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Ubiquitin-like (ubl) modification is an example of post-translational modification (PTM) 

that influences a number of cellular processes.  Given difficulties in studying this system in its 

native eukaryotic context, several pathways have been reconstituted in Escherichia coli (E. coli) 

at varying levels of completeness.  We developed the first E3-dependent SUMOylation pathway 

in E. coli.  Because the E3 ligase increases efficiency of conjugation, we were able to lower 

expression of upstream elements – namely the E2 – and avoid non-physiological chain formation 

on target protein encountered in previously published work while maintaining high product 

yield.  We additionally developed a ubquitination pathway in E. coli important in plant defense 

against bacterial colonization.  In characterizing the system, we were the first to note that 

ubiquitination of the target protein may proceed in an E3-independent manner likely through 

auto-monoubiquitination involving a ubiquitin-binding domain (UBD). 

 We believed these systems might serve as a scaffold to develop a reporter in E. coli for 

ubl modification of a target protein.  Such a reporter would enable engineering new functionality 

into the pathways.  For example, engineering the ubiquitin E3 ligase could achieve rapid 

knockdown of novel protein; small chemical inhibitors of modification could be identified; and 

substrates of a particular E2-E3 pair or the E2 in an E3-substrate pair could be found in a high-

throughput fashion.  Such advances would have merit in further study of ubl modification and in 

therapeutic development.  We adapted both in vivo and in vitro screens/selections developed for 



 

evolving non-covalent protein-protein interactions that included split YFP, split DHFR, bacterial 

two-hybrid system, plasmid display with LacI and zinc finger proteins, and ribosome display.  

To address the shortcomings of these systems, we developed our own split Cre bacterial screen 

to adapt to our ubl systems.  This screen made use of a two-state reporter, which provided finer 

resolution of the protein-protein interactions and a genetic record of those interactions.  

Additionally, Cre’s enzymatic activity allowed for detection of infrequent dimerizing pairs.  

While alone it showed promise as a screen, it too failed when coupled with the ubl pathways. 
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CHAPTER 1 

 

UBIQUITIN-LIKE MODIFIERS 

 
Introduction 

In the 20th century the genetic code was cracked and the mechanism of protein synthesis 

detailed.  However, proteins are more than the DNA that encode them; many undergo at least 

one post-translational modification (PTM).  Though the exact number is left to speculation, the 

number of enzymes responsible for PTM give an impression of its magnitude.  About 5% of the 

genome belonging to higher order eukaryotes is devoted to these enzymes (1).  Adding to the 

complexity, 59% of those modified proteins have more than one PTM site and 13% have more 

than one modification type (2).  Over 200 types of PTM exist (1), which include backbone 

cleavage and rearrangement, residue conversion, disulfide bond formation, and attachment of 

functional groups such as simple molecules, cofactors, fatty acids, sugars, and other proteins. 

These modifications may be reversible or irreversible.   

PTMs influence conformation, activity, localization, interaction, and/or stability of a 

protein and serve in a broad range of physiological and pathological processes.  Controlled 

proteolysis can control localization and activation of proteins like peptidases found in the small 

intestines or cellular receptors/transcriptional activators like Notch.  Attachment of the protein 

ubiquitin can signal for the targeted degradation of proteins by the 26S proteasome.  Regulated 

degradation is important in cellular homeostatis and modulating protein accumulation during 

different cellular epochs.  Attachment of sugar groups to a protein can alter its chemical 

properties, notably solubility.  Glycosylated proteins such as antibodies have a prolonged 

residence time in blood serum.  Attachment of the charged phosphate group can grossly alter 
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protein confromation.  This can toggle a protein’s catalytic activity and interacting partners. 

Phosphorylation is often implemented in signal transduction cascades.   

PTMs raise the diversity of the proteome by several orders of magnitude above that 

predicted by the genome alone (1).  They provide a critical context for biological understanding 

at multiple levels from protein characteristics to cellular dynamics to physiological function.  

Their study is indispensable. 

Ubiquitin-like pathways 

One well-studied PTM is the attachment of the small ubiquitin-like modifier (ubl). 

Including the eponymous ubiquitin, 11 ubls have been identified in eukaryotes with several more 

postulated (3).  While members can share little sequence homology (ubiquitin and SUMO (small 

ubiquitin-related modifier) share only 18% sequence identity) (4), they all share a distinctive 

ββαββαβ fold aptly called the ubiquitin superfold (5) and a flexible tail at their C-terminus 

terminating in two glycines.  The carboxyl group of the last glycine forms an isopeptide bond 

with an amino group, commonly of a lysine residue, of the target protein.   

Cellular processes in which this modification is involved include cellular trafficking, 

subcellular localization, channel and receptor regulation, regulation of transcription-factor 

activity, DNA repair and replication, chromosome dynamics, mRNA processing and metabolism, 

cellular replication, endocytosis, lysosomal targeting, enzymatic activation and deactivation, and 

protein degradation (6).  While each system is distinct, cooperation arises between them.  One 

modifier may block the site of another (7), target its modified protein for modification by a 

different system (8), or even activate another cascade (9–11). 

Despite notable differences, the mechanisms for ubl attachment are analogous.  That for 

ubiquitin will be describe in detail.  The ubiquitin pathway involves three proteins that execute  
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Figure 1.1.  The ubiquitin pathway.  Three steps comprise the ubiquitin pathway: activation, 
conjugation, and ligation.  The E1 activates ubiquitin through formation of a thioester bond.  To 
do so, it first adenylates ubiquitin's C-terminal G76.  A cysteine on another domain then forms a 
thioester bond and removes it from the adenylation site.  Removal allows another ubiquitin to be 
adenylated.  The E2 binds the E1 and acquires ubiquitin through a transthioesterification 
reaction.  The charged E2 then binds an E3 which recognizes the target protein.  The ubiquitin is 
transferred to the ε-amino group of one of the substrate's lysine residues.  Subsequent rounds can 
form chains of ubiquitin on the target protein depending on the E2 utilized.  Proteins with K48-
linked ubiquitin chains are marked for degradation by the 26S proteasome. 

 
three distinct steps: the E1 activates ubiquitin, the E2 conjugates ubiquitin, and the E3 directs 

ubiquitin-protein ligation (Fig. 1.1).  To date, the human genome is known to encode 2 E1s, 38 

E2s, and 600-1000 E3s (12).  The numbers reflect the increasing specificity through the 

progression of the pathway. 

Seminal work done three decades ago elucidated the biochemical details of ubiquitin 

activation performed by E1 (13–15).  A recent crystal structure of Uba1, a yeast E1, illustrates 

the modular nature of the enzyme and coordinated conformational changes associated with 

activation (16).  Activation begins with the adenylation of ubiquitin's C-terminal carboxyl group.  

Next, the E1's catalytic cysteine on another domain forms a thioester bond with ubiquitin through 

nucleophilic attack of the adenylate.  This liberates the noncovalent ubiquitin binding area, and 

E1 adenylates a second ubiquitin.  The simultaneous association both primes E1 with another 

ubiquitin and expedites the first's transthioesterification to the E2 since MgATP also acts as a 

positive allosteric effector (17).  
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E2s share a conserved 150 residue core domain, the ubiquitin conjugating (UBC) domain, 

which includes the catalytic cysteine to which ubiquitin attaches (18).  This domain binds to a 

ubiquitin-like structure on E1's UFD (ubiquitin fold domain) and may also interact with an 

unstructured loop in E1's SCCH (second catalytic cysteine half-domain) (16).  From this perch 

the E2 accepts the covalently bound ubiquitin from E1.  Though charged with ubiquitin, E2s 

themselves are incapable of ubiquitinating a target protein.  A consensus site for E2-target 

binding does not seem to exist (19), and E2s require interaction with an E3 for ubiquitination of 

the target to occur (20). An exception occurs with proteins possessing a ubiquitin binding 

domain (UBD), which are capable of auto-monoubiquitination (21). 

Two distinct families of E3s are known: those with a HECT (homologous to the E6-AP 

carboxyl terminus) domain and those with a RING (really interesting new gene) domain.  The 

HECT domain is known to thioesterify ubiquitin before ligation but will not be discussed in 

detail here.  Within the RING domain are cysteine and histidine residues that chelate two zinc 

ions.  These coordination sites appear in two loops that are connected by a central helix.  The 

whole structure forms a shallow cleft to which an E2 binds.  Exactly which residues in the RING 

domain and exactly which region of the UBC domain interact vary by E2-E3 pair (22).  

Additionally, regions outside the RING domain may bind the E2 as well (23).   

RING E3s are viewed as adaptors that bring E2 and target substrate together.  The exact 

mechanism for ubiquitin transfer from E2 to substrate remains in debate.  Some argue for 

conformational changes of the E2 when bound to E3; others that essential residues reside in the 

E3.  Notably absent within the UBC are side chains that could catalyze ubiquitin transfer.  The 

E2's active site lacks a well-positioned base to deprotonate the attacking amino group.  While a 

conserved asparagine could stabilize the developing negative charge on the ubiquitin's C-
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terminal carbonyl group during nucleophilic attack, it is poorly positioned to do so (24).  The 

asparagine instead interacts with the peptide backbone through hydrogen bonds as evinced in 

crystal structures of both free E2s and those bound to E3s (22).  To the contrary, no E3 side 

chains come closer than approximately 15 Å to the E2 active site (25).  However, the E2 is not 

esterified with ubiquitin in the sighted structures above (22).  Furthermore, the conserved 

asparagine proves necessary for substrate ubiquitination (25).  The crystal structure of the 

SUMO-RanGAP1-Ubc9-Nup358 complex shows the asparagine to rotate away from the 

backbone and towards the aforementioned carbonyl group to stabilize the oxyanion transition 

state during the amino group's attack (26).  Therefore, the asparagine's repositioning which 

seems necessary for transfer may require at least both ubiquitin and E3 interaction with the E2.   

Ubiquitin is usually attached to the ε-amino group of the substrate's lysine residue.  A 

substrate may have one ubiquitin (monoubiquitination), one ubiquitin at multiple lysine residues 

(multi-monoubiquitination), or a chain of ubiquitin linked through one of their own seven lysine 

residues (polyubiquitination).  Each has consequences for the substrate according to a “ubiquitin 

code” that is still being deciphered.  Multiple mechanisms have been proposed for ubiquitin 

chain formation, and the E2 seems to dictate the type of chain formed.  One E2 may interact with 

an E3 to initiate ubiquitination of a substrate.  Others may subsequently interact with the same 

E3 to elongate the ubiquitin chain.  Such is the case with the heterodimeric RING E3 BRCA1-

BARD1 and its several E2 partners (27).  Other E2s like Ube2g2 preassemble ubiquitin chains 

that are then transferred en bloc (28).  Other E2s like Ubch5 both initiate and elongate the 

ubiquitin chain.  They are capable of forming chains of different linkages, but a UBD on the 

RING E3 may provide specificity by orienting the acceptor ubiquitin (22). 
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Ubiquitin chains have different structural conformations depending upon which of 

ubiquitin's lysine residues acts as the attachment site.  For example, those linked through K63 

adopt an elongated structure while those linked through K48 adopt a compact structure (29).  

Interacting proteins possess a menagerie of ubiquitin binding domains that can distinguish 

between the different conformations (18).  Proteins with a K48-linked polyubiquitin chain of at 

least four monomers (30) are degraded by the 26S proteasome (31).  To which lysine the 

polyubiquitin chain is attached in the substrate has little to no bearing on its degradation signal 

(24), though it can influence the rate at which the substrate is degraded (32).  Several proteins 

interact with the K48-linked chain to bring the substrate to the proteasome.  However, details are 

still lacking (33), and new components are still being discovered (34, 35).  

Ubl pathways introduced into Escherichia coli 

Overlap between ubl systems, the reversible nature of the modification, and low cellular 

abundances confound study of the pathways in their native context.  While in vitro studies are 

possible, they are intractable outside specific cascades given the requirement to purify all 

components.  Though a ubl system has been found in Actinobacteria (36) and various effectors 

of pathogenic bacteria hijack eukaryotic ubl pathways (37, 38), no ubl pathway has been 

identified in non-pathogenic Escherichia coli (E. coli) lab strains.  This fact coupled with the 

plethora of molecular tools existing for E. coli makes it an ideal host for studying the ubl 

pathways.  Three notable systems that have been reconstituted in E. coli are SUMOylation, 

ubiquitination, and neddylation. 

Mencía et al and Uchimura et al concurrently developed an E3-independent mammalian 

SUMOylation system in E. coli (39, 40).  Their systems allow for both the purification of 

SUMOylated protein and an opportunity to study the system functionally.  Their work is 
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significant because the dynamic and entangled nature of the system in eukaryotes has made these 

two aspects difficult.  However, both see chains of SUMO attached to their targets, which for 

SUMO-1 is not physiological. Mencía et al address this issue, and determined protein over-

expression to be the cause. Both used high-expression plasmids.  Recently, Okada et al have 

made an Arabidopsis analogue for investigating potential SUMO substrates against Arabidopsis's 

four SUMO isoforms (41).  Dissatisfied with current predictive tools for determining 

SUMOylation sites, they used their system to probe for both consensus and non-consensus sites.  

While successful, they were not able to confirm or dismiss the physiological significance of their 

results.  Following Uchimura et al's example, they too used high-expression plasmids, which 

may have led to non-physiological artifacts.  They admitted that additional components like E3s 

might be needed in their system for more accurate results.  To address these shortcomings, we 

developed the first E3-dependent SUMOylation pathway in E. coli (42).  Because the E3 ligase 

increases efficiency of conjugation, we were able to lower expression of upstream elements–

namely the E2–and avoid non-physiological chain formation on target protein while maintaining 

high product yield.   

Su et al reconstituted the first E3-dependent ubiquitin system in E. coli to successfully 

screen a murine cDNA library for actual substrates of the E3 GRAIL (43).  This screen 

circumvented issues they confronted in using mass spectrometric analysis and screening 

strategies in mammalian cells.  Several years later Rosenbaum et al reconstituted another cascade 

to characterize the role yeast ubiquitin ligase San1 played in protein quality control (PQC) 

degradation (44).  Their “in coli” method validated ubiquitination of putative substrates 

identified using the yeast two-hybrid screen but that they could otherwise not purify due to 

aggregation.  Most recently, Keren-Kaplan et al meticulously characterized ubiquitination 
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reconstituted in E. coli using several different cascades (45).  They provide evidence that their 

system recapitulated physiological results that in vitro reactions could not and produced enough 

ubiquitinated substrate for various analyses such as crystallization. We developed our own 

ubquitination pathway in E. coli important in plant defense against bacterial colonization (46).  

In characterizing the system, we were the first to note that ubiquitination of the target protein 

may proceed in an E3-independent manner likely through auto-monoubiquitination involving a 

UBD. 	
  

In addition to identifying cascade elements and modified protein for further study, the 

reconstitution of systems in E. coli provides a platform for engineering these cascades, which 

may be useful in their study and in developing novel molecular tools and therapeutics.  Guntas et 

al have made several investigations into interactions between the various components of the 

cascade. They have evolved the ubiqutin E3 ligase E6AP to dock NEDD8-conjugating enzyme 

Ubc12 using a combination of computer models and bacterial screen (47).  The two normally do 

not interact.  They have also recapitulated an incomplete Nedd8 pathway in E. coli and 

developed a novel screen based on Nedd8-E2 interactions (48).  In these investigations, they 

evolved more soluble Nedd8 and orthogonal mutant NAE1-Nedd8 pairs (48). 

Reporter for ubl modification 

We believed the pathways we reconstituted could be extended towards developing a 

reporter system for ubl modification.  Such a system would serve as a scaffold to engineer new 

functionality into the pathways.  For example, engineering the ubiquitin E3 ligase could achieve 

rapid knockdown of novel protein.  Redirecting E3 ligases has been documented using Protacs 

(Proteolysis-targeting chimeric molecules) (49–51), binding partners of the target protein (52, 

53), and evolved peptide aptamers (54).  However, successes have been case specific and 
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generally require knowledge of a specific interaction.  These approaches also do not address two 

issues: the E3 ligase must still correctly position a charged E2 in proximity to a free amino group 

on the substrate for modification and E3 affinity for substrate is generally low with few even in 

the nanomolar range (12).  As another example, small chemical inhibitors of modification could 

be identified.  Additionally, identifying where inhibition occurs in the pathway to elucidate the 

mechanism of action could be quickly achieved.  As a final example, substrates of a particular 

E2-E3 pair or the E2 in an E3-substrate pair could be found in a high-throughput fashion.  

Identifying these members is a current challenge in the study of ubl modification (12, 22, 41).  

These applications would contribute both to providing tools for basic research such as in 

determining protein function and to developing therapeutics beneficial in cancers (53) and other 

diseases (55). 

High-throughput detection is currently limited as Western blotting is the only 

inexpensive, reliable means to confirm ubl-protein conjugation.  Because ubiquitination itself 

gives no observable phenotype, the process must be coupled to another that can.  To develop the 

reporter, we adapted both in vivo and in vitro screens/selections developed for evolving non-

covalent protein-protein interactions that included split YFP, split DHFR, bacterial two-hybrid 

system, plasmid display with LacI and zinc finger proteins, and ribosome display.  To address 

the shortcomings of these systems, we developed our own split Cre bacterial screen to adapt to 

our ubl systems.  This screen utilized the enzymatic activity of Cre recombinase to alter the 

phenotype of cells via a two-gene reporter plasmid.  This two-state reporter provided finer 

resolution of the protein-protein interactions and a genetic record of those interactions.  This 

method faithfully reported differences in dimerization of protein pairs and allowed for the 
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isolation of competent binders based on phenotype.  However, it was not able to function as a 

reporter for ubl modification. 
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CHAPTER 2 

 

FUNCTIONAL RECONSTITUTION OF A TUNABLE E-3 DEPENDENT SUMOYLATION 

PATHWAY IN ESCHERICHIA COLI1 

 
Introduction 

Sumoylation is a eukaryotic post-translational modification that involves the covalent 

conjugation of the 11-kDa SUMO (small ubiquitin-related modifier) protein to a lysine residue in 

a target protein (for recent reviews of the sumoylation mechanism and its implications see (56–

61)). Cellular processes in which sumoylation is involved include cellular trafficking, channel 

and receptor regulation, regulation of transcription-factor activity, DNA repair and replication, 

chromosome dynamics, mRNA processing and metabolism, cellular replication, and cross-talk 

with ubiquitination. The mechanism of SUMO attachment resembles other ubiquitin-like 

conjugation pathways. Briefly, mature SUMO is first activated by a heterodimeric SUMO-

activating enzyme, E1, before passing to the SUMO-conjugating enzyme, E2.  Only one E2 

appears to exist in most well studied organisms including human, yeast, rat, and mouse. Unlike 

with ubiquitination, sumoylation may proceed in an E3-independent manner. This notion is 

based on the observation that binding of the E2 Ubc9 to the consensus sequence Ψ-K-X-E 

(where Ψ is a hydrophobic residue and X is an arbitrary residue) present in a target protein is 

sufficient for sumoylation (62–64).  Furthermore, grafting of this consensus sequence to a 

protein not normally sumoylated will result in its sumoylation (39, 63, 65).    

Given the apparent E3-independent nature of sumoylation, the existence of SUMO E3  

                                                
1 Adapted with permission from: O’Brien, S. P.; DeLisa, M. P. Functional Reconstitution of a 
Tunable E3-Dependent Sumoylation Pathway in Escherichia coli. PLoS ONE 2012, 7, e38671. 
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ligases was initially challenged (66), although evidence hinted at their existence (61).  The 

involvement of E3 ligases in sumoylation has now been demonstrated (67–69).  However, while 

an E3 can enhance target sumoylation (65, 67, 69, 70), its role in substrate specificity and lysine 

selection remains debated.  The crystal structure of SUMO-RanGAP1-Ubc9-Nup358 complex 

suggests the E3 merely aligns the E2-SUMO pair for optimal E2 binding and SUMO transfer 

without itself binding the target protein (26).  Interactions between the target protein and E3 

appear to augment efficiency, but sumoylation depends solely upon E2 binding (26).  

Furthermore, individual genetic knockout of the mammalian SUMO E3 ligases PIAS1 (71), 

PIASy (72), and PIASx (73) in mice does not affect global sumoylation patterns.  Similarly in 

yeast, knockout of the E3 Siz2 does not affect global sumoylation, although the knockout of the 

E3 Siz1 attenuates robustness (67).  Further studies in yeast examining sumoylation of individual 

proteins confirm this trend in overlapping E3 function (65).  Differences in local concentrations 

rather than differences in target recognition may be the mechanism whereby E3 specificity is 

manifested in vivo but is absent in vitro (65). 

Importantly, SUMO E3 ligases are not dispensable in the cellular context as the knockout 

of every E3 is lethal (65).  Furthermore, emerging evidence suggests that the E3 may play a role 

in target specificity.  Several proteins are modified at nonconsensus sequences (59) and an E3 

ligase, not an E2, may be responsible for this modification.  For example, Siz1 is required for 

sumoylation of PCNA's nonconensus K164 site (74).  Several studies have confirmed that the 

PINIT domain of the E3 is solely responsible for this K164 lysine specificity (65, 75).  Further, 

E3s tend to bias the particular SUMO isoform that is attached to the target protein (76). 

Several groups have reconstituted E3-independent sumoylation cascades in Escherichia 

coli (E. coli) (39–41).  These sumo-engineered E. coli systems have several advantages.  First, 
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endogenous levels of sumoylated protein in eukaryotic cells tend to be low (58). Thus, purifying 

quantifiable amounts from these cells is difficult, whereas obtaining ample yields for study from 

E. coli is typically straightforward.  Second, because E. coli lacks an endogenous sumoylation 

system, the pathway may be isolated up to the point of the E2 for study.  However, these systems 

are not without shortcomings. E3-independent sumoylation itself occurs at quantifiable levels 

only for protein concentrations far exceeding physiological levels.  While proteins are clearly 

sumoylated, the physiological relevance of the modified proteins is unclear.  For example, 

Mencía and de Lorenzo observed attachment of poly-SUMO-1 chains to target proteins in E. coli 

(39).  Because SUMO-1 lacks the consensus sequence present on SUMO-2 and SUMO-3 (77), it 

is not believed to homo-polymerize. However, more recent in vitro studies have shown that 

SUMO-1 is capable of forming chains through non-consensus lysine’s (78), albeit to a far lesser 

extent compared to SUMO-2 and SUMO-3 (79). The physiological relevance of such poly-

SUMO-1 chains is unclear (80), and SUMO-1 itself may be more involved in chain termination 

of SUMO-2 and SUMO-3 rather than formation in vivo (81).  Along similar lines, the 

physiological significance of some sumoylation sites observed by Okada et al. using sumo-

engineered E. coli is also unclear (41).    

Here, we engineered an E3-dependent SUMO-conjugation system in E. coli that employs 

members of the mammalian PIAS E3 ligase family and, as a result, involves no observable poly-

sumoylation of target proteins. Furthermore, because E. coli lacks organelles and an endogenous 

sumoylation pathway, our system provides an alternative in vivo context that is insulated from 

factors such as target localization, downstream interactions, and the diversity of sumoylated 

proteins that confound studies of E3s in eukaryotic cells. Finally, we show that addition of the E3 

increases the efficiency of sumoylation, yielding as much as ~5 mg/L of SUMO-modified 
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proteins.  This makes possible greater titers of specifically sumoylated target proteins for use in 

biochemical and structural characterization. 

Materials and Methods 

Plasmid construction.  All plasmids were based on the pZ vector system developed by Lutz and 

Bujard (82).  Primer insertions were used to replace the multiple cloning site (MCS) between the 

restriction sites EcoRI and XbaI in the plasmids pZE12, pZE11, pZA24, and pZS31. The 

resulting vectors - pZE12-SMCS, pZE11-SMCS, pZA24-SMCS, and pZS31-SMCS - consisted 

of three pairs of restriction sites (KpnI and SphI, MluI and EagI, and KasI and ClaI) with each 

pair flanked by a strong RBS sequence (AAAGAGGAGAAA) and a frame-shifted stop codon 

sequence (TAATTGAATAGTTAA) to prevent translational read-through. For any vector where 

these sites were not unique, we first cloned the genes into the modified pZE12 vector prior to 

moving the fragment generated by digestion with KpnI and ClaI into the appropriate final vector. 

To make pZS31-Ubc9, pZS31-Aos1.Uba2, and pZS31-Aos1.Uba2.Ubc9, the genes encoding 

human Aos1, human Uba2, and murine Ubc9 were PCR amplified from pBADE12 (39). The 

resulting PCR products were then inserted into pZS31-SMCS. For pZA31-Aos1.Uba2.Ubc9, 

pZS31-Aos1.Uba2.Ubc9 was cut at XhoI and ClaI and moved into pZA24-SMCS. The plasmid's 

selection marker was changed to chloramphenicol using the restrictions sites SpeI and XhoI.  An 

epitope tag for Western blot detection were introduced to Aos1 by adding the DNA encoding a 

FLAG epitope tag (GACTACAAGGACGATGACGACAAGGGA) to the 3’ primer during PCR 

amplification.  A 3x-FLAG epitope tag was added to Uba2 and Ubc9 using BsaI and primer 

annealing of 5’- ctcagactacaaagaccatgacggtgattataaagatcatgacatcgactacaaggatgacgatgacaagtaaat-

3’ and 5’-cgatttacttgtcatcgtcatccttgtagtcgatgtcatgatctttataatcaccgtcatggtctttgtagtc-3’.  To generate 

the plasmids pZE11-GST-PML.SUMO, pZE11-Smad4-FLAG, pZE11-SUMO and pZE11-
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Smad4-FLAG.SUMO, GST-PML and human Smad4 were PCR amplified from pGST-PML (39) 

and pOTB7-Smad4 (83), respectively, and inserted between KpnI and SphI of pZE11-SMCS. 

DNA encoding a FLAG epitope tag was added C-terminally to Smad4 during PCR amplification. 

Human SUMO-1 was PCR amplified from pKRSUMO (39) and inserted between MluI and 

EagI.  The restriction site BsaI was used to create the Smad4(K159R) mutant.  To generate 

pZE11-GFP.SUMO, pZE11-GFP-PML.SUMO, and pZE11-GFP-PML(K490R).SUMO, GFP 

was PCR amplified and inserted between KpnI and SphI of  pZE11-SUMO.  For the latter two 

cases, DNA encoding PML or PML(K490R) was added C-terminally to GFP during PCR 

amplification. To construct pZA24-PIASxβ and pZA24-PIASy, PIASxβ and PIASy were PCR 

amplified from pCMV-FLAG-hPIASxβ (84) and pCMV-FLAG-hPIASy (85), respectively, and 

inserted between KpnI and SphI of pZA24-SMCS. To facilitate Western blot analysis, a FLAG 

epitope tag was added C-terminally to all of the E3s during PCR amplification. 

To assemble the SUMO E3 ligase chimeras, fragments of PIASxβ and PIASy were PCR-

amplified and restriction sites introduced during PCR amplification. The restriction sites were 

placed in predicted unstructured regions (86) that flanked a domain of interest and made use of 

silent mutations when possible to preserve the amino acid sequence. The restriction sites NotI, 

SpeI, BamHI, and NheI were inserted after K79, L299, V436, and Q508 in PIASxβ, and after 

P77, L279, G440, and A509 in PIASy. Fragments containing these restriction sites were PCR 

amplified and then ligated together in plasmid pZE12-SMCS before being moved to pZA24-

SMCS. PIASxβ was truncated after Q508 to create the PIASxβ truncation variant. 

Cell growth and Western blot analysis.  All constructs were transformed into E. coli host strain 

DH5α-Z1 (82) using a GenePulser Xcell (BioRad). Individual colonies were grown overnight in 

LB media with appropriate antibiotics (100 µg/mL ampicillin, 40 µg/mL kanamycin, and 12.5 
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µg/mL chloramphenicol) and then subcultured to OD600 ≈ 0.05 in 5 mL of fresh LB media 

supplemented with appropriate antibiotics. Cultures were induced at OD600 ≈ 0.75 with 0.5% 

L(+)-arabinose, 1 mM IPTG, and 50 ng/mL anhydrotetracycline when appropriate and 

subsequently shaken for 24 h at 16°C or 25°C depending on determined optimal conditions for 

sumoylation. Approximately 1.5 mL of each culture was harvested and lysed using 200 µL of 

Bugbuster Master Mix (Novagen) according to the manufacturer's directions. Lysates were 

normalized to 10 µg of total protein as determined by a total protein assay (Bio-Rad) and loaded 

on a 4-20% Precise Protein Gel (Thermo Scientific).  Transfers to Immobilon P Transer 

Membranes (Millipore) were performed for 2 h at the maximum amperage recommended for a 

Biosciences TE77 semi-dry transfer unit (Amersham). Blots were then imaged on film using 

standard protocols. The primary antibodies used were anti-GST (Abcam), anti-FLAG (Abcam), 

anti-GFP (Roche), anti-SUMO-1 (Abcam), and anti-DnaK (Stressgen). A standard curve was 

generated with purified GFP (AbCam) and used to quantify the yield of sumoylated GFP-PML. 

Densitometry analysis was performed on a Macintosh computer using the public domain NIH 

Image program (developed at the U.S. National Institutes of Health and available on the Internet 

at http://rsb.info.nih.gov/nih-image/). 

Protein purification.  Overnight cultures were subcultured into 250 mL of fresh LB media with 

appropriate antibiotics. At OD600 ≈ 0.5, cultures were induced as described above and shaken for 

3 h at 37°C. Cells were then pelleted using a J2-21 floor centrifuge (Beckman) and lysed using 

Bugbuster Master Mix (Novagen). Samples were purified using Ni-NTA spin columns (Qiagen) 

according to the manufacturer's instructions.  Purification was not optimized. 

In-gel digestion for excised gel bands.  Following visualization of the SDS-PAGE gel, two 

visible protein bands of interest were excised, diced, and placed into microtubes for the 
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subsequent in-gel digestion and extraction. The in-gel digestion by chymotrypsin (from Sigma, 

St. Louis, MO) and the subsequent peptide extraction were performed following a protocol from 

Yang, et al. (87) with slight modification. The gel pieces were washed and destained with a 

series of solutions: 50 µL of water, 50 µL of 50% ACN/50% 50 mM ammonium bicarbonate 

pH 7.8, and 50 µL of 100% ACN. The samples were reduced with DTT and alkylated by 

treatment with iodoacetamide.  Once the samples were dried down completely after washing, 

~0.2 µg LysC or chymotrypsin in 20 µL of 50 mM ammonium bicarbonate (pH = 7.8) and 10% 

ACN was added to each tube. The samples were left on ice for 15 min and incubated overnight at 

37°C.  The supernatant containing digested peptides was removed after centrifuging for 2 min at 

4000 × g, and the remaining peptides were then extracted from the gel in a series of extraction 

steps.  The first was with 30 µL of 25 mM ammonium bicarbonate pH 7.8 (30 minutes).  Two 

sequential steps each with 50 µL of 5% formic acid in 50% acetonitrile (10 min) followed.  For 

each extraction, the sample was sonicated for 5 min before the supernatant was removed.  All 

gel-extracted supernatants were combined and evaporated to dryness in a Speedvac SC110 

(Thermo Savant, Milford, MA).  

Protein identification by nanoLC/MS/MS analyses.  The tryptic digest was reconstituted in 15 

µL of 2% ACN with 0.5% FA for nanoLC-ESI-MS/MS analysis, which was carried out using a 

LTQ-Orbitrap Velos (Thermo-Fisher Scientific, San Jose, CA) mass spectrometer equipped with 

a nano ion source device (CorSolutions LLC, Ithaca, NY). The Orbitrap is interfaced with an 

UltiMate3000 MDLC system (Dionex, Sunnyvale, CA). The nanoLC was carried out by Dionex 

UltiMate3000 MDLC system (Dionex, Sunnyvale, CA). An aliquot of tryptic peptide (3.0 µL) 

was injected onto a PepMap C18 trap column (5 µm, 300 µm × 5 mm, Dionex) at a 20 µL/min 

flow rate for on-line desalting.  It was then separated on a PepMap C-18 RP nanocolumn (3 µm, 
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75µm x 15cm) and eluted in a 60 min gradient of 5% to 38% acetonitrile (ACN) in 0.1% formic 

acid at 300 nL/min followed by a 3-min ramping to 95% ACN-0.1%FA and a 5-min holding at 

95% ACN-0.1%FA. The column was re-equilibrated with 2% ACN-0.1%FA for 20 min prior to 

the next run. The eluted peptides were detected by Orbitrap through the nano ion source 

containing a 10-µm analyte emitter (NewObjective, Woburn, MA).  The Orbitrap Velos was 

operated in positive ion mode with nano spray voltage set at 1.6 kV and source temperature at 

225 °C. Either internal calibration using the background ion signal at m/z 445.120025 as a lock 

mass or external calibration for FT mass analyzer was performed. The instrument was run at 

data-dependent acquisition (DDA) mode using FT mass analyzer for one survey MS scan 

followed by MS/MS scans on the five most intense peaks with multiple charged ions above a 

threshold ion count of 5000.  MS survey scans were acquired at a resolution of 60,000 (fwhm at 

m/z 400) for the mass range of m/z 400-1400, and MS/MS scans were acquired at 7,500 

resolution for the mass range of m/z 100 to 2000.  Dynamic exclusion parameters were set at 

repeat count 1 with a 20 s repeat duration, exclusion list size of 500, 30 s exclusion duration, and 

±10 ppm exclusion mass width. High energy dissociation (HCD) parameters were set at the 

following values: isolation width 2.0 m/z, normalized collision energy 45 %, and activation time 

0.1 ms. All data were acquired with Xcalibur 2.1 operation software (Thermo-Fisher Scientific).  

Data analysis.  All MS and MS/MS raw spectra were processed using Proteome Discoverer 1.1 

(PD1.1, Thermo).  The spectra from each DDA file were manually inspected for both expected 

precursor ions of interest and their MS/MS spectra. The mass accuracy for all identified peptides 

is within 2 ppm.   

Results 

A tunable E3-dependent sumoylation system.  To establish a SUMO-conjugation cascade in E. 



 

19 

coli, the bacterial pZ vector system developed by Lutz and Bujard (82) was used.  We chose the 

pZ vector system because of its modular nature, unique promoters, and medium to low copy  

number.  Previous studies showed that strong expression of the E1 (human Aos1 and Uba2) and 

E2 (murine Ubc9) enzymes in E. coli results in sumoylation that is independent of the SUMO E3 

ligase (39).  However, poly-sumoylated target evolves alongside mono-sumoylated product.  To 

generate only mono-sumoylated target proteins, we attempted to reduce the expression of the E1 

and E2 enzymes by placing the genes encoding human E1 and murine E2 into the medium copy 

vector pZA31-SMCS or the low copy vector pZS31-SMCS (Fig. 2.1a).  To maximize 

sumoylated product, human SUMO-1 and the target protein were placed in the high copy vector 

pZE11-SMCS (Fig. 2.1a).  A FLAG epitope tag was introduced to the C-terminus of the target 

protein to facilitate Western blot analysis.  SUMO E3 ligases were placed on a separate plasmid, 

pZA24-SMCS, with a compatible replication of origin, p15A (Fig. 2.1a). The separate plasmid 

enables introduction of modifications to the E3 protein without altering the rest of the cascade 

components. Additionally, the Plac/ara promoter allows modulation of the E3 expression level 

without impact upon the remaining components. 

We first investigated the bacterial expression of several mammalian SUMO E3 ligases.  

Specifically, four enzymes from the PIAS family were tested (PIAS1, PIASxβ, PIAS3, and 

PIASy). Of these, PIASxβ was expressed most efficiently (Fig. 1b; data for PIASxβ and PIASy 

only); hence, we chose this E3 for further study. The synthetic GST-PML target of Mencía and 

de Lorenzo was chosen as a model target substrate for our E3-dependent SUMO-conjugation 

system (39). This substrate is comprised of E. coli glutathione S-transferase (GST) that has been 

C-terminally modified with the 10-residue consensus sumoylation site from the promyelocytic 

leukemia (PML) protein. Previous studies using E. coli showed that this target can be sumoylated  
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Figure 2.1.  An E3-dependent sumoylation system.  (a) Plasmid diagrams for the E3-
dependent sumoylation system based on the pZ vector collection. The E1 (Aos1 and Uba2) and 
E2 (Ubc9) were cloned into the low copy plasmid pZS31-SMCS or the medium copy pZA31-
SMCS (not shown); the E3 (e.g., PIASxβ) was cloned into the medium copy plasmid pZA24-
SMCS; the target protein (e.g., Smad4-FLAG) and SUMO-1 were cloned into the high copy 
plasmid pZE11-SMCS. (b) Western blot analysis of cell lysate prepared from DH5α-Z1 cells 
expressing native and engineered SUMO E3 ligases as indicated. A much longer exposure time 
was required to visualize PIASy (lane 8). Control cells carried the empty pZE12-SMCS vector 
(lane 1). Blots were probed with anti-FLAG antibodies or anti-DnaK antibodies, with the latter 
serving as a loading control. (c) Schematic of the E3 chimeras and truncation mutant tested in 
this study. Chimeras were created by swapping different domains between human PIASxβ and 
PIASy using the inserted restriction sites.   
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in an E3-independent manner (39). In a similar fashion, we observed that when the E1 and E2 

enzymes were expressed from the medium copy pZA31-SMCS vector in the absence of the E3, a 

slower migrating GST-PML band was detected (Fig. 2.2a, lane 3) but disappeared when the E1 

and E2 were also absent (Fig. 2.2a, lane 2).  Several lines of evidence indicate that this higher 

band is GST-PML that has become sumoylated in an E3-independent manner.  First, this band 

migrated with an ~20-kDa upshift compared to the unmodified GST-PML protein, which is 

consistent with the roughly ~20-kDa shift previously reported for SUMO-1 (88). Second, it 

reacted with anti-SUMO-1 antibodies (Fig. 2.2b, lane 3). 

 

Figure 2.2.  E3-dependent sumoylation of synthetic GST-PML.  Western blot analysis of cell 
lysate prepared from DH5α-Z1 cells expressing the synthetic target GST-PML in the presence 
(+) or absence (-) of different SUMO-conjugation cascade components. The E1 and E2 enzymes 
were expressed from either the medium copy plasmid pZA31-SMCS (++) or the low-copy 
plasmid pZS31-SMCS (+). GST-PML was detected using anti-GST antibodies (a) while SUMO-
1 was detected using anti-SUMO-1 antibodies (b). Detection of endogenous DnaK with anti-
DnaK antibodies served as a loading control. 
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 Next, we lowered the expression level of the E1 and E2 enzymes by inducing each from 

the low-copy pZS31-SMCS plasmid.  Under these conditions, the slower migrating band 

disappeared (Fig. 2.2a, lane 4).  Given that a faint band was detectable upon probing with anti-

SUMO-1 antibodies (Fig. 2.2b, lane 4), we conclude that sumoylation efficiency was drastically 

reduced under these conditions.  Upon introduction of the SUMO E3 ligase PIASxβ, sumoylated 

GST-PML reappeared under conditions where the E1 and E2 were expressed from the low copy 

vector (Fig. 2.2a and b, lane 5 in each).  Thus, by lowering the expression levels of the E1 and 

E2 enzymes and by adding a functional E3 enzyme, we successfully created an E3-dependent 

sumoylation cascade in E. coli.  It is particularly noteworthy that the efficiency of sumoylation 

appeared to increase with the addition of PIASxβ (Fig. 2.2a or b, compare lanes 4 and 5).  

Although undetectable with anti-GST antibodies, a faint band above the mono-sumoylated GST-

PML was observed using anti-SUMO-1 antibodies (Fig. 2.2b, lane 5).  This band likely arises 

from GST itself becoming weakly sumoylated as has been previously reported (41). The anti-

SUMO-1 antibodies also revealed a ~30-kDa band (Fig. 2.2b, lanes 3 and 5) that likely 

corresponds to a degradation product of the sumoylated target, a native E. coli protein that has 

become sumoylated, or a free di-SUMO-1 chain.  

Mono-sumoylation of target proteins by E3-dependent SUMO modification system.  In the 

earlier study of Mencía and de Lorenzo, E3-independent sumoylation in engineered E. coli 

resulted in modification of target proteins with SUMO-1 chains (39). To more carefully 

investigate whether target proteins in our sumoylation system were poly-sumoylated, we 

converted the green fluorescent protein (GFP) to a sumoylation substrate by fusion to the PML 

tag. Since GFP does not contain any predicted sumoylation sites, mono- versus poly-sumoylation 

of the GFP-PML chimera can be used to assess SUMO-1 chain formation on target proteins.  
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Figure 2.3.  E3-dependent sumoylation of synthetic GFP-PML.  Western blot analysis of cell 
lysate prepared from DH5α-Z1 cells expressing the synthetic target GFP-PML in the presence 
(+) or absence (-) of different SUMO-conjugation cascade components. The E1 and E2 enzymes 
were expressed from either the medium copy plasmid pZA31-SMCS (++) or the low-copy 
plasmid pZS31-SMCS (+).  GFP was detected using anti-GFP antibodies (a), while SUMO-1 
was detected using anti-SUMO-1 antibodies (b).  K490 refers to the lysine’s native location 
within PML rather than its location within GFP-PML.  Detection of endogenous DnaK with anti-
DnaK antibodies served as a loading control. 
 
Indeed, expression of GFP without the PML tag in the E3-dependent (Fig. 2.3a and b, lane 3 in 

each) and E3-independent (Fig. 2.3a and b, lane 6 in each) systems resulted in no detectable 

target sumoylation. Likewise, no sumoylation was detected for the GFP-PML chimera when the 

lysine in the PML tag was mutated to arginine (Fig. 2.3a and b, lane 5 in each). On the other  

hand, expression of GFP-PML in the presence of the E3-dependent and E3-independent 

sumoylation cascades resulted in a clear band corresponding to mono-sumoylated GFP-PML. 

For the E3-dependent system, the yield of mono-sumoylated GFP-PML was ~5 mg/L of culture. 
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Interestingly, a band corresponding in mass to di-SUMO-1 conjugated to GFP-PML was 

observed for the E3-independent but not the E3-dependent system (Fig. 2.3a and b, compare 

lanes 4 and 7 in each), suggesting that the addition of the E3 and/or the reduced expression of the 

E1 and E2 prevented poly-sumoylation. It is noteworthy that a rather faint ~30 kDa band was 

detected with anti-SUMO-1 antibodies, similar to that seen above in the GST-PML experiments. 

Since this band did not depend on the presence of the target substrate (Fig. 2.3b, lanes 2, 3 and 

6), we conclude that this band is not a degradation product of the sumoylated target. It is also 

noteworthy that the intensity of this band increased when the E1 and E2 were expressed from the 

medium copy plasmid and the E3 was absent (Fig. 2.3b, lanes 6 and 7).  

Conjugation of SUMO-1 to a natural sumoylation target protein.  Next, we investigated 

whether our sumo-engineered E. coli could conjugate SUMO-1 to a naturally occurring target of 

the human sumoylation machinery.  We chose the human tumor suppressor protein Smad4, a 

central intracellular signal transducer for transforming growth factor-β (TGF-β) signaling, whose 

transcriptional potential is regulated by sumoylation (88, 89).  Similar to our results above, 

expression of the E1 and E2 from a medium copy vector resulted in E3-independent sumoylation 

of Smad4 (Fig. 2.4a and b, lane 10 in each) whereas expression of the E1 and E2 from a low-

copy plasmid resulted in virtually no detectable Smad4 sumoylation (Fig. 2.4a and b, lane 9 in 

each). However, co-expression of the E1 and E2 from a low copy vector along with the E3  

resulted in strong sumoylation of Smad4 (Fig. 2.4a and b, lane 7 compared to 1-6).  As with the 

synthetic GST-PML, sumoylation of Smad4 appeared to be more efficient in the presence of the 

E3 (Fig. 4a and b, compare lanes 7 and 9). The major sumoylation site in Smad4 is the consensus 

lysine at position 159 (88, 90).  Mutation of this lysine residue to arginine (K159R) abolished  
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Figure 2.4.  E3-dependent sumoylation of human Smad4.  Western blot analysis of cell lysate 
prepared from DH5α-Z1 cells expressing human Smad4 or Smad4(K159R) (mut) in the presence 
(+) or absence (-) of different SUMO-conjugation cascade components. The E1 and E2 enzymes 
were expressed from either the medium copy plasmid pZA31-SMCS (++) or the low-copy 
plasmid pZS31-SMCS (+). Smad4 was detected using anti-FLAG antibodies (a), while SUMO-1 
was detected using anti-SUMO-1 antibodies (b). Detection of endogenous DnaK with anti-DnaK 
antibodies served as a loading control. 
 
Smad4 sumoylation (Fig. 2.4a, lane 8). To verify that K159 is the major site of SUMO 

attachment in our system, we performed MALDI-TOF mass spectrometry (MS) analysis on the  

SUMO-Smad4 band, which was purified on a Ni-NTA column and separated from unmodified 

Smad4 by SDS-PAGE. As expected, nearly all of the Smad4 was sumoylated at the consensus 

K159 (Fig. 2.5). 
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Figure 2.5.  MS of SUMO-Smad4.  (First panel) MS spectrum of Smad4 chymotryptic digests 
acquired in the FT analyzer of the Orbitrap Velos during the nanoLC-MS/MS analysis at elution 
time =23.71 min. A base-peak doubly-charged precursor ion at m/z 1109.9631 with its triply-
charged ion at m/z 740.3111 shown in expanded view of insets is identified as sumoylated 
peptide. Sequence for the Smad4 peptide (red) with the conjugated SUMO-1 peptide (blue) after 
chymotrypsin digestion is shown. Lower case m indicates the oxidized methionine. The survey 
MS scan shows that the mass of the detected sumoylated peptide at K159 is under 1.8 ppm of its 
calculated mass. (Second panel) MS/MS spectrum of a triply-charged ion 
at m/z 740.313+ acquired in HCD-DDA analysis by the FT analyzer at 23.90 min derived from 
Smad4 residues 149 to 162 with K159 identified as the sumoylated site. The y- and b-type ions 
are labeled in the spectrum as blue and red color for the SUMO-1 and the Smad4 target peptides, 
respectively. (Third panel) MS/MS spectrum of 1109.962+ ion eluted at 23.84 min for 
identification of K159 sumoylation. 

 An even higher molecular weight band relative to SUMO-Smad4 was also produced in 

our sumo-engineered E. coli (Fig. 2.4a and b, lane 7 in each). This band might correspond to the 

attachment of SUMO-1 to a minor site on Smad4 or to the formation of SUMO-1 chains on 

Smad4. We favored the former possibility for two reasons.  First, low-level expression of the E1 

and E2 along with the E3 promoted mono-sumoylation in the case of GFP-PML. Consistent with  

          















































  

  


  

       



































































  

      


































































  


















   
   
    

   
   
    
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this result, MS analysis of SUMO-Smad4 failed to reveal evidence for the formation of SUMO-1 

chains at either K16 or K17 of the already conjugated SUMO-1 (data not shown). Second, a faint 

sumoylation band was observed for Smad4(K159R) (Fig. 2.4b, lane 8). Indeed, a known minor 

site of sumoylation on Smad4 is the non-consensus K113 residue (88, 90). However, MS 

analysis did not provide any evidence for SUMO-1 conjugation at this position (data not shown).  

Thus, taken together, we suspect that another lysine is sumoylated on this higher molecular 

weight Smad4 species; however, at present the identity of this lysine remains undetermined.     

Functional characterization of SUMO E3 ligase chimeras.  The generation of chimeras, 

truncations, and mutants of the Siz/PIAS protein family has provided great insight into the 

function of each protein (65, 91).  These alterations may impact localization, interaction with 

local cellular factors, and recognition of the target protein.  However, decoupling these 

differences to deduce function can be difficult in the eukaryotic cellular environment.  We 

hypothesized that our sumo-engineered E. coli could be useful for understanding the SUMO-

conjugation activity of different E3 chimeras because it is devoid of the aforementioned 

complications. To test this notion, we constructed several SUMO E3 ligase variants.  These 

included chimeras that were generated by swapping the SAP (scaffold attachment factor-A/B, 

acinus and PIAS), PINIT, or SP-RING (Siz/PIAS really interesting new gene) domains between 

PIASxβ and PIASy, and a truncation mutant that was made by eliminating the C-terminal tail of 

PIASxβ (Fig. 2.1c). Although PIASy expression could only be seen after a much longer 

exposure time compared to PIASxβ (Fig. 2.1b), its expression was second most efficient among  

all PIAS family members that were tested. Hence, we chose to use PIASy in our chimeric 

constructs. A panel of E3 variants which all contain the N-terminal SAP domain from PIASxβ 

were observed to express on par with PIASxβ (Fig. 2.1b). Since PIASy also sumoylates  
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Figure 2.6.  Chimeric E3-dependent sumoylation of human Smad4.  Western blot analysis of 
cell lysate prepared from DH5α-Z1 cells expressing human Smad4 in the presence (+) or 
absence (-) of different SUMO-conjugation cascade components. The E1 and E2 enzymes were 
expressed from either the medium copy plasmid pZA31-SMCS (++) or the low-copy plasmid 
pZS31-SMCS (+). PIASxβ (lane 4) as well as a panel of E3 variants (lanes 5-8; see Fig. 1c 
caption for details) were tested for functionality. Smad4 was detected using anti-FLAG 
antibodies (a), while SUMO-1 was detected using anti-SUMO-1 antibodies (b). Detection of 
endogenous DnaK with anti-DnaK antibodies served as a loading control. 
 
Smad4 (92), we predicted that each of these variants would sumoylate Smad4. In line with our 

hypothesis, all of the E3 variants conjugated SUMO to Smad4, albeit to varying extents (Fig. 

2.6a and b, lanes 5-8 in each). None were as efficient as PIASxβ; the Pxβ-Py(RING)-

Pxβ chimera appeared to be the least efficient (Fig. 2.6a and b, lanes 7 in each). Taken together,  
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these data reveal the potential of our bacterial SUMO-conjugation system for functional 

evaluation of native as well as engineered SUMO E3 ligases. 

Discussion 

In this study, we have created the first E3-dependent sumoylation system in E. coli.  We 

anticipate that sumo-engineered E. coli will be useful in further studies of the sumoylation 

mechanism for several reasons.  First, greater yields of sumoylated proteins for biochemical and 

structural analysis should be attainable through the addition of an E3 (67, 90). Indeed, for both 

GST-PML and Smad4 substrates, we observed an increase in sumoylation efficiency following 

the addition of a functional E3 to the system. Furthermore, by lowering the expression of the E1 

and E2, additional cellular resources can be diverted towards production of the target protein. 

Even without any process optimization, our E3-dependent SUMO conjugation system yielded ~5 

mg/L of mono-sumoylated protein.  Second, the system enables functional characterization of 

any of the sumoylation cascade enzymes while eliminating the concern for localization, 

downstream interactions, and the diversity of sumoylated proteins that can obscure similar 

analysis in eukaryotic hosts. Our system also produces physiologically relevant results. For 

instance, we observed that Smad4 was sumoylated primarily at K159, which is reported to be the 

major sumoylation site (88, 90). We did not detect sumoylation at position K113, which was 

reported as a minor site of sumoylation in one report (88) but was not sumoylated in another 

(93). We also did not detect SUMO-1 chains on target proteins in our E3-dependent system, 

which is in stark contrast to an earlier bacterial E3-independent sumoylation system (39). It 

should be noted, however, that the inability of MS analysis to reveal poly-sumoylation via K16 

and K17 linkages on SUMO-1 could arise from low abundance and/or poor ionization efficiency 

of these species. Nonetheless, based on the high-intensity MS signal detected for the K159 
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SUMO-1 peptide, we conclude that no appreciable quantities of SUMO-1 chains are present. 

Overall, our system yields results that are entirely consistent with the known molecular biology 

of sumoylation.  As a corollary, we show that engineered E3 variants can be expressed and 

functionally characterized in our system. This is significant because our bacterial SUMO-

conjugation system provides a potentially less convoluted background for studying sumoylation. 

While in vitro reconstitution studies could also be used to eliminate these factors, our system 

obviates the need for purification of each cascade component and the corresponding need to 

modify each cascade component with a purification tag, which can affect enzyme function.  

Thus, we anticipate that our sumo-engineered E. coli system will be a useful new tool for 

illuminating the molecular details of the SUMO-conjugation process. 
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CHAPTER 3 

 

FUNCTIONAL RECONSTITUTION OF THE FEN-UBIQUITIN PATHWAY IN 

ESCHERICHIA COLI 

 
Introduction 

Ubiquitination is a eukaryotic post-translational modification that involves the covalent 

conjugation of the 8.5 kDa ubiquitin protein to a lysine residue in a target substrate (for recent 

reviews of the ubiquitination mechanism and its implications see (12, 22, 24, 94, 95)).  Three 

steps comprise the pathway: activation, conjugation, and ligation.  The E1 activates ubiquitin 

through formation of a thioester bond.  The E2 binds the E1 and acquires ubiquitin through a 

transthioesterification reaction.  The charged E2 then binds an E3 capable of also binding the 

target protein.  The ubiquitin is transferred to the ε-amino group on one of the substrate's lysine 

residues.  Subsequent rounds can form chains of ubiquitin on the target protein.  A wide breadth 

of cellular processes involve ubiquitination including intracellular trafficking, signal transduction 

pathways, protein activation and deactivation, endocytosis, lysosomal targeting, transcriptional 

regulation, cellular replication, chromatin remodeling, DNA repair, and protein degradation.   

In order to study aspects of this system, several groups have reconstituted the pathway in 

Escherichia coli (E. coli.)  Su et al did so to successfully screen a murine cDNA library for 

substrates of the E3 GRAIL (43) after their attempts using mass spectrometric analysis and 

screening strategies in mammalian cells failed.  Several years later Rosenbaum et al reconstituted 

another pathway to characterize the role yeast ubiquitin ligase San1 played in protein quality 

control (PQC) degradation (44).  Their “in coli” method validated ubiquitination of putative 
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substrates identified using the yeast two-hybrid screen that they could not purify due to 

aggregation.  Most recently, Keren-Kaplan et al meticulously characterized ubiquitination 

reconstituted in E. coli using several different pathways (45).  They provided evidence that their 

system recapitulated physiological results that in vitro reactions could not and produced enough 

ubiquitinated substrate for various analyses such as crystallization and biophysical and 

biochemical assays. 

Reconstituting ubiquitination in E. coli may further as a platform for engineering the 

pathway. E. coli lack many of the elements which make evolution in the native host difficult 

such as deubiquitinases (DUBs), a 26S proteasome, competing pathways, and low cellular 

abundances.  It also benefits from many molecular tools developed over the years.  Guntas et al 

evolved the ubiqutin E3 ligase E6AP to dock NEDD8-conjugating enzyme Ubc12 using a 

bacterial screen with library informed by computer models (47).  They also recapitulated a 

partial Nedd8 pathway in E. coli and developed a novel screen based on Nedd8-E2 interactions 

(48).  In this latter investigation, they evolved more soluble Nedd8 and orthogonal mutant 

NAE1-Nedd8 pairs (48).   

We developed our own ubquitination pathway in E. coli important in plant defense 

against bacterial colonization. The Pseudomonas syringae type III effector AvrPtoB is a RING 

E3 ligase (96) that polyubiquitinates the tomato kinase Fen for degradation (46).  In doing so, 

AvrPtoB suppresses a susceptible host's programmed cell death response, thereby allowing the 

bacteria to flourish within that host.  We are the first to report that ubiquitination of Fen may 

proceed in an E3-independent manner likely through auto-monoubiquitination involving a 

ubiquitin binding domain (UBD).  Sufficient accumulation of modified substrate provides a 
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strong signal for developing a reporter for ubl-target protein conjugation.  To date no such 

reporter exists. 

Material and Methods  

Plasmid construction.  Construction of plasmids pZE12, pZE11, pZA24, and pZS31was 

previously described (42).  To make pZS31-UbcH5b, pZS31-Ube1, and pZS31-Ube1.UbcH5b, 

the genes encoding human Ube1 and human UbcH5b were PCR amplified from pCDF-Duet1-

Ube1/UbcH5A (43) and pET15b-UbcH5b (97) respectively. The resulting PCR products were 

then inserted into pZS31-SMCS using Kpn1 and Sph1 for Ube1 and Mlu1 and Eag1 for UbcH5b.  

To generate the plasmids pZE11-Fen, pZE11-Ubiquitin and pZE11-Fen.Ubiquitin, Fen and 

ubiquitin were PCR amplified from pMAL-C2X-Fen (46) and pET15-Ubiquitin WT (98) 

respectively.  Fen was inserted between KpnI and SphI of pZE11-SMCS and ubiquitin Mlu1 and 

Eag1.  DNA encoding a FLAG or HA epitope tag was added to the C-terminus of Fen or the N-

terminus of ubiquitin during PCR amplification where noted.  For pZE11-ssTorA-Fen-

HA.FLAG-Ubiquitin and pZE11- Fen-HA.ssTorA-FLAG-Ubiquitin, an ssTorA signal sequence 

(Waraho09) was added to the N-terminus using overlap-extension.  To construct pZA24-

AvrPtoB, AvrPtoB (226-328) was PCR amplified from pDEST15-AvrPtoB (96) and inserted 

between KpnI and SphI of pZA24-SMCS.  This truncated form of AvrPtoB had better expression 

than its full-length form without loss of activity (data not shown). 

Cell growth and Western blot analysis.  All constructs were transformed into E. coli host strain 

DH5α-Z1 (82) using a GenePulser Xcell (BioRad).  Individual colonies were grown overnight in 

LB media with appropriate antibiotics (100 µg/mL ampicillin, 40 µg/mL kanamycin, and 12.5 

µg/mL chloramphenicol) and then subcultured to OD600 ≈ 0.05 in 5 mL of fresh LB media 

supplemented with appropriate antibiotics.  Cultures were induced at OD600 ≈ 0.75 with 0.5% 
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L(+)-arabinose, 1 mM IPTG, and 50 ng/mL anhydrotetracycline when appropriate and 

subsequently shaken for 24 h at 25°C unless otherwise noted.  Approximately 1.5 mL of each 

culture was harvested and lysed using 200 µL of Bugbuster Master Mix (Novagen) according to 

the manufacturer's directions.  Lysates were normalized to 10 µg of total protein as determined 

by a total protein assay (Bio-Rad) and loaded on a 4-20% Precise Protein Gel (Thermo 

Scientific).  Transfers to Immobilon P Transer Membranes (Millipore) were performed for 2 h at 

the maximum amperage recommended for a Biosciences TE77 semi-dry transfer unit 

(Amersham).  Blots were then imaged on film using standard protocols.  The primary antibodies 

used were anti-HA (Sigma), anti-FLAG (Abcam), anti-ubiquitin (Millipore 05-944), anti-K48-

linked-poly-ubiquitin (Millipore), and anti-GroEL (Sigma). 

Periplasmic fractionation.  Cultures were treated as described above.  Subcellular fractionation 

was accomplished using the osmotic shock procedure (99).  Cells were pelleted by centrifugation 

at 1400 g for 10 min and resuspended in 1 mL Fractionation Buffer (30 mL 1M Tris-HCl (pH 

8.0), 200 g Sucrose, and 2 mL 0.5 Na2EDTA for 1 L of buffer) to OD600 75.  The suspension was 

transferred to a 1.7 mL Eppindorf tube and incubated at 25ºC for 10 min.  Cells were centrifuged 

9000 g for 10 min and supernatant discarded.  Samples were resuspended in 266 mL of ice-cold 

5 mM MgSO4 stock solution and placed on ice for 10 min.  Cells were pelleted by centrifugation 

at 15500 g for 10 min and supernatant retained as the periplasmic fraction.  The pellet was 

washed with 500 µL PBS and spheroplasts lysed using 266 mL Bugbuster Master Mix 

(Novagen) according to the manufacturer’s instructions.  Samples for Western blotting were 

normalized by total protein based on the cytoplasmic fraction and equal volumes used for the 

periplasmic fraction. 
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Results 

Reconstitution of the Fen-ubiquitination pathway.  To establish a ubiquitin-conjugation 

pathway in E. coli, the bacterial pZ vector system developed by Lutz and Bujard (82) was 

employed.  We chose the pZ vector system because of its modular nature, unique promoters, and  

compatible origins of replication.  The genes encoding the E1 (Ube1) and E2 (UbcH5b) were 

placed in the low copy vector pZS31-SMCS (Fig. 3.1).  To maximize ubiquitinated product, 

genes for ubiquitin and the target protein Fen were placed in the high copy vector pZE11-SMCS 

(Fig. 3.1).  A FLAG epitope tag was introduced to the N-terminus of ubiquitin while a HA 

epitope tag was introduced to the C-terminus of Fen to facilitate Western blot analysis.  The gene 

for the E3 ligase AvrPtoB was placed on a separate, medium copy plasmid, pZA24-SMCS, with 

a compatible origin of replication, p15A (Fig. 3.1). 

 

Figure 3.1.  Plasmid diagrams for the Fen-ubiquitin pathway in E. coli.  The target protein 
(Fen) and ubiquitin were cloned into the high copy plasmid pZE11-SMCS.  The E3 (AvrPtoB) 
was placed in the medium copy plasmid pZA24-SMCS.  The E1 (Ube1) and E2 (UbcH5b) were 
placed in the low copy plasmid pZS31-SMCS. 
 

When all components of the pathway were present, an additional band migrated ~10 kDa 

above Fen (Fig. 3.2a, lane 7).  This shift corresponded to the mass of ubiquitin with the FLAG 

epitope tag.  This same band also reacted with anti-FLAG and anti-ubiquitin antibodies (Fig. 

3.2b and c, lane 7).  These lines of evidence suggested Fen to be ubiquitinated.  By the same 

rationale, the weaker band appearing above the aforementioned corresponded to di-

ubiquitination of Fen (Fig. 3.2a, b, and c, lane 7). 

Curiously, ubqiuitination appeared to proceed in an E3-independent manner (Fig. 3.2a, b, 

and c, lane 4).  Auto-monoubiquitination has been documented for proteins with a UBD (21).   

 







 


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Figure 3.2.  Ubiquitination of Fen.  Western blot analysis of cell lysate prepared from DH5α-
Z1 cells expressing cascade components.  Fen was detected using anti-HA antibodies (a), while 
ubiquitin was detected using anti-ubiquitin (b) and anti-FLAG antibodies (c). 
 
Consistent with this modification, only one ubiquitin appeared attached to Fen, and ubiquitin 

chain formation – free or attached – was absent (Fig. 3.2b and c, lane 4).  Whether Fen possesses 

a UBD is unknown, though other kinases do posses them (94, 100).  Auto-ubiquitination of Fen 

does not appear to occur in in vitro experiments (46, 101).  However, the process is E2 specific 

(21) and a different E2 was used here.  Alternatively, an endogenous E3 ligase might have 

subsumed the role of AvrPtoB.  While E3 ligases serving as effector proteins are increasingly 

found in bacteria including enterohaemorrhagic E. coli (37, 38), none have been characterized in 

non-pathogenic E. coli.  Additionally, the lack of chain formation was inconsistent with an E3’s 

presence. 

Lower molecular weight bands appeared in lanes 5 and 7 of the anti-ubiquitin and anti-

FLAG blots at ~10 kDa increments above ubiquitin (Fig. 3.2b and c).  Formation of unanchored 

poly-ubiquitin chains was observed in vitro (37) and in vivo in E. coli (45) when specific 

substrate was absent.  The apparent masses of the bands are consistent with di-ubiquitin and tri-
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ubiquitin.  When Fen was present, intensity of the bands was greatly reduced (Fig. 3.2b and c, 

compare lanes 5 and 7). 

Stability and kinetics of ubiquitinated Fen.  In order to effectively develop a screen for ubl-

target conjugation, we optimized growth conditions for the production of ubiquitinated Fen and 

followed the evolution of that accumulation.  Samples were induced at 37ºC and 25ºC for 3, 6, 

12, and 24 h and compared to a previously established baseline of 16ºC for 24 h.  Accumulation 

for ubiquitinated Fen peaked at 25ºC and 24 h (Fig. 3.3b, lane 9).  At 25ºC and 3h modification 

was barely discernible despite accumulation of substrate by that time (Fig. 3.3b, lane 6).  

Curiously, expression of the target was absent in the presence of the entire cascade at 37ºC (Fig. 

3.3b, lanes 2-5). When expressed alone at this temperature, accumulation of Fen was visible 

though it peaked at 6 h and disappeared by 24 h (Fig. 3.3a, lanes 2-5).  Because accumulation 

was stable and optimal at 25ºC and 24 h provided a sufficient period for ubiquitinated product 

persistence, these conditions were used for future screen development. 

 

Figure 3.3.  Stability and evolution of ubiquitinated Fen.  Western blot analysis of cell lysate 
prepared from DH5α-Z1 cells expressing Fen and ubiquitin alone (a) or with the remainder of 
the cascade (b).  Samples were induced at 37ºC and 25ºC for 3, 6, 12, and 24 h and 16ºC for 24 
h.  Fen was detected using anti-FLAG antibodies. 
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Figure 3.4.  Cellular localization of ubiquitinated Fen.  Western blot analysis of cell lysate 
prepared from DH5α-Z1 cells expressing Fen and ubiquitin alone (a) or with the remainder of 
the cascade (b).  Cytoplasmic (c) and periplasmic (p) fractions were analyzed for accumulation 
of proteins in those compartments.  Fen was detected using anti-HA antibodies, while ubiquitin 
was detected using anti-FLAG antibodies.  Detection of endogenous GroEL with anti-GroEL 
antibodies served as a fractionation control. 
 
Ubiquitinated product is not transported to the periplasm.  In our current system, 

ubiquitination occurred in the cytoplasm.  However, many useful screens, particularly those 

developed in our own lab (102, 103), would rely on export of ubiquitinated target to the 

periplasm.  To determine if this was feasible, we first tested whether Fen or ubiquitin alone was a 

competent TAT substrate.  An ssTorA signal sequence was attached to the N-terminus of either 

Fen-HA or FLAG-ubiquitin.  When both lacked an ssTorA signal sequence, Fen and ubiquitin  

appeared in the cytoplasm but not in the periplasm (Fig. 3.4a, lanes 3 and 4).  When either Fen 

(Fig. 3.4a, lanes 5 and 6) or ubiquitin (Fig. 3.4a, lanes 7 and 8) was appended with the ssTorA 

signal sequence, it was not found in either the cytoplasm or periplasm.  Surprisingly, ubiquitin 

was also not found in either the cytoplasm or periplasm when Fen bore the ssTorA signal 

sequence (Fig. 3.4a, lanes 5 and 6).  With the other cascade elements present, Fen was only 



 

39 

modified when neither it nor ubiquitin bore the ssTorA signal sequence, and then only in the 

cytoplasm (Fig. 3.4b, lanes 3 and 4).  We concluded that adding ssTorA to either Fen or 

ubiquitin proved destabilizing, and for this system expression of ubiquitinated product would be 

limited to the cytoplasm. 

Discussion  

 Reconstituting a ubiquitin pathway in E. coli has proven a useful measure for study of the 

pathway and shows potential as a platform for protein engineering.  We successfully 

reconstituted and characterized the Fen-ubiquitin pathway in E. coli.  Unexpectedly, 

ubiquitination seemed to proceed in an E3-independent manner likely through auto-

ubiquitination of Fen or through an endogenous bacterial factor.  Our data support the former 

conclusion, and future experiments would resolve whether pathways with alternative compatible 

E2s modify Fen in this way. 

We found both ubiquitin and Fen could not bear the ssTorA signal sequence due to the 

impact it had on their abundances.  Potentially, Fen could be replaced by another target capable 

of being transported.  Additionally, many other ssTorA signals exist (104) that could be tested.  

Recently, both ubiquitin and NEDD8 have been shown to be TAT-transport competent 

(48)(Guntas12).  Disparity between these results could be resolved with future investigation and 

may derive from bacterial strain, plasmid, ssTorA signal, additionally expressed proteins, and/or 

detection method.  However, competence of TAT transport would be a limitation and possibly 

compromise the generality of the reporter we hope to create for ubl conjugation to protein 

substrate.  Because expression of ubiquitinated Fen was observed in the cytoplasm, we will place 

our efforts in developing cytoplasmic-based reporters. 
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CHAPTER 4 

 

IN VIVO REPORTERS IN ESCHERICHIA COLI FOR UBIQUITIN-LIKE MODIFICATION1 

 
Introduction 

 Because ubl modification is undetectable in E. coli, we sought to tether it to a detectable 

trait to create a high throughput reporter.  A common in vivo method to detect protein-protein 

interactions within the cytoplasm of a cell involves splitting a reporter protein and fusing the two 

fragments to the former protein pair (ref).  When the pair interacts, the fragments come together 

thereby reconstituting the activity of the reporter protein.  Common reporter traits for the split 

protein include fluorescence, antibiotic resistance, enzymes permitting growth on minimal 

media, and toxic proteins.  Incorporating this approach into our methodology would reconstitute 

the detectable trait only upon ubl modification provided the split fragments are attached to both 

the ubl and target protein.  For the reporter protein we used DHFR (105), YFP (106), and RNAP 

(107–109) but without success (data not shown). 

Cre recombinase, a member of the bacterial P1 phage proteome, excises site-specific 

genetic material between pairs of the 34-bp lox sites (110–112).  Since Cre was first 

demonstrated to function in a eukaryotic context (113), many applications involving its 

recombinase activity have been developed.  Methods for controlled integration of genetic 

material into the chromosome were developed for yeast (114), mammalian cells (114, 115), and 

plants (116).  Removal of selection markers in transgenic plants for commercialization became 

possible (117).  Proof of concept for tissue specific gene activation (118) and silencing (119) was 

                                                
1  Manuscript in preparation 
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done in mouse strains with actual application shortly following (120).  This new technique 

furthered study of mammalian physiology especially where gross genetic knockouts were 

impossible due to embryonic lethality.  Recently, several split Cre strategies have been reported 

to add tighter temporal and spatial control to Cre expression in mammalian cells (121–123).  In 

this way Cre remains inert until specific conditions are met. 

Despite discovery in bacteria, little technology utilizing Cre has developed in E. coli 

outside alternative cloning techniques.  We have extended its use in E. coli to develop a 

screening method for the directed evolution of interacting proteins.  Coupling split Cre with a 

two-gene reporter plasmid encoding orthogonal phenotypes enables visualization of reconstituted 

recombinase activity.  This method faithfully discriminates between dimerization strength of 

protein pairs and permits the isolation of competent binders based on phenotype.  Unfortunately, 

this system as well proved incompatible with ubl modification.  

Materials and methods 

Plasmid construction.  All plasmids were based on the pZ vector system developed by Lutz and 

Bujard (82).  Oligonucleotide pairs were used to replace the multiple cloning site (MCS) 

between the restriction sites EcoRI and XbaI in the plasmids pZA22, pZA12, pZE11, and pZE12. 

The resulting vectors consisted of three pairs of restriction sites (KpnI and SphI, MluI and EagI, 

and KasI and ClaI) with each pair flanked by a strong RBS sequence (AAAGAGGAGAAA) and 

a frame-shifted stop codon sequence (TAATTGAATAGTTAA) to prevent translational read-

through. The MCS to make pZE11-CB and pZE11-CA were generated in similar fashion with 

the restriction sites KpnI, NsiI, AgeI, and ApaI replacing the first pair in pZE11-CB and AflII, 

BamHI, PstI, and EagI the second in pZE11-CA.   
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To create the split Cre fusions, Cre was first PCR amplified from the P1 phage genome 

(laboratory stock) and ligated with pZE11. From this template Cre(59) and Cre(60) were PCR 

amplified and inserted into pZE11-CA and pZE11-CB respectively using PstI and EagI for 

Cre(59) and AgeI and ApaI for Cre(60).  An HA epitope tag sequence (5’-TACCCCTACGAC 

GTGCCCGACTACGCC-3’) was appended 3’ to Cre(60) during amplification.  The F2 linker 

sequence (121) (5’- GCGTCTCCGTCTAACCCGGGTGCGTCTAACGGTTCT-3’) was 

inserted using oligonucleotide pairs between BamHI and PstI for pZE11-Cre(59) and NsiI and 

AgeI for pZE11-Cre(60)-HA.  JunLZ and FosLZ (102) were PCR amplified and inserted into 

pZE11-F2-Cre(59) using AflII and BamHI and into pZE11-F2-Cre(60)-HA using KpnI and NsiI 

respectively.  A FLAG epitope tag sequence (5’-GACTACAAGGACGATGACGACAAGGGA-

3’) was appended 5’ to JunLZ during amplification.  To make the fusions bicistronic, pZE11-

FosLZ-F2-Cre(60)-HA was digested with KpnI and NheI and ligated with pZE11-FLAG-JunLZ-

F2-Cre(59).  To reduce copy number, the SC101 origin of replication was digested out of pZS31 

and replaced that of pZE11-FosLZ-F2-Cre(60)HA.FLAG-JunLZ-F2-Cre(59) using SacI and 

AvrII.  Construction of the variants FosLZ(L2V), FosLZ(L2/3V), and FosLZ(ΔZIP) was 

described previously (102).  These genes were PCR amplified and replaced FosLZ.  pZS11-

ΔFosLZ-F2-Cre(60)-HA.FLAG-JunLZ-F2-Cre(59) was created by PCR amplifying Cre(60)HA 

and replacing FosLZ-F2-Cre(60)HA using KpnI and ApaI. 

To create the reporter, MBP was PCR amplified with an RBS appended 5’ and an L5 

linker (124) (5’-ACTAGTGCCGCGGCA-3’) 3’.  The product was inserted into pZA22 using 

the EcoRI and KpnI restriction sites.  The gene for mRFP was PCR amplified with the mutant 

loxP (JT15:JTZ17) sequence (125) (5’-AATTATTCGTATAGCATACATTATAGCAATTT 

ATCT-3’) appended 5’ and an StrpII epitope tag with double stop codon (5’-GCAAGCTGGAG 
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CCACCCGCAGTTCGAAAAGGGTGCATAATAA-3’) 3’.  The additional two nucleotides 3’ 

of the modified loxP sequence shift mRFP into frame.  GFPmut2 was PCR amplified with the 

same appendage 5’ and a c-Myc epitope tag (5’-GAACAGAAACTGATCTCTGAAGAAGACC 

TG-3’) 3’.  These two products were double ligated with pZE12 using KpnI and EagI and using 

SphI as the linking restriction site.  This construct was then digested with KpnI and ClaI and 

ligated into pZA22-MBP-L5.  The origin of replication was then swapped with ColE1 from 

pZE12 using SacI and AvrII. 

To create the split Cre-ubiquitin system, Fen replaced Fos between KpnI and NsiI in 

pZE11-FosLZ-F2-Cre(60)-HA and the linker LBo (5’-	
  GCATGCTCTGCAAGGTTCTGCTG 

CTTCTGCTGCTGGTGCTGGTGAAGCGCATTCGCTGC-3’) replaced F2 between NsiI and 

AgeI.  LBo had a type II restriction enzyme BstAPI pair contiguous to NsiI and AgeI to facilitate 

linker exchange.  Oligonucleotide pairs were used to insert L5 (5’-GCTACCTCGGCAGCCGCC 

TCG-3’), L15a (5’-GCT	
  ATGACCGCGACCGCAGATGTTCTAGCGATGTCG-3’), L15b (5’-

GCT	
  GGTGGTAGCGGTGGTTCTGGCGGGTCGGGTTCG-3’), L16 (5’GCT	
  GGTTCCGCC 

GCGAGCGCTGCCGGCGCCGGTGAATCG-3’), L25 (5’-GCT	
  GGTGGAGGTGGTTCTGG 

CGGAGGTGGCTCTGGTGGAGGTGGCTCTGGGGGTGGTGGCAGC TCG-3’), L37 (5’-

GCTGCCGGCGAAGCAGCGGCGAAAGAAGCGGCGGCAAAAGAAGCCGCTGCTAAAG

AGGCAGCAGCTAAGGAGGCAGCCGCGAAAGAAGCGGCGGCCAAATCG-3’), F1 (5’-

GCTGCCTCCACTGGCGGTAGCTCG-3’), F2 (5’-GCTGCGTCTCCGTCTAACCCGGG 

TGCGTCTAACGGTTCTTCG-3’), F3 (5’-GCTGCGTCTGGTGGCGGTGGTTCCGGCGG 

TGGCTCGTCG-3’), F4 (5’-GCTGCTTCTGGTGGTGGTTCTGGCGGTGGCAGCGGTG 

GCGGCTCCTCG-3’), F5 (5’-GCTGCTTCTGGCGGCAGTGGTGGCGGTTCTGGTGGCGG 

CTCTGGTGGTGGTAGCTCG-3’), F6 (5’-GCTGCTTCTGGTGGCAGCGGTGGCGGCTC 
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TGGCGGTGGTAGTGGTGGTTCCGGCGGCTCAGGCGGCGGTTCCTCG-3’), H1 (5’-

GCTGCCTCCGCGGAAGCTGCGGCAAAGGAAGCGGCAGCCAAAGCAGGCTCCTCG-

3’), H2 (5’-GCTGCAAGTGGCGCTGAAGCTGCCGCGAAAGAAGCAGCCGCTAAAGCT 

GGTGGTGGCTCCTCG-3’), H3 (5’-GCTGCGTCGGCTGAAGCCGCTGCGAAAGAAGCT 

GCTGCTAAAGAAGCGGCGGCGAAAGCTGGTAGCTCG-3’) between the BstAPI pair.  

From pZE11-Cre, Cre(59) was PCR amplified and inserted into pZE11-CA using AflII and 

BamHI.  The linker LAo with a type II restriction enzyme DraIII pair replacing BstAPI in LBo was 

inserted using oligionucleotide pairs between BamHI and PstI.  Ubiquitin-FLAG was PCR 

amplified and inserted between PstI and EagI.  The aforementioned linkers were inserted 

between the DraIII pair.  Ubiquitin replaced Ubiquitin-FLAG for pZE11-Cre(59)-L25-Ubiquitin-

FLAG and pZE11-Cre(59)-L37-Ubiquitin-FLAG after linker optimization.  pZE11-Fen-F4-

Cre(60)-HA, pZE11-Fen-H2-Cre(60)-HA, pZE11-Fen-L25-Cre(60)-HA, and pZE11-Fen-L37-

Cre(60)-HA were digested using Kpn1 and Nhe1 and the Fen-Cre(60) fragments inserted into 

pZE11-Cre(59)-L25-Ubiquitin and pZE11-Cre(59)-L37-Ubiquitin using the same restriction 

sites to make the fusions bicistronic.  These new plasmids were then digested using Kpn1 and 

Eag1 and their cassette subcloned into pZA12 to make pZA12-Fen-Cre(60)-HA.Cre(59)-

Ubiquitin.  For the remainder of the cascade, pZE12-Ube1.UbcH5b was digested using Kpn1 and 

Eag1 and pZE11-AvrPtoB was digested using Eag1 and Cla1.  The two fragments were ligated 

together with pZA31.  This plasmid was then digested using Nhe1 and Cla1 and pZE12-

Ube1.UbcH5b (42) using Xho1 and Nhe1.  These two fragments were ligated together with 

pZS31 to make pZS32-Ube1.UbcH5b.AvrPtoB.  Both reporter cassettes MBP-mRFP-GFP and 

MBP-GFP were PCR amplified from the aforementioned plasmids and digested with BspH1 and 



 

46 

Eag1.  Theses were inserted between Nco1 and Eag1 of pET28a to make pET28a-MBP-mRFP-

GFP and pET28a-MBP-GFP. 

 To create the split Cre-SUMO system, Fos was PCR amplified with PML (5’-

CCGCGTAAAGTTATCAAAATGGAATCCGAA-3’) and PML(K490R) (5’-

CCGCGTAAAGTTATCCGTATGGAATCCGAA-3’) appended 5’.  The products were 

digested with KpnI and NsiI and subcloned into pZE11-Fen-F2-Cre(60)-HA and pZE11-Fen-

L37-Cre(60)-HA.  SUMO was PCR amplified and subcloned into pZE11-Cre(59)-F2-Ubiquitin-

FLAG and pZE11-Cre(59)-L25-Ubiquitin-FLAG replacing ubiquitin-FLAG using the PstI and 

EagI restriction sites.  pZE11-PML-Fos-Cre(60)-HA and pZE11-PML(K490R)-Fos-Cre(60)-HA 

were digested with KpnI and NheI and subcloned into pZE11-Cre(59)-SUMO.  These plasmids 

were digested with KpnI and EagI and pZE11-PIASxβ (42) with EagI and ClaI.  These products 

were ligated together with pZA12 to make pZA12-PML-Fos-Cre(60)-HA.Cre(59)-

SUMO.PIASxβ and pZA12-PML(K490R)-Fos-Cre(60)-HA.Cre(59)-SUMO.PIASxβ.  For the 

remainder of the cascade, pZE12-Aos1.Uba2.Ubc9 and pZS32-Ube1.UbcH5b.AvrPtoB  were 

digested with KpnI and ClaI.  The insert of the former was inserted with the backbone of the 

latter to make pZS32- Aos1.Uba2.Ubc9.  

Library construction.  Library members were variants of FosLZ made by mutating the leucine 

residue in the second and third heptad of the LZ motif.  To introduce mutation, the 

oligonucleotides d(5’- CATGCTGACCGACACCCTGCAGGCGGAAACCGACCAGNNBG 

AAGACGAAAAATCCGCGNNBC-3’) and d(5’- AAACCGAAATCGCGAACCTGCT 

GAAAGAAAAAGAAAAGCTGGAGTTCATCCTGGCGGCACACATGCA-3’) were annealed 

to their complements and ligated into pZS11-FosLZ(L2/3V)-F2-Cre(60)HA.FLAG-JunLZ-F2-

Cre(59) using Kpn1 and Nsi1.  A 5’-NNBC-3’ overhang was used to link the two inserts. DH5α-
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Z1 electrocompetent cells were transformed with the ligated material and grown overnight in 30 

mL LB with 50 mg/mL ampicillin after a 1 h rest period in SOB.  To determine library size, 

aliquots were taken prior to overnight growth and plated on LB agar plates with ampicillin.  The 

overnight culture was miniprepped to collect the library. 

Flow cytometry of mutant FosLZ.  E. coli host strain DH5α-Z1 was co-transformed with 

plasmids containing the fluorescent reporter and split Cre fusions.  Cells were plated on LB agar 

supplemented with 50 mg/mL ampicillin and 40 mg/mL kanamycin for 12 h. Individual colonies 

were grown another 12 h in LB media supplemented with antibiotics.  This overnight culture was 

then subcultured to OD600 ≈ 0.05 in 5 mL of fresh LB media supplemented with antibiotics. 

Cultures were induced at OD600 ≈ 0.75 with 1 mM IPTG and 50 ng/mL anhydrotetracycline and 

subsequently shaken for 24 h at 25°C. 

Fluorescence was analyzed using a BD-Biosciences FACS Aria flow cytometer.  Singlets 

were gated based on light scattering signals.  GFP and mRFP were excited at 488 nm by the 

argon laser and were collected in the FITC and PE channels respectively.  Quadrant gates were 

set using empty cells, those expressing mRFP, and those expressing GFP. 

Time course measurements for green fluorescence were taken 3, 6, 24, and 48 h post-

induction for FosLZ and FosLZ(L2V).  Excitation and emission wavelengths for GFP were set to 

488 and 530 (FL-1 channel) respectively on the BD FACSCalibur.  

Library screening.  Samples were cultured as before with the exception of the library.  

Transformant was grown in liquid media directly, bypassing growth and selection on an LB agar 

plate.  A cell sort on the BD-Biosciences FACS Aria flow cytometer collected cells from the 

GFP gate.  Gates were established using the aforementioned controls.  Of the 600 cells 

theoretically isolated, 281 colonies were obtained after plating on LB agar with antibiotics.  
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These were cultured overnight in 96 well plates (200 µL with antibiotics) and then subcultured 

with 50-fold dilution into the same.  After 3 h wells were induced 24 h at 25°C with 1mM IPTG 

only in order to assess the state of the reporter without additional activity from the fragments.  

Cultures were spun down and resuspended in 200 µL PBS.  Fluorescence was assayed in flat 

bottom, non-treated, full black 96 well plates (Costar 3915) using the SpectraMax Gemini.  For 

GFP excitation and emission wavelengths of 488 nm and 530 nm were used respectively; for 

mRFP 570 nm and 610 nm were used respectively.  Black with clear bottom 96 well plates 

(Costar 3631) were used to obtain OD600 using the SpectraMax 190 to normalize fluorescence 

readings.   

 The top 51 variants were chosen for sequencing.  Each 5 mL overnight culture was 

miniprepped, and the FosLZ-F2-Cre(60)HA fragment PCR amplified off the plasmid using the 

oligodeoxyribonucleotide d(5’-CTCAGTGGTACCATGCTGACCGACACCCTGCAG-3’) and 

d(5’-CTCAGTGGGCCCATCGCCATCTTCCAGCAGG-3’).  For sequencing, the 

oligodeoxyribonucleotide d(5’-GACGATGAAGCATGTTTAGCTG-3’) was used. 

Results 

Rationale.  Following Jullien et al, we split Cre between Asn59 and Asn60 to produce Cre(59) 

and Cre(60) fragments.  This split site minimized the basal activity of the fragments in that study 

and allowed the interacting pair of proteins to sit above the Holliday-junction plane (121).  We 

chose the basic region-leucine zipper (bZIP) domains of c-Jun (JunLZ, residues 280-318) and c-

Fos (FosLZ, residues 161-200) as our model interacting pair.  They are a well-characterized, 

heterodimeric protein-interacting pair with a series of well-characterized mutants with reduced 

affinity (102, 126, 127).  To Cre(59) JunLZ was attached to the N-terminus using the F2 linker 

(121) and to Cre(60) FosLZ was attached to the N-terminus using the F2 linker as well (Fig. 4.1).   
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Figure 4.1.  Plasmid design and rationale.  Fusion constructs FosLZ-Cre(60) (as well as FosLZ 
mutants) and JunLZ-Cre(59) are bicistronic in the pZS11 backbone.  The reporter construct 
MBP-mRFP-GFP, with mRFP terminating in two stop codons (TAATAA) flanked by two lox 
sites, lies in a pZE22 backbone.  Cells are transformed with these two plasmids.  Without Cre 
reassembly, only mRFP will express from the reporter plasmid and cells will fluoresce red.  With 
reassembly, Cre will excise DNA flanked by lox sites (mRFP with stop codons) silencing mRFP 
expression while permitting GFP expression.  Green fluorescence will then evolve. 
 
Because the fusion pairs proved rather active (data not shown), they were placed on a low copy 

(SC101 origin) plasmid to eliminate activity from uninduced expression.   

To ascertain dimerization in a high-throughput screen, we devised a fluorescence-based 

reporter (Fig. 4.1).  Without reconstituted Cre, the mrfp gene is transcribed and cells exhibit red 

fluorescence.  The gfp gene is not translated due to two stop codons (TAATAA) terminating 

mrfp and no RBS preceding gfp.  When the interacting proteins associate, full-length Cre 

assembles and excises mrfp and its stop codons from the reporter as lox sites flank them.  The gfp 

gene supersedes mrfp and is now translated causing cells to fluoresce green.   

To build the reporter, mrfp terminating in two stop codons was flanked with the mutant 

loxP site JT15:JTZ17 (125) and followed with in-frame gfp.  The mutations to the loxP site 

lower its affinity for Cre thus reducing the integrase activity.  The wild-type loxP sites proved 
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too facile to excision (data not shown).  MBP was attached to the N-terminus of mRFP using an 

L5 linker (124) to improve solubility of the fluorescent proteins (data not shown).  The reporter 

was placed on a high copy (ColE1 origin) plasmid to maximize fluorescence and widen the 

red/green continuum.  An IPTG-inducible promoter controlled the expression of the fluorescent 

proteins and an anhydrotetracycline-inducible promoter controlled the production of the split Cre 

fusions to allow orthogonal control (82). 

Fos leucine mutations shift cellular fluorescence.  Given the mechanics of our system, protein 

pairs better able to dimerize either through higher affinity and/or stability should shift cellular 

fluorescence green.  To test this hypothesis, we chose JunLZ and FosLZ as our model interacting 

pair.  Previous work has shown that mutation to the d position of the bZIP domain heptad 

reduces affinity between the pair (102, 126, 127).  We used FACS to analyze both the red and 

green fluorescence of singlet cells having JunLZ paired with either FosLZ, FosLZ(L2V), or 

FosLZ(L2/3V), whose affinity for JunLZ decrease in the order given (102, 126, 127). 

For the wild-type pair, 22.1% fell in the GFP only quadrant (GFP+, mRFP-) while 26.7% 

were in the mRFP only quadrant (GFP-, mRFP+).  A small population, 7.64%, showed no 

fluorescence (GFP-, mRFP-), and the majority, 43.6%, showed a mixture of both red and green 

fluorescence (GFP+, mRFP+) (Fig. 4.2a).  For the single mutation, the GFP and mixture 

populations reduced to 6.27% and 33.3% respectively while the mRFP population increased to 

53.9% (Fig. 4.2b).  This shift arose from the mutation impairing dimerization and subsequently 

reducing Cre’s activity, which leaves the cells more red and less green.  While the difference is 

clearly resolvable, the degree of overlap with wild-type’s spectrum reflects the minimal impact 

the single leucine mutation has on dimerization (126, 127).  For the double mutant  
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Figure 4.2.  FACS plots for FosLZ mutants.  The mRFP (PE) channel (red fluorescence) was 
plotted against the GFP (FITC) channel (green fluorescence).  Quadrant gates were established 
using non-expressing cells (GFP-, mRFP-), those expressing mRFP (GFP-, mRFP+), and those 
expressing GFP (GFP+, mRFP-).  Cell populations shifted from green to red with increasing 
mutation to FosLZ (FosLV (a), FosLZ(L2V) (b), FosLZ(L2/3V) (c)).  FITC data alone is shown 
with additional truncation controls (d).  Time course measurements for green fluorescence were 
taken 3, 6, 24, and 48 h post-induction for FosLZ and FosLZ(L2V) (e).  Differences in signals 
emerge by 6 h and persist till at least 48 h. 
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FosLZ(L2/3V), only 0.07% was present in the GFP population with nearly the entirety, 91.6%, 

found in the mRFP population (Fig. 4.2c).  The shift from green to red mirrors the notable 

compromise the double leucine mutation has on dimerization (126, 127).  Thus, we conclude that 

fluorescence correlates with the ability of the pairs to dimerize: better dimers report greener 

while compromised dimers report redder.   

The two-state reporter allows for greater discrimination over a single-gene reporter.  

Considering all GFP+ populations together (GFP+, mRFP+ and GFP+, mRFP-), the wild-type 

had a 1.7 and 21 fold greater population over FosLZ(L2V) and FosLZ(L2/3V) versus 3.5 and 

320 when the GFP+, mRFP- population was considered alone (Fig. 4.2a,b, and c). 

Excision of mrfp from the reporter is essentially irreversible.  We monitored green 

fluorescence over time between FosLZ and FosLZ(L2V) to ensure distinction between pairs 

differing in dimer formation would not be lost given time.  The signals between FosLZ and 

FosLZ(L2V) became distinguishable by 6 hours post-induction and remained so even after 48 

hours (Fig. 4.2d).  We chose 24 hours for our analyses as this time point corresponded to a 

maximum in green fluorescence.  

Screening for green fluorescence enriches for competent binders.  As differences in 

dimerization corresponded to differences in fluorescence, we next asked if by screening based on 

fluorescence could we isolate proclive dimerizing pairs.  We chose to randomize the second and 

third leucine of FosLZ since the FosLZ(L2/3V) double mutant considerably compromised 

dimerization.  We created an NNB library of approximately 104 variants.  Cells were sorted on 

the BD-Biosciences FACS Aria flow cytometer and isolated from the GFP gate (not shown) 

established using cells only expressing GFP.  Isolates were cultured in 96 well plates and  
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Table 4.1.  Characterization of isolated FosLZ variants.  GFP fluorescence was normalized to 
that for the control GFP.  Those with green fluorescence 60% and above were sequenced.  All 
sequences observed (reported as concatenated residues occupying the 2nd and 3rd leucine 
position) were listed in the table with frequency given as a percentage and as a gross count in 
parentheses. 
 

 
 
induced with 1mM IPTG only in order to assess the state of the reporter without additional 

activity from the fragments.  Fluorescence was assayed using SpectraMax Gemini and 

normalized by OD600. 

After one round of screening, we sequenced 51 clones corresponding to the top 40% for 

green fluorescence (Table 4.1).  In 96% of cases at least one leucine was present.  This strong 

enrichment agrees with our previous findings as well as previous research, which has shown 

bZIP pairs (128–131) including Fos and Jun specifically (126, 127) to be mostly insensitive to 

single point mutation but sensitive to double mutation.  The variant most enriched for was the 
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Acids
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Frequency
70-80%, %

Frequency
60-70%, %

LL
AL
LR
LM
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FL
LF
MF
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LK
LQ
VL
RL
AW
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QL
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29 (15)
16 (8)
14 (7)
6 (3)
6 (3)
4 (2)
4 (2)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)
2 (1)

23 (3)
15 (2)
23 (3)
8 (1)
15 (2)
0 (0)
0 (0)
0 (0)
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8 (1)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
8 (1)
0 (0)

50 (1)
0 (0)
50 (1)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)

50 (7)
21 (3)
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0 (0)
7 (1)
0 (0)
0 (0)
0 (0)
7 (1)
0 (0)
0 (0)
0 (0)
0 (0)
0 (0)

18 (4)
14 (3)
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9 (2)
5 (1)
9 (2)
5 (1)
5 (1)
0 (0)
0 (0)
5 (1)
5 (1)
0 (0)
5 (1)
5 (1)
5 (1)
0 (0)
5 (1)
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strongest leucine zipper, that of the wild-type sequence LL (29%) (131).  Following were 

AL(16%) and LR(14%) with several other variants appearing sparingly.  The context of specific 

mutations is important (131), which may explain biases such as LR (14%) over RL (2%).  A 

previous study using an NNK library to randomize the second leucine of FosLZ isolated variants 

(L, A, F, R, H) in the same rank order that we did save Q (102).  Based on these consistencies, 

we conclude that we successfully enriched for higher affinity binders by screening on 

fluorescence. 

Split Cre proved nonviable with both ubiquitin and SUMO pathways.  We were next 

interested if we could adapt our new screen to our ubiquitination system.  After investigating all 

possible permutations (data not shown), we placed the Cre(60) fragment on the C-terminus of 

Fen and the Cre(59) fragment on the N-terminus of ubiquitin.  This particular orientation should 

situate ubiquitinated Fen above the Holliday-junction plane.  We chose linkers from a battery of 

15 that maximized expression of the fragments as ascertained by Western blot (data not shown).  

Because we did not know what length linker would be ideal for activity, we chose F4, H2 (121), 

L25, and L37 (124) as they gave the best expression for Fen-Cre(60) and represented a range of 

linkers from helical to extended and from short to long.  We chose L25 and L37 for ubiquitin as 

linker choice did not affect expression and longer linkers would better accommodate steric 

concerns.  These fragments were placed in the pZA12 plasmid.  The E1, E2, and E3 were placed 

on a pZS32 plasmid.  The plasmid for the reporter plasmid was changed to pET28a (Fig. 4.3a).  

All promoters were LacI-repressible and pET28a provided the LacI necessary for repression.   

Expression was further optimized with respect to nutrient media, aeration conditions, and 

bacterial strain.  Of the 5 other media formulations tested, none surpassed LB (data not shown),  
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Figure 4.3.  Split Cre adapted to ubiquitin pathway.  (a) Plasmid diagrams for implementing 
split Cre with the Fen-ubiquitin cascade.  The target protein (Fen) fused to Cre(60) and ubiquitin 
fused to Cre(59) were subcloned into the medium copy plasmid pZA12-SMCS.  The E1 (Uba1), 
E2 (Ubch5b), and E3 (AvrPtoB) were subcloned into the low copy plasmid pZS32-SMCS.  The 
reporter cassette MBP-mRFP-GFP was subcloned into the high expression pET28a backbone.  
(b) Digestion pattern of plasmid isolated from DH5α cells expressing split Cre implemented with 
the Fen-ubiquitin cascade. Plasmid was digested using the restriction enzymes Xba1 and Eag1 to 
isolate the reporter cassette.  Various combinations of linkers were used in assessing activity of 
the fragments.   
 
and of the two other aeration conditions, all performed equally to that in test tubes (data not 

shown).  Of the 8 strains tested, DH5α and BLR(DE3) gave notably better accumulation (data 

not shown).  Both of these strains lack RecA, which is believed to assist plasmid stability.  

Surprisingly, DH5α-Z1 ranked among the lowest for expression.   

 We tested activity in DH5α with the aforementioned linker combinations.  We chose not 

to use BLR(DE3) as expression even from empty pET vectors can prove toxic (132), and we 

have noted earlier that the full ubiquitin cascade seemed taxing for  cells.  Because DH5α lacks a  
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Figure 4.4.  Split Cre adapted to SUMO pathway.  (a) Plasmid diagrams for implementing 
split Cre with the SUMOylation cascade.  The target protein (PML-Fos) fused to Cre(60), 
SUMO fused to Cre(59), and E3 (PIASxβ) were subcloned into the medium copy plasmid 
pZA12-SMCS.  The E1 (Aos1 and Uba2) and E2 (Ubc9) were subcloned into the low copy 
plasmid pZS32-SMCS.  The reporter cassette MBP-mRFP-GFP was subcloned into the high 
expression pET28a backbone.  (b, c, d, and e) The GFP (FL-1) channel showed no difference 
between PML-Fos and PML(K490)-Fos.  The mutation in the latter prevents SUMOylation of 
the target. 
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DE3 cassette, we assayed for activity by examining the plasmid directly for excision (Fig. 4.3b).  

We purified plasmid from each sample and digested with restriction enzymes Xba1 and Eag1 as 

these restriction sites flanked the fluorescent reporter.  A 2.67 kbp would denote the full reporter 

while a 1.95 kbp band would denote it lacking mrfp.  Only in the presence of the full cascade 

should ubiquitination occur and Cre activity be reconstituted.  The activity of Cre should excise 

mrfp from the reporter plasmid and shift the band size from 2.67 kbp to 1.95 kbp.  For each 

linker combination, only the heavier band appeared, implying no excision occurred.  Select 

combinations were also tested in BLR(DE3), but neither fluorescence nor plasmid digestion 

pattern indicated Cre activity (data not shown).    

 Because this particular ubiquitination system might be incompatible with the split-Cre 

screen, we also adapted it to the SUMOylation system we previously developed (Fig. 4.4a).   

As before, the pET28 plasmid bore the fluorescent reporter.  SUMO replaced ubiquitin and 

PML-Fos replaced Fen.  Only the F2 and L37 linkers were used for PML-Fos-Cre(60) and F2 

and L25 for Cre(59)-SUMO.  The E3 PIASxβ was included with PML-Fos-Cre(60) and Cre(59)-

SUMO as the pZS32 plasmid was fully occupied with the E2 and hetero-dimeric E1.  These 

plasmids were expressed in BLR(DE3).  However, no green fluorescence emerged and spectrum 

appeared similar to unmodified PML-Fos-Cre(60) (Fig. 4.4b, c, d, and e).   

Discussion 

Cre recombinase has been a powerful molecular tool in eukaryotic study for the past 

score years.  We developed a novel bacterial screening method for the directed evolution of 

interacting proteins by extending its innovations to E. coli.  This method reported differences in  

dimerization of protein pairs.  FosLZ and the mutants FosLZ(L2V) and FosLZ(L2/3V) had 

distinguishable spectra on FACS.  These differences allowed for enrichment for competent 
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binders based on phenotype.  Of the isolated variants of FosLZ(L2/3V), 29% were wild-type and 

96% recovered a leucine residue for at least one position after only a single round of selection. 

 The two-state design of the reporter proved an asset in better resolving differences 

between interacting pairs.  The signal may be decomposed into two separate phenotypic states, 

which provides greater resolution in determining Cre’s activity.  The reporter plasmid itself 

cumulatively records Cre’s activity, and read-out may be decoupled from the assay.  We used 

this to access information concerning the assay after the FACS sort.  It could be of additional 

value for instance in alleviating cellular stress from expression of multiple proteins.  While 

fluorescent proteins were used in this study for visualization, other reporters may substitute.  For 

example, an antibiotic resistance marker could replace GFP.  For additional stringency, a gene 

encoding a toxic protein could stand for mRFP.  Thus, cells with reconstituted Cre will have a 

growth advantage while those without will have a disadvantage. 

Unfortunately, applying split Cre to both our ubiquitin and SUMO pathways proved 

nonviable.  We believed Cre addressed the shortcomings of our previous reporter proteins.  Cre’s 

enzymatic activity coupled with multiple translation events of the genetic reporter provides great 

sensitivity to interacting protein pairs.  Expression of the model fusions from a several-copy 

plasmid (SC101 origin) was sufficient for green fluorescenct phenotype. Furthermore, Western 

blotting could not reveal protein expression at these conditions (data not shown). This is 

significant since other PCAs utilizing leucine zippers rely upon strong over-expression (133–

135).  The split proteins may have failed to report ubl modification for several reasons.  The 

interacting domains are thought to increase the local proximity of their split reporter fusions to 

permit folding (136).  These interactions unlike ubl modification are not covalent, and folding 

and/or activity may benefit from association and dissociation of the interacting pair to overcome 
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steric hindrance.  As a corollary, our choice of target and ubl may have posed a steric hinderance 

to reporter folding.  All systems suffered proteosomal degradation and varied in accumulation of 

modified target as assessed by Western blot.  Either ubl-target complexes lacked sufficient 

residence time for activity, accumulation was not sufficient for detectable activity, or what 

appeared as modified target suffered from indiscernible proteolysis that rendered the complex 

nonfunctional.  Specific systems may also have had specific challenges. For example, 

ubiquitinated Fen may have interfered with homologous recombination at the Holliday-junction, 

and split DHFR may have suffered growth limitations from expression of recombinant protein 

(137).  We next looked towards simpler systems where steric hindrance would be a nonissue and 

whole-protein fusions could be utilized to possibly avoid degradation. 
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CHAPTER 5 

 

IN VITRO REPORTERS FOR UBIQUITIN-LIKE MODIFICATION 

 
Introduction 

For in vivo systems, a reporter mediates the detection of protein-protein interactions.  

This method is indirect as one must assume reporter activity correlates with interaction strength.  

Direct detection of protein-protein interactions may be accomplished using in vitro methods.  

Here, proteins may be isolated using their interacting partner.  However, this method requires a 

phentotype-genotype linkage that was implicit for in vivo methods.  Furthermore, the fidelity of 

the linkage is paramount in ensuring mismatching does not occur. 

Plasmid display is one such in vitro method that accomplishes the linkage using a DNA 

binding protein.  It begins with an in vivo phase where protein fusions to DNA binding domains 

are express in the cytoplasm.  Compartmentalized as such, the DNA binding domains may 

associate with their recognition sequences on the encoding plasmid.  Cells are subsequently lysed 

and desirable variants are isolated through in vitro panning.  Their genetic information is 

simultaneously recovered on account of the phentotype-genotype linkage. 

 Cull et al developed the first plasmid display system with the lac repressor (LacI) serving 

as the DNA binding protein (138).  It was later used to develop a biotin modified epitope tag 

enriched for only after two rounds of panning (139).  Two more systems have since been 

developed using the eukaryotic nuclear factor κβ (NF-κβ) p50 (140, 141) and the GAL4 DNA 

binding domain (142).  Though not characterized as a screen, Woodgate et al showed that 

plasmid purification was possible through GST using a GST-zinc-finger fusion (143).  To date 

only epitope sequences have been evolved employing the systems. 
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 We believed the simplicity of the plasmid display system would skirt the issues we 

encountered with complexity in the in vivo systems.  Only one fusion rather than two needs to be 

made, and that is to a full-length protein rather than a fragment.  Additionally, steric 

considerations are much less important.  Since antibodies may be utilized during in vitro 

panning, those specific to different ubl chain conformations such as for ubiquitin (144) may be 

used to further the utility of our reporter.  This was not possible in the in vivo systems. 

Appropriate choice of a DNA binding domain forms the crux of plasmid display.  A long-

lived interaction safeguards the fidelity of the phenotype-genotype linkage during selection 

processes.  Furthermore, solubility and binding must prove stable in fusion.  This linkage is 

paramount as the plasmid DNA will be the readout from the reporter.  For example, if a battery 

of targets is screened for modification, the isolated plasmid will contain the genes of those 

substrates modified.  If plasmid dissociates from the DNA binding domain, it cannot be isolated 

or may reshuffle thereby giving unreliable information.  We developed two systems: one using 

LacI for its exceptionally long binding half-life (145, 146) and one using a zinc-finger protein for 

its simplicity. 

Materials and methods 

Plasmid construction.  To create the dual promoter plasmid pZE12T11, oligonucleotide pairs 

were used to introduce a T1 terminator of the rrnB operon (82) between SalI and KasI of pZE12-

SMCS (42) to prevent transcriptional read-through.  Between KasI and ClaI oligonucleotide 

pairs were used to introduce PLtetO-1 (82) and a strong RBS sequence (AAAGAGGAGAAA) 

flanked with NdeI and AflII.   

To create the ZF-based plasmid display system, Fen and ZF were PCR amplified and 

digested with AflII and AgeI and AgeI and ClaI respectively.  These were subcloned together into 
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pZE12T11 between AflII and ClaI.  pZA24-AvrPtoB and pZE11-Fen.Ub were digested with 

KpnI and NheI and NheI and SalI respectively, and AvrPtoB and ubiquitin were subcloned 

together into pZE12T11-Fen-ZF.  Oligonucleotide pairs were used to correct the truncation 

caused by the internal SalI site to ubiquitin.  An oligonucleotide pair was used to introduce a 

FLAG epitope tag (5’-GACTACAAGGACGATGACGACAAGGGA-3’) between Fen and ZF 

using AgeI and NotI in pZE12T11-AvrPtoB.Ubiquitin/Fen-ZF and pZE12T11-Fen-ZF to serve as 

a linker and means of detection.  A section of ampR was PCR amplified and subcloned into 

pZE12-SMCS (42) using AatII and SpeI to introduce a HindIII restriction site near AatII.  Using 

oligonucleotide pairs, 5xZB (5’-ACGTCGATGCCATTACGTCGATGCCATTACGTC      

GATGCCATTACGTCGATGCCATTACGTCGATGCCAT -3’) were introduced between 

the AatII and HindIII restriction sites.  This was digested with KpnI and ClaI and ligated with the 

cassette from pZE12T11-AvrPtoB.Ubiquitin/Fen-FLAG-ZF and pZE12T11-Fen-FLAG-ZF to 

make 5xZBDpZE12T11-AvrPtoB.Ubiquitin/Fen-FLAG-ZF and 5xZBDpZE12T11-Fen-FLAG-

ZF.  Finally, ubiquitin was PCR amplified with a FLAG epitope tag appended to its N-terminus 

and subcloned into pZE12T11 using MluI and EagI.  This was digested with NheI and AflII and 

subcloned into 5xZBDpZE12T11-AvrPtoB.Ubiquitin/Fen-FLAG-ZF.  The HA epitope tag (5’-

TACCCCTACGACGTGCCCGACTACGCC-3’) replaced the FLAG epitope tag between Fen 

and ZF using an oligonucleotide pair. 

To create the LacI-based plasmid display system, oligonucleotide pairs were used to 

permute the MCS of pZE12-SMC (42).  The three pairs of restriction sites of the resulting vector, 

pZE12-SMCS2 became MluI and EagI, KasI and ClaI, and KpnI and SphI.  The PBAD promoter 

of pBAD18 was PCR amplified (5412 and 5413) and subcloned into pZE12T11 using KasI and 

NdeI to make pZE12T10 where the 0 denotes the PBAD promoter.    
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Fen-HA was PCR amplified and subcloned into pZE12-SMCS2 using KpnI and SphI. 

LacI and ubiquitin were PCR amplified and digested with EcoRI and BamHI and BamHI and 

EagI respectively.  To ubiquitin a FLAG-PstI epitope tag was appended to the N-terminus and to 

LacI an RBS-MluI was appended to the C-terminus.  The two products were ligated together 

with pZE12-SMCS digested with EcoRI and EagI.  AvrPtoB was PCR amplified and subcloned 

into pZE12T10 using AflII and ClaI.  pZE12-LacI-FLAG-Ub was digested with EcoRI and EagI; 

pZE12T10-AvrPtoB was digested with EagI and ClaI; and pZE12-Fen-HA was digested with 

ClaI and XbaI.  These products were ligated together with pZE12-SMCS digested with EcoRI 

and ClaI.  Finally, the Plac/ara-1 promoter was cut from pZA24-SMCS (42) using AatII and EcoRI 

and ligated with the previou plasmid digested with the same to make pZE14T10-LacI-

Ub/AvrPtoB.Fen.  

 For the GFP-LacI circuits, GFP (lab stock) was PCR amplified with the FLAG epitope 

tag appended to the C-terminus.  This product was digested with KpnI and SphI and subcloned 

into pZE12-SMCS (42).  This plasmid was digested with KpnI and EagI and subcloned into 

pZE12T11.  This was then digested with KpnI and AflII, and LacI and LacI-FLAG-Ubiquitin 

were PCR amplified and digested with AflII and ClaI.  These were ligated with an unshifted 

pZE14T10 that had been digested with KpnI and ClaI.  To correct the truncation of LacI at the 

N-terminus, LacI was PCR amplified and digested with AflII and ClaI.  It was also PCR 

amplified with a FLAG epitope tag and digested with AflII and PstI.  These were ligated with 

pZE14T11-GFP-FLAG/LacI and pZE14T11-GFP-FLAG/LacI-FLAG-Ubiquitin to make the 

same without the truncation. 

Cell Culture and Western Blots.  All constructs were transformed into E. coli host strain DH5α 

for LacI and DH5α-Z1 (82) for ZF using a GenePulser Xcell (BioRad).  Individual colonies were 



 

64 

grown overnight in LB media with appropriate antibiotics (100 mg/mL ampicillin and 12.5 

mg/mL chloramphenicol) and then subcultured to OD600 ≈ 0.05 in 5 mL of fresh LB media 

supplemented with appropriate antibiotics. Cultures were induced at OD600 ≈ 0.75 with 0.5% 

L(+)-arabinose, 1 mM IPTG, and 50 ng/mL anhydrotetracycline when appropriate and 

subsequently shaken for 24 h at 16°C for ZF or 25°C for LacI.   

Approximately 1.5 mL of each culture was harvested and lysed using 200 mL of 

Bugbuster Master Mix (Novagen) according to the manufacturer's directions. Lysates were 

normalized to 10 µg of total protein as determined by a total protein assay (Bio-Rad) and loaded 

on a 4-20% Precise Protein Gel (Thermo Scientific).  Transfers to Immobilon P Transer 

Membranes (Millipore) were performed for 2 h at the maximum amperage recommended for a 

Biosciences TE77 semi-dry transfer unit (Amersham). Blots were then imaged on film using 

standard protocols. The primary antibodies used were anti-HA (Sigma) and anti-FLAG (Abcam). 

FACS.  Cultures were prepared as described above except the same overnight culture was used 

for the induced and uninduced cases for each construct. Fluorescence was analyzed using a BD 

FACSCalibur.  Excitation and emission wavelengths for GFP were set to 488 and 530 (FL-1 

channel) respectively. 

Plasmid isolation.  The procedure for cell lysis was adopted from Sander et al (Sander08).  

Cultures were prepared as described above.  An equal number of cells from each culture were 

harvested by centrifugation at 4000 g for 10 min at 4ºC.  The supernatant was removed and pellet 

frozen overnight at -20 ºC.  The next day cells were resuspended to OD600 = 25 with the 

appropriate amount of WB1/0.1% NonidetTM P40 (NP-40) (Sander08) and frozen at -80ºC for 1-

2 h.  Samples were thawed on ice and centrifuged at 9000 g for 20 min at 4 ºC.  The supernatant 

was retained.  While lysis was inefficient, the use of more efficient methods either interfered 
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with later steps directly or made the supernatant too viscous with genomic DNA (data not 

shown).  

Dynabeads® (Invitrogen 14311D) were prepared according to the manufacturer’s 

instructions with 1.5 mg beads used per culture and 5 µg antibodies used per 1 mg of beads.  The 

antibodies used were anti-FLAG (Genscript A00187) and anti-ubiquitin (Abcam ab8134 and 

ab411).  After conjugating the antibodies to the beads, the beads were washed three times in 800 

µL WB1/0.1% (NP-40) and resuspended in the same to a final concentration of 10 mg/mL.  

Aliquots of 1.5 mg of beads were divided among 1.7 mL eppendorf tubes and separated from the 

liquid phase through magnetism.  Beads were resuspended in the supernatant from the lysate and 

incubated on a roller at 4ºC for 1 h. Three washes of 700 µL WB1/0.1% (NP-40) were performed 

and the beads again separated from the lysate through magnetism. 

Plasmid was purified from beads using QIAprep Spin Miniprep kit (QIAGEN 27106) 

according to manufacturer’s instructions with the following modifications: the P1 buffer was 

used without RNAse, the wash step with PB was omitted, and 100 µL ddH2O was used for 

elution.  The eluate was evaporated off in a dessicator and precipitate resuspended in 5 µL EB.  

This was then diluted and used to transform new DH5α−Ζ1 electrocompetent cells.  These cells 

were plated and colonies counted. 

Results 

Rationale.  LacI forms a homo-tetramer containing two DNA binding domains that recognize 

DNA sequences named lac operators.  The repressor-DNA complex can be extremely long lived.  

Complexes with a single operator have a half-life of 1.5 min (147).  However, LacI is capable of  

forming loops in the DNA by contacting two appropriately spaced operators (148) increasing the 

half-life to approximately 28 h (146).  Furthermore, a symmetric lac operator binds 8-10 times 
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more tightly to LacI than the native operator (147, 149) and the aforementioned values rise to 

roughly 10 min (145, 147) and greater than 3 days respectively (145).  LacI also seems to 

tolerate fusions without compromise to its ability to bind DNA.  Fusions of β-galactosidase to 

the C-terminus (150) and GFP to the N-terminus (151) of LacI have been made.  However, 

addendum of a 13-residue peptide to the C-terminus did lead to 10 fold more expression of a 

reporter gene compared to the unmodified LacI (138).  Fusions may therefore interfere with 

LacI’s ability to bind DNA.  

Because LacI is a fairly large molecule (39 kDa) and would present a considerably 

undesirable surface additional to the target against which we would be evolving the ubiquitin E3 

ligase, we chose to fuse LacI to the N-terminus of ubiquitin (Fig. 5.1a).  The LacI-ubiquitin 

fusion was placed under control of a LacI repressible promoter to self-regulate its expression 

(140) in order to achieve optimum accumulation.  If too little repressor is present, unoccupied 

sites might be available to repressor from other cells following lysis, which could potentially 

undermine the phenotype-genotype linkage we hoped to create.  If too much repressor is present, 

single operator occupancy becomes favored over loop formation (148), and the half-life of DNA 

binding diminishes as noted above. 

 The E3 ubiquitin ligase AvrPtoB and target Fen were placed under control of an 

orthogonal promoter on the same plasmid as the LacI-ubiquitin fusion.  In this way we could 

modulate expression of AvrPtoB and Fen independently of LacI-ubiquitin while still maintaining 

their presence on the plasmid to which LacI-ubiquitin would bind.  A HA epitope tag  

was appended to the C-terminus of Fen to pan against.  A ColE1 origin of replication was used to 

maximize potential plasmids to isolate. 
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Figure 5.1.  Plasmid design and rationale.  Plasmid diagrams for the LacI (a) and ZF (b) 
plasmid display systems with the ubiquitination cascade.  (a) The target protein (Fen) and E3 
(AvrPtoB) were subcloned into the high copy plasmid pZE14T10 under control of the second 
promoter.  The LacI-ubiquitin fusion was subcloned into the same under control of the first 
promoter.  The E1 (Ube1) and E2 (UbcH5b) were subcloned into the low copy plasmid pZS30-
SMCS.  LacI binds to its promoter to establish the phenotype-genotype linkage.  The HA epitope 
tag will be present if ubiquitin modifies Fen and may be panned against to isolate the plasmid 
with the desired E3 gene.  (b) The E3 (AvrPtoB) and ubiquitin were subcloned into the high copy 
plasmid pZE12T11 under control of the first promoter.  The target protein (Fen-ZF) fusion was 
subcloned into the same under control of the second promoter.  A 5xZBD was placed upstream 
of the resistance marker to permit docking of the fusion.  The E1 (Ube1) and E2 (UbcH5b) were 
subcloned into the low copy plasmid pZS31-SMCS.  ZF binds to the 5xZBD to establish the 
phenotype-genotype linkage.  If ubiquitin modifies Fen, it may be panned against to isolate the 
plasmid with the desired E3 gene. 
	
  
 Within the cell, LacI-ubiquitin should bind to the lac operators.  As repressor 

accumulation is accruing, loop formation should be favored and expression silenced before 

single operator occupancy is favored but after all operators are bound.  The phenotype-genotype 

linkage should then prove stable given the long half-life of the loop complex.  Upon induction, 

the rest of the ubiquitination cascade will express and the LacI-ubiquitin fusion be ligated to Fen 

via ubiquitin.  In this way the link between phenotype (ubiquitination) and genotype (pathway 



 

68 

members’ genes) is established through LacI (Fig. 5.1a).  Panning for the HA epitope tag on Fen 

can then isolate plasmid. 

Alternatively, we employed zinc-finger proteins as a DNA binding protein.  Zinc-finger 

proteins are composed of multiply concatenated zinc-finger domains that each recognize and 

bind to sequence triplets in duplex DNA.  They are small, monomeric, and a common fusion 

partner (152) that should provide a foil to LacI. 

To construct the system, we fused the EG382L zinc-finger (ZF) (153) to the C-terminus 

of Fen (Fig. 5.1b).  Fusion of ZF to the N-terminus of ubiquitin proved unstable (data not 

shown).  Five ZF binding domains (ZBD) were placed upstream of the resistance marker to 

permit docking.  Expression was not self-regulated here as we found the promoter sequence to be 

highly sensitive to perturbation (data not shown).  Similar to the LacI system, the Fen-ZF fusion 

was placed under control of the anhydrotetracycline-induced promoter while ubiquitin and 

AvrPtoB were placed under control of the orthogonal IPTG-inducible promoter on the same 

plasmid.  Expression was again from a plasmid with a ColE1 origin of replication. 

Upon induction, Fen-ZF binds to the ZBDs through ZF and becomes ubiquitinated 

through Fen in the presence of the remainder of the cascade.  The link between phenotype 

(ubiquitination) and genotype (pathway members’ genes) is established this time through ZF 

(Fig. 5.1b).   Lysing cells and panning for ubiquitin recovers plasmid.     

DNA binding proteins tolerated in ubiquitination reaction.  We first verified by Western blot 

that the addition of the DNA binding protein to our ubiquitination system would not compromise 

ubiquitination of Fen.  When the E1 and E2 were kept from the system, a band corresponding to 

Fen (Fig. 5.2a, lane 2) and LacI-ubiquitin (Fig. 5.2b, lane 2) migrated separately on the SDS-

PAGE gel.  When E1 and E2 were included in the system, a slower migrating band appeared  
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Figure 5.2.  Ubiquitintion with plasmid display elements.  Western blot analysis of cell lysate 
prepared from DH5α (a and b) and DH5α−Z1 (c) cells expressing the plasmid display systems.  
(a and b) Upon re-inspection an N-terminal truncation of 44 residues occurred in LacI.  This was 
corrected for subsequent experiments.  Fen was detected using anti-HA antibodies (a) while 
LacI-ubiquitin was detected using anti-FLAG antibodies (b).  Fen-ZF was detected using anti-
FLAG antibodies (c). 
 
when probed with either anti-HA antibodies (Fig. 5.2a, lane 3) or anti-FLAG antibodies (Fig. 

5.2b, lane 3).  The difference in size compared to Fen was that of LacI-ubiquitin and the 

difference in size compared to LacI-ubiquitin was Fen.  An additional band corresponding di- 

LacI-ubiquitin-Fen was also detectable when probed with either anti-HA antibodies (Fig. 5.2a, 

lane 3) or anti-FLAG antibodies (Fig. 5.2b, lane 3).  We therefore concluded that our system was 

still capable of ubiquitination with the addition of LacI in the new plasmid backbone. 

 When E1 and E2 were absent from the system, a single band corresponding to Fen-ZF 

migrated on the SDS-PAGE gel (Fig. 5.2c, lane 2).  When E1 and E2 were present, a slower 

migrating band corresponding to ubiquitinated Fen-ZF in size appeared (Fig. 5.2c, lane3).  

Likewise, our ubiquitination system tolerated the fusion of ZF to Fen. 

Ubiquitin fusion to LacI impaired DNA binding.  We next investigated if fusing ubiquitin to 

LacI impinged upon its ability to bind DNA.  We created a simple circuit in which GFP was 

under control of a LacI-repressible promoter and LacI or LacI-ubiquitin was under control of the 

orthogonal Tet Repressor Protein (TetR)-repressible promoter (Fig. 5.3a).  As the plasmid itself  
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Figure 5.3.  Capacity of LacI-ubiquitin to bind DNA.  (a) Plasmid diagrams for the GFP-LacI 
circuit.  GFP was subcloned into the high copy pZE14T11 under the first LacI-repressible 
promoter.  LacI or LacI-ubiquitin was subcloned under the second TetR-repressible promoter 
constituitive in DH5α.  (b and c) Both induced and uninduced cultures were analyzed on the 
GFP (FL-1) channel (green fluorescence) for the circuits GFP-LacI in DH5α (b) and GFP-LacI-
ubiquitin in DH5α (c).  Samples were done in triplicate and representative data is shown.  
 
lacks TetR, the promoter becomes constitutively active in a cell line such as DH5α, which lacks 

endogenous TetR.  If LacI is unable to bind, then GFP will not be repressed and cells will 

fluoresce green.  If LacI is able to bind, GFP expression will be repressed and cells will not 

fluoresce.  If IPTG is then administered, GFP should then be expressed and cells should 

fluoresce green. 

When LacI was placed after the second promoter (Figure 5.3b), two peaks arose.  The left 

one corresponded to a population in which GFP fluorescence was not detectable.  Induction with 

IPTG resulted in the appearance of a third peak shifted towards higher fluorescence.  This was 

expected of a population in which LacI was repressing expression of GFP.  Curiously, the non-

fluorescent peak remained significant.  This might correspond to a population that either lacked 
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the gfp gene wholly or partly, had its expression impaired, or remained suppressed despite 

treatment with IPTG.  The right-most peak corresponded to a population of significant 

fluorescence that was not altered by IPTG.  In this population GFP seemed to be constitutively 

expressed.  This anomaly might have origin in GFP becoming constitutively active despite LacI 

presence, expression of LacI somehow being compromised, or whole or partial loss of the lacI 

gene. 

 When LacI-ubiquitin replaced LacI in the circuit (Fig. 5.3c), two peaks again emerged.  

As before, a strong fluorescent population was present in both induced and uninduced cases.  

When induced with IPTG, the entirety of the left peak shifted farther right.  This implied that 

GFP was repressed by LacI-ubiquitin in this population.  However, LacI-ubiquitin appeared not 

to repress GFP as well as LacI.  The repressed peak appeared shifted roughly a decade to the 

right relative to its counterpart in the previous scenario.  Cull et al found a similar 10-fold 

increase in expression of their reporter, which they attributed to partial inactivation of LacI by 

their appended peptide tail (138).  Though low accumulation of LacI-ubiquitin could serve as an 

explanation, our previous Western blots showed strong expression of LacI-ubiquitin.  Those 

blots do, however, show noticeable degradation of the LacI-ubiquitin fusion.  Proteolysis could 

limit the functional lifetime of the fusion protein.  We concluded that LacI-ubiquitin was 

impaired in its ability to bind DNA.  Furthermore, the multiple peaks observed called into 

question the stability of the system itself.  

Plasmid is isolated using Fen-ZF fusion.  To test if we could use plasmid display with ZF, we 

began with the simpler aim of purifying plasmid using only Fen-ZF.  If the plasmid isolated was 

due to ZF binding ZBD, then higher yield should result from using one with the 5xZBD versus 

without the 5xZBD.  Separate cultures of cells transformed with one or the other plasmid were  
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Table 5.1.  Plasmid isolation using ZF plasmid display.  Panning was performed using the 
antibodies listed in the second column.  The FLAG epitope tag was panned against for the first 
two experiments.  That on ubiquitin was panned against for the last three experiments.  DH5α-
Z1 transformed with the plasmids listed in the second column were grown in 5 mL cultures for 
Fen and 20 mL cultures for ubiquitin.  After plasmid isolation, new cells were transformed and 
plated.  Colonies were counted after growth.  

 

 
 

lysed using freeze-thaw.  Lysate was panned for the FLAG epitope tag of the Fen-ZF fusion.  

Plasmid was purified from the panning procedures, and new cells were transformed and plated.  

Colonies were then counted and number compared between the two plasmids.  We observed 46 

fold more colonies when the 5xZBD was present and 68 fold more when an empty pZS31 vector 

was co-transformed (Table 5.1).  We concluded that plasmid display was possible with ZF. 

 We next tested if we could recapitulate our findings panning for ubiquitin when the entire 

cascade was present.  We compared plasmid recovery with and without the E1 and E2 present.  

Only in the former case should ubiquitination occur and panning for ubiquitin result in plasmid 

Target Antibody Plasmids
Colony 
Count

Fold 
Increase

pZE12T11-Fen-FLAG-ZF 47
5xZBD-pZE12T11-Fen-FLAG-ZF 2155 46

pZE12T11-Fen-FLAG-ZF
pZS31-SMCS

13

5xZBD-pZE12T11-AvrPtoB.Ub/Fen-FLAG-ZF
pZS31-SMCS 887 68

5xZBD-pZE12T11-AvrPtoB.Ub/Fen-FLAG-ZF
pZS31-SMCS

94

5xZBD-pZE12T11-AvrPtoB.Ub/Fen-FLAG-ZF
pZS31-Uba1.Ubch5b 107 1.1

5xZBD-pZE12T11-AvrPtoB.Ub/Fen-FLAG-ZF
pZS31-SMCS

1631

5xZBD-pZE12T11-AvrPtoB.Ub/Fen-FLAG-ZF
pZS31-Uba1.Ubch5b 2670 1.6

5xZBD-pZE12T11-AvrPtoB.FLAG-Ub/Fen-ZF
pZS31-SMCS

904

5xZBD-pZE12T11-AvrPtoB.FLAG-Ub/Fen-ZF
pZS31-Uba1.Ubch5b

947 1.0

Fen

Ub

FLAG
(A00187)

FLAG
(A00187)

Ubiquitin
(ab8134)

Ubiquitin
(ab411)

FLAG
(A00187)
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isolation.  However, two different ubiquitin antibodies gave roughly the same number of 

colonies for each scenario (Table 5.1).  Because we were able to successfully isolate plasmid 

using FLAG antibodies, we moved the FLAG epitope tag to the N-terminus of ubiquitin and 

replaced that between Fen and ZF with an HA epitope tag.  However, here too there was no 

significant difference in colony count (Table 5.1).  Thus, we were unsuccessful in using plasmid 

display with ubiquitin. 

Discussion 

We incorporated the DNA binding proteins LacI and ZF into our ubiquitination system to 

create a plasmid display reporter for ubl modification.  Although the basic concept of plasmid 

display has been demonstrated with short peptides, the expansion of its repertoire to functional 

proteins has yet to be shown.  However, its simplicity proved intriguing.   

We found ubiquitination was still possible with the addition of both LacI and ZF to the 

system.  However, fusion of ubiquitin to LacI impacted its ability to bind DNA either directly 

through changes in conformation or steric hindrance or indirectly through accumulation or 

functional lifetime of the fusion.  Furthermore, anomalous populations arose which might signal 

a lack of robustness in the system.  While Cull et al found a similar impact on DNA binding in 

their system (138), our current design would need to be rethought to address the latter issue. 

We were successful in implementing a plasmid display system with a Fen-ZF fusion.  

However, panning for ubiquitinated Fen-ZF in the context of the full cascade proved 

unsuccessful despite the use of several different antibodies including that with which we 

successful isolated Fen-ZF.  The ubiquitin-Fen-ZF fusion may be incapable of binding DNA or 

outcompeted by Fen-ZF.  This explanation was not tested.   
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Plasmid display is but one of several in vitro screening technologies.  However, the 

others are not as easily implemented.  Such systems as phage and surface display rely on export 

to the periplasm, which we have previously shown is not possible with our ubiquitination system.  

Ribosome display like plasmid display utilizes an in vivo phase, but this method too proved 

unsuccessful (data not shown).  Purely in vitro methods such as in vitro compartmentalization 

seem promising especially as it eliminates the need for cellular viability, but are known to be 

fickle and were not explored in this work.    
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CHAPTER 6 

 

CONCLUSION 

 
 Post-translation modification (PTM) of proteins is a facet of the proteome beyond that 

encoded in the genome.  Protein modification by a ubiquitin-like modifier (ubl), one example of 

PTM, influences a number of cellular processes.  As study of this modification has proven 

difficult in its native eukaryotic context, pathways have been isolated for study both in vitro and 

in vivo in Escherichia coli (E. coli) (39–41, 43–45, 47, 48).  To this end we have developed two 

new pathways.  To address the shortcomings of E3-independent SUMOylation systems, we 

developed the first E3-dependent SUMOylation pathway in E. coli (42).  Because the E3 ligase 

increases efficiency of conjugation, we were able to lower expression of upstream elements – 

namely the E2 – and avoid non-physiological chain formation on target protein while 

maintaining high product yield.  We developed our own ubquitination pathway in E. coli 

important in plant defense against bacterial colonization (46).  In characterizing the system, we 

were the first to note that ubiquitination of the target protein may proceed in an E3-independent 

manner likely through auto-monoubiquitination involving a ubiquitin binding domain (UBD). 

We believed the pathways we reconstituted could be extended towards developing a 

reporter system for ubl modification.  High-throughput detection is currently limited as Western 

blotting is the only inexpensive, reliable means to confirm ubl-protein conjugation.  Such a 

system would serve as a scaffold to engineer new functionality into the pathways.  For example, 

engineering the ubiquitin E3 ligase to conjugate the K48-linked polyubiquitin chain degradation 

signal to a protein of interest could achieve rapid knockdown of protein expression.  To date 

successes in redirecting E3s have been case specific and generally require knowledge of a 
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specific interaction (49, 52–54).  Identification of small chemical inhibitors of modification 

would be possible along with their mechanism of action.  Determining substrates of a particular 

E2-E3 pair or the E2 in an E3-substrate pair could be achieved in a high-throughput fashion, a 

current challenge in the study of ubl modification (12, 22, 41).  In this way the system we hoped 

to create would provide tools for basic research such as in determining protein function and to 

developing therapeutics beneficial in cancers (53) and other diseases (55). 

We attempted to develop a reporter in E. coli for ubl modification of a target protein 

(Table 6.1).  In this way, large libraries of variants could be screened for competent ligases.  We 

adapted both in vivo and in vitro screens/selections developed for evolving non-covalent protein-

protein interactions that included split YFP, split DHFR, bacterial two-hybrid system, plasmid 

display with LacI and zinc finger proteins, and ribosome display.  All were unsuccessful.  To 

address the shortcomings of these systems, we developed our own split Cre bacterial screen to 

adapt to our ubl systems.  This screen utilized the enzymatic activity of Cre recombinase to alter 

the phenotype of cells via a two-gene reporter plasmid.  This method faithfully reported 

differences in dimerization of protein pairs and allowed for the isolation of competent binders 

based on phenotype.  While alone it showed promise as a screen, it too failed when coupled with 

the ubl pathways. 

Because ubiquitination itself gives no phenotype on which to select in a high-throughput 

fashion, the process must be coupled to another that can.  In the above cases this was achieved by 

fusing the ubl and target protein to proteins or protein fragments capable of a detectable trait 

when the former pair bonded.  Doing so always runs the risk of compromising activity (154) 

and/or expression (137, 155, 156) of the fusions.  
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 The fusions must be able to recapitulate both ubiquitination and reporter activity.  While 

the former was observed, the latter was not (Table 6.1).  Future in vitro testing could confirm 

inherent activity of the fusion proteins themselves separate from the cellular environment.  For 

example, the LacI-ub fusion seemed compromised in its ability to bind DNA based on 

expression of a reporter gene.  Panning for Fen but not ubiquitinated Fen resulted in plasmid 

isolation.  Binding for both scenarios could be assayed directly using EMSA.  Plasmid isolation 

through panning could also be confirmed.  Since ubl modification can be reconstituted in vitro, 

this aspect may also be examined such as for split proteins.  Unlike the interacting domains used 

previously, ubl modification is covalent and may have impact on the split reporter’s ability to 

fold or perform.  Steric hindrance of ubl and target pairs may also prove a limitation to this 

approach.  If in vitro experiments fail to show activity, then the basic premise behind the 

screen/selection’s design needs to be rethought.  Additionally, fusions could be evolved to 

manifest bifunctionality. 

If in vitro testing shows activity, then factors within the cellular environment may be 

culpable for inactivity.  Accumulation of ubiquitinated product may be insufficient for detectable 

activity.  In several designs modification was weak and proteins suffered degradation (Table 

6.1).  Optimization done for later screens could be applied to these instances to improve 

accumulation.  Alternatively, while modified protein may be detected, its lifetime may be too 

short relative to the time-scale needed for activity.  For example, YFP requires a maturation time 

of 0.5-2 h before fluorescence is observed (Sheu08).  If in vivo settings prove detrimental, 

completely cell-free systems currently being developed (157, 158) may provide an alternative.  

Though they still require improvement, they hold much potential.  As cell-transformations and 

growth are dispensed with, extremely large library sizes and fast turnover are possible.  When 
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coupled with technological advances in high throughput screening (159–161), these could be a 

powerful platform that combine the best of both the in vitro, eukaryotic, and prokaryotic 

environments for developing increasingly complex systems. 
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