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EXECUTIVE SUMMARY 

 

Millions of diabetics could benefit from a noninvasive and cheaper method for monitoring their blood 

glucose. A solution recently popularized by Google makes use of smart contact lenses featuring 

embedded glucose sensors which can detect and wirelessly transmit their measurements. This technology 

takes advantage of the glucose present in the aqueous humor of the human eye, which is proportional to 

the glucose present in the blood. The technology to produce such contact lenses is well established, but 

few numerical models are available to characterize the system. In particular the tear fluid dynamics 

responsible for distributing the glucose on the eye surface is not well understood. A model describing this 

behavior would facilitate the development, optimization, and prototyping of a smart contact lens that 

diabetic patients can depend on. 

 

The goal of this project was to take advantage of 3D computational modeling to optimize glucose sensor 

placement on a contact lens. Several partial models were implemented to capture aspects of tear flow. An 

initial computational model was implemented based on a physical prototype [1]. It featured two inlets and 

one outlet, but did not provide a fully representative model with respect to physiological fluid flow on the 

eye. However, the experimental values from that project were sufficient to validate the physical accuracy 

of the computational model. Once this was established, a second model was implemented to take into 

account tear flow from the lacrimal gland across the eye to the lacrimal ducts. The locations of the inflow 

and outflow were selected to match physiological eye models [8]. A third model configuration simulates 

gravitational tear flow from the top eyelid to the bottom [7]. This was implemented as a constant inflow 

from the upper edge of the lens, and an outflow from the bottom edge. These three different models each 

captured a single aspect of physiological tear flow, so each predicted different profiles of fluid flow and 

glucose homogenization times. A combined model was created to weigh all these aspects of tear flow. 

This combined model was used to optimize locations for a glucose sensor based on glucose equilibration 

times at different locations within the model.  

 

The models were demonstrated to be physically consistent and to be insensitive to the variable 

physiological parameters of tear flow velocity and glucose diffusivity, as well as to the computational 

parameter of mesh resolution. Subsequent experiments in the combined model yielded an optimized 

location for the glucose sensor that fit all the design criteria: avoiding occlusion of vision, providing 

adequate space for the sensor, and demonstrating fast equilibration time. A new sensor placement was 

proposed for subsequent design iterations of the lens. This location is closer to the upper eyelid than in the 

initial physical model. This optimized position decreased concentration equilibration time by 30%.  

 

These results demonstrate the utility of computational models in the design of smart contact lenses. In 

particular the implementation of these models can allow very rapid prototyping of design concepts. These 

models demonstrate the viability of smart contact lenses and their potential as glucose monitoring 

solutions for diabetic patients, and to become a suitable alternative to lancet-based glucometers. 
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INTRODUCTION 

 

Diabetes is a chronic disease in which patients have improperly regulated blood sugar levels. In 2013, the 

American Diabetes Association reported that nearly 26 million children and adults suffer from diabetes in 

the United States. Diabetes is the primary cause of death for 71,382 Americans each year. Regardless of 

whether patients have Type 1 or Type 2 diabetes, it is important to continuously monitor their glucose 

level on a regular basis [6]. Current methods require pricking the finger for blood once every few hours. 

This can be a painful process, as the same skin must be pricked at each reading and the wounds opened in 

the pricking process are susceptible to infection. Additionally, current methods are inadequate because of 

their failure to give constant real-time readings of blood sugar. These tests can be costly; a package of 100 

test strips can range anywhere from $35 to $156 dollars, which adds up to several thousand dollars per 

year for a single patient [6]. 

 

Several technologies have been explored in the search for a noninvasive glucose monitoring system. The 

list is extensive: near- and mid- infrared spectroscopies, optical coherence tomography, temperature-

modulated localized reflectance, raman spectroscopy, polarization changes, ultrasound, fluorescence, 

thermal spectroscopy, and many others have all been candidates for commercialization for diabetic 

patients [2,3]. Although most of these technologies have the potential to be continuous monitoring 

systems, few are suitable for portable systems worn by outpatients. Many of these technologies also 

suffers from lack of specificity with respect to glucose monitoring. For example, for just near-infrared 

spectroscopy, physiological states of vasodilation, water content, carbon dioxide, atmospheric pressure, 

and more all can influence spectroscopic readings meant to describe glucose content [3].  

 

Smart contact lenses are a promising noninvasive solution for glucose monitoring. They work by 

measuring glucose concentration with enzymatic sensors directly connected to miniaturized electronic 

circuits. The glucose concentrations in the tear fluid are correlated to glucose concentrations in the blood, 

so the measurements can be used to report the patient’s approximate blood glucose in real time.  

 

The best-known prototype smart contact lens was reported by Yao et al. in 2011 [1]. The model featured a 

glucose oxidase sensor embedded in a contact lens and mounted on a polydimethylsiloxane (PDMS) eye. 

Water containing varying glucose levels could be pumped into the system, and sensor readouts were 

obtained over time from attached electrodes, though the authors also discussed schemes for wirelessly 

transmitting the data. This early-stage model demonstrated that many of the functions and microcircuitry 

required for a smart contact lens were achievable. The study provided a wealth of valuable data on sensor 

responsiveness, lifespan, and sensitivity to tear composition. These data were crucial for preliminary 

assessment of the viability of the technology. However, the model itself could be better validated by more 

sophisticated fluid models capturing more aspects of tear dynamics.  

 

Tear fluid dynamics have been modeled by several groups with several different methods. In one model, 

used in the Yao paper, the flow is generated by two diametrically placed inlets and an equidistant outlet, 

all spaced along the rim of the contact lens. These conditions allow controlled replacement of the fluid 

between the contact lens and the simulated eye surface. In a second model, the physiological 

configuration of the lacrimal apparatus determines the direction of flow on the eye surface [8]. The 

lacrimal apparatus consists of the excretory ducts, where tears are pushed onto the eye, and the lacrimal 
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canaliculi, where tears are drained from the eye. The excretory ducts are features on the lateral aspect (on 

the ear side) of the upper eyelids, while the lacrimal canaliculi are on the medial aspect (on the nose side) 

of the lower eyelids [8]. These inlet-outlet placements are an important consideration for a tear flow 

model. Finally, in a third model of tear flow, fluid released onto the eye rapidly flows along the edges of 

the upper eyelid as a meniscus resulting from surface tension [7]. This fluid is then uniformly spread onto 

the eye surface by the tear distributional system. Each of these models yields a slightly different flow 

pattern.  

 

Computational models are a powerful design tool that provides a way to link tear flow models and 

sensing capabilities. Once the problem geometry is established and discretized into nodes and elements, 

the fluid dynamics can be implemented to simulate and predict changes in the system over time. A mass 

transport module can be implemented to generalize this to the glucose profile over time, equivalent to 

having sensors placed all over the domain. Post-simulation tools can allow interpretation of the data to 

include profiles over time at selected points on the lens. These tools allow rapid prototyping and testing of 

configurational changes to the contact lens components, which can accelerate the development of smart 

contact lens technology for facilitated blood sugar monitoring and management of diabetes in patients. 
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MODEL DESIGN 

 

Problem Statement 

 

Computational models of tear fluid dynamics and glucose dispersion across the eye, crucial to smart 

contact lens design, are not available in the literature.  

 

Design Objectives 

 

I. Computational modeling of tear fluid flow on the eye surface.  

○ Computational modeling of glucose concentrations as a function of modeled tear flow.  

II. Validation of computational models.  

○ Mesh convergence analysis to account for discretization error.  

○ Sensitivity analysis to account for physiologically variable parameters. 

○ Comparison of experimentally and computationally derived data.  

III. Optimization of sensor placement within the contact lens given the following design constraints: 

○ Sensor cannot occlude vision - must be placed at least 3.75 mm from the center. 

○ Sensor must fit on the contact lens - center must be placed at least 1 mm from the edge. 

○ Fast glucose concentration equilibration time - less than 30 seconds. 

 

Schematic 

 

A curved 3D geometry was designed using dimensions of the tear fluid reservoir from the physical model 

created by Yao et al. as shown in Figure 1 [1]. The top curved surface represents the contact lens 

boundary while the bottom surface represents the eye surface boundary. The shape between these surfaces 

is considered to be filled with tear fluid. 

 
Fig 1. Contact Lens Reservoir Geometry 

 

Next, three partial models were implemented based on three identified literature models of tear flow. The 

literature models are diagrammed in Figure 2. The models differ in several ways, but most notably in the 

effective inlet-outlet configurations of the moving fluid. The inlets and outlets positions were distilled 

from each model and incorporated into three computational models.  
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Fig 2. Models of Tear Flow 

A. Prototype-Associated Model [1] B. Diagonal Flow Model [8] C. Gravitational Tear Flow Model 

[7] 

 

Model 1, depicted in Figure 2A, was developed by Yao et al. [1], featured two diametrically placed side 

inlets and an outlet at the bottom of the contact lens. Model 2, in Figure 2B, features an inlet and outlet 

arc at opposite edges of the eye [8]. These capture the effect of tear displacement from the lacrimal glands 

to the lacrimal ducts. The associated tear flow is a mostly uniform front which moves diagonally over the 

eye. Model 3 (Figure 2C), described by Holly et al. [7], predicts a more uniform flow of fluid mediated by 

the tear distributional system of the eye. Newly released tears rapidly flow along the edges of the upper 

eyelid as a meniscus held by surface tension. Eye movements and blinking effect the distribution of the 

tears downward over the eye surface. This is implemented as semicircular arcs along the top and bottom 

of the model rim. The models presented are not incompatible, and a more complete model should account 

for all the factors that determine their respective tear flow dynamics.  

 

 
 

Fig 3. Conditions for 3 Models of Tear Film Flow 

Locations of the inlets and outlets of the tear flow in the model are marked.  

 

Figure 3 depicts the inlet-outlet configurations for Models 1, 2, and 3. The red marked regions represent 

the inlets where tears flow into the contact lens reservoir, while the blue marked regions represent the 

regions where tears flow out of the reservoir. These are the primary differences in the computational 

models because the physics modules implemented to represent the fluid and mass flows were the same.  
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Governing Equations, Boundary Condition, Initial Conditions and Properties  

 

Governing Equations 

 

The Navier-Stokes equation describes the physics of the tear fluid flow in the problem. The body force 

term is dropped due to its insignificant effect on the solution and the transient term is dropped due to the 

establishment of steady state flow. 

 

                                                             - p                                                        Eq. 1 

 

Here   is density, v is velocity, p is pressure, and   is viscosity.  

 

The species equation describes the glucose mass transfer physics in the problem. The generation term is 

dropped due to the lack of glucose generation and degradation in the problem. 

 

                                                             
 c

 t
 u   c                                                          Eq. 2 

 

Here c is the concentration of the mass modeled, t is the time variable, u is the local fluid velocity, and D 

is diffusivity. 

 

Boundary Conditions 

 

Fluid flow: 

The inlet fluid velocity is constant and set based the model. The outlet is set to zero pressure and it will 

allow both fluid and glucose to flow out of the geometry. All other surfaces of the geometry are set to 

have the no slip condition and zero fluid velocity. 

 

Mass transport: 

The concentration of glucose at the inlets is equal to the concentration of glucose in produced tears. 

Glucose leaves the geometry with the outflow fluid and there is zero glucose flux at all other surfaces. 

 

Initial Conditions 

 

The entire domain has an initial condition of zero velocity and zero glucose concentration. 
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Discretization 

 

 

Fig 4A. Model 1 Mesh   Fig 4B. Model 2 and 3 Mesh 

Model 1 represented by a free-tetrahedral mesh 

composed of  145,741 elements. Note the higher 

element density at the inlets and outlet. 

 

Models 2 and 3 are representd by a free-

tetrahedral mesh composed of 120,737 elements. 

 

The mesh for Model 1 is different from the mesh of Models 2 and 3 due to the smaller dimensions of the 

inlets and outlets, which result in higher local velocities. A higher mesh element density was required to 

resolve these higher local velocities.  

 

Properties 

 

Table 1 summarizes several parameters used to characterize aspects of tear flow and glucose transport. 

These parameters naturally vary between people, which prompted the inclusion of a parameter sensitivity 

analysis in the computational modeling results.  

 

Property Value 

Glucose Diffusivity       -  m  s[9] 

Tear Density 1000  g m [9] 

Tear Viscosity .001 Pa/s [10] 

Table 1. Property Values 
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RESULTS AND DISCUSSION  

 

Several outcomes were achieved in the present study. First, three literature models were implemented as 

computational models of tear and glucose flow. Next, the results were validated by experimental data as 

well parameter sensitivity analysis. Finally, the contact lens design was optimized with respect to glucose 

sensor location.  

 

I. Computational Modeling of Tear Fluid Flow on the Eye Surface 

 

Three computational models were generated to simulate the reservoir of fluid between a corneal surface 

of the eye and a contact lens. Each featured a different driving mechanism for the movement of liquid 

over the eye; Model 1 used two inlets and an outlet configured as in the paper by Yao et al., Model 2 used 

a physiologically consistent inlet and outlet corresponding to the lacrimal glands and lacrimal ducts 

respectively, and Model 3 used a downward gravity-driven flow in the upright lens. Model 1 was 

designed to recreate a physical model that had been built and characterized by another group [4]. Models 

2 and 3 were alternative iterations designed to demonstrate the utility and flexibility of the simulation, 

each emphasizing a different driving force for tear movement on the eye.  

 

To ensure the results could be compared to each other, Models 2 and 3 were configured to have 

approximately the same Peclet (Pe) dimensionless number as Model 1. This ensured their outputs would 

be on an appropriate scale. The Pe number, given by Eq. 3 below, was selected because it combines 

variables from fluid flow and mass transport to reduce the amount of redundant calculation needed to 

characterize the system.  

 

                                                                  e  
u 

 
                                                                   Eq.  

 

Here, u is the local velocity, L is the characteristic length scale (defined as the inlet lengths from Figure 

3), and D is the glucose diffusivity through tears. From the description of Model 1 provided by Yao et al., 

the characteristic Pe number was determined to be 12,500. The three models were used to generate fluid 

flow profiles and glucose concentration profiles.  

 

Figure 5 demonstrates the fluid pressure distribution within the models at a selected time point. Each 

model had unique flow conditions, generating different pressure distributions. 
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Fig 5. Volume Plots of the Tear Fluid Pressure  

A. Model 1 B. Model 2 C. Model 3 

There is a large pressure in the 

reservoir of the model that 

drives tear flow toward the 

outlet. 

The pressure decreases 

uniformly as the tear flow 

progresses diagonally across the 

contact lens. 

The pressure is highest at the 

center of top of the lens and 

decreases downward and along 

the edge of the lens. 

 

Concentration profiles of glucose over time were then calculated for each model, demonstrated in 

animated Figures 6, 7 and 8. Note the differences in flow trajectory and speed between the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Animation of Volume Plot of Glucose Concentration for Model 1 
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Fig 7. Animation of Volume Plot of Glucose Concentration for Model 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. Animation of Volume Plot of Glucose Concentration for Model 3 
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These models of fluid and glucose movement were further analyzed to assess validity of the results.  

 

II. Validation of Computational Models 

 

The stability of the models with respect to natural variations in Pe number of the models was established 

to ensure reliable, physically plausible results. The models were characterized through parameter 

sensitivity analysis which is summarized in Figure 9. 

 

 
Fig 9. Sensitivity of Glucose Concentration to Peclet Number 

All three models are relatively insensitive to moderate changes in the flow conditions and glucose 

diffusion jointly described by the dimensionless Peclet number. 

 

The sensitivity of the two variables most important to the models, inlet flow rate and glucose diffusivity, 

were combined with the characteristic length scale (defined as the inlet arc length) into the Pe number. 

Parameters were adjusted to vary the Pe number by a range of 10% for each system. The models were 

determined to be relatively insensitive to Pe number variation. Glucose concentrations measured at the 

center of the contact lens at partial equilibration varied by less than 1% for Pe variation of ±10%. All 

three models were determined to be stable with moderate variations in the diffusive flow conditions. Due 

to the insensitivity of each model to the Pe number, the variation between models can be directly 

attributed to the differences in inlet and outlet geometry in each model. 
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Fig 10. Validation of Simulated Sensor Current in Model 1 

 A. Schematic of Original Sensor Location B. Simulated and Experimental Sensor Current 

 

The concentration profile data from Model 1 could be validated against the data published on the original 

physical model reported by Yao et al. The point circled in Figure 10 shows the approximate location of 

the sensor in the original model, and the associated graph shows sensor current measured in both the 

computational simulation and experiment at this point [4]. The simulated sensor current was generated 

using the time variable input glucose concentration that could be linearly correlated to current as 

demonstrated by Yao et al. Additionally, the computed equilibration time of 20s is consistent with the 

experimental result, which also found a response time of 20s after taking into account the time delay of a 

fluid pump [4]. The response time was defined as the time needed for the point to reach 99% of its 

equilibrium glucose concentration. Note that in the physical model there is additional lag time between 

concentration equilibration and current detection, since there are intermediary steps such as the response 

time for the glucose sensor to report a signal that is not featured in the computational models. The model 

was concluded to be valid after assessing the reasonably matching current profile with variable glucose 

input and the similarity in equilibration time delay between the model and experiment.  

 

III. Optimization of Sensor Placement within the Contact Lens 

 

A single combined model, shown in Figure 11, was generated from the results of the initial three models 

and then used to determine the ideal location of the sensor. This model weighed the conditions of each 

model equally to account for all the associated factors of tear flow.  
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Fig 11. Animation of Volume Plot of Glucose Concentration for Average of 3 Models 

 

 
Fig 12. Optimized Location of Glucose Sensor and Concentration Profile 

A. Optimized Location of Glucose Sensor B. Concentration Profile at Optimized Point 

 

The optimized location of the glucose sensor was determined by calculating the location at which the 

combined model equilibrated the quickest with respect to glucose concentration. As before, equilibration 

was defined as the time to reach 99% of the input concentration. The resulting location is a new point 5.3 

mm left of and 1.7 mm above the center of the contact lens, which equilibrated after 14s in all three 

models. Note that this is for a right eye, but an equivalent lens for a left eye would be flipped horizontally. 

This point fits all three design criteria, avoiding the center of the contact lens to prevent occlusion of 

vision, providing enough physical space for the sensor and equilibrating in under 30s. As shown in Figure 

11B, the equilibration time at this new point is 30% lower than the original value, with a response time of 

only 14 seconds.  
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SUMMARY 

 

Computational modeling is an effective tool for smart contact lens design. Three computational models 

were generated to model tear flow over the eye based on existing physical and theoretical models from 

literature. The computational models were validated by matching the results to experimental data 

collected from the physical model [4]. A single combined model was then generated to take into account 

the properties of all three original models. The results of the combined model suggest that a sensor 

placement in the upper, outer corner of the eye is ideal. This optimized model could be easily fabricated 

in the same manner as the original physical model, as only the location of the glucose sensor must be 

changed. 

 

This optimized physical model can be made and then tested to verify the results of the optimized 

computational model. A more complete model could then be built using the full eye geometry as opposed 

to solely the contact lens. Additionally, future models using more sophisticated and physiologically 

accurate tear film models, such as thin film flow, could be made to provide more insight on equilibration 

times for tear fluids with respect to glucose concentration. 

 

Future iterations of the smart contact lens prototypes could be improved using these computational 

models. However, before providing these devices to diabetic patients a number of obstacles must be 

overcome.  In order to rigorously test the safety and effectiveness of smart contact lenses and gain FDA 

approval, clinical trials must be run with large samples of diabetic patients. Before this can be done, 

infrastructure must be made to mass produce these smart contact lens. Due to the similarity of production 

methods to microchips, scale up models are already available however they will need to be integrated 

with the contact lens manufacturing process. Following these two items, the cost of the smart contact 

lenses could be an issue for many patients and time will be needed for the manufacturing process to 

decrease costs to a reasonable level. 

 

While wide use of smart contact lenses may be several years away for diabetic patients, the technology is 

a very promising solution. This alternative method for detecting glucose levels has many advantages over 

other methods, particularly its noninvasive nature. Most diabetic patients currently use finger pricking 

sensors or catheters integrated with glucose sensors which can be painful, inconvenient and carry a risk of 

infection. Smart contact lenses avoid all of these issues and are in a position to be the new standard once 

mass distribution of the lenses is possible. 
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APPENDIX 

 

 
Fig 13. Mesh Convergence Analysis 

The mesh converges after 50,642 elements for all three models. The plotted points are the velocity 

magnitude at the center of the lens in each model. At this resolution, the model becomes independent of 

mesh configuration. 

 

 
Fig 14. Variable Glucose Input for Validation 

The glucose input function for the validation study replicates the input glucose concentrations used in the 

experiment with the original physical model [4]. The corresponding model outputs are plotted in red in 

Figure 10.  




