THE OPERATOR GAP

Rbbert L. Constable

Technical Report
. 69=35
May 1969

Revised fctoter 19245°

Department of Computer Science
Cornell University

Ithaca, New York 14850

THE OPLRATOR GAP
Robere L. Constable
Cornell University
Abstrace
This paper continues investigations pertaising te
tecursive bounds on computing resources (such ss time or
memory) and the amount by which these bounds must be
increased L{f neu computations are to occur within the new
bound. 7The pajper proves that no recursive operator can
iacrease every recursive bound enough to reach new
computations. Im other words, given any general recursive
operator F[], there is an arbitarily large recursive
t() such that betveen tound t() and btound F(t())()
there is & gap in which no new computation runs. This
denonstrates that the gap phenonenon first discovered by
Borodin for composition is a deaply intrinsic property of
coaputational con{lcxl:y measurcs. .oreover, the Operator
Gap Theorem proved here is shown to be the strongest
possible gap theoren for general recursive operators. The
proof imvolves a priority argumeant but is sufficiently self-
contained that it can easily be read by a wide audience.
The paper also discusses interesting connections
betwveen the Operator Gap Theorem and McCreight & Hcy.rf:
{mportant result that every complexity class can be named
by a function froa s measured set.
Introduction
Ever since the fnception of research on computational

conplexity in terms of bounds on available resources, such

as time and memory, one of the important problens has beea
to determine the amount of additional computing resource
neaded to allow calculation of new functions. The dynanics
of the problem are Lllustrated succintly by Blunm's Coa;:ccuIOI
Theoren:
For every measure of computational complexity
there Lis a recursive function h() such chat
some function £() can not be computed within
resource bound 01 () but can be computed within
bound h(e,()), for 0‘() a sufficiently large
complexity function.
Ia other nﬁtd-. an h()-composition applied to certain types
of resource bounds uwill allov the calculation of a new
function., (Selection of specific small or minimal h()'s
for specitic nc.cu:co.L. one problem of continuing interest.)
In 1968, Borodin discovered the existence of «cocplexity
8aps vith respect to composition. That is, for every
recursive h() there are recursive functions t() such that

the programs which run within bound h(e()) are orzciscly the
programs which run within bound t(). This fundamental
discovery rafscd the !mportant quastion of whather complexity
geps cxletcd with vespact to every rccursiva oparator or

vhethor gaps indicatcd only tha inadequacy of cocpositioa as
an extension operator.

It wvas not entirely unressonable to believe that a
recursive operator existed which would bridge the gaps. For
instance, Blum had shown that for sufficiently large t()

there was sluays s program which infinitely often ran belween

3=

t() and t(t()). Thus self-composition might suffice as

an extension operator. In addition, it is easy to show

that there s a function a() which operates on programs,
.‘. such that nev computations Fun between &, () and 00(1)()
for all { (vhere O‘() is the function computed by program

‘4)e The question then was, “"How deep 1s the gap phevomenon,
is it a property of composition or a bssic property of
messures?”

The operator gap question proved intrsctadble to
elementary methods, but & solution was found using s priority
argunent. That solution is given below.

The technical detsils will be smoother 10{ teaders
familisr with Blua [1]), but the presentation 1s teasonably
sell-contained. Ve first postulate an effective list of
all partisl recursive functions, (¢‘()} . Our tntention
is that the list results from a 1ist of all the algorithas,
or programs, in a standard formalism for the class of all
conputable functious, such as the formulation for Turing
wmachines, Register n-chln‘o. ¥Markov algorithms, Herbrand-
Godel equations, Church-Kleene A-calculus or the Kleene y-
operator. This intention is formalized by requiring that the
list(¢, ()} 1s acceptadle, vhich means that there is a
Tecursive isomorphism carrying the index !or(Q‘())to an °
iadex for an equivalent program in the standard enumeration
of Turing machines.

All the usually encountered Ludoxln.o'o! the partial

tecursive functions sre scceptable. The reader 19 referred to

-be
Rogers [6] for a full treatment of this subject and to
Rogers [S) p.41 exercise 2-10 for s brief but precise
account.

Given the acceptable indexing (0‘()) of all partial
Tecursive functions of one variable, the list ¢ =(0 ()}
4s & gcomputational conplexity measure 1ff there s s 0,1~
valued recursive function M() such that

Axfom 11 ¢,(n) is defined 1ff ¢,(n)

ie defined,
Axiom 2: M(i,n,m) = 1 {f¢t 0‘(u) - n,
b 4 (Yl()} satisfies only Axiom 2, thea T s called
8 messured set.

Let I:() " {1]9,(n) < t(n) s.e.n (almost all n) 4

#,() total } where f g,h,t arc used to ' distinzulsh total

functions fron partial functions (denoted by ¢, ¥,u,?, etc.)
L] .
et nd = (o ()] 1 e 1:()} and call n:(y & 9-complextity

class. Let F[Jdenote & genersl recursive operator taking

total functions to total functions. P lz?“gfvhuc 3’1-

the set of number theoretic functions of one argudent (see

Rogers [5) for a definition of F[]). LetRbe the set of

tecursive functions of one argument. '
In (2] Borodin proved the importaant theorem

Theoren 1 (Cap Theorem)

Tor all ¢ and for all recursive h() there exist

stbitrarily large increasing t() such that no 0‘() utticltoo

t(n) < .‘(-)‘ .(t(.)) i1.0.

.
Proot
Let a() be the arbitrary functioa vhich ¢() must
exceed and 1e¢
P(y.n) £y > o(n) &
vVicna (#,(8) < y or n(y)< ¢, ()],

.Define

t(a) = uyr(y,n).

Since 0‘(n) e, .1(') < m and .t(“) > m are 811 recursive
Predicates, P() is a Tecursive predicats. Moreover, for
8l1 n there 14 5 Y such that P(y,n) holds. Thus by Kleena's
basic theorem on U-recursion (see [3) Theorem 11 P. 279),
el) 1s Tecursive. Clearly ¢() satisfies the conditions
of the theoren except that {t need not be increasing., To
guarantee an increasing ¢() take pl() for P() vhere

Pl(r.n*l) 2y>t(n) s P(y,n+1),
Q.E.D,
COrollarz
For all ¢ and a1} h() as above, thers exist arbdbitrarily
large t() such that

ROyt o)y Cehue TERL {RENE

The Gap Theorea shovs that there exist arbitrartly lazge
88ps between functions, ¢(ds h(e()), vhere no computation
1 tunning. It algo shows that it 1 possible to name
complexity classes 80 that theic is no uniform vay of extend- *
iag then by composition on their names,

In [4]) McCreighe § Meyer prove the decp result thag ic

is possible co renane complexity classes with names from a

-f-
measured set, I', such that for a1} ¢() cQ ig,(rer
such that & - R « Then by Blua's coapression theorea,
'() .‘)
(1], thare is an h() for I such that for all g

¢

¢
%, ()€ Mg, (.

80 complexity classes can be named so that there is a
uaiform way to extend thes by composition on their names.
Let H[] be an operator which assigns a Meyer-McCreight 3‘()
¢ ¢
to t(). Then xt() c ‘B[t(’"- Can this H[] be pade

tecursive? That {s, is there a recursive operator which
vill extend every complexity class no matter how named?

Although an index for 5‘() can be effectively found
from an index for t(), we show that no recursive H() exists.
Thie means, among other things, that the lfeyer-YcCretght
procedure must work on indicies for t() rather than on t()
dceelf, |) A

The existence of an ‘operator gap" shous the extent of

the gap phenomenon which Borodin discovered. The proof of
.th; operator gap is intercsting in its own right becauss it
48 snothear tnltchl of an intricate priority argument being
used in computational complexity theory. The first two
examples are by Heyer & UcCreight [4] and by Young (7). 1Ia
(2] Borodin slso uses o simpler priority argument to establish
sinfaun ’touth rate properties of complexity measures.
Tha Operator Gap

We proceed now to prove

Theoren 2 (Operator Gap).

For all ¢ and all gencral recursive operators F[) there

.

sre arbitrarily large recursive increasing t() such that
t(n) < 9,(n) < Fle()] (n) t.o. fmplies F(e()]1(m) < & ,(m)4.0.
Corollary _

Tor all O there 1s no genersl recursive operator F| }

such thet for all t()

9 ¢
Be¢)€ Frpee
Proof

(1) P{t()) is o total function, Fl[t()] (n) Ls that
function's value at n. If F{] is & recursive operator,
then o computing F[t()] (n), only finitely many values
of t() may be used, say z(xu).t(x‘)..... t('u).
1 2 [
If in cowputing F(t()] (n) only x S ooere used, then
)
Borodin's procedure would produce a gap t() for r().
However, x, way be largar than n. For example, consider
j 8
- oty

)) '
t(L). This situation csuses the troubdle.

t(t(a
Fit()1(n) .150
Vhat Borodin's procedure does in defining t(n+l) is try
t(n+l) = t(n)+l, calculate Flt()] (n+l), look at 01() for
1 < o and ask whather t(n+l) < 9 ,(n+l) < Fle()] (n+l). 1I¢
0‘(u+1) lies in the interval, then "1lift é(n+1)“ above
0‘ (a+1), t.c;. define t(n+l) -0‘(n+1)+1 and test the new
interval [t(n+l), Flt())(n+l)] for all 0‘()y £ £ 0. .
1f anotyct 01() falle in the interval, then 1ift t() adbove
it, etc. Since only finitely many 0‘() are being tested,

eventually the process will halt with & value of t(n+l)

-3~
satisfying the following condition:
% for all { < n efther
9, (a+1) < t(n+1) or
Fle()](nt1) < @, (n+1),
But now perhaps the vaslue t(n+2) had to bde lppetflei ia
defining t(n+l) and perhaps for ell extensions of t().
t(n+2) < ¢, (n+2) < Fle()] (o+2) .
We are no longer frco to '1ift t(n+2) over 01()" because
doing that may 1ift F[t())(n+l) over & 0‘() tor £ < o
vbich vas previously adbove Flt()). That s, “1lifting
t(n+2) oay spoil the gap at t(n+l),."
(2) Our strategy for circunventing this prodlem will bde
to allov certain 0‘()'s to spoll the gaps as long as ve
can eventuslly arrange F{t()]} (n) < 9,(n) afcer 0‘ has
spolled a gap. (Our attempts to arrange getting Flt()]
below 01() will be referred to as "attacks on 1".) Ve

shall then have

t(n) < 0‘(n) < Fle()l(n) 1.0. faplies P{t()Il(m) < Ot(-)l.o.

The question which arises in implementing the above
strategy is when do ve let & 01() spoil a gap. 1In answvering
this question, we use a priority arguzeat. We will first

describe the t() constructlion process iaformally, ¢hea ia the

appendix ve give a formal defimition.

L3 £d

(3) 1Iaformal Conmstruction, preliminaries and tnlttaltlltiOl

The main construction is an algorithm for extending finite
fuactions defined on infitial segments of §j . Let ¢t()|n.donoto
such a function defined on (0,1,...,0} . We consider various
vays of temporarily extending t()|n to a function :() so that
it can be used to compute 7(:()1(n) . Recall that for F{ } a
general recursive operator, the computation of F(t())(n) requires
only finitely many values of t(), say t(xl).....:(xpu). The
maximuam argunent required, xp » Will be denoted bn' Say that

n
[n.....bnl is the forewvard region of support for F{) at ¢t() and

8. It should thus make sonse to write F[t()|bl(u) 1t we allowed
F[] to act on finite functions. We shall however consider only
extensions of t()In vhich ars total functions. Threc types of
extension are used, €()=t()|n win, €() = ¢()In sin & y, and
TC) = ()] F. That s,
(a) ninimal increasing extension vith respect to thes
function a(): we abbreviate this to minimal extension
and denote it by t()|n min. The definition il,vif
;() = ¢t)|n min, then :(n+1) = max{a(m+l), :(u)+1}
for all mn.
(b) minimal increasing extension wrt a() and con-
sistent with t(x‘) ol 2 for i=1,...,p; ve abbreviate

this to minimal consistent extension and denote it by

t()|n ain &y, .
by detfattion, t()et()| min &y, iff
t(a+l) = max{a(u+l), :(n)+1, " 1!I¢J-xtl'

n2n. .

(c) flocressing Iirxtcnclo. vee ¢()| =ta &y,
Abbreviate this to F-level extension and denote it
By €C)| F. Then t(d=t()| P 1ef

tas1) - max(Fle()| win & y,] (a41), t(n)+1) for
- a1l m>n,

(d) 1increasing level p+l FP-extension wrt
t()|n nin & Yy denoted t()|nr. p+l. The definitioa

-

is, :(n+1) = max (F[¢t()|nr.pl (adl), ;(-)01) for
811 g3y and vhere a level 1 extension is an F-exten-
sion.
We often write ;'() to denote a level p F-extension.
Motice, these extensions are all computable. We use them
extensively below, ususally denoting the extension by ;() and
specifying the type by context.
We now descridbe an initialisation procedure to get the
finite function, t()| + which the main procedure oxccndn.
Given the arbitrarily large function a() above vhlch t()
468 to be constructed, set t(0) = a(0)+1l. Comstruct a gap at
t(0), 1 e., 0 (0) < t(0) or P[t()1(0) < 0 (0). Whenever r{ }
nccdn a8 value t(), assume the minimal extension, c(). Let the
maxismun argument of €() called for by F{] at 0 be bo' The
points 2 such that 0 £z < bo are called the first foreward region,
l° .'bo + 1 is the next free integer.
Having produced a gap at t(0), go to the next free iateger
and producn a gap there for L (), 0 (). Let the largest
argusent of t()b, min needed be by Put E, = (:|b°<:_<_b1).

the 2nd foreward region.

. 11- '
What has budin doue so far is just en initislization. The

Bain procedure begins below with the priority list L empty.
(4) Maga Constructlon

Tvo algorithkns will be given for extending t()., The
first {s a direct result of imposing a priority scheme on the
process described fin part 1 of thc'thlotem, the “gap process.”
This algorithnm requires a nesting scheme and is in some vays
sore conplex than the second. Moreover, étovln; that the first
algorithm terminates f{nvolves an interesting excursion into
son-constructive proof techniques (part (4) below).

The second slgoriths is & modification of the firet which
vavinds the nesting and explains the non-constructive halting
argument.

First Algoritho

Assune that t() has gone through n stages of its

dt!lnl;lon (each stage results in tliln; some finite numsber of

velues of t()). So ()| _, 1s defined 4ng 2 14 the next free

integer.

Step 1: Find all § < x such that

() £0) < 0,00 < FIECDI() for y < = snd € dme()],

min, provided F[;())(y) can be conputed using t() only
up to x-1. That is, F[] needs only t()'x-l’ 20 by an
sbuse of motation, F[E()](y) = Fle()],).

Say that y locates {.

) 'y has not prcitouoly located 1.

(c) 1 is mot slresdy om L.

.12-
Order theae {'s (in thelr natural order) and Put them st the
end of the 1ist L (asaign them the lovest priorities). Yor
e¢xample, 4f the indicics found ate 11 < 12 < 13 and L {s
(Jo.jl.....jP } then put j’+1-11,1p+2 - ‘2'jp;3' 1,. The lndfeou
of highesgt priority are those with the lovest subseripe,
i, e. Jo is highest, Jl is next, etec.

It 18 clear that siven sny y<b +1 for any free x that
eventually F(t()1(y) can be computed using t()I'-‘ for some
fres 2. This 1s bocause defining t() using miniamua consietent
extensions and the 88p process at free integers defines soae
total recursive function t(). 8ince r{] te general Tecursive,
¥le())(y) must be defined and requires arguments only up to
b’. Take 2 to be the first free integer beyond b . .

At the point z 1f en index {<3 has spoiled s gap at Y, then
8 will locate { and place 1t on a priority 1iet L. Once on the
list L, 0‘ will up611 8§3ps only for the values less than z and
for a certsin controlled finite set of values beyond 3.

The rest of the construction is concerned with creating
8aps and removing indicles from L. An index J leaves L only whea
Ple())(2) < OJ(z). While an findex {s on L, 1t wi11 spoil gaps

only finfitely often. Precisely, 1f x locates the index i, then '

i will be allowed to _spoil gaps beyond x only when thetr doiag
80 allows us to remove sn_index of higher priority from L. (So

jo. the index on L of highest priority, can never spoil s gap

beyond its locator after it goes on L.)
Step 2:

Calculate r(:()] (x) tor t() = g)l -1 ®u. Ae bc!ot;

let b be the maximum argusent needed.

13-
When this step 18 re-catcered (from case 2 or case 3 below),

£¢) nultbc taken as t() min & Yye Also let b‘.. be the
-axtluu argunent needed on the m-th time that this step 1s
enter2d for the samc value x(so b = bx,l)‘

Step 3. Exanmine the interval I, - [e(x), P[&)] (x)]. Ssay
that an index ¢ L 1s safe 1ff %(x) < t(x). Say that an
dudex J ¢ L is attackable {ff

rﬁ ())(x) < %(x). (note, OJ(x) might be undefined).

The following situations may arise

(1) al1 3¢ L are satfe.

(2) cthe highest priority unsafe indux 1ies in the iaterval,

I..

(3) the highast priority unsafe indux ig attackabdle,

Ia cas: (1), peramcncntly fix the value of t(x). This ends
stage n. The next freq integer s x+1. Go to Step 2.

In case (2) 1ifc t(x) over &(x) for those J ¢ L which fall
1a the intervel. Go to Step 2.

In casc (3) we "pursue an attack on the index.* To
describz this -t:ack. suppose that L is ‘31'52""" } . Suppose
ve ara attacking j > 0 (4f @ = 0 then freezes values of g()
up to thosec ncedad to dcfinec F& ())(x), t.e., values of «) up

to b_, remove 3, from L and go to Stap 1),

require values up to some bl

-lb-
Step l? S8et up & procedure, (A), vhich depends can the
parameters X, the point of attack, J, the index being attacked,
aud B the boundary of the foreward region of support. Scart
the procedure with x in X, j. ia J and b‘ in B. Then

Al: extend t() io & mininal manner by enough values
that F(t())(s) can be calculated for all z €E_. (This will
x,v’ which {s b‘ for soce ze!x « 1o
general, if procedure (A) is nested to a level s, then argusents
up to b;.' are trequired.)

A2: exanine l‘ - (E(:). P[;()1(z)] for all zel:.
The following situation may arise.

(1) all higher priority indicles (JQ for q <)

are safe for all ze!'.

+

If vhen checking the interval l= it is found that cct;aln
’1 are attackable st z and others of higher priority are safe at
8, it might seen that va should attack these indicies and recove
them from L "while we have the chance, that is, dispense vith
the priorities. lut being too eager to remove j‘ causes trouble
because higher priority indices, say J "1' say spolil gaps {n the
foreward region used to remove Jl We might later add nev indices
to L below jo"l’ Continuing to remove lower indicies might
cause j§ .j‘ to spoil gaps infiaitely often.

We cannot however f{gnore the attackable index j‘ because
8ll higher priority indices may be “small functioans", hence
alvays safe in the future. Thus we must check ahead to sea -
vhether the higher priority fndices support our attack onm 31

(case (1)), or interfere with it (case (ii)) or pre-eaopt f{t
(case (111)).

-—ade [AR

(44) higheoc priority unsafe index (of highere

priority than j.)boccuro in some interval !.;

(114) highest priority unsafe Index (of higher

priovity than §J) s attackable at sone !

A3: 1In case (1), permanently set sll those t(:) !ot
:Gt'. tenove J froon L. The next free integer {s B+l. Go next
to $tap 1.

Ab: 1o cese (11), 1gg¢8(z) above the ¢y(2) Lo
question. Recompute F{t()](x) using & nev oinlmal cxtcnllon
copsistent vith the nev value at 3. Decide whether J {s still
stteckable at x, if it is, then return to X and to Al (or to
Step 2 If X=x). 1If it s not, then sece if sny values are being
saved froo case (44) bdelow,

It valuss are belng saved, then put them into X,J snd B
and veturn to Al, If no values are belng saved, tham go to
Step 2 (4t oust be the case that X=x snd all indicies on L are safe
for the current valug of ;(x)).

AS: Iu case (411), save the old values X,8,J (esy on
8 push down stack), supposs §_ 48 thce highest priorfty attackable
$ndex lo E, 8nd g 195 ths lesst & in z‘ at which 4t is sttackedle,
Then put L fo X, 3, in J and bz in B, Return to Al,

The _attack procedure is nowonested. s0 that an exit (i1)
froo A will return the process to the highest priority index
still under attack. An exit from (f) will remove from L the
highest priority index successfully attacked and will produce
some B+l as the next fri3e intcger,

(&) The sbove process terminates for all x. Two points are
srgued. First, there are only finltuely many jl'l of higher ‘
priority than je' 80 the nceting of attacks will stop 4f each -
separate attack stops. But cach attack will stop as long as
there 1s s bound on b: w* 7To see that thera is such & bound
motice that there is a oaxinun value st each z>x beyond which
t(z) will pever be ralsed. Because t(:) at some point will be
sbove all OJ'()'s which sre defined at 3 for jJ ¢ L. Thus for

each 32x, there 19 & least value at which the "t() 1ifting

.1" -

ptocess” wil) stablize. Let ;() be the function with those
stable values, Then £() is totel. 5o P(¢()1(x) oust be
defined since F[) is general recursive. There 4s thus an
M such that F[) uses only values t(s) for 354, Therefors,
once ;() has steblized beyond M, ;() too will need only valuwes
8SM s thet only b:.v S M sve vequived. N §9 the bousd ve
needed,
Second Algorithum

1t inetead of using s minimsl sxtension at each stage 1o
the sbove slgorithn ve use s level P F-sxtension vhere p-1 fs
the nusber of indicies on L st the time of extension, then {t
tutng out that the “1ifting process” can be eliminated because
every index §p elthor safe op csn be gttacked by using the
sxtension of one lower level, Once the lifting process {s
elminated, it becomes essy to see thst tho.nlgorlthu termiaates,
In ternms of the above Process this neans there are no nested
sttacks and no loops which incresss the value bx to bx.a‘

We outline below the construction of t() using level
P F-extensions, Suppose thet the fnitial segment, t()Ix-l of
t() has been defined by the initialisation desceribed above aad

Suppose thst L contains p+l indtctes, 30’11"""" Thes ¢t() $o

being defined ot x with L given,

CO-puto,l[;(31(x) using an A-level V-extension te() of
$C),y for Lepta. Let the foreward ¥egion of suppore be [x,4].

-19<
Check L to see Af all indicies are safe at x.
If all are safe, then fix the value of ¢t(),
t(x)st(x).
If all are not safe, then let J be the highest
priority unsafe index of L. This index is
attackable using the extension :v(), for Veg-},
Let the foravard reglon of support [X,B), start
a8 [x,d]. (*) Check the region to see whether all
higher priority fandicies support the attack, 1.s.,
are safe.
1f all higher indicles, lupport_tho attack,
then fix t() to have the value :V() in the
region [X,B] and remove J from L.

--!! some index J', say j"n for L'<. pre-eapts
the attack, then replace J by the index J°'
replace :v() by ty.1() compute a new
foriward reglon of support. Return to * with
thesc new Z,V,J and B,

The above process cust terninate because at most p indicies
€&a cause an entry to * and s0 one exit from the * routine ause
result in the specification of t() in some foreward region. The
process vill terminate vith s successful attack besrusc 2ach level | 3
P-cxtension is defincd so that it attacks indicies above the lavel
k+1l F-extension.

Ve will describe a precise implementation of both .lgotlth-o.

io the appendix,

-89
-18-

disgram for level 2+l extensions ia the simple case

that F{]} 1s increasing

e 6 ¢ o e e 0 6 o 4 ¢ 0 6 o o O o o o o o o o o1avel)

‘.“1‘.0000,0000000.0’°“°'l.'.12

"« 0 e SN} s 6 o o o o o o o o o - s1ayell
L] .] L L] L] . o, Py P o Y [o [] ‘.lﬂ ex~-
teasion
e a()
e() = N
d d
1 d, 3

Fixing t() to be t()|, min on the range l’:‘ll
gl;l attack i, and remove it from L.
(3) Pinally ve prove that the t(') defined by the above coastruction
satisfies the conditions of the theorenm.
Suppose
* t(n) < Ot(n) < Fl{e())J(n) 1i.0. then at some point x, i goes
on the priority list L and * holds for only finitely many n.
Suppose moreover that there are p indicies on L of higher priority
than 1. ’
0‘() will satisfy * for n > x only when higher priority
Lndtqlul are bclag:tanovod from L. 50 at most ¢ +ez+...+e’ tines
before 4§ Ltnc;f 1s of highest priority. Then either 4 {is

-19-
Tenoved so that

L4 01") < Fle())(m)

or { never sgalin sati{sfies *. But * holds 1.0. s0 ** pygt hold,
This neans 1 goes back on L snd the above argument is tepeated
to shov that #* gust be satisfled every timse { goes on L.

Suanarizing
t(a) < ®,(a) < Fle()I(n) 4g.0.

1ff 1 gets put on L {.o0.

1ff 1 gets removed from L 1.0,

12f ?(e())(m) < ¢,(@) 1.0,

This concludes the proof.

Q.E.D.

The corollary is fomediate from the theorem, We can prove
asother corollary. UPFirst dafine - ‘

?() 1s an increasing gene¢ral recursive operator 1ff r[)

is ;;nntal recursive and for all iccreasing ¢t(),

t(x) < Fle())(x).
Corollary

Tor all ¢ and for sll increasing general recursive operators
P[] there are srbitrarily lerge strictly increasing recursive
t() such that

) L)
Te() * Trpec) -
2zoot
This is immediate froam Theoren] and the above definition.
Q.K.D. .

«20-
Conclusion

‘A strong operator gap theoren would read,
“For all measures ¢ and for ell genersl recuresive operators
Pl] there sre¢ arbitrarily large recursive t() such that
no 0‘() satisfies .
t(n) € 9,(n) < Flt()](n) g.0.'
Such a result is impossible ss ve pov showv. Let Ll «f L()) ve
the tape messure of computational cosplexity om one-tape Turing
- mechines,

Theoren 3

Let H[) be & general recursive o)irotot such that for all
sufficiently lerge t() ’

(1) 1f et(x) 2 x !6: s.e.x, then

Ble()](x) > t(x) s.e.x

(11) HleC))(x) 2 t(x+l) as.e.x .

Then for all sufficiently large t() there is sas § such that

t(n) < L,(n) < H[e()](n) L.0.
Proot

Our method of proof is to comstruct L‘() for a given t()
snd program t, ¢, () = ¢() . '
(1) Define 01(0) so that L‘(O) > t(0). (Compute t(0) using ¢,
mark off the samount of tape used, L‘(O). 12 ¢(0) < Lc(o). then

stopsotherwise £111 up to t(0)+1 squares.)

(2) Tor fnput u+l comsider two cases:
(a) 4f nt} < L,(n), then define L(at2) = Ly(a). (Mark off
L‘(n) amount of tape, test vhothor atl < L‘(l). 1€ yes, thea
halt. Othervise, go to case b.)

L)
*2l- .
(b) 1f o+l = Lt(n). than as in step (1) define L‘(nOl) to

be greater than t(n+l) and ;rcnélt th;n Lt(u).
(3) The above steps define L‘(). This etep will ghow that L‘()
satisfies the thoorem, i.e., that '
t(a) < L (n) < H(e())(n) {i.o.
We consider two parts depending on the properties (1) lnd‘(lt)'
of H[).
(1) To say that ¢() s sufficiently large meane in this cass
that t(x} > x a.e.x . Thus whenever o+l o L‘(n).
t(n) 2 o+l = L‘(n). Let 3. = largest x < L;(n) for which
Li(x+1) > 1L 1(2) . Let 2, = least y such that Jpsysilyn) s
t(y) > 2L, (n). Then t(:‘-l) < Ll(‘n-l)'
(11) Since E[e()]} (2 -1) > t(zn) and L () is non-decreas-
ing, 1t follows that t(z,-1) < L,(z -1) ¢ Li(s) < e(s)) <
Hlt()l(tn-l). This happens for all n, thus infinitely often.
Q.E.D.
Hotice that the operation of self- -composition, H[t()] =
t(e()) whan appliad to non-decreasing functions satisfies
(1) snd (1) for :(x) > x a.e.x. Thus the operator I(] which

first forms t(x) - I t(1) and then performs H[] 1s an
1=0

example of an operator for vhich there are no strong gaps.
Blua has observed fn (1) p. 335 that for the operation
Bl] of self-composition thure is no strong gap. A proof of :hl..

observation is similar to our proof of Theorem 3,

e22e
APPENDIX
Hete ve implement the algorithas of Theorea 2, (W),
Think of a “"machine* having:
registers capable of holding ;ny n€lf , -
B: holds upper boundary of foreward vegion of support
J: holds index under attack
?: holds value of P[)
Z,X: hold arguments
Lists which hold 1lists of integers,
L: 1ist of tndices (priority 1ist)
t(): 1isct of values of ¢() -
:()i list of temporary values of t().
8 push doun stack (first on-last off type of memory 1ist)
which holds thc_tntetucdln:p results of recursion. “Poping"
the stack means removing the top elenment. This ceauses the
next elenent on the list to be the new top elenent.
Our program will use certain basic subprograns descrided
below. ‘
GET 8(X): This progras will cause :() to be extanded ia
the minimumn manaer until Fl:()1(x) can be computed. GET 3(X)
will return the value of F into register T and the maximun
argument of :() needed into register B.
1(X,J) @ the highest fndex on L greater than J which
Lq attackablc at X if there {s oue, other-
vise the value-l.
P(X,8,J) = the lezst integer 2>X at which sn fndex

higher than J 1s not safe.

-23-

G(X) = 1ist of indicies < X which spoil the gap 4in

the interval 1, = [;(x). F(:()I(x)].

The following flow chart along with step 1 of the
inforoal algoritho of Theorem 2 give a precise definition
of the sigoritho.

Suppose that t() is defined up to x and that L hae

9+l slsments, j......j'.

heck sll
dicies
x

11 higher
ndicies
safe?

.gheot
safe index
. at ¢

dex spoils
gap(is

't attachabdble)

[Rrun cap

PROCESS

@

-26-

(not empty

:(x) -
-:x(ol(:)l+1

1€G(X)

Treesxtl GO TO STEP 1

rase £(X w
beyond x,
exase B

TREORENM

t(z)=t(z) REMgVE freeeB+]
2€(X,B) ~
LIFT :(l)
AJOVE
ALY
:\:)-03(;)+1 READ (P,Q)
OFF STACK
POP STACK

PUT (x,J) ON
STACK,X+P
J»

GET B(2)

io ssme index still
attackable at 2
give nev ¢ .

GET B(X)

S0

e28e

By removing the “gap procuss® block imn the first
slgoritha, we got a simplcr slgorithm which still defines
an F[) gap t(). Ve use this modified process as tho
basis of the second algorithm.

Let register V detarmine the levcl of tha P-extension
used. Let tha machine have lists EP() p=0,1,2,... to
hold the level p P-extensions. Lit GET B(X,V) be a routine
which calculates the boundary of thc foreward region of
support for r[?v()1(x) ond celculates the value of P[)
(putting the valuas 4n fuglc:ets B and F). Let |L] be the
cardinality of the priority 1ist L. Again assume that t()
is defined up to x. The following is a flow chart for the

oain part of the second algoritha.

e ey

e &

-26~

1(X,3)*J

GET B(X,V)

t(s)et, (s)
z€(x,8]

E4OVE J
FROA L

free=B+1

t(x)ot (x) |__.| f::--} lcolrgrsnr

THEOREM

GO TO SsteEP
1 of
THEOREM

-27-
ACKINOWLEDGEALYNTS

The author would like to thenk Allen Borodin, Patrick

FPischcr and Michael Fischcr for their holpful discussions

about the operator gap. P. Fischer first obtained a gap for

tho self-cooposition opaerator using & priority scheme.

A.Borodin chacked and sinplified oy original algorithms for

general recursive operator gaps and prompted Theores 3.

Y.Pilscher suggested s smooth termination argument for the

first algorithn given here.

(1l

i3

1))

(3]

()]

7]

REFERENCES

Blum,¥. A machine indepecndent theory of colpufltton.l

copplexity, JACM, 14 (1967), 322-336.

Borodin, A. Complexity classes of recursive functions
and the existance of complexity gaps, ACH Symposiums
on the Theory of Computing, 1969, 67-78

Klecne, 5. C. Introduction to Mgtamathepatics Princeton,
19852

McCreight, E. 4., snd YMoyer, A. R. Classas of computable
tunc:ioni dcfined by bounds on computation: preliminary
teport, ACM Syoposium on the Theory of Computing, 1969,
78-68.

Rogers, H. Theory of Rccursive Functions and Effecctive
Cooputability, lew York, 1967.

Godol numberlngs of partial recursive

functions, J. Symb. Logic, 22, #3, 1958, 331-341.
Young, P, Speed-up by changing the order im vhich sets

are enumerated, AC!{ Symposium on the Theory of Computing,
1969, 89-92.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

