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ABSTRACT 

 

In the study of turbulent flows, two reference frames exist in which fluid properties 

can be measured:  a frame fixed in space, the Eulerian viewpoint, or a frame moving 

with the particle trajectory, the Lagrangian viewpoint.  Turbulence research has been 

advanced primarily on experiments conducted using Eulerian techniques, but the 

developing Lagrangian methods are needed in order to determine the full acceleration, 

its temporal and spatial variation, of fluid particles.  This research looks at two 

different problems involving turbulence: a turbulent boundary layer evolving beneath 

a turbulent free stream and the Lagrangian tracking of particles in turbulent flows. 

 

The results of Eulerian measurements of a turbulent boundary layer evolving beneath 

free-stream turbulence using hot-wire anemometry are reported.  The flat-plate 

boundary layer was created on a glass plate in a low-speed wind tunnel and free-

stream turbulence was generated by an active grid.  Systematic variation of the free-

stream conditions from very low turbulence (0.25% turbulence intensity) to high 

turbulence (10.5% intensity) showed effects well within the boundary layer.  The free-

stream Reynolds number based on the Taylor micro-scale varied between 20 and 550; 

the boundary-layer momentum-thickness Reynolds number varied from 550 to almost 

3,000.  At high turbulence intensities, the effects of the free-stream turbulence extend 

deep into the boundary layer:  affecting especially the velocity variances and the 

energy spectra.  The energy spectra display a double-peak, for both near-laminar and 

turbulent free-streams.  At very-low free-stream turbulence intensities, the two peaks 

represent the inner and outer scales of the turbulent boundary layer.  With higher 

intensity free-stream turbulence present, the energy associated with the free-stream 

peak dominates the outer peak of the boundary layer.



 

 

A detailed description of the Lagrangian particle tracking framework used in 

experiments at Cornell University is presented.  The theory and detailed instructions 

on the implementation of Lagrangian particle tracking are included.  Camera 

calibration, both from a mask of points and using found particle data output from the 

tracking code from actual experiments (dynamic calibration) is described.  The code 

used to conduct the analysis of particle image data obtained from the cameras is 

presented in detail.  The code performs three main steps: 1) particle center finding, 2) 

stereomatching (determining particle 3D coordinates, if more than one camera is 

used), and 3) tracking particles through the time-series of images to construct 

trajectories.  Each of these steps is conducted by a function called by the controller 

program.  The controller program takes information such as the camera image 

filenames, the number of movies to be processed, the location and name of the 

calibration parameters file, and image intensity threshold values and outputs the 

reconstructed particle trajectory information in a data file.  In order to assist future 

users of the code, the details of the original code and all edits made by the author have 

been included. 
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CHAPTER 1 

INTRODUCTION 

 

The goal of this work is to study several aspects of turbulence, one of the 

quintessential problems in fluid mechanics.  It is a phenomenon that has remained 

unsolved for more than 100 years, yet nearly all flows engineers encounter are 

turbulent.  Research that provides insight into this phenomenon is important for a wide 

range of disciplines and applications.  For example, nearly all mixing processes, 

whether it be chemicals in a laboratory or pollutants in the atmosphere, are turbulent 

processes.  Many flows in aeronautical applications involve turbulent boundary layers 

and it is often the case that turbulence is present above industrial or naturally 

occurring boundary layers.  The introduction of particles other than the host fluid in 

turbulent flows brings a new dimension of complexity.  If the particle density is 

different than the surrounding fluid, the motion of the particles (called inertial 

particles) will not follow this fluid exactly and settling or clustering effects can be 

observed.  If the particle is larger than the smallest scale of the flow, the motion may 

also be different than a fluid particle.  This research looks at two different problems 

involving turbulence: a turbulent boundary layer evolving beneath a turbulent free 

stream and the Lagrangian tracking of particles in turbulent flows.  Though this thesis 

does not directly connect the two projects (i.e. Lagrangian tracking of particles in a 

turbulent boundary layer in the presence of free-stream turbulence) both components 

were directly utilized in a study that looked at the acceleration of inertial particles in 

such a boundary layer (Gerashchenko et al 2008). 

 

There are two ways to describe flow characteristics in a moving fluid: variables 

defined at points fixed in space (the Eulerian reference frame) or in terms of the 
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trajectories of fluid particles (the Lagrangian reference frame).  These designations 

apply to theoretical descriptions as well as the experimental methods used in 

turbulence research.  A stationary probe can be used to make Eulerian measurements 

as the flow passes a fixed point.  Alternatively, the Lagrangian fluid properties can be 

determined by following a particle as it moves in the flow.  Eulerian measurements are 

much more common in the laboratory and have advanced the study of fluid mechanics 

and turbulence a great deal.  However, to fully understand what is happening to the 

fluid particles in a highly turbulent flow, the ability to follow a fluid particle is 

required.  Processes such as turbulent transport and mixing are best described in a 

Lagrangian reference frame.  The research discussed here involves experiments of 

both kinds: hot wire anemometry to make Eulerian measurements and high speed 

cameras to make accurate Lagrangian measurements of illuminated particles.   

 

Turbulent flow is characterized by significant and irregular velocity variation in both 

position and time.  In order to make meaningful observations of turbulence despite its 

random nature, statistical quantities are used.  Of particular use are the moments of the 

velocity variable U.  In turbulence, the velocity can be defined as a mean motion plus 

fluctuations, U = <U> + u.  The first moment is the mean or expectation, <U>, 

which is the probability weighted average of the velocity.  The second moment is the 

variance, <u
2
>, which is a convenient measure of the width of the velocity probability 

density function (PDF).  The square root of the variance is perhaps the more familiar 

statistic: the standard deviation or root-mean-square amplitude, ζ.  Higher order 

moments are also useful quantities to measure in a turbulent flow.  The third order 

moment, <u
3
>, when normalized by the r.m.s. (<u

3
>/ζ

3
) is the skewness, a non-

dimensional measure of the asymmetry of the PDF.  Positive skewness indicates that 

large positive values of the velocity fluctuation are more frequent than large negative 
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values.  The fourth moment, <u
4
>/ζ

4
, is the kurtosis or flatness factor.  The moments 

of velocity fluctuations are useful statistics; profiles of the 1
st
 – 4

th
 order moments are 

presented in Chapter 2 for a turbulent boundary layer.   

 

In addition to velocity statistics, turbulence can be characterized by various length 

scales.  Turbulent fluid flow can be considered to be composed of eddies of different 

sizes.  Richardson‟s energy cascade (introduced in 1922) states that for isotropic 

turbulence, the kinetic energy enters the flow at the largest scales of motion through 

the production mechanism.  This energy is transferred to smaller and smaller eddies 

(scales) until it is finally dissipated by viscosity at the smallest scales present in the 

flow.  Therefore, in addition to velocity statistics, information on the size of these 

scales of motion and the dissipation rate of turbulent kinetic energy are important 

properties to determine in turbulent research.  The size of the smallest eddies (the 

eddies responsible for dissipating the turbulent energy) can be determined using 

Kolmogorov‟s first similarity hypothesis, which states that in every turbulent flow of 

sufficiently high Reynolds number, the statistics of the small-scale motions have a 

universal form with can be uniquely determined by the viscosity of the fluid, ν, and 

the rate of kinetic energy dissipation, ε.  The length scale of the smallest eddies in a 

turbulent flow is then defined as η ≡ (ν
3
/ε)

1/4
.  Similarly, a velocity and time scale 

associated with the smallest eddies can be defined using dimensional arguments:  uη ≡ 

(εν)
1/4

 and ηη ≡ (ν/ε)
1/2

.  The various length scales present in turbulent flows are 

evident in energy density spectra, E(κ), which is a function of the wavenumber (κ = 

2π/l, where l is a length scale).   

 

For isotropic turbulence of sufficient Reynolds number, the spectra have a 

characteristic shape, as shown in Figure 1.1, above, for nearly isotropic turbulence.  
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The energy containing range (highest energy density) occurs at low κ, or large l.  The 

mid-κ range displays power-law behavior with p = - 5/3.  Finally, at high wavenumber 

(small scales), the spectra decays more rapidly than a power law, this is the dissipation 

range.  One-dimensional energy spectra are presented in Chapter 2 for a turbulent 

boundary layer. 

Figure 1.1:  Energy density spectra for nearly isotropic turbulence.  Data from Sharp 

et al (2009) Spectrum is from free-stream data for Reλ0 = 550. 

Turbulence is a multi-scale, non-linear problem.  In clouds, for example, which can be 

significantly turbulent, there are eddies on the order of the size of the cloud (1 km) 

down to millimeter-sized eddies and these scales are interacting.  One flow property 

that indicates the effects of different lengthscales present in turbulent flows is the 

energy spectrum, κ1E11(κ1), which shows how much energy is at a given wavenumber, 

κ1, in the flow.  The energy spectrum of a turbulent boundary layer is a subject of 

recent experimental interest.  Hutchins and Marusic (2007) and Sharp et al (2009) 

present energy spectra results for Eulerian measurements of a turbulent boundary layer 

with and without free-stream turbulence present, respectively.  The studies show that 

by identifying lengthscales associated with different locations in the flow, one can 
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compare the relative influence of each scale at different locations in the boundary 

layer and that the presence of energy at one scale can modulate the energy present at 

another scale in the turbulent flow.  The energy spectra and the results of these studies 

are covered in detail in Chapter 2. 

 

Hot wire anemometry is a useful experimental technique for studying the fluctuating 

velocity and other velocity-based statistics such as spectra of turbulent flows.  

Studying turbulence from a Lagrangian perspective can also give insight into velocity, 

but it is the ability to track particle motion through time that allows acceleration 

statistics to be determined (through differentiation).  Although there have been indirect 

attempts to derive acceleration from Eulerian measurements (for example, Gylfason, 

Ayyalasomayajula &Warhaft (2004) have used fourth order structure functions to 

deduce the acceleration variance from hot wire anemometry data of isotropic 

turbulence), the full acceleration (its temporal and spatial variation) can only be 

determined in the frame of the fluid particle motion.  The implementation of 

Lagrangian experiments has necessitated the development of new experimental 

methods.  Different methods have been employed in order to record particle 

trajectories, such as acoustic techniques (Mordant et al 2001), silicon strip detectors 

(Voth et al 2002, Mordant et al 2004), and high-speed cameras to record particle 

motion via images of illuminated seeded particles in the turbulent flow 

(Ayyalasomayajula et al 2006, Ouellette et al 2006, Gerashchenko et al 2008).  The 

framework described in this thesis for conducting Lagrangian particle tracking 

experiments uses one or multiple high-speed Phantom v7 cameras.   

 

Recent experiments conducted at Cornell provide examples of experiments using one 

camera (Ayyalasomayajula et al 2006, Gerashchenko et al 2008) and multiple cameras 
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(Brown et al 2008).  In the case of the Ayyalasomayajula and Gerashchenko 

experiments, the flow was turbulent wind tunnel flow, with water particles injected 

into the flow upstream of the measurement section.  In order to perform Lagrangian 

measurements, the camera was accelerated to the mean speed of the tunnel flow, and 

the particle tracks were captured by the moving camera.  In this way, the mean 

velocity was effectively subtracted from the flow.  When the mean velocity is 

subtracted from the flow, the effect of the fluctuating component of velocity arising 

from acceleration of the fluid by turbulent eddies on the particle motion can be 

discerned.  In the case of the Brown experiment, the flow in question was water in a 

tank with turbulence generated by counter-rotating disks.  There is no mean flow in 

this case, and stationary cameras were used.  Three cameras were used so that the 

three dimensional particle tracks could be determined using stereomatching techniques 

covered in Chapter 3.  Future work at Cornell may include a moving track with 

multiple cameras in order to obtain three-dimensional tracks of particles in the wind-

tunnel flow.  Whether one or multiple cameras are recording data, a vital part of using 

camera images to record particle tracks is calibration.  In order to determine particle 

locations in space from their image locations, a calibration must be conducted.  This 

thesis focuses on the calibration technique needed to ensure accurate particle tracking 

and a discussion of the computer codes that assemble the three dimensional particle 

tracks from camera image data in Chapter 3. 

 

The remainder of this thesis is divided, like turbulence research itself, into sections 

involving Eulerian and Lagrangian research.  Chapter 2 of this thesis describes an 

experiment conducted at Cornell University by Nicole Sharp and the author that 

investigates a turbulent boundary layer evolving in the presence of free-stream 

turbulence.  Section 2.1 details previous work in turbulent boundary layers, both with 
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and without free-stream turbulence present.  When the free-stream has little to no 

turbulence, it is referred to as the canonical turbulent boundary layer.  Section 2.2 

describes the experimental set-up, including details on the wind-tunnel, the turbulence 

generation methods, and the equipment used to sample and record the flow properties.  

Section 2.3 summarizes the results of the study, specifically the velocity and 

turbulence intensity profiles, variance and higher order moments, and spectral results.  

Chapter 3 presents a detailed guide to the operation of a variety of computer codes that 

are used to conduct Lagrangian particle tracking experiments.  Section 3.1 describes 

the main components of Lagrangian particle tracking and the method used to conduct 

each step in Zellman Warhaft‟s laboratory at Cornell University.  Section 3.2 

describes the camera calibration, a vital step in Lagrangian particle tracking, which is 

necessary to relate the physical coordinates of an object in three dimensions with the 

images captured by the cameras.  Section 3.3 presents a detailed instructional walk-

through to the use of the Lagrangian particle tracking code as developed by the 

Bodenschatz group at Cornell University and the Max Planck Institute in Göttingen, 

Germany.  Section 3.4 describes the changes made to the code in the process of 

conducting a specific Lagrangian particle tracking experiment in 2008. 
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CHAPTER 2 

MEASUREMENTS OF A TURBULENT BOUNDARY LAYER WITH INTENSE 

FREE-STREAM TURBULENCE 

 

Section 2.1:  Introduction 

 

Hotwire anemometry (HWA) is a technique for measuring the velocity fluctuations in 

a turbulent gas flow (Bruun 1995).  It is this method that has led to the majority of the 

accumulated knowledge of turbulence and its characteristics.  Although some focus in 

experimental turbulence research has shifted to techniques such as Laser Doppler 

Velocimetry (LDV) and Particle Image Velocimetry (PIV) that also measure fluid 

velocity and related properties, HWA is still contributing to our understanding of a 

variety of turbulent flows because of its ability to resolve high frequency fluctuations 

and obtain well resolved energy spectra.  In this chapter, I describe hotwire 

measurements of a turbulent boundary layer evolving in the presence of free-stream 

turbulence.  The work described here was initially motivated by the flow described in 

Gerashchenko et al (2008), in which a turbulent boundary layer is used as a means of 

generating shear in a turbulent flow in order to study its effects on the acceleration 

statistics of inertial particles introduced into the flow.  In order to augment the 

Lagrangian particle tracking (see Chapter 3) measurements of acceleration conducted 

in that experiment, we employed hotwire anemometry to determine the velocity field 

of the turbulent boundary layer with high free-stream turbulence.  In the course of the 

initial measurements, we observed that the presence of the free-stream turbulence had 

a significant impact on the velocity statistics of the boundary layer compared to the 

canonical case of a turbulent boundary layer beneath a laminar free-stream flow. 
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Previous work on turbulent boundary layers can be divided into two categories: those 

with a laminar free-stream flow (canonical turbulent boundary layers) and those 

evolving in the presence of free-stream turbulence.  The canonical turbulent boundary 

layer is a well-studied flow.  Texts such as Turbulent Flows (Pope 2000) report in 

detail the structure of the flow and defined regions of the boundary layer.  These 

regions are shown as a function of height above the boundary and the free-stream 

Reynolds number in Figure 2.1. 

Figure 2.1:  Regions and layers in Wall Bounded Flows (Pope, 2000) 

 

The mean velocity profiles are described both in terms of the law of the wall and the 

velocity deficit law.  The Reynolds stress profiles and other turbulence characteristics 

such as production and dissipation are shown in Figures 2.2 and 2.3.  



  10 

Figure 2.2:  Profiles of Reynolds stresses normalized by the friction velocity from the 

DNS data of Spalart (1988).  a) across the boundary layer and b) in the near-wall 

region (from Pope 2000) 

 

 

Figure 2.3:  Turbulent kinetic energy budget for a turbulent boundary layer from the 

DNS data of Spalart (1988) (source: Pope 2000) 

 

The data in the graphs above were obtained using direct numerical simulation at a 

Reynolds number based on boundary layer thickness of 1410 (Spalart 1988).  The 

profiles depend upon the Reynolds number, but there is not much data on this 

dependence.  Kim, Kline and Reynolds (1971) used hydrogen bubble PIV and hotwire 

measurements together to determine the production, energy spectra, r.m.s. velocities, 

and autocorrelation in a turbulent boundary layer.  They found that the energy 

production in a turbulent boundary layer occurs in intermittent bursting periods.  

Robinson's 1991 review of the turbulent boundary layer focuses on the structures (or 
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coherent motions) in the boundary layer, with compelling visual depictions of the 

nature of this flow.  DeGraaff and Eaton (2000) used laser doppler anemometry to 

study the scaling of the Reynolds stresses.  Saddoughi and Veeravalli (1994) 

documented spectra and look at the Kolmogorov (K-41) assumptions of local isotropy 

for 2
nd

 order quantities using hot wire anemometry. 

 

The introduction of turbulence to the free-stream adds complexity to the flow, and the 

structure of the boundary layer can be significantly altered by its presence.  Several 

important studies have been made investigating this flow phenomenon.  Hancock and 

Bradshaw (1989) present detailed measurements of the boundary layer evolving in the 

presence of free-stream turbulence with a range of external length scales.  The authors 

construct a complete turbulent kinetic energy balance and find that the dissipation 

length scale is little affected by free-stream turbulence.  However, this study was 

limited to low intensity free-stream turbulence (around 6%, where turbulence intensity 

is defined as the ratio of the r.m.s. velocity fluctuations to the mean velocity, 

(<u
2
>

1/2
/U0)) and free-stream length scales that were on the order of the boundary 

layer thickness, δ.  Bott and Bradshaw (1997) also consider a boundary layer with 

free-stream turbulence. The focus of that effort was on the determination of mean flow 

characteristics such as skin friction coefficient and heat transfer, properties which are 

of interest for applications involving turbine blades – since the impinging of the 

turbulent wake of one stage of blades to the next can be modeled as a boundary layer 

evolving under free-stream turbulence.  Thole and Bogard (1997) provide even more 

insight into this flow, studying a boundary layer in the presence of much higher free-

stream intensity values, up to 20%, and relatively large free-stream length scales.  

They show how the r.m.s. velocity profiles change with free-stream turbulence 

conditions and that the free-stream integral length scale penetrates well into the 
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boundary layer.  The resulting energy spectra do not show strong variation with height 

compared to the canonical boundary layer.  These results lead the authors to conclude 

that the free-stream turbulence has significant effects on turbulence properties even 

very close to the wall.  The goal of our current work is to expand on the understanding 

of the physics of the flow in a turbulent boundary layer with high intensity free-stream 

turbulence by conducting detailed measurements of such a boundary layer with 

varying free-stream conditions using hotwire anemometry. 

 

Many of the following results are normalized by the flow‟s friction velocity uη and the 

viscosity ν; these are called “inner variables.”  The friction velocity can be determined 

by use of the log-law of the wall (Pope 2000) for turbulent boundary layers with little 

to no free-stream turbulence.  Thole and Bogard (1996) showed that the log-law of the 

wall is valid even for flows with free-stream turbulence intensity of up to 20%.  The 

law states that the near-wall velocity is determined by  

         2.1 

where κ = 0.41 is the von Karman constant, C is a constant with value of 5.0, and uη is 

the friction velocity.  The friction velocity for each case in this experiment is 

determined using a fit to the log-law.  Quantities normalized by inner variables are 

indicated with the superscript „+‟. 

 

Section 2.2:  Experimental Apparatus  

 

We conducted measurements in an open-circuit, low-speed wind tunnel with a square 

cross-section of dimensions 0.91 m
2
 x 0.91 m

2
 and length 9.41 m (Yoon and Warhaft 

1990).  The boundary layer formed on a flat, smooth glass plate, 3.3 m x 0.67 m by 
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0.012 m, which sat 0.35 m from the tunnel floor, see Figure 2.4.  An active grid 

generated high intensity free-stream turbulence in the test section of the tunnel.  The 

grid consisted of evenly spaced bars with attached triangular wings or flaps that rotate 

randomly (Mydlarski and Warhaft 1996).  This configuration creates turbulence with 

much higher free-stream Reynolds numbers and larger length scales compared to a 

passive grid, which consists of biplanar bars with even spacing.  The active grid had a 

mesh length (inter-bar spacing) of M =11.4 cm.  In order to insure approximately 

isotropic turbulence from the position where the free-stream is incident on the plate, 

the leading edge of the plate was located no less than 30M (343 cm) from the active 

grid.  In order to achieve a range of free-stream Reynolds numbers (i.e. a range of 

free-stream intensities), we varied both the tunnel speed and the configuration of the 

grid.  For higher intensity turbulence, the grid operated with the flaps rotating 

randomly (referred to as the “active configuration”).  For lower intensity turbulence, 

we aligned the flaps with the flow direction, such that the profile resembled that of a 

passive grid (referred to as the “passive configuration”). 

 

We use constant-temperature hot wire anemometry to measure the time-series of 

velocity fluctuations in this flow, from which we can determine relevant flow 

parameters such as mean and r.m.s. velocities and spectral data. We use a TSI 1243-

T1.5 two-channel X-wire probe with tungsten wires 3.05 μm in diameter specifically 

designed to measure boundary layer flow.  The length to diameter ratio was 

approximately 200.  The x-wire allowed us to record velocity data for both the x- 

(free-stream mean flow) direction and the y- (wall-normal) directions.  The hot wires 

were connected to Disa 55M01 constant-temperature bridges, and signals from these 

passed through high-pass (0.01 Hz) and low-pass (between 1,000 and 10,000 Hz) 
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filters to reduce large-scale disturbances and high-frequency noise before digitization 

(Sharp et al 2009).  

Figure 2.4:  The experimental set up.  The position of the measurement station is 

indicated by *  

 

Section 2.3: Results and Discussion 

 

This section presents a summary of the results of the study of the effects of free-stream 

turbulence on a turbulent boundary layer reported in Sharp, Neuscamman and Warhaft 

(2009).  The free-stream conditions over the turbulent flat-plate boundary layer were 

varied; eight different free-stream conditions were investigated, as shown in Table 2.1.  

The data were all taken 2.8 m from the flat plate‟s leading edge.  The table includes 

the following flow properties: the free-stream mean velocity, U0 (m/s); the free-stream 

Reynolds number,  , (where 

  is the Taylor micro-scale); the free-stream turbulence intensity, 

(<u
2
>

1/2
/U )0; the boundary layer thickness based on 99.5% of the free-stream 

velocity, δ (cm); the ratio of the free-stream length scale, L, to δ; the boundary layer 

momentum thickness,   (cm); the friction velocity, uη 

(m/s); the Reynolds number based on momentum thickness, ; the 

Reynolds number based on the wall stress, ; and the ratio of the 
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longitudinal free-stream velocity fluctuation r.m.s. to the friction velocity, 

. 

 

Table 2.1:  The flow parameters for the eight experimental cases 

Reλ0 U0 (m s-1) δ (cm) θ (cm) (<u2>1/2/ U)0 uτ (m s-1) Reθ Reτ L / δ <u2>0
1/2/ uτ 

20 6.25 6.99 0.59 0.25% 0.2671 2460 1245 - 0.059 

60 7.71 7.08 0.55 1.4% 0.3293 2840 1560 - 0.315 

160 2.29 8.38 0.36 7.8% 0.1211 550 680 2.8 1.480 

260 3.70 7.31 0.31 8% 0.1878 775 915 4.4 1.557 

450 6.73 6.56 0.33 10.0% 0.3145 1465 1375 5.5 2.173 

500 7.52 5.34 0.28 10.2% 0.3523 1400 1250 7.0 2.131 

550 8.15 8.09 0.36 10.2% 0.3747 1980 2020 5.2 2.256 

550 8.49 7.27 0.32 10.5% 0.3963 1810 1920 5.1 2.229 

 

In two cases, the free-stream Reynolds number, Reλ0, is low (20 and 60) in order to 

compare the results to a turbulent boundary layer with no free-stream turbulence 

present.  We refer to these cases as “near-canonical” flows.  The free-stream 

turbulence is then increased (up to Reλ0 = 550) to study its increasing effects on the 

boundary layer.  The intensity of the free-stream at the measurement station ranged 

from 0.25% to 10.5%. 

 

The mean velocity profiles for each case are shown in Figure 2.5a, normalized by the 

friction velocity uη and the viscosity ν.  All cases show a well-defined log region, with 

the near-canonical boundary layers showing the largest log-region.  Inspection of 

Figure 2.5a shows that the eight profiles collapse into three distinct cases.  These cases 

correspond to 1) a developed boundary layer with very low free-stream turbulence 

(circles and squares, Reλ0 = 20 and 60), 2) a developed boundary layer with high free-

stream turbulence (inverted triangles, right triangles, and open squares, Reλ0 = 450, 

500, 550), and 3) a developing (low Reθ) boundary layer with significant free-stream 

turbulence (diamonds and triangles, Reλ0 = 160, 260).  The mean velocity profiles for 
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an example of each case (Reλ0 = 20, 260, 550) are shown in Figure 2.5b for clarity.  

Also included in Figure 2.5a and b are data for a boundary layer without free-stream 

turbulence from DeGraaff and Eaton (2000) which show a good agreement with our 

near-canonical data.  The turbulence intensity, (<u
2
>

1/2
/U0), for all cases is shown in 

Figure 2.6.  The three example cases are clear here as well. 
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Figure 2.5:  Mean velocity profiles normalized by inner variables for: a) all cases and 

b) example cases.  Data for a boundary layer without free-stream turbulence from 

DeGraaff and Eaton (2000) are included for comparison 

 

 

 

 

 

 

 

 

 

Figure 2.6:  Turbulence intensity profiles. 
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Figure 2.7:  Normalized variances and covariances: a) <u

2
>, b) <v

2
>, and c) <uv> 

 

Figure 2.7 shows the normalized variances and covariances for the three example 

cases.  Again, data from DeGraaff and Eaton (2000) for a boundary layer without free-

stream turbulence are included for comparison.  For the near-canonical case, the 

variances start at zero in the free-stream and increase into the boundary layer, showing 

good agreement with the turbulent boundary layer data with no free-stream turbulence.  

For the cases with free-stream turbulence, the stream-wise variance, <u
2
>, starts at a 

non-zero value in the free-stream and increases into the boundary layer.  With free-

stream turbulence, the plate-normal variance, <v
2
>, starts at a non-zero value in the 

free-stream and decreases as the plate is approached.  This trend for boundary layers in 



  18 

the presence of free-stream turbulence is also evident in the work of Thole and Bogard 

(1996) and Bott and Bradshaw (1997).  This decrease in the plate-normal velocity 

variance can be attributed to the influence of the wall.  In order to satisfy both the free-

stream conditions and the no-slip condition, <v
2
> must decrease from its free-stream 

value inside the boundary layer (Hunt and Graham 1978).  Figure 2.7c shows the 

covariances, <uv>, for the three example cases.  The near-canonical case again shows 

good agreement with the data of DeGraaff and Eaton (2000).  The highly turbulent 

free-stream case has a stronger negative covariance than when very low free-stream 

turbulence is present.  The intermediate case (diamonds, Reλ0 = 260), has a lower 

magnitude covariance than the near-canonical case.  This difference may indicate a 

dependence on the boundary layer thickness Reynolds number, Reθ.  While the free-

stream turbulence in the Reλ0 = 260 case is only slightly lower than the Reλ0 = 550 case 

(turbulence intensity of 8% versus 10%), the boundary layer Reynolds number is 

smaller than both the Reλ0 = 550 and Reλ0 = 20 cases (775 versus 1980 and 2460, 

respectively). 
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Figure 2.8:  Large-scale skewness profiles in the: a) u-direction and b) v-direction 
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The normalized third velocity moments, skewness, are shown in Figure 2.8.  The cases 

with significant free-stream turbulence show a departure from the near-canonical 

results for both stream-wise (<u
3
>) and plate-normal (<v

3
>) skewness profiles.  The 

Reλ0 = 60 case has been included in Figures 2.8a and b in order to highlight the 

transition from the near-canonical cases to the turbulent free-stream cases.  For the 

near-canonical cases, both directions show an increase in the magnitude of the 

skewness as the edge of the boundary layer is approached from the plate, and a 

decrease after.  The cases with significant free-stream turbulence present, however, 

show little change in both the stream-wise direction and the plate-normal direction.  

The presence of free-stream turbulence above a turbulent boundary layer serves to 

smooth out the profiles, showing the effective mixing of the outer portion of the 

boundary layer with the free-stream turbulence. 
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Figure 2.9:  Large-scale kurtosis profiles in the: a) u-direction and b) v-direction 

 

Similar trends are evident in the large-scale kurtosis profiles in Figure 2.9.  When 

significant free-stream turbulence is present, the kurtosis in both u- and v- directions 

are nearly constant from deep in the boundary layer to the free-stream.  The 

normalized kurtosis is nearly 3 in these cases, indicating Gaussian velocity PDFs.  The 



  20 

near-canonical cases also show a kurtosis value that is essentially Gaussian, with the 

exception of the sharp transition at the edge of the boundary layer.  Both the skewness 

and kurtosis profiles indicate that the presence of free-stream turbulences negates the 

statistical effects of transition at the edge of the boundary layer. 
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Figure 2.10:  Evolution of boundary layer spectra for: a) Reλ0= 20, b) Reλ0= 260, and 

c) Reλ0= 550.  Spectra are staggered relative to the lowest spectrum.  From bottom to 

top, the offset of each spectrum relative to the lowest is: 1, 3, 5, 7 and 8 decades 

 

The evolution of the boundary layer energy density spectra, E11(κ1), where κ1 is the 

wavenumber in the stream-wise direction, are shown in Figure 2.10 for each of the 

example cases.  The spectra are staggered from the bottom (closest to the plate) to the 

top (free-stream) for clarity.  In the near-canonical case, the free-stream spectrum is 

very narrow, indicating low turbulence.  The top spectra in Figures 2.10b and c, 

however, show a flat inertial sub-range that increases with Reynolds number.  The -5/3 

slope, as predicted by Kolmogorov (1941), has been included to emphasize the inertial 

sub-range in the cases with significant free-stream turbulence (Pope 2000).  As the 
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plate is approached, the inertial range becomes less pronounced and disappears as the 

local Reynolds number decreases and the flow becomes more anisotropic. 

 

Finally, the behavior of the energy spectrum, κ1E11(κ1), for the three example flows is 

investigated.  The energy spectrum shows how much energy is at a given wave-

number at a particular location in the flow.  The energy spectra taken close to the wall 

show a double peak for all three example cases, indicating that the energy is primarily 

located at two lengthscales (see Figure 2.11).  In the cases with free-stream turbulence, 

we will show that the energy at the larger lengthscale is due to the turbulent free-

stream, and the smaller lengthscale corresponds to the turbulent energy generated by 

the boundary layer.  With this observation, we can compare the relative influence of 

the free-stream and the boundary layer at different points in the boundary layer.   

 

However, in the near-canonical case, the near-wall energy spectra also show a double-

peak.  Hutchins and Marusic (2007) studied the energy spectra of a turbulent boundary 

layer with no free-stream turbulence and identified two major lenghtscales that 

appeared under certain conditions in the near-wall energy spectra.  In their 

experiments, a peak in the energy spectrum was found at λ
+
 ~ 1000 (where λ

+
 ≡ 2π/κ, 

note that all energy spectra here have been plotted against this variable for ease of 

comparison) close to the wall (most pronounced at y
+
 ~ 15).  A second peak was 

present at λ ~ 6δ.  Hutchins and Marusic (2007) suggest that the inner peak was 

associated with turbulent production and that the second peak represented 

superstructures in the boundary layer that modulated near-wall production.  They 

found that the outer scale appeared at a height of y/δ ~ 0.06.  When the boundary layer 

Reynolds number was very high, only the outer scale peak was present at this height.  

For lower Reynolds number boundary layers (specifically Reη ≡ uη δ / ν ~ 1,000 in the 
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Hutchins and Marusic (2007) experiment), the separation of scales was reduced and 

the spectrum at y/δ ~ 0.06 exhibited both peaks.  Our near-canonical case shows good 

agreement with Hutchins and Marusic, as shown in Figure 2.11a:  for y/δ ~ 0.06, the 

inner peak appears at λ
+
 ~ 1200 and the outer peak at λ ~ 6δ.   
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Figure 2.11: Normalized near-wall energy spectra showing double peaks at y/δ ~ 

0.05-0.06 for a) Reλ0 = 20, b) Reλ0 = 260, and c) Reλ0 = 550. 

 

Figures 2.11b and c show the energy spectra at a height of y/δ ~ 0.05 for the two cases 

of the boundary layer with free-stream turbulence.  Again, two peaks are observed at 

this height.  Since the addition of free-stream turbulence introduces a new length scale, 
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a three-peaked spectrum might be expected (two peaks associated with the boundary 

layer as in Hutchins and Marusic 2007, and one associated with the free-stream 

turbulence), but it is not observed.  The peaks are shifted from the near-canonical case, 

occurring at λ
+
 ~ 1100 and λ

+
 ~ 15δ for Reλ0 = 260 (Figure 2.11b)and at λ

+
 ~ 1900 and 

λ
+
 ~ 19δ for Reλ0 = 550 (Figure 2.11c).  Examining the Reλ0 = 260 case, it is clear that 

while the lower peak has not changed significantly from the near-canonical case, the 

shift in the outer peak from λ ~ 6δ to λ ~ 15δ is substantial.  Figure 2.12 shows the 

evolution of the energy spectra with height above the plate for Reλ0 = 260.   
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Figure 2.12:  Evolution of normalized energy spectra from the wall to free-stream for 

Reλ0= 260. 

 

Near the wall (y
+
= 75), the energy spectra has two distinct peaks.  Far from the 

boundary (y
+
 = 750), the free-stream energy spectrum contains only one peak.  The 

curves for y
+
= 125 and y

+
= 325 show that as the free-stream is approached, the inner 

peak disappears, indicating that the inner peak is associated with the boundary layer 

and the outer peak, which does not change significantly, is associated with the free-

stream turbulence.   The shift of the bimodal peaks from the near-canonical case is 
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also clear in the Reλ0 = 550, where the peak associated with the free-stream turbulent 

energy contains high energy compared to the inner length scale. 

 

 

 
 

Figure 2.13:  Three-dimensional (left) and contour plots (right) of energy spectra 

throughout the boundary layer: (top row) Reλ0 = 20; (middle row) Reλ0 = 260; and 

(bottom row) Reλ0 = 550. 

 

Following Hutchins and Marusic (2007), the evolution of the energy spectra with 

height is shown as a three-dimensional graph in Figure 2.13 for each example case.  

The data is also presented as a contour plot, showing the three-dimensional plot from 

above.  The top row in Figure 2.13 shows the energy spectra for the near-canonical 
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turbulent boundary layer.  Near the wall, the inner peak dominates the energy spectra.  

Midway through the boundary layer, we see the double-peaked spectrum as observed 

by Hutchins and Marusic (2007).  Finally, when the free-stream is reached, the 

turbulent energy spectrum is zero.  For the cases with free-stream turbulence, there is a 

single distinct peak in the free-stream which persists deep into the boundary layer.  For 

the intermediate case, the inner peak develops and then dominates around y
+
= 40.  For 

the high free-stream turbulence case (bottom row in Figure 2.13), the free-stream peak 

is prominent throughout the boundary layer, even as the inner peak develops, to y
+
= 

70.  Comparing the energy spectra of the near-canonical case to the cases with free-

stream turbulence, it is evident that the presence of turbulence in the free-stream has a 

significant effect on the structure of the boundary layer, even very near the wall. 

 

We have presented the results of a study of the effects of free-stream turbulence on a 

turbulent boundary layer.  The results were divided into three categories: a turbulent 

boundary layer with little to no free-stream turbulence, a developing turbulent 

boundary layer with significant free-stream turbulence present, and a developed 

turbulent boundary layer with high free-stream turbulence present.  The mean flow 

and variance profiles were found to be in good agreement with previous studies 

(DeGraaff and Eaton 2000, Hancock and Bradshaw 1989, and Thole and Bogard 

1996) for both the near-canonical case and the cases with free-stream turbulence 

present.  We presented profiles of higher-order moments for the three cases.  We 

observed that the presence of free-stream turbulence resulted in a reduction of the 

large-scale skewness compared to a canonical turbulent boundary layer.  Free-stream 

turbulence tended to promote Gaussian behavior in the large-scale kurtosis.  Spectral 

analysis showed a double-peaked energy spectrum, as observed by Hutchins and 

Marusic (2007) for a canonical turbulent boundary layer.  They determined that the 
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large scale motions represented by the spectrum‟s outer peak had a modulating effect 

on the smaller scales of the boundary layer.  The double-peaked spectra were also 

observed for the cases with free-stream turbulence present.  The free-stream 

turbulence caused significantly higher energy in the outer (large-scale) peak, energy 

associated with the length scale of the free-stream turbulence.  These results indicate 

that free-stream turbulence can have a substantial impact on the small-scales of the 

boundary layer.  As shown in Figure 2.13, the energy from the free-stream penetrates 

deep into the boundary layer (to y
+
 < 100).  
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CHAPTER 3 

LAGRANGIAN PARTICLE TRACKING 

 

Section 3.1: Introduction 

 

Lagrangian particle tracking is a fundamentally important experimental technique that 

is being used to broaden the understanding of turbulent fluid flow since many 

properties of such flows are most evident in the frame of reference moving with a fluid 

particle. The temporal evolution of a turbulent flow and, more specifically, turbulent 

mixing and scalar dispersion are best studied from a Lagrangian perspective. The 

problem of the separation of two nearby fluid elements, or pair dispersion, is also a 

central component of the Lagrangian description of turbulence and is intimately tied to 

local concentration fluctuations that affect mixing and transport in turbulent flows 

(Bourgoin et al 2006).  

 

In order to effectively conduct experiments using Lagrangian particle tracking, several 

key experimental and computational aspects must come together. The tasks in 

conducting experiments of this nature are: a) experimental design to create a particle-

laden turbulent flow; b) use of proper diagnostics to record particle motion; c) the 

determination of the particle positions from the data collected; and d) the 

reconstruction of the particle motion as a time sequence from the data.  Particle motion 

can be recorded using different technologies, e.g. acoustic techniques (Mordant et al 

2001) or silicon strip detectors (Voth et al 2002, Mordant et al 2004), but the most 

popular has become high-speed cameras to record particle motion via images of 

illuminated seeded particles in the turbulent flow.  Several important experiments have 

been conducted with a single camera: Ayyalasomayajula et al (2006) studied inertial 
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particle accelerations in a wind tunnel with grid generated turbulence and 

Gerashchenko et al (2008) also studied the accelerations of inertial particles but in a 

turbulent boundary layer evolving in the presence of grid generated turbulence.  

However, images from one camera can only measure the projection of the particle 

position onto the image plane of the camera to construct the particle paths and 

accelerations in the camera image plane.  For experiments with a defined mean flow, 

where the accelerations of interest can be aligned with the two dimensions available 

on the camera (i.e. for Gerashchenko et al (2008), accelerations in the mean flow 

direction and normal to the boundary) a single camera may be sufficient, but the full 

three dimensional particle paths, and thus the true three dimensional particle 

accelerations, can only be determined using multiple cameras. Bourgoin et al (2006) 

and Ouellette et al (2006) use three cameras to image the turbulent flow between 

counter-rotating discs and determine particle acceleration from these data. With 

multiple cameras, the Lagrangian tracking scheme must include an algorithm for 

reconstructing the 3D coordinates of the particle from its corresponding 2D image 

plane coordinates on each camera.  Finally, the Lagrangian tracking algorithm must 

connect the particle positions in time through the recorded image sequence. 

 

In order to be effective in Lagrangian particle tracking, the particle finding algorithm 

must fulfill certain criteria: sub-pixel accuracy, speed, the ability to deal with 

overlapping particle images, and robustness to noise. The accuracy of the particle 

trajectories depends directly on the accuracy of the particle finding algorithm.  In 

typical experiments, particle images can cover several pixels.  In order to achieve 

accurate results from these images, measurement error is reduced by using a curve fit 

to the intensity profile, which allows the center of the particle to be found to a finer 

resolution than the pixel size (Ouellette et al 2006).  The speed of particle finding must 
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be sufficient to deal with the high data rates from the cameras in experiments 

involving flow at a large Reynolds number.  Although the number of particles in the 

measurement volume should be limited to avoid particle overlap on the image of a 

single camera, particle seeding density must also be high enough to obtain reasonable 

statistics, and so overlap will occur.   The particle finding algorithm must have a 

method of determining the separate particles from overlapping images.  Finally, the 

cameras used in these experiments will record noisy images, and particles must be 

located despite the inherent noise.  

 

The particle finding algorithm used in our Lagrangian tracking scheme fits two one-

dimensional Gaussian functions to the intensity profile of a particle on the image 

(Ouellette et al 2006). The peaks of these Gaussians determine the position of the 

particle center in image coordinates. One Gaussian determines the horizontal position 

of the particle center and the other determines the vertical position.  

Figure 3.1:  Sketch of five consecutive „pixels‟ and the two 1D Gaussian fits to 

determine particle center on the image plane. 

 

This method is less computationally demanding than fitting a fully 2D Gaussian to the 

pixel group, but still retains some benefits of using a Gaussian fitting; namely, 

accuracy and the ability to handle overlapping particles using N pairs of 1D Gaussian 

fits to the N local maxima in a particle cluster on the image. Some considerations for 
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the particle finding step are: as the particle seeding density for the experiment 

increases, the error will increase and the yield (total particles found) will decrease; as 

the particle image size increases, the error stays approximately the same (since 

overlapping particles become more likely with larger image, tending to decrease the 

accuracy, but larger particle images provide more intensity information to the 

algorithm, tending to increase the accuracy of the fit); and as the noise level increases 

the error increases. Finally, over-saturation of the image (when pixels are at the 

maximum intensity value the actual intensity may be much higher than the camera can 

record) can be a problem for particle center finding. When the image is over-saturated, 

the algorithm must try to determine a maxima in a collection of pixels all at the same 

(maximum) intensity. Although over-saturation is not a problem specifically addressed 

in the choice of particle-finding algorithm, care should be taken during the 

experimental design to avoid the issue. 

 

Once the particles have been located in the image space of each camera, the three 

dimensional position of each particle in space is determined through stereoscopic 

reconstruction (stereomatching). Images of the measurement volume are 

simultaneously recorded by multiple cameras at different view angles. The location of 

the cameras in relation to the measurement volume (world coordinates) must be 

known, which requires calibration with images at a known location, usually using a 

grid of points called a calibration mask.  Calibration is an important part of the 

Lagrangian tracking process, and will be discussed in more detail in a following 

section.  After particle centers are found in the image plane, the 3D coordinates can be 

determined using the known positions of the cameras.  The particle center must be the 

intersection of the camera lines of sight. From a known particle image on the first 

camera, A, the “line of sight” is a line passing through the center of the particle image 
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and the perspective center of camera A.  This line of sight is then projected onto the 

image plane of camera B.  Any particle on the image plane of camera B within a 

tolerance of the projection of the line of sight is added to a list of possible matches.  A 

list is compiled for each pair of cameras and these particles are checked for 

consistency.  Only particles that occur on all cameras are kept.  Since the 3D positions 

are only determined for particles with images on all of the camera image planes, it is 

important that in the experimental set up that the cameras image an overlapping 

volume.  Any part of the image plane on one camera that is not shared on the other 

cameras is not utilized in the stereomatching of particles in the Lagrangian tracking 

scheme described here.  Finally, the three-dimensional coordinates for a particle are 

computed from the least-squares solution of the line-of-sight equations (Mann et al 

1999).   

 

When the particle positions are known, they are connected in time to form trajectories.  

In the scheme used here, a few consecutive frames are considered at a time.  Consider 

a given particle, xi
n
 = the i-th particle on the n-th frame.  Building the track for this 

particle requires the determination of the particle xj
n+1

 such that xj is the position of the 

given particle in the n+1 frame.  Ideally, there will be an xj
n+1

 for each xi
n
, however, 

particles will go out of the image range on one or more cameras, overlap with other 

particles, or conflict (be possible matches for more than one particle in the previous 

frame), resulting in the termination of the current particle track and possibly the 

initiation of a new one.  Conflict resolution has been proposed in other tracking 

schemes (Veenman et al 2001), but Ouellette, Xu and Bodenschatz (2006) determined 

that the most effective conflict resolution is to terminate the conflicting tracks and 

create a new one.  In our Lagrangian particle tracking scheme, a known particle is 

matched to its new position in the subsequent frame using a four-frame, best estimate 
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algorithm.  The particle that continues the track from a particle xi
n
 in the n+1 frame is 

determined as follows: xi
n-1

 and xi
n
 are known, and from these two points, the velocity 

of the particle in frame n is calculated (from change in position over time).  The 

velocity is used to estimate the position of the particle in n+1.  The particle in the n+1 

frame should be within a specified distance from this estimated position.  There may 

be several particles that satisfy this criterion.  These potential matches are used to 

estimate the possible positions of the particle in frame n+2, using the velocity and 

acceleration of the particle.  The particle in the n+1 frame that gives an estimated n+2 

position that most closely matches an actual xj
n+2

 is selected to continue the particle 

track. The first two points in a track are chosen by nearest neighbor: the particle in the 

n+1 frame that is the smallest distance from the given particle in the n frame is added 

to the track.  

 

When the tracks are constructed, relevant statistics such as acceleration means, 

variances and probability density function can be determined. The acceleration of the 

particle can be found from the second derivative of the particle position verses time.  

Mordant, Crawford and Bodenschatz (2004) calculate the acceleration of particles by 

convolution of the tracks with a Gaussian smoothing and differentiating filter.  A 

parameter to consider is the time of a particle trajectory over which the acceleration is 

determined, or the fit time interval, ηf.  Voth et al found that for their frame rate and 

position measurement error, the best fit time for sampling accelerations was the 

Kolmogorov time scale, ηη = (υ/ε)
1/2

 where υ is the kinematic viscosity of the fluid and 

ε is the energy dissipation per unit mass.  When longer fit times are used, the fit 

doesn't follow the real trajectory adequately and the particle acceleration tends to be 

under-estimated. When shorter fit times are used, the fit corresponds to measurement 
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error and the particle acceleration tends to be over-estimated.   Gerashchenko et al 

(2008) also used a fit time of one ηη to determine particle accelerations. 

 

The components that make up the Lagrangian particle tracking experimental technique 

from recording the particle images to determination of particle acceleration have been 

described theoretically above. The rest of this chapter contains specific details on the 

calibration, particle tracking and data processing codes developed by the Bodenschatz 

group, Greg Voth and others. These codes are the framework currently in use for 

Zellman Warhaft's group at Cornell University.   

 

Section 3.2:  Camera Calibration 

 

In order to conduct Lagrangian particle tracking, the position of the recording device 

relative to the measurement volume must be known.  When cameras are used, the 

position can be determined using images of an object with known 3D coordinates via 

calibration.  The calibration problem can be summarized as the need to compute 

camera intrinsic parameters (internal geometric and optical characteristics) and 

extrinsic parameters (relative orientation) based on a number of points whose object 

coordinates are known in the world frame and whose image coordinates are measured.  

Camera calibration therefore requires the determination of a large number of 

parameters.  These parameters can be found by a large-scale non-linear search or a set 

of linear equations which ignores the dependency between parameters and any camera 

lens distortion.  The large-scale non-linear search is computationally demanding and 

depends strongly on a good initial guess to start the search.  Solving linear equations is 

much simpler, but the accuracy of the calibration is significantly reduced.  Tsai (1987) 

proposes a different approach: using the radial alignment constraint, which says that 
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the only distortion present in the system is radial, and thus the direction of the vector 

between the camera optical center and a point in world coordinates is not affected by 

this distortion nor changes in the effective focal length, f.  The radial alignment 

constraint is a function that concerns a subset of the parameters to reduce the 

dimensions of the parameter space: specifically a function of the relative rotation and 

translation matrices between the camera and the recorded calibration points.  Using 

this approach, the resulting problem is non-linear but easily solved.  Lens distortion is 

also accounted for to achieve sub-pixel accuracy.  Matlab codes have been developed 

by the Bodenschatz group to implement Tsai‟s radial alignment constraint method and 

output the necessary camera parameters for use with the Lagrangian tracking 

algorithm described in the subsequent section. 

 

The first step in camera calibration is to record images of an object with a known 

position.  The best approach to calibration image acquisition is to use a calibration 

mask:  a precision generated grid of points on a transparent medium with a 

distinguishing mark to indicate an origin.  The mask is illuminated and the points 

recorded by all cameras in the measurement configuration.  Images should be taken 

with the mask at several different positions:  move the mask a small amount in the 

direction perpendicular to the grid of points; a translation stage is recommended.  The 

position along the translated axis of each set of images (in mm) needs to be recorded 

in a .dat file.  Comments in this file can be made using the # character to comment a 

line.  This file and the .mcin files from the cameras are processed with a Matlab 

program PTVSetupPrep.m to compute the calibration parameters for the Lagrangian 

experiments.  PTVSetupPrep.m is a very user-friendly program.  All needed inputs are 

handled as prompts in the command line:  number of cameras, the moving axis, the 

name of the axis positions file, grid spacing (two inputs to allow for non-square grids) 
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and other information is input by the user.  For each camera, the program will prompt 

for the number of movie files (corresponding to the number of positions of the mask 

that were recorded) and for each movie, the user will enter the .mcin file name.  Enter 

the movies in the order corresponding to the positions recorded in the position .dat 

file.  For each movie, a figure window will open displaying the recorded mask image.  

The image can be divided into sub-regions where the point centers will be determined.  

Input the number of sub-regions when prompted and then select the area on the figure 

with the mouse.  One region enclosing all points is sufficient if the image is not noisy.  

If there are spurious particles in the measurement volume or other spots on the image, 

they can usually be recognized and removed at a later step.  Alternatively, the region 

can be divided into as many sub-regions as calibration points, and a small region 

around each point selected.  The program will then prompt for the intensity threshold 

and minimum particle size in pixels used to identify the grid point images.  Once the 

points have been identified by the program, it will ask the user to flag three base points 

and give their indices.  This process is repeated for each of the movies and for each 

camera.  Now, the 3D world coordinates are known and are recorded in a file 

calibpointspos.cam*.dat for each camera.  The information is passed to the function 

calib_Tsai, which solves the radial alignment constraint using singular value 

decomposition.  Finally, the PTVSetupPrep program writes the results to a 

configuration (.cfg) file.  The .cfg file contains the number of cameras as well as 

relevant parameters for each camera including the size of the images (in pixels), the 

effective focal length (mm), the radial distortion, and the rotation and translation 

matrices and their inverses.   

 

At the end of the configuration file are two parameters, „mindist_pix‟ and 

„maxdist_3D‟ that are used for the 3D matching (stereomatching) step of the 
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Lagrangian particle tracking algorithm.  These parameters are not determined in the 

calibration; rather, they must be chosen by the user and manually changed if values 

other than the default are required.  These parameters indicate how far to search for a 

matching particle image when reconstructing a particle‟s 3D position.  The parameter 

mindist_pix is the maximum number of pixels on the image plane the algorithm 

searches to decide if a particle center seen on the image of one camera is a possible 

match with a particle center on another camera‟s image plane.  The parameter 

maxdist_3D is in mm, and it is used in a later step of the stereomatching process.  

Ideally, the lines of sight connecting each camera center to the particle image would 

intersect at one point: the 3D coordinates of the particle.  However, due to a number of 

errors involved in the process, this is rarely the case.  The particle location is defined 

as the point which has the lowest sum of square distances to each line of sight.  If the 

mean distance to the lines of sight for the particle is larger than maxdist_3D the match 

is discarded.  Large distances can occur, especially when the cameras are in the same 

plane, and it usually means that the match does not correspond to a true 3D particle 

position.  The default values for these parameters are 1.5 pixels for mindist_pix and 

0.1 mm for maxdist_3D.  In our experience, these values are a lower bound, and we 

use less stringent constraints to achieve more matches.  At this point, the only way to 

determine the optimal values for these search parameters is trial and error.  The 

tracking algorithm described in the next section outputs a log file that includes 

statistics on the number of particles found and matched, as well as the mean and r.m.s. 

value of the distance of the 3D particle positions from the camera lines of sight.  The 

matching parameters should be set such that a reasonable percent of the found 

particles are matched, the mean 3D distance does not get too large and, most 

importantly, the tracking program can find sufficient trajectories to calculate velocity 

and acceleration statistics. 
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While the calibration as described above is sufficient to conduct the Lagrangian 

particle tracking experiments, more accurate calibration may be required, especially 

when the experiment is of long duration as the experimental set-up may have slight 

drift over time.  A way to improve the calibration without having to redo 

measurements with a calibration mask (which can be time-consuming) has been 

developed by Greg Voth and adapted by Voth and the author to match the calibration 

method and tracking algorithms used at Cornell.  The method has been termed 

dynamic calibration and it makes use of found particles from movies taken during the 

experiment to adjust the calibration parameters in order to improve particle matching 

and accuracy.  Dynamic calibration is conducted through the following steps:  1) 

acquire a calibration using a mask of points as described above, 2) analyze actual 

stereomatched particles in the fluid to obtain 2D and 3D matched positions using the 

initial calibration, 3) calculate the matching error statistics for unambiguous matches 

using the current calibration (the distance between the particle position and the lines of 

sight to the cameras), and 4) iterate a non-linear search to adjust the calibration 

parameters to decrease the mean distances to the lines of sight.  The dynamic 

calibration is conducted using the Matlab program gv_dynamic_calib.m.  After a mask 

calibration is conducted, a movie of the particles is recorded by the cameras, and the 

tracking code is used to match particle images between cameras to give a 3D position.  

The tracking code can be set to output a data file that contains the 3D particle 

coordinates for matched particles, as well as the matching error and the 2D image 

positions of the particle as seen on each camera.  This file, which uses the naming 

convention {_movieprefix}_dist.dat (see Section 3.4), is used as an input along with 

the calibration .cfg file to the Matlab dynamic calibration code.  The program first 

selects a subset of the points to use in the dynamic calibration.  The 3D matching is 
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repeated by the Matlab program for these points using the calibration .cfg in the same 

manner as the 3D tracking code (see next section).  The matching error from this 

reconstruction can be compared to the matching error from the tracking code (from the 

data file), as shown in Figures 3.2 and 3.3 for an example case. 

Figure 3.2:  Matching error histogram as calculated by the stereomatching code 

 

 
Figure 3.3:  Initial matching error histogram as calculated by the dynamic calibration 

code 

These histograms should show a similar distribution in order to achieve a meaningful 

recalibration.  The Matlab code then changes the rotation matrix from the 
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configuration file into the three corresponding angles (see Tsai 1987).  These three 

angles and the translation vector are the only parameters to be optimized by this code.  

Effective focal length, distortion and other parameters are held constant.  The code 

completes a non-linear optimization of the rotation angles and translation vector to 

minimize the matching error.  For the same example case as shown above, the 

mismatch error has the following distribution after the first optimization. 

 

 
Figure 3.4:  Matching error histogram after first optimization 

Figure 3.5:  Matching error histogram after optimization on good matches 
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The mismatch error of these particles is much smaller compared to the initial 

distribution.  The optimization is performed a second time, this time on “good” 

matches, that is, particles from the .dat file that have a matching error less than a given 

threshold (in mm).  As shown in Figure 3.5, the error distribution has shifted even 

further to smaller error after this second optimization.   

Figure 3.6: Matching error histogram using new calibration parameters on particles 

not used in the calibration optimization 

 

The new optimized calibration is used to construct 3D positions for particles from the 

original data set that were not chosen in the initial subset to be optimized, in order to 

check the validity of the new calibration parameters.  The resulting error distribution, 

Figure 3.6, is significantly improved compared to the initial error distribution.   

Finally, the program writes a new configuration file with the improved parameters. 

 

Dynamic calibration is a useful tool to achieve more accurate camera parameters for 

use in the tracking algorithm, and can be used to correct for errors in the initial 

calibration; however, the importance of a good calibration with the mask must be 
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recognized.  Most importantly, the dynamic calibration cannot correct for a small 

overlap volume between cameras.  Particle matches used in the dynamic calibration 

can only be determined for particles seen by all cameras.  When conducting 

Lagrangian particle tracking experiments, the calibration should be checked before the 

bulk of the experiment is conducted.  The alignment of the cameras can be checked 

with the Matlab function checkalign.m, which takes the calibpointspos.cam*.dat files 

from the mask calibration, the image size in pixels for the calibration and the 

experiment, and the number of cameras as inputs.  The program outputs a graph of the 

projected overlap area.  

 

Section 3.3: Tracking Code 

 

We use the result of the calibration process, namely the .cfg file, as an input in 

combination with the tracking code to determine Lagrangian particle tracking.  This 

section presents a walk-through guide of the 3D particle tracking code created by the 

Bodenschatz group.  It is organized according to the arrangement of the main 

controller program, with focus on the details of the unique data structures and 

algorithms that are used.  The following section will detail the recent additions by the 

author and Greg Voth. 

 

The Bodenschatz code is designed to work with the Phantom v7.1 cameras to conduct 

particle finding, stereomatching and tracking from movie image data in real time for a 

Lagrangian experiment.  To conserve hard disc space, only the post-processing track 

data files are retained;  the raw videos are usually discarded.  While this approach 

minimizes storage, it is often desirable to retain the raw experimental data.  With this 

in mind, versions of the controller program were created which could output the 
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results from the particle finding algorithm (found particle center locations) or take this 

output data file as an input to continue with the stereomatching and tracking processes.  

Outputting the particle centers before stereomatching and tracking allows the user to 

make changes in the program settings which may be necessary after data has been 

taken, for example, changes to the stereomatching limits discussed in the previous 

section.   

 

The 3D tracking code consists of several C++ scripts and header files, all of which are 

contained in the directory TrackingCode/.  The main controller program is located in 

the directory TrackingCode/working/ and is named controller_{identifier}.   The 

original code as delivered by Haitao Xu of the Bodenschatz group is named 

controller_node.  The two edited controller programs are controller_2Dout and 

controller_2Din, which output and take as input the found particle data, respectively.  

Header files needed by the controller code are stored in the directory 

TrackingCode/include/.  The corresponding C++ and compiled object files are stored 

in the directory TrackingCode/lib/.  The walk-through details the original Bodenschatz 

code first, and then Section 3.4 will describe the program with changes made by the 

author. 

 

Section 3.3.1: controller_node 

 

The Lagrangian tracking program requires several inputs.  These can be viewed by 

running the program without any inputs (typing ./controller_{identifier} into the 

command line).  The code will display the following message: 
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As the message suggests, the tracking code requires the following inputs to execute 

correctly: 

 

- Directory:  the file directory where the movie files or particle center data files 

are or will be stored 

- Filename prefix:  a set prefix that, along with the movie count, makes up the 

movie file name.  Movie files for a given data set must all be saved with the 

same prefix for use with this code. 

- Number of cameras:  the number of cameras used in the experimental set up.  

Currently the maximum number of cameras allowable is four.   

- Threshold for each camera:  the lowest intensity value at which a particle will 

be indentified in an image.  This input number is repeated for each camera. 

- Number of nodes:  the number of nodes that will be used to conduct the 

calculations.  For reprocessing after the experiment has been completed, one 

node is sufficient. 

- Configuration file name:  the name of the .cfg file output by the calibration 

code.  If this file is saved in a different directory from the controller program, 

the directory path must also be included in the input. 

- Track file directory:  where the output track data will be written.  Output track 

files will use the same prefix as the corresponding movies. 

- Start movie number:  the first movie to be processed. 

- Stop movie number:  the last movie to be processed. 

- Keep:  a binary value that determines whether or not the movie file is retained 

or deleted after tracking. 

 

After the controller program receives the inputs as described (incorrect inputs will 

result in error messages), it creates a PTVSetup object, ptvsetup, whose constructor 

reads the camera configuration parameters from the .cfg file.  All of the information in 

the .cfg file is stored in variables in this class.  Any text following the comment 

character (#) on a line is ignored.  The first information in the configuration file, the 

number of cameras, is stored in the variable ncams, which must be less than the 

maximum number of cameras or it will cause an error.  Then the camera parameters 

for each camera are read in and stored in corresponding variables using the input 

version of the Camera::camera function.  Finally, ptvsetup reads the laser beam 

specifications and the tolerance parameters for the 3D matching from the .cfg file.  
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The PTVSetup class also contains the definitions for vectors relating camera positions 

to one another.  These vectors are then used in the stereomatching portion of the 

algorithm. 

 

With the relevant configuration information now available to the program, it initiates a 

loop through the movies to be processed.  For each movie number, there will be a 

.mcin file for each camera.  The program looks for a file that matches the pattern 

{filename prefix}{movie count}.cam{camera number 0-ncams}.mcin in the directory 

specified in the program inputs.  For example, prefix_0.cam0.mcin would be the first 

movie from the first camera; prefix_0.cam1.mcin would be the corresponding movie 

(taken simultaneously) from the second camera.  Once the correct mcin file is located, 

the program will read in the information from the file.  The mcin movie files used in 

this tracking scheme are binary files with the following information stored from the 

beginning of the file:  the header (which includes information about the size of the 

movie), the black reference (a frame that gives the intensity value of the image 

background) and the intensity values for each frame by pixel in the movie.  The header 

consists of the following information:  the number of columns of pixels in a frame (2 

bytes), the number of rows of pixels in a frame (2 bytes), the number of frames in the 

movie (4 bytes), the frame rate of the camera during recording (frames per second, 4 

bytes), and the exposure time (4 bytes).  The movies are interpreted into an MCine 

object; the header and black reference information is stored in corresponding variables 

within the MCine class. 

 

Once the controller program has stored the movie file information, it passes the pixel 

intensity values to a GaussControl object.  Then it calls the function 

GaussControll::FindCenters( ).  As the name implies, this function determines the 
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location of the particle centers on the image.  It walks through the array of intensity 

values and determines those pixels which are a local maximum above the intensity 

threshold (see the function GaussControl::IsLocalMax).  This pixel and the four pixels 

directly adjacent (to the left, right, above and below) are used to calculate the particle 

center in image coordinates.  This function also calculates the width and height of the 

pixel image.  The center locations, particle image widths, and intensity values for all 

the found particles in the current frame are stored in a Frame object with the function 

GaussControl::CreateFrame( ).  The controller program repeats this process for each 

frame in the movie, and for each camera.  At the end of this process, a vector of 

frames will be compiled with the found particles for each frame from each camera‟s 

mcin file.   

 

Once the particle centers are found, the controller program initiates the stereomatching 

process.  The vector of frames compiled by GaussControl is passed to the FrameSet 

object, fs.  The controller program notes the time when this step is reached in the log 

file StereoMatch.log (see Section 3.4 for details on the log file).  Then the function 

FrameSet::Match3D is called by the controller program.  The function takes ptvsetup 

(calibration parameters) information as an input.  Match3D calls the function 

MatchFrame, which is in the FrameSet object and takes ptvsetup and the particle 

positions for the frame as inputs.  MatchFrame uses the function Pairs (also defined in 

the FrameSet object) to look at each pairing of consecutive cameras „A‟ and „B‟ (i.e. 

camera 0 and camera 1 together, camera 1 and camera 2 together, etc.).   The function 

projects particle images from camera A to the image plane of camera B in order to 

find particle images that most likely corresponded to the same particle in space when 

the images were recorded.  Any particle on the image plane of B that is within a 

tolerance, mindist_pix (see calibration discussion, above), of the projection from A is 
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added to a list of pairs of particles for these two cameras.  To follow the code for this 

portion of the algorithm, the user must keep track of several vectors, indicating the 

particle location or camera center location coordinates in a variety of reference frames.  

First, the image coordinates for a given found particle on the image plane of A are 

used with the calibration parameters to determine the vector connecting the particle 

image to the center of camera A.  This vector, xpwA, is referred to as the “line of 

sight” for this particle.  xpwA is projected onto the image plane of camera B, the 

coordinates of this projection on the image plane of B are stored in the vector xpiAB.   

The vector from this position (the projection of the line of sight on image plane B) to 

the location of the center of camera A on image plane B is xppAB.  This vector 

xppAB is then projected onto the vector Lnorm, which is a vector perpendicular to the 

vector on the image plane of B that connects the two camera centers on the image 

plane (uCC).  This process is repeated for each found particle on image plane A.  The 

found particles on the image plane of camera B are also projected onto this same 

Lnorm.  Finally, the particles with nearly the same coordinates on Lnorm are paired 

and stored in the array pairAB. 

 

Each list of particle pairs (one for each camera pairing) is checked for consistency.  

Only the particles that are on each list are retained for the final 3D stereomatching.  

Match3D calls the function Pos3D.  Pos3D determines the particle position in 3D 

coordinates.  The location of the particle is determined using the lines of sight from 

each camera to the particle location on its image plane.  Ideally, these lines would all 

intersect at the particle 3D location.  However, this does not actually occur and the 3D 

position is determined such that the sum of the perpendicular distances from the 

particle 3D position to each line of sight is minimized.  Pos3D returns the coordinates 

for the stereomatched particle as well as the measure of the average distance from the 
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lines of sight for that particle.  If this average distance exceeds the parameter 

maxdist_3D (see calibration discussion above), it is a bad match and will not be used 

in the tracking portion of this algorithm.  Finally, a frame object fs3D stores the array 

of frames that contain the 3D particle position information.  Statistics such as the 

number of found particles and distance from particle positions to the line of sight are 

updated.  The frame object fs3D is returned to the controller program (stored in 

„matched‟) for use in the particle tracking step to follow.   The log file is updated with 

the total time spent stereomatching for the movie, the average number of particles per 

frame for each camera, the average number of 3D matches per frame, the average 

number of overlapping particles, the mean distance of the particle 3D position from 

the lines of sight to the cameras, and the RMS of this distance. 

 

The controller program now has the vector of frames that contains the three-

dimensional coordinates of the particles seen by all cameras.  The next step is to 

connect the particle positions in time to form a track.  The controller code creates a 

Tracker object (t) which includes the vector of matched frames (frames containing 3D 

particle position information), frame rate, exposure time, mean threshold, and the 

output file name.  Then the controller program calls the function 

Tracker::MakeTracks, which connects the particles into tracks and outputs the results 

to a separate file.  In MakeTracks, the tracks that can still have points added to them 

(active tracks) are stored in the list „activelist.‟  First, tracks are initialized: one new 

track for each particle in the first frame is added to activelist.  The function loops 

through each frame, ending two frames from the end of the movie file since the 

algorithm, as described in Section 3.1, uses the two future frames to determine the best 

location for the particle position in the next frame.  A LinkMatrix (see 

lib/LinkMatrix.cpp for definition) object „links‟ is created to store possible matches.  



  48 

The number of rows of the matrix is the number of active tracks and the columns are 

the number of particles in the next frame.  This matrix will be populated with the 

distance between particle position estimates and actual particle positions or particle 

acceleration estimates and actual acceleration, depending on the initial track length 

(see below).  The function loops through each of the active tracks, using the most 

recent two points in a track to estimate the velocity of the particle and the position in 

the next frame (line 209 of Tracker.cpp).  If the track has only one point, the next 

point is determined by the nearest neighbor method: the particle in the next frame that 

is closest to the current particle position is used to make the velocity and position 

estimates (lines 149-206).  If the track has more than two points, the particle 

acceleration is also determined (line 214).  Then the program loops through the 

particles in the n+1 frame, finds all particles within a threshold distance (inside a 

sphere of radius R1) of the estimated position, and determines an acceleration of the 

particle using each of these points (line 240).  For the four frame method, the position 

of the particle in frame n+2 is estimated using the original position and acceleration 

and velocity estimates for each possible particle location in the n+1 frame determined 

in the previous step.  The actual particle position in the n+2 frame that is closest to the 

estimate is determined.  The distance between this particle and the estimated position 

is stored in the link matrix (in the row corresponding to the current track and the 

column corresponding to the particle number in the frame n+1).  When these steps 

have been completed for the current frame, the matrix is collapsed by removing all 

entries but the smallest non-zero entry in a row.  The particle that corresponds to this 

distance is added to the corresponding track provided there are no conflicts (i.e. that 

same particle also continues another active track).  In the case of conflicts, the track is 

terminated and the conflicting point becomes a new active track.  If there is a particle 

in the frame that does not continue any active tracks, it becomes a new track.  If a 



  49 

track has not be updated (added to) this frame, an estimate of the position for the next 

frame is made; if the track has not be updated for a time longer than a set time, 

PTVc::OCCLUSION_TIME, it is removed from the active tracks list.  Finally, the 

compiled tracks that are longer than a certain length are output to a file named 

tracks_{prefix}_movie#_.cam{ncams+1}.dat.   

 

The controller program repeats this process (particle finding, stereomatching, tracking, 

data output) for each movie in the data set specified in the input.  When the tracks 

have been recorded to the output file, the controller program deletes the movie files 

unless the input “keep” was specified.  This concludes the controller program 

walkthrough.   

 

Section 3.3.2:  Makedata 

 

To obtain velocity and acceleration information from the output tracks, post-

processing is needed.  The program currently in use by Z. Warhaft‟s group to do so is 

Postproc/makedata.  Makedata requires the following inputs:   

 

- input_dir:  the directory where the track files are stored  

- fname_prefix: the track file prefix (including „tracks_‟) 

- fname_postfix: the track file postfix (.cam{ncams+1}.dat) 

- output_dir:  the directory to output velocity/acceleration results to  

- output_tag:  the output filename prefix  

- nstart_mov:  the number of the first movie to process  

- nstop_mov:  the last movie to process   

- velfilterlen:  the filter length (in number of frames) for the velocity calculation 

(see below) 

- velfilterwidth:  the filter width (in number of frames) for the velocity 

calculation (see below) 

- accfilterlen:  the filter length (in number frames) for the acceleration 

calculation (see below) 

- accfilterwidth:  the filter width (in number frames) for the acceleration 

calculation (see below) 
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- method_flag (G/P):  flag to tell the program which method of fitting to use.  P 

is parabolic least squares method.  G is for the Gaussian method (see below) 

 

After receiving the inputs described, makedata reads in the track file information, 

which is stored as follows from the beginning of the file: the header, and the list of 

track points.  The header consists of the number of tracks (4 bytes), the frame rate (4 

bytes), „exposure‟ (4 bytes), the intensity threshold (1 byte), „max_interpolated‟ (1 

byte), and „exposure‟ (2 bytes).  „Exposure‟ and „max_interpolated‟ are placeholders 

for data that are not used in the current application.  After the header, the track file 

contains the following sequence for each track:  first, the number of points in the track 

(4 bytes); then, for each point in the track, the frame number (unsigned long int, 8 

bytes), the x, y, and z positions (float, 4 bytes each), the intensity distributions ζx and 

ζy (float, 4 bytes each), the intensity of the particle image in that frame (unsigned char, 

1 byte), and whether or not that point was an actual particle image or found via 

interpolation of the tracking code (unsigned char 1 byte).  When the track information 

has been read in, the velocity and acceleration can be determined by the first and 

second derivatives of the particle position with time.  In order to calculate the 

derivatives, a function is fit to a portion of the track (determined by the filter inputs) 

and the derivative of the function is taken.  Voth et al (2002) determined that the best 

fit interval to use when calculating particle acceleration was on the order of the 

Kolmogorov time scale, ηη.  Larger fit times tend to underestimate the acceleration 

because the real trajectory of the particle is not resolved.  Smaller fit times tend to 

over-estimate the acceleration because the fit mostly corresponds to the position error 

or noise.  When used with makedata, the filter length for both velocity and 

acceleration should be the Kolmogorov time in number of frames.  The filter width for 

both velocity and acceleration is one third of the length value. 
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Two different functional fits to the track are available in the makedata program: a 

parabolic fit or a Gaussian fit.  The parabolic fit method was used by Voth et al (2002) 

and La Porta et al (2001), but Mordant et al (2004) determined that a Gaussian kernel 

[3.1] gave more accurate results.  

     [3.1] 

Where η is time and w is the filter width.  The differentiating kernel is the second 

derivative of the Gaussian kernel: 

           [3.2] 

The acceleration is then obtained by convolution a = k * x where x is the spatial 

coordinate of the particle.  After calculating the velocity and acceleration, makedata 

outputs three files:  a velocity data file (named 

{fname_prefix}+{output_tag}.vel_field.dat), an acceleration data file (named 

{fname_prefix}+{output_tag}.acc_field.dat) and a statistics file (named 

{fname_prefix}+{output_tag}.stat_field.txt).  The velocity data file contains the 

following information in columns:  movie number, track number, frame number, x 

position, y position, z position, velocity in the x-direction vx, velocity in the y-

direction vy, velocity in the z-direction vz.  The acceleration data file contains the 

following information in columns:  movie number, track number, frame number, 

acceleration in the x-direction ax, acceleration in the y-direction ay, acceleration in the 

z-direction az.  The stat_field file is a text file that contains relevant statistics such as 

the filters used, the mean and variance velocity and acceleration and the total number 

of data points used to compute the statistics.  Additional post-processing codes are 

available in the Postproc directory. 
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Section 3.4: Edits to the Tracking Code 

 

In the course of conducting Lagrangian particle tracking experiments, the tools used to 

gather and analyze data will evolve to meet the current experiment‟s specific 

challenges.  This section presents information on versions of the code created to 

accommodate a particle tracking experiment conducted by Greg Voth and Rachel 

Brown of Wesleyan University with the author at Cornell in early 2008.  Although 

these changes do not affect the overall particle finding, stereomatching and tracking 

processes described earlier, they are discussed here to illustrate the evolving capacity 

of the code and to serve as a record of the changes since, as with any complex 

computing code, the risk of poor documentation can hinder future users. 

 

The experiment studied the Lagrangian motions of large particles (particles with 

diameter greater than the Kolmogorov length scale) in a turbulent flow.  The 

experiment was designed to study particle accelerations using neutrally buoyant 

particles to isolate the effects of large size from the effects of settling and clustering 

that may be present when the particle density is different from the surrounding fluid.  

The primary goal was to use a variety of particle sizes to determine the relationship 

between acceleration variance and particle diameter.  This relationship is predicted by 

Voth et al (2002) to be of the form  (for sufficiently large particles, 

determined by dimensional arguments and assuming that the motion of large particles 

will average over eddies smaller than d, effectively changing the viscosity seen by the 

large particles).  In order to verify the relationship, measurements were made of 

spherical polystyrene particles in a von Karman flow between counter-rotating disks 

(see flow description in Voth et al (2002)).  One of the most important requirements of 

an experiment of this nature (conducted by visitors over a short amount of time) was 
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to get as much data as possible since there was little to no opportunity to make 

additional measurements.  Thus, ways of efficiently storing the raw data and 

reprocessing it were needed.  Additionally, the stereomatching algorithm was not 

finding sufficient matches to generate convergent particle acceleration statistics.  Due 

to the limited time table, the proper stereomatching parameters (mindist_pix and 

maxdist_3D) could not be determined beforehand, also making reprocessing a 

necessity.  Finally, the calibration parameters needed to be improved to improve the 

matching.  Thus, the code was modified to suit the dynamic calibration. 

 

To conserve hard disc space, the version of the code as described in the previous 

section deletes the raw videos acquired from the cameras after the particle tracks have 

been determined.  The input „keep‟ can be specified to retain the video files, but 

saving the movies from an entire data set can exceed the available hard disc space.  In 

order to accommodate the experiment described above, a version of the code was 

created that outputs the results from the particle finding algorithm to a binary data file.  

Found particle image information is saved for each camera.  Thus, the information is 

condensed before any matching or tracking occurs, and changes that may affect those 

steps (such as changes in the calibration parameters) can still be made long after 

measurements have been concluded. 

 

The program that outputs the 2D particle positions is called controller_2Dout.  The 

controller_2Dout program operates in a similar manner to the controller_node 

program described in Section 3.3.1.  The user inputs are the same. The data file will be 

saved in the same directory as the .mcin files, the directory specified by the user as an 

input to the controller program.  The output filename for the 2D positions .dat file is 

stored in a variable called namename, and it follows the same filename pattern as the 
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.mcin file:  {filename prefix}{movie count}.cam{camera number 0-ncams}.dat.  The 

controller_2Dout program operates in the same way as the controller_node program 

initially.  The calibration information from the .cfg file is read and stored, the .mcin 

file is located and read in, and the particle finding step of the algorithm is conducted 

using the GaussControll function FindCenters( ) for a given frame.  After the 

conclusion of the particle finding step, the controller program calls 

GaussControl::WriteToFile with the variable namename and the current frame number 

as inputs to the function.  WriteToFile opens the binary file for the corresponding 

movie in append mode (the data for each frame is added to the end of the file each 

time the function is called).  For each frame, the function writes the following to the 

file:  the frame number (int), the number of particles found in the frame (int), and for 

each particle: the x-position (double), y-position (double), the intensity (int), the 

particle size ζx (double) and ζy (double), and the center of mass cx (double) and cy 

(double). 

 

After outputting the 2D particle information, controller_2Dout continues with the 

stereomatching and tracking steps of the Lagrangian particle tracking algorithm as 

described in Section 3.3.  Thus, even in cases where the parameters are correctly pre-

determined and the data will not need to be reprocessed, controller_2Dout can still be 

used to compute the particle track files in place of the controller_node program.  The 

benefit of using controller_2Dout is to retain the raw position data in a compressed 

form.  When reprocessing the data is necessary, the 2D .dat files can be read in instead 

of .mcin movies with the program controller_2Din.  The inputs to controller_2Din are 

the same as described for controller_node; the directory input by the user will be the 

location of the .dat files.  The controller_2Din program uses the function 

Input2D::load2Ddata to read in the particle information saved in the .dat file and 
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convert it into frames for use with the subsequent stereomatching process.  The 

function load2Ddata takes the following inputs:  the filename where the 2D positions 

are stored, a bool variable extra_data, and the name of the output vector of frames.  

The variable extra_data indicates whether the 2D position file was written to include 

the center of mass information for each particle.  For the current controller_2Dout 

configuration, extra_data should be true.  The output vector of frames is f[camid] to 

conform with the particle frame information needed for the stereomatching process.  

After reading in the particle position information, the stereomatching and tracking 

algorithms are conducted as described previously. 

 

Although the output/input of the particle position information was the most significant 

change made to the tracking program, other edits to the tracking code were made.  The 

input/output edits were made to allow reprocessing of the data and more feasible 

storage of the raw data.  Additional edits were made to aid the development and 

implementation of the dynamic calibration discussed in Section 3.2.  One simple edit 

adds the name of the calibration .cfg file used by the program to the StereoMatch.log 

output file.  The log file also records the movies processed and statistics such as the 

average number of particles found for each camera and the average number of 

stereomatched particles.  The file can be found in the same directory as the controller 

program.  It is opened in append mode, so the file can grow quite large unless it is 

periodically renamed or removed.  Adding the .cfg name to the log with the particle 

matching statistics allows the user to distinguish the effectiveness of different 

calibrations, and especially illustrates the improvement of a calibration using the 

dynamic calibration method.  

 



  56 

The dynamic calibration program described in Section 3.2 requires data on the 

stereomatched particles as an input to improve the calibration parameters.  This input 

file is obtained by running the controller program with the initial calibration obtained 

from the mask.  It is output by the FrameSet function MatchFrame into the directory 

specified for the track files by the user in the controller program inputs.  The file 

contains the 3D particle coordinates, the matching error and the 2D image coordinates 

on each camera for each matched particle in the movie.  The filename is passed to the 

FrameSet object with the function SetMoviePre( ) which takes the movie name prefix 

({filename prefix}{movie count}) as an input and stores it in a variable _movieprefix. 

 

With these edits to the code framework, the development of the dynamic calibration 

was possible and reprocessing of the data could be conducted for the large particle 

experiment after the measurements were taken.  Unfortunately, it was eventually 

determined that the measurements were conducted with a small image overlap 

volume, and even with the improved calibration parameters, there were insufficient 

tracks to achieve convergence of the acceleration statistics in three dimensions.  

However, data from the two-dimensional tracks was analyzed and important 

acceleration results from these measurements were obtained.  These tracks showed 

good agreement with the scaling predictions of Voth et al (2002) as well as 

highlighting the lack of particle size dependence in the acceleration PDFs (Brown et al 

2008). 
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APPENDIX 

 

The calibration and Lagrangian tracking codes described in this document have been 

archived and can be obtained by contacting the author (sjn23@cornell.edu) or Zellman 

Warhaft (zw16@cornell.edu).  The code to conduct the dynamic calibrations has many 

separate functions it depends on.  Presented below is the Matlab dependence list so 

future users know what files they need.  All these files are stored in the electronic 

archive.  The flow chart on the next page shows the details of the Lagrangian particle 

tracking code described in Chapter 3. 

 

Functions called by gv_dynamic_calib.m: 

 

%   load_from_PTV -- Reads in calibration parameters from a .cfg file  

%   calib_Tsai  -- Calibrates camera parameters using radial distortion 

assumption. 

(with subfunctions 'myload' and 'importfile')  

%   gv_rotmat2angles  -- Converts a rotation matrix to 3 angles. 

%   gv_angles2rotmat  -- Converts 3 angles to a rotation matrix. 

%   gv_dynamic_fitfunc -- Repacks parameters and calls 

gv_calc_ray_mismatch. 

%   gv_calc_ray_mismatch  -- Calculates the distances between lines of sight. 

%   gv_imgplane2unitvector -- Called by gv_calc_ray_mismatch. 

%   gv_write_calib_cfg  -- Writes the PTVSetup.cfg file after optimization of 

parameters. 
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2. Controller program 

1. User inputs (see pg 43) 

 

3. PTVSetup 

Calibration 

parameters 

4. Process movies into 

MCin object 

Intensity values 

5. GaussControl 

FindCenters 

IsLocalMax 

CreateFrame 

Found particles 6. FrameSet 

Match3D 

MatchFrame 

Pairs 

3D matched particles 

7. Tracker 

MakeTracks LinkMatrix 

Output Lagrangian particle 

tracks to a data file 

Figure A.1: Flow chart for Lagrangian particle tracking code 



  59 

REFERENCES 

 

Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 

2006 Lagrangian measurements of inertial particle accelerations in grid generated 

wind tunnel turbulence. Phys. Rev. Lett. 97, 144507. 

 

Bott, D. M., and Bradshaw, P. (1997) Effect of high free-stream turbulence on 

boundary-layer skin friction and heat transfer.  Mechanical Engineering Department, 

Stanford University, Report MD-75. 

 

Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J. & Bodenschatz, E. 2006 The role of 

pair dispersion in turbulent flow. Science. 311, 835–838. 

 

Brown, R. D., S. Neuscamman, G. Voth, Z. Warhaft (2008) Effects of Particle Size on 

Acceleration Measurements in Intense Turbulence.  Presented at 61st Annual Meeting 

of the APS Division of Fluid Dynamics, San Antonio, TX. 

 

Bruun, H. H. (1995) Hot Wire Anemometry: Principles and Signal Analysis.  Oxford 

University Press. 

 

DeGraaff, D. B., and Eaton, J. K. (2000) Reynolds number scaling of the flat-plate 

turbulent boundary layer.  J. Fluid Mech.  422:319-346. 

 

Gerashchenko, S., Sharp, N. S., Neuscamman, S., & Warhaft, Z. 2008 Lagrangian 

measurments of inertial particle acceleration in a turbulent boundary layer. J. Fluid 

Mech 617: 255-281 

 

Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. (2004) Intermittency, pressure and 

acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid 

Mech. 501: 213–229. 

 

Hancock, P. E., and Bradshaw, P. (1989) Turbulence structure of a boundary layer 

beneath a turbulent free stream.  J. Fluid Mech.  205:45-76. 

 

Hunt, J. C. R. and Graham J. M. R. (1978)  Free-stream turbulence near plane 

boundaries. J. Fluid Mech. 84:209-235. 

 

Hutchins, N. and Marusic, I. (2007) Large-scale influences in near-wall turbulence. 

Phil. Trans. R. Soc. A 365: 647–664. 

 

Kim, H. T., Kline, S. J., and Reynolds, W. C. (1971) The production of turbulence 

near a smooth wall in a turbulent boundary layer.  J. Fluid Mech 50:133-160 

 



  60 

La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. and Bodenschatz, E. (2001)  

Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019 

 

Mann, J., Ott, S., Andersen J. S. (1999) Experimental study of relative, turbulent 

diffusion. Risø National Laboratory Report Risø-R-1036(EN) 

 

Mordant, N., Crawford, A. & Bodenschatz, E. 2004 Experimental Lagrangian 

acceleration probability density function measurements. Physica D 193, 245–251. 

 

Mordant, N., Metz, P., Michel, O. & Pinton, J. F. 2001. Measurement of Lagrangian 

velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501. 

 

Mydlarski, L. and Warhaft, Z. (1996) On the onset of high-Reynolds-number grid-

generated wind tunnel turbulence. J. Fluid Mech. 320: 331-368. 

 

Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006 A quantitative study of three-

dimensional Lagrangian particle tracking algorithms. Exps Fluids 40, 301–313. 

 

Pope, S. B. (2000) Turbulent Flows. Cambridge University Press. 

 

Robinson, S. K. (1991) Coherent motions in the turbulent boundary layer.  Annu. Rev. 

Fluid Mech. (1991) 23: 601-639 

 

Saddoughi, S. G. and Veeravalli, S. V. (1994) Local isotropy in turbulent boundary 

layers at high Reynolds number.  J. Fluid Mech. 268: 333-372. 

 

Sharp, N. S., Neuscamman, S., and Warhaft, Z. (2009) Effects of large-scale free 

stream turbulence on a boundary layer.  Phys. of Fluids (submitted) 

 

Spalart, P. R., (1988) Direct simulation of a turbulent boundary layer up to Rθ = 1410 

J. Fluid Mech 187:61-98  

 

Thole, K. A. and Bogard, D. G. (1996) High freestream turbulence effects on turbulent 

boundary layers. J. Fluids Eng. 118:276-284  

 

Tsai, R. Y. (1987)  A versatile camera calibration technique for high-accuracy 3D 

machine vision metrology using off-the-shelf TV cameras and lenses.  IEEE J. of 

Robotics and Automation RA-3(4): 323-344 

 

Veenman C. J., Reinders, M. J. T., Backer, E. (2001) Resolving motion 

correspondence for densely moving points. IEEE Trans Pattern Anal Mach Intell 23: 

54-72 

 



  61 

Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 

Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 

469, 121. 

 

Yoon, K. and Warhaft, Z. (1990) The evolution of grid-generated turbulence under 

conditions of stable thermal stratification.  J. Fluid Mech. 215: 601-638 

 


