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The simulation of global illumination is one of the most fundamental prob-
lems in computer graphics, with applications in a wide variety of areas. This
problem studies the light energy transfer between reflective surfaces in an envi-
ronment. Initially derived from the field of thermal engineering, radiosity has
emerged over the past several years as one of the most promising solution meth-
ods.

Despite having produced some of the most realistic-looking computer gener-
ated images to date, radiosity methods have not yet met with widespread accep-
tance. The main obstacle has been their need for very careful and time consum-
ing user intervention, without which, current techniques are prone to generating
a wide range of annoying visual artifacts. These artifacts are generally due to
poor surface meshing, resulting in insufficient sampling density and ineffective

sample placement.



This thesis investigates the roots of this problem by taking a step back from
the traditional finite element formulation of radiosity and examining the more
general integral equation formulation. An analysis of the radiance functions de-
scribed by this equation shows how umbra and penumbra boundaries as well
as other sharp changes in illumination actually correspond to discontinuities in
the radiance function and its derivatives. The results of this analysis have led
to the concept of discontinuity meshing, whereby accurate approximations to the
radiance functions are computed by explicitly representing their discontinuities
as boundaries in the mesh.

This concept has been applied to the design of a discontinuity meshing al-
gorithm for polyhedral environments. The algorithm is embedded in a progres-
sive refinement radiosity system and uses piecewise quadratic interpolation to
reconstruct a smooth radiance function while preserving discontinuities where
appropriate.

The radiosity solutions produced by the new algorithm are compared against
a photograph of a physical environment, an analytical solution, and a conven-
tional, yet state-of-the-art, radiosity system, and its performance on architectural
models of medium complexity is measured. The results are remarkably accurate
both numerically and visually. The new discontinuity meshing algorithm drasti-
cally reduces, and in many cases eliminates, many of the annoying artifacts typi-
cal of conventional radiosity meshes, producing images of previously unattained
quality. Moreover, the meshing is completely automatic and produces solutions

that are highly view-independent.
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Chapter 1

Introduction

Realistic image synthesis is one of the oldest and most fundamental problems
of computer graphics. The initial attempts at creating convincing renderings of
reality were based on somewhat empirical techniques [GOUR71,PHON?75], but
their impact was so profound that those algorithms are now an essential compo-
nent of any modern graphics workstation. As the field matured, however, many
researchers have recognized the need for a more rigorous approach, whereby
image synthesis is not just the art of making “pretty pictures,” but is instead a
faithful simulation of physical laws.

Recently, much research in computer graphics has focused on global illumi-
nation, the complex phenomena describing the interaction of light energy be-
tween reflective surfaces in an environment. Over the past decade, two different
methods have emerged: Radiosity and Monte Carlo methods.

Initially derived from the field of thermal engineering [SPAR63], radiosity re-
duces the global illumination problem to a system of linear equations employing
techniques similar to those used in finite element analysis [GORA84,COHES5,
NISH85a].



Monte Carlo methods, instead, use the integral equation formulation of the
global illumination problem, and try to solve it by point sampling the integrand
using ray tracing techniques [KAJI86,WARDSS].

Both methods have generated some of the most realistic images to date and
both are very computationally intensive. However, there is a fundamental differ-
ence between the two: radiosity approaches compute solutions in object space,
while Monte Carlo methods yield solutions in image space. As a consequence,
the same radiosity solution can be used to render images from many different
viewer’s positions, while Monte Carlo methods must recompute the entire sim-
ulation every time the viewer’s position is changed. We classify algorithms ac-
cording to these properties into view-independent and view-dependent methods re-
spectively.

The ability to generate interactive “walk-throughs” from view-independent,
physically accurate, global illumination simulations, makes radiosity methods
attractive for a wide variety of applications, particularly enclosed spaces such as
in architectural design and lighting analyses.

Despite all the areas that could benefit from radiosity, this method has not
yet met with widespread acceptance. This is due for the most part to the lack
of satisfactory meshing algorithms. The meshing techniques used in current ra-
diosity systems are prone to generating a wide range of annoying visual artifacts
that can only be eliminated at the cost of tedious and time consuming manual
adjustments to the mesh, often made surface by surface and repeated on a trial-
and-error basis until a proper mesh density is found.

Clearly, new meshing techniques are needed to generate high quality solu-



tions with the degree of reliability and automation necessary for practical appli-
cations. This thesis investigates a new approach to meshing, discontinuity mesh-
ing, that is completely automatic and drastically reduces the visual artifacts that
afflict conventional radiosity algorithms. This approach promises to play a sig-
nificant role in bringing radiosity methods closer to the demands of useful ap-
plications.

An analysis of the characteristics of radiance functions provides the insight
and rationale behind the concept of discontinuity meshing. The analysis shows
how umbra and penumbra boundaries, as well as other sharp changes in illu-
mination actually correspond to discontinuities in the radiance function and its
derivatives. The shape, location, and order of these discontinuities is determined
by the interaction of the light sources and obstacles in the environment. Dis-
continuity meshing explicitly represents radiance discontinuities as boundaries
in the mesh. This is in contrast to standard techniques which generate mesh
elements by geometric subdivision alone. When one of these discontinuities
crosses a mesh element, a large error may occur because the simple interpola-
tion schemes used to reconstruct the radiance function cannot reproduce sharp
illumination changes within an element.

This idea has been applied to the design of a discontinuity meshing algo-
rithm for polyhedral environments. The algorithm is embedded in a progres-
sive refinement radiosity system for ideal diffuse reflectance distributions and
uses piecewise quadratic interpolation to reconstruct a smooth radiance func-
tion while preserving discontinuities where appropriate.

The actual implementation has generated some remarkably accurate solu-



tions for environments of moderate complexity, showing significant improve-
ments in both the numerical and the visual quality of the simulations. Although
the system is not yet suitable for very complex models, it does prove the validity
of the concepts and ideas, and our results suggest that discontinuity meshing
may become an important component of future radiosity systems.

A complete description of the algorithm and experimental results and com-
parisons is presented in the following sections.

Chapter 2 introduces the necessary terminology, discusses the global illumi-
nation problem with a formulation that is cast in terms of radiance functions,
and investigates the characteristics of the latter ones.

Chapter 3 reviews previous work, discussing favorable properties and limi-
tations of the meshing, direct energy transfer, and radiance reconstruction algo-
rithms used in current radiosity systems.

Chapter 4 discusses the design and implementation of a discontinuity mesh-
ing algorithm capable of capturing the illumination cast by a single area light
source of constant emission onto the surfaces of a polyhedral environment.

Chapter 5 presents a modified progressive refinement radiosity system that
uses the new discontinuity meshing algorithm, extending it to correctly compute
light transfers from secondary light sources.

Chapter 6 reports on a series of experiments designed to test the performance
of the new system and assess the validity of the ideas presented in the thesis.

Finally, Chapter 7 discusses advantages and limitations of the proposed meth-

ods and provides guidelines for future research.



Chapter 2

Radiance Functions

This chapter discusses the global illumination problem with a formulation that is
cast in terms of radiance functions. According to this formulation, each surface
in a scene has an associated radiance function that describes the illumination at
any point on the surface.

The characteristics of radiance functions are then investigated. This study
provides the tools for the analysis of past and current radiosity algorithms pre-
sented in the next chapter as well as the insight into the problem that led to the

new solution algorithms presented later in this thesis.
2.1 Definition of Terms and Symbols

This section introduces the symbols and definitions that will be used through-
out the rest of this thesis. Most of the units, symbols, and defining equation of
the fundamental radiometric quantities are taken from the IES Lighting Hand-

book [IES91] as given by the Illuminating Engineering Society.



Figure 2.1: Geometry for BRDF’s

Bidirectional reflectance-distribution function (BRDF): the ratio of the radiance
reflected in direction (6,, ¢,) to the radiant flux density incident from direc-
tion (6;, ¢;) through a unit solid angle (see Figure 2.1). The BRDF describes
the reflecting properties of a surface element placed at x and will be de-
noted by:

fr(x;6;, 6i; 0r, ¢r)
or by

Sl x,x").

The latter notation will be used to indicate radiant energy arriving at point

x from the direction of x’ and leaving x in the direction of x”.



Irradiance (E): the density of radiant flux incident on a surface (d®/dA). It is

denoted by E and measured in watts per square meter (Wm~2).

Radiance (L): the radiant flux per unit solid angle per unit projected area. More
precisely, the radiance leaving a differential surface area in direction (6, ¢)
(relative to the surface normal) is equal to d°®/(dwdA cos #). It is denoted

by L and is measured in watts per steradian per square meter (Wsr~1m~2).

Radiant energy (Q): energy traveling in the form of electromagnetic waves. It

is denoted by Q and is measured in joules (J).

Radiant exitance (M): the density of radiant flux leaving a surface (d®/dA). It

is denoted by M and measured in watts per square meter (Wm™2).

Radiant flux (®): the radiant energy flowing through an area per unit time (dQ/dt).

It is denoted by ¢ and is measured in watt (W).

Radiant flux density (d®/dA): the radiant energy flowing through a unit area
per unit time (d®/dA). It is referred to as radiant exitance when the flow
is leaving the surface and as irradiance when the flow is incident on the

surface.

Radiant intensity (I): theradiant flux emanating from a point light source through
a unit solid angle around a given direction (d®/dw). It is denoted by I and

measured in watts per steradian (Wsr™!).

Radiosity (B): the density of radiant flux leaving a Lambertian reflector. This is

the name commonly used for radiant flux density in the computer graph-



ics literature. It is denoted by B and measured in watts per square meter

(Wm™=2).

Reflectivity (p): the fraction of incident radiant energy that is reflected (as op-
posed to absorbed or transmitted.) It is denoted by p(x). This quantity is
commonly used to specify the reflecting properties of a Lambertian surface

and is related to a constant BRDF by:

p(x) /Q fr(x) cos 6,dw

( /Q €08 8, dw)fy (%) = nf,(x)

All of the above quantities are actually wavelength dependent. Wherever needed,

this dependency will be made explicit by specifying the wavelength ).
2.2 The Rendering Equation

The transfer of radiant energy is governed by the laws of physics. The complex-
ities of the interaction of light and surfaces in an environment were abstracted
by Kajiya [KAJI86] in 1986 in a compact formulation of the global illumination
problem, generally known as the rendering equation. This is a Fredholm integral
equation of the second kind [HECK91a] and is presented here in a slightly mod-
ified form [SHIR90b]:

cos 6; cos 6;

L(x, %", \) = L¢(x, x", \) + ]s Fo 2,3 DL, %, ) ———L0(x, ¥)AAK)  (2.1)

where

L(x,x", X) is the radiance at point x in the direction of point x” at wavelength ).



Figure 2.2: Geometry for Equations (2.1) and (2.2).

Lé(x,x", A) is the radiant exitance per unit solid angle emitted from x towards x”

at wavelength \.
S is the union of all the surfaces in the environment.

v(x, x’) is a visibility term; it is 1 if x and x’ are visible to each other, and 0 other-

wise;
dA(x') is a differential surface area centered at x'.
r is the distance between x and x’;

¢; and 6, are the angles between the surface normals at x and x’ and the line

connecting the two points (see Figure 2.2).

The rendering equation as given above is well suited for view-dependent
global illumination algorithms like ray tracing and Monte Carlo techniques. In
fact, these algorithms typically discretize the integration by tracing rays from x

in a number of random directions, chosen perhaps according to the distribution
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of f,. Instead, view-independent algorithms, such as radiosity, typically work by
computing the energy transfer between pairs of surfaces (or surface elements)
in the environment. For this latter class of algorithms, it is therefore more con-
venient to break the domain of integration S into the surfaces s1, s, . .., s, of the

scene, to get:

Li(x,x", \) = (2.2)

Li(x,x", \) + E/

SGS XES]

Fuld 2,0 VL 3 ) 2 i, ) AG)

According to this formulation, each surface s; in the environment has an as-
sociated radiance function L;. Solving for the set of L;’s, i € [1..n], yields a view-
independent solution to the global illumination problem.

If all the surfaces are ideal diffuse (Lambertian) reflectors, the general render-

ing equation can be simplified to:

cos 9 cos 6;

Lix, X) = L5(x, \) + fu(x, ) S / L) lo(x, *)dA(K)  (2.3)

s;€S
This equation will be referred to as the diffuse rendering equation and most of the

remainder of this thesis will be dedicated to its solution.
2.3 The Radiosity Equation

The computer graphics literature has traditionally formulated the diffuse global
illumination problem in terms of radiosity [GORAB84]. In this section we will
show how the traditional radiosity equation can be derived from the diffuse ren-
dering equation given above. In order to simplify the equations, the dependency

on the wavelength )\ will be omitted.
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By definition, the radiosity, B;(x), is the radiant flux density leaving surface s;
at point x. This quantity can be computed from the radiance, L;(x) by integrating
the latter over a hemisphere centered above x. For an ideal diffuse (Lambertian)

reflector, the radiance is equal in all direction, thus:

Bi(x) /Q Li(x) cos dw

( /Q €08 0dw)Li(x) = wLi(x).

The traditional radiosity formulation requires that the environment be dis-
cretized into patches of constant radiosity and constant reflectivity. For simplic-
ity, we will assume that these patches correspond to our surfaces s;’s. Then, the
area averaged radiosity B; and reflectivity p; for a finite area surface s; of area A;
are given by

1

B; = - nwLi(x)dA(x)

and
1
=g / . TAOAAG).

We can now derive the traditional radiosity equation by integrating each side

of Equation (2.3) over the area of surface s;:

BiA;

/ rLi(x)dA(x)
XES;

/ rLE()dA(X) +
XES;

[ WL [, L=

seS

/ rLE(X)dA(x) +
XEs;

cos 0; cos&, o(x, ¥)AA(X)AA()

w Y [ 1) R pyaaweA)

seS XES; x'es]
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. cos 0; Cose , ,
BtA;+pi S B; /es, /xfes, C080iCO8 0y v VA )AA(x)

;€S r

BfAl' + pi Z BjA,'F,']' (24)
SjES

where B{ is the emitted radiosity and F; is the form factor from surface s; to
surface s;. Dividing each side of the equation by A; yields the traditional radiosity
equation:
Bi = B{ + p; >_ BjFj; (2.5)
S;€S

2.4 Characteristics of Radiance Functions

In trying to evaluate existing global illumination algorithms or to design effec-
tive new ones it is useful to examine actual radiance functions. Determining
which characteristics of radiance functions are mostly responsible for the “real-
istic look” of actual objects and surfaces can help concentrate research efforts on
subproblems whose solution will yield the highest payoffs. Furthermore, under-
standing the mechanisms responsible for the most crucial properties of radiance
functions can provide important clues to the design of effective simulation tech-
niques.

This section is concerned with the characteristics of the radiance functions
related to the diffuse rendering equation (see Equation (2.3)). In the real world,
these functions exhibit an abundance of subtle and complex illumination details
that are hard to simulate, even for the simplest environments. Figure 2.3 shows
a photograph of a cardboard triangle suspended over a matte white floor illu-
minated by a square diffuse light source. The most obvious characteristic of the

radiance function across the floor is the contrast between the smoothness of the
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unoccluded areas and the sharpness of the boundaries of the triangular shadow.
The shadow itself is divided into a darker region (umbra) that is completely oc-
cluded from the light source and a surrounding area (penumbra) that provides
a transition to the lighter regions outside the shadow. Umbras and penumbras
are marked by boundaries of different sharpness; for example, the variation in
radiance at the lower and outer boundary of the penumbra is so sharp that it
gives rise to a bright Mach band, while that towards the upper left of the picture
is much less noticeable.

An analysis of radiance functions will show that these illumination details
correspond to discontinuities in the radiance function and/or its derivatives (see
Figure 2.4). An analysis and classification of these discontinuities first appeared

in Heckbert's thesis [HECK91a]. Following Heckbert’s definition:
A function L has a DF discontinuity at x, if it is C*~! but not C* there.

The analysis that follows will be limited to planar polygonal non-interpene-

trating surfaces. This class of surfaces was chosen for a number of reasons:

1. The analysis is simpler than in the case of more general geometries.

2. The results of the analysis are immediately applicable to the design and

understanding of radiosity algorithms.

3. The vast majority of current radiosity systems are limited to this class of

surfaces and use polyhedral approximations to handle curved surfaces.

The diffuse rendering equation described by Equation (2.3) is a linear system
of equations. Each equation describes the radiance function over a surface s; as

the sum of simpler radiance functions, each one representing the contribution of
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Figure 2.3: Photograph of a simple scene. The light is a small square area source.

Vo

Figure 2.4: Discontinuity lines in a simple scene
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a single surface in the environment. More formally:
Li(x) = Li(x) + 3_ Lij(x) (2.6)
SI'ES

where
cos 0 cos 0;

Li@) =fu@) [, L) =0l )AR) 2.7)

denotes the contribution of surface s; to surface s;. Due to the principle of su-
perposition, it is then sufficient to study the properties of a single L; to give a
characterization of the radiance function L;.

The first part of the analysis will assume that surfaces s; and s; do not touch
each other and that the radiance function L; of the source s; is smooth, i.e. C*.
These constraints will be lifted at end of the discussion.

Under these assumptions, the integrand in Equation (2.7) is a smooth func-
tion. Therefore, if the visibility of the source s; is constant or varies smoothly,
the radiance function L; will be smooth as well. Abrupt changes in visibility,
however, will introduce discontinuities of various orders into L;;. The rest of this

section will introduce the possible discontinuities and explain their causes.
24.1 D° Discontinuities

By definition, D° discontinuities are discontinuities in the function itself (value
discontinuities). They are introduced by edges or vertices of occluders (or the
light source itself) lying on the receiver s;. Thus, they can occur either along line
segments, or in a pointwise fashion. An example is shown in Figure 2.5.

D° discontinuities also occur along shadow boundaries cast by point light
sources. In this case no penumbra regions are present, and the transition from

the umbra into the unoccluded area is a discontinuous one. For conciseness, only
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finite area light sources will be discussed. The analysis of point light sources is
only simpler.

In an environment with m edges, no interpenetrating polygons, and no point
light sources, there can be O(m?) D° discontinuities, as it is possible for each of

O(m) edges to lie on O(m) faces.

2.4.2 D! and D? Discontinuities

Discontinuities in the first and second derivatives of the function are referred to
as D! and D? discontinuities, respectively. They are caused by the interaction
of a light source with the occluding objects intervening between the source and
the receiver, causing abrupt changes in the visibility of the former one. These
changes (also known as visual events) have been studied in the computational
geometry and computer vision literature [GIGU90,GIGU91]. There, it is shown
that these visibility changes occur along surfaces defined by the edges and the
vertices of the objects in the scene (including light sources.) The visual events
in a polyhedral environment can be classified into two types: edge-vertex (EV)
events and edge-edge-edge (EEE) events [GIGU90].

EV events occur on a subset of the plane defined by an edge and a vertex fully
or partially visible to each other. The set of points on that plane from which the
vertex can be seen coinciding with the edge is called the critical surface. Visibility
changes on a receiver occur along the curves of intersection between the receiv-
ing plane and the critical surfaces. For polygonal environments, these critical
curves are line segments in the case of an EV event. They correspond to either
D! or D? discontinuities, as demonstrated in Figures 2.6 and 2.7. D! discontinu-

ities are perceived as Mach bands on the receiver. Strong D? discontinuities are
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Figure 2.5: An example of a D° discontinuity. (a) Edge AB of the occluder O lies
on the receiver R. (b) The radiance function over R. (d) The radiance function
along the line through x and y.

Points on R immediately to the left of AB cannot see the source S and the radi-
ance there is zero. However, immediately to the right of AB, the entire source is
visible, and the radiance there is non-zero. Thus, the radiance function is discon-
tinuous along AB. The points A and B are points of singularity in the radiance
function.
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Figure 2.6: A D' discontinuity caused by an edge-vertex (EV) event. (a) Edge AB
of the light source S is coplanar to edge CD of the occluding polygon O. The
critical surface (shaded area) defined by A and CD intersects the receiving plane
along EF. (b) The radiance function over R. (c) The occluder O and the light
source S as seen from x. (d) The radiance function along the line through x and y.
From point y on R, none of the source is visible, hence the radiance there is zero.
As we move from y towards x, part of the source adjacent to AB becomes re-
vealed. The visible area grows linearly in the displacement from EF towards x.
Thus, along EF the radiance function has a D! discontinuity.
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Figure 2.7: A D? discontinuity caused by an edge-vertex (EV) event. (a) The
critical surface (shaded area) defined by vertex A and edge BC intersects the re-
ceiving plane along DE. (b) The radiance function over R. (c) The occluder O
and the light source S as seen from x. (d) The radiance function along the line
through x and y.

From point y on R none of the source is visible, hence the radiance there is zero.
As we move from y towards x, part of the source adjacent to vertex A becomes
revealed. The visible area grows quadratically in the displacement from DE to-
wards x. Thus, along DE the radiance function has a D? discontinuity.
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Figure 2.8: An edge-edge-edge (EEE) event. (a) The quadric critical surface
(shaded area) defined by the three edges AB, CD, and EF intersects the receiver R,
resulting in a conic critical curve (shown dotted). (b) The radiance function
over R. (c) The occluders O; and O, and the light source S as seen from x. (d) The
radiance function along the line through x and y.

As we move from y towards x, part of the source becomes revealed. A displace-
ment from the critical curve towards x results in quadratic growth in the visi-
ble source area, hence the discontinuity along that curve is D?. This example
illustrates that when several occluding obstacles are involved, the boundaries
between umbra and penumbra regions on a receiver may be curved.
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noticeable as well.

EEE events occur on a subset of a ruled quadric surface defined by the family
of lines that go through three skew edges, each visible to the others. The critical
surface is the set of all the points from which the three participating edges can
be seen intersecting in one point. The critical curves are conics and generally
correspond to D? discontinuities as demonstrated in Figure 2.8.

In the examples shown in the figures all the visual events involve either a
vertex or an edge of the source. However, visual events can be defined by edges
and vertices belonging to any object in the environment. Thus, in an environ-
ment with m edges, there can be O(m?) EV critical surfaces, and O(m?) EEE criti-
cal surfaces. These can give rise to O(m®) and O(m?) critical curves, respectively.
In general, the event will cause a discontinuity in L; if it is defined by edges
and vertices located between the receiver i and the source j and if it is visible
from both. Figure 2.9 shows the critical curves resulting on the receiver for the

examples depicted in Figures 2.5, 2.6, 2.7, and 2.8.
2.4.3 Propagation of Discontinuities

The preceding discussion assumed that the radiance function L; was smooth.
This is generally true for primary light sources, but, as the analysis above just
showed, secondary light sources can have radiance functions exhibiting discon-
tinuities of various orders. The effect of these discontinuities was summarized
by Heckbert [HECK91a] as the “Discontinuity Propagation Law”, which states
that D¥ discontinuities on the source can result in D¥*! and D**? discontinuities
on the receivers. In general, discontinuities of higher orders are less noticeable

than low order ones.
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Figure 2.9: Critical curves on receiver R for the simple scenes shown in: (a) Fig-
ure 2.5, (b) Figure 2.6, (c) Figure 2.7, and (d) Figure 2.8
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Figure 2.10: Example of function singularity
2.4.4 Singularities

Radiance functions can exhibit singularities. These may rise at the endpoints of
D° discontinuity lines where the radiance gradient becomes infinite.

Figure 2.10 shows an example of a singularity. The dashed lines identify the
umbra and penumbra boundaries of the shadow cast by the cube onto the floor.
A penumbra region lies between the two boundaries and provides a continuous
transition between the unoccluded and totally occluded regions of the floor. As
we move in towards the cube, though, the width of the penumbra gets smaller
and smaller and the gradient of the radiance function becomes larger and larger.
In the limit, under the corner of the cube, the gradient becomes infinite.

This corresponds to a natural phenomena we have all experienced in the en-

vironment around us: shadow boundaries are sharper close to the object casting
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the shadow and get fuzzier moving away from it. Furthermore, the quality of
the shadow in the immediate vicinity of the cube helps us determine whether
or not the cube is actually in contact with the floor. Thus, correctly reproducing

these singularities increases the realism of our simulations.



Chapter 3

Previous Work

3.1 Radiosity

The radiosity approach is a physically-based method that attempts to solve the
global illumination problem according to the principles of transfer and conser-
vation of energy; it was derived from techniques used in thermal engineering
for the determination of radiative heat exchange in enclosures [SIEG81] and was
first introduced to the computer graphics community by Goral et al. [GORA84].

Since its first appearance in 1984, radiosity methods have been extended to
occluded environments [COHES85], textured surfaces [COHE86], specular sur-
faces [IMME86, WALL87,SILL89], light sources of arbitrary directional distri-
bution [WALL89,DORS91], arbitrary bidirectional reflectance distribution func-
tions [SILL91], dynamic environments [BAUM86,GEOR90,CHEN90b], curved
surfaces [ZATZ92], and complex environments [COHE88b,HANR91b,SMIT92].

3.1.1 Diffuse Radiosity

Most radiosity algorithms are restricted to ideal diffuse reflectors and attempt

to provide a view-independent solution to the global illumination problem. Thus,

25
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“walk-thoughs” of static diffuse environments can be often generated at inter-
active rates from a single radiosity solution.

Radiosity algorithms use a discrete formulation of the diffuse global illumi-
nation problem. The traditional radiosity equation and its derivation were given
in Section 2.3. When the environment is subdivided into a set of small surface ar-
eas, or elements, of constant radiosity and constant reflectivity, the radiant energy
transfer between surfaces is governed by a simple system of linear equations.

This can be expressed in matrix notation as:
I-Mb=e (3.1)
where
M € R™" M = [M;] = [piF;j], is the form factor matrix;
b € R",b =[B;], is a vector of unknown element radiosities;

e € R",b = [B], is a vector of emitted element radiosities.

The matrix I — M is a so-called “M-matrix,” i.e. all the diagonal elements are
positive and all the off-diagonal elements are negative. Furthermore, for phys-
ical reflectivities (p; € [0, 1]), the matrix is also strongly diagonally dominant.
Many nice properties are known about these matrices [VARG62], including non-

singularity and the convergence of Jacobi and Gauss-Seidel iterations.
3.1.2 Full Matrix Solution
The early radiosity algorithms were organized in three major steps:

1. Compute the matrix M of form factors.
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2. Solve forb = (I — M) le.

3. Display the results.

Thefirst radiosity implementation in computer graphics [GORA84] used Gaus-
sian elimination to invert the matrix I — M. Later, Cohen et al. [COHES85] greatly
reduced the cost of Step 2 by using Gauss-Seidel iteration to solve for the un-
known radiosities. Unfortunately, though, solving the system of linear equations
is not the most expensive step in the process. Computing the form factors be-
tween all pairs of elements in an environment, even when employing a fast hard-
ware z-buffer for the hemicube form factor calculation algorithm [COHES85], is
very computationally intensive. Furthermore, the cost of storing the form factor
matrix, even when employing compression techniques to exploit the sparsity of
the matrix, is prohibitive for anything but very simple scenes.

Precomputing the entire form factor matrix is not strictly necessary. The form
factors could be computed one row at a time during the Gauss-Seidel iteration.
This strategy, though, would require recomputing each row of form factors at

each iteration and thus greatly increase the computation time.
3.1.3 Progressive Refinement Radiosity

The shortcomings of the full matrix approach were overcome by the introduc-
tion of progressive refinement radiosity [COHE88b]. This algorithm is based on
a refinement operator that uses a single column of the matrix to update the ra-
diosities of all elements in the environment with the contribution from a chosen
source.

The difference between conventional radiosity and progressive radiosity is
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best explained in terms of gathering and shooting. With Gauss-Seidel iteration,
each pass over row i of the form factor matrix results in computing a new esti-
mate of radiosity B; based on the current estimates for all the other radiosities in
b. In physical terms, the estimate B; is computed by “gathering” in the radiant en-
ergy contribution from the rest of the environment. With progressive refinement
radiosity, each pass over column j of the form factor matrix results in computing
a new estimate of all the radiosities in b based on the current contribution from
element . In effect, element j “shoots” its energy out into the environment.

Since each refinement operation effects the radiosities of the entire environ-
ment, useful intermediate results can be displayed even at the very beginning of
the solution process. The initial rate of convergence can be improved greatly by
shooting at each iteration from the element with the highest remaining energy
contribution rather than visiting each column in a strictly sequential order.

This algorithm has the same asymptotic convergence rate as Jacobi and Gauss-
Seidel iterations. However, by intelligently observing that the global illumina-
tion in a scene is mostly determined by the dominant effect of primary and a
few secondary sources, progressive radiosity comes close to the final solution in
a fraction of the time that it would take for convergence. In practice, the iteration
process is seldom carried to convergence and only a small fraction of the form

factor matrix is ever computed.
3.2 Meshing

Most radiosity algorithms to date attempt to capture the variations in illumi-

nation across a surface in a scene by discretizing the surface into pieces small
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enough that the radiance function across each piece can be closely approximated
by a simple polynomial [GORAB84]. This process is referred to as meshing.
Meshing is perhaps the most problematic module of any radiosity system
and is responsible for many of the visual artifacts typical of radiosity images.
The next section will use uniform meshing as a way of example to illustrate these
problems. The following sections will discuss different meshing algorithms and

their ability to eliminate or reduce such problems.
3.21 Uniform Meshing

The first radiosity algorithms introduced by Goral et al. [GORA84], Cohen and
Greenberg [COHES5], and Nishita and Nakamae [NISH85a] were based on uni-
form meshing. Each surface in the environment was meshed in parametric space
into a set of rectangular elements by splitting each surface along the lines of a
regular grid. Radiance samples were then taken at the center of each element.
This simple technique is easy to implement, but, as many researchers pointed

out [HAIN91b,BAUM91,WALL92], it results in a large variety of visual artifacts:

Missing shadows. If the shadow cast by an obstacle in the scene onto a receiving
surface falls within sample points, it will be entirely missed (see the legs of

the table closest to the back wall in Figure 3.1.)

Blocky shadows. If a shadow area is undersampled, its shape will be distorted
to resemble the underlying mesh structure. Also, due to the interpolation
methods used for reconstruction, penumbra areas will usually expand to

the sample points immediately outside the true penumbra area (see, for
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Figure 3.1: Visual artifacts due to uniform meshing. Missing shadows (the legs
of the table closest to the back wall.) Blocky shadows (the shadow of the table on
the floor and back wall.) Jagged shadow boundaries (the shadow of the leftmost
leg of the table.) Shadow leaks (the shadow under the cube and behind the table.)
Floating objects (the legs of the table closest to the back wall.) Mach banding (the
region of the floor under the table.)
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Figure 3.2: More visual artifacts. Shadow leaks (the shadow under the doorway.)
Seams (the region of the wall above the doorway.)
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example, the shadow of the table on the floor and back wall in Figure 3.1.)

Reducing the element size will reduce, but not eliminate, these problems.

Jagged shadow boundaries. Unless the shadow boundaries are parallel to one
of the two axis of the mesh, shadow boundaries will appear jagged (see
the shadow of the leftmost leg of the table in Figure 3.1.) This aliasing can
be eliminated, for a given view, by ensuring that the projected area of each

mesh element be smaller that that of a screen pixel.

Shadow/light leaks. If a sharp variation in the illumination falls between sam-
ple points, the reconstruction process will smooth it and stretch it, dis-
tributing the variation uniformly along the area between the two samples.
This can result in dark shadow regions “leaking” into bright illuminated
regions and vice versa (see the shadow leaks under the cube and behind

the table in Figure 3.1 as well as that under the doorway in Figure 3.2.)

Floating objects. Missing shadow and shadow and light leaks can cause objects
to look as if they were floating above the floor (see the legs of the table

closest to the back wall in Figure 3.1.)

Mach banding. Most radiosity algorithms to date use linear interpolation to re-
construct the radiance function over a surface. This method introduces
unwanted discontinuities in the illumination gradient along the mesh el-
ement boundaries. These discontinuities are perceived by our visual sys-
tem as Mach bands (see the Mach bands on the region of the floor under the
table in Figure 3.1.) Increasing the mesh resolution usually helps reduce

these artifacts. However, better reconstruction methods could be used, e.g.
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higher order interpolation, that would greatly reduce Mach banding with-

out needing to increase the sampling rate.

Seams. A complex surface can be modeled as a set of polygons. Each polygon
is then independently meshed into elements. If the polygon meshes are
not aligned or have different granularities, radiance discontinuities may
result along the boundaries between neighboring polygons (see the region
of the wall above the doorway in Figure 3.2.) The problem of misaligned
meshes has been thoroughly examined by Haines [HAIN91b], and Baum
et al. [BAUMO1], The interested reader is invited to refer to their work for

an overview of the possible solutions.

Missing and incorrect shadows, jagged shadow boundaries, shadow/light
leaks, and floating objects are all due to undersampling of the radiance function.
These artifacts occur in areas where the illumination gradient is highest and thus
undersampling is most noticeable.

Increasing the sampling rate by reducing the mesh element size will reduce
the artifacts at the cost of increased storage and computing time. Since regular
sampling is used, increasing the sampling rate to avoid undersampling shadow
boundaries can also lead to oversampling in regions that are uniformly illumi-
nated and where the radiance varies slowly, thus resulting in unnecessary com-
putations.

Deciding what the best mesh resolution is for each surface in a scene is gener-
ally generally left to the user. Generating high quality radiosity solutions takes
many tedious and time consuming iterations and requires the user to have an

unnecessarily high understanding of the workings of meshing and radiosity al-
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gorithms. Despite these manual adjustments, the resulting radiosity solutions
are generally accurate for only a small range of views and thus, are not truly
view-independent. For example, zooming in on a shadow is likely to reveal a

jagged boundary.
3.2.2 Adaptive Subdivision

Cohen et al. [COHES86] introduced an adaptive subdivision scheme for refining
the mesh resolution in regions where the radiance function displays high inten-
sity gradients. Their method meshes the environment into a two-level hierarchy:
the first level consists of a coarse subdivision of the environment into patches,
the second level further subdivides patches into smaller elements. First, all the
patch-to-patch form factors are computed using the hemi-cube method [COHE85]
and a system of linear equations is solved to yield the patch radiosities. Then
element-to-patch form factors are computed and each element radiosity is cal-
culated as a simple linear combination of the patch radiosities. If the radiosity
gradient over an element exceeds a user-specified threshold, the element is sub-
divided into a set of new smaller elements. The radiosities at these new elements
are then calculated exactly as done previously for the other elements. Notice that
since the subdivision of an element does not affect the geometry of the environ-
ment, the radiosities of all the other elements do not change. This subdivision
process can be applied repeatedly to refine the quality of the solution.

This substructuring scheme represents an important step forward over the
full-matrix solution method based on uniform meshing [GORA84, COHES5].
Substructuring makes it possible to discretize the environment into many more

elements than could ever be handled by the previous scheme, both because of
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the cost of computing all the element-to-element form factors and because of the
enormous memory required to store the full element-to-element matrix.

Provided the size of the initial patches is not too coarse, this adaptive mesh-
ing scheme automatically refines the mesh around umbra and penumbra bound-
aries without unnecessarily refining uniformly illuminated areas. This approach
reduces both the need for user intervention and the time and memory costs re-
quired to produce an accurate radiosity solution. Most of the problems related
to uniform meshing are somewhat reduced, but none are truly eliminated.

The two-level hierarchical organization of the mesh and the adaptive subdi-
vision scheme have also been used within the context of progressive refinement

radiosity [COHE88b,WALL92].

3.2.3 Hierarchical Meshing

Hanrahan et al. [HANR90,HANR91b] generalized the substructuring approach
to a full hierarchical meshing scheme. The surface mesh is stored as a quadtree
and each level of the quadtree represents a different level of subdivision. The
distinction between source and receiver is blurred and energy transfers can take
place between nodes at any level in the respective hierarchical meshes of a source-
receiver pair (see example in Figure 3.3.)

If energy is transferred to an internal node, this energy is “pushed down” to
the leaves of the structure by recursively distributing the energy to the node’s
children in proportions determined by their relative areas. The energy stored at
the leaves is then “pulled up” and the energy of each interior node is computed
as an area weighted average of its children’s energies.

Transferring energy between large patches (nodes close to the root of their re-
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Figure 3.3: Hierarchical meshing on a pair of perpendicular polygons. The line
segments show the interactions between pairs of elements at different levels in
the quadtree hierarchies (after Hanrahan [HANR91b].)
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spective hierarchies) reduces the number of source-receiver interactions needed
to produce a radiosity solution; transferring energy between small patches re-
duces errors associated with the computation of form factors and visibility terms.

Hanrahanet al. compute an upper bound on the error incurred in transferring
energy between two nodes. Energy between a source-receiver pair is then trans-
ferred by subdividing source and receiver until all the interactions fall within
the error bound.

With this scheme, the number of interactions for an environment of m patches
and n elements (leaf nodes) is reduced from O(mn) to only O(n). Furthermore,
this meshing scheme is completely automatic.

On the other hand, however, requiring that all energy transfers occur in quan-
tities smaller than a given threshold limits the efficiency of the algorithm. Also,
the errors incurred gathering energy from different patches can compound, but
no error bound for the final solution was shown. Furthermore, although the ra-
diosity solution is quantitatively accurate, because of the point sampling nature
of the visibility calculations and of the constant elements used to subdivide the
input surfaces, the images computed with this technique can still exhibit all the

visual artifacts produced by its predecessors.
3.2.4 Discontinuity Meshing

All of the meshing techniques discussed above mesh the input surfaces accord-
ing to local geometric considerations only. Therefore, shadow boundaries and
other sharp variations in the illumination will generally fall within the inte-
rior of elements; since reconstruction is usually done by interpolating the radi-

ance values at the element vertices, these illumination details will be distorted,
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smoothed, or even entirely missed.

These problem can be eliminated by explicitly representing discontinuities in
the radiance function and its derivatives as boundaries in the mesh. Discontinu-
ity meshing methods implement this idea and can greatly improve the quality of
radiosity images, even though these methods only capture a subset of the dis-

continuities described in the Section 2.4.

Capturing value discontinuities

Baum et al. [BAUMO1] preprocess the environment to split surfaces along lines of
intersection or contact. Thus, the corresponding D° discontinuities are marked
by edges in the mesh. The radiance samples stored with these edges are the
values corresponding to the illuminated side of the edge. The problem of storing
both the occluded and unoccluded radiance values is avoided by making all D°
edges lie at the perimeter of the mesh. If a surface A lies on another surface
B, the entire area covered by A is dropped from the mesh of B (see example in
Figure 3.4.)

This approach has several advantages over previous meshing techniques:

e The quality of radiosity images is significantly improved by eliminating
floating objects and the most obvious shadow and light leaks.

e The need for user intervention is reduced since value discontinuities are

captured automatically, independently of the initial size of the mesh ele-

ments.

¢ Time and storage costs are reduced since adaptive subdivision is no longer

needed to narrow in on value discontinuities.
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(b)

Figure 3.4: Computing D° discontinuities prior to meshing. (a) The initial en-
vironment has object A resting on surface B. (b) The area covered by object A
is removed from surface B; the resulting D° edges are shown as thicker lines
(object A is not shown.)
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This meshing algorithm, however, is still liable to miss small illumination

details and generate shadows with imprecise coverage and poor definition.

Capturing umbra and penumbra boundaries

Campbell and Fussell [CAMP90] suggested meshing the environment by pro-
jecting each object onto each surface in the environment from the light source
(see example in Figure 3.5a.) For point light sources, shadow volumes were used
to mesh the environment. Finite area light sources were discretized into smaller
parts and each part was approximated by a point light source. This method
works well for small light sources, but as the number of point sources needed
for an adequate approximation grows, subdivision within regions of penumbra
becomes too fine.

Recently, Campbell and Fussell [CAMP91a, CAMP91b,CAMP91c] have pro-
posed an alternative method for polygonal environments whereby umbra and
penumbra volumes are used to classify each surface into regions of umbra, penum-
bra, and total visibility (see example in Figure 3.5b.) Each region is further split
into elements, and the illumination at the vertices of each element is computed
analytically. Numerical optimization techniques are then used to determine the
correct element density inside unoccluded and penumbra regions.

The surface mesh is stored as a two-dimensional BSP tree [FUCHS80] with the
mesh elements as the leaves of the tree (see examples in Figure 3.5.) Since vertices
are not shared among elements, illumination calculations may be recomputed
several times at each location; on the other hand, because of this organization,
D° edges do not require any special treatment.

Umbra and penumbra volumes were previously used by Nishita and Naka-
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(a) (b)

(c) (d)

Figure 3.5: Shadow volumes (a) and umbra and penumbra volumes (b) con-
structed from source S and object O are used to classify surface R into regions of
umbra, penumbra, and total visibility. The resulting meshes (c-d) are stored as
two-dimensional BSP trees.
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mae [NISH83,NISH85a] to classify regions in a scene according to light source
visibility. However, this information was not used to mesh the environment in
object-space, but rather to speed up the illumination calculations within a screen-
space, scanline-based renderer (see discussion in Section 3.3.2.) In fact, Camp-
bell’s approach is, to the author’s knowledge, the first object-space algorithm to
accurately compute shadows cast by area light sources. Many of the visual arti-
facts typical of previous radiosity algorithms are eliminated without any manual
intervention. All the shadows are captured, no matter how small, umbra and
penumbra regions have the correct shape and sharp straight boundaries, and
floating objects and shadow and light leaks are eliminated.

However, despite the impressive improvements in image quality, a number

of problems still remain:

e Umbra and penumbra volumes only capture a subset of the EV events re-
sponsible for the discontinuities on a receiving surface. More precisely,
only umbra and penumbra boundaries are computed; discontinuities falling

within a penumbra area are ignored.

e As Teller pointed out [TELL92], shadow and discontinuity meshing algo-
rithms based on umbra and penumbra volumes only take into considera-
tion visual events originating from the interaction of a light source and a
single polygonal occluder. Since multiple interactions are ignored, some

umbra areas may be incorrectly classified as penumbras.

e For the same reason, EEE events are ignored. The discontinuity curves
generated by these events are conics and can not be correctly represented

as edges of a polygonal mesh.
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e Mach bands can still appear in the resulting images since linear interpola-

tion is used for reconstruction.

e The problem of radiance singularities is still unaddressed.
Discontinuity meshing in 2D

The idea of including discontinuities in radiance functions and their derivatives
asboundaries in the mesh was developed independently by Heckbert[HECK91a,
HECK92c¢] and by Lischinski and the author at Cornell Program of Computer
Graphics [LISC91]. In both cases, the ideas were implemented and tested in 2D,

showing promising results.
Discontinuity meshing in 3D

Recently, both Heckbert [HECK92a] and Lischinski, Tampieri, and Greenberg
[LISC92] extended their ideas to 3D polygonal environments.

Heckbert [HECK92a] constructs a discontinuity mesh that contains all the
discontinuity lines arising from EV events in which primary light sources di-
rectly participate. First, the critical lines are computed on all the surfaces in the
environment, and then Delaunay triangulation and mesh relaxation are used to
produce the final discontinuity mesh on each surface.

Lischinski et al. [LISC92] construct a different discontinuity mesh for each
light source. Each mesh contains the discontinuity lines arising from EV events
in which that light source directly participates. A two-dimensional BSP-tree
coupled with a topological data structure is used to construct and represent the
mesh. Adaptive subdivision is used to increase the element density where neces-

sary. The contributions due to different light sources are merged into a separate
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data structure which accumulates the total illumination over each surface. A
detailed presentation of this method can be found in the next two chapters.

Both algorithms still ignore EEE events and only consider VE (or EV) events
involving a light source. As opposed to Campbell’s algorithm [CAMP91c], these
discontinuity meshing methods correctly capture discontinuities falling within
penumbra regions.

Furthermore, in the Cornell work higher order interpolation schemes are
used to reconstruct the radiance function and correctly resolve the different or-
ders of discontinuity along mesh edges. This technique reproduces the correct
degree of sharpness of various illumination details, effectively resolves radiance
singularities, and eliminates the annoying Mach banding typical of linear inter-

polation schemes.
3.3 Direct Energy Transfer

The ability to compute the light energy contribution of one mesh element to an-
other is one of the most important building blocks of any radiosity algorithm.
As was shown in Equation (2.7), this computation requires evaluating a com-
plex integral. Analytical solutions have only been offered for very simple cases,
such as that of a source of constant emission, and in the absence of any occluding
obstacles.

In order to simplify the problem, traditional radiosity algorithms have dis-
cretized the diffuse rendering equation into a simple system of linear equations

(see Equation (2.5)). Then, the contribution of element s; to the illumination of
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element s; becomes:

B; = piBjF,'j (3.2)

where
cos 9 cos 0;
Fj=— / / (x, ¥) ————JdAdA; (3.3)

This formulation relies on the assumption that the radiance must be constant
across each element in the scene. If this assumption is met, the problem of com-
puting the energy transfer between two elements is reduced to that of computing
a form factor, which, in the case of Lambertian reflectors, is a purely geometrical

term.
3.3.1 Numerical Form Factors

The computation of form factors is complicated by the presence of a visibility
term under the integral. Considerable research efforts have been devoted to the
investigation of accurate and efficient methods for computing form factors.

Goral et al. [GORA84], who introduced radiosity to the computer graphics
community, transformed the area integrals to contour integrals and evaluated
them numerically by discretizing the contours into a set of short line segments.
This technique was computationally expensive and only simple unoccluded en-
vironments were demonstrated.

Cohen and Greenberg [COHEB85] were the first to present an efficient algo-
rithm for computing form factors in the presence of occlusions. Their hemicube
algorithm was a numerical approximation of the geometric analog for the form
factor integral developed by Nusselt [SIEG81]. The inner integral of Equation (3.3)

was approximated by a weighted sum of the hemicube pixels covered by the
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Figure 3.6: The hemicube algorithm. The form factor from surface s; to the cen-
ter of surface s; is approximated by the weighted sum of the hemicube pixels
covered by s;’s projection.
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projection of element s; relative to the center of element s; (see Figure 3.6.) The
outer integral was simply dropped by assuming that the distance between the
two elements is large compared to their size and that the visibility of s; is inde-
pendent on the location on s; (constant visibility.) The hemicube algorithm can
be implemented using a hardware z-buffer and is thus could be very efficient.
Unfortunately, the introduction of progressive refinement radiosity [COHE88b]

and its use on larger, more complex, environments, uncovered many problems
and inaccuracies connected to the use of the hemicube. As Baum et al. [BAUMS89]
pointed out, in order to accurately compute form factors with the hemicube al-
gorithm, a number of assumptions must be met. The distance between elements
must be large compared to their area, the visibility of one element must be the
same as seen from any point on the other element, and the area of the projec-
tion of one element onto the hemicube must be correctly represented by an inte-
gral number of hemicube pixels. The full matrix solution projected patches onto
hemicubes centered over mesh elements. Since the patches were large compared
to elements and the environments being solved were generally very simple, the
hemicube computations were relatively accurate. In progressive refinement ra-
diosity, however, the role of patches and elements was reversed. The Hemicube
was placed on large patches, often violating the constant visibility assumption,
and small elements were projected onto the hemicube, causing significant alias-
ing problems and resulting in the patch-to-element form factors being severely
over/under-estimated. Furthermore, progressive radiosity made it possible to
solve more complex models than could be handled by the full matrix approach,

thus making the hemicube artifacts even more apparent.
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Figure 3.7: Ray-traced form factors. Surfaces; is subdivided into smaller regions;
the contribution from each region AA;| to the form factor dF AdA; is approximated
by a disc-to-point form factor.

When elements are close to each other or when one of them is a primary
light source, Baum et al. [BAUMS89] proposed replacing the hemicube with an
analytical formula for the computation of the inner integral [HOTT67] coupled
with a numerical evaluation of the outer contour integral. This method works
well for unoccluded form factors. Partial visibility is resolved by recursively
subdividing the elements and adding up the new smaller form factors.

A different solution was offered by Wallace et al. [WALL89]. Rather than

using the traditional finite element formulation of radiosity [GORA84], the au-
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thors proposed a point sampling approach. Thus, instead of computing the en-
ergy transfer between pairs of elements, the authors computed the radiance con-

tributed by element s; to a differential area on a receiving surface s;:
Bi(x)dAi(x) = piBjA;dF s, 4a, (3.4)

where

cos 0; czos 0; dA(X) (3.5)

dFAj,dA,- = A 'U(x, x’)

)

Theintegral was approximated by the formula for a disc-to-point form factor and
adaptive subdivision of element s; was used to reduce the error (see Figure 3.7.)
Visibility was estimated using ray tracing.

Theray-traced form factor method is efficient and flexible. While the hemicube
method requires that a complete row or column of form factors be computed at
once, with the same resolution, the other method allows individual control on

the accuracy and computational cost of each form factor.

3.3.2 Analytical Form Factors

All of the methods presented above, though to different degrees, are subject to
aliasing due to the point sampling nature of the visibility computation. Nishita
and Nakamae [NISH85a] proposed an analytical, exact method of computing
the contribution from a source of constant emission to a point. The algorithm
was used within the context of a scanline rendering system and was applied to
points spaced at intervals of a few pixels across each scanline. The algorithm
started by building umbra and penumbra volumes for each source-obstacle pair
so that each point on a receiving surface could be easily classified as being in the

umbra, penumbra, or unoccluded region with respect to the light source. The
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(@)

(b)

(c)

Figure 3.8: Analytical form factors. (a) Contour integration along the path indi-
cated by the arrows is used to compute the contribution of source s; to point x.
(b) Only the part of the source lying in front of the receiver is considered in com-
puting the energy transfer. (c) Obstacles intervening between the source and
receiver affect the integration path.
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illumination at an unoccluded point was then computed analytically using the
contour integral method [HOTT67] (see Figure 3.8a.) If the light source polygon
was intersected by the supporting plane of the receiving point, the illumination
was computed by integrating along the contour of the part of the light source
lying in the front of the receiving plane (see Figure 3.8b.) If the receiving point
was in the penumbra area, the illumination was computed by integrating over
segments of the contours of the source and obstacles in a way that amounted
to integrating across the portions of the source that were visible from the re-
ceiving point (see Figure 3.8c.) Computing the illumination at points lying in
the penumbra was expensive but yielded the correct result. No approximations

were made.
3.3.3 Non-Constant Exitance

In the preceding algorithms, the expression relating the energy contribution of
one element to another element or differential area is based on the assumption
that the exitance of the source be constant. This assumption is often violated,
especially due to the subdivision of the input surfaces into patches and elements
first introduced by Cohen et al. [COHE86] and now adopted by most radiosity
systems. While elements are often small enough to satisfy the constant radiosity
assumptions, patches, being clusters of (possibly many) elements, often violate
this premise. Furthermore, since patches, rather than elements, are often used
as a source, a number of problems may result.

These problems were discussed by Tampieri and Lischinski [TAMP91], who
also presented a simple solution, based on ray-traced form factors [WALLS89]

(see Figure 3.7.) The source patch was recursively subdivided into smaller re-
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gions and ray-traced form factors were used. Rather than assuming constant
emission across the entire patch, though, the underlying element mesh was in-
terrogated to compute separate radiance values for each region. This method
has all the efficiency and flexibility of ray-traced form factors, while at the same
time providing an accurate treatment of arbitrary radiance distributions.

The scheme of Hanrahan et al. [HANR90,HANR91b] is also immune to the
problems connected to violations of the constant radiosity assumptions. By us-
ing the hierarchical mesh and subdividing interacting pairs of elements until the
energy transferred between the two falls below a given threshold, a source of ar-
bitrary distribution can be subdivided until each piece can be safely treated as a

constant emitter.
3.4 Radiance Function Reconstruction

Radiosity algorithms typically compute radiance values only at selected sample
locations on the surfaces of the scene. Reconstruction techniques are then used
to provide radiance values at any desired location.

Radiance functions must be reconstructed for display and, in the case of pro-
gressive refinement radiosity, used for selecting the patch with the highest un-
shot radiant flux. The former task requires that the reconstructed radiance func-
tions reproduce as many of the characteristics discussed in Section 2.4 as possi-
ble. The latter task only requires a rough approximation since only the integral
of the radiance over a surface is needed and choosing the wrong patch would
not affect the accuracy of the solution anyway.

The traditional radiosity formulation presented in Equation (2.5) discretizes
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the continuous domain of the diffuse global illumination problem into a finite
set of elements using constant shape functions. Higher order shape functions,
though, should be used at reconstruction time because they yield more realistic

pictures.
3.4.1 Constant Elements

When using constant shape functions, the mesh elements are displayed as flat
shaded polygons. From a subjective, or visual, standpoint, this piecewise con-
stant approximation is usually very poor because the value discontinuities in-
troduced by the reconstruction process are very easily perceived by our visual
system as sudden “jumps” in the illumination of a surface. These artifacts reveal

the artificial discretization of the surface into elements.

3.4.2 Gouraud Shading

In order to improve the visual appearance of radiosity solutions, Goral et al.
[GORAB84] suggested using Gouraud shading [GOUR71]. First, vertex radiosi-
ties are computed from the element radiosities, then linear interpolation in screen
space is used to compute the radiosities corresponding to the locations within
mesh elements that map onto pixel centers.

This technique yields significantly better results that simple flat shading, but
is not without problems. The reconstructed radiance functions are now con-
tinuous everywhere across a surface, but exhibit gradient discontinuities across
element boundaries, which are perceived as Mach bands [RATL72]. Further-
more, as Duff pointed out [DUFF79], when interpolating in screen space, the

shading across a surface may appear to change with the view due to both the
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non-linear mapping of distances effected by the viewing projection and the axis-
dependence of the Gouraud shading algorithm for polygons other than trian-
gles.

Despite these drawbacks, this technique is widely adopted in current radios-
ity systems because Gouraud shading is now available in hardware on most

graphics workstations.
3.4.3 Bilinear Interpolation

Cohen and Greenberg [COHES85] reconstructed the radiance function using bi-
linear interpolation in object space. Unlike Gouraud shading, this method yields
a unique value at every point on an element, independent of the view and orien-
tation of the element. Bilinear interpolation, though, like Gouraud shading, in-
troduces unwanted first derivative (slope) discontinuities across element bound-
aries.

These techniques require radiance values at the element vertices, but, in fact,
when they were first proposed [GORA84,COHES85], radiosity systems computed
radiance values at the center of the elements. Cohen and Greenberg [COHES5]
computed vertex radiance values as a simple average of the radiances of the
surrounding elements. This technique works reasonably well for regular rectan-
gular meshes, but for triangular or arbitrary quadrilateral meshes its not at all
clear what choice of weights should be used in computing the averages.

Furthermore, reconstructing the radiance function from the radiance samples
now takes two interpolation stages, each one introducing further errors and ap-
proximations into the solution. A simple solution to this problem was offered by

Wallace et al. [WALL89], who proposed computing the radiance values directly
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at the element vertices, thus reducing the reconstruction process to a simple in-

terpolation step.

3.4.4 Higher Order Interpolation

Higher order interpolation schemes have been proposed as an alternative to
linear interpolation. Reichert [REIC92] described a C' quadratic interpolation
scheme, based on work done by Cendes and Wong [CEND87], that imposes first
derivative continuity across the mesh edges and thus greatly reduces visual ar-
tifacts. Unfortunately, this technique also has the effect of washing out sharp
illumination details such as umbra and penumbra boundaries.

All of the interpolation methods discussed above yield a reconstructed ra-
diance function that is infinitely differentiable inside each individual mesh ele-
ment. Thus, no shadow boundary crossing an element can be correctly recon-
structed. This results in the jagged shadow boundaries, expanded or exagger-
ated penumbrae, floating objects, and shadow and light leaks, so typical of ra-
diosity images.

As first demonstrated by Campbell and Fussell [CAMP90], these problems
can be greatly reduced and sharp umbra and penumbra boundaries can be con-
vincingly rendered if the surfaces in the scene are split into mesh elements along

these boundary lines.



Chapter 4

Single Source Discontinuity Meshing

The previous chapter showed that the conventional meshing algorithms used
by most radiosity systems to date are the cause of many inaccuracies in radios-
ity solutions. In particular, umbra and penumbra boundaries and other sharp
variations in the illumination across a surface are poorly reproduced if not en-
tirely missed.

The analysis of radiance functions presented in Section 2.4 showed that these
illumination changes correspond to discontinuities in the radiance function and
its derivatives and occur along critical curves determined by the geometric in-
teraction of the objects and light sources in the environment.

Conventional radiosity algorithms ignore these discontinuity curves. If a crit-
ical curve crosses a mesh element, the reconstructed radiance will be inaccurate.
In fact, the piecewise polynomial interpolation methods used to reconstruct the
radiance function over a surface mesh are unable to reproduce a discontinuity
that crosses a mesh element.

The ability to predict the location of critical curves and the order of the cor-

responding discontinuities can be used to design a new algorithm less prone

56
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to the problems that afflict conventional radiosity. The new approach explic-
itly represents the discontinuities in the radiance function and its derivatives as
boundaries in the mesh and uses a piecewise polynomial interpolation scheme to
correctly reproduce these discontinuities in the reconstructed radiance function.

This concept, known as discontinuity meshing, was first introduced by the au-
thor and Lischinski at the Cornell Program of Computer Graphics [LISC91] and,
independently, by Heckbert [HECK91a,HECK92c].

In the succeeding two chapters a radiosity algorithm based on discontinuity
meshing and capable of producing accurate solutions to the diffuse global illu-
mination problem for three-dimensional polygonal environments is discussed.
The presentation is organized in two main parts: the rest of this chapter dis-
cusses a discontinuity meshing algorithm that computes the direct illumination
due to a single primary light source of finite area and constant emission. The
next chapter extends the basic algorithm to secondary light sources of arbitrary
emission and uses the result as a refinement operator within a progressive-style

radiosity algorithm to produce a diffuse radiosity solution.
4.1 Single Source Discontinuity Meshing—Algorithm Overview

The direct illumination problem that we want to solve is stated more rigorously

as follows:

Givenaset S = {s1,s,...,5:} of convex polygonal surfaces, their dif-
fuse BRDF's fn, fr, . . ., frn, and a convex polygonal light source sq of

constant emission Ly, compute the set of radiance functions Ly, Lao, . . . , Lno
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foreach visual event v involving so do
trace v through S and insert resulting critical curves in the meshes
end for
fors; € Sdo
triangulate mesh for s;
foreach element f; in mesh fors; do
compute Lj at sample locations within #;
adaptively subdivide t; as needed
end for
end for

Figure 4.1: Pseudocode for the single source discontinuity meshing algorithm

such that

cos §; cos Gy

" v(x, x)dAX) 4.1)

Lip(x) = frLo /

x'€sp

foralli=1,2,...,n.

Of course, solving Equation 4.1 for every point x on surface s; is not feasi-
ble. Instead, we use a sampling approach whereby the radiance function L;0
is evaluated at a few selected locations and then reconstructed using a suitable
interpolant to yield an approximation Ly.

In computer graphics, this kind of approach has roots that go back to the ear-
liest shading algorithms such as Gouraud shading [GOUR71]. The originality
of the algorithm described here, though, rests in its ability to predict the loca-
tion and order of the radiance discontinuities, and use these results to guide the
choice of sample locations and reconstruction interpolant.

Pseudocode for the single source discontinuity meshing algorithm is given
in Figure 4.1. The algorithm starts by tracing all the visual events involving

source sp through the environment S. Whenever a visual event results in a criti-
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cal curve on a surface s;, one or more edges are created in the discontinuity mesh
for s;. These edges store the location of the critical curve as well as the order of
discontinuity associated with it.

Once all the visual events involving source sq are processed, each surface in
the environment has been discretized into a discontinuity mesh where each im-
portant discontinuity in the radiance function and its derivatives is explicitly
represented by one or more edges.

At this point, the mesh is triangulated and the direct illumination due to
source sp is computed at a set of selected locations within each mesh element.
Once sample values are computed over an element, an error estimate is com-
puted for that element, and, if necessary, the element is adaptively subdivided
to yield a more accurate approximation to Ljp. Since no discontinuity is allowed
to cross an element, though, the radiance function inside each element is well
behaved and can in most cases be captured by a relatively small number of sam-
ples.

Finally, a piecewise quadratic interpolant, L, is used to reconstruct an ap-
proximation to the actual radiance function Lj. The interpolation scheme pro-
vides smooth behavior inside mesh elements while still preserving the appro-
priate order of discontinuity across each mesh edge.

The following sections describe each of the steps outlined above in greater
detail and present the data structures and techniques used for an efficient im-

plementation of the algorithm.
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4.2 Locating the Discontinuities

In Section 2.4, we showed that the direct illumination due to a single area light
source can cause value (zero) and first and second derivative discontinuities in
the radiance functions of the receiving surfaces.

This section describes the techniques used to locate these discontinuities in a

polygonal environment with no interpenetrating surfaces.
4.21 Locating D° Discontinuities

Value, or D%, discontinuities are responsible for the highest illumination contrast.
Failure to capture these discontinuities by global illumination simulations has
resulted in the shadow/light leaks and the floating objects that are evident in so
many radiosity images (see Figures 3.1 and 3.2.)

D° discontinuities are due to touching surfaces and point light sources. Point
light sources can be handled similarly to area light sources and their implemen-
tation will not be discussed here.

When surfaces touch, one surface may act as an occluder preventing light
from the source from reaching part of the other surface, or receiver. If the oc-
cluder lies on the receiver, i.e. the two surfaces are coplanar, then the D° discon-
tinuities will occur along the perimeter of the occluder; otherwise, the occluder
may have either an edge or a vertex lying on the receiver, resulting in a D° dis-
continuity occurring along a line segment or at a single point respectively.

The location of these discontinuities is then independent of the position of

the light sources and can be computed in a separate preprocessing step.
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class Surface has
Plane plane

Polygon polygon
list of Segment Dedges

list of Point D°vertices
method ComputeD° (in Segment)
end class

class Node has

BoundingBox box

list of Node children

list of Surface surfaces

method ComputeD° (in Segment)
end class

Figure 4.2: Pseudocode for the computation of D° discontinuities (Part 1)

Implementation

Given the set S = {s1,s2,...,5+} of input surfaces, we could easily find all D°
discontinuities by checking all possible pairs of surfaces, (s;,s;), i # j. Assuming
that the number of edges per polygonal surface is bounded, this strategy would
result in O(n?) time complexity.

A more efficient algorithm can be designed by organizing the input surfaces
into a hierarchy of bounding volumes, a popular scheme used by many ray trac-
ing systems [WHIT80].

Pseudocode for the algorithm is given in Figures 4.2 and 4.3. An object of
type Surface is used to represent each surface s; in the environment; the object
provides access to the polygonal representation of the surface as well as its plane

equation; also, the object is used to store a list of the D° discontinuities falling on
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its associated surface.

The environment is organized into a hierarchy of bounding volumes. A pop-
ular technique for constructing such a hierarchy was described by Goldsmith
and Salmon [GOLDS87]. Class Node is used to represent the nodes of the hierar-
chy. Each node has its bounding box, a list of its children, and, if it is a leaf node,
a list of the surfaces it contains. The hierarchy of bounding volumes is accessed
through the special node root.

The algorithm checks each edge in the environment against the hierarchy of
bounding volumes, creating D° segments and points as it progresses.

Given an edge e, the algorithm traverses the hierarchy of bounding volumes
visiting only the nodes whose bounding boxes contain at least part of the edge.
If a leaf node is reached, then all the surfaces it contains are checked against e.

When an edge e is checked against a surface s, two cases may arise. If the
edge lies in the supporting plane of the surface, we compute the part, if any, of e
contained within the boundaries of s and insert it into the list of D° discontinuity
segments falling on the surface. If, instead, the edge intersects the surface, we
insert the point of intersection into the list of D° discontinuity points falling on
the surface.

The performance of this algorithm is strictly dependent on the quality of the
hierarchy of bounding boxes used. In the degenerate case, the hierarchy reduces
to a linear list, giving a worst time complexity of O(1?). In general, though, for a

relatively balanced hierarchy, we can expect a O(nlog n) performance.
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foreach edge e in the environment do
root.ComputeD° ()
end for

method Node::ComputeD° (in Segmente) is
if e intersects boxthen
foreach Surfaces in surfacesdo
s.ComputeD’ (¢)
end for
foreach Node ndin children do
nd.ComputeD° ()
end for
end if
end method

method Surface::ComputeD° (in Segmente) is
if e lies on planethen
Segmente «— intersection of e with polygon
if¢ # NiL then
add ¢ to Dedges
end if
else
Pointp « intersection of e with plane
if p lies inside or on the boundary of polygonthen
add p to D%vertices
end if
end if
end method

Figure 4.3: Pseudocode for the computation of D° discontinuities (Part 2)
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4.2.2 Locating D! and D? Discontinuities

Discontinuities in the first and second derivative of the radiance function, re-
ferred to as D! and D? discontinuities respectively, occur along the umbra and
penumbra boundaries cast by finite area light sources as well as along other crit-
ical curves inside penumbra regions.

Conventional radiosity algorithms ignore these discontinuities (see Chap-
ter 3) and yield images with jagged shadow boundaries and missing or distorted
shadows such as those presented in Figures 3.1 and 3.2. The ability to determine
the location of these discontinuities can significantly improve the accuracy of

radiosity simulations.
Choosing which discontinuities to represent

The D! and D? discontinuities are generated by the visual events discussed in
Section 2.4. There are two different types of visual events: EV and EEE events.
In a polygonal environment with m edges, these events can result respectively
in O(m®) and O(m*) critical curves. Trying to compute all the D! and D? discon-
tinuities would result in time and storage costs so high as to limit the system to
anything but the simplest environments.

Not all visual events, though, result in discontinuities of the same visual im-
portance. A careful selection may result in an algorithm of lower complexity
capable of accepting most simulated environments.

As a first simplification, we decided to ignore EEE events. These events can
result in discontinuities along curved segments. Capturing these discontinuities

would require a discontinuity mesh capable of representing curved edges and
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non-polygonal elements. Also, a reconstruction method capable of accepting
curved boundary elements would be needed. Fortunately, the boundary be-
tween penumbra and unoccluded regions is marked by EV events only; thus,
ignoring EEE events does not affect the main shape of the shadows.

As a further simplification, we considered only the EV events to which the
light source contributes either the participating edge or participating vertex. Other
EV events are only significant if the critical surfaces they define intersect the light
source. These events are relatively few, but considering them would add an or-
der of magnitude to the cost complexity of the algorithm.

The number of remaining EV events is only O(m) and the corresponding crit-
ical curves are straight line segments for polygonal environments. In particular,
these segments include all the boundaries separating totally unoccluded regions
from partially occluded ones, as well as additional important discontinuities in-
side the penumbrae.

The set of EV events that we considered is not as limited as it may appear.
In fact, it is a superset of the visual events considered by other shadowing and

discontinuity meshing algorithms [CAMP91c,CHIN92,NISH83].
Classifying EV visual events

The order of the discontinuity associated with a critical curve is determined by
the rate of change in the amount of light source area that is visible from the re-
ceiver when moving across the critical curve (see Figures 2.6 and 2.7.) If the rate
of change is linear, the discontinuity is D!; otherwise, it is D2. If we consider the
visual event and critical surface that generated the critical curve, we will notice

that the above rate of change is the same everywhere across the critical surface;
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this means that all critical curves corresponding to a given visual event share the
same order of discontinuity.

Determining the order of discontinuity associated with an EV visual event
is simple. Let V and E be respectively the vertex and edge defining the visual
event. If v is the endpoint of an edge E’ that is coplanar with E, the event should
be classified as D!; otherwise, it should be classified as D?.

Itis convenient to distinguish between the EV events involving a source ver-
tex and the ones involving a source edge. In what follows, we will refer to the

former kind as VE events and to the latter as EV events.
Computing critical curves for VE visual events

A VE visual event captures the interaction of a vertex V of the light source and an
edge E of an occluding surface. The critical surface corresponding to the event
is a planar wedge W of infinite extent with its apex at vertex V and bounded by
rays through the endpoints of the edge E (see Figure 4.4(a).)

As shown in Section 2.4, discontinuities in the derivatives of the radiance
function happen along critical curves corresponding to the intersection of a crit-
ical surface with the surfaces in the environment. The discontinuities are caused
by abrupt changes in the visibility of the light source. Not all intersections, how-
ever, are critical curves. Only the intersections that are visible from the apex V
of W, i.e. the critical surface, are actual critical curves. If fact, if an intersection
segment is not visible from V, then no change in the visibility of the light source,
and therefore no discontinuity, may occur along the segment.

Computing the set of critical curves corresponding to a given VE eventis then

similar to a visible surface determination problem in 2D (see Figure 4.4(b).) The
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Figure4.4: (a) A wedge corresponding to a VE event. (b) Interaction of the wedge
with the surfaces in the environment. The wedge is clipped against surfaces A,
B, and C, but only surfaces B and C gain a new discontinuity boundary. Discon-
tinuities are not added to surfaces intersecting the wedge in the region enclosed
between V and E, since the visual event is not visible from such surfaces. The
dark areas show the clipped portion of the wedge.
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surfaces in the environment are sorted in order of increasing distance from V.
If a surface is intersected by W along a visible segment and it faces V, then the
segment of intersection is inserted in the surface mesh as a discontinuity edge. If,
however, the surface is closer to V than the occluding edge E is, then the surface

is not effected by the visual event and no critical curves should be generated.

Computing critical curves for EV visual events

An EV visual event captures the interaction of an edge E of the light source and
a vertex V of an occluding surface. The critical surface corresponding to this
event is slightly more complex than that of a VE event; the surface is bounded
by edge E and by semi-infinite rays originating at the endpoints of the edge and
passing through vertex V (see Figure 4.5(a).)

Computing the set of critical curves corresponding to a given EV event is
done similarly to the tracing of VE events except that the surfaces in the envi-
ronment are sorted in order of increasing distance away from E rather than V
(see Figure 4.5(b).) If a surface is intersected by the event along a segment that is
visible from E and it faces V, the the segment is inserted in the surface mesh as
a discontinuity edge. If, however, the intersected surface lies between E and V,

then no discontinuity may result.

Implementation

The pseudocode given in Figure 4.6 shows how the selected visual events dis-
cussed above are generated and classified with the appropriate order of discon-
tinuity.

Three sets of visual events are generated. First, VE events are generated from
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Figure 4.5: (a) A wedge corresponding to an EV event. (b) Interaction of the
wedge with the surfaces in the environment. The wedge is clipped against sur-
faces A and B, but only surface B gains a new discontinuity boundary. Disconti-
nuity boundaries are not added to surfaces intersecting the wedge in the region
enclosed between E and V, since the visual event is not visible from such surfaces.
The dark areas show the clipped portion of the wedge.
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class VEevent has

Point V

Segment E

DiscOrder order

method Set(in Point , in Segment, in DiscOrder)
end class

class EVevent has
same as above
end class

Point C — centroid of source sg
foreach edge E of source 5o do
VEevent ve.Set(C, E, D?)
model. TraceVE(ve)
end for
foreach vertex V of source so do
foreach edge E in set of potentially occluding edges do
if so has an edge E’ incident on V and coplanar with E then
VEevent ve.Set(V,E, D)
else
VEevent ve.Set(V,E, D?)
end if
model. TraceVE(ve)
end for
end for
foreach edge E of source sp do
foreach vertex V in set of potentially occluding vertices do
if V is the endpoint of an edge E’ that is coplanar with E then
EVevent ev.Set(E,V,D")
else
EVevent ev.Set(E,V,D?)
end if
model. TraceEV(ev)
end for
end for

Figure 4.6: Pseudocode for the generation and classification of visual events
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the centroid of the light source through each of its edges. These events are used
to locate the discontinuity in the second derivative of the radiance function on
those surfaces in the environment that are intersected by the supporting plane of
the light source. In fact, the contribution of the light source is maximum in the
direction normal to the source, decreases away from the normal, reaches zero
for points coplanar to the source, and is of course zero for any point behind the
source.

Second, we trace VE events from each of the vertices of the light source. For
each vertex V, there are as many possible visual events as there are edges in
the environment. Only a subset of these edges, however, has an impact on our
simulation. The set of potentially occluding edges contains only edges that have
at least one endpoint in front of the light source. Edges that are shared between
two or more polygons are counted only once. If the endpoints of an edge lie on
opposite sides of the light source, the edge is clipped and only the part lying in
front of the source is considered.

If the environment is made of closed non-interpenetrating polyhedra, this set
can be made smaller by including only edges incident to atleast one polygon fac-
ing the apex V. In fact, a visual event whose participating edge E’ did not belong
to any polygon facing V would only see polygons that lie between V and E’, and
would therefore be unable to generate any critical curves (see example in Fig-
ure 4.7.)

If the environment contained only convex polyhedra, the set of potentially
occluding edges could be made even smaller by including only those edges that

appear as silhouette edges when seen from V. The detection of silhouette edges,
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Figure 4.7: Visual event defined by an edge E’ whose incident faces are all facing
away from V. In a polyhedral environment, this event is inconsequential since
it is completely arrested by the faces, F; and F,, intervening between V and E'.

however, was not implemented.

Determining the order of discontinuity carried by these VE events is simple.
We take the two edges of the light source, E’ and E”, that are incident on V; if
either edge lies in the plane defined by V and E, then the visual event will create
D! discontinuities; otherwise, it will create D? discontinuities.

Finally, we trace EV events from each of the edges of the light source. Simi-
larly to VE events, we compute a set of potentially occluding vertices by includ-
ing only those vertices in the environment that lie in front of the light source and
belong to a polygon facing the light source. Vertices sharing the same location
are inserted only once.

In order to determine the order of discontinuity of an EV event, each occlud-
ing vertex V stores a list of its incident edges. If any of these edges is coplanar

with the edge of the light source generating the EV event, then the event is clas-
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sified as D!; otherwise, the event is D2,

As mentioned before, computing the critical curves associated to a VE visual
event is essentially a visible surface determination algorithm. We order to im-
plement this process efficiently, we organize the surfaces in the environmentin a
BSP-tree [FUCHS80]. This data structure, in fact, provides a simple and fast way
of sorting its surfaces by distance with respect to any point in space.

The pseudocode given in Figures 4.8 to 4.10 shows how to compute the crit-
ical curves (or segments) generated by a VE event ve.

The environment is stored as a BSP-tree. Each node stores a plane equation
plane and a list of the surfaces lying on that plane, as well as subtrees to the
part of the environment in front of the plane (child,.) and that behind the plane
(childy).

Given a VE event ve, the BSP-tree is traversed in front-to-back order along
the wedge defined by the participating vertex and edge of ve, starting from its
apex ve.V (see Figure 4.9.) If the wedge faces the plane of a BSP-tree node, then
the wedge is clipped against the surfaces associated with that node (see Fig-
ure 4.4.) Only the unclipped parts of the wedge are traced further. The traversal
can stop as soon as all portions of the wedge have been clipped. In order to keep
track of which parts of a VE event remain to be traced, the data structure for the
event stores a list of active intervals. At first, this list contains a single interval,
representing the entire wedge. When tracing the event through the environ-
ment, however, portions of the wedge may be clipped and old intervals may be
dropped from the list of active intervals or replaced by new smaller ones. Should

the list of active intervals become empty, the recursive traversal of the BSP-tree
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class VEevent has

list of Interval intervals
end class

class Surface has
Plane plane
Polygon polygon

method ClipVE(inout VEevent)
end class

class BSPnode has
Plane plane
list of Surface surfaces
BSPnode child,:, child;,
method TraceVE(inout VEevent)
method ClipVE(inout VEevent)
end class

Figure 4.8: Pseudocode for the location of the discontinuities generated by a VE
event (Part 1)
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method BSPnode::TraceVE(inout VEevent ve) is
if ve.intervals = N1L then
return
end if
if ve.V is in front of planethen
child,y. Trace VE(ve)
if vefaces planethen
ClipVE(ve)
childy,. TraceVE(ve)
end if
elseif ve.V is behind planethen
child,,. TraceVE(ve)
if vefaces planethen
ClipVE(ve)
child,:. TraceVE(ve)
end if
else
if ve.E lies on planeor either endpoint of ve.E is in front of planethen
childyy. Trace VE(ve)
end if
if either endpoint of ve.E is behind planethen
childy,. TraceVE(ve)
end if
end if
end method

method BSPnode::ClipVE(inout VEevent ve) is
foreach Surfaces in surfaces do
s.ClipVE(ve)
if ve.intervals = N1L then
break
end if
end for
end method

Figure 4.9: Pseudocode for the location of the discontinuities generated by a VE
event (Part 2)
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method Surface::ClipVE(inout VEevent ve) is
list of Interval intervals' « NIL
foreach Intervall in ve.intervals do
clip I against polygonto get I, 1,13
ifI; # NIL then
intervals « intervals + {I;}
end if
if plane faces ve.Vand I # NIL and I; is not between ve.V and ve.E then
add I, to surface’s discontinuity mesh
end if
if I3 # NIL then
intervals « intervals + {I3}
end if
end for
ve.intervals « intervals
end method

Figure 4.10: Pseudocode for the location of the discontinuities generated by a VE
event (Part 3)

may be safely interrupted.

The pseudocode given in Figure 4.10 shows in more detail how a VE event
ve can be clipped against a surface in the environment. Each active interval I
of veis examined in turn. First, I is intersected with the surface polygon. Since
the polygons in a BSP-tree are guaranteed to be non-concave, I can be split at
the most into three subintervals. I; and I3, if non-empty, fall outside the polygon
and are therefore the new active intervals; I, if it exists, lies inside the polygon
and is a candidate for insertion in the discontinuity mesh of the surface. As each
interval I is examined, a new list of active segments, intervals, is created which
will replace the old list in ve.intervals at the end of the process.

A number of speedups were used to obtain an efficient implementation. For



~

Figure 4.11: Coplanar surfaces in a BSP-tree node are grouped in two sets, ac-
cording to their orientation (light surfaces face outwards, dark surfaces face in-
wards.) Each set is further organized in a two-level hierarchy of bounding rect-
angles.

clarity, however, these details were omitted from the pseudocode. One of these
efficiency schemes is nonetheless worth mentioning.

The coplanar surfaces stored with a BSP-tree node are grouped into two sets:
one containing all the surfaces that face towards the outside of the supporting
plane of the node and one containing all the surfaces that face towards its inside
(think of the plane as a halfspace.) Each set of surfaces is further organized in a
two-level hierarchy of bounding rectangles (see Figure 4.11.) At the lower level,

each surface is bounded by its own rectangle; at the higher level, a single rect-
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angle bounds all the surfaces. All of these rectangles are aligned to the axis of a
two-dimensional coordinate system local to the plane of the BSP-tree node.

Before any of the active intervals of a VE event are examined, the entire wedge
representing the event is intersected with the plane of the BSP-tree node. If the
intersection segment falls completely outside a higher level bounding rectan-
gle, then its contents are skipped. Otherwise, the intersection segment is further
checked against the lower level bounding rectangles before the active intervals
of the visual event can be clipped against the surfaces.

This simple scheme is very effective due to the following reasons:

1. Large groups of coplanar surfaces may be distant from the path of the vi-
sual event and can be culled efficiently using the higher level bounding

rectangles.

2. Polygons in the BSP-tree may have many vertices and be therefore costly
to intersect. Using the lower level bounding rectangles can avoid needless

computations.

3. Visual events can be fragmented into many intervals. Checking the event

first in its entirety may quickly cull out many needless intersection tests.

The implementation of EV events is not too different from that of VE events.
An EV event evcan belooked at as two VE wedges sharing the same apex V (see
Figure 4.5.) First, the BSP-tree is traversed in front-to-back order from V in the
direction of E; then, once E is reached, a new front-to-back traversal is started
from V in the direction opposite to E. The list of active intervals of ev is modi-

fied by the surfaces intersected during the first traversal, but no critical curves
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are generated. The same list is then used as the initial list of active intervals
for the second traversal. This time, any visible intersections with polygons fac-
ing V will result in new discontinuity segments being added to the appropriate

discontinuity meshes.
4.3 Constructing the Discontinuity Mesh

The critical curves computed in the previous section are used to construct a dis-
continuity mesh capable of capturing all the important discontinuities in the ra-
diance function and its derivatives. Each surface maintains its own mesh. This
discontinuity mesh is represented by a data structure called a Discontinuity Mesh
Tree, or DM-tree.

A DM-tree consists of two parts: a two-dimensional BSP-tree and a data
structure of topologically interconnected faces (elements), edges, and vertices.
Each inner node of the tree contains the line equation of a discontinuity segment.
Each leaf contains a pointer to a face bounded by the intersection of the halfs-
paces encountered along the path down from the root of the tree. This data struc-
ture is constructed incrementally: each discontinuity segment is filtered down
the tree, eventually splitting only the intersected leaves. The faces attached to
these leaves are also split, and the newly added edges are labeled with the ap-
propriate order of discontinuity.

The topological mesh is arranged similarly to a winged-edge data structure
so that no duplication of edges and vertices is necessary and each element can
easily determine its neighbors. In this way the contribution of the source can be

computed once on each vertex and shared between the incident elements. Since



80

edges are shared between neighboring elements, no T-vertices are introduced
when elements are split.

Two-dimensional BSP-trees were also used to represent radiosity meshes by
Campbell and Fussell [CAMP90]. Note however, that the elements stored at the
leaves of their element BSP-tree were not topologically connected. This results in
redundant illumination computations, as well as in a need for a separate pass to
eliminate T-vertices [CAMP91c].

Figure 4.12 shows an example of how a DM-tree is constructed incrementally
from a sequence of visual events. The simple configuration given in (a) shows
the discontinuity lines on a receiving surface R, generated by the interaction of
vertex V of source S with obstacle O. Initially, (b) the DM-tree of the receiver
consists of a single node pointing to a single face F. When the first edge of the
obstacle is projected on the receiver, (c) the line equation a of the resulting dis-
continuity line is used to split face F into faces F; and F;, and the DM-tree is
updated so that its root now stores line equation 4 and points to the two new
faces on either side of a. Notice that two collinear edges have been created along
line a: one corresponds to the actual discontinuity segment, while the other is
due to our splitting scheme and is not marked as a discontinuity. Next, the sec-
ond VE event is processed (d). A new discontinuity segment is generated and
the DM-tree is searched from the root to determine whether any face is crossed
by this segment. Face F; is found and is therefore split into faces F»; and Fa,.

Finally, the third VE event is processed to yield the DM-tree depicted in (e).
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Figure 4.12: Incremental construction of a DM-tree
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4.3.1 Implementation

The pseudocode given in Figure 4.13 shows the data structures used to imple-
ment a DM-tree.

The hierarchical portion of the DM-tree is made of DMnode nodes. If the
node is a leaf, then face points to the face in the topological mesh corresponding
to that node. Otherwise, the node partitions the surface into two halfspaces;
variable line stores the equation of the dividing line, and child,,: and childi,
point to the subtrees of mesh elements that are respectively to the outside and
inside of line.

The topological part of the mesh is represented by a winged-edge data struc-
ture. Each face points to a doubly linked ring of edges. Each edge has pointers
to its two endpoints, neighboring edges, and incident faces (possibly NiL.) The
boundary of faceli] can be traversed either clockwise or counter-clockwise by
following the chain of prev{i] or next{i] pointers respectively. Each vertex has its
coordinates and a pointer back to one to its incident edges. The order of discon-
tinuity of an edge or a vertex is stored in variable order.

To start with, each surface has a discontinuity mesh consisting of a single
node and a single face. This mesh is then refined incrementally by inserting the
critical curves and their associated order of discontinuity. The D° discontinuity
segments computed in Section 4.2.1 are inserted first. Then, D! and D? disconti-
nuity segments are computed as shown in Section 4.2.2 and inserted in the mesh
on the fly.

The pseudocode given in Figure 4.14 shows how a discontinuity segment is

inserted in a discontinuity mesh by filtering it down starting at the root of the
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class Surface has

DMnode mesh
method InsertSegment(in Segment , in DiscOrder)
end class

class DMnode has

pointer to Face face

Line line

DMnode child,, child;,

method InsertSegment(in Segment , in DiscOrder)
end class

class Face has
pointer to Edge boundary
method AdjustBoundary(in Segment , in DiscOrder)
method Split(in Segment , in DiscOrder, out Face, out Face)
end class

class Edge has
DiscOrder order
pointer to Vertex endpoint{2]
pointer to Edge next(2], prev{2]
pointer to Face face{2]

end class

class Vertex has
Point coord
DiscOrder order
pointer to Edge edge
end class

Figure 4.13: Pseudocode for the DM-tree data structures



method Surface::InsertSegment(in Segment seg, in DiscOrder ord) is
mesh.InsertSegment(seg, ord)
end method

method DMnode::InsertSegment(in Segment seg, in DiscOrder ord) is
if this is an interior node then
if seg crosses linethen
split seg across line to yield seg,, and seg,,
child,y:.InsertSegment(seg, ., ord)
child;,.InsertSegment(seg, , ord)
elseif seglies on the outside of linethen
child,.InsertSegment(seg, ord)
else
child,,.InsertSegment(seg, ord)
end if
else
if seg falls on the boundary of facethen
face.AdjustBoundary(seg, ord)
else
line — supporting line of seg
child,, « create new leaf node
child,, «— create new leaf node
face.Split(seg, ord, child,.face, child;,.face)
dispose of face and mark this node as non-leaf
end if
end if
end method

Figure 4.14: Pseudocode for the insertion of a critical curve into the discontinuity
mesh of a surface



85

DM-tree. Notice that the input segment is generated by the algorithms given in
the previous section and is guaranteed to lie completely inside (possibly on the
boundary) the surface being meshed.

If the node being visited is an interior node, we compare the discontinuity
segment against the line equation stored at that node. If the segment crosses
the line, we split it across the line and attempt to insert each of the resulting
pieces independently by recursively searching the child,, and child,,: subtrees
respectively. If the segment falls completely on one side of the dividing line,
then we continue the search on that side only. If the segment lies on the dividing
line, then we continue the search down the hierarchy by arbitrarily choosing to
follow the child;, subtree.

When a discontinuity segment reaches a leaf node, it must be inserted into the
topological part of the mesh. The discontinuity segment must either fall on the
boundary of the face associated with the leaf node, or be completely contained
within the face. The pseudocode given in Figure 4.15 describes these two cases
in detail.

In the former case, the endpoints of the segment are added to the boundary
of the face possibly splitting one or two edges. The edges covered by the seg-
ment are then reclassified according to the order of discontinuity of the segment.
Notice that if two discontinuities overlap, the one with the lower order, i.e. the
sharper one, will prevail.

In the latter case, the face is split along the supporting line of the discontinuity
segment resulting in a new edge E (see parts a and b of Figure 4.16.) The edge is

initially classified as D*°. Then, E is split in up to three parts at the endpoints of



86

method Face::AdjustBoundary(in Segment seg, in DiscOrder ord) is
foreach endpoint V of segdo
if V lies on an edge E of boundarythen
split E and create a new vertex corresponding to V
end if
end for
foreach EdgeE covered by segdo
if ord < E.orderthen
E.order « ord
end if
end for
end method

method Face::Split(in Segment seg, in DiscOrder ord, out FaceF o, out FaceF;,) is
split face along seg to create new faces Fou and Fi, joined by edge E
E.order — D*

clip E against seg to get Eq, E;, E3 (E; and E3 may be NIL)
E;.order — ord
end method

Figure 4.15: Pseudocode for the insertion of a discontinuity segments into the

leaves of a DM-tree

@ b) ©

Figure 4.16: Splitting a face to capture a discontinuity segment. (a) The initial
face and discontinuity segment S. (b) The face is split along the supporting line
of S and a new edge E is created. (c) E is split into three parts, with edge E,
corresponding to the discontinuity segment S.
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() (b) (0

Figure 4.17: Triangulating a mesh element. (a) The initial element. (b) The new
vertex is added halfway between the two most distant vertices. (c) New edges
are created between each vertex on the element boundary and the new vertex.

the segment and the part that is covered by the segment is reclassified with the

order of discontinuity of the segment (Figure 4.16c¢.)
4.4 Sampling and Reconstruction on the Receiver

Once the discontinuity mesh is built, sample locations must be chosen at which
to compute the radiance contribution of the current light source. The contributed
radiance function is then reconstructed from the samples.

The discontinuity mesh built using the techniques described in the previous
sections partitions a surface into regions within which the radiance function is
continuous. Because of the binary space partitioning scheme used, the resulting
mesh elements are convex polygons, but may have many vertices. Reconstruct-
ing a smooth radiance function across such general elements while meeting the
boundary conditions is difficult. Therefore, each region is triangulated first. The
triangulation algorithm avoids creating new vertices on the boundaries of the

mesh elements so that each element can be triangulated independently. The al-
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gorithm is illustrated in Figure 4.17 by way of a simple example. We start with
a convex element with possibly collinear vertices (a). First, we choose the pair
of vertices V; and V; that are the farthest apart and create a new vertex halfway
between V; and V; (b). And then, we triangulate the element by creating new
edges between each vertex on the element boundary and the new vertex (c).

Triangular elements of different orders can now be used to represent the ra-
diance function. Constant and linear elements are only able to resolve D® and D!
discontinuities respectively and generate annoying visual artifacts such as block-
iness and Mach bands. Higher order elements can correctly resolve D° D!,
and D? boundary discontinuities, and can more accurately approximate the ra-
diance function inside each element.

We use quadratic elements with each mesh triangle defined by six radiance
values: one at each vertex and one at the midpoint of each edge (see Figure 4.19.)
Rather than actually computing six values for each triangular element, radiance
values are shared between neighboring elements across non-D° edges. Correct
treatment of D edges and vertices requires some attention. The radiance func-
tion is not uniquely defined along these edges and vertices and the radiance val-
ues in their vicinity depend on the side from which the edge is approached. The
correct values for a given element are the limit values of the radiance function at
the edge midpoints and vertices when moving towards them from inside the el-
ement. In practice, a good approximation to these limit values can be computed
by slightly displacing the sample locations corresponding to the vertices and the
midpoints of the edges inward, so that they lie strictly inside the element.

A special problem is posed by elements which are incident on a D° vertex V,
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Figure 4.19: Quadratic interpolation over a triangular mesh element

non- DO

Figure 4.20: A simple discontinuity mesh with D° edges and D° vertices marked
by thicker lines. Face F, among others, is incident on a D° vertex, V, but has no
D° edges. The radiance function over F has a singularity at V.



91

but do not contain D° edges (e.g. element F incident on V in Figure 4.20.) Thereis
aneed to correctly represent the singularity that the radiance function may have
at V. Assigning a single radiance value to V may cause D° discontinuities in the
interpolated function along the edges incident on it. To solve this problem we fit
a degenerate bi-quadratic patch over the triangular domain of the element. The
degenerate patch has three control points corresponding to V and thus a range
of values can be represented simultaneously there, while maintaining continuity
along the incident edges.

Our implementation correctly resolves D° and D! discontinuities. The actual
radiance function is C! continuous across D? boundaries. Currently, we do not
impose C' continuity across these boundaries. It is possible to do so using the
piecewise cubic interpolation scheme described by Salesin et al. [SALE92].

Certain operations, e.g. ray tracing, require the ability to quickly inquire for
the radiance value at a given location x on a surface s;. The pseudocode given
in Figure 4.21 shows how this radiance value can be efficiently evaluated using
the DM-tree data structure representing the discontinuity mesh for s;.

First, the DM-tree is descended recursively, starting at the root, until the leaf
node, or element, containing point x is located. Then, point x is transformed
to the (u, v) parametric coordinates of this element. Finally, the quadratic patch
representing the radiance function over the element is evaluated at (1, v) and the
desired radiance value L;(x) is stored in variable L.

Assuming that the DM-tree is relatively balanced, this operation takes O(log 1),
where 7 is the number of elements in the discontinuity mesh of a single surface,

Si.
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method DMnode::EvaluateRadiance(in Point x, Radiancel) is
if this is a leaf then
Realu,v — parametric coordinates of x in this face
L « radiance value of quadratic patch at (1, v)
else
if x is on the out side of linethen
child,. EvaluateRadiance(x, L)
else
child,. EvaluateRadiance(x, L)
end if
end if
end method

Figure 4.21: Pseudocode for the evaluation of the radiance function at a point x
on a surface

4.5 Computing the Source Contribution to a Point

The radiance contributed by a source sy of constant emission Lo to a point x is
given by Equation (4.1).

If no occluding surfaces intervene between x and s, the visibility term v is
everywhere 1, and the area integral can be transformed into a countour integral
using Stoke’s theorem. This, in turn, can be evaluated analytically using the

formula provided by Hottel and Sarofin [HOTT67] (see Figure 4.22a):

1 "= cos~'(R; - Rig1)
Finn, = — L% (R x Rigy) - Nj 4.2
dAx)— Ao 27r’§ IR % Rl (Rj x Rjg1) (4.2)

where

Fia,0—4, is the form factor notation for the integral in Equation (4.1);
@ represents addition modulo 7;

n is the number of vertices of the polygonal source so;
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(o)

Figure 4.22: Analytical form factors. (a) Hottel and Sarofin’s method for com-
puting unoccluded form factors. (b) Only the part of the source lying in front of
the receiver is considered in computing the energy transfer. (c) Only the visible
parts of the source contribute to the form factor.
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R; is the unit vector from point x on surface s; to the ith vertex of source so; and

N; is the unit normal to surface s; at point x.

As Nishita and Nakamae first pointed out [NISH83], this formula requires
that the light source sp be completely in front of the receiving surface s;. If, in-
stead, the supporting plane of surface s; intersects the source so, then the source
must be split and the integration must be carried out on that part of sp that is in
front of s; only (see Figure 4.22b.)

The contribution of source so to a point x can be computed analytically in
the presence of occlusions, too. In fact, it is sufficient to determine which parts
of sp are visible from x, and integrate the contribution of each part separately.
To compute these visible regions, we project all the potential obstacles from the
point of view of x onto the supporting plane of the source sp and discard any parts
of the source that are covered by any of the projected obstacles (see Figure 4.22c.)

Point sampling algorithms for testing the visibility of the light source [COHESS5,
HANR91b,WALL89] can also be used, but they are not nearly as accurate, and

are prone to aliasing.
4.51 Implementation

Figure 4.23 gives the pseudocode for the computation of the form factor from a
point x on a surface s; to a polygonal light source so.

Each occluding surface in the environment is projected onto the supporting
plane of the source sp and its projection is intersected with the source to deter-
mine which parts of sp are visible from the receiving point x.

Considering all the surfaces in the environment as potential occluders would
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compute shadow shaft for x and so
foreach Surface s; in the environment do
ifs; is not culled by the shadow shaft then
project s; onto supporting plane of so
intersect projection with BSP-tree for sg
end if
end for
Real ff — 0
foreach visible leaf polygon p in BSP tree for so do
ff — ff+ form factor Fia,x)—4,
end for

Figure 4.23: Pseudocode for the computation of form factors in the presence of
occlusions

be terribly inefficient. Instead, we use a shaft culling technique similar to that
proposed by Haines and Wallace [HAIN91c] to drastically reduce the number of
potential occluders that must be projected onto the source so.

Our shadow shaft is a pyramid with the source s as its base and the receiving
point x as its apex. More formally, the shaft is defined as the intersection of
halfspaces: one halfspace for each of the edges of the source s, defined as the
plane passing through the receiving point x and the edge itself, and one halfspace
for the supporting plane of the source itself.

Checking a surface s; against our shaftis quick and easy: if all the vertices of s;
lie outside any of the halfspace defining the shaft, then s; can be safely culled out
of consideration as its projection onto the supporting plane of sy could never
intersect the source.

In order to keep track of which parts of the source are visible from x we use

a two-dimensional BSP-tree. A boolean variable is associated with each of the
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leaves of the BSP-tree to indicate whether or not the region of the source corre-
sponding to that leaf is visible or occluded. Each time the projection of a new
surface s; is intersected with s, the BSP-tree is updated to reflect the change in
the visible portions of the source. The intersection algorithm uses the techniques
presented by Naylor et al. [NAYL90], who show how polyhedral set operations
can be implemented by merging BSP-trees.

Once the visible parts of the source are determined, the form factor from x
to So, Faa,(x)—4,, is computed as the sum of the unoccluded form factors from x
and each of the visible parts of the source. Each of these form factors, in turn, is

computed using the analytical formula reported in Equation (4.2).
4.6 Adaptive Subdivision

Discontinuity meshing guarantees that no mesh elements will be crossed by
strong discontinuities, thus making simple polynomial functions suitable to ap-
proximate the radiance distribution across a receiving surface. However, there
are still instances in which the radiance across a mesh element varies too quickly
for the simple quadratic interpolation scheme presented in Section 4.4 to provide
a sufficient approximation. Large or badly shaped mesh elements and the close
proximity of a strong light source are often responsible for this problem. In these
cases, adaptive mesh subdivision can be used to effectively reduce the errors.
In order to design a mesh refinement algorithm, we must decide when and

how to subdivide a mesh element.
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4.6.1 When to Subdivide

Intuitively, a mesh element should be subdivided whenever its approximation
to the correct radiance function falls below the desired accuracy according to a
predetermined error metric.

Defining the best error metric to use is difficult. Each metric quantifies a
particular kind of error. In the following, we will present three different error
metrics and discuss their effect on the accuracy of the solution as well as their

ease of implementation and computational cost.

2-norm error metric

The 2-norm error over a surface element e is defined as:

IL— L2 = ( / (L) — L(0)*dAR) 4.3)
where

L(x) is the actual radiance at point x on element ¢;

L(x) is the estimated radiance at point x on element ¢ as computed from the

quadratic interpolant defined over ¢;

dA(x) is a differential surface area centered at x.

This metric measures the overall error over the entire surface e. Using the
2-norm error metric to control adaptive subdivision has the effect of improving
the quantitative accuracy of the solution. However the distribution of the error
across the surface is not taken into account; for example, the same error could be

localized to a small subregion or be equally distributed across the whole surface
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element. Visually, the former case would cause much more noticeable artifacts
than the latter; thus, the 2-norm error metric is not very well suited for qualitative
analysis. Furthermore, the error measured by this metric is proportional to the
area of the surface element and can therefore lead to unnecessary subdivision of

large elements.
Infinity-norm error metric

The infinity-norm error over a surface element e is defined as the maximum ab-

solute error over the element:
IL = L||oo = max, | L(x) — L(x)| . (4.4)

Using the oco-norm error metric to trigger the refinement process has the ef-
fect of improving the accuracy of the solution qualitatively, i.e. visually, as well
as quantitatively. Also, unlike the 2-norm error metric, this metric is indepen-
dent of the element size and thus allows the simulation to capitalize on large
elements whenever possible. This independence, though, coupled with numer-
ical approximations, could lead to infinite subdivision. This problem can be eas-
ily solved by preventing subdivision whenever the element area falls below a
prespecified minimum.

Computing the exact error according to either the 2-norm or the co-norm er-
ror metric is not feasible since it would require knowledge of the actual radiance
at infinitely many points across a surface. An approximation, though, can be
computed using a finite number of samples. The more the samples, the better
the approximation; however, the cost of estimating the error should, of course,

be less than that of computing the radiance samples necessary to define the in-
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terpolant used to approximate the radiance function over an element.

On the average, excluding boundary conditions, samples taken on a mesh
vertex will typically be shared among about six elements and those taken on a
mesh edge will be shared between two elements; thus, using a piecewise quadratic
interpolant to reconstruct the radiance function will take about two samples per
element (3 x § +3 x 3). This suggests that a single radiance sample be used to
estimate the error and decide whether or not to trigger adaptive subdivision. We
take this sample at the centroid of the element. Although the error estimate thus
computed is not always reliable and can cause the adaptive subdivision to stop

prematurely; in practice, this strategy has yielded good results.
Smooth-boundary error metric

The piecewise quadratic interpolation scheme presented in Section 4.4 does not
impose C! continuity across elements boundaries. This may lead to unwanted
Mach bands along mesh edges classified as D? or higher. Adaptive subdivision
can help eliminate these artifacts.

In fact, we can measure the angle of the cusp formed by the reconstructed
radiance function along the edge between two elements, and subdivide if this
angle is too far from flat. More formally, let angle(f, e) be the function that takes
as input a triangular face f and an edge e incident on f, and whose behavior is
described by the following pseudocode:

x « midpoint(e)
g « neighbor(f, e)
if order(e) > D? and g # NIL then
angle — arccos(tangent(f,e, x) - tangent(g, e, x))
else
angle — =
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end if
return angle

where
midpoint(e) is the midpoint of edge ¢;
neighbor(f, e) is the neighbor of face f across from edge ¢;

tangent(f, e, x) is the tangent vector to the reconstructed radiance function for

element f, at point x, and in the direction perpendicular to edge e.

Then, we define the smooth-boundary error of a triangular face f as:
maxg | angle(f,e;) — | (4.5

where E = {e;} is the set of edges incident on f.
This error metric has the effect of forcing subdivision in areas where the piece-
wise quadratic interpolant fails to reconstruct a smooth approximation to the

radiance function.

4.6.2 How to Subdivide

The mesh subdivision strategy we have adopted uses the 2-triangles mesh re-
finement algorithm presented by Rivara [RIVA87].
The meshes produced by her method have a number of desirable properties

that make them particularly suitable to the task of capturing radiance functions:

1. No T-vertices are introduced by the refinement process. This property is
important since T-vertices could introduce value discontinuities in the re-

constructed radiance function.
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2. The transition between large and small triangles is smooth; i.e. it happens
gradually over intermediate-sized triangles rather than abruptly. The re-
sulting distribution of sample points is less prone to generating visual ar-

tifacts at reconstruction time.

3. The refined mesh tends to be made of well shaped triangles. More pre-
cisely, the algorithm yields triangles whose longest edge is shorter than
twice the length of either of the other edges [RIVA87]. This property is
important because the binary space partitioning scheme used to construct
the discontinuity mesh is liable to produce elements with bad aspect ratios.
Well shaped elements, in fact, can reduce errors in the radiance approxima-

tion [BAUMO1].
2-triangles mesh refinement algorithm

Rivara’s 2-triangles mesh refinement algorithm is based on simple bisection op-
erations and is illustrated in Figure 4.24. The algorithm starts by bisecting an
element s by the midpoint of its longest edge e (a). This operation creates a new
vertex v. If element s has a neighbor t across edge ¢, then v is a T-vertex and the
triangulation is no longer considered valid. In order to restore validity, element
t is also bisected along the midpoint of its longest edge ¢ (b). If e and ¢ are the
same edge, then we are done; otherwise, v and v/, the midpoint of edge ¢/, are
connected to form new triangles (c). If ¢/ is, in turn, a T-vertex, the process is

iterated until all mesh elements are triangles once again.
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(a) (b) (c)

Figure 4.24: Rivara’s 2-triangles mesh refinement algorithm
Implementation details

In our implementation, whenever a triangular element is bisected, the corre-
sponding dm-tree node is refined as well. In this way, point location within a
mesh can be carried out efficiently using the same binary search described in
Section 4.4. Also, maintaining a one-to-one correspondence between the mesh
elements and the leaf nodes of the dm-tree, enables us to implement adaptive
subdivision without any change to the existing data structures.

The new edges created by the refinement process are marked as D*. This
information can be used at radiance reconstruction time to maintain the highest
possible order of continuity across these edges. In the current implementation,
however, the reconstructed radiance function is only guaranteed to be C° across
these edges.

Every time a new triangular element is created during the refinement process,
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new radiance samples must be taken at its vertices and edge midpoints. Most
of the sample locations, however, will fall on the vertices and edge midpoints of
the elements of the original mesh. Recomputation of the same values is avoided
by means of a simple flagging scheme.

This adaptive refinement algorithm has proved to work very well. In partic-
ular, even a small amount of subdivision can improve the quality of the discon-

tinuity mesh considerably.



Chapter 5

Discontinuity Meshing Radiosity

In the previous chapter, we introduced the concept of discontinuity meshing. We
applied this concept to the design of an algorithm capable of accurately captur-
ing the characteristics of the radiance functions over a set of polygonal surfaces
resulting from the direct illumination of a finite area light source of constant
emission.

Despite its accuracy, this algorithm, as it is, is not very useful. Real environ-
ments typically contain multiple light sources and often a significant portion of
their illumination is due to interreflections between surfaces. In this chapter, we
show how to develop a radiosity algorithm that uses the single source discon-
tinuity meshing algorithm as a building block to compute a global illumination

solution for diffuse polygonal environments.
5.1 Discontinuity Meshing Radiosity—Algorithm Overview

The global illumination problem was discussed in Section 2.2 and its formulation
for diffuse environments was given in Equation (2.3). Following the conventions

established before, we restate our problem as follows:

104
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Given aset S = {s1,s,...,5,} of convex polygonal surfaces, their dif-
fuse BRDF's fu1, fr2, . . -, frn, and constant emissions L5, LS, ..., Lf, com-
pute the set of radiance functions L;, L,,. .., L, such that

cos 6; cos 0;

L) =L+ Y / Lix) ox, ¥)dAK)  (5.1)

s,€SVX'€S r2
foralli=1,2,...,n.

As with the single source discontinuity meshing algorithm presented in the
previous chapter, we will use a meshing approach to sample the radiance func-
tions at a finite set of locations and reconstruct an approximation L; to the actual
solution.

The new discontinuity meshing radiosity algorithm is based on progressive
refinement radiosity [COHE88b]. This approach essentially reduces the prob-
lem of solving the diffuse rendering equation into that of computing the direct
illumination from a single light source. Since we have already developed an
algorithm that solves this last problem, the progressive refinement approach is
only a natural choice.

Pseudocode for the discontinuity meshing radiosity algorithm is given in Fig-
ure 5.1. The cumulative effect of multiple light sources is maintained in L;. Ini-
tially, the radiance L; of a surface s; is simply equal to the emission L¢ (possibly
zero) of the surface. Then, the approximation L; is refined by adding, at each
iteration, the direct illumination L; contributed by a new light source sj, whether
primary or secondary.

In order to implement this approach, two major steps are necessary. First,
the single source discontinuity meshing algorithm must be extended to handle

secondary sources whose emission is typically not a constant. Second, a method
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foreach Surfaces; in S do
i.,- — L
AL; — Lt
end for
repeat until convergence
find surface s; with maximum unshot power
compute L; forall s; in S
foreach Surfaces;in S do
i,,' — i,,' + L’j
AL‘ — AL’ + iij
end for
AL « 0
end repeat

Figure 5.1: Pseudocode for the discontinuity meshing radiosity algorithm

of combining radiance functions implicitly defined by sample locations on dif-
ferent discontinuity meshes must be devised.
In the following sections, we describe these two steps in detail and conclude

with a discussion on the algorithmic efficiency.
5.2 Locating the Discontinuities

As shown in Section 2.4, the direct illumination due to an area light source of
constant emission results in radiance functions that may exhibit D%, D!, and D?
discontinuities. The ability to predict the order and location of these discontinu-
ities was used in the previous chapter to design an algorithm capable of accu-
rately capturing the direct illumination due to such a source on a set of polygonal
surfaces.

When the indirect illumination is also considered, additional discontinuities

are created. According to the Discontinuity Propagation Law presented in Sec-
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tion 2.4.3, in fact, discontinuities of order k on a secondary light source are prop-
agated into the environment, resulting in discontinuities of order k +1 and k + 2.
Thus, the total number of discontinuity curves in the environment grows rapidly
with the number of interreflections considered. In the limit, a full global illumi-
nation solution would exhibit an infinite number of discontinuities.

Trying to locate all these discontinuities would be impractical even for a finite
number of interreflections. Fortunately, though, as the order of a discontinuity
increases, its effect on both the quantitative and qualitative accuracy of our sim-
ulations diminishes.! Following this simple observation, it is possible to drasti-
cally cut down on the number of discontinuities considered without noticeably

affecting the quality of the simulations.
5.21 Implementation

In our implementation, we consider D° D!, and D? discontinuities only. Captur-
ing higher order discontinuities would add an order of magnitude to the time
and storage costs of the simulation and would require modifying our reconstruc-
tion scheme. The piecewise quadratic interpolation technique presented in Sec-
tion 4.4, in fact, is capable of resolving D°, D!, and D? discontinuities only.

In order to propagate discontinuities on a secondary source that might result
in D! or D? discontinuities on a receiver, we consider visual events in which the
participating edge is either a D° or D! discontinuity segment on the source.

The pseudocode given in Figure 5.2 shows how to generate and classify the

The order of a discontinuity is actually only one of several factors whose interplay deter-
mines the visual importance of a discontinuity. Developing a metric of visual importance in-
volves the study of complicated perceptual issues and was not attempted in this research. A
brief discussion of the problem, however, is offered in the concluding chapter.
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foreach discontinuity segment E on source s; do
if order of E = D°then
foreach vertex V in set of potentially occluding vertices do
if V is the endpoint of an edge E’ that is coplanar with E then
EVevent ev.Set(E,V,D")
else
EVevent ev.Set(E,V,D?)
end if
model. TraceEV(ev)
end for
elseif order of E = D! then
foreach vertex V in set of potentially occluding vertices do
if V is the endpoint of an edge E' that is coplanar with E then
EVevent ev.Set(E,V,D?)
model. TraceEV(ev)
end if
end for
end if
end for

Figure 5.2: Pseudocode for the generation and classification of the visual events
associated with the discontinuity curves on secondary light sources

visual events associated with the discontinuity curves of a secondary light source s;.
Additional visual events are generated by the edges and vertices of the light
source as it was done for primary light sources (see pseudocode in Figure 4.6.)
We look at each discontinuity segment on source sj, in turn. D° discontinu-
ities interact with the set of potentially occluding vertices (see discussion in Sec-
tion 4.2.2) to generate D! and D? EV visual events which are then traced through
the environment. D! discontinuities, instead, can potentially generate both D?
and D® EV visual events, but only D? events are actually created and traced.

D? discontinuity segments on the source, finally, can only propagate to D* and
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higher order discontinuities and are therefore ignored.
5.3 Computing the Source Contribution to a Point

In a global illumination simulation, any surface in the environment may act as
a secondary light source by reflecting part of the incident light back into the
environment. These sources, as opposed to the primary light sources discussed
in the previous chapter, typically have non-uniform emittance.

The radiance contributed by a source s; to a point x on a receiving surface s;

is given by:
cos 0; cos 0;

2 v(x, x)dA(x') (5.2)

Ly = fu [, 1<)

As was shown in Section 4.5, the visibility term v(x, x’) can be taken out from
under the integral by determining which parts of s; are visible from point x.
However, the presence of the arbitrary L;(x') term still precludes the possibility
for an analytical solution.

Our algorithm uses numerical integration techniques to compute the contri-
bution from each of the visible parts of the light source. These regions are convex
polygons of arbitrarily many sides. Rather than trying to integrate L; over these
complicated domains, we first triangulate each region and compute the radiance

contribution as:

cos 0; cos 0;

—LdAG) (5.3)

Li(x) =fui) -[—1—; La Li(x)dA(x")

teT x'et

where

T is the set of visible triangles for s;; and

A is the area of triangle t.
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Notice that the radiance contribution of each individual triangle is computed
as the product of the area average radiance of the triangle and its form factor.
Splitting the contribution integral in this fashion is only accurate if the radiance
across a triangle is relatively constant. In order to meet this condition, our al-
gorithm adaptively subdivides the triangle into four similar triangles until the
relative error between two successive estimates falls below a specified threshold.

The [,.¢; Li(x)dA(x') term in the equation above is the radiant flux of source s;
over the area of triangle t. Assuming that the behavior of L; over ¢ can be well ap-
proximated by a quadratic polynomial, it is possible to evaluate the integral an-
alytically using the quadrature formula for quadratic triangular elements given

by Brebbia and Dominguez [BREB89], page 269:
1
[, LOGOMAG) = 3(Lin) + Lilx) + LiCxa) (5.4)

where x1, x2, and x3 are the midpoints of the edges of ¢.
The form factor integral is also evaluated analytically using Equation (4.2) as

was shown in Section 4.5.
54 Combining Radiance Functions

Conventional radiosity systems use a single mesh throughout the entire simula-
tion. The mesh can be adaptively subdivided in an attempt to capture fine illumi-
nation details, but basically the same set of sample locations is used to compute
the contribution from all the light sources, both primary and secondary, as well
as to store the accumulated radiance values.

Such a scheme would be impractical for discontinuity meshing, since every

surface in the environment may become a source, participating in a different
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set of visual events. Accounting for all these visual events would result in a
very large number of critical curves and very complex meshes. Computing the
radiance contribution from every source to such a mesh would be very costly.
Our solution, instead, consists of building a separate discontinuity mesh for
each source s; using only the critical curves resulting from visual events involv-
ing this source. In this way, the number of points at which the contribution L;
from a source s; to a receiving surface s; is computed is substantially reduced.
The cumulative radiance function L; is also stored as a discontinuity mesh
since, of course, any discontinuity in a L; will also be a discontinuity in L;. Our
progressive radiosity system refines L; incrementally by adding in at each itera-

tion the latest contribution Lj:
t?ew — t?ld + i.,'j (55)

In this way, only the storage used to represent the current L; needs to be main-
tained, while that required by the L; is released at the end of each iteration.

Since for each source s; the discontinuity mesh of the interpolant L; is typi-
cally substantially different from the meshes used for previous sources, the prob-
lem of merging contributions is not trivial.

In order to compute LIV we start by creating a new discontinuity mesh con-
taining all the significant discontinuity boundaries from L4 and L;. These bound-
aries can be identified by inspecting the corresponding discontinuity meshes and
can be inserted into the new discontinuity mesh using the algorithm outlined in
Figure 4.14. The new mesh is then triangulated and quadratic elements are com-
puted as described in subsections 4.4 and 4.6. Note however, that the value at

any point p is given by L?4(p) + L;j(p). Thus, rather than integrating over the
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source at each sample location of the new mesh, we only need to evaluate L¢!4(p)
and Li(p). Each value is computed by locating the element containing p in the
appropriate mesh and evaluating the quadratic interpolant. The key steps of the
algorithm are depicted by way of a simple example in Figure 5.3.

Since there is no need to process visual events nor to compute the contribu-
tion of a source at each location, constructing the new interpolant LV is typically
much faster than computing the contribution L;.. As will be shown in Chapter 6,
in fact, the accumulation process takes up only a small percentage of the total
computation time and thus does not compromise the advantages gained by us-
ing a separate discontinuity mesh for each source.

Our scheme for combining radiance functions is essentially a resampling
method, and therefore a certain loss of accuracy can be expected. Notice, though,
that since the important critical curves are reproduced in the new discontinuity
mesh, the resampling occurs inside regions where the radiance function can be
considered smooth, and thus the additional error is small. Furthermore, since
the time spent combining radiance functions constitutes a very small part of the
total simulation time, we can afford to increase the level of adaptive subdivision

used by the combination algorithm so as to provide the desired level of accuracy.
5.5 Efficiency Considerations

The discontinuity meshing radiosity algorithm presented in this chapter is very
accurate, but also very computationally intensive.
Despite the restrictions on the kind of visual events that we chose to trace

through the environment (see Sections 4.2.2 and 5.2,) the process of locating the
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(a) (b) (c) (d)

Figure 5.3: Combining the illumination from two light sources in the presence
of a simple obstacle (the cube floating above the floor). Columns (b), (c), and (d)
show a plan view of the floor. Row 1. (a) Surface A is selected as the current
source. (b) Discontinuity boundaries due to source A are computed. D' and D?
discontinuities are drawn respectively in red and yellow. (c) A triangular mesh
which resolves the discontinuity boundaries is produced. (d) The source con-
tribution Lcor.a(X) is computed at sample locations within the mesh to yield the
interpolant Lﬂoor‘A. Row 2. The process is repeated with surface B selected as
the source. Row 3. (b) The discontinuity boundaries due to A and B are com-
bined. (c) A new triangular mesh with the combined discontinuity boundaries
is produced. (d) Interpolants Lacor,4 and ILHOO,,B are evaluated at sample locations
within the new mesh and the sample values are added to yield the combined
contribution of A and B.
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radiance function discontinuities takes a large portion of the execution time. The
visual events generated by secondary light sources are mainly responsible for
this cost. The number of visual events associated with a secondary source, in
fact, may be very large due to both the possible large size of the surface compared
to that of typical primary sources and to the possible large number of D° and D!
discontinuity segments falling on it (for example, the floor of a furnished room
which contains many shadows.)

Computing the radiance contribution of the light source to a point is also a
computationally intensive process. Determining the visible portions of a source
for each sample point we want to take, in fact, can be much more expensive
than using a more conventional point sampling approach such as the hemicube
[COHES85] or ray-traced form factors [WALLS89].

Another possible source of inefficiency can be found in our solution to the
problem of combining radiance functions. Any time that two radiance functions
are merged, all their discontinuities are inserted in the resulting discontinuity
mesh. Since the set of discontinuities generated on a receiver is typically different
for every source, an attempt to compute an accurate global illumination solution
for even a medium size environment might result in storage problems.

Many of the above inefficiencies can be alleviated by noticing that many com-
putations are carried out to a much higher degree of precision than is required
to achieve a final radiosity solution of a given accuracy. The same observation
led Pat Hanrahan et al. [HANR91b] to the design of a rapid hierarchical radiosity
algorithm, which is an order of complexity faster than its predecessors.

In the following sections, we use this observation to improve the efficiency



115

of the discontinuity meshing radiosity algorithm.
5.5.1 Computation of Radiance Discontinuities

In Chapter 4 we showed how incorporating lines of discontinuity in the radiance
function (including its first and second derivatives) as edges in a surface mesh
may result in an illumination algorithm capable of eliminating shadow leaks,
jagged shadow boundaries, and other artifacts that afflict conventional radiosity
systems.

Some of these discontinuity edges, however, may sometimes be omitted from
a surface mesh without resulting in any visible artifacts. For example, if a light
source s; contributes but a very small percentage to the overall illumination of
a receiving surface s;, any discontinuity lines s; may cause on s; are likely to be

unnoticeable.
Limiting the range of visual events

The radiance contribution of a source s; to a surface s; decreases quadratically
with the distance between s; and s;. When the two surfaces are sufficiently dis-
tant, then, computing discontinuity lines becomes unnecessary. In our disconti-
nuity meshing radiosity algorithm, discontinuity lines are computed by tracing
visual events from a source through the environment, visiting the receiving sur-
faces in sorted order, away from the source. This computation may be shortened
by terminating the traversal as soon as we reach a surface s; such that L;; falls be-
low a specified threshold. The precise value of L; is not critical for termination
criteria as long as we can compute an upper bound for it. Such an upper bound

can be computed much faster than L; itself by simply assuming total visibility
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between the source and receiver.
Dropping weak discontinuities when combining radiance functions

In Section 5.4, we described an algorithm for combining radiance functions that
takes two piecewise quadratic interpolants, L{4 and L;;, and yields a new inter-
polant, L%, representing their combined effect. Each of the initial interpolants
is defined over its own discontinuity mesh. The discontinuity mesh for L is
constructed starting with a single DM-tree node and adding in all the disconti-
nuity segments from both L' and Lj;.

As we observed in the introduction to this section, this algorithm can resultin
an excessive growth of the DM-tree data structures as the progressive refinement
radiosity progresses. This growth can be controlled, often without significant
losses in accuracy, by noticing that not all discontinuities are equally noticeable.
Some of the discontinuities of L;, in fact, may become invisible once they are
combined with L{¢, and vice versa. Developing a metric capable of assessing
the visual impact of a discontinuity in the illumination across a surface, how-
ever, involves complicated perceptual issues that were beyond the scope of the
research described in this thesis. A brief discussion of the problem is attempted
in the concluding chapter.

Although we recognized the need for perceptual metrics, only a simple, purely
quantitative, approach was actually implemented. Rather than trying to mea-
sure the relative strength of a discontinuity segment ¢, we measure its relative

contribution to the radiance of the receiving surface; assuming c is coming from
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a radiance function I:ij, we compute:

mex igld(i;]f)liii(x) 6.6
and insert the segment in the discontinuity mesh for Lf¥ only if its strength ex-
ceeds a specified threshold ¢;. Only a few samples taken along the discontinuity
segment c are needed to obtain a good estimate of its relative contribution. By
controlling the magnitude of ¢, we can control the growth of our data structures

and are therefore able to apply our radiosity algorithm to more complex envi-

ronments.
5.5.2 Computation of the Contribution of a Source to a Point

In Section 5.3, we described an algorithm for computing the contribution from a
source s; of arbitrary emission to a point x on a receiving surfaces; in the presence
of occlusions.

Despite the efficient implementation using shaft culling (see Section 4.5), a
significant part of the computation time is still spent projecting obstacles onto
the supporting plane of the source and intersecting them with s; to compute the
parts of the light source that are visible from each sample point x.

When the contribution L;(x) is very small, its calculation by means of the
above algorithm is carried out to unnecessary accuracy. Thus, whenever the
contribution is estimated to fall below a specified threshold, we can evaluate
L;j(x) by means of a faster ray-traced form factor algorithm [WALLB89] without a
significant loss in the overall accuracy of our solution L;.

Once again, a precise estimate of the contribution L;j(x) is not necessary as

long as we can compute an upper bound for it. This upper bound can be com-
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puted very quickly by numerically integrating L;(x) over the entire source s; us-
ing the algorithm presented in Section 5.3, but omitting the visibility calcula-
tions.

When the contribution from s; to a receiving surface s; is computed using
different algorithms for nearby sample locations, annoying visual artifacts may
result. These artifacts are due to a sudden change in the accuracy of the contri-
bution estimate when switching from the analytical projection-based method to
the ray-traced form factor algorithm or vice versa. This problem can be avoided
by requiring that the same method be used for all the sample points x; on the sur-
face s; necessary to capture the contribution L; of the source s;. In other words,
a single method is used to compute the energy transfer within a given source-
receiver pair.

If each input polygon is treated as an independent surface, radiance disconti-
nuities may occur at the boundary between two contiguous surfaces, resulting in
the visual artifacts mentioned above. Our implementation avoids this problem
by preprocessing the input scene so that each surface is actually a connected set
of coplanar polygons of homogeneous surface reflectance characteristics. Fur-
thermore, polygons within the same surface are topologically connected into a
single surface discontinuity mesh. This way, mesh conformity is maintained

across neighboring polygons even during adaptive subdivision of the mesh.



Chapter 6

Results

6.1 Physical vs. Simulated World

This section presents a qualitative comparison between a photograph of a simple
physical environment and a computer generated rendering of the same scene
based on discontinuity meshing radiosity.

The test environment consists of three surfaces only: a receiver, a light source,
and an occluding surface. The receiver is a square piece of wood covered with
several coats of matte white paint. The source is a lamp centered above the re-
ceiver and casting its light through a square-shaped diffusing panel. The obsta-
cleis a triangle cut out of black cardboard and suspended over the receiver using
fish line.

The receiver was surrounded on three sides (one side was missing to allow
for photographs) by matte black panels so as to reduce interreflections and allow
us to compare the effect of direct illumination only.

Figure 6.1 shows the reference photograph of this simple scene. Figure 6.2

shows a rendering of the same view, computed from a view-independent so-
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Figure 6.1: Photograph of a simple scene

Figure 6.2: Computer simulation of a simple scene



121

lution generated using the single source discontinuity meshing algorithm de-
scribed in Chapter 4. The two images are remarkably similar. Even subtle illu-
mination details are captured. Note, for example, the dark bands extending from
the corners of the umbra and into the penumbra region as well as the bright hor-
izontal Mach band along the outer edge of the penumbra near the bottom of the
picture.

The behavior of the illumination across the receiving surface can be perhaps
better understood by looking at a cross section of the radiance function. Fig-
ure 6.3 shows a cross section taken along a horizontal scanline passing through
the middle of the triangular umbra of Figures 6.1 and 6.2. Only an overall quali-
tative comparison is meant here since the views in the original images are aligned
only very approximately. The physical values reflect noise introduced by the
photographic and scanning processes. The scanline shown in the figure tra-
verses both the umbra and penumbra regions cast on the receiver. The plot of the
simulated radiance clearly shows how shadow boundaries correspond to sharp
changes in an otherwise smooth radiance function.

These sharp changes in the illumination occur along discontinuity bound-
aries. Figure 6.4a shows their location in a top view of the receiving surface.
Figure 6.4b, instead, shows how these lines can be incorporated into a disconti-

nuity mesh to yield the solution displayed in Figure 6.2.
6.2 Single Source Discontinuity Meshing vs. Analytical

This section presents a comparison between a discontinuity meshing solution

and an analytical solution of a simple environment.



122

08 T : physical — 7
07 simulated - 1
N
g 06 i
>
@ 05 1
2 o4t |
ot
c 03 B b
8
s 02} i
s R
0.1 e .
O 1 1 1 1 'l

0 200 400 600 800 1000 1200
pixel

Figure 6.3: Plot of the radiance values across a scanline of the images shown in
Figures 6.1 and 6.2. The scanline crosses the middle of the triangular umbra in
the original images. Only an overall qualitative comparison is meant here since
the views in the original images are aligned only very approximately. The phys-
ical values reflect noise introduced by the photographic and scanning processes.
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Unfortunately no closed-form solution to the radiosity equation is known
for arbitrary environments. It is possible, however, to analytically compute the
contribution of one or more polygonal light sources of constant emission to any
point in an arbitrary polygonal environment (see Section 4.5.)

Therefore, we chose to compute our reference solution in a view-dependent
fashion, by sampling the illumination at a finite set of sample points arranged
in a regular grid on a projection plane, and compare it to a rendered view of a
discontinuity meshing solution computed using direct illumination only.

Two views were selected for the comparisons presented in this section. The
first, shown in Figure 6.5, is a view of a simple environment illuminated by a
single square light source placed at the center of the ceiling. The second, shown
in Figure 6.6, is a top view of the floor of the same simple environment.

Because of the view-dependent method, it was necessary to compute a dif-
ferent reference solution for each of the two figures shown in the upper right
corners (b). The discontinuity meshing solution, instead, was computed only
once and then rendered twice, to obtain the two different views shown in the
upper left corners (a).

The resulting mesh for the discontinuity meshing solution is shown in im-
age (c) of the two figures. Image (d), instead, shows a pseudocolored image of
the absolute error between discontinuity meshing and reference radiance val-
ues, computed on a pixel-by-pixel basis. Finally, image (e) shows a histogram of
the pseudocolored error image. The histogram is colored to show the mapping
between error values and colors.

The pseudocolored images are very helpful for a qualitative analysis of the
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error. A look at the mesh and error images shown side-by-side in Figure 6.5, re-
veals a correlation between the magnitude of the error and the underlying mesh
structure. In general, in fact, the error is small along mesh edges and is larger in
the middle of mesh elements. Furthermore, inspection of the mesh and error im-
ages in Figure 6.6 shows that the largest errors, corresponding to the red regions,
occur near singular points. In fact, the largest error found occurs around a sin-
gularity where the lower left corner (as seen from above) of the tall box touches
the floor (see Figure 6.6d.) The magnitude of this error is 0.099 Wsr~'m~2, while
the brightest radiance value in the reference images was 4.72 Wsr~'m=2.

Figure 6.8a shows a plot of the radiance function along the scanline passing
through such largest error. The match between the discontinuity meshing and
analytical solutions is so close that it was necessary to zoom in in order to reveal
any discrepancies (Figure 6.8b.)

In order to give a quantitative measure of the error, we used 2-norms [GOLU89].
Given an image A of size n-by-m, we define its 2-norm, ||A||2, as:

1 n m ]I
|A]l2 = (% > Z(Aij)z) (6.1)

i=1 j=1

We can then define the absolute error E and the relative error e between two

images A and B respectively as:

1 n.m 2
E=||A-B|2= (— (Aj — Bjj)? (6.2)
nm g i

and

e (6.3)

_llA-Bfa _ (E?:l Tt (Aj — Bij)2>%
|IBll2 Y Tt (By)?

This definition of absolute and relative errors is useful because it gives a mea-

sure of the average error over the entire images while at the same time giving
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particular weight to large localized errors. In contrast, computing the overall
error as a simple unweighted average of the individual pixel errors would have
had the effect of washing out localized, but possibly large, errors. Note also that
the A;’s and Bj’s are actual radiance values, i.e. values which have not yet been
mapped to colors for display on a CRT device.

Table 6.1 reports the absolute error E and relative error e for both the full
view shown in Figure 6.5 and the top view of the floor shown in Figure 6.6.
The 2-norm of the reference image, ||B||2, is also given for reference. As it can
be seen, the discontinuity meshing algorithm produced a solution accurate to

within about half of one percent error.

6.3 Accumulating Radiance Functions by Resampling vs. Exact
Addition

This section examines the error introduced by the resampling scheme used to
combine radiance function due to different sources.

The accumulation algorithm was described in detail in Section 5.4. In order to
add two radiance functions their underlying discontinuity meshes are inspected
and a new discontinuity mesh is created. The new mesh contains as edges the
discontinuity segments of each of the two input meshes, but can otherwise be
very different from them. Radiance values for each of the new mesh elements are
then determined by sampling the two input radiance functions at corresponding
locations. This mechanism essentially introduces an additional resampling step
in our radiosity algorithm and is likely to introduce additional errors in our ra-
diance approximations. Because the discontinuity segments are reproduced in

the combined mesh and because the radiance function generally varies slowly
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(@) (b)

Figure 6.4: Top view of the floor of the simple scene. (a) The critical curves result-
ing from the interaction of the light source and the triangular obstacle. (b) The
resulting discontinuity mesh.

[ | IBll2 (Wsr='m=%) | E(Wsr''m™%) | e |
full view 0.54676 0.00326 0.00597
single surface 0.47820 0.00215 0.00450

Table 6.1: Discontinuity meshing vs. analytical solution. Error measurements
for the comparisons shown in Figures 6.5 and 6.6.
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(a) (b)
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(e) Wsr m'2

Figure 6.5: Full view. Discontinuity meshing vs. analytical solution. (a) The dis-
continuity meshing solution. (b) The pixel-by-pixel analytical solution. (c) The
mesh underlying the discontinuity meshing solution. (d) Pseudocolored image
of the absolute error between discontinuity meshing and analytical solutions.
(e) Histogram of the absolute error image. For better resolution, error values are
mapped to colors on a logarithmic scale. The maximum and average brightness
of the reference image are respectively 4.7219 and 0.4015 Wsr=1m 2
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Figure 6.6: Floor surface only. Discontinuity meshing vs. analytical solution.
(a) The discontinuity meshing solution. (b) The pixel-by-pixel analytical solu-
tion. (c) The mesh underlying the discontinuity meshing solution. (d) Pseu-
docolored image of the absolute error between discontinuity meshing and an-
alytical solutions. (e) Histogram of the absolute error image. For better res-
olution, error values are mapped to colors on a logarithmic scale. The maxi-
mum and average brightness of the reference image are respectively 0.8809 and
0.3620 Wsr~'m=2
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Figure 6.7: Plot of the radiance function corresponding to the discontinuity
meshing and analytical solutions along the scanline containing the largest er-
ror for the images in Figure 6.5. (a) The entire scanline. (b) A blow-up of the
boxed region, showing the largest error.
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Figure 6.8: Plot of the radiance function corresponding to the discontinuity
meshing and analytical solutions along the scanline containing the largest er-
ror for the images in Figure 6.6. (a) The entire scanline. (b) A blow-up of the
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boxed region, showing a radiance singularity at about pixel 200.
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within each of our mesh elements, we would expect our accumulation algorithm
to only introduce minor errors.

In order to test the accuracy of the accumulation algorithm, we compare it
against a simple, but generally impractical, reference method that combines ra-
diance functions in screen space to completely eliminate any resampling errors.
The reference method stores the contribution of each shooting source in a differ-
ent discontinuity mesh and keeps them all in memory, never trying to combine
them into a single mesh. To evaluate the radiance at a given point x on a surface,
all these meshes are interrogated and the returned radiance values are summed
to yield the accumulated result. To render a radiosity solution for a given view,
we repeat this process for each pixel in our image.

Clearly, this method is impractical. The amount of memory required to store
all these meshes is prohibitive and the time needed to evaluate the radiance func-
tion increases linearly with the number of shooting sources processed. However,
this method does not introduce any resampling errors and can therefore be used
to produce reference solutions to test the radiance accumulation algorithm de-
scribed in Section 5.4.

Figure 6.9 shows a comparison of the two methods for a simple environment.
Images (a) and (b) show renderings computed respectively from the discontinu-
ity meshing radiosity and reference solutions after twenty progressive refine-
ment iterations.

The resulting mesh for the discontinuity meshing solution is shown in im-
age (c). Image (d), instead, shows a pseudocolored image of the absolute differ-

ence between the discontinuity meshing and reference solutions, computed on a
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Figure 6.9: Accumulating radiance functions by resampling vs. exact addition.
(a) Solution computed by the discontinuity meshing radiosity algorithm. (b) Ref-
erence solution computed by adding in each contribution at each pixel. (c) The
final mesh for the discontinuity meshing radiosity solution. (d) Pseudocolored
image of the absolute difference between discontinuity meshing radiosity and
reference solutions. (e) Histogram of the absolute difference image. For better
resolution, difference values are mapped to colors on a logarithmic scale. The
maximum and average brightness of the reference image are respectively 50.420
and 0.658 Wsr~'m~?
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pixel-by-pixel basis. Finally, image (e) shows a histogram of the pseudocolored
difference image. The histogram is colored to show the mapping between dif-
ference values and colors. The largest difference found was 0.2295 Wsr-1m~2,
while the brightest radiance value in the reference image was 50.42 Wsr~1m=2.

The overall absolute and relative differences for the view shown were com-
puted using Equations (6.2) and (6.3) to yield values of 0.00831 Wsr~!m~2? and
0.00454 respectively. For reference, the 2-norm of the reference image was
1.83035 Wsr~1m~2. Thus, after twenty iterations the relative difference is less
then half of one percent.

Figure 6.10 gives graphs showing the absolute error E and relative error e
introduced by the combination method as a function of progressive refinement
iterations. These errors were computed by comparing the radiosity solutions
generated by the two combination methods for the same number of iterations.
As it could be expected, both the absolute and relative errors grow with the num-
ber of iterations; however, both their magnitude and the rate of growth are very
small.

The error introduced by the combination method, of course, is just one com-
ponent of the overall error resulting from a progressive refinement radiosity ap-
proach. This latter error still decreases rapidly with the number of progressive
refinement iterations. Figure 6.11 gives graphs showing the absolute and relative
errors resulting from the combined effect of the progressive refinement approach
and radiance accumulation algorithm. These errors were computed by compar-
ing the intermediate radiosity solutions generated by the discontinuity meshing

radiosity algorithm after each iteration with the final reference solution shown
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Figure 6.10: Error introduced by the radiance accumulation algorithm as a func-
tion of progressive refinement iterations. The absolute error E (a) and the relative
error e (b) were computed from a sequence of discontinuity meshing radiosity
and reference images (the final pair is shown in Figure 6.9) using Equations (6.2)
and (6.3).

relative error
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in Figure 6.9b.
Figure 6.12 shows the discontinuity meshes for the first six iterations of our
simulation. Each discontinuity mesh corresponds to a different source. The ra-

diance contribution corresponding to each source is also shown in the figure.

In order to make the contributions visible, a different mapping of radiance
values to RGB displayed colors was used than that shown in Figure 6.9. How-
ever, the same mapping was used consistently for all of the six images shown.

The sources can be easily inferred from the pictures. Going down the rows,
left to right: the primary source in the middle of the ceiling (not shown), the back
wall, the floor, the left wall, the right wall, and the top of the right box. Each
mesh is significantly different from the others. Each one contains a different set
of discontinuity segments. Also, adaptive mesh subdivision was triggered in
different areas for each of the discontinuity meshes; in each of the pictures the
mesh is denser in those areas were the rate of change of the radiance contribution
is higher.

Could combining such different meshes result in an excessive growth of the
accumulated mesh? Figure 6.13 shows that this is not generally the case. The
graph plots the number of elements in the accumulated mesh as a function of
progressive refinement iterations. For reference, the size of the discontinuity
mesh capturing the contribution of the current shooting source is also shown for
each iteration. As can be observed from the graph, the size of the accumulated
mesh grows rapidly during the first iterations, but then it tends to level out and

reach an approximate steady state.
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Figure 6.11: Combined effect of the progressive refinement approach and the
radiance accumulation algorithm as a function of progressive refinement itera-
tions. The absolute error E (a) and the relative error e (b) were computed from a
sequence of discontinuity meshing radiosity images (the last image is shown in
Figure 6.9a) and a reference solution (shown in Figure 6.9b) using Equations (6.2)
and (6.3).
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Figure 6.12: Discontinuity meshes and individual contributions for the first six
iterations of the discontinuity meshing radiosity solution shown in Figure 6.9.
Going down the rows, left to right, the sources are: the primary source in the
middle of the ceiling (not shown), the back wall, the floor, the left wall, the right
wall, and the top of the right box.
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Figure 6.13: Growth in mesh size as a function of progressive refinement iter-
ations for the discontinuity meshing solution shown in Figure 6.9. One curve
shows the size of the mesh representing a single source contribution; the other
shows the size of the mesh representing the accumulated effect of multiple con-
tributions.
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6.4 Discontinuity Meshing Radiosity vs. Conventional Radiosity

This section presents a qualitative comparison between discontinuity meshing
radiosity (DMR) and conventional progressive refinement radiosity (PRR).

A rendering system based on this latter algorithm was implemented during
the past several years at the Program of Computer Graphics [TRUM91]. It in-
cludes ray-traced form factors [WALL89] and adaptive mesh subdivision. Users
have control over parameters such as initial patch size, minimum element size
and the tolerance used for adaptive subdivision. Meshing can be controlled both
globally and on a surface-by-surface basis.

The model used for the comparison is a simple reproduction of a Victorian-
style room consisting of 1382 polygons. The illumination originates from two
light sources: the sun, approximated by a polygon placed at a considerable dis-
tance, and an area light source at the center of the room’s ceiling. Both systems
were allowed to perform two iterations, thus the only illumination present in
the solutions is the direct illumination from the two light sources. Allowing sec-
ondary sources to shoot would have complicated the comparison significantly
and would have required software changes to the PRR system. In fact, secondary
sources correspond to input polygons in DMR and to smaller mesh patches in
PRR; thus, if a secondary source A were processed in DMR, we would have to
make sure that all the patches corresponding to surface A in PRR were processed
as well. The solution produced by DMR was computed without any need for
user intervention. Only an error threshold for adaptive subdivision needed to
be specified. The solution resulted in 35,540 elements (more statistics are given

in Tables 6.2 and 6.3.) Then, a solution with a similar number of elements (37,846)
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(b)

Figure 6.14: Victorian Room. A ray-traced view of a discontinuity meshing ra-
diosity solution (a) and the corresponding conventional progressive refinement
radiosity solution (b).



141

(b)

Figure 6.15: A closer look at the wall. A ray-traced view of a discontinuity mesh-
ing radiosity solution (a) and the corresponding conventional progressive refine-
ment radiosity solution (b).
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(b)

Figure 6.16: A closer look at the chair. A ray-traced view of a discontinuity mesh-
ing radiosity solution (a) and the corresponding conventional progressive refine-
ment radiosity solution (b).
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was produced by the PRR system. This solution was obtained through a process
of trial and error: we experimented with various initial meshing densities and
minimum element sizes to obtain reasonable quality. To make a fair comparison
no surface-by-surface tweaking was performed; only global meshing parame-
ters were used. For accuracy of the illumination computations, 64 rays per form
factor were used by the PRR system.

Three images, each with a different view of the model, were rendered from
each of the two solutions. The rendering algorithm used was ray-tracing (eye
rays only) with adaptive supersampling for anti-aliasing.

A general view of the room is shown in the images in Figure 6.14. Note
how DMR captures the thin shadows from the window on the left wall, many of
which are entirely missed by PRR. The PRR solution also exhibits some shadow
leaks from under the window frames.

The next view (Figure 6.15) is a closer look at the left wall of the room. Note
the high quality of the shadows in the image produced from the DMR solution
and the realistic softening of the shadows on the wall as we move away from the
window. On the other hand, the artifacts in the PRR solution are now even more
noticeable. The captured shadows are severely aliased: some appear jagged;
others are too wide and blurry.

Finally, Figure 6.16 features a closer view of the chair. Note the high quality of
the shadow cast by the chair on the floor in image (a). The shadow is sharp and
crisp near the legs of the chair, and it becomes softer farther away. In image (b)
this shadow exhibits artifacts that were not visible in the general view of the

room. Also note that the shadow cast by the armrest on the seat is captured by
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| Victorian Room

Input polygons 1,382
Patches 1,382
BSP tree nodes 3,412
BSP tree polygons 5,406
D" edges 2,702
VE events 12,636
EV events 10,532
D' discontinuities 1,349
D? discontinuities 10,278
Final elements 35,540

Table 6.2: Statistics for the discontinuity meshing solution of the Victorian Room

model

Victorian Room
Task [ time | %
Build discont. mesh 11:52 36.81
Illumination comp. 17:10 53.26
Combining rad. funcs. 02:08 6.62
Miscellaneous 01:04 3.31
| Total | 32:14 ] 100.00 |

Table 6.3: Timings for the discontinuity meshing solution of the Victorian Room
model. All timings are given in minutes and seconds on an HP720 workstation.
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DMR, but is entirely missing in the PRR solution. The fine self shadowing on
the chair and the window frame is correctly captured by the new method, yet
almost completely absent from the PRR solution. Another important difference
is visible in the penumbra cast by the table top on the floor. The intensity changes
smoothly in (a), while in (b) it appears to change in several steps. This is due
to the use of ray-traced form factors in the PRR system, which computes the
visibility of the source from each point of the floor by point sampling, in contrast
to the accurate hidden surface removal algorithm employed by the new method.

The sets of figures clearly demonstrate the superiority of the new algorithmin

computing solutions of high visual quality, independent of the viewer position.
6.5 Statistics

This section examines the performance of the discontinuity meshing radiosity
algorithm presented in Chapter 5 when applied to environments of “reasonable”
complexity.

Four different architectural interiors were modeled and fed to the discontinu-
ity meshing radiosity system to generate diffuse global illumination solutions.
Ray-traced renderings of these solutions are shown in Figures 6.17, 6.18, 6.20,
and 6.21 along with their corresponding discontinuity meshes.

Table 6.4 gives some statistics generated during the radiosity simulations for
the four models. Reported are the size of the input, the size of the BSP tree used
to sort the surfaces in the environment, the number of visual events generated,
the number of resulting discontinuity segments, and the size of final mesh.

Two important observations can be made from the results shown in the ta-
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Figure 6.18: Green Room. A ray-traced view of a discontinuity meshing radios-
ity solution.
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The final discontinuity mesh.

.

Figure 6.19: Green Room
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Figure 6.20: Pink Room. (a) A ray-traced view of a discontinuity meshing ra-
diosity solution. (b) The corresponding discontinuity mesh.
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Figure 6.21: Mackintosh Room. (a) A ray-traced view of a discontinuity meshing

radiosity solution. (b) The corresponding discontinuity mesh.
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ble. First, the ratio of BSP tree nodes and polygons to input polygons is very
high. In fact, the algorithm used to build the BSP tree is very simplistic. Any
improvements capable of reducing these ratios would immediately improve the
performance of the entire discontinuity meshing radiosity system since it would
reduce the number of BSP polygons that must be intersected with visual events
when the latter are traced through the environment.

Second, although in principle there could be O(n) discontinuity segments for
each visual event, in practice there seem to be many, many fewer. This is due
to the fact that in any realistic environment many patches are not visible to each
other.

Table 6.5 gives timings for the four test environments. The discontinuity
meshing radiosity algorithm is broken down into its constituent modules and
computation times are reported for each module.

Most of the time is taken up by the illumination computations, i.e. by comput-
ing the light energy contribution from a source to a point on a receiving surface.
This is due to the compute-intensive visibility calculations used at that step. The
cost of the illumination computations could be reduced using the techniques
discussed in Section 5.5.2 at the cost of some accuracy. The results reported in
Table 6.5, however, were computed using the more expensive approach.

Building the discontinuity mesh for each of the shooting sources amounts
to approximately one quarter to one third of the total computation time. The
higher percentage taken in the case of the Mackintosh Room environment is due
to the particularly large ratio of BSP nodes and BSP polygons to input polygons

(see Table 6.4.) A better, more balanced, BSP tree could substantially reduce the
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Models
White Room|Green Room| Pink Room | Mackintosh

Input polygons 1,311 1,688 1,688 1,154
Patches 1,311 1,688 1,688 1,154
BSP tree nodes 1,760 3,885 5,004 8,197
BSP tree polygons 3,103 5,522 7,303 9,500
D" edges 2,561 3,092 3,092 1,879
VE events 16,834 15,238 15,840 9,992
EV events 13,952 13,456 13,604 8,816
D' discontinuities 6,707 1,482 0 517
D¢ discontinuities 7,211 14,528 8,952 22,166
Final elements 69,139 55,348 59,947 48,187

Table 6.4: Statistics for the discontinuity meshing solution of the White Room,

Green Room, Pink Room, and Mackintosh Room models

Models
White Room Green Room
Task time [ % time | %
Build discont. mesh 07:20 | 2433 | 13:50 | 32.46
Illumination comp. 16:09 | 53.60 | 24:30 | 57.49
Combining rad. funcs. | 05:20 | 17.70 | 02:50 | 6.65
Miscellaneous 01:19 | 4.37 01:27 | 3.40
|Total J 30:08 ] 100.00 | 42 :37 | 100.00 |
Models
Pink Room Mackintosh
Task time | % time | %
Build discont. mesh 10:43 | 2955 | 14:48 | 46.74
[Nlumination comp. 22:26 | 61.86 | 12:50 | 40.53
Combining rad. funcs. | 01:49 | 5.01 | 02:54 | 9.16
Miscellaneous 01:18 [ 3.58 01:08 3.57
| Total | 36:16 | 100.00 [ 31:40 | 100.00 |

Table 6.5: Timings for the discontinuity meshing solution of the White Room,
Green Room, Pink Room, and Mackintosh Room models. All timings are given

in minutes and seconds on an HP720 workstation.
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computation time for this module.
Finally, the algorithm used to combine the individual radiance contribution
into a single, accumulated, radiance function takes a smaller, but yet non-negligible

portion of the total computation time.



Chapter 7

Summary and Conclusion

7.1 Summary and Main Contributions

In the ten years since their introduction to the computer graphics community
[GORAB84], radiosity methods have produced some of the most realistic-looking
computer generated images to date. Furthermore, radiosity is not merely an
image synthesis technique: it is a physically-based simulation of light energy
transfer that can be used to predict the value of actual physically measurable
quantities.

The ability to simulate global illumination, as well as the possibility of gener-
ating interactive “walk-throughs” from the view-independent solutions, makes
radiosity methods attractive for a wide variety of applications, ranging from ar-
chitectural design and lighting analysis to remote sensing and flight simulators.

Despite all the areas that could benefit from radiosity, this method has not
yet met with widespread acceptance. This is not surprising since with current
radiosity systems users have to go through a very tedious and time consum-

ing iterative process in order to generate a surface mesh capable of producing a
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global illumination solution to the desired level of detail. Without very careful
user intervention, these meshes are prone to generating a wide range of annoy-
ing visual artifacts. In fact, as many researchers have pointed out, poor meshes
are actually responsible for most of the visual artifacts appearing in radiosity
images.

Clearly, new automatic meshing techniques are needed to generate high qual-
ity radiosity solutions with the degree of reliability necessary for practical ap-
plications. This thesis has investigated the roots of the problems with current
meshing techniques and proposed a new approach to meshing that is completely
automatic and that, used within a progressive refinement radiosity system, has
generated radiosity solutions of previously unattained quality.

In order to gain new insight into the problem of generating highly accurate
radiosity solutions and to better understand the flaws and limitations of the
meshing techniques used in conventional radiosity systems, we have taken a
step back from the traditional finite element formulation of radiosity [GORA84]
(see Equation (2.5).) Lifting the assumption that radiosity is constant across each
element results in the more general diffuse rendering equation (Equation (2.3)),
a formulation of radiosity as a system of integral equations in the style of the
rendering equation first proposed by Kajiya [KAJI86]. Each equation describes
the radiance function over a surface s; as the sum of simpler radiance functions,
each one representing the contribution of a single surface in the environment
(see Equation (2.7).)

An analysis of the radiance functions described by this last equation has

shown how umbra and penumbra boundaries as well as other sharp changes
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in illumination within the penumbra regions actually correspond to discontinu-
ities in the radiance function and its derivatives. The shape, location, and order
of these discontinuities is determined by the interaction of the light sources and
obstacles in the environment. The results of this analysis have led to the concept
of discontinuity meshing, whereby shadow boundaries and other sharp varia-
tions in the illumination across a surface are captured by explicitly representing
the corresponding discontinuities as boundaries in the mesh.

Based on this concept, we have designed and implemented a discontinu-
ity meshing algorithm capable of producing accurate solutions to the radios-
ity problem for three-dimensional polyhedral environments illuminated by area
light sources. The algorithm stores a radiance function as a set of sample points
organized in a discontinuity meshing tree. This data structure allows discontinu-
ity segments to be inserted into the mesh incrementally while maintaining mesh
conformity and provides fast access to the radiance values. Piecewise quadratic
interpolation is used in conjunction with discontinuity meshing to reconstruct a
smooth radiance function while preserving discontinuities where appropriate.

Finally, in Chapter 6, we examined the accuracy of the new algorithm by
comparing it against a photograph of a physical environment, an analytical so-
lution, and a conventional, yet state-of-the-art, radiosity system, and measured
its performance on architectural models of medium complexity.

The results have been extremely promising. The new discontinuity mesh-
ing algorithm improves upon previous techniques in many respects. The major

advantages are described below.
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Mesh generation

As opposed to conventional radiosity meshing algorithms that require specify-
ing an initial sampling density, the new discontinuity meshing algorithm is com-
pletely automatic. The resulting mesh is guaranteed to capture all the important
shadow boundaries as well as other sharp illumination details resulting from
discontinuities in the penumbra areas.

Identifying the location of these trouble areas allows the discontinuity mesh-
ing algorithm to distribute sample points very effectively. In fact, a small set
of sample points suffices to capture fine illumination details that would have
required a much larger set with more conventional radiosity methods. Further-
more, while the visual quality of shadow boundaries in conventional radiosity
solutions is tightly dependent on the projected size of the mesh elements onto
the image plane, discontinuity meshing solutions exhibit a very high degree of
view-independence.

While conventional radiosity systems maintain a single mesh (possibly re-
fining it by adaptive subdivision) throughout the entire simulation, out new al-
gorithm creates a fresh discontinuity mesh at each progressive refinement iter-
ation. Within the progressive refinement radiosity framework, this strategy has
shown to require less radiance samples for a given accuracy than the more tra-
ditional approach. The possible loss of accuracy introduced by the resampling
technique used to accumulate radiance functions has proven to be negligible. As
we reported in Section 6.2, in fact, the errors introduced by this scheme are very

small (less than half of one percent in our test.)
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Radiance reconstruction

The simple piecewise quadratic interpolation scheme used to reconstruct the ra-
diance function has proved to be superior to the more popular bilinear interpola-
tion and Gouraud shading techniques. For a given visual accuracy, the quadratic
formulation requires less elements than the bilinear approach and in most cases
eliminates unwanted Mach banding without incurring the computational costs

and complexity of more sophisticated methods [SALE92].
General radiance distributions

Removing the assumption that elements must have constant radiosity from the
radiosity formulation allows for the correct treatment of light sources of non-
uniform radiance distribution (generally the case for secondary sources.) This
eliminates any restriction on patch size resulting in more accurate and reliable
physical simulations, better efficiency, and reduced need for manual interven-

tion.
7.2 Further Research

Hopefully, the algorithm presented in this thesis and the results generated should
convince the reader of the power of the discontinuity meshing approach to ra-
diosity image synthesis. While the concept and ideas are fundamentally correct,

however, some implementation issues deserve more attention.
7.2.1 Robustness

Tracing visual events through the environment and building the discontinuity

mesh requires performing many intersection and clipping operations. Since all
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the operations are carried out in finite precision, numerical accuracy becomes an
issue. Different visual events, for example, may sometimes result in nearly coin-
cident discontinuity segments; whether these segments are classified as parallel,
coincident, or intersecting, may make the difference between an accurate simu-
lation and one that contains streaks of light and other annoying visual artifacts.

Small errors in the arithmetic computations not only result in numerical er-
rors, but can propagate to cause inconsistencies in our data structures. The topo-
logical data structures used to represent the discontinuity meshes are particu-
larly vulnerable to this kind of errors. Special care has to be taken to maintain
consistency at all times if frustrating program crashes are to be avoided.

In our implementation, we alleviated these problems significantly by veri-
fying and enforcing consistency after numerically sensitive calculations and by
using “representatives” and Epsilon-Geometry [SALE91].

However, despite these precautions, the current implementation of the dis-
continuity meshing algorithm is not completely reliable. Occasionally, small in-
consistencies occur that result in visual artifacts in the displayed radiosity solu-
tion. Clearly, a more robust solution is needed before the algorithm can be used

in practical applications.
7.2.2 Data Structures

The discontinuity meshing radiosity system we have implemented makes exten-
sive use of BSP trees. A 3D BSP tree is used to sort the input polygons so that
visual events can be traced through the environment very efficiently. A 2D BSP
tree is used as part of the DM tree data structure to represent the discontinu-

ity mesh on a surface, support incremental updates of the mesh, and allow for
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efficient point location.

These were just two of several possible implementation choices and their se-
lection is not an inherent characteristic of discontinuity meshing algorithms. In
retrospect, we would recommend the choice of a 3D BSP tree for tracing visual
events, but would suggest investigating data structures other than the 2D BSP
tree for the surface mesh. Use of a 2D BSP tree in this context can often lead
to elements with very bad aspect ratios. Our adaptive subdivision scheme can
improve these aspect ratios when applied to these elements. However, the re-
finement step is driven by energy considerations rather than aspect ratios, and
offers no guarantee that all badly shaped elements will be corrected.

The quality of the discontinuity meshes is also affected by the order in which
discontinuity segments are inserted in the 2D BSP tree. Rather than inserting
these segments on the fly as described in Section 4.3, it might be better to collect
them all and then choose an insertion order based on some heuristics, e.g. trying
to split a node so as yields almost equal areas [LISC93].

The discontinuity mesh, however, could be represented by an altogether dif-
ferent data structure. Heckbert [HECK92a] uses constrained Delauney triangu-
lation in his 3D implementation of discontinuity meshing. This triangulation
technique is also used by Lischinski, Tampieri, and Greenberg [LISC93] to yield

remarkably well-shaped discontinuity meshes.

7.2.3 Performance and Flexibility

The new discontinuity meshing algorithm is remarkably accurate when comput-
ing the direct illumination from a small number of primary light sources. Com-

puting the illumination due to secondary light sources, however, has proven
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to be particularly expensive. The secondary sources are typically larger than
primary light sources and their radiance functions may have several disconti-
nuities; as a consequence, many more visual events are associated with a sec-
ondary light source than are used for a primary light source. This can result
in finer meshes and can require higher numbers of radiance samples than are
needed for primary light sources. Clearly, these computations are carried out
to an unnecessary accuracy since secondary sources are typically much weaker
than primary light sources. Furthermore, a significant effort is spent propagating
the discontinuities that cross secondary light sources; since this process increases
the order of discontinuity, however, their effect on the receiving surfaces is often
hardly noticeable.

The techniques discussed in Section 5.5 were developed to speed up the com-
putation of secondary light source contributions at the cost of some accuracy. Al-
though these techniques have proved useful in computing radiosity solutions of
moderately complex environments, the benefits accrued by trading off accuracy
for speed are limited. Many energy transfers are still computed with unnecessar-
ily high accuracy, thus preventing use of the system with more complex models.

The flexibility of the discontinuity meshing algorithm is further limited by
the progressive refinement radiosity framework in which it was implemented.
Combining discontinuity meshing with hierarchical radiosity [LISC93] has re-
cently shown how discontinuity meshing techniques can be successfully applied
to the solution of radiosity problems of reasonable complexity, yielding results
of unprecedented quality while at the same time improving the performance of

the original hierarchical radiosity approach [HANR91b].
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7.24 Solution Accuracy and Perceptual Issues

As mentioned in the preceding section, some of the computations associated
with the discontinuity meshing algorithm are carried out to unnecessarily high
accuracy. Ideally, if the goal of the radiosity simulation is to produce photoreal-
istic results, no computing time and memory should be spent refining a solution
unless doing so resulted in visible improvements in the generated images.

Predicting whether a certain operation, e.g. propagating a discontinuity seg-
ment or subdividing a mesh element, will make a visual difference is very diffi-
cultsince it would necessarily involve perceptual issues that are hard to quantify.
Our ability to perceive a radiance discontinuity as a Mach band, for example, de-
pends not only on the order of the discontinuity, but also on the brightness of the
radiance function in the neighborhood of the discontinuity, its rate of change, its
color, and the position of the observer.

Developing a perceptual metric capable of assessing the visual impact of a
given illumination detail, e.g. a shadow or a radiance discontinuity, however,
could potentially result in very significant computational savings. In fact, any
rendering algorithm that allows for trade-offs between computational resources

and solution accuracy would greatly benefit from such a metric.
7.2.5 Extensions

The discontinuity meshing radiosity algorithm presented in this thesis is limited
to ideal diffuse reflectance distributions and polyhedral environments. It is only
natural, then, to think of ways to extending it to general reflectance distributions

and curved geometries.
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General reflectance distributions

The conventional progressive refinement radiosity algorithm was initially ex-
tended to integrate specular and diffuse reflection [WALL87,SILL89] and later
modified to accept general reflectance distributions [SILL91]. Augmenting these
algorithms with discontinuity meshing can be done using the same techniques
presented in this thesis since the location and order of the radiance disconti-
nuities are generally not affected by the shape of the reflectance distributions.
Specular spikes in the bidirectional reflectance distribution, though, may result
in discontinuities on a receiving surface that would have to be accounted for
using different techniques.

Caustics, i.e. specular to diffuse energy transfers, also need special attention.
In order to simulate the transfer of light from a light source to a receiving surface
through an intermediate specularly reflective surface, radiosity algorithms use
the concept of “virtual source.” A virtual source is created by reflecting the origi-
nal source about the mirror surface, so that the indirect transfer from the original
source to the receiving surface can be computed as the direct transfer from the
original source, through the mirror, to the receiving surface. The resulting radi-
ance contribution may exhibit discontinuities similar to the more conventional
diffuse to diffuse transfers. These discontinuities are computed by tracing visual
events involving the virtual source and treating the mirror surface as a hole, or
portal [TELL92], into the environment.

If the reflecting surface is not a perfect mirror, however, the boundaries of
the caustic on the receiving surface will be blurry. In this case, computing the

location of the resulting discontinuities using analytical methods may not be
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possible; in fact, it is not even clear whether the caustic causes discontinuities

and, if it does, what their order should be.

Curved geometries

Extending discontinuity meshing algorithms to curved geometries appears to
be a difficult problem. Although the concept of discontinuity meshing is not
limited to planar geometries, the algorithms we used to trace visual events and
locate critical curves, and the data structures we used to represent discontinuity
meshes are only applicable to polyhedral environments.

Designing a discontinuity meshing algorithm for curved surfaces requires so-
lutions to non-trivial problems. Curved surfaces interact in very complex ways
to generate visual events. Computing critical curves from these visual events
requires intersecting curved surfaces. Representing such general critical curves
as edges in a discontinuity mesh requires describing mesh elements with curved
boundaries, and even if parametric representations were used, these boundaries
would be curved in the parametric space of the surface. Furthermore, recon-
structing a radiance function from such discontinuity meshes requires satisfying
continuity constraints across curved element boundaries.

Many of these problems could be addressed by discretizing the curves into
line segments. How to decide on the appropriate level of subdivision, though,
is not clear. One of the achievements of the discontinuity meshing algorithm, in
fact, has been to increase the degree of view-independence of radiosity solutions.
Approximating a curve with straight line segments would certainly reduce the
view-independence of the solutions. Future useful research could investigate

what families of curved surfaces would allow for analytical solutions to some of



165

these problems. Some work in this direction has already been done in the field
of computer vision to determine intervisibility between curved objects [KRIE89,

KRIE90,SRIP89].
7.3 Conclusion

This thesis has proposed a new concept, discontinuity meshing, as a way of over-
coming the limitations of current meshing techniques for radiosity. The ratio-
nale, and mathematical justification, for this idea was provided by an analysis
of the characteristics of the radiance functions.

A discontinuity meshing radiosity algorithm was presented and results were
shown indicating that discontinuity meshing can generate remarkably accurate
solutions while at the same time drastically reducing the need for user interven-
tion.

Although much work remains to be done in order to design a robust and ef-
ficient discontinuity meshing algorithm, we believe that discontinuity meshing
represents an important step towards making radiosity practical for a wide vari-
ety of applications; the concept and ideas are sound and the benefits they provide

suggest that they should become an integral part of future radiosity systems.
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