Abstract

A method of constructing sets of orthogonal F-squares with two subsets of F -squares, i.e., two different numbers of symbols, is presented and illustrated with examples. The F-squares are of order n, and the cases for $n=2 k$, $n=3 k$, and $n=q k$ are discussed.

1. Introduction

Orthogonality of latin squares and of F -squares contains many unexplored facets. Some of the explored facets have been discussed by Hedayat, Raghavarao, and Seiden [1973], by Mandeli [1975], and by Federer [1975 a,b]. The present paper presents results along the lines of these works. In particular, it is shown how to construct a set of mutually orthogonal F-squares. The set in no way forms a complete set, but it could form the basis for constructing additional F-squares by using the procedure given in Federer [1975b].

2. Construction for $n=2 k$

Let $n=2 k$, and if a set of t orthogonal latin squares of order $n / 2$ exists, one may construct t orthogonal F-squares as follows:
$\sum_{i=1}^{t} I_{i}(n / 2) \underline{\bar{X}}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=I_{1}(n / 2) \underline{\bar{X}}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+I_{2}(n / 2) \underline{\bar{X}}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+\cdots+I_{t}(n / 2) \underline{\underline{X}}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
where $L_{i}(n / 2)$ is a latin square of order $n / 2$ and \bar{X} denotes Kronecker product. In addition, the F-square obtained by $J_{n / 2} \times n / 2 \overline{\mathrm{X}}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is orthogonal to the above $t \mathrm{~F}$-squares.

To illustrate the above, let $\mathrm{n}=10$ and $\mathrm{t}=4$ to obtain

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4
\end{array}\right]-\overline{\underline{x}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 & 1 \\
4 & 5 & 1 & 2 & 3
\end{array}\right] \hat{\underline{x}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3 \\
2 & 3 & 4 & 5 & 1 \\
5 & 1 & 2 & 3 & 4 \\
3 & 4 & 5 & 1 & 2
\end{array}\right] \overline{\underline{x}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

$$
+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4 \\
4 & 5 & 1 & 2 & 3 \\
3 & 4 & 5 & 1 & 2 \\
2 & 3 & 4 & 5 & 1
\end{array}\right] \bar{x}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

The following F-square with two symbols, i.e., $F\left(A_{1}^{5}, A_{2}^{5}\right)$, is orthogonal to the above four F-squares, $F\left(A_{1}^{2}, A_{2}^{2}, A_{3}^{2}, A_{4}^{2}, A_{5}^{2}\right)$, with

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \underline{\bar{x}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

3. Construction for $n=3 k$

If a set of t mutually orthogonal latin squares of order $k=n / 3, k \neq$ to a multiple of 3 , exists, then one may obtain a set of t mutually orthogonal F-squares with $n / 3$ symbols, i.e., $F\left(A_{1}^{3}, A_{2}^{3}, \cdots A_{n / 3}^{3}\right)$, as

$$
\sum_{i=1}^{t} I_{i}(n / 3) \bar{X}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\sum_{i=1}^{t} L_{i}(n / 3) \bar{X}_{\sim} J_{3 \times 3}
$$

where $L_{i}(n / 3)$ is a latin square of order $n / 3$ in the set of t orthogonal latin squares. In addition, the following square is orthogonal to the above t squares

$$
\begin{array}{lll}
0_{3 \times 3} & J_{3 \times 3} & J_{3 \times 3} \\
J_{3 \times 3} & 0_{3 \times 3} & J_{3 \times 3} \\
J_{3 \times 3} & J_{3 \times 3} & 0_{3 \times 3}
\end{array}
$$

where $J_{3 \times 3}$ is a 3×3 matrix of ones and $0_{3 \times 3}$ is a 3×3 matrix of zeros. This forms an $F\left(A_{1}^{2 n / 3}, A_{2}^{n / 3}\right)$-square.

If k is a multiple of 3 , say $k=3 m$, one may construct orthogonal F-squares in a simple manner. If a set of t orthogonal latin squares of order $n / 9$ exist, then one may construct orthogonal F-squares as follows:

$$
\sum_{i=1}^{t} L_{i}(n / 9) \underline{X}_{9 \times 9}
$$

where $J_{9 \times 9}$ is a matrix of order 9 with all elements equal to unity. The following F-square will be orthogonal to this set:

It will be of the type $F\left(A_{1}^{2 n / 3}, A_{2}^{n / 3}\right)$.
The procedure may be extended to the case where 3^{p} is a multiple of k in the manner described above. However, in investigations on complete sets of orthogonal F-squares, F-squares with a maximum number of symbols may be of more interest. The last procedure above results in the minimum number, $n / 3^{p}$, of symbols after removing multiples of 3 .

4. Construction for $n=q k$

Obviously, the above procedure of constructing F-square may be extended to the case where $n=q k$. If t orthogonal latin squares of order k exist, then a set of t orthogonal F-squares of order n may be constructed as follows:

$$
\sum_{i=1}^{t} I_{i}(k) \bar{X}_{\underline{q} \times q}
$$

Further, suppose that of latin squares of order q exist. Then, the following F-squares are orthogonal to the above F-squares and to each other:

$$
\sum_{i=1}^{\ell} I_{i}(q) \underline{X}_{\underline{X}} J_{k x k}
$$

An example will illustrate the above; let $n=20, t=4, \&=3$, and $q=4$. Let $I_{1}(5), L_{2}(5), L_{3}(5)$, and $I_{4}(5)$ be the four orthogonal latin squares of order 5. Furthermore, let $L_{1}(4), L_{2}(4)$, and $I_{3}(4)$ be the three orthogonal latin squares of order 4. Then the if ${ }^{\text {th }} F\left(A_{1}^{5}, A_{2}^{5}, A_{3}^{5}, A_{4}^{5}\right)$ for $j=1$, is constructed as follows:

1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
2	2	2	2	2	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	1	1	1	1	1	4	4	4	4	4	3	3	3	3	3
3	3	3	3	3	4	4	4	4	4	1	1	1	1	1	2	2	2	2	2
3	3	3	3	3	4	4	4	4	4	1	1	1	1	1	2	2	2	2	2
3	3	3	3	3	4	4	4	4	4	1	1	1	1	1	2	2	2	2	2
3	3	3	3	3	4	4	4	4	4	1	1	1	1	1	2	2	2	2	2
3	3	3	3	3	4	4	4	4	4	1	1	1	1	1	2	2	2	2	2
4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1
4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1
4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1
4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1
4	4	4	4	4	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1

Thus, there are four $F\left(A_{1}^{4}, A_{2}^{4}, A_{3}^{4}, A_{4}^{4}, A_{5}^{4}\right)$-squares plus three $F\left(A_{1}^{5}, A_{2}^{5}, A_{3}^{5}, A_{4}^{5}\right)$-squares which are mutually orthogonal.

5. Literature Cited

Federer, W. T. [1975a]. A construction of a complete set of orthogonal $F\left(A_{1}^{n / 2}, A_{2}^{n / 2}\right)$ squares of order $n=4 t$ (t an integer). $B U-564-M$ in the Mimeo Series of the Biometrics Unit, Cornell University, July.

Federer, W. T. [1975b]. On the construction of F-squares and single degree-offreedom contrasts (preliminary). BU-566-M in the Mimeo Series of the Biometrics Unit, Cornell University, July.

Hedayat, A., Raghavarao, D., and Seiden, E. [1973]. Further contributions to the theory of F-squares. BU-481-M in the Mimeo Series of the Biometrics Unit, Cornell University, August. (To appear in the Annals of Statistics.)

Mandeli, J. P. [1975]. Complete sets of orthogonal F-squares. M.S. Thesis, Cornell University, August.

