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Legislation passed in 1990 lowering the allowable sulfur dioxide emission levels 

in t.he U. S. should !educe acidity iD the Adirondack labs of New Y~k State. Fish 

species richnees, the number of speciee existiq in a lake, is one inc:licator of lake 

conditions which may be affected by acidity. 

Fish species richness in Adirondack lakes depends on a number of physical, 

chemical, and biological factors, including area, depth, acidity, and predation. Data. 

on these and other factors are available for a sample of 1166 lakes. The data are 

aualysed with the goal of quantifying the eft'ec&l of add deposition .ofter cxmtlolliDg for 

the other important factors, which include spatial loc:a.tion, to predict the likely effect 

of the 1990 legisJ&f.ion on species richness. 

Two independent analyses were carried oat: kriging with covariates and 

nonparametric regredon within the framework of aemi-panmetric additive models. 

Non parametric regression was found to provide a simpler, interpretable model for these 

data. 

The environmental conclusion based on the nonparametric regression equation is 

that sulfate deposition led.uctions in the Adirondack iegion would certainly not 

decrease species richness and could be instrumental in its increaae. 

KEY WORDS: Baclcfitting algorithm; Fish species richness; Geostatistica; 

Non parametric regression. 



1. INTRODUCTION 

Legislation (National Acid Precipitation Asaesament Program 1990) was passed 

in 1990 decreasing allowable sulCur dioxide (S02) emiasioa levels in the_ United States. 

A dec:lee8e in so2 emieim leYela ehould naul~ iD lower leYels of sulfate deposition. 

This in tum should lead to lignific:ant chaagee in the pH of 11UU1J Jakes in the 

Adirondack region of New York State (Schofield 1990). 

The goal of this analysis was to use the data gathered during the Adirondack 

Lakes Study (Kretser, Gallagher and Nicolette 1989) to investigate the effect of 

clumges in sulfate deposition on fjg apec:ies richness, which. we t&ke as the number of 

difl'eren~ species existing in a Jake. The available data aze measurements of fish apec:ies 

richness and nineteen eovariates on each of the 1166 drainage Jakes sampled. (The 

· original data set described 1469 lakes bu~ reclaimed lakes, non-draiuage Jakes aad 

those with missmg observatioos were no~ included.) The nineteen covariate& are: lake 

area (hectares), lake pH, mean lake depth (meters), lake latitude, lake longitude, lake 

elevation (meters), lake type (six types classified by drainage), concentratioos 

(micromoles per liter) of calcium, Si02 (silic:a), total aluminum, monomeric 

aluminum, dissolved organic cubon, chloride, and total phosphorus, an indicator 

variable for thermal stratification (shallOw or deep) and four indicator variables for the 

presence or absence of bogs, beavers, predacious fish, and outlet dams (which wo~ 
. ! 

prevent migration). 

An obvious and easily implemented statistical procedure to use in this situation 

is standard multiple regression analysis. A multiple regression equation was 

formulated (which did not include latitude or longitude as covariates) but a spatial 
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plot of the residuals suggested a violation of the assumption of independent errors. 

This regression equation and its problems are the topic of Section 2. Sections 3 and 4 

of this article describe two fundamentally different attempts to adequately describe 

species richness as a function of the covariate& with a more realistic model 

incorporating spatial variation. Although thele two aaalyaes are quite different, they 

are both based on models which are simple modifieatioaa of the standard regression 

model. The first analysis is based on geostatistic:s methodology (Cressie 1991) and the 

second on semi-parametric additive models (Hastie and Tibshirani 1990) and 

nonparametric regression. (See Yakowitz and Szidarovszky (1985) for an enlightening 

formal comparison of :aiging and (kernel) nonparametric regression.) Section 5 pves 

environmental and statistical conclusious. 

2. MUL'l'IPLE REGRESSION 

2.1 MODEL AND EQUA'llON 

The response variable Yi was defined by ln(species ricbn~ + 1). The first step 

in constructing a regression model was choosing a reasonable set of covariate& from the 

nineteen available. The SAS procedure RSQUARE (SAS Institute 1985), Mallows's 

Cp statistic, and previous studies of this type (Schofield 1990) were used to determine 

a reasonable subset of the covariate&. The parameters for a model with these 

covariate& and all first order interaction i terms were estimated. Each term in the 
i . 
' 

model was kept or discarded based on a hypothesis test that the true value of its 

parameter was zero. The result is the following regression model 

Yi =Po+ P1PREDi + p2 pHi+ p3AREAi + p4srui + p5nEPTHi + p6pni2 (2.1) 

+ ,B7AREAi2+ Ps(PH*PRED)i + p, (pH2*PRED)i + p10(AREA*PRED)i + ii. 



The c:ovariates in (2.I) are described in Table I. The last three c:ovariates are 

interactions and the ti are assumed to be iid N(O,a2), i=I,2, ••• ,1166. 

Least squares estimation of the parameters in (2.1) resulted in the following 

equation for the conditional expec:tatio~ E(Yilx), 

E(Yilx) = -0.778 + 0.615p~ + 9.60.to-3AR.f4 + 1.90•10-3siL~ 

+ 2.8h10-2DEPTBi -3.94•10-2pui2 -4.4ldo-5AREA.? 

for those lakes possessing predator species, and 

(2.2) 

E(Yilx) = -7.736+ 2.435p~ + 1.4354<10- 2AR.f4 + 1.90•10-3g~ 

+ 2.81•10-2DE~ -0.163p~2 -4.4h10- 5 ARE~2 

for those lakes possessing no predator species. 

The B.-square for this regression equation was 0.6958 and the mean square error (MSE) 

was 0.2I25. Standard diagnostic plots did not suggest the violation of any of the 

assumptions of model (2.1) aside from that described below. 

2.2 RESIDUALS 

The fact that longitude and latitude were not covariate& in model (2.1) is 

suspicious since it is int~tively clear that spatial location is an important piece of 

information for explaining species richness (because it is a proxy for important, but 

unavailable, covariates). This in mind, it is not surprising that the residuals from 

(2.2) are spatially correlated. Figure I shows a smoothed three-dimensional plot of 

residuals versus position of lakes. It is quite evident from this plot that there is a 
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strong northwest to southeast trend among the residuals. 

The trend in Figure 1 suggests that the assumption of independent errors of 

model (2.1) is violated. If the true errors in (2.1) are not independent, prediction 

iniervals baaed on (2.2) will not lleCe8lafily have their preec:ribed confidence levels and 
. . 

it is difficult to determine what the kue c:oafidenc:e levels are. 

Figure 1 demonstrated that spatialloc:atioll is aD important covariate (which 

agreed with our intuition), but lake latitude, lake longitude, their squares and the 

product of the two were deemed insignificant covariate& during the model building 

stage. The problem is that by using the ID:ultiple regression model. (2.1), we were 

assuming that we could describe the effects of spatiallocatioa on apec:ies ric:1mess with. 

JiDm functio~ of lake .latitude, Jake longitude, their aquans or some simple function 

of the two. This was apparently a poor 888111Dption in &his case and in order to 

correctly model the effects of spatial location, a more flexible model m~ be used. 

'Ihe development and application of srda a model is the topic of the remainder of this 

article. 

3. SPA'l1AL ANALYSIS 1: VARIOGB.AMS AND KRIGING 

3.1 MODEL 

The assumption of iid errors in model (2.1) was umeasonable because the 

residuals of equa~on (2.2) were spatially correlated. One way to improve on (2.1).is to 

abandon the iid errors assumption and model the correlation structure of the residuals. 

The modified model is 
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vi= Po+ p1PREDi + p2pHi + p3AREAi + p4siLii + p5DEPTHi + p6pHi2 (3.1) 

+ p7AREAi2 + p8(pH•PRED)j + p9(pH2•PRED)j + p10(AREA•PRED)j + Z(~) 

which with obvious notation becomea 

(3.2) 

where .. , i=1,2, ••• ,1166, are vectors representing the location of the lakes in R3• The 

c:onelation structure of the stochastic process {Z(~) : i=1,2, ••. ,1166} is characterized by 

the variogram (Cressie 1989) 

2'Y(d) = Var(Z("i_)- Z(~))_ for i,j=1,2,-.,1166 (3.3) 

where dis the Euclidian distance betweea lakes at "i and,. The variogram in (3.3) is 

unknown and is the~efore a parameter as well as a univariate function. It is also 

isotropic, depending only on the distance between lakes and not on direction. It is 

further assumed that the Z's are normal and E(Z( .. ))=O which along with (3.3) makes 

the errors a zero-mean intrinsically stationary process. 

3.2 ESTIMATION 

If we assume that there exists a covariance function , C( · ), on the error process 

defined as 

C(d) = Cov(Z(~), Z(&_j)) for i, j=1,2, •.. ,1166 (3.4) 
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then 

2'Y(d) = 2C(O)- 2C(d). (3.5) 

If the variogram function were knowu, (3.5) could be uaed to c:alculate the covariance 

matrix of the residual process and fJ could in tum be estimated using generalized least 

squares. Neuman and Jacobson (1984) suggest using an estimate of the variogram, 

n. ), to calculate fj in this fashion and then iterating between 9(. ) and fj until 

convergence. The first estimate of the variogram is calculated using the residuals from 

model (2.2), i.e. 91 E 0, ii1= P of (2.2). 

A valid variogram must be a negative-definite fundion (Feller 1971, Cressie 

1990). Estimates calculated using, say, the «classic:• methNi-of-moments estimator are 

not necessarily negative-definite. Kriging (Cressie 1989) and the estimation technique 

of Neuman and Jacobson both require a negative-definite variogram estimate. It is 

therefore convenient to fit a member of a parametric family of variograms to the 

initial variogram estimate in order to guarantee negative-definiteness. 

One goal of this analysis was to construct prediction intervals for species 

richness of a prespecified set of lakes under different sulfate reduction scenarios. 

Standard error calculations (required for prediction intervals) for the iterative method 

of Neuman and Jacobson are difficult to derive. 
I 

To avoid this problem, the Neuman and Jacobson technique was applied to half 

of the data (selected at random) to get an estimate of the variogram of the error 

process. Within the algorithm, variogram estimates were all calculated using the 

method-of-moments estimator and exponential variogram models were fitted to those 
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estimates using the weighted least squares method given in Cressie (1985). The 

convergence criterion was that no element of iJ change by more than one half of one 

percent between two iterations. Convergence required four iterations and the resulting 

variogram was 

27(d) = 0.115 + 0.321{ 1- exp{1jt)} ford~ 0. (3.6) 

Figure 2 shows this variogram and the method-of-moments estimate from which it was 

fit. 

Let S represent the set of data points not used in calcul&ting (3.6). Kriging 

(Cressie 1989) was then used to predict the values of the error process for the data in 

S, call these Z(ll_j)• j E S. The data in S were then transformed by subtracting these 

predictions from the corresponding responses (Yi- Z(~)). We then assumed that the 

transformed data (in S) followed the original iid error model {2.1). This assumption 

allowed parameter estimation via standard least squares. Figure 3 is a smoothed 

three-dimensional plot of the resulting residuals. A trend similar to but less severe 

than that in Figure 1 is apparent. 

The fact that this method failed to remove the spatial correlation of the 

residuals (in S) led us to suspect that the assumption of an isotropic variogram was 

invalid. To check the validity of the isotropic assumption, the longitude-latitude plane 

was divided into four directional classes and separate sample variograms of the initial 

residuals (from model (2.2)) were calculated for each. A pair of residuals was assigned 

to the first directional class if the angle (polar coordinates) of the vector through the 

two points was in the interval (112.5" , 157.5"). The second class contained angles in 

7 



the interval {67.5•, 112.5j. Similarly, the third and fourth classes possessed angles in 

the intervals (22.5•, 67.5j and (157.s-, 202.5"), respectively. Exponential variograms 

were fit to each of the resulting variogram estimates. Although no formal comparison 

was made, these variograms appear to be quite difl'erent. Figure 4 .ahowa all four 

exponential models. 'l1le isotropic uiumpt.ion does not appear to be reasonable. This 

implies that the above analysis could be improved b7 abaadooiDg the isotropic 

assumption and using an anisotropic parametric variogram model throughout. JJ. 

parametric anisotropic variogram models and the fitting of such models to variogram 

estimates are not well developed in the geostatistics literature this topic was_ ~ot 

pursued further. 

4. SPATIAL ANALYSIS U: NONPAB.AMETRIC REGRESSION 

4.1 MODEL 

Modeling the correlation strudule of the erron via a stochastic process is one 

way to compensate for the absence of spatial location in the list of covariates. Another 

way is to allow nonlinear covariate effects. A nonparametric term was added to model 

(2.2) so that species richness could be modeled as a (not necessarily linear) function of 

spatial l~tion. The updated model is a semi-parametric additive modei (Hastie and 

Tibshirani 1990) 

+ p7AREAi2+ p8(pH•PREDh + p9(pH2•PRED)i (4.1) 

+ ,B10(AREA•PRED)i + g(LATii, LONGi) + ci 
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which with obvious notation becomes 

(4.2) 

where £i ,.. iid. N(O,~), LA'i'I and LONG repreeea~ the lake latitude and lake 

longitude in decimal degrees and the function & is U8UIIled to be some 8DlOOth 

bivariate function of lake latitude and Jake longitude. 

4.2 ESTIMATION 

Parameter estimation for additive models can be accomplished u.ing the 

baclditting algorithm (Hastie and Tibshiraui 1990). Bivariate locally-weighted 

quadratic regression (Cleveland 1988), which is a straightforward extension of 

univariate LOESS (Cleveland 1979), was used to estimate the 11011-linear component at 

each step. A span of 127 was selected using cross-validation on the residuals from the 

original least squares estimate. 

The fact that bivariate locally-weighted quadratic regression (BLQR) is a linear 

estimator affords two things: i) the baclditting algorithm is guaranteed to converge for 

semi-pa:rametric models when linear estimators are used and ii) computer intensive 

iteration is not necessary as the final estimates of fJ and g can be aolved for explicitly 

(Hastie and Tibshirani 1990). Put H1= X(xtxr1xt and let~ be the hjat matrix of 
i . 

the BLQR technique. Then 

and 
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U SEMI-PARAMETRIC REGRESSION EQUATION 

Eq~ons (U) and (4.-4) were ued to c:alculate the fiDal estimates of fJ and g. 

The result was the following semi-parametric regreasioa eqaatioD 

EYi = 0.650 + 0.152pHi + 9.656.to-3AREAi + 1.649•10-3SIL~ 

+ 3.349•10- 2DEPTHi- -4.690•10- 3pHi2- 4.441•10- 5 ARE~2 

+ g(LAT~,LONGi) 

for those lakes poasessii1g predator specia, a.td 

EYi = -5.913 + 1.87lpHi + 1.«0•10-2~ + 1.649•10-3sn,~ 

+ 3.349.t0-2DE~- 0.122pHi2 - 4.44h10 -5 ~2 

+ g(LA~,L0NGi) 

for those lakes not possessing predator species. 

(-4.5) 

The R-square for this regression was 0.7560 and the MSE was 0.1826. Note that these 

regression coefficients are nearly identical to those in (2.2). Standard regression 

diagnostic plots did not suggest the violation of the additive model a•umption that fi 

- iid N(O,u2). Figure 5 is a ~ntour plot showing g. This plot shows that g is 
I 
i 

attempting to model the spatial correlation shown in Figure 1. 

An estimate of the error degrees of freedom is required in the calculation of 

prediction intervals. It is not at all clear how many degrees of freedom should be 

associated with the function g. We take as the definition of degrees of freedom of a 
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linear smoother the trace of its hat matrix (Hastie and Tibshirani 1990). The trace of 

the final BLQR hat matrix (see (4.3)) was 76 whlle that of the final multiple linear 

regression hat matrix (see (4.4)) was 11. 

Figure 8 shows f.llllOOthecl three-dimeasioa plot of aew resid~ (from (4.6)) 

versus position of labs. A eompariloa of this plot with the plot in Y~pN 1 auggests 

that the spatial correlation of the residuals baa been eliminated. The semi-parametric 

equation (4.5) is therefore a satisfactory equation on which to base the desired 

prediction intervals. 

4.4 PREDIC'l'ION INTERVAlS AND BOX PLOT 

The legislation ctiscuseed ·in the intiOduction will most likely lead to a 50% 

sulfate deposition ~eduction in the Adirondack ftgion over the next cou.ple of years. A 

model !elating su1fate deposition to lake pH (Schofield 1990) was used to medict the 

pH of 20 prespecified lakes for the 609(. sulfate deposit!on reduction sceaario. These 

predictions were then used in conjunction with (4.5) to form prediction intervals (PI's) 

for the species richness of those twenty lakes. (Prediction intervals were also computed 

for 4 other scenarios (Hobert 1992).) Table 2 shows these PI's, for seven lakes, along 

with corresponding PI's for. a CU.o change" scenario and Pra baaed on equation .(2.2). 

(Acidity for the llno change" scenario was predicted using the Schofield model.) Some 

environmental implications of the results in Table 2 aie discussed in Section 5. 

Pointwise standard error calculations for the Pis in Table 2 are straightforward 

since all estimates are linear (conditional on the bandwidth). 

The PI's above tell us nothing of the predicted overall reaction of richness to a 

given decrease in sulfate deposition. Figure 7 attempts to provide a picture of this 
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"overall reaction" by concentrating on the differences (for all the lakes) in predicted 

richness for a 50% decrease in sulfate deposition and a 0% decrease (no change) in 

sulfate deposition. Heuristically, Figure 7 shows that a 50% decrease in sulfate 

deposition would increase the ric:hneas of III8IIY of the labs and not. effect the rest. 

The reason for ~ is that IIUifate cleposiUoa Jeductioaa e8'ec:t lakes with pH between 

4.5 and 6.5 much more than lakes with pH outside UW raqe (Schofield 1990). 

5. DISCUSSION 

5.1 STATISTICAL ISSUES 

A reaearcher using the nonparamekic regM!IIioD method must make two 

(subjective) decisicms: which data mnoolher· to uee aad which bandwidth aelection 

technique to employ. Correspondingly, a researcher using the geostatistic:al method 

must pick a parametric variogram family for aae in ~ ancl she must also decide 

on some convergeace criterion for the algorithm of Neuman and Jacobeon. Conditional 

on these two choices, two people using the nonparametric regression technique will 

necessarily get the same answer. This is not true for the geostatistical method, 

however, due to the researcher specific choices required during the calculation of the 

sample variogram. The nonparametric regression method is conceptually simpler and 

provides a picture of the spatial effects which is more iustructive than a picture of the 

correlation structure of the residuals. 

This leads to the conclusion that even if the use of an anisotropic parametric 

variogram model guaranteed the success of the geostatistical method, the 

nonparametric regression method would still be preferred. 

Based on a formal comparison of kriging and (kernel) nonparametric regression 
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(without covariates), Yakowitz and Szidarovszky (1985) concluded that nonparametric 

regression is as efficient as kriging when the assumptions required for kriging to 

provide consistent error estimates are true (one of these being that the true variogram 

is known) and that nonparametric regression is either as efficient or . more so when 

those assumptions are not true. The extent to which nonparametric regression is more 

efficient in the later case depends on the severity of the violations of the assumptions. 

5.2 ENVIRONMENTAL ISSUES 

Figure 7 suggests that a 50% reduction in sulfate deposition would have a 

positive effect on (would increase) the species richness of lakes with low current pH's (4 

to 6) and have essentially no effect on the richness of those lakes with current pH's 

outside this range. Although the prediction intervals in Table 2 are quite wide, the 

fact that all of the predictions of species ridmesa under the 50% reduction scenario are 

greater than the corresponding current species richness and Figure 7 suggest strongly 

that a 50% reduction in sulfate deposition in the Adirondack region would certainly 

not be detrimental to the species richness and could be quite instrumental in raising it. 
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Covariate 

PRED 

pH 

AREA 

"SILl 

DEPTH 

Table 1: Description of the Covariates in Model (2.1). 

Description 

Indicator of presence or abeence of 

predacious fish species 

pH of the lake 

Area of the lake 

Concentration of silica in the lake 

Mean depth of the lake 

Units of Measurment 

pH units (0-14) 

hectares 

micromoles/liter 

meters 



Table 2 : For each of the seven lakes, RICHNESS is the current species richness 

and ESTIMATE is Y based on model (4.10). OBSERVED pH is the 

current pH of the lake. The last three columns provide information 

coneerning the aforementioned two aceo.arios. The first row under these 

colUDliiS represents the 41ao cbauge" eceaado aad the aecond 

LAim 

Gull 

Colden 

Silver 

Dollar 

repreaents the 50% reduction ecenario. The third lOW is based on the 

original multiple regression equation (2.2). NEW pH is the predicted pH 

for the corresponding change in sulfate deposition, PREDICTION is the 

predicted richness for that pH and 95% PI is a 95% prediction interval 

for that estimate. 

OBSERVED 

RICHNESS »1! ESTIMATE 

0 5.02 '1.101 

0 5.07 0.984 

0 4.29 0.026 

1m! 

d. 

5.54 

5.84 

5.84 

5.34 

5.91 

5.91 

4.32 

4.51 

4.51 

PREDICTION 

1.852 

2.302 

3.600 

1.336 

2.113 

3.2~2 

0.052 

0.224 

0.043 

uu 
(0.212 t 5.714) 

(0.403 ' 6.773) 

(0.860 ' 10.382) 

(0 t 4.526) 

(0.317 t 6.362) 

(0:702 .t 9.421) 

(0 t 1.474) 

(0 ' 1.876) 

(0 1 1.580) 



' . 

LAKE 

Pigeon 

Little 

Simon 

Negro 

OBSERVED 

RlCHNESS 1!B. ESTIMATE 

0 4.72 0.306 

4 5.66 5.860 

6 6.08 2.337 

8 5.98 4.439 

5.13 

5.23 

5.73 

5.73 

4.98 

s.so 

5.50 

5.83 

6.31 

6.31 

PREPICTION 

0.297 

0.722 

1.191 

4.421 

6.098 

6.600 

4.095 

5.160 

6.963 

~u 

(0 '2.039) 

(0 t 3.034) 

(O,.U16) 

(1.248' 12.073) 

{1.947 ' 16.093) 

(2.0« t 17.957) 

(0.306 ~ 6.489) 

(0.781 ' 9.217) 

(0.312 ' 7.021) 

(1.159 ' 11.021) 

(1.610 ' 13.538) 

(2.210 ' 18.757) 



Residuals 

: 

latitude 

longitude 

~ 1: Smoothed three-dimensional contour plot of the 1166 residuals 

from the regression equation without a spatial component (2.2) 

versus position of the lakes corresponding to the residuals. The 

view is from southeast (bottom right) to northwest (top left). 



Variogram 
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Figure 2: Sample and fitted variograms of residuals from the final 

iteration. The solid line represents the sample variogram. 
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Residuals 

longitude 
latitude 

Figure 3: Smoothed three-dimensional contour plot of the 583 residuals 

from the regression equation with kriging es_timate of covariance 

versus position of the lakes corresponding tJ the residuals. 
I 
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The view is from southeast (bottom right) to northwest (top left). 
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Figure 4: nulectional exponential variograms. The solid line corresponds to 

class 1. The large dashes and the small dashes correspond to 

classes 2 and 4,,respectively. 
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Figure 5: Smoothed three-dimensional contour plot of g, the spatial smooth, 

from regression equation ( 4.5) versus position of the lakes 

corresponding to each value in g. The view is from southeast 

(bottom right) to northwest (top left). 
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Figure 6: Smoothed three-dimensional contour plot of the 1166 residuals 

from regression equation with nonparametric spatial component 

( 4.5) versus position of the lakes corresponding to the residuals. 

The view is from southeast (bottom right) to northwest (top left). 
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Figure 7:. Boxplots of the differences between predicted species richness · 

for a 50% sulfate reduction and predicted species qchness for 
I 

a 0% sulfate reduction for each of the 1166 lakes. trhe data are 

grouped by predicted pH for a 0% sulfate reduction. (These are 

the pH's in the "no change" scenario of Table 2). 


