CONSTRUCTION OF ORTHOGONAL F-SQUARES OF ORDER n = qk

BU-565-M

W. T. Federer

July 1975

Abstract

A method of constructing sets of orthogonal F-squares with two subsets of F-squares, i.e., two different numbers of symbols, is presented and illustrated with examples. The F-squares are of order n, and the cases for n = 2k, n = 3k, and n = qk are discussed.

Biometrics Unit Mimeo Series, Cornell University.

ви-565-м

W. T. Federer

1. Introduction

Orthogonality of latin squares and of F-squares contains many unexplored facets. Some of the explored facets have been discussed by Hedayat, Raghavarao, and Seiden [1973], by Mandeli [1975], and by Federer [1975 a,b]. The present paper presents results along the lines of these works. In particular, it is shown how to construct a set of mutually orthogonal F-squares. The set in no way forms a complete set, but it could form the basis for constructing additional F-squares by using the procedure given in Federer [1975b].

2. Construction for n = 2k

Let n = 2k, and if a set of t orthogonal latin squares of order n/2 exists, one may construct t orthogonal F-squares as follows:

$$\sum_{i=1}^{\tau} L_{i}(n/2)\bar{X} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = L_{1}(n/2)\bar{X} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + L_{2}(n/2)\bar{X} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \cdots + L_{t}(n/2)\bar{X} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

where $L_i(n/2)$ is a latin square of order n/2 and \overline{X} denotes Kronecker product. In addition, the F-square obtained by $J_{n/2} \times n/2\overline{X}\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ is orthogonal to the above t F-squares.

To illustrate the above, let n = 10 and t = 4 to obtain

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{bmatrix} \mathbf{\bar{x}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \\ 5 & 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 & 1 \\ 4 & 5 & 1 & 2 & 3 \end{bmatrix} \mathbf{\bar{x}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \\ 2 & 3 & 4 & 5 & 1 \\ 5 & 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 1 & 2 \end{bmatrix} \mathbf{\bar{x}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \bar{\mathbf{x}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

The following F-square with two symbols, i.e., $F(A_1^5, A_2^5)$, is orthogonal to the above four F-squares, $F(A_1^2, A_2^2, A_3^2, A_4^2, A_5^2)$, with

1	1	1	1	1				
1	1	1	1	1	_	-1	01	
 1	1	l	1	1	x			
1	1	1	1	1		_0	1]	
1	l	l	1	ı				

3. Construction for n = 3k

If a set of t mutually orthogonal latin squares of order k = n/3, $k \neq$ to a multiple of 3, exists, then one may obtain a set of t mutually orthogonal F-squares with n/3 symbols, i.e., $F(A_1^3, A_2^3, \cdots A_{n/3}^3)$, as

$$\sum_{i=1}^{t} L_{i}(n/3)\bar{X} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \sum_{i=1}^{t} L_{i}(n/3)\bar{X}J_{3\times3}$$

where $L_i(n/3)$ is a latin square of order n/3 in the set of t orthogonal latin squares. In addition, the following square is orthogonal to the above t squares

$${}^{0}_{3\times3}$$
 ${}^{J}_{3\times3}$ ${}^{J}_{3\times3}$ ${}^{J}_{3\times3}$
 ${}^{J}_{3\times3}$ ${}^{0}_{3\times3}$ ${}^{J}_{3\times3}$
 ${}^{J}_{3\times3}$ ${}^{J}_{3\times3}$ ${}^{0}_{3\times3}$

where $J_{3\times3}$ is a 3 × 3 matrix of ones and $O_{3\times3}$ is a 3 × 3 matrix of zeros. This forms an $F(A_1^{2n/3}, A_2^{n/3})$ -square.

If k is a multiple of 3, say k = 3m, one may construct orthogonal F-squares in a simple manner. If a set of t orthogonal latin squares of order n/9 exist, then one may construct orthogonal F-squares as follows:

$$\sum_{i=1}^{t} L_i (n/9) \overline{X} J_{9X9}$$

where J_{9x9} is a matrix of order 9 with all elements equal to unity. The following F-square will be orthogonal to this set:

⁰9x9 ^J9x9 ^J9x9 ^J9x9 ⁰9x9 ^J9x9 ^J9x9 ^J9x9 ⁰9x9

It will be of the type $F(A_1^{2n/3}, A_2^{n/3})$.

The procedure may be extended to the case where 3^p is a multiple of k in the manner described above. However, in investigations on complete sets of orthogonal F-squares, F-squares with a maximum number of symbols may be of more interest. The last procedure above results in the minimum number, $n/3^p$, of symbols after removing multiples of 3.

4. Construction for n = qk

Obviously, the above procedure of constructing F-square may be extended to the case where n = qk. If t orthogonal latin squares of order k exist, then a set of t orthogonal F-squares of order n may be constructed as follows:

Further, suppose that g latin squares of order q exist. Then, the following F-squares are orthogonal to the above F-squares and to each other:

 $\sum_{i=1}^{\ell} L_i(q) \bar{X} J_{k \times k} \quad .$

An example will illustrate the above; let n = 20, t = 4, $\ell = 3$, and q = 4. Let $L_1(5)$, $L_2(5)$, $L_3(5)$, and $L_4(5)$ be the four orthogonal latin squares of order 5. Furthermore, let $L_1(4)$, $L_2(4)$, and $L_3(4)$ be the three orthogonal latin squares of order 4. Then the $ij^{th} F(A_1^5, A_2^5, A_3^5, A_4^5)$ for j = 1, is constructed as follows:

1	l	l	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	1	l	1	l	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
1	l	1	l	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
l	1	l	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
l	1	1	1	l	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
2	2	2	2	2	l	l	1	l	1	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	l	l	1	1	l	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	l	l	1	l	l	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	l	1	1	1	l	4	4	4	4	4	3	3	3	3	3
2	2	2	2	2	l	1	1	1	1	4	4	4	4	4	3	3	3	3	3
3	3	3	3	3	4	4	4	4	4	1	l	1	1	l	2	2	2	2	2
3 3	3 3	3 3	3 3	3 3	4 4	4 4	4 4	4 4	4 4	1 1	1 1	1 1	1 1	1 1	2 2	2 2	2 2	2 2	2 2
3 3 3	3 3 3	3 3 3	3 3 3	3 3 3	4 4 4	4 4 4	4 4 4	4 4 4	4 4 4	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2
3 3 3 3	3 3 3 3	3 3 3 3	3 3 3 3	3 3 3 3	4 4 4 4	4 4 4 4	4 4 4 4	4 4 4	4 4 4	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	2 2 2 2	2 2 2 2	2 2 2 2	2 2 2 2	2 2 2 2
3 3 3 3 3	3 3 3 3 3	3 3 3 3 3	3 3 3 3 3	3 3 3 3 3	4 4 4 4 4	4 4 4 4	4 4 4 4	4 4 4 4	4 4 4 4 4	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 2
3 3 3 3 3 4	3 3 3 3 3 4	3 3 3 3 3 4	3 3 3 3 3 4	3 3 3 3 3 4	4 4 4 4 3	4 4 4 4 4 3	4 4 4 4 3	4 4 4 4 4 3	4 4 4 4 4 3	1 1 1 1 2	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 2	1 1 1 1 1	2 2 2 2 2 1	2 2 2 2 2 1	2 2 2 2 2 1	2 2 2 2 2	2 2 2 2 2 2 1
3 3 3 3 4 4	3 3 3 3 4 4	3 3 3 3 4 4	3 3 3 3 3 4 4	3 3 3 3 3 3 4 4	4 4 4 4 3 3	4 4 4 4 3 3	4 4 4 4 3 3	4 4 4 4 3 3	4 4 4 4 3 3	1 1 1 1 2 2	1 1 1 1 2 2	1 1 1 1 2 2	1 1 1 1 2 2	1 1 1 1 2 2	2 2 2 2 2 1	2 2 2 2 1 1	2 2 2 2 2 1 1	2 2 2 2 1 1	2 2 2 2 2 1 1
3 3 3 3 4 4 4	3 3 3 3 4 4 4	3 3 3 3 3 4 4 4	3 3 3 3 3 3 4 4 4	3 3 3 3 3 4 4 4	4 4 4 3 3 3	4 4 4 4 3 3 3	4 4 4 3 3 3	4 4 4 4 3 3 3	4 4 4 4 3 3 3	1 1 1 1 2 2 2	1 1 1 2 2 2	1 1 1 2 2 2	1 1 1 2 2 2	1 1 1 1 2 2 2	2 2 2 2 1 1	2 2 2 2 1 1	2 2 2 2 1 1	2 2 2 2 1 1	2 2 2 2 2 1 1 1
3 3 3 3 4 4 4 4	3 3 3 3 4 4 4 4	3 3 3 3 4 4 4 4	3 3 3 3 4 4 4 4	3 3 3 3 4 4 4 4	4 4 4 3 3 3 3	4 4 4 3 3 3 3	4 4 4 3 3 3 3	4 4 4 3 3 3 3	4 4 4 4 3 3 3 3	1 1 1 1 2 2 2 2	1 1 1 2 2 2 2	1 1 1 2 2 2 2	1 1 1 2 2 2 2	1 1 1 2 2 2 2	2 2 2 2 1 1 1	2 2 2 2 2 1 1 1	2 2 2 2 1 1 1	2 2 2 2 1 1 1	2 2 2 2 1 1 1 1

Thus, there are four $F(A_1^4, A_2^4, A_3^4, A_4^4, A_5^4)$ -squares plus three $F(A_1^5, A_2^5, A_3^5, A_4^5)$ -squares which are mutually orthogonal.

5. Literature Cited

- Federer, W. T. [1975a]. A construction of a complete set of orthogonal $F(A_1^{n/2}, A_2^{n/2})$ squares of order n = 4t (t an integer). BU-564-M in the Mimeo Series of
 the Biometrics Unit, Cornell University, July.
- Federer, W. T. [1975b]. On the construction of F-squares and single degree-offreedom contrasts (preliminary). BU-566-M in the Mimeo Series of the Biometrics Unit, Cornell University, July.
- Hedayat, A., Raghavarao, D., and Seiden, E. [1973]. Further contributions to the theory of F-squares. BU-481-M in the Mimeo Series of the Biometrics Unit, Cornell University, August. (To appear in the Annals of Statistics.)
- Mandeli, J. P. [1975]. Complete sets of orthogonal F-squares. M.S. Thesis, Cornell University, August.