Water vapor transport across an arid sand surface non-linear thermal coupling, wind-driven pore advection, subsurface waves, and exchange with the atmospheric boundary layer

M. Y. Louge¹, A. Valance², J. Xu¹, A. Ould el-Moctar³, P. Chasle²

¹Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. ²Institut de Physique de Rennes, Université de Rennes 1, France. ³Ecole Polytechnique de l'Université de Nantes, France.

This document provides a nomenclature of variables, their typical units, subscripts and superscripts, and abbreviations. The symbol (-) indicates a dimensionless quantity.

Corresponding author: Michel Y. Louge, MYL3@cornell.edu

Nomenclature - Roman

\bar{Y}	mean water vapor mass fraction in Eq. (47) (-)
_	denotes a time-averaged value
\breve{Y}	local water vapor mass fraction around a spherical grain (Appendix G) (-)
$\dot{q}_{ m rad}^{\prime\prime}$	net radiation energy flux (W/m^2)
$\dot{q}_{ m wind}^{\prime\prime}$	wind-driven convective thermal energy flux (W/m^2)
$\dot{W}^{\prime\prime}$	vapor mass flux at radius $r (kg/m^2.s)$
$\dot{W}_{s}^{\prime\prime}$	water vapor flux at the grain surface $(kg/m^2.s)$
$\dot{W}_{\rm DIFF}''$	vapor mass flux in the diffusion limit around a grain $(kg/m^2.s)$
$\dot{W}_{\rm HKS}''$	vapor flux at the grain surface from HKS theory $(kg/m^2.s)$
ℓ^*	dimensionless characteristic depth of evanescent Y -wave decay (-)
ℓ_0	characteristic water film thickness (nm)
ℓ_c	sensor characteristic length (mm)
ℓ_w	water film thickness (nm)
$\hat{\mathbf{X}}$	unit vector along the wind (-)
$\hat{\mathbf{Y}}$	unit vector across the wind (-)
\hat{R}	fundamental gas constant $\simeq 8.314 \mathrm{J/mole.K}$
F	denotes the imaginary part
ı	$i^2 = -1$ (-)
\mathbb{L}	Lewis number $\mathbb{L} \equiv D_{\rm st}/(\varpi \alpha)$ (-)
\mathbb{R}	density ratio $\mathbb{R} \equiv \rho_p \nu / [\rho_{\rm st}(1-\nu)]$ (-)
\mathbb{U}_M	measured unsteady term associated with vapor mass fraction, Eq. (29) $(-)$
\mathbb{U}_T	measured unsteady term associated with temperature, Eq. (29) $(-)$
\mathcal{A}	shear stress coefficient, analogous to \mathcal{C} (-)
${\mathcal B}$	shear stress coefficient, analogous to \mathcal{D} (-)
\mathcal{C}	pressure coefficient in Eq. (35) (-)
\mathcal{D}	pressure coefficient in Eq. (35) (-)
X	distance along the wind direction \mathbf{X} (m)
${\mathcal{Y}}$	distance perpendicular to the wind direction \mathbf{Y} (m)
R	denotes the real part
ABL	atmospheric boundary layer
BC	boundary condition
cRIO	compact Reconfigurable Input Output device
Da _{II}	Damköhler's "second ratio" $Da_{II} \equiv \tau_{DIFF}/\tau_{HKS} = k_m d/(2\rho D)$ (-)
DFT	discrete Fourier transform
FPGA	Field Programmable Gate Array
Gr_L'	square root of a Grashof number based on L and buoyancy-driven speed $C_{L}^{1/2} = \int L(T_{L}, T_{L}) dT_{L}^{1/2} L(T_{L})$
TTTZO	$Gr_{L}^{-} \equiv \rho [gL(T_{s} - T_{T})/T_{T}]^{1/2}L/\mu (-)$
HKS	Hertz-Knudsen-Schrage
ML	
MW	molar mass, a.k.a. molecular weight (kg/mole)
NRW	non-rainiali water
DCD	printed singuit based
PUD	peritied circuit board
F DE Dn	turbulent Brendtl number ()
Γ_t	Reveloigh number for natural convection within cond ()
Rov	Raynelds number has don wind speed and distance \mathcal{V} from the dunc leading
ne _X	edge along $\hat{\mathbf{X}}$ (-)
$\operatorname{Re}_{X_{\operatorname{crit}}}$	critical value of Re_X for transition to turbulence (-)
КH	relative humidity (-)

 RH_c relative humidity in the calibration chamber (-) RH_e relative humidity at equilibrium (-) \mathbf{Sc} Schmidt number Sc $\equiv (\mu/\rho)/D$ (-) Sc_t turbulent Schmidt number (-) St_X mass transfer Stanton number, Eq. (H5) (-) TBL turbulent boundary layer TDR time-domain reflectometry tilde denotes a Fourier-transformed variable denotes a dimensionless quantity surface subscript s subscript denotes the upper edge of the turbulent mass transfer boundary layer l half guard width of the capacitance probe (mm) a mean δp^* in Eq. (38) (-) a_0 coefficient in the characteristic Eq. (48) (-) A_c Fourier series coefficient in Eq. (38) (-), $i = 1, ..., 2^{N+1}$ a_i coefficient in Eq. (57) (-) a_m coefficient in Appendix E(-) A_s a_T Soret coefficient (-) empirical constant for unstable thermal transport during the day, Eq. (D2) (-) a_{h_D} empirical constant for stable thermal transport at night in Eq. (D2) (-) a_{h_N} empirical cst for unstable momentum transport during the day, Eq. (56) (-) a_{m_D} empirical constant for stable momentum transport at night in Eq. (56) (-) a_{m_N} distance of outermost sensor side to probe vertical centerline (mm) b B_c coefficient in the characteristic Eq. (48) (-) b_i Fourier series coefficient in Eq. (38) (-), $i = 1, ..., 2^{N+1}$ B_{s} coefficient in Appendix E(-)cdistance of innermost sensor side to probe vertical centerline (mm) C'_c coefficient in the characteristic Eq. (52) (-) C_0 sensor capacitance in air (fF) coefficient in the characteristic Eq. (48) (-) C_c specific heat of air (by mass) at constant pressure (J/kg.K) c_p coefficient in Appendix E (-) C_s Dwater vapor diffusion coefficient (m^2/s) dgrain diameter (μm) $d_{2,3}$ Sauter mean diameter (Appendix B) (μm) D_{eff} effective water vapor diffusion coefficient (m^2/s) $D_{\rm st}$ water vapor diffusion coefficient at $T_{\rm st}$ and $p_{\rm st}$ (m²/s) $d_{p,q}$ particle diameter moment (Eq. B4) (μm) coefficient of species i, i = 1, 2 (-), see Appendix E E_i f oscillator (a.k.a. clock) frequency (kHz), or evanescent wave frequency (Hz) f^* dimensionless evanescent wave frequency = fJ, Eq. (47) (-) f''function in Eq. (14) (-) f'function in Eq. (14) (-) f_{1}^{*} dimensionless reference evanescent wave frequency (-) normalized particle-size-distribution by mass (Appendix B, $1/\mu m$) f_M normalized particle-size-distribution by number (Appendix B, $1/\mu m$) f_N f_p pressure derivative function in Eq. (24) and Appendix C (-) temperature derivative function in Eq. (24) and Appendix C (-) f_T f_Y mass fraction derivative function in Eq. (24) and Appendix C (-) gravitational acceleration (m/s^2) gΗ effective Hamaker coefficient (J)

hripple ondulation (cm) h_0 amplitude of surface ondulation (cm) Jone day $= 24 \,\mathrm{hr}$ Ksand permeability (m^2) k^* dimensionless evanescent wavenumber (-), Eq. (47) $k^{*\pm}$ dimensionless evanescent wavenumber in Eq. (50) (-) K''_e imaginary part of the effective dielectric constant (-) K'_e real part of the effective dielectric constant (-) series coefficient of K_p in Eq. (13), i = 0, ..., 3 (-) k_i $k_i^{*\pm}$ imaginary part of $k^{*\pm}$ (-) k_m rate constant of first-order evaporation reaction $(kg/m^2.s)$ K_p equivalent material dielectric constant of moist sand (-) $k_r^{*\pm}$ real part of k^{\pm} (-) k_s effective sand conductivity (W/m.K) Soret factor in Eq. (E1) (-) k_T LMonin-Obukhov length (m) L^* dimensionless Monin-Obukhov length = $L/\sqrt{\alpha J}$ (-) M^* ratio of molar masses of air and water $M^* \equiv MW_{air}/MW_{H_2O} \simeq 1.61$ (-) coefficient of species i, i = 1, 2 (-), see Appendix E M_i molecular mass of species i, i = 1, 2 (kg) m_i there are 2^N cells in the $\hat{\mathbf{X}}$ and $\hat{\mathbf{Y}}$ directions of the central domain (-) Ntemperature-dependence-diffusion exponent in Eq. (22) (-) n_d number density of species $i, i = 1, 2 (1/m^3)$ n_i air pressure (Pa) pambient pressure (Pa) p_a partial pressure of water vapor (Pa) $p_{\rm H_2O}$ saturation pressure (Pa) $p_{\rm sat}$ standard pressure = 1.013×10^5 Pa $p_{\rm st}$ characteristic pressure in Antoine's law (Pa) p_{A_0} dimensionless heat flux $\equiv \dot{q}_{wind}^{\prime\prime}/[\rho_{st}c_pT_{st}(\alpha/J)^{1/2}]$ (-) q^* coefficient of species i, i = 1, 2 (-), see Appendix E Q_i coefficient in Eq. (E2) (-) Q_{12} Rcircular electric field line radius (mm) radial distance from the center of an isolated spherical grain (m) r S_i coefficient of species i, i = 1, 2 (-), see Appendix E Т temperature (°C or °K) ttime (s or day) t^* dimensionless time $\equiv t/J$ (-) t_{0}^{*} dimensionless time around the onset of aeolian transport (-) dimensionless time around the end of aeolian transport (-) t_1^* temperature at the bottom thermometer on weather station (°C or °K) T_B T_c calibration temperature (°K) T_T temperature at the top thermometer on weather station (°C or °K) $T_{1/n}$ temperature excursion in Eq. (10) (°C) phase lead time in Eq. (11) (s) $t_{1/n}$ T_{ℓ} temperature of the liquid film on a grain ($^{\circ}$ K) T_{∞} mean temperature in Eq. (10) (°K) $T_{\rm st}$ standard temperature $= 298.15 \,\mathrm{K}$ T_{A_0} reference temperature in Antoine's law (°K) characteristic temperature in Antoine's law (°K) T_{A_a} T_i temperature excursion in Eq. (10), i = 1, ..., 4 (°C)

phase lead time in Eq. (11), i = 1, .., 4 (s) t_i T_v vapor phase temperature around grains (°K) Uwind speed (m/s)useepage interstitial velocity $(\mu m/s)$ dimensionless seepage interstitial velocity $\equiv u\sqrt{J/\alpha}$ (-) u^* dimensionless seepage interstitial velocity on the surface (-) u^*_{\circ} U_{∞} wind speed far above the sand surface (a.k.a. bulk wind speed) (m/s)Vguard voltage amplitude in sand (V) v^*_{s} dimensionless seepage superficial velocity on the surface, Eq. (31) (-) guard voltage amplitude in air (V) V_0 vertical velocity on top of the turbulent mass transfer boundary layer (m/s) v_ℓ shear velocity (m/s) v_{τ} dimensionless shear velocity = $v_{\tau} \sqrt{J/\alpha}$ (-) v_{τ}^* Wvertical height (or spatial resolution) of any capacitance probe sensor (mm) downward distance from the sand surface (mm) x x^* dimensionless depth $\equiv x/\sqrt{\alpha J}$ (-) distance of circular electric field line center to probe vertical centerline (mm) x_c x_i downward distance of sensor *i* from the sand surface (mm), i = 1, ..., 15Ywater vapor mass fraction (-) Y_a ambient water vapor mass fraction (-) Y_e water vapor mass fraction at equilibrium (-) Y_i initial water vapor mass fraction in the bulk (-) Y_i water vapor mass fraction (-) at sensor i, i = 1, ..., 15 Y_s water vapor mass fraction at the surface (-) Y_u upper envelope of the Y signal during aeolian transport (-) Y_{∞} water vapor mass fraction far above the sand surface (-) Y_{\min} smallest detected water vapor mass fraction (-) saturated water vapor mass fraction (-) $Y_{\rm sat}$ Y_l lower envelope of the Y signal during aeolian transport (-)Zsensor impedance in sand $(M\Omega)$ altitude above the sand or desert surface; dune topographical elevation (m) zsensor impedance in air $(M\Omega)$ Z_0 turbulence hydrodynamic roughness (μm) z_0 lowest instrument altitude on the weather station (m) z_B highest instrument altitude on the weather station (m) z_T altitude on top of the turbulent mass transfer boundary layer (m) z_ℓ

Nomenclature - Greek

α	effective sand thermal diffusivity (m^2/s)
α_m	hybrid thermal diffusivity $\equiv k_s/(\rho c_p) \ (m^2/s)$
$\chi_{ m air}$	mole fraction of dry air
$\chi_{\rm H_2O}$	mole fraction of water vapor
$\delta \tau^*$	dimensionless evanescent wave time scale (-)
$\delta \tilde{p}^*$	Fourier transform of δp^* (in 2D, m ² ; in 1D, m)
$\delta \tilde{p}_0^*$	Fourier transform of δp^* at cell $i = 0$ (1D Fourier transform to find coefficients in Eq. (38), m)
$\delta \tilde{p}_i^*$	Fourier transform of δp^* at cell, $i = 1,, 2^{N+1}$ (Eq. 38, m)
$\delta \tilde{z}$	Fourier transform of dune topographical elevation z (in 2D, m ³ ; in 1D, m ²)
δp^*	dimensionless pressure excursion (-)
ΔT	temperature change from bottom to top thermometers on weather station (°K)
δt	time scale (s)
Δx	apparent stratum wavelength from capacitance probe (cm)
δY	amplitude of evanescent wave of water vapor mass fraction in Eq. (47) (-)
ΔY_a	ambient water vapor mass fraction excursion from bottom to top hygrometers on weather station (-)
δ_m	mass transfer thickness of the TBL (m)
$\dot{\Psi}''$	diffusive vapor flux through the ABL $(kg/m^2.s)$
$\dot{\Psi}_{\ell}^{\prime\prime}$	diffusive vapor flux on top of the TBL $(kg/m^2.s)$
$\dot{\Psi}_{\infty}''$	diffusive vapor flux far above the sand surface $(kg/m^2.s)$
$\dot{\Psi}_s''$	diffusive vapor flux at the surface $(kg/m^2.s)$
$\dot{\Sigma}''$	net vapor flux into the TBL at the surface $(kg/m^2.s)$
$\dot{\Sigma}_{\infty}^{\prime\prime}$	net upward vapor flux through top of the TBL $(kg/m^2.s)$
ϵ_0	dielectric permittivity of free space $\simeq 8.854\mathrm{fF}/\mathrm{mm}$
γ_0	typical scale of u_s/τ_K used to render colors in Fig. 8 (m/s ²)
κ	von Kàrmàn constant (-)
κ_c	accommodation coefficient of condensation (-)
κ_e	accommodation coefficient of evaporation $(-)$
λ_0	single-mode wavelength (m)
λ_i	wavelength of harmonic <i>i</i> in Eq. (38), $i = 1,, 2^{N+1}$ (m)
μ	air dynamic viscosity (kg/m.s)
ν	solid volume fraction of sand (-)
Ω	water mass fraction adsorbed on grains (-)
Ω_d	adsorbed water mass fraction on grains of class size $d(-)$
Ω_e	adsorbed water mass fraction at equilibrium (-)
Ω_{1_d}	characteristic water mass fraction adsorbed on grains of size class $d(-)$
Ω_1	characteristic water mass fraction adsorbed (-)
$\Omega_{d,e}$	adsorbed water mass fraction at equilibrium on grains of class size $d(-)$
Ω_{p_0}	equilibrium absorbed water mass fraction on a typical pharmaceutical powder as $\text{RH} \rightarrow 0$ (-)
Ω_{p_1}	isotherm slope for a typical pharmaceutical powder (-) \hat{r}
ω_{X_0}	single-mode wavenumber along \mathbf{X} (1/m)
ω_{X_i}	wavenumber of mode <i>i</i> along X , $i = 1,, 2^{i_{V+1}}$ (1/m)
ω_X	wavenumber along \mathbf{X} (1/m)
ω_Y	wavenumber along \mathbf{Y} (1/m)
ϕ_0	phase lag of pressure excursions from topographical variations (rad)
ϕ_h	Monin-Obukhov correction function for heat transfer (-)
φ_m	Monin-Obuknov correction function for momentum transport (-)

 ϕ_{T} Monin-Obukhov correction function for mass transfer (-)

Φ_{2_h}	integral function in Eq. (D5) (-)
Ψ_s^*	dimensionless vapor diffusion flux $\dot{\Psi}''$ through the surface $\equiv \dot{\Psi}''/[\rho_{\rm st}\sqrt{\alpha/J}]$ (-)
ρ	moist air density (kg/m^3)
$ ho_b$	bulk density of the sand bed (kg/m^3)
$ ho_p$	material density of sand grains (kg/m^3)
ρ_s	moist air density at the $surface(kg/m^3)$
$ ho_w$	liquid water density (kg/m^3)
$ ho_{ m H_2O}$	partial density of water vapor (kg/m^3)
$ ho_{ m st}$	air density at $T_{\rm st}$ and $p_{\rm st}$ (kg/m ³)
Σ^*	dimensionless vapor flux into the ABL (Eq. 54) (-)
Σ^*_{∞}	dimensionless vapor flux aloft (Eq. 57) (-)
σ_i	molecular diameter of species $i, i = 1, 2$ (Å)
σ_{12}	mean molecular diameter of species 1 and 2 $(Å)$
$ an \varphi$	"loss tangent" tan $\varphi \equiv K_e''/K_e'$ (-)
$\tan \varphi_0$	characteristic "loss tangent" (-)
au	characteristic time of return to equilibrium (s)
$ au^*$	dimensionless characteristic time of return to equilibrium $= \tau/J$ (-)
$ au_{ m HKS}^*$	τ^* in the HKS theory (-)
$ au_1^*$	dimensionless evanescent wave reference time (-)
$ au_d$	characteristic time of return to equilibrium of grains of class size d (s)
$ au_K$	characteristic time $\tau_K \equiv K \rho (v_\tau/U)^2 / [\mu(1-\nu)]$ defined in Eq. (36) (μ s)
$ au_{ m DIFF}$	characteristic time in the diffusion limit around a grain (μs)
θ	bearing of wind direction $\hat{\mathbf{X}}$, clockwise from North as viewed from above, see
	Fig. 8 (rad)
θ_w	water volume fraction in the modeling framework of Shao, et al. (2021) (-)
$ heta_{w_{\min}}$	smallest water volume fraction detected by Shao, et al. (2021) (-)
ϖ	tortuosity (-)
ξ	$\xi \equiv \ln z \ (\ln m)$