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Abstract

Legislation passed in 1990 lowering the allowable sulfur dioxide emission levels
in the U. S. should reduce acidity in the Adirondack lakes of New York State. Fish
species richness, the number of species existing in & lake, s one indicator of lake
conditions which may be affected by acidity.

Fish species richneé in Adirondack lakes depends on a number of physical, -
chemical, and biological factors, including area, depth, acidity, and predation. Data
on these and other factors are available for a sample of 1166 lakes. The data are
analysed with the goal of quantifying the effects of acid deposition ifter controlling for
the other important i'actots, ivhich include spatial location, to predict the likely effect
of the 1990 legislation on species richness.

Two independent analyses were carried out: kriging with covariates and
nonparametric regrescion within the framework of semi-parametric additive models.
Nonparametric regression was found to provide a simpler, interpretable model for these
data.

The environmental conclusion based on the nonparametric regression equation is
that sulfate deposition reductions in the Adirondack region would certainly not

decrease species richness and could be instrumental in its increase.

KEY WORDS: Backfitting algorithm; Fish species richness; Geostatistics;

Nonparametric regression.



1. INTRODUCTION

Legislation (National Acid Precipitation Assessment Program 1990) was passed
in 1990 decreasing allowable sulfur dioxide (SO) emission levels in the United States.
A decrease in SO, emission levels should result in lower levels of sulfate deposition.
This in turn should lead to significant changes in the pH of many lakes in the
Adirondack region of New York State (Schofield 1990). |

The goal of this analysis was to use the data gathered during the Adirondack
Lakes Study (Kretser, Gallagher and Nicolette 1989) to investigate the effect of
changes in suifate deposition on fish species richness, which we take as the number of
Mspecieséxisﬁnginahke. ‘The available data are measurements of fish species
richnw; and nineteen covariates on each of the 1166 drainage lakes sampled. (The

- original data set described 1469 lakes but reclaimed lakes, non-drainage lakes and
those with missing observations were not included.) The nineteen covariates are: l;ke
area (hectares), lake pH, mean lake depth (meters), lake latitude, lake longitude, lake
elevation (meters), lake type (six types classified by drainage), concentrations
(micromoles per liter) of calcium, SiOg (silica), total aluminum, monomeric
aluminum, dissolved organic carbon, chloride, and total phosphorus, an indicator
variable for thermal stratification (shallow or &ep) and four indicator variables for the
presence or absence of bogs, beavers, predacious fish, and outlet dams_ (which won}xld
prevent migration). |

An obvious and easily implemented statistical procedure to use in this situation
is standard multiple regression analysis. A multiple regression equation was

formulated (which did not include latitude or longitude as covariates) but a spatial



plot of the residuals suggested a violation of the assumption of independent errors.
This regression equation and its problems are the topic of Section 2. Sections 3 and 4
of this article describe two fundamentally different attempts to adequately describe
species richness as a function of the covariates with a more realistic model
incorporating spatial variation. Although these two analyses are quite different, they
are both based on models which are simple modifications of the standard regression
model. The first analysis is based on geostatistics methodology (Cressie 1991) and the -
second on semi-parametric additive models (Hastie and Tibshirani 1990) and
nonparametric regression. (See Yakowitz and Szidarovszky (1985) for an enlightening
formal comparison of iriging and (kernel) nonparametric regression.) Section § gives

environmental and statistical conclusions.

2. MULTIPLE REGRESSION

2.1 MODEL AND EQUATION

The response variable Y; was defined by In(species richness; + 1). The first step
in constructing a r;agrwsion model was choosing a reasonable set of covariates from the
nineteen available. The SAS procedure RSQUARE (SAS Institute 1985), Mallows’s
Cp statistic, and previous studies of this type (Schofield 1990) were used to determine
a reasonable subset of the covariates. The parameters for a model with these
covariates and all first order interacﬁonéterms were estimated. Each term in the
model was kept or discarded based on a. hypothesis test that the true value of its

parameter was zero. The result is the following regression model

_ 2
Y; = By + B{PRED; + S, pH, + B3AREA, + B,SILL + B DEPTH, + f¢pH2 (2.1)

+ A7AREA.2+ Bg(pH+PRED), + fa (PH2+PRED), + §,((AREA+PRED), + ;.



The covariates in (2.1) are described in Table 1. The last three covariates are
interactions and the €; are assumed to be iid N(O,az), i=1,2,...,1166.
Least squares estimation of the parameters in (2.1) resulted in the following

equation for the conditional expectation, E(Y;|x),

E(Y;}x) = -0.778 + 0.615pH; + 9.60+10~ SAREA; + 1.90+10 ~ 3SILI,
+ 2.81+10 ~ 2DEPTH; -3.94¢10 ~ 2pH.2 -4.41410 ~ SAREA.?
for those lakes possessing predator species, and
(2.2)
E(Y;lx) = -7.736+ 2.435pH; + 143510 ~ 2AREA, + 1.90+10 ~ 3SILJ,
4281610 2DEPTH,; -0.163pH,? -4.41+10 ~ SAREA?

for those lakes possessing no predator species.

The R-square for this regression equaﬁon was 0.6958 and the mean square error (MSE)
was 0.2125. Standard diagnostic plots did not suggest the violation of any of the

assumptions of model (2.1) aside from that described below.

2.2 RESIDUALS

The fact that longitude and latitude were not covariates in model (2.1) is
suspicious since it is intuitively clear that spatial location is an important piece of
information for explaining species richness (because it is a proxy for important, but
unavailable, covariates). This in mind, it is not surprising that the residuals from
(2.2) are spatially correlated. Figure 1 shows a smoothed three-dimensional plot of

residuals versus position of lakes. It is quite evident from this plot that there is a



strong northwest to southeast trend among the residuals.

The trend in Figure 1 suggests that the assumption of independent errors of
model (2.1) is viol&téd. If the true errors in (2.1) are not independent, prediction
mtervals based on (2.2) will not necessarily have their prescribed confidence levels and
it is difficult to determine what the true confidence levels are. '

Figure 1 dmonstn@ that spatial location is an important covariate (which
agreed with our intuition), but lake latitude, lake longitude, their squares and the
product of the two were deemed insignificant covariates during the model building
stage. The problem is that by using the multiple regression model (2.1), we were
assuming that we could describe the effects of spatial location on species richness with
linear functions of lake latitude, lake longitude, their squares or some simple function
of the two. This was apparently a poor assumption in this case and in order to
correctly model the effects of spatial location, a more flexible model must be used.
The development and applic;tion of svch a model is the topic of the remainder of this

article.

3. SPATIAL ANALYSIS I: VARIOGRAMS AND KRIGING
3.1 MODEL
The assumption of iid errors in model (2.1) was unreasonable because the
residuals of equation (2.2) were spatially correlated. One way to improve on (2.1) is to
abandon the iid errors assumption and model the correlation structure of the residuals.

The modified model is



+ B7AREA.2 4 Bo(pH+PRED), + fo(pH2¢PRED), + f;o(AREA+PREDY), + Z(s;)

which with obvious notation becomes

Y; = x;8 + Z(s) 3:2)

where 8, i=1,2,...,1166, are vectors representing the location of the lakes in %®3. The

correlation structure of the stochastic process {Z(s;) : i=1,2,...,1166} is characterized by

the variogram (Cressie 1989)

27(d) = Vor(Z(g) - Z(x)). for i, j=1,2,..,1166 (33)

where d is the Euclidian distance between lakes at s and % The variogram in (3.3) is
unknown and is therefore a parameter as well as a univariate function. It is also
isotropic, depending only on the distance between lakes and not on direction. It is

further assumed that the Z’s are normal and E(Z(s;))=0 which along with (3.3) makes

the errors a zero-mean intrinsically stationary process.

3.2 ESTIMATION

..
1
i
!

If we assume that there exists a covariance function , C(-), on the error pioows

defined as

C(d) = Cov(Z(s;), Z(s;)) for i, j=1,2,...,1166 (3.4)



then

21(d) = 2C(0) - 2C(d). (3.5)

If the variogram function were known, (3.5) could be used to calculate the covariance
matrix of the residual process and £ could in turn be estimated using generalized least
squares. Neuman and Jacobson (1984) suggest using an estimate of the variogram,
3(+), to calculate B in this fashion and then iterating between 5(-) and f until
convergence. The first estimate of the variogram is calculated using the residuals from
model (2.2), i.e. 7, =0, B;= B of (2.2).

A valid variogram must be a negative-definite function (Feller 1971, Cressie
1990). Estimates calculated using, say, the “classic® methnd-of-moments estimator are
not necessarily negative-definite. Kriging (Cressie 1989) and the estimation technique
of Neuman and Jacobson both require a negative-definite variogram estimate. It is
therefore convenient to fit a member of a parametric family of variograms to the
initial variogram estimate in order to guarantee negative-definiteness.

One goal of this analysis was to construct prediction intervals for species
richness of a prespecified set of lakes under different sulfate reduction scenarios.
Standard error calculations (required for prediction intervals) for the iterative method

“of Neuman and Jacobson are difficult to <;ierive.

To avoid this problem, the Neuma;n and Jacobson technique was applied to half
of the data (selected at random) to get an estimate of the variogram of the error
process. Within the algorithm, variogram estimates were all calculated using the

method-of-moments estimator and exponential variogram models were fitted to those
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estimates using the weighted least squares method given in Cressie (1985). The
convergence criterion was that no element of 3 change by more than one half of one
percent between two iterations. Convergence required four iterations and the resulting

variogram was
25(d) = 0.115 + 0.321{1 - exp(f-g-f)} for d> 0. (3.6)

Figure 2 shows this variogram and the method-of-moments estimate from which it was
fit.

Let S represent the set of data points not used in calculating (3.6). Kriging
(Cressie 1989) was then used to predict the values of the error process for the data in
S, call these 2(aj). jES. The data in S were then transformed by subtracting these
predictions from the corresponding responses (yi - 2(5)) We then assumed that the
transformed data (in S) followed the original iid error model {2.1). This assumption
allowed parameter estimation via standard least squares. Figure 3 is a smoothed
three-dimensional plot of the resulting residuals. A trend similar to but less severe
than that in Figure 1 is apparent. A

The fact that this method failed to remove the spatial correlation of the
residuals (in S) led us to suspect that the assumption of an isotropic variogram was
invalid. To check the validity of the isotropic assumption, the longitude-latitude plane
was divided into four directional classes and separate sample variograms of the initial
residuals (from model (2.2)) were calculated for each. A pair of residuals was assigned
to the first directional class if the angle (polar coordinates) of the vector through the

two points was in the interval (112.5° , 157.5°). The second class contained angles in



the interval (67.5°, 112.5"). Similarly, the third and fourth classes possessed angles in
the intervals (22.5°, 67.5") and (157.5° , 202.5"), respectively. Exponential variograms
were fit to each of the resulting variogram estimates. Although no formal comparison
was made, these variograms appear to be quite different. Figure 4 shows all four
exponential models. The isotropic assumption does not appear to be reasonable. This
implies that the above analysis could be improved by abendoning the isotropic
assumption and using an anisotropic parametric variogram model throughout. As
parametric anisotropic variogram models and the fitting of such models to variogram
estimates are not well developed in the geostatistics literature this topic was not

pursued further.

4. SPATIAL ANALYSIS I: NONPARAMETRIC REGRESSION
4.1 MODEL
Modeling the correiation structure of the errors via a stochastic process is one
way to compensate for the absence of spatial location in the list of covariates. Another
way is to allow nonlinear covariate effects. A nonparametric term was added to model
(2.2) so that species richness could be modeled as a (not necessarily linear) function of
spatial location. The updated model is a semi-parametric additive model (Hastie and

Tibshirani 1950)

- 2
Y; = B + BPRED, + B, pH; + S3AREA, + B,SILL + SzDEPTH; + f¢pH,
+ B7AREA.2+ Bg(pH+PRED), + Bo(pH2+PRED), (4.1)

+ B1o(AREA+PRED), + g(LATIL;, LONG,) + ¢



which with obvious notation becomes
Yi = ﬁﬁ + g(LATIi, LONGi) +¢ (4.2)

where ¢ ~ iid N(0,02), LATI and LONG represent the lake latitude and lake
longitude in decimal degrees and the function g is assumed to be some smooth

bivariate function of lake latitude and lake longitude.

4.2 ESTIMATION

Parameter estimation for additive models can be accomplished Uaing the
backfitting algorithm (Hastie and Tibshirani 1990). Bivariate locally-weighted
quadratic regression (Cleveland 1988), which is a straightforward extension of
univariate LOESS (Cleveland 1979), was used to estimate the non-linear component at
each step. A span of 127 was selected using cross-validation on the residuals from the
original least squares estimate.

The fact that bivariate locally-weighted quadratic regression (BLQR) is a linear
estimator affords two things: i) the backfitting algorithm is guaranteed to converge for
'semi-parametric models when linear estimators are used and ii) computer intensive
iteration is not necessary as the final estimates of B and g can be solved for explicitly
(Hastie and Tibshirani 1990). Put H;= X(X'X)"1X" and let Hy be the hat matrix of

the BLQR technique. Then
glo0) = (14 Ho(I- HyHy) ~1 - (1- BB~ 1y (4.3)

and



Blo0) = (xtx) = 1xY (1- HyH)) "1 - H(I- ByHy) " 1)Y.  (44)

43 SEMI-PARAMETRIC REGRESSION EQUATION
Equations (4.3) and (4.4) were used to calculate the final estimates of £ and g.

The result was the following mm-panmetnc regression equation

EY; = 0.650 + 0.152pH; + 9.656+10 ~SAREA; + 1.649+10 ~ 3SILL,
+ 3.349+10 ~ 2DEPTH, - 4.690¢10 ~ 3pH,2 - 4.441+10 ~ SAREA?
+ §(LATL,LONG;)
for those lakes possessing predator species, aud
(4.5)

EY; = -5.913 + 1.871pH, + 144010 ~ 2AREA, + 1.649+10 ~ 35ILL,

+ 3.349+10 ~ 2DEPTH, - 0.122pH,2 - 4.441410 ~ SAREA?

+ B(LATIL,LONG;)

for those lakes not possessing predator species.

The R-square for this regression was 0.7560 and the MSE was 0.1826. Note that these
regression coefficients are nearly identical to those in (2.2). Standard regression
diagnostic plots did not suggest the violation of the additive model assumptién that ¢,
~ iid N(O,o'z). Figure § is a dl)ntour plot showing g. This plot shows that g is
attempting to model the spatial co'rrelation shown in Figure 1.

An estimate of the error degrees of freedom is required in tile calculation of
prediction intervals. It is not at all clear how many degrees of freedom should be

associated with the function g. We take as the definition of degrees of freedom of a
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linear smoother the trace of its hat matrix (Hastie and Tibshirani 1990). The trace of
the final BLQR hat matrix (see (4.3)) was 75 while that of the final multiple linear
regression hat matrix (see (4.4)) was 11. |

Figure 6 shows a smoothed three-dimensional plot of new residuals (from (4.5))
versus position of lakes. A comparison of this plot with the plot in Figure 1 suggests
that the spatial correlation of the residuals lms been eliminated. The semi-parametric
equation (4.5) is therefore a satisfactory equation on which to base the desired

prediction intervals.

4.4 PREDICTION INTERVALS AND BOX PLOT

The legislation discussed in the introduction will most likely lead tc & $50%
sulfate deposition reduction in the Adirondack region over the next couple of years. A
model relating sulfate deposition to lake pH (Schofield 1990) was used to predict the
PH of 20 prespecified lakes for the 50% sulfate deposition reduction scenario. These
predictions were then used in conjunction with (4.5) to form prediction intervals (PI’s)
for the species richness of those twenty lakes. (Prediction intervals were also computed
for 4 other scenarios (Hobert 1992).) Table 2 showg these PI’s, for seven lakes, along
with corresponding PI's for. a “no change” scenario and PI's based on equation (2.2).
(Acidity for the “no change” scenario was pr.edicted using the Schofield modei.) Some
environmental implications of the results in Table 2 are discussed in Section 5.

Pointwise standard error calculations for the PIs in Table 2 are st.ra.ightfofwatd
since all estimates are linear (conditional on the bandwidth).

The PI’s above tell us nothing of the predicted overall reaction of richness to a

given decrease in sulfate deposition. Figure 7 attempts to provide a picture of this
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“overall reaction” by concentrating on the differences (for all the lakes) in predicted
richness for a 50% decrease in sulfate deposition and a 0% decrease (no change) in
sulfate deposition. Heuristically, Figure 7‘ shows that a 50% decrease in sulfate
deposition would increase the richness of many of the lakes and not effect the rest.
The reason for this is that sulfate deposition reductions effect lakes with pH between
4.5 and 6.5 much more than lakes with pH outside that range (Schofield .1990).

5. DISCUSSION

5.1 STATISTICAL ISSUES

A researcher using the nonparametric regression method must make two
(subjective) decisions: which data smoother to nse and which bandwidth selection
technique to empley. Correspondingly, a researcher using the geostatistical method
must pick a parametric variogram family for use in kriging and she must also decide
on some convergeice criterion for the algorithm of Nenman and Jacobson. Conditional
on these two choices, two people using the nonparametric regression technique will
necessarily get the same answer. This is not true for the geostatistical method,
however, due to the researcher specific choices required during the calculation of the
sample variogram. The nonparametric regression method is conceptually simpler and -
provides a pici,ure of the spatial effects which is more instructive than a picture of the
correlation structure of the residuals.

This leads to the conclusion that even if the use of an anisotropic parametric
variogram model guaranteed the success of the geostatistical method, the
nonparametric regression method would still be preferred.

Based on a formal comparison of kriging and (kernel) nonparametric regression

12



(without covariates), Yakowitz and Szidarovszky (1985) concluded that nonparametric
regression is as efficient as kriging when the assumptions required for kriging to
provide consistent error estimates are true (one of these being that the true variogram
is known) and that nonparametric regression is either as efficient or more so when
those assumptions are not true. The extent to which nonparametric Won is more

efficient in the later case depends on the severity of the violations of the assumptions.

5.2 ENVIRONMENTAL ISSUES

Figure 7 suggests that a 50% reduction in sulfate deposition would have a
positive effect on (would increase) the species richness of lakes with low current pH’s (4
to 6) and have essentially no effect on the richness of those lakes with current pH’s
outside this range. Although the prediction intervals in Table 2 are quiie wide, the
fact that all of the predictions of speéies richness under the 50% reduction scenario are
.greater than the corresponding current spt;cies richness and Figure 7 suggest strongly
that a 50% reduction in sulfate deposition in the Adirondack region would certainly

not be detrimental to the species richness and could be quite instrumental in raising it.
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PRED

pH

DEPTH

Table 1: Description of the Covariates in Model (2.1).

Descriptio
Indicator of presence or absence of
predacious fish species
pH of the lake
Area of the lake

Concentration of silica in the lake

Mean depth of the lake

Units of Measurment

pH units (0-14)
hectares
micromoles/liter

metel;s



Table 2 : For each of the seven lakes, RICHNESS is the current species richness

Gull

"~ Colden

Silver

Dollar

and ESTIMATE is Y based on model (4.10). OBSERVED pH is the
current pH of the lake. The last three columns provide information
concerning the aforementioned two scenarios. The first row under these
columns represents the “no change” scenario and the second
represents the 50% reduction scenario. The third row is based on the
original multiple regression equation (2.2). NEW pH is the predicted pH
for the corresponding change in sulfate deposition, PREDICTION is the

predicted richness for that pH and 95% PI is a 95% prediction interval

for that estimate.
OBSERVED NEW

LAKE RICHENESS pH ESTIMATE pH PREDICTION 95% PL
0 502 1101 5.54 1.852 (0.212, 5.714)
584  2.302 (0.403 , 6.773)
584 3600  (0.860,10.382)

0 507  0.984 5.34 1336 (0 , 4.526)
5.91 2.113 (0.317 , 6.362)
5.91 3212 (0.702,9.421)

0 429  0.026  4.32 0.052 (0, 1.474)

4.51 0.224 (0, 1.876)

4.51 0.043 (0, 1.580)



LAKE

Pigeon

Little

Simon

Negro

OBSERVED
ESTIMATE pH PREDICTION  95% P.L

RICHNESS pH
0 472

4 5.66

6 5.08

8 5.98

0.306

5.860

2.337

4.439

NEW

4.11

5.13

5.23

5.73

- 8T8

5.50

5.83
6.31

6.31

0.297 (0, 2.039)
0.722 . (0,3.034)
1.191 (0, 4.416)

4421 (1248, 12.073)
6.098 (1947, 16.093)
6.600  (2.044,17.957)

2127 (0.306 ; 6.489)
3266  (0.781,9.217)

t 2244 (0.312, 7.021)

4095 (1159, 11.021)
5160  (1.610, 13.538)

6.963  (2.210, 18.757)
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Figure 2: Sample and fitted variograms of residuals from the final

iteration. The solid line represents the sample variogram.
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Residuals
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Figure 3: Smoothed three-dimensional contour plot of the 583 residuals
from the regression equation with kriging estimate of covariance
versus position of the lakes corresponding to: the residuals.

The view is from southeast (bottom right) to northwest (top left).
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Figure 4: Dil%ectional exponential variograms. The solid line corresponds to
class 1. The large dashes and the small dashes correspond to

classes 2 and 4, respectively.
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Figure 5: Smoothed three-dimensional contour plot of g, the spatial smooth,
from regression equation (4.5) versus position of the lakes
corresponding to each value in §. The view is from southeast
(bottom right) to northwest (top left).
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Figure 6: Smoothed three-dimensional contour plot of the 1166 residuals
from regression equation with nonparametric spatial component
(4.5) versus position of the lakes correspbnding to the residuals.
The view is from southeast (bottom right) to northwest (top left).
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Figure 7: Boxplots of the differences between predicted species richness
for a 50% sulfate reduction and predicted species richness for
a 0% sulfate reduction for each of the 1166 lakes. i’l‘he data are
grouped by predicted pH for a 0% sulfate reduction. (These are
the pH’s in the “no change” scenario of Table 2).



