within-unit interoccurrence times are correlated. The correlation structure 

considered by Wang and Chang (1999) is quite general and contains, in particular, both the 

i.i.d. and multiplicative (hence gamma) frailty models as a special case. Their estimator, taking 

the weights (ai's, in their notation) to all be unity, is given by 

(42) 

where, with K{ = I{Ki = 0} + Kil{Ki > 0}, d*(t) = 2::£=1 {[K{]-1 2::~ 1 I{lii = t}}; R*(t) = 

l:i=l [Ki]-1 { 2::~1 l{Tij;::::: t} + l{ri- SiK; ;::::: t}I{Ki = 0}}, and 'Td,(s) =distinct elements of 

T(s) with T(s) = {Tij:j=1,2, ... ,Nit(s/\ri);i=1,2, ... ,n}. This estimator removes the 

bias noted for the product-limit estimator when recurrence times are correlated within units. 

However, when applied to i.i.d. iinteroccurrence times, the estimator S(t) is not expected to 

perform as well as F(t), especially with regard to efficiency. 

6 Simulation Results 

Simulation studies were performed to examine the small to moderate sample size properties 
A A 

of the estimator F(t) = F(oo, t) under the renewal model for which it was developed. In 

particular, biases and root-mean-square-errors (RMSEs) for this estimator, as well as the Wang­

Chang estimator S(t) and the gamma frailty model NPMLE F(t) = F(oo, t), were obtained 

under the independent interoccurrence times model. In addition, biases and RMSEs of all 

three estimators were also obtained under a gamma frailty model with Fo(tiO) = exp{ -Ot} and 

G(tiry) = exp{ -ryt}. 
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The simulations were carried out in a combination of S-Plus and Fortran. Simulated biases 

and standard errors of F(t) (labelled IIDPLE), S(t) (labelled WCPLE), and F(t) (labelled FRMLE) 

were obtained for equally-spaced values t1, l = 1, 2, ... , 40 of duration time t over the interval 

[0, 2) based on m = 1000 replications. In order to use our EM algorithm for computing F(t) 

there was a need to provide initial estimates for Zi, 1 ... n. To automate this process in the 

simulation runs, we simply set Zi = Zi, i = ... n in the initial E-step, and then proceeded 

with the algorithm as described earlier. The estimate of a, obtained by maximizing the profile 

likelihood (40) with respect to~= a/(1 +a), is obtained using a combination of golden section 

search and successive parabolic interpolation (Brent, 1973). This procedure provided a fast and 

robust method of determining &. In Table 2, we present summary statistics pertaining to the 

estimation of~= a/(1 +a) in our simulation runs. 

The simulation parameters were combinations of n E {20, 50, 80}, () E {3, 6}, rJ = 1, and 

a E { oo, 6, 2}. The value of a = oo corresponds to the independent interoccurrence times 

model. Results obtained are reported for () = 6; results for () = 3 show similar patterns. Table 2 

reports summary data for the estimated values of a obtained for the different sample sizes and 

true a values. Figure 2 compares the performance of the three estimators for n = 50. Figure 3 

depicts the effect of the degree of association on the performance of the estimators. Figure 4, 6, 

and 7 respectively illustrate the effect of sample size on the performance of F(t), S(t) and F(t). 

Finally, Figure 5 compares the simulated bias of the PLE and the asymptotic bias expression 

given in Corollary 2. 

Comparison of Estimators: By examining Figure 2 and Figure 3, it is evident that the 

Wang-Chang estimator S has negligible bias for the three values of a considered. The estimator 

F, which is also theoretically appropriate in each of these cases, is seen to have a slight bias in 

the right tail. This tail bias is likely due to the fact ( 41) is almost surely positive in the presence 

of censoring; for example, if we let & -+ oo the resulting estimator converges to exp{ -A(t)}, 
which can never equal zero. Under the independence model (a = oo), the estimator F also 

has negligible bias; in fact, the simulated bias is almost always nonnegative, consistent with 

the theoretical results. However, when association is introduced in the model (i.e., for a = 6 

and a= 2), the bias ofF becomes severe, increasing as the association among the within-unit 

interoccurrence times becomes stronger. Moreover, the simulated bias functions ofF for a= 6 

and a = 2 are now both negative, which is expected in light of Corollary 2. 

When we examine the RMSE functions in Figure 2, we immediately notice that F dominates 

both F and S under the independence model (a = oo). The latter result is not surprising since 

S is not expected to be optimal under the independence model, a fact we noted earlier. The 

fact that F dominates F is, similarly to before, a likely result of the positivity of F. Under 

the gamma frailty model, we see that F outperforms S, leading to a smaller RMSE, hence 

trading bias for efficiency. In contrast, F performs very poorly compared to either S or F, 
especially for shorter duration times and strong levels of association. Indeed, the inconsistency 

of the estimator F under the frailty model renders it an unacceptable estimator for this case. 
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Evidently, by examining Figure 3, the performance of all of these estimators degrades as the 

level of association among the within-unit interoccurrence times increases. 

Effect of Sample Size: Figure 4 presents plots of the simulated bias and RMSE functions 

as the sample size n changes for the estimator F. We immediately notice the detrimental 

impact of strong association between the within-unit interoccurrence times. For a = 2 or 

6, there is negligible improvement in RMSE when n is increased, with the performance ofF 

degrading as the association increases. This occurs because the RMSE is dominated by the bias 

component, which is negligibly affected by the change in sample size and an obvious indicator 

of its inconsistency under the gamma frailty model (see Corollary 1). In Figure 5, we overlaid 

the plots of the theoretical limiting bias function (37) and the simulated bias functions of P for 

n E {20, 50, 80} and a E {2, 6} for()= 6 and 71 = 1. The close agreement between the theoretical 

and empirical functions for large n shows that the bias observed here is real. 

REMARK: The product-limit estimator is not guaranteed to be inconsistent in the presence 

of any dependence. For example, if the correlation of within-unit interoccurrence times 'Li! 
and Tih approaches zero as lj1 - j2l increases (e.g., a weakly-mixing model), it is possible for 

consistency to be achieved; see Cai and Roussas (1998) for related results. 

Figures 6 and 7 respectively depict the simulated bias and RMSE functions for S and F as 

the sample size changes. From these plots, one can discern that increasing the sample size 

improves the performance of both estimators. These results seem to indicate that the bias 

of the MLE under the frailty model diminishes as the sample size increases, indicating the 

promising possibility that this estimator is consistent when the interoccurrence times obey the 

gamma frailty model. 

7 Application: Small Bowel Motility 

We apply the various estimators discussed in the preceding sections to data from a study con­

cerning small bowel motility (Husebye, Skar, Aalen and Osnes, 1990). A description of the 

data, as well as the data itself, is presented in Aalen and Husebye (1991). The main object of 

their analysis is to estimate the mean length of the Migratory Motor Complex (MMC) period 

(i.e., the mean interoccurrence time), and two approaches are considered: the first based on a 

variance component model, and the second using an intensity-based formulation with a gamma 

frailty component and a parametrically specified hazard (i.e., Weibull). The renewal assumption 

(i.e., i.i.d. interoccurrence times) for each subject in this data set needs to be formally verified; 

however, Aalen and Husebye (1991, p. 1229) stated that the "consecutive MMC periods for each 

individual appear (to be) approximate renewal processes." Statistical methods for checking this 

renewal assumption in the presence of recurrent data of the type considered here do not appear 

to be available. The various nonparametric estimators discussed here should prove useful in 

developing such validation procedures. 
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To serve as a concrete illustration, we computed the IIDPLE F(t), the WCPLE S(t), and 

the FRMLE F(t) for these data. The resulting estimates of the interoccurrence time survivor 

function are presented in Figure 8. For aesthetic purposes, we have connected the points by lines 

instead of presenting as step-functions. The similarity of these survivor function estimates is 

striking. Based on the results of our simulation study, one may infer that such similarity would 

only be expected in the i.i.d. setting (exactly or approximately so). Thus, we regard the excellent 

agreement among the three estimates as providing support for Aalen and Husebye's assertion 

that the renewal assumption is valid. The estimate of the frailty parameter a used for computing 

F(t) is & = 10.18, indicating weak association among the within-subject interoccurrence times; 

for comparison, the estimate obtained by Aalen and Husebye (1991, Table III) under the Weibull 

hazard assumption is a = 6.85 = 1/0.146. These results provide additional support for this 

conjecture. 

Using these estimates, the corresponding estimates of the mean MMC period length (in min­

utes) are p,[F(-)] = 104;1; p,[S(·)] = 106.0, and p,[F(-)] = 105.5. For comparison, the estimate of 

the mean MMC period length obtained under Aalen and Husebye's (1991) variance-component 

model is 106.8 minutes, while that from their Weibull-intensity parametric model is 107.7 min­

utes. For these data, we see that the point estimates for the mean MMC period length largely 

remain unaffected by the method of analysis. 
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8 Appendix: Proofs and Technical Details 

Proof of Proposition 2: 

Under the assumptions of this paper it is automatic that {M(s, t), s ~ 0} is a local square 

integrable martingale for every fixed t ~ 0. By Corollary 4 of Protter (1990, p. 67), if the 

limiting expected quadratic variation is finite (i.e., iflims--+oo E{[M(·, t), M(·, t)](s)} < oo), then 

{M(s, t), s ~ 0} is a square integrable martingale for every fixed t ~ 0. Notice that 

lim E{[M(·, t), M(·, t)](s)} = lim E{A(s, t)} = lim E{N(s, t)} = E{N(T, t)}. s--+oo s--+oo s--+oo 

Since E{A(s, t)} = E{ (M(·, t), M(·, t))(s)}, the desired result holds provided E{N(T, t)} < 
oo. However, E[N(T,t)] ~ nE[N{(T)] = nE[l:_i=1 I{S1j ~ T}] = nE[p(T)], the last equality 

resulting from the definition of the renewal function and the independence ofT and {T11 , T12 , ... }. 

Since E[p(T)] < oo by assumption, the result holds. II 

Proof of Proposition 3: We establish the result for y(t) using a renewal argument; the 

result for y(s, t) is easily obtained by replacing T1 with Tl(s) = s 1\ T1 and G(·) by Gs(·). Let 

Ht(v) = E{Y1(t)h = v}. Integrating with respect to the realization ofTn, we have 

Ht(v) = fov E{Y1(t)h = v,Tn = w}dF(w) + 100 E{Y1(t)h = v,Tn = w}dF(w). 

Ifw > v, then K1 = 0, so Y1(t) = I{v ~ t}, hence E{Y1(t)jT1 = v,Tn = w} = I{v ~ t}. On the 

other hand, if w ~ v, then E{Y1(t)h = v, Tn = w} =I{ w ~ t} + Ht(v- w). Consequently, 

Ht(v) = I{v ~ t}F(v) + fov {I{w ~ t} + Ht(V- w)} dF(w) 

from which it is easily seen that Ht(-) satisfies the renewal equation 

Ht(v) = F(t)I{v ~ t} + fov Ht(v- w)dF(w). (43) 

Since F(t)I{v ~ t} is a bounded function in v, then for v ~ 0 the unique locally bounded 

solution of (43) is (e.g. Resnick, 1994, Thm. 3.5.1) 

Ht(v) = F(t)I{v ~ t} + fov F(t)I{v- w ~ t}dp(w) = F(t)[I{v ~ t} + p(v- t)], 

the last relation following from the fact that p(O) = F(O) = 0. Averaging out T1, we obtain 

y(t) = {oo Ht(v)dG(v) = F(t)G(t-) + F(t) { p(v- t)dG(v). 
Jo l[t,oo) 

The stated properties of y(s, t) are easily obtained from the formula for y(s, t) given in the 

statement of the result and the fact that lims--+oo Gs(u) = G(u). That y(O) < oo follows from 
the fact that P and G are survivor functions (hence bounded above by 1) and the assumption 

that E[p(T)] = f000 p(w)dG(w) < oo. II 
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Proof of Proposition 5: 

Set lt ( v) = E{ I { 71 - S1K 1 ~ t} h = v}. Integrating with respe<;t to Tu, we obtain the renewal 

equation lt(v) = J; lt(v -w)dF(w) +I { v ~ t}F(v). The locally bounded unique solution to this 

renewal equation is (cf., Resnick (1994)) lt(v) = I{v ~ t}F(v) + J;-t F(v- w)dp(w). Averaging 

over 71 (i.e., integrating with respect to G(v)), we thus obtain 

E{I{71- S1K1 ~ t}} = E{Jt(71)} loo {P(v) + fov-t F(v- w)dp(w)} dG(v) 

= G(t-)E { Fh) + fo71
-t F(r1- w)dp(w)h ~ t}. 

The second result now follows directly from the fact that Yt(t) = Y1 (t) -I { r 1 - S1K 1 ~ t} and 

Proposition 3. II 

Proof of Theorem 2: 

To prove the first result, it suffices to show that supo<t<t• IA(s, t)- A*(s, t)l ~ 0; this follows 

because IA(s, t)- A(t)l ~ IA(s, t)- A* (s, t)l + lA * (s, t) ~ A(t)l and sup099• lA * (s, t)- A(t)l ~ 0 

as n -t oo. We have 

A * 11ft[ J(s,w) 1 J I 11 [tM(s,dw)l 
IA(s, t)- A (s, t)l ~ -:;, Jo [Y(s, w)jn] - y(s, w) M(s, dw) + -:;, Jo y(s, w) . (44) 

Considering the first term of ( 44), we obtain 

1

1 lot [ J(s, w) 1 ] M( d ) I sup - - s w 
os;ts;t• n o [Y(s, w)jn] y(s, w) ' 

{ I J(s,t) 1 I}{N(s,t*) lint• } ~ sup [Y( )/ ] - -(-) +- Y(s,w)>.(w)dw . os;t::;t• s,t n y s,t n n o 

Proposition 4 and the WLLN show that the right-hand side is op(l)Op(l); thus, 

1
1 lot [ J ( s, w) 1 J I sup - [Y( )/ ] - ( ) M(s, dw) = op(l). o::;t::;t• n o s,w n y s,w 

By Theorem 1 of PSH (2000), the process { Jn J~ y(s~w)M(s, dw): t E [0, t*]} converges weakly 

to a zero-mean Gaussian process {V00 (s, t) : t E [0, t*]}, so that for each a > 0 and as n -t oo, 

and by applying the continuous mapping theorem, 

p { sup I ~ rt ( 1 )M(s,dw)l >a} -t p { sup IV00 (s,t)1 >a}. 
os;ts;t• vn lo y s,w os;t::;t• 

Fix an arbitrary E > 0. Choose a B > 0 such that P{sup099• IV00 (s, t)l ~ B} ~ t:/3. Also, let 

n 1 be such that whenever n ~ n1, 

lp{ sup I~ rt ( 1 )M(s,dw)l ~B} -P{ sup IV00 (s,t)1 >B}I ~ _3E. 
o::;t::;t· v n lo y s, w os;t::;t· 
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p { sup I! rt ( 1 ) M(s, dw)l ~ E} :::; p { sup IV00 (s, t)l ~ B} + o::;t::;t• n lo y s, w o::;t::;t• 

lp{ sup I~ rt ( 1 )M(s,dw)l~vnE}-P{ sup IV00 (s,t)I~B}I 
o::;t::;t• v n lo y s, w o::;t::;t• 

E E E 
< 3 + 3 + 3 =E. 

Hence SUPo::;t::;t·l~ JJ y(s~w)M(s,dw)l = op(1), establishing the uniform consistency of A(s,t). 

To prove uniform consistency of F(s, t), we first recall the product-integral representation of 

F and F, which are F(s, t) = n~=O [ 1- A(s, dw)] and F(t) = n~=O [1- A(dw)]. Using the 

Duhamel equation (Andersen et al., 1993, Thm. 11.6.2), we obtain 

F(s, t) - F(t) = rt F(s, w-) [AA ( d ) - A(d )] [0 *] 
F(t) Jo F(w) s, w w ' t E 't . (45) 

Applying the integration-by-parts formula on the right-hand side of ( 45) and noting that A( s, 0) = 
A(O) = 0, we obtain 

rt F(s,w-) [A ] F(s,t) [A ] rt [A ] {F(s,w)} Jo F(w) A(s, dw)- A(dw) = F(t) A(s, t)- A(t) - Jo A(s, w)- A(w) dw F(w) , 

where dw means that integration is being taken with respect tow. Consequently, 

Now, 

rt*l {F(s,w) }I rt• [ 1 A F(s,w) } { 1 A(t*)} 
lo dw F(w) :::; lo F(w)F(s,dw) + F(w) 2 F(dw) :::; F(t*) + F(t*) ' 

which is finite since A(t*) < oo, and ~ence F(t*) > 0. Therefore, since sup099• IA(s, t) -A(t)l = 
op(1), it now follows that SUPo::;t::;t• IF(s, t)- F(t) I = op(1), completing the proof of the theorem. 

II 

Proof of Theorem 3: 

Since 

[

A ] 1 rt J(s,w) rt 
Vn A(s, t)- A(t) = Vn lo [Y(s, w)/n] M(s, dw) + Vn lo [J(s, w)- 1]A(dw), (46) 

it suffices to show that the first term on the right-hand side converges weakly to V 00 (s, ·) and 

that SUPo::;t::;t• lvn JJ[J(s, w) - l]A(dw)l = op(1). We prove the latter first. Since for each 

t E [0, t*], {Y(s, t) = 0} ~ {Y(s, t*) = 0} because Y(s, t) is nonnegative and nonincreasing in t, 
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wehavesup099.1Fnf~[J(s,w) -1]A(dw)l:::; y'nA(t*)I{Y(s,t*) = 0}. By Markov's Inequality, 

and using the facts that A(t*) < oo and n(s, t*) < 1 as implied by y(s, t*) > 0, then for each 

0 < E < 1, P { y'nA(t*)I{Y(s, t*) = 0} > ~:} :::; y'nA(t*)[n(s, t*)]n /E---+ 0 as n---+ oo. Therefore, 

supo:;t:;t• IFn J~[J(s, w)- 1]A(dw)l = op(1). 

Let us now consider the first term on the right-hand side of (46). For this purpose, let 

Hi(s,t)=H(s,t)=y~(s,;) ,i=1,2, ... ,n, and h(s,t)=-(1 )I{t::;s}. 
s, t n y s, t 

Note that H(s, t) is left-continuous in s and t and adapted, hence predictable, and is also 

bounded by unity. Also, since y(s, t) ~ y(s, t*) whenever t E [0, t*] and y(s, t*) > 0, then 

h(s, ·)is a bounded function on [0, t*]. Furthermore, since supo<t<t• I.!.Y(s, t)- y(s, t)l ~ 0 by 
-- n 

Proposition 4, SUPo:;tst• IH(s, t)- h(s, t)l ~ 0. Also, we have that 

lot lot >.(w) 
cr2 (s, t) = h(s, w) 2 y(s, w).\(w)dw = ( ) dw = d(s, t) 

0 0 y s,w 

is finite for each t E [0, t*] because y(s, t*) > 0. Consequently, by Theorem 1 of PSH (2000), 

{ Jn I:i=l J~ H(s, w)Mi(s, dw) : t E [0, t*]} converges weakly on 'D[O, t*] to the process {V00 (s, t) : 
t E [0, t*]} stated in the statement of the theorem. This completes the proof of part (i) of the 

theorem. 

To prove part (ii) we first note that y'n { [F(s, t) - F(t)] / F(t)} equals 

rt F(s,w-) J(s,w) rt F(s,w-) 
-y'n lo F(w) Y(s, w) M(s, dw) + Fn Jo F(w) I{Y(s, w) = O}A(dw). (47) 

Since sup099.1y'n J~ F~(:)) I {Y(s, w) = O}A(dw) I :::; y'n ~t~:~ I {Y(s, t*) = 0}, and because the 

upper bound converges in probability to zero by Markov's inequality, the second term on the 

right-hand side of (47) is op(1). The first term on the right-hand side of (47) can be expressed 

as 
rt F(s, w-) J(s, w) 1 ~ rt 

Vn lo F(w) Y(s, w) M(s, dw) = y'n £;;;_ lo H(s, w)Mi(s, dw) 

h H . ( t) - H( t) - F(s,t-) nJ s,t . - 1 2 s· p"' ( t ) . l ft t" . w ere now z s, - s, - F(t) y s,t , 2 - , , ••• , n. mce s, - IS e -con muous In 
both sand t, H(s, t) is a bounded predictable process. If we can show that 

I

F(s,t-)nJ(s,t) 1 I pr 0 sup - -- --=--t 
ostst· F(t) Y(s, t) y(s, t) ' 

(48) 

then part (ii) of the theorem will follow from Theorem 1 of PSH (2000). We may write 

I

P(s,t-)nJ(s,t) 1 I 1 I J(s,t) 1 I 
o~~ft• F(t) Y(s, t) - y(s, t) :::; F(t*) o~~ft• [Y(s, t)/n] - y(s, t) + 

( ~F( ) sup IF(s, t-) - F(t) I· y s, t* t* O:;t:;t• 
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Proposition 4, Theorem 2, the assumed continuity ofF(-), and the fact that F(t*) > 0 and 

y(s, t*) > 0 now imply that (48) holds. This completes the proof of the theorem. II 

Proof of Theorem 4: 

Let Mi(s, tiZi) = Ni(s, t)- J~ Yi(s, w)Zi.>..o(w)dw fori= 1, 2, ... , n. Then, 

Using Proposition 1, the first term on the RHS of (49) becomes 

1 ~ { 8 [ J(s, Ri(v)) ] t -:;;, 6_ Jo Y(s, ~(v))/n I{Ri(v) ~ t}Mi (dviZi), (50) 

where Ml (siZi) =Nit (s)- fo~ }it (v)Zi.>..o(~(v))dv, i = 1, 2, ... , n. Conditional on Z1, Z2, ... , Zn, 
(Mf (s), MJ (s), ... , M!,_(s)) are orthogonal square integrable zero-mean martingales with (condi­

tional) predictable quadratic covariation processes 

By stochastic integration theory, (50) is a zero-mean martingale under the frailty model. Hence, 

by the martingale central limit theorem, 

1 ~ { 8 [ J(s, Ri(v)) ] t 
Vn 6_ Jo Y(s,~(v))/n I{Ri(v) ~ t}Mi (dviZi) = Op(1). 

Consequently the first term on the RHS of (49) is op(1). The second term on the RHS of 

(49) may be written JJ [~ 2::~1 ZiYi(s, w) J / [~ I:i=1 Yi(s, w) J .>..o(w)dw. Using Proposition 4 and 
analogous arguments, we have 

11 ~ I pr 11 ~ I pr sup -L.,..Yi(s,t)-E[YI(s,t)] --=----+0 and sup -L....ZiYi(s,t)-E[Z1YI(s,t)] --=----+0. 
tE[O,oo) n i=l tE[O,oo) n i=l 

Consequently, JJ {[l::i=1 ZiYi(s, w)]/Y(s, w)} .>..o(w)dw ~ JJ r(s, w).>..o(w)dw as n---+ oo, where 
r(s,t) = E[Z1Y1(s,t)]/E[Y1(s,t)]. Letting s---+ oo establishes the first assertion in the theorem. 

To obtain the stated form of1(t), note that E{Z1Y1(t)} = E{Z1E[Yl(t)IZ1]} = E{Zly(t1Fl1 )}. 

By Proposition3 withF = Pl1 , we have y(ti.Fl1 ) = Fo(t)z1 [a(t-) + ft00 p(w- t1Fl1 )dG(w)] = 

Fo(t)z1 [G(t-) + ftoo p(w- ti.F0z1 )dG(w)]. Also, E{Y1(t)} = E{E[Y1(t)IZ1]} = E{y(tiF0z1 )}. 

Expression (35) for 1(t) in the statement of the theorem is now obtained upon substitution. 

Finally, since 1(t), .>..o(t), and E[Z1Fl1 (t)]/E[Fl1 (t)] are all positive, continuous functions of 

t, it follows that A(t) - JJ /(u).>..o(u)du = 0 for all t ~ t* if and only if the stated consistency 

condition holds except possibly on a countable set of points with Lebesgue measure zero. II 

Proof of Corollary 1: 
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When F0 (t) = exp( -Bt), one immediately obtains p(w1Fl1 ) = BZ1w. Substituting this into (35) 

and simplifying yields 

( ) -G(t- )1/J'(st) + 1/J"(st)G(t- )rt 
I t - ---=-c7--7---'---:-'--c:-'----:'-c-:-'-:-~:-'--'--'-

- G(t- )1/J(st) + 1/J'(st)G(t- )rt ' 

where St = Bt and rt is defined in the statement of the corollary. Dividing both numerator and 

denominator by G(t- )1/J(st) yields the stated result. 

Since Z1 is not degenerate and /*(t) = E[Z1Fl1 (t)]IE[Fl1 (t)] we must only show that /(t) =J 
!*(t) fort:::; t* in order to prove inconsistency. We shall prove this by showing that 1(t) = !*(t) 
for t :::; t* if and only if Z1 has a degenerate distribution function. Since t :::; t*, it follows that 

rt > 0. Assuming this to be the case, it is straightforward to prove that 1(t) = !*(t) if and only 

if 1/J"(A.ot)- [1/J'(Bt)J211/J(Bt) = 0 fort:::; t*. Without loss of generality we assume the mean of 

Z1 is 1. Then, under the initial conditions 1/J(O) = 1 and 1/J' (0) = -1, the unique solution to 

this differential equation is simply 1/J(Bt) = exp{ -Bt}. Recalling that 1/J(s) = E[exp{ -sZ!}] is 

the Laplace transform of Z, we see that 'ljJ(Bt) = exp{ -Bt} if and only if Z has a degenerate 

distribution function at Z = 1, proving the corollary. II 

Proof of Corollary 2: 

Since F0 (t) = exp( -Bt), we may use Corollary 1 to find 1(t). Making the substitution G(t) = 

exp( -ryt) yields Tt = e I'TJ upon simplification. Moreover, since zl rv Gamma( a, a), we have that 

1/J(Bt) = {al(a+Bt)}a. Thus, 1(t) = [11(t) + */2(t)] I (1 + */l(t)] for /l(t) = -1jJ'(Bt)I1/J(Bt) = 

al(a + Bt) and 12 (t) = 1/J"(Bt)I1/J(Bt) = a(a + 1)l(a + Bt). Upon simplification we obtain 

!( t) = ( a~l}t) { 1 + i [ { ( a~l}t) *} I { 1 + ( a~l}t) *}] } . Since A.o ( t) = e' it follows by Theorem 

4 that A(t) ~ e J~ !(w)dw. A suitable change-of-variables yields e J~ !(w)dw =a I::+l}t dvlv+ 

(aBiry) J;:+Ot dvl [v (v + aB/'TJ)], implying that A(t) ~ AF(t), where AF(t) = -log (a~etr-
log { (a~et)l(a(~~t;~ ~et)}. Since F(t) = rr~=O [1- A(dw)] and because AF(t) is continuous, 
it follows that 

"- pr ( a )n{( a ) ( a(1+B/'TJ) )} 
F(t) ~ exp{-AF(t)} = a+Bt a+Bt I a(1 +BITJ) +Bt · 

Under the gamma frailty model being considered, the true marginal survivor function of the 

interoccurrence times is F(t) = (a~etr. Hence, the limiting bias of F(t) is given by 

completing the proof. II 
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n = 20 n =50 n = 80 
t F(t) Mean SE ASE Mean SE ASE Mean SE ASE 

.10 .5488 .0149 .1959 .1934 .0118 .1942 .1934 .0069 .1874 .1934 

.20 .3012 .0160 .1888 .1842 .0141 .1867 .1842 .0056 .1734 .1842 

.30 .1653 .0140 .1653 .1548 .0030 .1575 .1548 .0013 .1486 .1548 

.40 .0907 .0126 .1382 .1248 .0009 .1228 .1248 .0003 .1283 .1248 

Table 1,_: Simulated means and standard errors, together with the asymptotic standard errors, 
of yn[F(t) - F(t)] for sample sizes n E {20, 50, 80}, () = 6, TJ = 1, and for different values oft, 
under the i.i.d. interoccurrence times model with F = EXP(()) and G = EXP(TJ). For each n, 
1000 replications were performed. 

True a 2 6 00 

n 20 50 80 20 50 80 20 50 80 
True~ .667 .667 .667 .856 .856 .856 1.00 1.00 1.00 

Mean of~ .718 .687 .681 .880 .871 .868 .987 .992 .992 
Median of~ .717 .685 .680 .889 .874 .869 .9995 .9996 .9997 

Observed S.E. of~ .125 .076 .062 .092 .060 .047 .029 .016 .013 

Table 2: Characteristics of the simulation runs for () = 6 and TJ = 1 with regards to the estimator 
a under the gamma frailty model. The reparametrization is~= a/(1 +a) and~= a/(1 +a). 
Each combination of a and n had 1000 replications. 
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t = .1 
(P(t) = .5488) 

t = .2 
(F(t) = .3012) 

t = .3 
(F(t) = .1653) 

t = .4 
(P(t) = .0907) 
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Figure 1: Boxplots of the simulated sampling distributions of ..jn[F(t) - P(t)] for sample sizes 
n E {20, 50, 80}, () = 6, 'fJ = 1, and for different values oft, under the model with F = EXP(B) 
and G = EXP(ry). 
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Figure 2: Simulated biases and root-mean-squared errors of the estimators F( oo, t) (IID­
PLE), S(t) (WCPLE), and under the frailty model, the maximum likelihood estimator F(oo, t) 
(FRMLE). The simulation parameters were n =50, e = 6, 'TJ = 1, and with 1000 replications. 
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Figure 8: Plots of the three survivor function estimators for the MMC data set. The maximum 
likelihood estimate of the frailty parameter a under the gamma frailty model is & = 10.17562, 
or, equivalently, &/(1 + &) = 0.9105. 
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