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My research has focused on continuous and non-invasive sensing of 

physiological signals including respiration, muscle activities, heartbeat dynamics, and 

other biological signals. I seek to establish a touchless RF sensor that can be 

implemented as wearables on users, or integrated into the furniture to become invisible 

to the user. Such sensor can greatly enhance data continuity, comfort and convenience 

to enable many healthcare applications, especially for at-home continuous diagnosis 

and prognosis, with less reliance on subjective self report. My research utilized 

machine-learning (ML) algorithms that can take the physiological data from our 

sensors to provide holistic diagnostics and prognosis. This sensor has been applied to 

pulmonary diseases including COVID-19 and chronic obstructive pulmonary diseases 

(COPD) to help identify dyspneic exacerbation, leading to early intervention and 

possibly improving outcome. The sensor has also been applied to prevalent sleep 

disorders such as apnea and hypopnea.  

Another aspect of my research focuses on muscle monitoring. Conventional 

electromyography (EMG) measures the neural activity during muscle contraction, but 

lacks explicit quantification of the actual contraction. I proposed radiomyography 

(RMG), a novel muscle wearable sensor that can non-invasively and continuously 

capture muscle contraction in various superficial and deep layers.  Continuous 



 

 

monitoring of individual skeletal muscle activities has significant medical and 

consumer applications, including detection of muscle fatigue and injury, diagnosis of 

neuromuscular disorders such as the Parkinson’s disease, assessment for physical 

training and rehabilitation, and human-computer interface (HCI) applications. I 

verified RMG experimentally on a forearm wearable sensor for extensive hand gesture 

recognition, which can be applied to various applications including assistive robotic 

control and user instructions. I also demonstrated a new radiooculogram (ROG) for 

non-invasive eye movement monitoring with eyes open or closed. ROG is promising 

for gaze tracking and study of sleep rapid eye movement (REM).  
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CHAPTER 1 

INTRODUCTOIN 

The world in the next century will face many unprecedented challenges 

including, but not limited to, over population, global warming, sustainable health care, 

mental disorders, pandemic countermeasure, and equality with diversity.  However, 

our generation also accumulates an unprecedented amount of knowledge and 

technology that can potentially enable us to help ward off such eminent threats. I hope 

my engineering career would make an impact to provide solutions, or tools to 

Fig. 1.1 Overview of my research topics on biosensors.  
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solutions, to a small subset of these global challenges.   

Thesis organization 

This dissertation presents two main contributions in the area of human sensing 

technologies focusing on 1. vital signs and 2. muscle monitoring.  

1. Sensing vital signs for telemedicine and medical diagnosis:  

In chapter 2, I presented details on the first sensing system I developed for vital 

signs monitoring: “Furniture-integrated respiration sensors by notched transmission 

lines”. In this chapter, I focused on the principle of RF near-field sensing, sensor 

configurations, signal model, and system performance on Breath rate and Heart rate 

monitoring. In this work, I established a touchless and continuous system utilizing RF 

sensors that can be implemented as wearables, or integrated to the furniture to become 

invisible to the user. This can greatly enhance accuracy, comfort and convenience to 

enable many healthcare applications, especially for at-home continuous diagnosis. 

Chapter 1 laid the foundation of sensing hardware for future applications in medical 

diagnosis.  

In Chapter 3, I demonstrated a new approach to invisibly and precisely identify 

prevalent sleep disorders using our RF sensors: “ Identification and prediction of sleep 

disorder by covert bed integrated RF sensors”. Respiratory disturbances during sleep 

are a prevalent health condition that affects a large adult population. Current sleep 

disorder symptoms are mostly scored by human operators during sleep studies, which 

is time-consuming. This work is to develop an autonomous system to detect and 

predict respiratory events reliably based on real-time covert sensing. Predictive 
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warning of the sleep disorders in advance can intervene serious apnea, especially for 

infants, servicemen, and patients with chronic conditions. 

In Chapter 4, I presented an important application in pathological diagnostics 

for respiratory diseases using RF near-field sensors: “Objective scoring of 

physiologically induced dyspnea by non-invasive RF sensors.” Modern medicine has 

made great progress in the molecular level, but most devices of symptomatic screening 

and pathological diagnostics are still difficult to operate continuously as wearables or 

outside clinics.  For example, dyspnea, pain, and physical/emotional discomfort still 

rely heavily on self-report, which is not only subjective and unreliable, but also 

inapplicable to people who cannot communicate or unwilling to cooperate. This 

chapter focuses on dyspnea, also known as the patient’s feeling of difficult or labored 

breathing, is one of the most common symptoms for respiratory disorders. My work 

developed a learning-based model that can evaluate the correlation between the self-

report Borg score and the respiratory metrics for dyspnea. The method can formulate a 

baseline for clinical dyspnea assessment and help caregivers track dyspnea 

continuously, especially for patients who cannot report themselves. 

In Chapter 5, I extended the dyspnea scoring model in Chapter 4 for clinical 

study on COVID-19 and presented the result as “Objective dyspnea evaluation on 

COVID-19 patients learning from exertion-induced dyspnea scores”. Overnight 

(~16h) respiratory waveforms were collected on 12 COVID-19 patients, and a 

benchmark on 13 healthy subjects. This paper validates the viability to use our 

objective dyspnea scoring for clinical dyspnea assessment on COVID patients. The 

proposed system can help the identification of dyspneic exacerbation in conditions 
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such as COVID, leading to early intervention and possibly improving their outcome.  

2. Muscle Monitoring for human computer interaction and biomedical application: 

In Chapter 6, for the second part of my research, I developed a novel muscle 

sensing technique by RF sensors and explored applications to hand gesture 

recognition. Direct muscle sensing can potentially bring forth a paradigm shift for 

biomedical applications and human computer interface (HCI), as such continuous 

sensing does not exist before. Conventional electromyography (EMG) measures the 

continuous neural activity during muscle contraction, but lacks explicit quantification 

of the actual contraction. Here we propose a novel radiomyography (RMG) for 

continuous muscle actuation sensing that can be wearable and touchless, capturing 

both superficial and deep muscle groups. We verified RMG experimentally by a 

forearm wearable sensor for detailed hand gesture recognition. RMG can be used with 

synchronous EMG to derive stimulation-actuation waveforms for many potential 

applications in kinesiology, physiotherapy, rehabilitation, and human-machine 

interface.     

In Chapter 7, I extended the RMG to a different application, “Radiooculogram 

(ROG) for eye movement sensing with eyes closed”. This work presents 

radiooculogram (ROG), a novel sensor for non-invasive eye movement (EM) 

monitoring with eyes closed. Compared with biopotential-based sensors, ROG has 

higher user comfort due to touchless operation and can capture direct muscle activity 

even in deep tissues. This work on voluntary EM sensing can serve as the baseline 

implementation for eventual sleep rapid EM monitoring. 
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In Chapter 8, I concluded my overall intellectual contribution of my PhD thesis 

and touched on the future work.  

I have a strong belief that my research in RF sensors can ultimately contribute 

to enhance healthcare practice and delivery, providing highly personalized and 

precisely targeted diagnostics as well as improving the well-being of the public 

without overburdening the social resources. 
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CHAPTER 2 

FURNITURE-INTEGRATED RESPIRATION SENSORS BY NOTCHED 

TRANSMISSION LINES 

 

Introduction 

Monitoring respiration dynamics has many applications [1], including in 

wellness evaluation and diagnosis of respiratory disorders such as asthma [2], 

coughing, dyspnea, and chronic obstructive pulmonary diseases (COPD) [3]. It is also 

valuable for prognostic assessment of prevalent sleep disorders including central sleep 

apnea (CSA) and obstructive sleep apnea (OSA) [4]. Irregular breathing patterns can 

be an early indicator of cardiac arrest [5] and acute myocardial infarction [6]. Besides 

clinical applications, respiration monitoring can also be a useful gauge of cognitive 

load [7], emotional stress, and physical efforts during sports and exercises [8].  

   Current methods to monitor respiration efforts include spirometry [9], nasal 

airflow probe [10], capnography [11], strain gauges [12], respiratory inductance 

plethysmography (RIP) [13], pulse oximetry [14], skin strain sensors [15], optical and 

far-field RF sensing [16][17], and ballistocardiogram (BCG) [18]. Spirometry 

measures the volume and speed of inhaled and exhaled air by the lung, but requires 

attentive user participation. Nasal airflow probes utilize mouthpieces or facemasks, 

which are cumbersome and disruptive to the normal breathing patterns. Capnography 

needs similar conspicuous mouth or nasal cannula. Strain gauges and RIP by chest 

belts can measure the chest and abdominal wall movement during respiration, but the 



14 

 

belt tension is required to capture the full breathing cycle which causes discomfort. 

The skin strain sensor involves tight skin contact which is also uncomfortable. Pulse 

oximetry monitors the oxygen saturation (SpO2) and offers mixed observation of 

respiration and circulation. Optical and RF sensing methods require the user to be 

stationary and the reader to be in a direct line-of-sight (LoS) to the front torso.  BCG-

based sensors often assume the user body weight as the quiescent point of operation, 

and can only be installed under the bed but not to the chair.  Posture variation and 

movement on bed are problematic as well.  

  Transmission-line sensors have been used in biological and chemical sensing 

as well as health monitoring. A splitter-combiner structure can measure minute 

dielectric property changes in the near-field region [19].  A coplanar waveguide 

loaded with symmetric resonators can measure angular motion [20] and dielectric 

properties [21]. A resonator coupled to a transmission line was used to estimate 

glucose concentration [22]. The sensing modality is typically the variation of the 

resonance frequency, phase, and/or quality factor. The transmission-line structure is 

highly sensitive to small motion and composition changes, and hence has been rarely 

applied to the large motion of respiration. The highest sensitivity may not be favorable 

here, as tolerance to user variation and the capture of the full waveforms are also 

important in practical applications. 

The notched transmission-line sensor proposed in this work is adapted from the 

previous antenna-based near-field coherent sensing (NCS) [23], as shown in Fig. 1.  In 

the near-field region, the dielectric boundary movement by internal organs and body 

parts will couple to the leaked electromagnetic (EM) energy from the notched part of 
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the transmission line, and hence affect the signals at the transmitting (S11) and 

receiving (S21) ends. To connect to the sensing notch with high ambient isolation, we 

opt to use a miniature coaxial RF cable, as shown in Fig. 1(b), which is more feasible 

than the coplanar or slotline waveguides.  The metal shield of the middle part is 

removed to allow the EM energy coupled into the nearby user body.  Simulation by 

CST Microwave Studio [24] with the notched sensor on the human torso is shown in 

Fig. 1(c). The simplified torso model only includes the sweatshirt, skin, muscle, body 

fat, bones and lungs to save computational time. RF signals were emitted from the 

transmitter (Tx) and propagated down the transmission line. The EM leakage from the 

Fig. 1 Notched-cable respiration sensor setup: (a) System schematic with bed integration; 

(b) A photo of the notched cable; (c) Cross section of the CST simulation of a human torso 

with the NCS frequency at 0.9GHz; (d) Left:Measured S11 and S21 results in 0.8 – 2.5 GHz 

after de-embedding. Right: Estimated leakage power from the notched sensor with 1mW 

input.  
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notched structure was coupled into the human body, and finally received by the 

receiver (Rx). We can clearly observe that the electric field was strongly coupled into 

the layers of skin, fat, muscle, and lungs.  

The notch length L = 9 in is designed to accommodate the position 

uncertainties for different users on beds and chairs. As shown in Fig. 2, the notched 

cable was sewn on the bedsheet for the bed setup, while it was fixed at the back of the 

chair for the chair setup. Intermediate layers of thin fabric, plastic protector and foam 

can be added for comfort and aesthetic with little influence on performance. In 

comparison with either far-field 17 or near-field 2526 effects of the sensing antenna 

structure, the present design can operate in a much broader bandwidth with a given 

hardware as indicated by the measured S21 in Fig. 1(d). As no RF radiation is intended 

and the Rx power can be anywhere between –5 dB to –50dB lower than the Tx power, 

the Bode-Fano limit on percentage bandwidth and impedance match 27 and spectral 

regulation are much more relaxed. Also, in contrast to wearable NCS sensors 232526, 

the user may not need to tend to the sensor at all, which greatly reduces the comfort 

and conspicuousness concerns. We further demonstrated the capability of accurate 

respiration monitoring under various postures, including supine, recumbent and 

sitting. Different respiratory routines including voluntary deep, fast and tidal 

breathing, as well as breath holding and airway blockage exercises, can be identified 

accurately. Our sensor can also retrieve the heart rate in one setup, although the cardio 

waveform is clearest during breath holding with reduced interference by the large 

respiratory motion. We benchmarked our sensor against the chest-belt respiration 

measurements with high consistency. The validity of our system has been confirmed 
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on 10 healthy adults.    

Experimental Setup and Signal Processing 

Notched sensor configuration  

To demonstrate the broadband operability, continuous-wave (CW) signals 

between 0.8 and 2.5 GHz were tested by the network analyzer (Keysight E5063A) in 

the bed setup. The EM energy emitted from Port 1 will partially leak out from the 

notch and couple to the surface and internal body motion of breathing and heartbeats, 

which will change the signal at Port 2 as represented by the scattering parameter S21.  

Some of the traveling wave will be reflected back to Tx, and can be potentially 

evaluated as S11 or standing-wave ratios, as shown in Fig. 1(d) when the human body 

was lying on the bed (red line) and when the bed is empty (blue line). The RF carrier 

power is set at 0 dBm, and the leakage power from the notched structure can be 

estimated by (1 - |S21|
2- |S11|

2)1mW after de-embedding the cable loss, as shown in 

Fig. 1(e).  

Two sets of the notched-cable sensors underneath the thorax and abdomen 

regions can capture the separate motion during breathing. Multiplexing by frequency 

or chip codes is optional, as the cross coupling of the thorax and abdomen sensors is 

weak due to small far-field radiation. Two software-defined radios (SDR) by National 

Instrument Ettus B200mini were connected to two notched cables and then interfaced 

with the host computer through USB (Universal Serial Bus). Alternatively, one SDR 

by the two ports of Ettus B210 can be employed. When the participant is lying on the 

bed or sitting on the chair, the centers of the sensor notches have a horizontal distance 
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d to the mediastinum, and the vertical distances h1 and h2 to the umbilicus for the 

thorax and abdomen sensors, as shown in Fig. 2(a).  Figs. 2(b)(c) are the photos for the 

bed- and chair-integrated setups. In realistic deployment, we can also sew the sensor 

beneath the bed sheet and protective layers to facilitate routine changes, disinfection 

and aesthetic design. For verification, we benchmarked the NCS results with the 

BIOPAC tension-belt sensors (BIOPAC Systems, Goleta, CA). Two torso belts, 

SS5LB and PTM SS11LB, were placed at thorax and abdomen, with the vertical 

positions right above the NCS sensors. A photo is shown in Fig. 2(d). The torso belts 

can measure the change in local tension due to the geometrical change during 

respiration. BIOPAC data are down-sampled to 500Hz. The synchronization between 

NCS and BIOPAC is achieved by buffering the NCS and BIOPAC data at 

approximately the same time within a few milliseconds.  

In the SDR Tx signal chain, the digital baseband goes through the digital-to-

analog converter (DAC) and is then mixed with the carrier frequency fRF. The RF 

signal from the notched structure is coupled into internal body motion in the near-

filed, received by Rx, and then demodulated and sampled by the analog-to-digital 

converter (ADC) to retrieve the baseband. Together with a baseband tone fBB in the 

quadrature scheme, the NCS vital-sign signal is represented by the amplitude 

modulation on the quadrature signal as 

                                          (1) 

                                       (2) 

                                       (3) 

where  is the phase offset accumulated from the Tx-Rx signal chains. The 
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baseband frequency is set at fBB = 51 kHz for B200mini. When B210 is used for both 

channels, the two basebands are set at fBB1 =355 kHz and fBB2 = 440 kHz. fRF is 

selected to be at one of 900MHz, 1.8GHz and 2.4GHz. As the respiration waveform is 

a low-frequency analog signal, we chose the superheterodyne scheme of converting 

the frequency twice by fBB and fRF to minimize the effects of the Flicker noise in fRF 

local oscillators (LO) and to implement subcarrier multiplexing from fBB1 and fBB2 

when needed. We have varied a few fBB to substantiate our choices. The data converter 

has a sampling frequency of 1M samples per second (Sps) to enable the digital 

baseband processing, which is performed by the host computer. The demodulated 

respiration waveform is further down-sampled to 500 Sps, the same as the BIOPAC 

data.  The allowable broad choice of fRF is not only a unique feature over the antenna-

based NCS approach, but can also facilitate system tuning after furniture integration so 

that fRF can yield strong coupling to the user body with higher ambient tolerance. 

 

Fig. 2 Experimental setup of the notched sensors: (a) Sensor position variation with respect to 

the user body; (b) Bed integrated and (c) chair integrated setup; (d) A photo with the 

participant lying on the bed-integrated sensor and wearing commercial torso belts for 

benchmark.  
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Breath rate (BR) estimation  

 For estimation of the breath rate (BR), the waveform was first bandpass-

filtered from 0.05Hz to 1Hz to remove the DC drift and high-frequency noises by 

post-processing in MATLAB. For peak detection to identify the inhalation and 

exhalation periods, we utilized the moving average-crossing algorithm [28], which is 

suitable to process broad range of varying frequencies, as we expect BR ranging from 

nearly 5 breaths per minute (BPM) to 40 BPM. A moving-average curve is first 

calculated at each time point in a given window length, which is around one 

respiration cycle and will be constantly updated. The points when the moving average 

curve crosses the original signal are marked as up-crossing points for positive slopes 

in the original signal or down-crossing points for negative. Local maximum is labelled 

as the maximal point between two up-down crossing points, and local minimum as the 

minimal point between two down-up crossing points. BR is finally calculated by 

counting the number of detected breathing cycles over a window size of 15s. One 

breathing cycle includes an inhalation peak (maximum) and the trailing exhalation 

(minimum) peak. The number of cycles is calculated as the number of inhalation 

peaks minus 1, and the total period is between the two adjacent inhalation peaks. 

Signal quality and bit depth 

The signal quality can be assessed by the acquired bit depth of the respiratory 

waveform, which represents the signal resolution and provides insights into the 

amount of RF energy coupled inside the internal organ. In this work, we define the bit 

depth of the signal quality Q as, 
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               Q                                          (4) 

where NCSpp is the peak-to-peak value in the quadrature-demodulated 

amplitude, NCSDC is the DC amplitude at the local point, and N is the number of bits 

in ADC. NCSpp can be retrieved by the peak detection algorithm, and NCSDC can be 

obtained by the DC signal amplitude before filtering. Q has the meaning of the number 

of significant bits in the NCS signal. As the respiration waveform is cyclic around an 

equilibrium point, the larger the signal strength, the more bit depth can be retrieved by 

Fig. 3  Respiration monitoring in the supine posture with fRF = 900MHz: (a) NCS and 

BIOPAC amplitude waveforms in thorax and abdomen during the whole breathing 

protocol. (b) Th breath rate (BR) calculated from NCS (green) and BIOPAC (red). (c) 

Correlation and agreement between NCS and BIOPAC BR data. Left: The scatter plot with 

denoted Pearson’s correlation coefficient. Right: The Bland-Altman plot showing the mean 

difference m at the center dotted line and the corresponding limits of agreement (LoA) at 

the upper and lower dotted lines given by m±1.96σ. 
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ADC, and hence the higher the signal resolution and the less quantization noises.  

    Signal-to-noise ratio (SNR) is another important parameter to evaluate the 

hardware system setup. We estimate SNR during the normal breathing period when 

BR is roughly constant. The fundamental breathing frequency can be determined from 

the largest nonzero spectral component. The 3-dB bandwidth of the breathing 

frequency includes all adjacent frequency components that decrease monotonically 

away from the maximum. The noise level is estimated by using the total power outside 

the 3-dB regions of the fundamental breathing frequency, its harmonics and the DC 

component.  

Signal quality and SNR under different postures, breathing patterns, positions 

and frequencies can give guidance to the hardware design and signal processing to 

accommodate inevitable user variations in realistic applications.  Larger signal quality 

often indicates higher SNR from the NCS signal strength, but in a less controlled 

ambient, SNR still offers additional useful information on ambient noises.  

Isovolumetric breathing detection during airway blockage 

One of the most common apneas is the obstructive sleep apnea (OSA). OSA 

often occurs when the throat muscles intermittently relax and block the airway during 

sleep. As the lung volume will remain nearly constant during OSA, the thorax and 

abdomen move asynchronously to generate a paradoxical motion. During our 

experiments, this symptom was simulated by the isovolumetric breathing exercise. By 

blocking the airway voluntarily with a nose pinch, abdomen contraction was 

performed with paradoxical expansion of the thorax and vice versa. To detect this 
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paradoxical movement, we can use the slope-product of thorax and abdomen 

waveforms, which will be negative during the occurrence of isovolumetric breathing 

[29]. We use the tanh() function to rescale the slope-product to [-1,1] with a moving 

average over a 3s window [29].  

Experimental Results 

Benchmark with BIOPAC tension belts 

The NCS notched-cable sensor was benchmarked against the reference 

BIOPAC tension-belt sensors. Notice that both sensors can have errors in respiration 

monitoring, but due to the different signal transduction, the errors from the two 

methods should be reasonably uncorrelated.  Vertical positions of the sensors are 

recorded by the distance to the umbilicus with h1NCS = 8.5 in, h2NCS = 2.5 in, h1BIOPAC = 

9 in, and h2BIOPAC  = 3.5 in. The breathing protocol in each posture has a length of 220 

s, including 0 − 50 s: normal tidal breathing; 50 – 70 s: breath hold; 70 − 110 s: deep 

breathing; 110 − 130 s: isovolumetric exercise; 130 – 170 s deep breathing; 170 − 

200 s: fast breathing; 200 − 220 s: normal breathing.  

  Fig. 3(a) shows the normalized NCS and BIOPAC amplitude waveforms in 

thorax and abdomen with the supine position on bed during the whole protocol. Both 

NCS and BIOPAC data can distinguish different breathing patterns clearly and show a 

good agreement. Fig. 3(b) shows BR calculated from NCS and BIOPAC abdomen 

amplitude, as the geometrical change from diaphragm and abdomen is higher than that 

of thorax during respiration. When the negative slope product was detected during the 

isovolumetric exercise, BR was truncated to 0. BR estimation matched well with the 
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breathing patterns, but a delay in time was observed due to the chosen 15-s epoch for 

BR calculation. Fig. 3(c) shows the correlation between NCS and BIOPAC. The BR 

data was preprocessed by getting rid of the outliers that were three standard deviations 

further away from the mean. The outliers only occurred at the beginning or ending of a 

specific breathing pattern due to the instability of a transition. These outliers were not 

included for correlation calculation. High correlation with a Pearson coefficient r = 

0.977 is achieved.  As the two sensors have uncorrelated errors, correlation is one of 

the possible indicators for inter-sensor consistency and overall BR accuracy. The 

Bland-Altman plot on the right presents the agreement by the mean (m) and limits of 

agreement (LoA). The X axis is the average of the two data, and the Y axis is the 

difference. The mean difference is  = −0.306 BPM, as shown in the middle dotted 

line. LoA within which 95% of the differences is estimated by , assuming a 

normal distribution. Low m and narrow LoA indicate that the errors in NCS and 

BIOPAC are uncorrelated and small. In Fig. 3, fRF is set at 900MHz.  

Posture variation 

The NCS notched-cable sensor can be applied to different postures, including 

supine and recumbent on bed, and sitting on chair, which can be readily adapted for 

sleep study, driver seat and waiting-room chairs. In Fig. 4, we demonstrated the results 

from the recumbent and sitting postures. The breathing protocol was the same as in 

Fig. 3.  Waveforms were based on the normalized NCS amplitude after bandpass 

filtering of 0.05 - 1 Hz. For the recumbent posture in Figs. 4 (a)(b), h1 = 8.5inches, h2 

= 2.5inches, and fRF = 2.4GHz. For the sitting posture in Figs. 4 (c)(d), h1 = 9.5inches, 
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h2 = 2inches, and fRF = 1.8GHz. BR during the 20-s isovolumetric exercise was also 

truncated to zero once the negative slope product was detected. Data quality from the 

recumbent posture is sufficient for BR estimation, but slightly worse than that in the 

supine posture, which is likely due to less interaction area with the RF signal. As can 

be observed in the first 50-s normal breathing with reduced magnitude, the sitting 

posture suffered more noises and showed less clear breathing pattern. This may be due 

to possible slouching, which will seriously affect the abdomen waveforms. However, 

various breathing patterns can still be identified in Figs. 4 (a)(c), including tidal 

breathing, breath hold, deep breathing, and fast breathing. BR in Figs. 4 (b)(d) shows a 

good match between the thorax and abdomen sensors.  

Position variation 

Fig. 4 Respiration monitoring in the recumbent and sitting postures: (a) Respiration 

waveforms from thorax and abdomen NCS sensors in the recumbent posture on bed with fRF 

= 2.4GHz. (b) BR estimated from (a). (c) Respiration waveforms from thorax and abdomen 

NCS sensors in the sitting posture on chair with fRF = 1.8GHz. (d) BR estimated from (c). 
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One of the requirements for furniture-integrated sensors different from the 

wearable ones is the large placement tolerance to accommodate user variation in size 

and position. We tested the sensor performance when a horizontal shift d was 

introduced in the supine posture, which can commonly happen in realistic conditions. 

We confirmed that our notched cable system can tolerate up to d = 8 in, which should 

be sufficient in consideration of user uncertainties.  The participants in our test have an 

average waist width around 12 in. To speed up the study, the breathing protocol was 

shortened to 160s, including 0 − 50 s: normal breathing; 50 – 70 s: breath hold; 70 − 

110 s: fast breathing; 110 − 160 s: deep breathing. fRF was set to 2.4GHz. Fig. 5(a) 

shows the normalized NCS waveforms after filtering with the horizontal shift of d = 0, 

4, 8 in from the abdomen sensor. Different respiration patterns can still be clearly 

identified and the transition remained evident. Fig.  5(b) shows BR estimated from the 

Fig. 5  (a) Respiration waveforms with horizontal shift of d = 0, 4, 8 inches for the abdomen 

sensor in the supine posture on bed. (b) BR estimated from the respiration waveforms for d = 

0 (green); d = 4 in (red); d = 8 in (blue).  
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respiration waveforms, where normal BR is around 20 BPM, fast BR around 35 BPM, 

and deep BR around 10 BPM. For d = 8 in, BR around the breath hold period is not as 

accurate as d = 0 and 4 in due to the reduced signal quality. We also tested the vertical 

position variation of h1 = 1, 2.5, 4 in for abdomen sensor with the same protocol.  

Isovolumetric exercises  

The isovolumetric exercise was represented by paradoxical motion between 

thorax and abdomen. The 270-s breathing protocol was customized to increase the 

total period of  isovolumetric motion including 0 – 40 s: normal breathing; 40 – 60 s: 

breath hold; 60 – 80 s normal breathing. Four isovolumetric exercises was then 

performed roughly during 80 – 100 s; 120 – 140 s; 160 – 180 s; 200 – 220 s, with 

normal breathing in between and afterwards. 

 

Fig. 6. Isovolumetric detection: (a) Respiration waveforms from thorax (red line) and 

abdomen (green line) sensors during three isovolumetric breathing exercises. (b) Detection by 

the slope-product method: The blue solid line by the NCS sensor and the orange dotted line 

from protocol annotation, where –1 indicates detection.   

 

Fig. 6(a) shows an example of the waveforms from thorax and abdomen NCS 

signals during three isovolumetric cycles. fRF was set to 900 MHz. As the waveforms 

indicate, in normal breathing periods, the thorax and abdomen moved synchronously; 

in the isovolumetric periods, the two motions were paradoxical to each other. The 
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slope-product method was implemented in Fig. 6(b), where –1 indicates positive 

detection of isovolumetric motion and 0 indicates no occurrence. The annotated 

instruction to perform the isovolumetric exercise is shown as the orange dotted line 

and the NCS detection result as the blue solid line.  

Isovolumetric exercises can be missed or falsely detected by NCS or BIOPAC. 

False statistics against the user instruction are summarized for 10 volunteers in Table 

I. NCS could detect a large portion of airway blockage successfully and performed 

slightly better than BIOPAC. Possible reasons for erroneous detection include: 1) The 

notched sensors couple into the motion of associated muscles whose movement during 

airway blockage can be complex instead of merely paradoxical; 2) Some participants 

had difficulty performing the isovolumetric exercise during airway blockage, or had 

introduced body motion artifacts during their attempts; 3) The thorax sensor was too 

low in position and had coupled in part of the abdomen motion as well. 

TABLE 1 CONFUSION MATRICES OF ISOVOLUMETRIC BREATHING DETECTION 

DURING AIRWAY BLOCKAGE BY NCS AND BIOPAC.  

NCS 

TOTAL NUMBER OF 

EPOCHS IN 10 

PARTICIPANTS: 180 

DETECTION 

POSITIVE NEGATIVE 

AIRWAY 

BLOCKAGE 

INSTRUCTION 

POSITIVE 16 4 

NEGATIVE 10 150 

ACCURACY 0.92 

SENSITIVITY 0.8 

BIOPAC 

TOTAL NUMBER OF 

EPOCHS IN 10 

PARTICIPANTS: 180 

DETECTION 

POSITIVE NEGATIVE 

AIRWAY POSITIVE 11 9 
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BLOCKAGE 

INSTRUCTION 

NEGATIVE 11 149 

ACCURACY 0.89 

SENSITIVITY 0.65 

Heart rate (HR) detection 

With the same setup, the thorax NCS sensor can also retrieve the heart rate 

(HR) with reasonable accuracy. The test protocol was further simplified to normal 

breathing of 15 s and breath hold of 15 s, the latter of which had clearer heartbeat 

signals due to the lack of respiration interferences. The signal was first filtered by a 

bandpass filter between 0.1 – 5 Hz to remove the DC component and high-frequency 

noise. Fig. 7(a) shows the NCS waveform during normal breathing in time (left) and 

frequency (right) domains. Fig. 7(b) shows the breath-hold counterpart. The waveform 

has a typical characteristic of a main peak and a small recoil. HR can be observed as 

the fundamental, second and third harmonics in the spectrum. BR at 0.266 Hz and its 

harmonics can also be observed in Fig. 7(a).   

 

Fig .7.   (a) Left: The heartbeat time-domain waveforms from the thorax sensor during normal 

breathing. Right: The corresponding spectrum with three HR peaks and two BR peaks 

indicated by the annotation above. (b) Left: The heartbeat waveforms during breath hold. 

Right: The corresponding spectrum with three peaks. 

Signal quality and SNR  

We have calculated the signal quality Q for different scenarios in Fig. 8. First, 



30 

 

the breathing patterns over time can cause variation in Q.  For the same setup, the deep 

breathing usually has the highest Q, and the breath hold the lowest. The position 

variation of d = 0, 4, 8 in is shown in Fig. 8(a) with fRF = 2.4 GHz. When d becomes 

larger, most often Q decreases. We compare the thorax and abdomen sensors in Fig. 

8(b) when they operated together in the supine position with fRF = 2.4 GHz. Abdomen 

often has larger motion from the diaphragm and associated muscles, and overall larger 

Q. Using measurements in Fig. 8(c), we compared Q in the supine, recumbent, and 

sitting postures from the abdomen sensor with fRF = 1.8GHz. The supine signal has 

larger Q than those by recumbent and sitting due to higher coupling strength between 

the RF signal and the body. Finally, for frequency variation in Fig. 8(d) at fRF = 0.9, 

1.8, and 2.4GHz, we used the abdomen sensor in the supine position for illustration. Q 

has a more complex relation with respect to fRF, although 1.8 GHz usually performed 

the best. All frequencies can be employed to retrieve respiration waveforms, but 

different Tx and Rx gains need to be chosen in our adaptive-gain implementation in 

SDR. 
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Fig. 8.  Signal quality for (a) Position variation:  d = 0 (green), 4 ins (red), and 8 ins (blue); (b) 

Sensor placement: thorax (blue) and abdomen (red); (c) Postures: sitting (red), supine (green), 

and recumbent (blue); (d) Carrier frequency: fRF = 0.9 GHz (blue), 1.8 GHz (red), and 2.4 

GHz (green).  

The corresponding SNRs calculated in different conditions in Fig. 8 are shown 

in Table II. SNR is calculated during the normal breathing period of 0 − 50s when BR 

is roughly constant. The comparison of SNR under different conditions show similar 

trends to Q in our controlled ambient without additional interferences.  

TABLE 2.2   SNR CALCULATED IN DIFFERENT CONDITIONS  

(A) 

POSITION 

BIAS 

SNR 

(DB) 

(B) SENSOR 

PLACEMENT 

SNR 

(DB) 

D = 0 16.2 SUPINE THORAX 10.7 

D = 4 IN 6.60 SUPINE 

ABDOMEN 

14.3 

D = 8 IN 5.92   

(C) POSTURE  SNR 

(DB) 

(D) FREQUENCY SNR 

(DB) 

SUPINE 19.3 0.9GHZ 8.41 

RECUMBENT 14.6 1.8GHZ 12.2 

SITTING 8.05 2.4GHZ 9.69 

Comparison with antenna-based NCS sensors 

We also compared the performance of the notched NCS sensor and the 

wearable antenna-based NCS sensor [26]. The wearable sensor consists of ultra-high 

frequency (UHF) monopole antennas used at both Tx and Rx. Two wearable sensors 

were separately attached to the thorax and abdomen in the front torso in the similar 

location of the BIOPAC chest belts. Two notched sensors were integrated to the chair 

setup in the back. One SDR by B210 was connected to two notched sensors and 

another B210 was connected to two wearable sensors. fRF was set at 1.8GHz. The 

breathing protocol was the same as in Fig. 5. In Fig. 9(a), we demonstrated the 

waveforms of the wearable sensor (red) and the notched sensor (green) both at the 
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abdomen position.  In Figs. 9(b)(c), the corresponding BR and Q were extracted. BR 

from the two sensors are well matched, but the wearable sensors have a higher Q 

indicating better coupling strength than the notched sensor. This is reasonable because 

the wearable sensors were more closely attached to the body in the front torso. Also, 

the wearable sensors are monopole antennas with intentional radiation into the body, 

but the notched sensors depend only on near-field leakage by the evanescent mode. 

 

Fig. 9.  (a) Waveforms of the wearable sensor (red) and the notched sensor (green) both at the 

abdomen position. (b)(c) The corresponding estimated BR and Q.  
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Two-tone measurements 

 

Fig. 10.  (a) Two-tone Strategy 1: Respiration waveforms for 0.9 GHz (upper) and 1.5 GHz 

(lower); (b) The corresponding BR estimation. (c) Two-tone Strategy 2: Respiration 

waveforms for 0.9 GHz (upper) and 1.9 GHz (lower); (d) the corresponding BR estimation.  

 

We also confirmed the two-tone measurement capability in the notched sensor, 

which can enhance reliability by frequency diversity. Different fRF will have different 

body penetration depth. In comparison with the antenna-based NCS systems, dual-

band antennas are more complicated to design, especially in the consideration of body 

antenna detuning. For the notched sensor, two fRF can be applied simultaneously to 

one sensor, and one or two fRF can be applied to two collocated cables with reasonable 

spatial isolation. In Fig. 10, two-tone Strategy 1 has a frequency multiplexing setup by 

two SDRs feeding into the same RF cable at the same time. Broadband 3dB splitters 

are utilized to combine two RF signals into one notched sensor and then splitting back 

to the Rx of the respective carrier. Two-tone Strategy 2 has two closely collocated 
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notched cables. Two SDRs with different frequencies separately fed into two notched 

sensors. At the same position, we have two sensors by two fRF with minimal 

interference to each other.   

The 160-s protocol was the same as Fig. 4 for position variation testing in the 

supine posture with the abdomen sensor. In Figs. 10(a)(b), Strategy 1 of frequency 

multiplexing has fRF at 0.9 GHz and 1.5 GHz.  In Figs. 10(c)(d), Strategy 2 of the 

collocated sensor cables has fRF at 0.9 GHz and 1.9 GHz.  BR extracted from different 

fRF is consistent for both strategies. Notice that the two-tone measurements can be 

employed for signal quality check or for coupling into different body depth.  Optimal 

choices of multiple fRF in different scenarios will need further study. 

Validation on multiple participants 

 Finally, we have validated our system on 10 different participants. The routine 

was the same as that in Fig. 3 with the notched sensors on bed and commercial torso-

belt sensors on the user body. The retrieved BR from 10 participants compare well 

with the synchronous chest-belt sensors in all breathing routines. The correlation and 

agreement plots between NCS and BIOPAC BR data of all 10 people are shown in 

Fig. 11. The correlation and B&A statistics of individual participants are shown in 

Table III. For most cases, the correlation is relatively high, m is low and LoA is 

narrow. Only a small number of cases have a relatively lower correlation. Our present 

sample size is too small to draw reliable conclusion on the effects from body 

characteristics. However, it remains safe to say that the NCS system can accurately 

detect BR on different people, demonstrating high consistency with commercial torso-
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belt sensors.   

 

Fig.11.  Correlation and agreement between NCS and BIOPAC BR data from 10 participants. 

(a): The scatter plot with denoted Pearson’s correlation coefficient. (b): The Bland-Altman 

plot. 

 

 TABLE 3.3   CORRELATION AND B&A STATISTICS FOR EACH PARTICIPANT 

CASE 

NO. 

R M (RPM) Σ (RPM) 

1 0.927 −1.65 4.50 

2 0.987 0.586 2.24 

3 0.951 −0.465 4.36 

4 0.999 −0.0103 0.288 

5 0.978 −0.210 2.12 

6 0.805 −4.81 7.13 

7 0.883 0.552 5.37 

8 0.954 −0.631 4.22 

9 0.955 0.131 3.27 

10 0.913 −1.24 5.62 

 

Conclusion 

In this work, a new notched-cable sensor based on NCS for respiration 

monitoring was demonstrated. The sensor was integrated to a bed and a chair under 
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layers of fabrics, and is hence highly comfortable, stable, accurate, and cost-effective. 

In comparison with the wearable sensors attached to the body, our system is invisible 

to the user with the least concerns of comfort and conspicuousness. Confirmed by 

experiments, our system has the following advantages: 1) Tolerance of large position 

variation to accommodate user uncertainty; 2) Posture applicability including supine 

and recumbent on bed, as well as sitting on chair; 3) Availability of HR estimation in 

one setup; 4) Identification of multiple breathing patterns including deep, fast, tidal, 

held and blocked breathing; 5) Broad bandwidth of operations to facilitate 

multiplexing and signal quality improvement in different scenarios.  

There are still remaining issues for future work. The accuracy of paradoxical 

motion detection during isovolumetric exercise should be further improved. Also, 

larger variation on people size, body figure and breathing habits should be included in 

broader user study to further establish heuristic improvement from known body 

characteristics.  
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CHAPTER 3 

DETECTION AND PREDICTION OF SLEEP DISORDERS  

BY COVERT BED-INTEGRATED RF SENSORS 

 

Introduction 

Sleep disorders are a major public health problem, and 50 to 70 million 

Americans chronically suffer from the consequences from sleep disorders [1]. 

Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder 

[2][3], with a prevalence in the adult population ranging from 6% to 17%, explicated 

by the apnea-hypopnea index (AHI) greater than 15 events per hour. OSA can be as 

high as 49% in geriatrics [4], and can still be under-diagnosed due to the 

inconvenience of the present monitoring setup [5]. OSA is characterized by repeated 

episodes of partial or complete obstruction of the respiratory passages during sleep, 

and may result in sleep fragmentation and non-restorative sleep. The consequences of 

OSA include excessive day-time sleepiness, insomnia, and increased risks of stroke, 

obesity, pulmonary hypertension and heart attack [6]. Missed identification of sleep 

disorders can be especially serious for young children with concerns of sudden infant 

death [7], and servicemen whose circadian rhythm are difficult to maintain but 

continuous vigilance is frequently required [8]. 

Currently, the gold standard of sleep disorder diagnosis is an overnight sleep 

study by polysomnography (PSG) [9], which records the breath airflow, respiratory 

torso movement, oxygen saturation (SpO2), body motion, electroencephalogram 

(EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram 
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(ECG) by a plethora of sensors. Sleep disorders are most often scored by trained sleep 

technicians considering various PSG waveforms. Despite of high accuracy by PSG, 

disadvantages include the high cost and scarce availability in clinics, and the 

uncomfortable experience for users. Several methods have been put forward as PSG 

alternatives for sleep disordered breathing (SDB) detection, such as the at-home 

systems using portable devices [10] which often has inadequate accuracy [11]. 

Electrocardiogram (ECG) is one of the most extensively scrutinized signals for 

sleep study [12][13]. Together with the chest belts for respiratory patterns, SDB can be 

reasonably detected. Apnea alarm systems also usually employ SpO2 from the pulse 

oximeter to provide warning when SpO2 falls below a predefined threshold [14]. 

However, the high rate of false alarms can be triggered by motion artifacts and poor 

sensor contact [15].  

Many methods and algorithms have been proposed to detect sleep disorders 

autonomously [9][16]-[18], including various machine-learning (ML) models of 

neural networks, regression, and ensemble learning. Nevertheless, in the past decades, 

fewer studies have explored the prediction capability [19][20]. Predictive warning of 

the SDB events in advance can potentially improve the effectiveness of therapy. 

Currently, the gold-standard treatment for OSA is the continuous positive airway 

pressure (CPAP) [21][22] by blowing air into the nose. Though effective, the use of a 

single pressure and cumbersome equipment could cause pressure intolerance and 

reduce long-term acceptance. To improve user comfort, auto-titrating continuous 

positive airway pressure (APAP) [23] was later developed [24]. Recently the COVID-

19 pandemic has cast a spotlight on the ventilators [25] as life-support machines 
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providing intensive ventilatory support. Other innovative methods have also been 

proposed to intervene sleep disorders after detecting abnormal events [26]. However, 

interventions can be best applied with apneic prediction, as detection may be too late 

for intervention after 30s. Predictive warning of SDB for an advance of 30 – 90 s 

might be critical to improve therapeutic outcomes and reduce the impact on oxygen 

levels and sleep structure. Motivated by the unmet needs of reliable prediction of sleep 

disorders with minimal user disturbance, we developed a bed-integrated system with 

predicative SDB warning up to 90 s. Our system is based on the near-field coherent 

sensing (NCS) of ultra-high frequency (UHF) electromagnetic (EM) waves to monitor 

the dielectric boundary movement of internal organs and body parts [26]-[28].  It can 

be invisible to users and requires no personal setup time, especially considering 

occasional leave from beds such as restroom visits. Comfort and convenience are of 

critical importance for overnight sleep monitoring because apnea is a sparse event in 

the long recording of sleep in different stages. If users decide to take the monitor off 

and do not take the trouble of re-installation, serious apneic incidences can be missed.  

We have further developed a learning-based algorithm for detection and 

prediction. We recruited 27 patients with sleep disorders from the Weill Cornell 

Center for Sleep Medicine for overnight recording. The data from the NCS bed sensor 

was processed for feature extraction to feed into the random-forest ML model, which 

gave accurate SDB detection. Apneic events can be further predicted up to 90 s in 

advance based on the present respiratory features. We could also determine the 

correlation between respiratory features and SDB to identify the most critical 

physiological factors for detection and prediction of SDB episodes.  
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Experimental setup and protocol  

Experimental setup 

As shown in Fig. 1(a), the bed-integrated sensor consisted of a notched 

miniature coaxial radio-frequency (RF) cable, where the metal shield of the middle 5 

inches was removed to allow a small amount of EM energy leaking into the nearby 

user body [28]. The notch length was designed to accommodate positional variations 

for different patients.  In the near-filed region, the dielectric boundary movement by 

lungs and associated muscles would couple to the leaked EM energy, and hence affect 

the signals between the transmitter (Tx) and the receiver (Rx) [29]. Two notched-cable 

sensors underneath the approximate thorax and abdomen positions were adopted to 

capture the motion in separate regions during breathing [27]. Software-defined radio 

(SDR) was used to connect the notched sensors and then interface with the host 

computer through USB (Universal Serial Bus). As shown in Fig. 1(c), SDR was 

implemented by the National Instrument Ettus B210 with two Tx/Rx ports. The 

notched cables were sewn on the bottom side of the mattress pad, as shown in Fig. 

1(d), which were placed under an incontinence protector and a fitted bedsheet for 

comfort and aesthetic. No apparent performance degradation was observed for the 

additional layers, as evident from our prior studies for sensing over several layers of 

fabrics [30]. The schematic of the experimental setup was summarized in Fig. 1(e). In 

our previous work, vital-sign monitoring by this setup has been benchmarked against 

the strain-based chest belts and ECG with various sleep postures and large position 

variation [28]. 
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For the SDR Tx signal chain, the digital baseband went through the digital-to-

analog converter (DAC) and was then mixed with the carrier frequency fRF. The RF 

power is less than −10 dBm or 0.1 mW, well under the safety limits set by 

occupational safety and health administration (OSHA) in the UHF band. The RF 

signal leaked from the notched structure is coupled into internal organ motion, 

received by Rx, and then demodulated and sampled by the analog-to-digital converter 

(ADC) to retrieve the baseband. We employed the quadrature scheme as the baseband 

tone fBB, and the NCS signal can be represented by the magnitude and phase 

modulation on the quadrature signal as 

                                        (1) 

                (2)  

Fig. 1.  The RF sensor setup: (a) A photo of the notched transmission line 

sensor; (b) NCS sensor positions in relation to the body; (c) The photo of the 

SDR transceiver connected to two NCS sensors; (d) The position of the 

notched sensors under the mattress pad; (e) Schematics of the overall 

experimental setup (PSG not shown).  

sensor 1

SDR   

computer

Thorax

Abdomen

sensor 2

(b) (d)

(e)

Tx

Rx SDR

(c)

0 1 inch

(a)

Tx Rx
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                                        (3) 

                                       (4) 

 

where  is the phase offset accumulated from the Tx-Rx signal chains. fRF was 

selected at 1 GHz, and any choice between 0.9 and 2.4 GHz should have similar 

performance [27]. Two RF notched sensors, one approximately at the thorax and the 

other at the abdomen, were operated at two distinctive basebands of fBB1 =355 kHz 

and fBB2 = 440 kHz, which were implemented by two Tx-Rx channels synchronized in 

one SDR to reduce cross interference. Both channels were sampled at 106 samples per 

second (Sps), and were further down-sampled to 500 Sps after demodulation. 

Subjects and Data Collection  

 Overnight PSG was performed at the Weill Cornell Center for Sleep 

Medicine at approximately the participants’ regular sleep time, and included recording 

of EEG, EOG, submental and anterior tibialis EMG, two-lead ECG, chest and 

abdominal movement by inductive plethysmography, body position, SpO2 pulse 

oximetry, and nasal pressure respiratory flow monitoring.  Scoring of SDB and sleep 

stages was performed by a registered PSG technician licensed in the State of New 

York. All events were scored according to the recommended rules by the American 

Academy of Sleep Medicine [31]. The human study was performed under the 

approved protocol of Weill Cornell Medical Center IRB# 19-12021223. 
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Data Processing 

After gathering overnight recording of patients, we first processed our NCS 

data along with PSG respiratory data, then extracted the respiratory features, and 

finally fed the data into the ML classifier for SDB detection and prediction. Notice 

that NCS and PSG respiratory channels had the same signal processing procedure for 

fair comparison. We used MATLAB for signal processing and feature extraction.  

Signal processing 

We included the full overnight NCS recording of 27 patients with the duration 

of 7 – 8 hours. PSG was mainly used for feature validation and model comparison, and 

had 3 respiratory channels of the airflow, thorax belt, and abdomen belt. SpO2 from 

PSG was also collected as an additional input apart from the respiratory motion 

waveforms. Two NCS sensors from the thorax and abdomen positions produced 

respective magnitude and phase as four individual inputs.  

The feature extraction contained 8 steps: 

1 Down sample NCS and PSG to 25 Hz. 

2 Synchronize NCS and PSG signals (precision to 1s).   

3 Perform bandpass filtering and smoothing (0.05 Hz to 2 Hz). 

4 Segment waveform into epochs of Tepoch = 40 s and a sliding window of 

Tslide = 15 s. 

5 Label operator annotation in epoch. 

6 Normalize waveform and extract features in epoch. 

7 Select epochs by signal quality for NCS and PSG. 
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8 Output features and annotation to the ML model. 

The bandpass filter in Step 3 was implemented in MATLAB by the digital 

infinite impulse response (IIR). Another Savitzky-Golay finite impulse response (FIR) 

smoothing filter [32] with 4th polynomial order was further employed to rid of high-

frequency noises. The operator annotations were adapted to give epoch-based 

references. In each epoch, if any annotation has a time duration > 40%  Tepoch = 16 s, 

the current epoch will be labelled accordingly. The choice of Tepoch between 10 – 20 s 

will not affect the end result significantly. Epoch labels include normal, snore, 

hypopnea, OSA, mixed apnea, and CSA (central sleep apnea). If the annotated 

disorder event lasts < 16 s, the epoch will be labeled as normal. If the time duration 

with no annotation > 20 s, current epoch will be removed from dataset. This is often 

due to insufficient evidence of proper PSG monitoring, such as patients going to 

restroom or taking some sensors off. 

 

The annotation was directly used as the ground truth for disorder detection 

training and validation. For prediction, labelling criterion should be modified. In each 

epoch, if the current label was a disorder event, we would remove it from the dataset 

Fig. 2. The prediction labelling criterion.  
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because prediction was based on the normal period before the disorder events. Aiming 

to predict disorders 0 − 90s in advance, we labelled the epochs containing six sliding 

windows before the forthcoming disorder event as the disorder precedence “prior”, 

and the other epochs as “regular”. A simple flow chart of prediction labelling is shown 

in Fig. 2.      

Feature extraction  

After epoch segmentation, waveforms were normalized to [−1,1] in each 

epoch. To extract respiratory features, we first implemented the peak detection 

algorithm [33]. A moving-average curve was first calculated at each time point in a 

given period, which was around one respiration cycle and then constantly updated. 

The points when the moving-average curve crossed the original signal were marked as 

up-crossing points for positive slopes in the original signal or down-crossing points for 

negative. Local maximum was labelled as the maximal point between two up-down 

crossing points, and local minimum as the minimal point between two down-up 

crossing points. Fig. 3 presents sample epochs of respiratory waveforms, annotated 

with different labels of (a) normal, (b) OSA, and (c) hypopnea. The red waveform was 

derived from NCS and the green ones from PSG. Solid magenta upward-pointing 

triangles marked the maximum peaks detected by the algorithm and blue downward-

pointing triangles mark the minimum peaks. We could observe distinctive patterns in 

different events.  Waveforms showed a more regular respiratory pattern in normal 

epochs, while irregular patterns more frequently indicated disorder epochs.    
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TABLE I.    RESPIRATORY FEATURES I (16). 

µBR µPP µIN µEX 

ΣBR ΣPP ΣIN ΣEX 

COVBR COVPP SKEW KURT 

N ENTR ȠP0 THOLD 

 

TABLE II.    RESPIRATORY FEATURES II (21). 

ȠP1 ȠP2 ȠP3 ȠP4 

F1MAX F2MAX F3MAX F4MAX 

CORBR CORPP CORIN COREX 

SDBR SDPP SDIN SDEX 

MAXIN MAXEX MAXBR  

MINBR MINPP   

 

TABLE III.    SPO2 FEATURES (4). 

µSPO2 ΣSPO2 ȠSPO2 MINSPO2 

IN
PP

EX
1/BR

(d)

Normal 

OSA

Hypopnea

(a)

(b)

(c)

Fig. 3. Waveform examples from NCS and PSG in the epochs labelled as (a) 

normal; (b) OSA; (c) hypopnea. NCS channels are from (a): thorax phase; (b): 

thorax phase; (c): abdomen amplitude. PSG channels are from (a): chest; (b): 

airflow; (c): airflow. (d) Examples of the peak detection and feature extraction 

process. The red line is the respiratory waveform from (a). The magenta and blue 

triangles are the detected maximum and minimum peaks. Features of IN, EX, PP 

and BR are marked.  
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After identifying respiratory cycles using peak detection, we could first extract 

the 4 respiratory parameters in each breath cycle to represent the instantaneous 

respiratory characteristics, including BR (breath rate in BPM), PP (peak-to-peak in 

arbitrary units as an estimate of the lung volume), IN (inhalation interval in s), and EX 

(exhalation interval in s). Several examples are shown in Fig. 3(d) for the extraction 

process of respiratory parameters.  

After gathering respiratory cycles and parameters, we extracted 16 respiratory 

features which would function as the epoch features fed into the ML classifier for 

detection as listed in Table I. The first 8 features were the mean (µ) and the standard 

deviation (σ) of the above 4 respiratory parameters.  Because BR and PP were two 

significant factors representing the respiratory pattern, we added 2 more features as the 

coefficient of variation (CoV) of BR and PP,  

                                                                      (4) 

CoV showed the extent of variability in relation to the mean. Additionally, 

Skew and kurt measured the tailedness and asymmetry of each respiratory cycle, and 

were averaged over all cycles within the epoch. Apart from features derived from 

respiratory parameters, we appended four supplemental features including 1) the total 

number of detected respiratory cycles n; 2) the total randomness or entropy of the 

waveform entr; 3) the power in the lower frequency band ((0.05,0.5) Hz) divided by 

the total power in all frequencies ƞp0; 4) the time duration when no peak was detected 

within the epoch Thold. 

    Other than 16 respiratory features in Table I, we added 21 respiratory 
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features in Table II for the prediction classifier, which had 37 respiratory features in 

total. Augmentation of features can enhance the performance of the ML model before 

overfitting becomes dominant. ƞpi and fimax (i = 1~4) represented the power in specific 

bandwidth divided by the total power in all frequencies and the frequency with the 

maximum power density within the bandwidth, respectively. The four chosen 

bandwidths were f1 = (1, 2) Hz; f2 = (2, 5) Hz; f3 = (5, 8) Hz; f4 = (8, 12.5) Hz. Cor was 

the autocorrelation in a time lag of one respiratory cycle to measure the successive 

similarity of a given respiratory parameter.  SD representing the successive difference 

was defined as the mean absolute difference between adjacent cycles. At last, we 

added the maximum of IN, EX and BR within the epoch and the minimum of BR and 

PP. The choice of these features is based on the physiological reasoning that in the 

events of disorder, or in the anticipation of the events, there would be larger variation 

in PP and BR within the epoch.  ƞpi and fimaxc contained the regularity of IN and EX, 

and possibly some tissue vibration characteristics during the disorder events below the 

audible range. 

    Beyond respiratory features derived from the NCS and PSG waveforms, we 

also added features representing oxygen saturation as listed in Table III: 1) SpO2: the 

mean SpO2 level; 2) σSpO2: the standard deviation of SpO2 level; 3) ƞSpO2: the 

percentage of time when SpO2 < threshold (92%); 4) minSpO2: the minimum level of 

SpO2. 

After segmentation and feature extraction, we added an extra step for NCS 

epoch selection. Signal quality cannot be guaranteed during the entire course of 

overnight recording because patients may have random motion lying on the bed or 



52 

 

leave the bed for restroom visits. Various other factors such as ambient movement 

might bring about noises to cause SNR (signal-to-noise ratio) degradation. Therefore, 

we opted to remove the epochs with very low SNR by pre-determined thresholds, i.e., 

epochs with ƞp0 < Thƞp0 = 70 % and σPP > ThσPP = 0.3 will be removed from the 

dataset.  

Machine learning Models 

Data composition  

For output datasets, Table IV shows NCS and PSG dataset composition for 

detection and prediction, respectively. Labels for epochs were divided into 7 classes, 

namely, normal, snore, arousal, hypopnea, OSA, mixed apnea, and CSA. Labels of 

normal, snore, and arousal were further grouped into the binary classification of 

“normal”, while labels of hypopnea, OSA, mixed apnea, and CSA into “disorder”. We 

studied the performances of our ML model by both 7 classes and 2 classes, although 

the main focus was on the binary classes of normal and disorder.  The first 7 rows in 

Table IV  presented the total number of epochs annotated with these labels in NCS and 

PSG. For the last 2 rows, the disorder ratio was the proportion of disorder epochs 

within all epochs, and the epoch selection ratio was the ratio between the total duration 

of selected epochs and overall recording time. Because prediction only included 

normal epochs for disorder precedence, NCS prediction dataset has a relatively 

smaller ratio than detection. As for the PSG dataset, we used the epochs derived from 

the same time periods as selected from NCS for fair comparison. Note that though 

PSG and NCS shared the same recording time, PSG only utilized one optimal channel 
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out of three respiratory channels for each epoch, while NCS may include more than 

one channel with acceptable signal quality within each epoch.  

 

TABLE IV.  NCS DATASET COMPOSITION OF EVENTS AND PRECEDENCIES. 

 NCS 

DETECTION 

PSG 

DETECTION 

NCS 

PREDICTION 

PSG 

PREDICTION 

NORMAL 23574 15334 13350 9538 

SNORE 621 244 265 126 

AROUSAL 548 274 578 334 

HYPOPNEA 7674 3483 3221 1689 

OSA 1902 852 1452 560 

MIXED 

APNEA 

63 34 7 4 

CSA 401 188 405 157 

DISORDER 

RATIO 

0.289 0.223 0.307 0.231 

EPOCH 

SELECTION 

RATIO 

0.413 0.413 0.254 0.254 

 

 

(a)

(b)

Prediction

Detection

Fig. 4. The numbers of the selected NCS and PSG epochs from each 

patient in the dataset of (a) detection and (b) prediction.  
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TABLE V. COMPARISON OF THE MEAN AND STANDARD DEVIATION OF NORMAL AND DISORDER 

EPOCHS OF SELECTED FEATURES.  

AVG± DEV µBR ΣBR µPP ΣPP ȠP0 

NCS: 

NORMAL  

15.6± 

3.12 

2.62

± 

1.65 

0.992

± 

0.206 

0.147

±0.0

50 

87.2

± 

7.44 

NCS: 

DISORDER  

17.8± 

3.64 

4.61

± 

2.91 

0.859

± 

0.220 

0.206

±0.0

79 

86.1

± 

7.37 

PSG: 

NORMAL  

15.6± 

3.23 

1.97

± 

1.67 

1.171

± 

0.208 

0.138

±0.0

85 

91.7

± 

8.52 

PSG: 

DISORDER 

16.7± 

3.47 

2.73

± 

1.88 

1.032

± 

0.209 

0.213

±0.0

96 

89.6

± 

8.98 

AVG± DEV COVB

R 

COV

PP 

µSPO2 ΣSPO2  

NCS: 

NORMAL  

0.164

± 

0.094 

0.159

±0.0

74 

93.5± 

5.52 

0.620

±1.8

5 

 

NCS: 

DISORDER  

0.252

± 

0.141 

0.266

±0.1

45 

91.6± 

3.59 

1.70

± 

1.34 

 

PSG: 

NORMAL  

0.122

± 

0.089 

0.135

±0.1

15 

93.5± 

5.67 

0.622

±1.8

2 

 

PSG: 

DISORDER  

0.162

± 

0.101 

0.228

±0.1

37 

91.7± 

3.61 

1.68

± 

1.29 

 

 

(a)

(b)

ZZ1
ZZ2

Fig. 5. An example of the selected NCS epoch distribution within the 

whole overnight recording in the (a) detection and (b) prediction 

datasets.  
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Fig. 4 showed the selected NCS epoch number for each patient in the detection 

and prediction datasets. The NCS epoch selection had a large variation mainly due to 

subject variation. An example of the NCS epoch selection during the whole overnight 

recording was shown in Fig. 5 for detection and prediction datasets from one 

representative patient. For detection in Fig. 5(a), the red bars represented the selected 

normal epochs and the green bars represented the selected disorder epochs. For 

prediction in Fig. 5(b), the normal epochs in the detection dataset are further divided 

into regular and prior according to whether an abnormal event will happen in the 

forthcoming 90 s. Note that the PSG dataset had the same epoch time distribution with 

NCS. Table V presented the comparison of the mean and standard deviation of the 

selected features in normal and disorder epochs in the NCS and PSG detection datasets 

which had dominant significance in the ML model in the following section. Disorder 

epochs had higher standard deviation for all respiratory features, indicating disorder 

epochs were less stable and tend to fluctuate more. Meanwhile, disorder epochs also 

have distinctively higher CoVBR, and CoVPP in comparison with normal ones, which 

were important factors to distinguish the two classes as well. For oximetry, disorder 

epochs usually had smaller µSpO2 and higher σSpO2.  

The Random-forest Model 

We chose the random-forest classifier [34] as the ML model, which was an 

ensemble learning method for classification that constructed a multitude of decision 

trees during training, and then output the class selected by most trees. There are two 

advantages in the tree-based ML models: 1) Straightforward to interpret as a white-
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box model, which can help us understand the intrinsic relationship between respiratory 

features and sleep disorders; 2) Non-parametric without assumption on the data 

distribution or linearity. Random forest can reduce overfitting in a single decision tree 

but keep the advantages of the decision tree. 

However, we faced the problem of class imbalance as shown in Table IV, 

where the number of normal epochs was much larger than those of the disorder 

epochs. In other words, a bias or skewness would shift towards the normal event 

present in the dataset. For remediation, we added class weights for statistical 

amplification, which assigned different weights to the normal and disorder labels 

(normal:disorder = 1:3). The model thus penalized the misclassification made on the 

minority class of disorder. This practice achieved higher sensitivity to disorder 

detection effectively.  

  Class weighting can improve sensitivity, while outlier removal can improve 

specificity.  Before constructing the ML model, we first cleaned the dataset by 

removing the normal epochs that were distinctively deviant from the majority. In our 

study, we assumed that the normal epochs in the dataset should have a relatively 

regular and similar respiratory pattern and thus data should form a dense cluster. 

Abnormal observations that are far from the majority ones within normal epochs were 

removed as outliers that were most likely due to noisy or wrong data. Here, we used 

the isolation forest algorithm[35], an unsupervised anomaly detection method based 

on random forests, as the outlier detection method.  The outlier removal ratio was set 

at 0.2, which efficiently promoted specificity by eliminating noisy data in normal 

epochs.  
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Results for disorder detection 

The k-fold and leave-one-participant-out cross-validations (CV) were 

employed as model verification, where k-fold CV tested the skill of the model on new 

data, and leave-one-participant-out CV tested the robustness to unseen patients. For k-

fold CV of k = 5, we divided the whole dataset (N cases) into separate training (0.8N 

cases) and testing (0.2N cases), and the process was repeated 5 times until all cases 

had been tested as unseen data. For leave-one-participant-out CV, the model was 

trained on the data sets from all patients except one, whose data were then used as 

testing. The CV process was reinitialized and repeated for each patient as the testing 

case.  

Fig. 6 shows the overall confusion matrices for detection using k-fold random 

forest, while Table VI further presents the statistics for k-fold. The binary class of 

normal and disorder achieved better accuracy than the full seven classes. NCS + SpO2 

resulted in the best performance for disorder detection with 88.9% accuracy, 88.6% 

sensitivity and 89.0% specificity. The top three important features were SpO2 

deviation SpO2, peak-to-peak deviation PP, and breath rate deviation BR. When only 

NCS datasets were used, the sensitivity has significantly degraded to 63.6%, 

indicating SpO2 was an important factor for apnea identification apart from 

respiratory patterns. The top three important features became PP, BR, and BR.  

Note that the PSG detection here only utilized one optimal channel out of three 

respiratory channels for each epoch. Overall, the accuracy using different PSG 

respiratory channels was similar. 
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Table VI.  Comparison of the detection devices by 5-fold CV. 

DATA SET NCS 
NCS + 

SPO2 
PSG 

PSG + 

SPO2 

ACCURAC

Y 
86.2% 88.9% 76.9% 85.2% 

SENSITIVI

TY 
63.6% 88.6% 63.7% 78.3% 

SPECIFICI

TY 
96.3% 89.0% 81.1% 87.4% 

FEATURE 

IMPORTAN

CE 

ΣPP 

(0.50) 

ΣBR 

(0.27) 

BR 

(0.05) 

COVPP 

(0.03) 

ΣSPO2 

(0.58) 

ΣPP 

(0.14) 

ΣBR 

(0.08) 

COVPP 

(0.04) 

COVPP 

(0.42) 

THOLD 

(0.10) 

PP 

(0.05) 

EX 

(0.05) 

ΣSPO2 

(0.36) 

ȠSPO2 

(0.05) 

BR 

(0.05) 

ΣPP 

(0.05) 

 

We further compared multiple classifiers including k-nearest neighbor (kNN), 

support vector machine (SVM), decision tree, hybrid model and random forest, as 

(a) (b)

(c) (d)

Fig. 6. The confusion matrices showing Normal (0) and Disorders (1) 

detection by the random forest model using the features from (a) NCS; (b) 

NCS +SpO2; (c) PSG; (d) PSG +SpO2. The cells list the number of epochs 

in each category. A 5-fold CV was tested on the entire data. 
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presented in Table VII.  The hybrid model consisted of the voting classifier ensembled 

from SVM, kNN and decision tree altogether. kNN had the lowest sensitivity to 

disorder detection, although the specificity was very high. Random forest resulted in 

highest accuracy for NCS + SpO2 dataset, and also achieved high sensitivity and 

specificity. The overall difference among SVM, decision tree and random forest was 

relatively small. 

 

TABLE VII. ALGORITHM COMPARISON FOR DETECTION BY 5-FOLD CV. 

ALGORITHM 

CV 

ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 

NCS 

NCS 

+ 

SPO2 

NCS 

NCS 

+ 

SPO2 

NCS 

NCS 

+ 

SPO2 

KNN 82.9 87.0 47.1 62.0 99.1 98.3 

SVM 71.8 87.1 80.3 90.3 68.0 85.7 

DECISION 

TREE 
77.3 87.5 72.1 88.3 79.7 87.2 

HYBRID* 81.5 89.7 69.6 86.8 86.9 91.0 

RANDOM 

FOREST 
86.2 88.9 63.6 88.6 96.3 89.0 

HYBRID* IS THE VOTING CLASSIFIER ENSEMBLED FROM 

SVM, KNN AND DECISION TREE. 
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TABLE VIII.  COMPARISON OF THE DETECTION DEVICES BY LEAVE-ONE-PARTICIPANT-OUT 

CV. 

DATA SET NCS 
NCS + 

SPO2 
PSG 

PSG + 

SPO2 

ACCURAC

Y 
84.4% 88.9% 73.8% 85.5% 

SENSITIVI

TY 
60.4% 83.1% 56.7% 74.3% 

SPECIFICI

TY 
95.2% 91.6% 79.2% 89.1% 

FEATURE 

IMPORTAN

CE 

ΣPP 

(0.50) 

ΣBR 

(0.28) 

BR 

(0.05) 

COVPP 

(0.02) 

ΣSPO2 

(0.62) 

ΣPP 

(0.15) 

ΣBR 

(0.08) 

COVPP 

(0.03) 

COVPP 

(0.43) 

THOLD 

(0.10) 

EX 

(0.05) 

BR 

(0.05) 

ΣSPO2 

(0.70) 

COVPP 

(0.03) 

ȠSPO2 

(0.03) 

KURT 

(0.02) 

 

 

(c) (d)

(a) (b)

Fig. 7. The confusion matrices showing Normal (0) and Disorders (1) 

detection by the random forest model using the features from (a) NCS; (b) 

NCS +SpO2 (c) PSG; (d) PSG +SpO2 by the leave-one-participant-out. 
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The results above were tested from k-fold CV, and the leave-one-participant-

out CV for unseen patients was shown in Fig. 7. High performance of 88.9% accuracy, 

83.1% sensitivity and 91.6% specificity was maintained using NCS + SpO2 features. 

As shown in Figs. 7 (c)(d), for PSG dataset, sensitivity to disorder events remain 

slightly lower than NCS.  The accuracy and feature importance using k-fold and leave-

one-participant-out CV were similar, as shown in Table VIII. 

The misalignment in timing between the thorax and abdomen waveforms in the 

epoch can be a potential feature for OSA detection from the paradoxical breathing 

patterns [29]. Tlag was calculated by the shifted time lag of the abdomen channel that 

gave the highest cross-correlation between the thorax and shifted abdomen channels. 

Phase and amplitude channels were separately compared. However, the accuracy 

results after adding the Tlag feature were not much improved, probably because the 

OSA event was already represented in other respiratory features. Therefore, we did not 

include Tlag as a feature in the other benchmarks.                                     

Results for disorder prediction   

In this section, we presented the accuracy statistics for SDB prediction using 

the waveforms in the normal epochs preceding the disorder epoch by 0 – 90 s. Similar 

CV tests were performed on prediction datasets as in detection.  

Fig. 8 shows the overall confusion matrices using the k-fold random forest 

model, and Table VIII further presents the statistics. Similar to detection, prediction of 

individual events from 7 classes had lower accuracy in comparison with the binary 

class. In contrast to the detection results when NCS + SpO2 was better than NCS 
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alone, we can find that the performance of using only NCS was comparable to NCS + 

SpO2, meaning that NCS respiratory information alone can function as a predictor for 

disorders. Physiologically speaking, low SpO2 was the result of the apneic event, and 

therefore was useful in detection, but not in prediction. Sensitivity to disorder 

precedence epochs (81.3%) was relatively lower than those of detection (88.6%), 

which was also understandable because disorder precedence has less evident changes 

in respiratory features than the actual disorder events.   

In comparison with PSG, NCS had distinctively higher accuracy and 

sensitivity for SDB prediction. This was likely because the important feature ƞp0, 

representing the signal power dominance within the bandwidth of (0.05, 0.5) Hz, was 

not well represented in PSG, as NCS had a unique capability to extract motion 

characteristics of a broad bandwidth[38][39]. The important features for prediction in 

NCS included ƞp0, σPP CoVPP, and σBR according to Table VIII. To identify 

forthcoming abnormality, the feature ƞp0 captured whether the waveform was 

monotonic in the fundamental BR or contained more high-frequency attributes. The 

features CoVPP and σPP represented the peak-to-peak variations, which corresponded 

to the lung volume.  σBR, representing the breath rate variation, can be important too.  

 

DATA SET NCS 
NCS + 

SPO2 
PSG 

PSG + 

SPO2 

ACCURAC

Y 
81.9% 81.9% 74.1% 76.1% 

SENSITIVI

TY 
74.6% 81.3% 55.8% 64.8% 

SPECIFICI

TY 
84.9% 82.1% 78.9% 79.1% 

TABLE IX.  COMPARISON OF THE PREDICTION DEVICES BY 5-FOLD CV. 
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FEATURE 

IMPORTA

NCE 

ȠP0  

(0.31) 

ΣPP  

(0.30) 

COVPP 

(0.19) 

ΣBR 

(0.13) 

ΣPP  

(0.35) 

ȠP0  

(0.28) 

ΣSPO2 

(0.18) 

ΣBR 

(0.09) 

ΣPP  

(0.21) 

MINPP  

(0.17) 

COVPP 

(0.10) 

PP  

(0.09) 

ΣSPO2 

(0.49) 

ȠSPO2  

(0.05) 

PP  

(0.05) 

PP 

(0.05) 

 

TABLE X. ALGORITHM COMPARISON FOR PREDICTION BY 5-FOLD CV. 

ALGORITHM 

CV 

ACCURACY 

(%) 

SENSITIVITY 

(%) 

SPECIFICITY 

(%) 

NCS 

NCS 

+ 

SPO2 

NCS 

NCS 

+ 

SPO2 

NCS 
NCS 

+ SPO2 

SVM 77.4 80.4 76.7 80.1 77.8 80.5 

KNN 83.0 83.4 46.3 47.6 99.6 99.5 

DECISION 

TREE 
79.7 79.7 81.0 81.0 79.2 79.2 

HYBRID* 79.3 82.7 73.9 77.7 81.5 84.7 

RANDOM 

FOREST 
81.9 81.9 74.6 81.3 84.9 82.1 

HYBRID* IS THE VOTING CLASSIFIER ENSEMBLED FROM 

SVM, KNN AND DECISION TREE. 
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DATA SET NCS 
NCS + 

SPO2 
PSG 

PSG + 

SPO2 

ACCURAC

Y 
81.7% 81.9% 65.2% 72.1% 

SENSITIVI

TY 
72.7% 80.5% 62.6% 68.3% 

SPECIFICI

TY 
85.3% 82.4% 65.8% 73.1% 

FEATURE 

IMPORTA

NCE 

ȠP0  

(0.32) 

ΣPP  

(0.27) 

COVPP 

(0.21) 

ΣBR 

(0.14) 

ΣPP  

(0.36) 

ȠP0  

(0.28) 

ΣSPO2 

(0.18) 

ΣBR 

(0.10) 

MINPP  

(0.22) 

ΣPP  

(0.15) 

PP  

(0.11)  

COVPP 

(0.08) 

ΣSPO2 

(0.51) 

PP  

(0.06) 

MINSPO2 

(0.05) 

SPO2   

(0.05) 

 

Different algorithms for prediction were compared regarding classification 

performance in Table IX. kNN lacks a reasonable sensitivity to disorder events. 

(a) (b)

(c) (d)

Fig. 9. The confusion matrices showing Regular (0) and Prior 

(1) prediction by the random forest model using the features 

from (a) NCS; (b) NCS +SpO2 (c) PSG; (d) PSG +SpO2 by the 

leave-one-participant-out CV. 
 
 

 
TABLE XI.  COMPARISON OF THE PREDICTION DEVICES BY LEAVE-ONE-PARTICIPANT-OUT 

CV.  
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Random forest has a good performance on specificity and achieves reasonably high 

sensitivity and overall accuracy. SVM and decision tree can also generate results with 

nearly similar performance.      

In addition to k-fold CV, leave-one-participant-out CVs were performed to 

validate the robustness of the prediction system on unseen patients and the results are 

shown in Fig. 9. The result reached 81.7% accuracy, 72.7% sensitivity and 85.3% 

specificity using only the NCS features. The accuracy remained high for unseen 

patients and showed a good match with k-fold CV results. Similar results from the 

PSG dataset were presented in Figs. 9 (c)(d). The accuracy and feature importance 

using leave-one-participant-out CV were shown in Table XI. 

We also compared the results for prediction in advance of different time length 

ranging from 30s to 120s as shown in Fig. 10. Accuracy decreased when the 

prediction time length increased, and sensitivity degraded significantly when the 

prediction time exceeded 90 s. We selected 90 s as the final choice to obtain a 

reasonably high accuracy as well as a longest feasible warning time.  

In Fig. 10(b), we presented additional comparison for the different 

combinations of epoch duration Tepoch and sliding window Tslide using (upper) NCS 

and (lower) NCS +SpO2 features. Accuracy was hardly affected by the choices of 

Tepoch and Tslide . We chose Tepoch = 40 s and Tslide = 15 s in the main analysis mostly for 

convenience and a relatively large number of epochs.  

The above results of our SDB detection and prediction were based on the 

feature extraction followed by the ML model. We also experimented on convolutional 

neural network (CNN) as the ML model, eliminating the feature extraction process. 
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For CNN, we used the waveform from NCS as the direct input and constructed the 

network consisting of 5 convolution layers and 3 linear layers. Dataset was divided 

into training (80%) and testing (20%) parts and the accuracy for the unseen testing 

data was estimated. In this study, CNN had inferior performance to the approaches 

using feature extraction followed by the classic ML models. This was likely due to the 

insufficient SNR in the raw waveforms, where the feature extraction in the epoch 

duration could provide some data smoothing and selection effects.  

(a)

(b)

 

Fig. 10. (a) Comparison of NCS prediction accuracy of the different time length ranging 

from 30s to 120 s using features from (upper) NCS and (lower) NCS +SpO2. (b) 

Comparison of detection accuracy using different combinations of epoch duration Tepoch and 

sliding window Tslide in the (upper) NCS and (lower) NCS +SpO2 datasets. 
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Results for AHI classification  

AHI, calculated by the number of apnea and hypopnea events per hour of 

sleep, is an important feedback to the patient to indicate the severity of sleep apnea 

[36].  

In addition to epoch-based apnea detection and prediction, we also evaluated 

the performance for AHI classification from the NCS inputs only. We first divided all 

participants into binary classes of AHI ≤ 5 as “Normal” and AHI > 5 as “OSA 

Present” [37]. Using our NCS detection results for normal and disorder, we extracted 

overall features for each participant including the total epoch numbers of normal and 

disorder and the NCS F selection rate. We then adopted a simple random forest model 

by these features from each participant as the input, and estimated the AHI class. The 

resulting confusion matrix of the two-class AHI classification between annotation and 

NCS output is shown in Fig. 11 (a). In Fig. 11 (b), we also presented the three-class 

confusion matrix from AHI ≤ 5 as “Normal”; 5 < AHI ≤ 15 as “Mild OSA”; 

15 < AHI as “Moderate OSA” [37]. Our NCS estimation achieved accuracy of 0.93 

for binary AHI classification, and 0.70 for three classes. Our AHI classification 

performance is limited due to the present small sample size.  Alternatively a random-

forest regressor ML model can produce a continuous AHI score [27]. Our AHI 

accuracy can likely make further improvement in future studies when data from more 

patients with broader distribution become available. 
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Discussion 

Remaining Challenges  

Challenges to construct a clinically acceptable sleep apnea detection and 

prediction platform still remained: 

1) Sensitivity was only above 70% for prediction at the current stage. On 

the brighter side, the NCS deployment can be invisible to patients throughout the 

monitoring, and was hence ultimately comfortable and convenient. Our present system 

can still be a reasonable complement to guide interventions [21]-[26].  

2) Our current system cannot classify different respiratory events with 

sufficient accuracy. Though the binary-class (normal/disorder) results had a relatively 

high accuracy, our system did not perform well for identifying OSA, CSA, and 

hypopnea individually. This may be due to the much more hypopnea events than OSA 
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Fig. 11. The Confusion matrix of the (a) two-class and (b) three-class AHI 

classification between annotation and NCS output from 27 patients. In (a), 

the two AHI classes are: AHI ≤ 5: Normal; 5 < AHI : OSA Present, with an 

accuracy = 0.93; sensitivity = 0.95; specificity = 0.88. In (b), the three AHI 

classes are: AHI ≤ 5: Normal; 5 < AHI ≤ 15: Mild OSA; 15 < AHI < 30: 

Moderate OSA, with an accuracy = 0.70. 
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and CSA ones in the dataset. The system thus had limited learning for OSA and CSA, 

and tend to classify new disorder events as hypopnea.  

3) SNR of the waveform needed further improvements. In this study, we relied 

on NCS epoch selection to eliminate noisy episodes. Sensor improvement for higher 

SNR and higher tolerance to subject variation and motion interference should be 

investigated. 

4) The snoring event needed features from higher frequency. In this study, the 

snoring event was not included in the disorder class. However, snoring was an 

important sleep abnormality in need of more comprehensive investigation. Our NCS 

sensing technology can couple to low-frequency motion like respiration [27] as well as 

high-frequency motion of internal tissues [38]. Snoring can be detected with minimal 

ambient interference by an additional NCS probe on the jugular or submental area, 

similar to cough sensing [39]. 

Future Improvements from Expanded Scope 

The potential extension in future research studies includes: 

1) We will expand future studies by adding more severe cases with AHI ≥ 30. 

During the execution period of our study protocol in the Weill Cornell Center for 

Sleep Medicine, we recruited participants with suspected sleep apnea that turned out to 

have mild and moderate conditions, while others were normal. Future study including 

patients with wider range of AHI can also help build a more comprehensive and 

mature learning model. 

2) Broadening the demographic groups to include high-risk patients for SDB, 
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including opioid addicts, COPD, or infants at risk for severe apneic events and 

respiratory arrest, especially those who are born preterm [7][40]. Reliable sleep apnea 

detection and prediction in these high-risk patients would help improve outcome and 

prevent fatality.  

3) Developing a system that uses SDB prediction to guide real-time 

intervention including user warning and ambient stimulation, followed by overall 

effectiveness assessment. The benefit of intervention will likely depend on the 

prediction accuracy and reliability. By integrating detection, prediction and 

intervention, we would hopefully improve diagnosis, prognosis and therapy for SDB.   

4) Extending the study to include patients with more severe cases of OSA and 

the associated risk in comorbidities by examining the possible correlation [41].  We 

will also try to include patients with CSA to further explore the clinical utility of the 

proposed technology, although the number of patients needs to be much larger due to 

the infrequent occurrence of CSA. The detection model will also need broader 

dimension of pathological features in order to achieve a higher confidence level. 

5) Improving the learning model to achieve higher accuracy and reliability. 

Improvements can include additional preprocessing for feature extraction, better noise 

reduction algorithms, and more complex ML models such as gain-adversarial network 

(GAN) [42]. 

Conclusion  

In this work, we reported a hardware-software co-designed system that can 

detect and predict SDB. This system was based on a covert bed-integrated RF sensor 
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by NCS, which can be non-invasive and invisible to user. SDB detection for 

considering apneas and hypopneas together achieved a sensitivity and specificity up to 

88.6% and 89.0% for k-fold validation, and 83.1% and 91.6% for subject-independent 

validation, respectively.  Subsequent apneic events can be predicted up to 90 s in 

advance based on the present respiratory features. Disorder prediction achieved a 

sensitivity and specificity up to 81.3% and 82.1% for k-fold validation, and 80.5.0% 

and 82.4% for subject-independent validation, respectively. By the random forest ML 

model, the most significant physiological symptoms before and during the SDB 

episodes can also be revealed.   

The current sleep apnea diagnosis platform was mostly based on PSG, which 

remained expensive in terms of hardware and operators, uncomfortable from body 

electrodes, and time-consuming for deployment.  The ability to predict upcoming SDB 

events by PSG was also limited. In the future, our covert detection and prediction 

system could expedite intervention, and improve diagnosis and therapy for respiratory 

disturbance during sleep. 



 

72 

 

REFERENCES 

 

1 H. R. Colten and B. M. Altevogt, Eds., Sleep Disorders and Sleep Deprivation: An 

Unmet Public Health Problem. National Academies Press, 2006. 

2 T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, “The 

occurrence of sleep-disordered breathing among middle-aged adults,” New Engl. J. 

Med., vol. 328, no. 17, pp. 1230-1235, 1993.  

3 T. Young, L. Evans, L. Finn, and M. Palta, “Estimation of the clinically diagnosed 

proportion of sleep apnea syndrome in middle-aged men and women,” Sleep, vol. 

20, no. 9, pp. 705-706, 1997. 

4 C. Senaratna et al., “Prevalence of obstructive sleep apnea in the general 

population: A systematic review,” Sleep Med. Rev., vol. 34, no. 1, pp. 70–81, Aug. 

2017. 

5 A. Roebuck et al., “A review of signals used in sleep analysis,” Physiol. Meas., 

vol. 27, no. 3, pp. 320–331, 2015. 

6 E. A. Phillipson, "Sleep apnea--a major public health problem," New Engl. J. 

Med., vol. 328, no. 17, pp. 1271-1273, 1993.  

7 E. S. Katz, R. B. Mitchell, and C.M. D'Ambrosio, "Obstructive sleep apnea in 

infants," Am. J. Respir. Crit., vol. 185, no. 8, pp. 805-816, Apr. 2012. 

8 V. Mysliwiec et al., "Sleep disorders in US military personnel: a high rate of 

comorbid insomnia and obstructive sleep apnea," Chest, vol. 144, no. 2, pp. 549-

557, Aug. 2013. 

9 F. Mendonça, S. S. Mostafa, A. G. Ravelo-García, F. Morgado-Dias and T. Penzel, 

"A review of obstructive sleep apnea detection approaches," IEEE J. Biomed. 

Health Inform., vol. 23, no. 2, pp. 825-837, Mar. 2019. 

10 W. W. Flemons et al., "Home diagnosis of sleep apnea: A systematic review of the 

literature," Chest, vol. 124, no. 4, pp. 1543-1579, Oct. 2003. 

11 O. C. Ioachimescu et al., "Performance of peripheral arterial tonometry–based 

testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort," J 

Clin. Sleep Med., vol. 16, no. 10, pp. 1663-1674, Oct. 2020. 

12 O. Faust, U. R. Acharya, E. Ng, and H. Fujita, "A review of ECG-based diagnosis 

support systems for obstructive sleep apnea," J. Mech. Med. Biol., vol. 16, no. 01, 

p. 1640004, Feb. 2016. 



 

73 

13 G. D. Clifford, F. Azuaje, and P. McSharry, Advanced Methods and Tools for 

ECG Data Analysis. Artech house Boston, 2006. 

14 U. J. Magalang et al., "Prediction of the apnea-hypopnea index from overnight 

pulse oximetry," Chest, vol. 124, no. 5, pp. 1694-1701, Nov. 2003. 

15 V. Monasterio, F. Burgess, and G. D. Clifford, "Robust classification of neonatal 

apnoea-related desaturations," Physiol. Meas., vol. 33, no. 9, p. 1503, Aug. 2012. 

16 N. Pombo, N. Garcia, and K. Bousson, "Classification techniques on computerized 

systems to predict and/or to detect Apnea: A systematic review," Comput. Methods 

Programs Biomed., vol. 140, pp. 265-274, Mar. 2017. 

17 B. Xie and H. Minn, "Real-time sleep apnea detection by classifier combination," 

IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 469-477, May 2012. 

18 A. Burgos, A. Goni, A. Illarramendi, and J. Bermudez, "Real-time detection of 

apneas on a PDA,", IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 4, pp. 995-

1002, Nov. 2009. 

19 J. Bock and D. A. Gough, "Toward prediction of physiological state signals in 

sleep apnea," IEEE. Trans. Biomed. Eng., vol. 45, no. 11, pp. 1332-1341, Nov. 

1998. 

20 J. A. Waxman, D. Graupe, and D. W. J. A. j. o. r. Carley, "Automated prediction 

of apnea and hypopnea, using a LAMSTAR artificial neural network," Am. J. 

Respir. Crit., vol. 181, no. 7, pp. 727-733, Apr. 2010. 

21 N. B. Kribbs et al., "Objective measurement of patterns of nasal CPAP use by 

patients with obstructive sleep apnea," Am. Rev. Respir. Dis., vol. 147, no. 4, pp. 

887-895, Apr. 1993.  

22 R. G. Andrade et al., "Nasal vs. oronasal CPAP for OSA treatment: A meta-

analysis," Chest, vol. 153, no. 3, pp. 665-674, Mar. 2018. 

23 R. B. Berry, J. M. Parish, and K. M. Hartse, "The use of auto-titrating continuous 

positive airway pressure for treatment of adult obstructive sleep apnea," Sleep, vol. 

25, no. 2, pp. 148-173, Jan. 2002. 

24 V. Patruno et al., "Fixed and auto-adjusting continuous positive airway pressure 

treatments are not similar in reducing cardiovascular risk factors in patients with 

obstructive sleep apnea," Chest, vol. 131, no. 5, pp. 1393-1399, May 2007. 

25 A. Esteban et al., "How is mechanical ventilation employed in the intensive care 

unit? An international utilization review,"  Am. J. Respir. Crit. Care Med., 

vol. 161, no. 5, pp. 1450-1458, May 2000. 



 

74 

26 “Sleep smart, smart pillow,” ZEREMA. [Online]. Available: 

https://www.zerema.co/. [Accessed: 06-Oct-2021]. 

27 Z. Zhang, P. Sharma, T. B. Conroy, V. Phongtankuel, and E. C. Kan, "Objective 

scoring of physiologically induced dyspnea by non-invasive RF sensors," IEEE. 

Trans. Biomed. Eng., July 2021, doi: 10.1109/TBME.2021.3096462. 

28 Z. Zhang, P. Sharma, J. Zhou, X. Hui, and E. C. Kan, "Furniture-integrated 

respiration sensors by notched transmission lines," IEEE Sens. J., vol. 21, no. 4, 

pp. 5303-5311, Feb. 2021. 

29 P. Sharma, X. Hui, J. Zhou, T. B. Conroy, and E. C. Kan, "Wearable radio-

frequency sensing of respiratory rate, respiratory volume, and heart rate," NPJ 

Digit. Med., vol. 3, p. 98, July 2020. 

30 X. Hui, P. Sharma, and E. C. Kan, "Microwave stethoscope for heart sound by 

near-field coherent sensing," Proc. IEEE MTT-S International Microwave 

Symposium (IMS), 2019, pp. 365-368. 

31 R. B. Berry et al., "Rules for scoring respiratory events in sleep: update of the 

2007 AASM manual for the scoring of sleep and associated events: Deliberations 

of the sleep apnea definitions task force of the American Academy of Sleep 

Medicine," J. Clin. Sleep Med., vol. 8, no. 5, pp. 597-619, Oct. 2012. 

32 R. W. Schafer, "What is a Savitzky-Golay filter? [lecture notes]," IEEE Signal 

Process. Mag., vol. 28, no. 4, pp. 111-117, July 2011. 

33 W. Lu et al., "A semi-automatic method for peak and valley detection in free-

breathing respiratory waveforms," Med. Phys., vol. 33, no. 10, pp. 3634-6, Oct. 

2006, doi: 10.1118/1.2348764. 

34 T. K. Ho, "The random subspace method for constructing decision forests IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998. 

35 F. T. Liu, K. M. Ting, and Z. H. Zhou, "Isolation-based anomaly detection," ACM 

Trans. Knowl. Discov. Data (TKDD), vol. 6, no. 1, pp. 1-39, Mar. 2012. 

36 V. Hoffstein and J. Szalai, "Predictive value of clinical features in diagnosing 

obstructive sleep apnea," Sleep, vol. 16, no. 2, pp. 118-122, Mar. 1993. 

37 W. R. Ruehland, P. D. Rochford, F. J. O’Donoghue, R. J. Pierce, P. Singh, and A. 

T. Thornton, "The new AASM criteria for scoring hypopneas: impact on the apnea 

hypopnea index," Sleep, vol. 32, no. 2, pp. 150-157, Feb. 2009. 

38  X. Hui, T. B. Conroy, and E. C. Kan, "Near-field coherent sensing of vibration 

with harmonic analysis and balance signal injection," IEEE Trans. Micro. Theory 

Tech., vol. 69, no. 3, pp. 1906-1916, May 2021. 



 

75 

39 X. Hui, J. Zhou, P. Sharma, T. B. Conroy, Z. Zhang and E. C. Kan, “Wearable RF 

near-field cough monitoring by frequency-time deep learning”, IEEE Trans. 

Biomed. Circuits & Sys, vol. 15, no. 4, pp. 756 – 764, Aug. 2021, doi: 

10.1109/TBCAS.2021.3099865. 

40 D. R. Halloran and G. R. Alexander, “Preterm delivery and age of SIDS death,” 

Ann Epidemiol., vol. 16, no. 8, pp. 600 – 606, Aug. 2006, doi: 

10.1016/j.annepidem.2005.11.007.  

41 J. A. Pinto, D. K. Ribeiro, A. F. d. S. Cavallini, C. Duarte, and G. S. Freitas, 

"Comorbidities associated with obstructive sleep apnea: A retrospective study," 

Int. Arch. Otorhinolaryngol., vol. 20, pp. 145-150, 2016. 

42 F. Zhou, S. Yang, H. Fujita, D. Chen, and C. Wen, "Deep learning fault diagnosis 

method based on global optimization GAN for unbalanced data," Knowledge-

Based Systems, vol. 187, p. 104837, Oct. 2020. 

 



 

76 

CHAPTER 4 

OBJECTIVE SCORING OF PHYSIOLOGICALLY INDUCED DYSPNEA BY 

NON-INVASIVE RF RESPIRATORY SENSORS 

Introduction 

The symptom of dyspnea, or so called difficult or labored breathing, defined as 

a “patient’s subjective awareness of uncomfortable or distressing breathing” [1], can 

be caused by heavy exertion, deficiency of ambient oxygen, increased airway 

resistance, and respiratory disorders. Dyspnea can be extremely distressing for patients 

with serious illness [2], such as asthma, heart failure, COVID-19 [3], and chronic 

obstructive pulmonary diseases (COPD) [4], [5], [6], leading to a poor quality of life 

[7]. The prevalence of dyspnea is common, and ranges from 33% to 76% in critically 

ill patients, while 85% of patients with heart failure and up to 95% of patients with 

COPD report dyspnea. In addition to the possible physiological consequence in 

cardiopulmonary functions such as low oxygen saturation levels in SaO2 and SpO2 

[8], the repercussion of dyspnea can also include the sense of suffocation, distress, 

fear, panic or anxiety. Although dyspnea has been associated with the intertwined 

physiological, psychological, and social-demographic contributors [9], [10], no 

present theory was able to encompass all causes of dyspnea reliably. Our study design 

focuses on the physiological factor of dyspnea that can be induced from exertion and 

increased airway resistance, and we hypothesize that this kind of dyspnea will have a 

high correlation between the self-report and the measurable respiratory features.    

In present clinical practices, dyspnea is most often assessed by different kinds 
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of scales self- reported by patients [11]. The most popular scales include the following 

scores conducted during patient interviews for specific purposes.  

1) The perceived disability scale, such as the Medical Research Council 

(MRC) dyspnea scale, describes the breathlessness sensation out of the exercise 

capacity in a score of 1 − 5[12], where Score 1 denotes that the participant is not 

troubled by dyspnea except on strenuous exercise, and Score 5 is for patients who are 

too breathless to leave the house or during dressing/undressing. 

2) The experiential history scale, such as the baseline and transition dyspnea 

index (BDI/TDI), measures changes in the three domains of dyspnea severity from 

functional impairment, magnitude of task, and magnitude of effort [13].  In BDI, the 

scale is from 0 – 12, which is the sum of 0 – 4 in each of the three domains of dyspnea 

severity. Score 0 denotes the severe dyspnea and Score 4 for unimpaired functions.  

The TDI scale ranges from −3 (major deterioration) to +3 (major improvement) in 

each domain from previous BDI.  The popular use of BDI/TDI also illustrates the 

importance of continuous evaluation of dyspnea episodes. 

3) The psychophysical scale, such as the Borg scale or visual analog scale 

(VAS), assesses symptom intensity in response to a specific stimulus such as exercise. 

In the Borg scale, patients report their feeling of discomfort from 0 – 10 at the 

moment, where 0 corresponds to the sensation of normal breathing or absence of 

dyspnea, and 10 corresponds to the maximum possible sensation of dyspnea [14], [15].  

This is similar to the other popular Borg scale for pain. 

Regardless of the scale of choice, self-reported dyspnea is subjective and 

variable for each person on each day, and can be challenging to assess for those who 
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refuse to cooperate or cannot communicate due to medical issues such as stroke, 

dementia, and delirium. Frequent quires to patients for continuous dyspnea evaluation 

are not only tedious, but can also cause stress and discontent, introducing a bias to the 

self-reported score.  To supplement the subjective patient self-report, the association 

between dyspnea and respiratory metrics, such as the breath rate (BR), lung volume 

(LV), and inhalation/ exhalation patterns, has been carefully examined in previous 

works [16]. Studies of the association have been however cross sectional, lacking the 

ability to account for continuous metrics and their changes, often due to the discomfort 

or inconvenience of sensor deployment on patients [17]. Despite these limitations in 

past studies, it is of critical importance to ameliorate the objective methods of dyspnea 

evaluation, which can help clinicians make better decision on treatment and triage in 

patients with chronic lung and heart diseases, can enhance screening effectiveness in 

pandemic situations, and can enable caregivers in palliative and hospice medicine to 

provide timely service to those patients who are unable to communicate due to 

cognitive impairment, loss of language ability, or delirium. 

However, current methods of respiration monitoring [18] such as respiratory 

inductance plethysmography (RIP)[19], strain gauge (SG) [20], spirometer [21], 

pneumotachometer [22], and capnography [23] are seldom practical for use outside of 

clinical settings due to the need of operator assistance and patient cooperation. Many 

of these devices are uncomfortable or require long-time connection to immobile 

machines, which are thus not feasible for broad deployment, especially on chronical 

patients with advanced lung diseases. RIP and tension-based chest belts can measure 

respiratory waveforms from the thoracic and abdominal movement. However, the 
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required tight belt tension to respond to the full waveform inevitably causes 

discomfort.  Body movement to relax the belts to the least constraining position also 

brings additional artifacts. The SG sensor requires tight skin contact which is also 

uncomfortable for long-term monitoring. Spirometry can measure the volume and 

speed of inhaled and exhaled air, but involves attentive user participation and 

strenuous breathing protocol. The pneumotachometer is the gold-standard device for 

measuring airflow by detecting the pressure drop against a small resistive field, but is 

cumbersome to deploy and uncomfortable for users. Capnography measures the 

amount of CO2 in exhaled air to derive the respiratory effort and distress, but the 

device is bulky and patients need to be intubated. Radar-based sensing [24], [25], [26] 

as another alternative respiration monitoring method can assess body surface motion 

as a result of breathing, but requires a reader in the direct line of sight (LoS) to the 

front chest of the user. Ambient and body motion can cause severe interference, 

although BR during tidal breathing can be reasonably derived through careful filtering. 

In this work, we opt to use the wearable radio-frequency (RF) sensors [27], 

[28] based on near-field coherent sensing (NCS) to monitor respiratory features over 

layers of clothing or furniture fabrics to enhance user comfort and convenience. In the 

near-field region, the dielectric boundary movement by internal organs and muscles 

will be modulated on the antenna characteristics, and then be received in a multiplexed 

channel [28] in a non-invasive manner. Due to its touchless operation, many subjects 

under test will not notice the on-going sensing activities at all [29]. 

The sensation of dyspnea can be voluntarily and objectively induced from 

either physical exertion or increase in airway resistance, which is the assumption 
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behind the MRC scale as the perception of the exertion capabilities. We began our 

study by collecting data from 32 healthy participants wearing the respiratory sensors 

including the NCS sensor and the commercial chest belts for sensor validation. 

Participants were instructed to report dyspnea scores Dself frequently in the Borg scale 

under various exertion and breathing exercises following a given protocol. Scales 

based on patient perception or experience such as MRC and TDI were less feasible for 

real-time exertion-based studies. Four respiratory features of BR, LV, and inhalation 

and exhalation intervals were extracted from the continuous waveforms. We defined 

15 respiratory metrics out of the 4 respiratory features, and constructed the machine-

learning (ML) models based on the decision tree [30] and random forest [31] to 

investigate the correlation between the respiratory metrics and Dself during the entire 

protocol. The resulting ML model can produce an objective dyspnea score Dobj in 

cross validation with Dself, and can also identify the individual importance factors of 

respiratory metrics in determining Dobj. 

The main contribution of this work is to provide a new way to generate the 

objective score for physiologically induced dyspnea, using a comfortable and 

continuous respiratory sensor and an established ML model which can simultaneously 

consider multiple factors with different importance weighting.  As far as we know, this 

is the first study to examine the association between dyspnea sensation and continuous 

respiratory metrics that account for changes in respiratory behavior over a period of 

time under exertion and increased airway resistance. The objective dyspnea score Dobj 

can potentially complement or substitute the self-report dyspnea score Dself. When 

more comprehensive clinical data in established patient population are available for 



 

81 

training in the future, this model can potentially assist clinicians and caregivers in 

more reliable diagnosis and treatment of dyspnea.   

Methods 

Experimental setup 

NCS is based on the near-field coupling of ultra-high frequency (UHF) 

electromagnetic (EM) waves with the dielectric boundary movement of internal 

organs and body parts. Fig. 1(a) shows the NCS deployment together with the 

reference commercial sensors by BIOPAC (BIOPAC Systems, Inc., Goleta, CA), 

including electrocardiogram (ECG) and tension-based torso belts. Fig. 1(b) shows the 

photo of two software-defined radios (SDR) by National Instrument Ettus B210 to 

implement the NCS transceivers [28], [29]. We utilized both chair-integrated notched 

transmission lines [32] and wearable antennas [27] as the NCS sensing elements, as 

shown in Figs. 1(c)(d). For the wearable sensor, we used an antenna pair as the 

transmitter (Tx) and receiver (Rx). UHF radiation can penetrate dielectrics in the near-

field of the sensor, so the dielectric composition will modulate the EM distribution, 

and be exhibited in the cross-coupling scattering parameter S21 of the antenna pair. 

Alternatively, the notched sensor was constructed by a miniature coaxial RF cable 

with the metal shield of the middle part removed. One end will be connected to Tx and 

the other to Rx.  The dielectric boundary movement by lungs and associated muscles 

will be coupled to the leaked EM energy from the notched part of the RF cable, and 

hence can be detected either at Tx as signal reflection S11 or at Rx as signal 

transmission S21. Notice that the SDR setup can use a digitally modulated 
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superheterodyne signal to improve the channel isolation from ambient RF signals [27], 

[32], and high-quality measurements do not rely on anechoic RF chambers.  

(d) (e)

ECG

Wearable Sensor 1

Wearable Sensor 2

Torso belts

notched sensors 
(a)

SDR 1  

BIOPAC

Tx

Rx

SDR 2

wearable sensors 

Torso belts

ECG  

SDR 2  
computer

SDR 1

(b)

(c)

Chair Sensor 2

Chair Sensor 1

 

Fig.  1.  The experimental system: (a) Schematics of NCS and BIOPAC sensors and data flow; 

(b) The photo of software-defined radio (SDR) transceivers that were connected to NCS 

sensors;(c) Chair-integrated NCS sensor setup; (d) A participant wearing NCS and BIOPAC 

torso belt sensors in the sitting position during breathing through a facemask. Two NCS 

sensors and two belts were deployed at the thorax and abdomen position. (e) A participant 

undergoing physical exertion. Written informed consent was obtained from the participants to 

publish their photos. 

 

The two wearable NCS sensors were placed on the chest and the abdomen in 

the front torso, and the two notched sensors were integrated to the back of a chair 

behind the thorax and abdomen. The two sets of NCS sensors can be operated 

individually or at the same time. A participant wearing all sensors, including NCS, the 

torso belts and ECG in the sitting posture, is shown in Fig. 1(d) when breathing 
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through an N95 facemask.  BIOPAC and two sets of NCE sensors were included to 

verify that the conclusion on association between Dobj and Dself would be sensor 

independent. The exercise bike used in the exertion protocol is shown in Fig. 1(e).  

The synchronization between SDR and BIOPAC recordings is achieved by buffering 

both data at approximately the same time within a few milliseconds.  

Both SDR and BIOPAC were connected to the host computer through USB 

(Universal Serial Bus). In the SDR Tx signal chain, the digital baseband went through 

the digital-to-analog converter (DAC) and was then mixed with the carrier frequency 

fRF. The RF power is less than −10 dBm or 0.1 mW, well under the safety limits set by 

occupational safety and health administration (OSHA) in the UHF band. The RF 

signal emitted from Tx was then coupled into the internal body motion within the near 

field. The modulated signal was received by Rx, and then demodulated and sampled 

by the analog-to-digital converter (ADC) to retrieve the motion characteristics in the 

baseband. The quadrature baseband signals ITX(t) and QTX(t) were presently 

implemented by sinusoidal monotones with the NCS signal as amplitude modulation 

[27]:        

 

                                     (1) 

                                    (2) 

                                     (3) 

where  was the phase offset accumulated from the Tx-Rx signal chains. fRF 

was selected at 900 MHz for the wearable sensors, and 1GHz for the notched sensors. 

Each B210 was used for two Tx-Rx channels with the two basebands at fBB1 =355 kHz 
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and fBB2 = 440 kHz, both sampled at 1M samples per second (Sps). The demodulated 

respiration waveform was further down-sampled to 500 Sps, which was the same as 

the BIOPAC data.   

Human Study Protocol  

The experimental setup described in Sec. II.A was applied to evaluating the 

respiratory waveforms of 32 healthy participants. The human study has been approved 

by Cornell Institutional Review Board (IRB) Protocol ID #1812008488.  Written 

informed consent to take part in the study was obtained from all participants. 

Participants were instructed to follow a sequence of routines as documented in Table I. 

The breathing exercise includes: 0 − 30s fast breathing, 30 − 60s slow breathing, 60 − 

90s normal breathing, 90 − 120s fast breathing, 120 − 150s slow breathing, and 150 − 

180s normal breathing to build a library of various breathing patterns. The participant 

followed a voice instruction at the beginning of each section, and reported a dyspnea 

score Dself in the Borg VAS scale after each routine as shown in Fig. 2 [14]. The 

participant sat on a chair for all routines except during Routines 4 and 6 of exertion. 

Dyspnea was induced by aerobic rope jumping and exercise biking, as well as by 

wearing an N95 mask to increase the airway resistance. Fig. 3 presents examples of 

NCS respiratory waveforms during the study protocol.  When the routines in dyspnea 

(red curves) were compared with routines without dyspnea (green curves), in Routine 

3, BR decreases due to partial airway obstruction and breath-to-breath variation also 

decreases; in Routines 5 and 7, BR increases and breath-to-breath variation decreases 

due to post-exertion. We will further analyze these changes by extracting quantitative 
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metrics in the respiratory waveforms in the later sections.  

 

0      1      2      3      4      5      6     7      8     9     10

Not at all     slight      moderate     severe   very severe    maximum

0: Relaxed as in  sleeping or watching TV.

1-3: Can maintain for hours.

4-6: Can hold short conversation. But noticeable challenging.

7-9: Difficult to maintain exercise. Can barely speak a sentence.

10: Impossible to keep going. Unable to talk.

 

Fig. 2. Description of the self-reported Borg visual analog scale (VAS) for dyspnea evaluation 

[14].  

 

 

Fig. 3. An example of NCS respiratory waveforms during the study protocol.  Routine 1: 

Normal breathing; Routine 3: Normal breathing with a facemask; Routine 5: Normal breathing 

after physical exertion; Routine 2: Breathing exercise; Routine 7: Breathing exercise after 

physical exertion. The illustration period is truncated from 10 to 90 s of each routine. Green 

curves indicate absence of dyspnea, and red curves indicate some degrees of dyspnea. 

 

Data processing  

Physiological manifestation of dyspnea 

The main purpose of respiration is to supply oxygen to body cells by 

circulation, with the auxiliary functions of making sound, sniffling, and clearing of 
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airway by coughing and sneezing.  Respiration can be initiated involuntarily and 

voluntarily, and the voluntary part can be trained. When the blood oxygen saturation 

(SaO2) is low or CO2 high, the breathing action will be triggered for more lung 

ventilation.   However, when the body cannot respond fast enough due to various 

reasons such as airway obstruction, insufficient ambient oxygen supply, weakened 

respiratory muscles, or voluntary control for speaking, singing or holding, the feeling 

of dyspnea will arise quickly.  To increase lung ventilation, often BR and LV will 

increase by panting or deep breathing.  Alternatively, the inhalation and exhalation 

intervals will be adjusted depending on the muscle condition, airway obstruction, and 

ambient factors.  As the respiratory reaction to dyspnea can be trained to reduce the 

uncomfortable feeling, similar to experiential avoidance coping of pain, another 

common physiological reaction to dyspnea is the reduction of variability in successive 

breaths [16] together with speaking restraint, when the body tries hard to use the best 

known breathing cycle to reduce the discomfort of dyspnea. 

Therefore, we propose to use the respiratory features of BR, LV, and inhalation 

and exhalation intervals to correlate to dyspnea manifestation.  The mean and variation 

of these features within a chosen epoch as well as the variation between successive 

breaths will be extracted from the breathing waveforms for further data processing.  

Notice that here we will not complicate our protocol with speaking and coughing, as 

they can be separately identified from their high-frequency characteristics [33]. For 

future extension to realistic continuous monitoring, both speaking and coughing will 

need to be accounted for. 
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Feature extraction 

Inhalation time

Exhalation time

Peak-

to-peak value

Breath time of 

one cycle

 

Fig. 4.  An example of feature extraction from the NCS respiratory waveforms. The blue line 

labeled as ‘resp’ is the raw NCS waveform after bandpass filtering of 0.05 – 1 Hz, and the red 

and yellow triangles are detected peaks of maximum and minimum by the moving-average 

crossing method. The breath rate, peak-to-peak value, inhalation interval and exhalation 

interval can be estimated out of the detected peaks. 

 

The retrieved respiratory waveforms from 4 NCS and 2 BIOPAC torso-belt 

sensors were first bandpass-filtered from 0.05Hz to 1Hz to remove the DC drift and 

high-frequency noises. Various sensor combinations will be further studied in the 

dyspnea recognition below. The filtering processing was implemented in MATLAB 

by the digital infinite impulse response (IIR). We then utilized the moving average-

crossing algorithm [34] to detect peaks of the breathing waveform. A moving-average 

curve was first calculated at each time point in a given window length, which was 

around one respiration cycle and would be constantly updated. The points when the 

moving-average curve crossed the original signal were marked as up-crossing points 

for positive slopes in the original signal or down-crossing points for negative. Local 

maximum was labelled as the maximal point between two up-down crossing points, 

and local minimum as the minimal point between two down-up crossing points. As 

shown for an example in Fig. 4, the blue line was the filtered respiratory waveform 

from the wearable NCS sensor, and the red triangles and yellow triangles marked the 
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maximum and minimum peaks detected by the algorithm. Then, we can extract the 4 

respiratory features in each breath cycle to represent the instantaneous respiratory 

characteristics: 1) BR was calculated from the inverse of the interval between two 

neighboring minima; 2) The peak-to-peak (PP) value representing LV [27] was 

estimated by the signal difference in successive peaks; 3) The inhalation interval (IN) 

was evaluated by the time difference between one minimum and the following 

maximum; 4) The exhalation interval (EX) between one maximum and the following 

minimum. The respiratory waveform from the torso belts was processed in the same 

way.  The peak-detection algorithm is of critical importance for accurate feature 

extraction and subsequent processing.   

Respiratory metrics  

TABLE I.   RESPIRATORY METRICS FROM RESPIRATORY FEATURES. 

 

BREATH 

RATE 

(BPM) 

PEAK-TO-

PEAK 

(A.U.) 

INHALAT

ION 

INTERVA

L (S) 

EXHALA

TION 

INTERVA

L (S) 

COEFFICIENT OF 

VARIATION 
COVBR COVPP COVIN COVEX 

MEAN µBR  µIN µEX 

AUTOCORRELA

TION 
R1BR R1PP R1IN R1EX 

SUCCESSIVE 

DIFFERENCES 
R2BR R2PP R2IN R2EX 

 

After calculating the above 4 respiratory features, we defined 15 metrics that 

serve as the input to the ML model as shown in Table I. The first 4 metrics were the 

coefficient of variation (CoV) of the above 4 respiratory features, which was defined 

as 
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                                                                      (4) 

where σ denotes the standard deviation and µ denotes the mean. At each 

sampling point, CoV was calculated over an epoch of T = 15s. We first found all 

breath cycles in the previous 15s and calculated BR of every cycle, whose µBR and σBR 

were estimated to obtain CoVBR. CoVBR were then averaged over all epochs in the 

given routine. CoV for PP, IN and EX were derived in the same way. These 

respiratory metrics can represent the breath variability within the epoch. Mean values 

were estimated as BR, IN and EX for the BR, inhalation and exhalation intervals 

during each routine.  As PP was normalized and contained the bias from personal 

deployment, PP was excluded from the respiratory metrics.  

 

To further capture variability between adjacent breaths, we used 

autocorrelation in a time lag of one breath cycle to measure the successive similarity 

of a given respiratory feature. The autocorrelation function R1 is defined as, 

                                                            (5) 

                                                                                  (6) 

where n is the breath index within a total of N breaths in the epoch of T = 15s 

during metrics evaluation, yn is the discrete breath-by-breath measurement of the 

selected respiratory feature, and yn+i is the same feature lagged by i breaths. We also 

define a similarity measure of R2 as the mean absolute difference between adjacent 

breaths: 

                                                          (7) 
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Fig. 5 shows a representative sample analysis using the NCS recording for two 

routines. Fig. 5(a) is from the routine with Dself = 0, i.e., no sense of dyspnea, while 

Fig. 5(b) from a routine with Dself = 7 after heavy exercises.  For the higher Dself, BR is 

higher but CoVBR remains similar, PP is higher with smaller CoVPP, and IN, CoVIN, 

EX and CoVEX are all reduced due to the faster breathing with more regularity. 

Increase in autocorrelation R1 and decrease in successive differences R2 are 

consistently observed for all 4 respiratory features in our data, implicating reduction in 

variability between adjacent breaths.  

R1BR = 0.982

R2BR = 0.058 

R1IN = 0.982

R2IN = 0.087 

R1EX= 0.982

R2EX = 0.085 

R1PP= 0.994

R2PP = 0.037 

(b)

R1BR = 0.964

R2BR = 0.184 

R1IN = 0.942

R2IN = 0.202 

R1EX= 0.956

R2EX = 0.188 

R1PP= 0.984

R2PP = 0.097 

(a)

 

Fig. 5. Analysis of the breath rate (BR), lung volume (LV) by peak-to-peak magnitude, 

inhalation interval and exhalation interval between adjacent breaths by NCS during 5-min 

recordings. (a) Normal breathing under a self-report dyspnea score of 0; (b) Normal breathing 
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after exercises with a self-report dyspnea score of 7. Decrease of variability in the respiratory 

features can be observed by increasing R1 and decreasing R2. 

 

Sensor fusion considerations 

To investigate the error from the sensor hardware, we compare the analyses 

using the wearable and chair-integrated NCS as well as the BIOPAC chest belts.  To 

expand the dyspnea model, we also added the cardiogram features from NCS 

bandpass-filtered between 0.5 and 3 Hz or BIOPAC ECG to the combined model 

learning. Three heartbeat metrics were included: 1) The mean heart rate (HR) HR, 2) 

the standard deviation of NN intervals σNN, [35] where NN denotes the normal RR 

distance in the QRS cardiogram complex, and 3) the root mean square of the 

successive differences between adjacent NN RMSNN.  When both NCS and BIOPAC 

data were used together, the number of cases would be doubled.  The heartbeat signals 

added 3 additional metrics to the original 15 metrics of respiration. Notice that ideally 

the NCS and BIOPAC sensors would measure the same cardiopulmonary features, but 

each had its own noises and errors during measurements that can cause inaccurate 

prediction of Dobj.  Combination of sensors measuring the same physiological features 

may or may not improve the overall accuracy, as inconsistent derivation of intended 

metrics can aggravate the ambiguity, unless the noise can be assumed to be totally 

uncorrelated in the fusion of a large number of sensors.  The combination of two sets 

of NCS and BIOPAC sensors cannot guarantee such an assumption. To understand 

whether the wearable or chair-integrated NCS sensor can be used alone in the 

applications, we compare each individual data set and the combination as well.  
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Results 

Personal calibration 

We extracted the respiratory and heartbeat metrics from the breathing and 

cardiac waveforms of 32 healthy participants using a protocol with various levels of 

exertion and airway obstruction in Table II. The breathing exercises in Routines 2 and 

7 contain specified inhalation and exhalation instructions for the participant to follow, 

which cover multiple periods of fast, slow and hold breathing. Each routine in the 

protocol contains a self-reported dyspnea score Dself and all measured respiratory 

metrics. Because the tidal breathing pattern varied from person to person, we opted to 

first calibrate out the personal difference by subtracting the respiratory metrics in the 

normal breathing routine (Dself = 0 as the baseline) from the exertion routines (after 

exercise or wearing a facemask with Dself = 1 − 9) for the same participant.  

TABLE II.  ROUTINES IN THE HUMAN STUDY PROTOCOL. 

ROUTINE 
DURATION 

(MINUTES) 
ROUTINE CONTENT 

RESPIRATORY 

MONITORING 

1 5 NORMAL BREATHING ON 

2 3 BREATHING EXERCISES ON 

3 5 
NORMAL BREATHING 

WITH FACEMASK 
ON 

4 3 OR 10 
ROPE JUMPING OR 

EXERCISE BIKING 
OFF 

5 5 NORMAL BREATHING ON 

6 3 OR 10 
ROPE JUMPING OR 

EXERCISE BIKING 
OFF 

7 5 BREATHING EXERCISE ON 

 

This personal calibration against the normal breathing routine   reduced the 

individual biases in Dobj, but the case of Dobj= 0 would be excluded from the ML 

model output. It is important that the eventual model can also give reliable Dobj= 0 for 
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negative dyspnea cases.  To remedy the case of Dself = 0, we imputed the input with 

the new cases where the respiratory metrics in the first half of normal breathing was 

subtracted from the second half. The difference between the two halves of the first 

normal breathing routine was used as the training under Dself = 0. Extreme dyspnea 

scenario (Dself = 10) was not included here due to safety concerns in the human study.  

Extrapolated respiratory metrics for complete obstructive and central apnea have been 

attempted by data imputation, but with only limited success.  Hence, the extreme cases 

of Dself = 10 will be left for future clinical studies when experimental observation can 

be available.   

The decision-tree and random-forest models 

To produce Dobj from the measured respiratory metrics, we chose the decision-

tree regressor [30] as the ML model for the following reasons. (1) Decision tree is a 

white-box model, so the physical explanation for the result can be observable through 

the tree structure, which can help us understand the physiological correlation between 

the respiratory metrics and Dself. (2) Decision tree helps dominant feature selection in 

multitudinous respiratory metrics. Irrelevant respiratory metrics will be assigned a less 

importance weight to evolve with the dominant features, and the importance factors 

can be part of the model output for physiological reasoning. (3) The regressor model is 

preferred over the classifier because the output can be a continuous quantity of the 

predicted Dobj. Although Dself in the Borg scale is discrete for subjective convenience, 

a continuous Dobj can reduce the ambiguity between fine discrete levels.  To illustrate 

the advantage of decision-tree regressor against the popular discrete classification 
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methods such as the principal component analysis (PCA), we showed the scattered 

plots of the two dominant features of Dself found by the decision-tree model. It can be 

observed that clusters of Dself of similar values cannot be identified in any reasonable 

hyperplane separation.  As PCA can only capture linear correlation, the inability of 

classification by PCA indicates that the correlation between Dself and respiratory 

metrics is more convoluted and ambiguous. In comparison, the decision tree can 

incorporate nonlinear relationship into the model with reasonable tolerance of 

ambiguous contributors.   

 

              Table III. data composition in the ML model. 

TRAINING SET (95 CASES): 

NUMBER 

OF 

CASES 

DSELF 

RESPIRATORY METRICS 

32 1 − 9 

CALIBRATED NORMAL 

BREATHING AFTER EXERCISE IN 

ROUTINE 5 

31 1 − 9 

CALIBRATED NORMAL 

BREATHING WITH FACEMASKS IN 

ROUTINE 3 

32 0 
IMPUTED NORMAL BREATHING 

BY TWO HALVES OF ROUTINE 1 

TESTING SET (30 CASES): 

23 1 − 9 

CALIBRATED BREATHING 

EXERCISE AFTER EXERCISE IN 

ROUTINE 7 

7 0 
IMPUTED NORMAL BREATHING 

BY TWO HALVES OF ROUTINE 1  

   

After training in the 95 cases in Table III, the decision-tree model can predict 

Dobj on the unseen 30 testing cases based solely on the respiratory metrics, which can 

then be compared with Dself to assess the model accuracy. In Table III, the 95 training 

cases consist of measurements from Routine 1, 3 and 5 with observation after exertion 
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and during facemask wearing, as well as cases of Dself = 0 for calibration and 

imputation. One participant opted out of the facemask wearing routine during the 

study.  

TABLE IV.  PREDICTION ACCURACY FROM DATA SETS IN TABLE III. 

DATA SET 
NCS + TORSO-

BELT + ECG 
NCS TORSO-BELT 

MODEL DECISION TREE DECISION TREE DECISION TREE 

MEAN  BY  

K-FOLD  

CROSS-

VALIDATION 

0.876 0.825 0.818 

FEATURE 

IMPORTANCE 

BR=0.402 

R2IN=0.149 

COVEX=0.076 

RMSNN =0.068 

BR=0.402 

R2BR=0.151 

R2EX=0.075 

R1IN =0.071 

BR=0.330 

R2IN=0.290 

R2BR=0.078 

  COVEX=0.074 

MEAN  BY  

LEAVE-ONE-

PARTICIPANT-

OUT 

CROSS-

VALIDATION 

0.841 0.864 0.854 

FEATURE 

IMPORTANCE 

BR=0.463 

COVEX=0.126 

R2IN=0.111 

RMSNN =0.083 

BR=0.443 

R2BR=0.198 

COVPP=0.054 

R2EX=0.045 

BR=0.330 

R2IN=0.262 

  COVEX=0.074 

R2BR=0.056 

 FOR TESTING 

DATA 
0.872 0.871 0.834 

DATA SET 
NCS + TORSO-

BELT + ECG 
NCS TORSO-BELT 

MODEL 
RANDOM 

FOREST 
RANDOM FOREST RANDOM FOREST 

MEAN  BY  

K-FOLD  

CROSS-

VALIDATION 

0.884 0.866 0.848 

FEATURE 

IMPORTANCE 

BR=0.280 

R2IN=0.150 

R2BR=0.103 

COVEX=0.054 

BR=0.232 

R2BR=0.164 

R2EX=0.103 

R1IN =0.082 

    BR=0.223 

R2IN=0.184 

R2BR=0.130 

  COVBR=0.068 

MEAN  BY  

LEAVE-ONE-

PARTICIPANT-

OUT 

CROSS-

0.874 0.881 0.866 
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VALIDATION 

Feature 

importance 

BR=0.332 

R2IN=0.161 

R2BR=0.068 

CoVEx=0.056 

BR=0.232 

R2BR=0.164 

R1IN=0.106 

R2EX=0.080 

BR=0.229 

R2IN=0.183 

R2BR=0.128 

CoVEx=0.087 

 for testing 

data 

0.903 0.907 0.873 

 

In order to estimate the skill of our model on new data, I first performed the 

procedure of k-fold and leave-one-participant-out cross-validations on the 95 training 

cases[36]. K-fold cross-validation can investigate the robustness to unseen data, and 

leave-one-participant-out cross-validation can test the robustness to unseen 

participants. For k-fold cross-validation, we divided the whole training set of 95 cases 

into separate training (76 cases) and testing (19 cases). We chose k = 5 and the model 

was trained using 4 folds as the training data and the resulting model is validated on 

the remaining fold as the testing data. For leave-one-participant-out cross-validation, 

the model was trained on the data sets from 31 participants excluding one participant, 

who was then used as testing by generating Dobj to compare with Dself. The validation 

process was repeated for each participant as the testing case.  

Because we used the regressing estimator, the predicted Dobj can be a 

continuous number from 0 to 9. The upper limit of Dobj = 9 is due to the lack of 

training cases with Dself = 10.  We define a prediction accuracy  of the ML model as: 
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                                   𝜂                           (8) 

where the error is the normalized absolute distance of Dobj to Dself. The 

maximum value of  for perfect prediction is 1. In the k-fold cross-validation 

procedure, mean  for the validation set ranges from 0.818 to 0.881. In the leave-one-

participant-out cross validation, mean  fell within similar ranges.  When testing on 

the 30 unseen data set as shown in Table IV,  ranges from 0.834 to 0.907. The 30 

unseen testing set contains Routine 7 recording from 23 participants, as 9 participants 

out of 32 cannot follow the breathing exercise after exertion, as well as 7 participants 

who had repeated Routine 1 in different study dates. The accuracy and the metrics of 

importance for all three testing scenarios are summarized in Table IV.  The metric 

with a higher importance factor has a higher correlation with Dself. The sum of the 

importance factors from all features was normalized to 1 in each method. To 

understand the magnitude of mean  better, I performed total random guesses of Dobj 

for the unseen 30 testing cases in Table III, where would range from 0.566 to 0.677.  

A fixed guess of Dobj in all dyspnea prediction will render  ranging from 0.396 (Dobj 

= 9) to 0.766 (Dobj = 4). When more cases are available with homogeneous 

distribution across all possible values of Dself,  will approach 0.5 for random and 

fixed guesses.  
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(a)

(b)

(c)

 

Fig.  6. Accuracy distribution by k-fold cross-validation using the random forest model. (a) 

Training data from wearable NCS + torso-belt +ECG; (b) Wearable NCS only; (c) BIOPAC 

torso-belt only.  

(a)

(b)

(c)
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Fig.  7. Accuracy distribution by leave-one-participant-out cross-validation using the random 

forest model. (a) Training data from wearable NCS + torso-belt + ECG; (b) Wearable NCS 

only; (c) BIOPAC torso-belt only.  

 

  In Table IV, I added the random-forest method composed by an ensemble of 

decision trees [31] as the ML model. I first used the k-fold cross-validation method to 

choose multiple decision trees that have high prediction accuracy in the 95 training 

sets, and then their average would be used to predict Dobj for the 30 unseen testing 

data. I also listed the top four most important metrics in generating the final random-

forest model under consideration. As observed from Table IV, our model can predict 

the dyspnea score in the unseen testing data with reasonable accuracy. Random forest 

can only improve  marginally, but tends to have smaller variation, as will be seen in 

the later Bland-Altman (B&A) plots. This was possibly because the set of optimal 

decision trees was reasonably similar, as can be observed from the dominant feature 

importance with the same input.  The accuracy difference between NCS and NCS + 

BIOPAC was also trivial, which suggested that the NCS sensor has captured the 

respiratory metrics with sufficient accuracy, and the torso belts in BIOPAC do not 

offer new information.   

  Fig. 6 presents the accuracy distribution during k-fold cross-validation using 

the random forest model. Fig. 6(a) used the training data from NCS + torso-belt + 

ECG sensors, Fig. 6(b) from only NCS sensors, and Fig. 6(c) from only torso-belt 

sensors. Fig. 7 presents the similar accuracy distribution by leave-one-participant-out 

cross-validation. By separating one independent participant’s data as the testing set 

and estimating the accuracy on each participant, our model has been evaluated to have 

a good performance to predict an unseen participant. In general, NCS performs 
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slightly better than the torso belt in cross validation, but the difference is probably 

within error ranges. Notice that the two sensors have similar signal-to-noise ratios 

(SNR) [27].   

  Additional scattered plots for all columns in Table IV are shown in the Fig. 

8(a)(b) where the error in different Dself values can be more clearly observed. I also 

investigated the effectiveness of the wearable and chair-integrated NCS in Table V, as 

these two setups can be applied to different clinical applications, for example, the 

wearable sensor for patients in the pulmonary ward and the chair-integrated sensor in 

the observation room.  The accuracy difference between wearable and chair-integrated 

NCS was insignificant. I can also conclude that the touchless NCS sensors alone can 

generate the ML model with high validity in either the wearable or chair setup. 

Scattered and B&A plots for Table V are shown in Figs. 8(c)(d) and 9, where NCS in 

both setups are shown to produce Dobj with reasonable limits of agreement (LoA) and 

no significant systematic bias m. The random-forest model has tighter LoA than the 

decision-tree model, probably due to the variation reduction during ensemble 

averaging. 

 

TABLE V. COMPARISON OF NCS WEARABLE AND CHAIR SETUPS. 

DATA SET 
WEARABLE 

NCS 

CHAIR 

NCS 

WEARABLE 

NCS 

CHAIR 

NCS 

MODEL 
DECISION 

TREE 

DECISION 

TREE 

RANDOM 

FOREST 

RANDOM 

FOREST 

MEAN  BY 

K-FOLD 

CROSS-

VALIDATION 

0.822 0.825 0.865 0.866 

MEAN  BY 

LEAVE-ONE-
0.861 0.865 0.883 0.883 
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PARTICIPANT-

OUT 

CROSS-

VALIDATION 

 FOR UNSEEN 

TESTING DATA 
0.855 0.879 0.906 0.903 

 

TABLE VI. TESTING RESULTS BY SEPARATING EXERTION AND FACEMASK. 

DATA SET NCS + TORSO-

BELT + ECG 

NCS TORSO-BELT 

MODEL DECISION TREE DECISION 

TREE 

DECISION 

TREE 

MEAN  BY 

K-FOLD 

CROSS-VALIDATION 

0.937 0.868 0.900 

MEAN  BY 

LEAVE-ONE-PARTICIPANT-

OUT 

CROSS-VALIDATION 

0.940 0.917 0.941 

 FOR UNSEEN DATA 0.798 0.773 0.764 

DATA SET NCS + TORSO-

BELT + ECG 

NCS TORSO-BELT 

MODEL RANDOM 

FOREST 

RANDOM 

FOREST 

RANDOM 

FOREST 

MEAN  BY 

K-FOLD 

CROSS-VALIDATION 

0.944 0.878 0.902 

MEAN  BY 

LEAVE-ONE-PARTICIPANT 

CROSS-VALIDATION 

0.939 0.905 0.929 

 FOR UNSEEN DATA 0.802 0.828 0.790 

 

To further test the transferrable capability of the ML model, I also shifted the 

31 cases of normal breathing with facemask in Routine 2 from the training set to the 

testing set. Facemask only increases the lung elasticity, and causes the dyspnea 

sensation in a different manner from exertion. The result was presented in Table VI. 

The accuracy for the cross validation becomes slightly higher as the data were 

collected from more consistent routines. The accuracy for the unseen data from 
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Routine 2 was lower than those in Table IV, partially because less training data was 

provided and the testing data came from totally unseen routines. However, the 

accuracy remains reasonably high, which showed the model extendibility to predict 

dyspnea scores in unseen routines of different dyspnea contributors, possibly even in 

patients with various respiratory disorders. The corresponding scattered plots for the 

columns of the unseen data in Table VI are shown in Figs. 8 (e)(f), where both torso-

belt and NCS had non-negligible numbers of cases where Dself was high but Dobj was 

close to 0.  As the dyspnea after exertion is used for training and the dyspnea during 

facemask wearing for testing, these cases indicated that the respiratory features in 

Routine 2 of facemask wearing was more similar to normal breathing and less to 

dyspneic episodes after exertion, even though the participant reported a high Dself.  

However, Dobj from ‘NCS + torso-belt + ECG’ had much fewer such cases.  Our 

conjecture is that the cardiac information can help during model transference. 
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(a) (b)

(c) (d)

(e) (f)
 

Fig. 8.  The scatter plots between Dself  and Dobj for all columns in (a) (b) Table IV, (c) (d) able 

V, and (e) (f) Table VI. 

 

  Further observation from Table IV indicates that the additional information 

from ECG boosts the prediction accuracy in general, although not by much, especially 

in the case of the random-forest model.  RMSNN, a form of the heart-rate variation 

(HRV), is the fourth most important metric for the sensor fusion with ECG, although 

the importance factor is much smaller than the successive breath variation.  During 

dyspnea sensation, people are often under some degrees of psychological stress, which 

can then indirectly influence HRV [37], [38] to become a contributor for dyspnea 

recognition.  For the two cases in Table VI where the increased airway resistance is in 
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the testing data but not in the training data, ECG can sometime causes overall 

accuracy degradation, as in the case of random forest between ‘NCS + torso-bet + 

ECG’ and NCS alone.  This is also explainable as mask wearing can cause certain 

degrees of stress for some people who had to make efforts to breath in sufficient air.  

However, during the COVID-19 pandemic era when the human study had been done, 

many people were used to wearing masks without any physical or psychological 

stress. Thus, the heartbeat information becomes an inconsistent and ambiguous 

contributor in the facemask wearing cases that can degrade the dyspnea prediction. 

(a) (b)

(c) (d)  

Fig. 9.  The Bland-Altman (B&A) plots between Dself and Dobj for all columns in Table V. 

Plots show the mean difference m at the center dotted line and the corresponding limits of 

agreement (LoA) at the upper and lower dotted lines given by m±1.96σ. 

 

Discussion  

Barriers to accomplish a mature Dobj model still remain. For example, Dself has 

individual biases and tolerances due to the multiple factors in the cause and outcome 

of dyspnea even for the same person in different days of testing, so the training data 

might not be repeatable and inevitably contained subjective variations, which will be 
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trickling down to the training model as ambiguity. Nevertheless, the Borg scale has 

been designed with small intervals, and small variations in Dself can be acceptable 

from large data set. To establish the simplified baseline of objective dyspnea scoring, 

our present study only includes healthy participants with physiologically induced 

dyspnea by exertion and facemasks in a prescribed study protocol. The respiratory 

features by psychological contributors or in patients with chronic cardiopulmonary 

diseases have not been examined, and can be different from dyspnea induced by 

physical exertion. It will be critical to extend to large-scale patient studies on real 

patients with various cardiopulmonary disorders to establish the true effectiveness of 

the proposed ML model. However, the present study offers a useful starting point for 

the future studies of specific respiratory disorders, especially towards the patient 

population who refuse to cooperate or cannot communicate due to deterioration or loss 

of mental functions, where the Dobj model has to be achieved through transference as 

individual Dself cannot be available.     

Conclusion 

In conclusion, dyspnea is an important common symptom for respiratory 

disorder screening, diagnosis and prognosis. Objective dyspnea scores to complement 

self-report are especially important for patients with serious illness and at the end of 

life when communication or cooperation is compromised due to dementia, delirium, 

anesthesia, and other restraining procedures. In this work, I show that the non-invasive 

NCS sensors can continuously capture useful respiratory features during various levels 

of dyspnea physiologically induced by exertion and increased airway resistance. We 
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have performed human study on 32 healthy participants and constructed a learning-

based model to identify the correlation between continuous respiratory metrics and 

self-reported dyspnea score, and hence can predict an objective dyspnea score induced 

by physiological reason with reasonable accuracy. In future clinical study, there can be 

additional intertwined contributors to dyspnea in patients under different disorders and 

conditions, but our present study can provide a baseline of physiological analyses and 

a useful reference to the eventual prediction model 
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CHAPTER 5 

OBJECTIVE DYSPNEA EVALUATION ON COVID-19 PATIENTS LEARNING 

FROM EXERTION-INDUCED DYSPNEA SCORES 

Introduction 

Dyspnea , also known as the patient’s feeling of difficult or labored breathing, 

is a clinical symptom nearly as important as pain, affecting a quarter of the general 

population and half of seriously ill patients [1][2]. Dyspnea can be a prevalent 

manifestation in conditions such as chronic obstructive pulmonary diseases (COPD), 

bronchitis, asthma,COVID-19, pneumonia, heart failure, and panic  disorders [3]. 

Dyspnea can be further divided into acute onset and chronic dyspnea: the latter, by 

definition, has been present for more than four weeks. COVID-19 caused by severe 

acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread across 

the globe since 2020. Over 30% of patients with COVID have experienced chronic 

dyspnea [4]. Dyspnea typically sets in between the 4th and 8th day of illness. Timing 

of dyspnea may be one of the most important hallmarks of more significant COVID 

infection, especially for clinicians seeing patients in an ambulatory setting [1]. Studies 

found that dyspnea, rather than fever [8], was significantly associated with higher 

mortality in COVID patients [6][7]. The initial days after the onset of dyspnea are 

critical for identifying progressively worsening conditions [1].  In addition to the 

dyspnea experienced by many patients during the acute phase of COVID infection, 

dyspnea may also be found in association with the longer-term sequelae post-COVID, 

or so called long COVID, which is thought to affect 10–50% of COVID survivors [9]. 
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Dyspnea is also a frequent symptom of post-COVID syndrome (PCS) [10][11]. Some 

patients with persistent dyspnea after recovering from COVID also have documented 

decrease and/or dysfunction in myocardial performance [12].  

Nevertheless, in present clinical practices, dyspnea is mainly assessed by self-

reports from patients. Subjective dyspnea can be assessed in person or remotely [14] 

using patient interview, and augmented by surrogate measures such as the Medical 

Research Council (MRC) Dyspnea Scale [15] and Borg Scale [16]. Studies indicated 

that subjective dyspnea measures have inadequate accuracy in high-risk COVID 

patients, not only because the sensation is gradual and varied with time, but also the 

patients can become nervous after encountering positive test results [17], both of 

which can contribute to biases in the self-report. The subjective dyspnea score can also 

vary for each person based on emotion and tolerance, and can be challenging to assess 

for those who refuse to cooperate or cannot communicate due to medical issues such 

as stroke, dementia, and sudden loss of speech. Frequent queries to patients for 

continuous dyspnea evaluation are tedious and stressful, and essentially impractical for 

timely prognosis and diagnosis. Shortness of breath highly correlates with pulmonary 

functions [18]. Surrogate measures of respiratory function can help determine dyspnea 

severity, however existing techniques have limitations. Pulmonary function tests can 

only capture respiratory measures at discrete point in time [19], and require patients’ 

adequate effort and cooperation. Chest Computed Tomography (CT) can provide high-

resolution images of the lung, however it is expensive, requiring specialized 

equipment that is not always available, providing only discrete lung snapshots in a 

dedicated clinical setup, with limited utility for continuous assessment of lung 
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function [20]. Respiratory inductance plethysmography (RIP) [21], strain gauge (SG) 

[22], and spirometer [23], can measure lung function however often can be 

uncomfortable, requiring connection to immobile machines, operator assistance, and 

patient cooperation. Thus they are not feasible tests for clinical settings, especially in 

conditions that require repetitive or continuous monitoring.  

Considering the limitations of the current methods to monitor respiratory 

function and assess dyspnea, we propose to augment our previous study on the 

objective scoring of physiologically induced dyspnea [24], which used a non-invasive 

and wearable respiratory sensor and a machine learning (ML) model, to provide real-

time objective dyspnea scores for COVID patients based on continuous respiratory 

metrics.  

In this work, we collected overnight clinical data of patients admitted to the 

hospital due to acute COVID (N = 12), using wearable respiratory sensors from the 

Weill Cornell Center for Sleep Medicine. These patients had confirmed pulmonary 

involvement based on radiological imaging. To benchmark the results, we also 

performed a separate human study (N = 13) on healthy participants using exactly the 

same experimental setup. We analyzed the statistic distribution of respiratory metrics 

from COVID patients and healthy controls, and demonstrated a high similarity 

between dyspnea on COVID patients and the physiologically induced dyspnea on 

healthy subjects.  The features associated with breathing changes due to physical 

exertion were similar to those from pulmonary disorders. By training on our previous 

objective dyspnea scoring model (N = 32) on healthy subjects with induced dyspnea 

from exertion and airway blockage [24], we can further output continuous dyspnea 
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scores of COVID patients using respiratory waveforms captured from wearable 

sensors to evaluate dyspnea severity for prognosis of dyspneic episodes, as well as 

rehabilitation after recovering from COVID. In the future, our respiratory sensor and 

objective dyspnea scoring system can be potentially applied to symptomatic 

evaluation of dyspnea in patients of asthma, pneumonia, and COPD. 

Experimental setup and protocol 

Experimental setup 

To monitor the respiration in hospitalized COVID patients with confirmed 

lung infection by chest imaging, we built an all-in-one wearable radio-frequency (RF) 

near-field sensor on a 4-layer printed circuit board (PCB), as shown in Fig. 1(a). The 

block diagram of the near-field RF sensing system is shown in Fig. 1(b). Two 

SimpleLink modules (Texas Instrument CC1310) with sub-1 GHz ultra-low-power 

wireless microcontrollers were used as the sensing transmitter (Tx) and receiver (Rx). 

The transceivers employed quadrature I/Q modulation, where two channels of 12-bit I 

and Q samples were sampled at 2 kHz and accumulated into one 400-bytes cyclic 

buffer at the sensor Rx. Once the I/Q buffer was filled, the Rx radio core would bundle 

the I and Q samples with the readings of temperature, accelerometer, and gyroscope to 

a micro secure digital (SD) card through the serial peripheral bus (SPI). The 

temperature sensor (Texas Instrument TMP112) and inertial measurement unit (Bosch 

Sensortec BMI160) were connected by the inter-integrated-circuits (I2C) serial 

protocol. The battery provided the system power through a low-dropout (LDO) 

module.  
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Fig. 1. The all-in-one wearable respiratory sensor on PCB: (a) The front and back photo; (b) 

The block diagram for the RF sensor. 

Data collection from COVID patients 

Respiratory data acquisition from COVID patients took place at Weill Cornell 

Medicine July 2021 and March 2022. Patients admitted to New York Presbyterian 

Hospital with COVID-19 symptoms that had lung imaging studies were offered 

participation in the study. All participants signed an informed consent form. The study 

protocol was reviewed and approved by the Weill Medical Center Institutional Review 

Board (IRB Protocol #: 20-06022181).  

Upon enrollment, patient demographic, health status, and baseline vital-sign 

data were gathered. Health status information included hypertension, obstructive sleep 

apnea, cancer history, asthma, COPD, and other chronic lung diseases. Baseline vital-

sign data included heart rates, breathing rates (BR), temperature, and oximetry SpO2. 

(a) 

(b) 
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Other recorded information included medications administered or the presence of 

ventilation or supplemental oxygen during recording. After the admission information 

was gathered, the medical staff applied the ApneaLink device (Resmed ®) with two 

NCS sensing units on the patient’s chest for overnight monitoring. The two sensors 

were synchronously powered on to begin recording. Patients wore the sensor for an 

average of 14.3 hours overnight.  

The setup could be removed by the medical staff at any point to allow for 

appropriate medical care. This active medical environment created uncertainty in 

sensor positioning as not all sensor removals were recorded and thus information was 

based on the recording from the sensor data. Additionally, chest belt tension and 

positioning were not recorded upon each mounting and removal, so the exact sensor 

conditions cannot be known. However, the uncertainty in an active clinical 

environment also implies the resulting data analyses can be representative of typical 

clinical or at-home use where strict sensor and behavior restrictions cannot be 

enforced, and therefore should enhance the generalizability of our findings. 

Healthy participant study protocol 

 

 PARTICIPANTS  RECORDING TIME SENSORS 

COVI

D 

12 COVID 

PATIENTS 

CONTINUOUS 14 HOURS PORTABLE NCS SENSORS 

WITH ACCELEROMETERS. 

EXP. 1 13 HEALTHY 

SUBJECTS  

NORMAL (30 MINS) 

POST-EXERCISE      (5 

MINS) 

PORTABLE NCS SENSORS 

WITH ACCELEROMETERS. 

EXP. 2  

[24] 

32 HEALTHY 

SUBJECTS 

NORMAL (5 MINS) 

POST-EXERCISE  

(5 MINS) 

WEARABLE NCS 

SOFTWARE-DEFINED 

RADIOS. 

 

TABLE I.  ACQUISITION OF DIFFERENT DATASETS 
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To further investigate the correlation between the dyspnea of COVID patients 

and physiologically-induced dyspnea on healthy subjects, we conducted another 

human study as indicated in Table I (Exp 1) on 13 healthy participants reporting 

dyspnea scores and measuring respiratory behaviors with dyspnea induced by 

exercise. For fair comparison without concerns on hardware difference, we used the 

same wearable respiratory sensors as in the COVID data collection. Fig. 2(a) shows 

the experimental setup with the participant wearing two sensors on left and right. The 

vertical position of two sensors is at the level of the sternum, roughly between the 3rd 

and 7th ribs. The human study has been approved by Cornell Institutional Review 

Board (IRB) Protocol ID #1812008488. Written informed consent to take part in the 

study was obtained from all participants. Participants were instructed to follow a set of 

routines as listed in Table I. The participant first sat on a chair in a relaxed mode for 

normal breathing of 30 mins. To induce dyspnea, the participant would follow a 5-min 

Fig. 2.  Experimental setup: (a) Body deployment of two wireless NCS 

units by a chest belt; (b) SDR transceivers used for wired NCS sensors. (c) 

Wired wearable NCS sensors that were connected by cables to the sensing 

antennas on the chest and abdomen of a participant. 

(a)  

R L 
Wired  

NCS Sensor 

(c)  

Tx 

Rx 

(b)  
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cardio exercise video[25]. The participant would then sit back to the chair and be 

recorded for 5-min post-exercise breathing. The participants were asked to report 

subjective dyspnea scores Dself several times in the Borg visual analog scale (VAS), as 

shown in Fig. 3 [26], during the transition points of the study –. The Borg scale is 

widely used in clinical assessement for dyspnea: 0 represents no dyspnea sensation at 

all, while 10 indicates maximum level of dyspnea.  

  

As shown in Table I and Figs. 2(b)(c) [24], we also adopted our previous 

dyspnea study for comparison, denoted as data from Exp 2. In this dyspnea study, we 

utilized the software-defined radio (SDR, Ettus B210) to the Tx/Rx antennas as shown 

in Fig. 2(b). Two wired NCS sensors were placed on the chest and the abdomen in the 

front torso. In this human study, participants first recorded 5-min normal breathing 

sitting on a chair, then used aerobic exercise to introduce dyspnea, and then recorded 

another 5 mins of post-exercise breathing. The dyspnea was also induced through 

facemask to change the lung elastance. The Borg dyspnea score was reported several 

times throughout the routine. 

Fig. 3.  Description of the self-reported Borg visual analog 

scale (VAS) for dyspnea evaluation. 

0      1      2      3      4      5      6     7      8     9     10

Not at all     slight      moderate     severe   very severe    maximum
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Fig. 4.  Waveform examples: (a) COVID patients; (b) Healthy normal baseline breathing in 

Exp 1; (c) Healthy post-exertion breathing in Exp 1; (d) Healthy normal breathing in Exp 2; 

(e) Healthy post-exertion breathing in Exp 2; (f) Min-max peak detection for respiratory 

parameter extraction.  

 

Fig. 4 presents examples of respiratory waveforms we acquired from different 

datasets. Y-axes are individually normalized in different channels. For the COVID 

dataset, we utilized the accelerometer channel for respiration monitoring. For Exp 1, 

we demonstrated NCS and accelerometer channels for both Normal and Exertion. For 

Exp 2, we demonstrated NCS recording for the same routines. Comparing normal 

breathing (b)(d) with exertion (c)(e) in Exp 1 and Exp 2, we can observe a consistent 

change in BR, with an increase in rate and a decrease in breath-to-breath variation 

post-exertion. We can also observe that COVID patients had higher BR than healthy 

participants during normal breathing, and the COVID waveforms were similar in 

frequency and amplitude to those acquired post-exertion in healthy participants. 
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Respiratory parameters were extracted from the waveforms after min-max peak 

detection [24] as shown in Fig. 4(f), including inter-breathing intervals (IBI), 

inspiration intervals (IN), expiration intervals (EX) and peak-to-peak magnitude (PP). 

Data processing  

Physiological analysis of dyspnea 

The main purpose of respiration is to supply oxygen to body cells through the 

pulmonary circulation, with the auxiliary functions of producing sound, sniffing, and 

clearing of airway by coughing and sneezing.  Respiration can be initiated 

involuntarily and voluntarily, and the voluntary part can be trained. When the blood 

oxygen saturation (SaO2) is low or CO2 high, the breathing will be triggered to 

increase ventilation.   However, when the body cannot respond properly due to various 

reasons such as airway obstruction, insufficient ambient oxygen, weakened respiratory 

muscles, cardiopulmonary disorders, or voluntary control for speaking, singing or 

breath holding, the sensation of dyspnea arises.  To increase lung ventilation, often BR 

and lung volume (LV) will increase by panting or deep breathing.  Alternatively, the 

inhalation and exhalation intervals will be adjusted depending on the muscle 

condition, airway obstruction, and ambient factors.  As the respiratory reaction to 

dyspnea can be trained to reduce the uncomfortable feeling, similar to experiential 

avoidance for coping with pain, another common physiological reaction to dyspnea is 

the reduction of variability in successive breaths together with speaking restraint, 

when the body tries hard to use the best known breathing cycle to reduce the 

discomfort from dyspnea.  
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One major symptom for COVID patients is the dyspnea, which relies primarily 

on self-report sensation at the present practice.  The dyspnea sensation is often derived 

from the decreased ventilation efficiency caused by pneumonia or related bronchitis. 

A distinct phenotype in long COVID is that patients have reduced exercise tolerance 

and experience exertional dyspnea more easily, even though major pulmonary 

parenchymal and airway abnormalities cannot be identified with chest imaging 

[27][28]. 

Data preprocessing 

After gathering overnight recording of COVID patients and performing 

comparison dyspnea study on healthy participants, we pre-processed our datasets, and 

then extracted the respiratory features to feed into the ML algorithms for dyspnea 

classification and scoring. We used MATLAB for signal processing and feature 

extraction, and python for ML algorithms.  

 

 

Fig. 5.  Processing procedures of respiratory datasets in 

COVID patients and healthy participants.   

1. Downsample signals to 20Hz.  

2. Bandpass filter signals to [0.01,2] Hz. 

3. Smooth signals by 4th-order FIR filters  

4. Segment waveforms into epochs (Tepoch =60s). 

5.      Normalize the respiratory features in epoch 

6.      Feature statistics in epochs. 

 

7.      Select the optimal channels. 

8.      Remove noisy epochs. 
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For datasets in COVID and Exp 1 described in Table I, we retrieved 

respiratory waveforms from 1 NCS (amplitude) and 6 accelerometer (translational and 

rotational) channels. For Exp 2, we utilized multiple NCS channels from thorax and 

abdomen. Different channels and different datasets went through the same signal 

processing procedure for fair comparison. As shown in Fig. 5, we first down-sampled 

all datasets to 20 Hz, and then bandpass-filtered waveforms from 0.05 Hz to 2 Hz to 

remove the DC drift and high-frequency noises. Savitzky-Golay 4th-order finite 

impulse response (FIR) smoothing filter [29]  was further employed to perform a local 

polynomial regression to smooth the waveform. For the long recording in each dataset, 

we opted to segment waveforms into short epochs of  Tepoch = 60 s and a sliding 

window of Tslide = 30 s for feature extraction. 

Respiratory features 

After epoch segmentation, waveforms were normalized to center at 0 with 

standard deviation of 1.0 in each epoch for every channel. Then we extracted features 

in each epoch for data analysis and constructed the ML model in the next section. We 

implemented the peak detection algorithm [30] by tracing a constantly updated 

moving-average curve in a given window. Then local maximum and minimum were 

accordingly labelled for parameter extraction. An example was shown in Fig. 4(f), 

where the green line was the filtered respiratory waveform from the COVID patient, 

and the red and yellow triangles marked the maximum and minimum peaks detected 

by the moving-average algorithm.  The false peaks caused by the noise were mostly 

avoided.  Respiratory parameters in each breath cycle were extracted to represent the 
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instantaneous respiratory characteristics, as shown in Table II.  

After gathering respiratory cycles and parameters, we extracted 37 respiratory 

features as shown in Table III. The first three features were: 1) mean (µ); 2) standard 

deviation (σ); 3) coefficient of variation (CoV) of the respiratory parameters in Table 

II, where CoV was defined as 

                                                                      (1) 

showing the extent of variability in relation to the mean. 

To further capture variability between adjacent breaths, ℜ was the 

autocorrelation in a time lag of one respiratory cycle to measure the successive 

similarity of the given respiratory parameter. ς representing the successive difference 

was defined as the mean absolute difference between adjacent cycles. Additionally, 

Skew and kurt measured the tailedness and asymmetry of each respiratory cycle, and 

were averaged over all cycles within the epoch. Cycle denoted the total number of 

detected respiratory cycles in the epoch, and entropy denotes the total randomness or 

entropy of the waveform.  
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Apart from 37 respiratory features extracted from the time domain, we added 

14 features extracted from the frequency domain as shown in Table IV. ƞfi and ƿf1 (i = 

1~5) represented the power in specific bandwidth divided by the total power in all 

frequencies and time-averaged power density (dB/Hz), respectively. The five chosen 

bandwidths were f1 = (0, 0.4) Hz (mainly breathing frequency range); f2 = (0.4, 1) Hz; 

f3 = (1, 2) Hz; f4 = (fBR − 0.15, fBR + 0.15) Hz; f5 = (fHR − 0.15, fHR + 0.15) Hz. fBR and fHR 

TABLE II.    INSTANTANEOUS RESPIRATORY PARAMETERS (7) 

EXTRACTED 

PARAMETERS  

DESCRIPTION 

BREATH RATE (BR) INVERSE OF THE INTERVAL 

BETWEEN TWO NEIGHBORING 

MINIMA. 

PEAK-TO-PEAK 

(PP) 

LUNG VOLUME REPRESENTED 

BY SIGNAL DIFFERENCE IN 

SUCCESSIVE PEAKS. 

INHALATION 

INTERVAL (IN) 

TIME DIFFERENCE BETWEEN 

ONE MINIMUM AND THE 

FOLLOWING MAXIMUM. 

EXHALATION 

INTERVAL (EX) 

TIME DIFFERENCE BETWEEN 

ONE MAXIMUM AND THE 

FOLLOWING MINIMUM. 

INTER-BREATH 

INTERVAL (IBI) 

INTERVAL BETWEEN TWO 

NEIGHBORING MAXIMA. 

IN- EX RATIO (IER)  INHALATION/EXHALATION 

INTERVAL RATIO. 

IN- EX VOLUME 

RATIO (IEPP) 

INHALATION/EXHALATION 

VOLUME RATIO. 

 

TABLE III.    RESPIRATORY FEATURES (37) 

µBR µPP µIN µEX µIBI µIER µIEPP 

ΣBR ΣPP ΣIN ΣEX ΣIBI ΣIER ΣIEPP 

COVBR COVPP COVIN COVEX COVIBI   

ℜBR ℜPP ℜIN ℜEX ℜIBI ℜIER ℜIEPP 

ΣBR ΣPP ΣIN ΣEX ΣIBI ΣIER ΣIEPP 

µSKEW µKURT ENTROPY CYCLE    

 

TABLE IV.    FREQUENCY FEATURES (14). 

ȠF1 ȠF2 ȠF3 ȠF4 ȠF5 

ǷF1 ǷF2 ǷF3 ǷF4 ǷF5 

FBR FHR SNRBR SNRHR  
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were first estimated from the average BR and heart rate (HR) provided by hospital 

reports for every patient, and then further refined to be the local BR and HR in every 

epoch by finding the maximal energy in the possible frequency band. Signal-to-noise 

ratios (SNR) in BR and HR were denoted by SNRBR and SNRHR which were calculated 

by the maximal energy on the fBR and fHR divided by the estimated noise power.  

Channel and epoch selection  

After segmentation and feature extraction, we selected the optimal channel and 

epoch from the datasets according to the estimated signal quality. For the 

accelerometer, we had 6 channels consisting of X, Y, and Z translational (acc) and 

rotational (gyro) motions, as shown in Fig. 6 for an example. Feature extraction was 

performed on every channel, and the optimal channel was decided by the least 

variation of respiration parameters. We can observe from the waveforms that most 

channels can get similar BR =35, but the channels with smaller σBR and σPP, such as 

‘gyro X’ and ‘gyro Y’, have more stable respiratory waveforms. Therefore, we opted 

to use the optimal channel by the minimum mean of all covariation features in BR, PP, 

IN, EX and IBI. In Fig. 6, the optimal channel is ‘gyro Y’. 
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Fig. 6.  An example of channel selection for the accelerometer. The optimal channel is ‘gyro 

Y’. 

 

Signal quality cannot be guaranteed during the entire course of overnight 

recording because patients may have random motion lying on the bed or leave the bed 

for restroom visits. Various factors such as ambient movement might bring about 

noises to cause SNR degradation. The position of the wearable sensor to the patient 

clothing might sometimes move during long or deep breathing, and brought further 

noise to the signal.  Therefore, we opted to remove the epochs with low SNR by pre-

determined thresholds. We selected the threshold to be mean of all covariation features 

to be smaller than 0.4. Table V provides the selection ratio for every dataset and the 

final cases we have collected after all the signal processing procedures. The datasets 

from Exp 1 and Exp 2 have higher quality because of the better controlled lab 

environment during data collection. 
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Results 

Demographic information 

TABLE VI.  DEMOGRAPHICS IN HUMAN STUDY 

DATASETS GENDER NUMBER 
BMI 

(µ ± Σ) 

AGE 

(µ ± Σ) 

COVID 

MALE 8 
30.1 ± 

7.3 
- 

FEMALE 4 
27.8 ± 

6.3 
- 

EXP 1 

MALE 7 
22.6 ± 

2.5 
29 ± 12 

FEMALE 6 
21.4 ± 

3.7 
21 ± 2 

EXP 2 
MALE 14 

23.3 ± 

2.5 
28 ± 9 

FEMALE 18 20 ± 1.3 24 ± 2 

 

This study involved three distinct datasets: COVID patients, and two dyspnea 

human studies on healthy subjects. The study population information of each dataset is 

shown in Table VI. Age information was not gathered for the COVID dataset. 

Feature Analysis and Comparison 

After acquiring all datasets, we first evaluated the similarity of respiratory 

features between COVID patients and healthy subjects where dyspnea was 

physiologically induced by exercise. The changes of breathing features in exertion-

induced dyspnea and acute short-term dyspnea from pulmonary disorders can have 

TABLE V.  STATISTIC COMPARISON OF COVID AND DIFFERENT DATASETS 

 COVID 

ACC. 

NORM.  

NCS 

EXP 1 

EXER. 

NCS 

EXP 1 

NORM.  

ACC. 

EXP 1 

EXER. 

ACC. 

EXP 1 

NORM.  

NCS 

EXP 2 

EXER. 

NCS 

EXP 2 

CASES 10131 1049 188 918 231 256 240 

RATIO 

(%) 

30.2 74.0 77.7 64.7 95.5 100 100 
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correlation with important implications. We first examined a few representative 

respiratory features and presented the scatter plots in Fig. 7 from 3 datasets: 1) COVID 

patients (accelerometer); 2) Healthy subjects during normal breathing in Exp. 1 

(NCS); 3. Healthy subjects breathing after exertion in Exp. 1 (NCS). Respiratory 

features collected from NCS and accelerometer in our human study have high 

similarity, so the difference using two different sources were mainly determined by 

SNR considerations. In Fig. 7(a), the X and Y axes represented respiratory features 

ℜBR and ℜPP, while in 6(b) represented ςIBI and ℜIBI. To better compare the feature 

distribution for different datasets, we used the Gaussian kernel smoothing function to 

estimate the returned probability density in top and right lines. The dataset from 

healthy subjects during normal breathing had a much broader range of distribution 

compared with the other two datasets. For a better visual demonstration, we set the X-

Y limits to only show all of points from dataset 1 and 3, and some points from dataset 

2 were out of range. We can observe that COVID patients had a higher similarity of 

breathing features to healthy subjects after exertion. In Fig. 7(a), for ℜBR and ℜPP, and 

in Fig. 7(b), for ℜIBI, both COVID patients and healthy exertional breathing had 

higher values closer to 1, indicating higher autocorrelation of neighboring breathing 

cycles. In Fig. 6(b), for ςIBI,, COVID patients and healthy exertional breathing were 

concentrated on smaller successive differences, while healthy normal breathing had 

broader spread to higher variation.  

   For a more comprehensive comparison of similarity in different datasets, we 

calculated the Kullback–Leibler (KL) divergence between the dataset of COVID 

patients and the other datasets in Table VII. The KL divergence, also called the 
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relative entropy, is a type of statistical distance between two probability distributions 

[31]. We first transformed our discrete datasets to smoothed continuous Gaussian 

distributions just like the top and right lines in Fig. 7, where the KL divergence 

represents a natural dissimilarity by the mixture of Gaussians. In Table VII, we 

presented 8 representative respiratory feature statistics. In both Exp 1 and Exp 2 with 

healthy subjects, the normal breathing features had larger KL divergence to those of 

COVID patients than the exertional breathing features. In Table VIII, we also 

examined the dissimilarity between NCS and accelerometer in the same experiment of 

Exp 1. The small KL divergence between the two measurements showed the similarity 

and interchangeability for respiration measurements. Therefore, in the following 

sections, we will mainly use NCS datasets in Exp 1 for calculation.  

 

(a)  

(b)  
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Fig. 7.  Scatter plots of chosen respiratory features from COVID and human study datasets. 

Top and right lines are smoothed continuous distribution by Gaussian kernels. (a): ℜBR and 

ℜPP; (b): ςIBI and ℜIBI.  

 

 

Dyspnea Classification Model  

After comparing individual respiratory features, we can find high similarity 

between pneumonia-induced dyspnea in COVID patients and exertional dyspnea in 

healthy subjects. We now adopted our previous dyspnea model derived from Exp 2 

TABLE VIII.  KL-DIVERGENCE OF  

NCS AND ACCELEROMETERS IN EXP1. 

 µBR ΣBR COVBR COVIBI  

NORM

.  

0.05 0.09 0.12 0.13  

EXER. 0.01 0.13 0.11 0.06  

 ℜBR ℜPP ΣIBI ΣIER AVG. 

NORM

.  

0.04 0.05 0.12 0.21 0.10 

EXER. 0.08 0.04 0.22 0.08 0.09 
 

 

 
      TABLE VII.    KL-DIVERGENCE OF COVID TO OTHER DATASETS 

 NOR

M.  

NCS 

EXP 

1 

EXER. 

NCS 

EXP 1 

NOR

M.  

ACC 

EXP 

1 

EXE

R. 

AC

C 

EXP 

1 

NOR

M.  

NCS 

EXP 

2 

EXE

R. 

NC

S 

EXP 

2 

µBR 2.14 0.17 2.62 0.16 1.44 0.30 

ΣBR 1.71 0.69 0.68 0.72 0.49 0.91 

COV

BR 3.91 0.76 2.75 0.65 1.17 1.03 

COVI

BI 4.79 0.99 3.37 1.08 1.66 1.33 

ℜBR 3.42 0.16 2.97 0.16 1.52 0.50 

ℜPP 2.96 0.21 2.34 0.08 0.98 0.21 

ΣIBI 3.87 0.44 2.61 0.68 1.32 0.73 

ΣIER 1.82 0.26 1.34 0.16 0.43 0.17 

AVG 3.08 0.46 2.34 0.46 1.13 0.65 
 

 
 

 µBR σBR CoVBR CoVIBI  

Norm.  0.05 0.09 0.12 0.13  
Exer. 0.01 0.13 0.11 0.06  

 ℜBR ℜPP ςIBI ςIER Avg. 

Norm.  0.04 0.05 0.12 0.21 0.10 

Exer. 0.08 0.04 0.22 0.08 0.09 
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[24] on 32 healthy subjects as the training model to evaluate the COVID patients and 

the healthy subjects with the same sensor setup in  Exp 1. By utilizing the ML 

algorithm in [24], we can evaluate the dyspnea score from all respiratory features as a 

whole and validate the feasibility of our objective dyspnea reporting system in the 

clinical setting.  As it is impractical to ask patients constantly to self report their 

dyspnea scores, this objective dyspnea report can be of high value to provide a gauge 

of dyspnea in COVID patients continuously, especially during inconvenient periods 

such as patients sleeping or going through treatment. 

   The first model we built was the binary classification model, namely normal 

= 0 and dyspnea = 1. For the training dataset we adopted from our previous dyspnea 

study on healthy subjects, all normal breathing epochs were labelled as normal  = 0, 

while all exertional breathing  epochs as dyspnea = 1. By training on the dataset to 

build a dyspnea classifier, we can output the dyspnea classification results for all 

COVID datasets and the reference cases from Exp 1. We utilized k-nearest neighbor 

classifier as the model here with neighbor number k = 40. Before feeding the dataset 

into the model, all features were preprocessed with a standard scaler to regularize 

features by removing the mean and scaling to unit variance. As Table IX showed, 

almost all of COVID patients’ cases were classified into dyspnea, while 73.6% of 

exertional breathing cases of healthy subjects were classified into dyspnea. In 

comparison, only 4.24% of the normal breathing cases in healthy subjects were 

classified into dyspnea. The dyspnea classification results for COVID patients further 

corroborated our hypothesis that COVID dyspnea had high similarity to exertional 

dyspnea in healthy subjects.  
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Dyspnea Scoring Model 

In this section, we built a regressor model for objective dyspnea scoring in the 

Borg scale (0 - 10) Dobj for COVID patients. In our previous work, we built a similar 

dyspnea scoring system and achieved high accuracy for generating Dobj for exertional 

dyspnea on healthy subjects in comparison with self report. In this work, we used our 

previous dyspnea study as the training model to build the scoring system, and treated 

the COVID patients as testing cases. We implemented the k-nearest neighbor 

regressor as the main model here. Since we had overnight recording for COVID 

patients, we first reported the epoch-wise dyspnea scores for all datasets, and then we 

averaged all dyspnea scores as the final score for every patient.  

 

TABLE IX.  CLASSIFICATION RESULTS OF DYSPNEA FOR COVID 

PATIENTS AND HEALTHY SUBJECTS (IN EXP 1). 

 COVID HEALTHY 

NORMAL 

HEALTHY 

EXERTION 

PERCENTAGE OF 

DYSPNEA 

98.05 % 4.24 % 73.63 % 

 

Fig. 8.  Dyspnea scoring results for COVID patients and healthy 

subjects (Exp 1). The average of Dobj : COVID = 4.39; Healthy 

Normal = 1.26; Healthy Exertion = 2.72. 
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Fig. 8 presents the results for dyspnea scoring of COVID patients using 

exertion induced dyspnea on healthy subjects in Exp 1.  Results for benchmark Exp 2 

on healthy subjects are also shown. For average Dobj reported from different datasets,  

COVID = 4.39; Healthy Normal = 1.26; Healthy Exertion = 2.72. As observed from 

Fig. 8, Dobj for COVID patients were more concentrated around 4-5, while normal 

breathing for healthy participants were mostly below 2. Exertional breathing for 

healthy participants had more participants with higher dyspnea score, but subject 

variation was also evident, possibly because different subjects had variation in 

physical conditioning after the same cardio exercise. Dobj for COVID patients was less 

dispersed probably due to the more uniform manifestations of the underlying 

pulmonary disease.  

We further preformed T-tests for dyspnea scoring results on different datasets 

as shown in Table X. The calculated T-statistic is positive when the sample mean of 

the first dataset is greater than the second dataset, and negative otherwise.  As the T-

statistic showed, the dyspnea scores for COVID patients were distinctively higher than 

normal breathing in healthy subjects, while differences with exertion breathing were 

smaller. The very small p-value between COVID patients and normal breathing 

indicated that they had distinctively different distributions for dyspnea scores. For the 

dataset of healthy exertion, the p-values to COVID and healthy normal were also 

TABLE X.  T-TEST STATISTICS FOR DYSPNEA SCORING RESULTS 

 COVID VS. 

HEALTHY 

NORMAL 

COVID VS. 

HEALTHY 

EXERTION  

HEALTHY NORMAL VS. 

HEALTHY EXERTION 

T-STATISTIC 14.60 5.47 −4.82 

P-VALUE 4.61×10-13 2.75 ×10-5 1.1 ×10-4 
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sufficiently small to suggest high distinguishability among the datasets. 

 

Apart from reporting average Dobj to give a general objective evaluation, our 

system can also output continuous real-time  Dobj  to give an indication to the infection 

progression. COVID and other important pulmonary diseases like COPD are 

frequently accompanied by dyspnea sensation from reduced lung function. It is thus 

critical  to continuously monitor patients because the dyspnea often develops 

insidiously over a period of time. Frequent self report is inconvenient and less accurate 

for long-term tracing of the symptoms. Fig. 9 shows an example of continuous 

monitoring of dyspnea score for 6 COVID patients. In the whole recoding of 12-16 

hours, Dobj was reported every hour, to align with the clinical data recorded every 

hour.  

Conclusion 

Dyspnea is a key symptom for patients with COVID-19 and many other 

respiratory disorders. Existing clinical evaluation of dyspnea currently depends on 

self-report, which is subjective and challenging for continuous monitoring. In this 

Fig. 9.  An example of continuous monitoring of objective dyspnea 

scores for COVID patients for every hour.  
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work, we used an innovative approach to continuously monitor respiratory features 

using wireless and wearable respiratory sensors to develop an objective dyspnea 

scoring system derived from exertion routines on healthy subjects. We then tested this 

model without further learning on COVID patients and control subjects under the 

same sensor setup. We found high similarity between pneumonia-induced dyspnea of 

COVID patients and physiologically induced dyspnea on healthy subjects, suggesting 

that changes of respiratory features from physical exertions could be representative of 

the dyspnea found in pulmonary disorders. We also demonstrated the unique 

capability to continuously report objective dyspnea scores during 16 hours for COVID 

patients. Our system can be a promising tool for diagnosis and prognosis of COVID, 

offering warning of possible worsening dyspnea and respiratory function, as well as 

the degree of recovery. This work validates the feasibility of our objective dyspnea 

scoring for clinical dyspnea assessment, and can be applied to symptomatic evaluation 

of dyspnea in patients with similar conditions including asthma, pneumonia [32], and 

COPD [33]. 
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CHAPTER 6 

NOVEL MUSCLE SENSING BY RADIOMYOGRAPHY (RMG) AND ITS 

APPLICATION TO HAND GESTURE RECOGNITION 

 

 Introduction 

Muscle Monitoring 

Monitoring skeletal muscle activities has significant medical and commercial 

applications, including detection of muscle fatigue and injury, diagnosis of 

neuromuscular disorders, assessment for physical training and rehabilitation [1]-[3], 

human-computer interface (HCI) [4], and robotic control [5]. Electromyography 

(EMG) is presently the prevalent continuous muscle sensing technique, which 

employs intramuscular needle electrodes or epidermal electrodes on the bare skin [6] 

to record the neural signals during muscle contraction, though the electrical pathways 

and neuronal depolarization can depend on the muscle tissue condition. 

Mechanomyography (MMG) and accelerometers record the mechanical motion on the 

body surface, but lacks information in deep muscle layers [7]. Ultrasound monitoring 

requires body probes with surface preparation for impedance match [8]. Magnetic 

resonance imaging (MRI) and computer tomography (CT)-scan can obtain high-

resolution muscle imaging, but is expensive and immobile, providing only short 

snapshots of muscle motion in a dedicated clinical setup [9].  

Hence, a direct muscle activity sensor that can accurately and continuously 

track muscle contraction in the superficial and deep layers with high user comfort is a 

critical complement to EMG in many biomedical and HCI applications. 
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Hand gesture recognition by muscle actuation detection  

 Hand gestures are controlled by complex muscle groups, many of which are 

extended from the forearms. Wearable sensors on wrist or arm bands for hand gesture 

recognition (HGR) [10][11]  is of high interest to facilitate HCI [12][13] and a myriad 

of other applications [14][15]. Current HGR techniques however have many 

limitations. Vision-based system requires off-body line-of-sight (LoS) cameras, and is 

vulnerable to self and ambient obstruction [16]-[18]. Depth-perception methods 

demand excessive geometry reconstruction computation [19][20].  Gloved-based 

sensors can hinder hand motion, and are often inconvenient and uncomfortable [21]. 

Accelerometers can only transduce surface motion, and are impractical and 

cumbersome if deployed on fingers or phalanges [22]. The HGR radar, such as Google 

Soli [23], has to be in the LoS path to the target hand and can also suffer from path 

noises [24][25]. 
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Fig. 1.  Demonstration of the near-field coupling principle in RMG by electromagnetic simulation. (a) The human 

forearm phantom in CST Bio Extension 4.0 library with 4 dipole antennas around the arm circumference. (b) 

Electric field distribution in the cross section of forearm with excitation by antennas 1 – 4. (c) The normalized 

scattering (S) parameters of the four antennas self channels for different muscle scales, and (d) S parameters of the 

cross channels.  
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By monitoring muscle activities on the forearm, an HGR system can be built 

with user convenience for many gestures, such as the conventional surface 

electromyography (sEMG) tracking the neural stimulation of forearm muscles [26]-

[30]. However, sEMG is limited by the ambiguity in the skin potential, vital-sign 

interference, and requirement of numerous electrodes with high-quality contact to the 

bare skin, sometime raising health concerns in long-term wearing and suffering low 

user acceptance [31][32]. Electrical impedance tomography (EIT) recovers the interior 

impedance geometry of arm muscles, but resolution is limited and cross-user 

generalization is often questionable [33]. 

RMG for muscle activity sensing  

In this work, we propose radiomyography (RMG), a novel skeletal muscle 

sensor that can non-invasively and continuously capture muscle contraction in various 

layers.  RMG uses multiple-input-multiple-output (MIMO) near-field coherent sensing 

(NCS) radio signals [34][35] to measure the dielectric property change and dielectric 

boundary movement of nearby muscle groups.  NCS couples ultra-high frequency 

(UHF) electromagnetic (EM) waves inside the body and reads out the internal organ 

and tissue motion signals as modulated antenna characteristics or scattering matrices 

[34]. As the near-field coupling is nonlinear and convoluted in the capture volume 

from different observation points, we explored spatially diverse channels to 

distinguish the detailed muscle action.  MIMO provides N2 observation channels in 

3D from N sensing units on or above the body surface to enhance this critical spatial 

diversity [35].  
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Radio-frequency (RF) signals in the UHF band, especially in the near-field 

region, will penetrate most dielectrics effectively without requiring direct skin contact. 

Therefore, our RMG system can be wearable over clothing or installed in a nearby off-

body apparatus such as armrests and wrist pads.  

To demonstrate that RMG can monitor the superficial and deep muscles, we 

carried out continuous recording of the complex forearm muscle contraction during 

various hand gestures by the MIMO channels, which provided rich information to 

decode the convoluted muscle activities. To validate HGR by RMG, we performed a 

human study of 8 participants with 23 gestures, including 8 basic gestures of fingers, 

palm, and wrist with multiple degrees of freedom (DoFs) and speeds. Various sensor 

modalities and forearm positions were also tested. After segmenting data from the 

RMG sensor, we transformed the 1D time waveforms to 2D time-frequency 

spectrograms using the short-time Fourier transform (STFT) and continuous wavelet 

transform (CWT). For gesture classification, we adopted vision transformer (ViT) as 

the deep-learning model [36] to compare with conventional convolutional neural 

networks (CNN). To provide a baseline comparison, we also benchmarked RMG with 

simultaneous sEMG for correlation and timing verification. To broaden the application 

scope, we also investigated leg RMG and radiooculogram (ROG), which tracked leg 

and eye muscle activities, respectively.  

RMG can be applied to numerous applications. Gesture recognition and eye 

movement detection can be used as a middleware for HCI, such as virtual reality (VR) 

control and cybersickness reduction. In clinical applications, RMG can be used as 

assessment for voluntary and evoked muscle contraction, diagnosis of muscle 
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disorders, and rehabilitation.  RMG can be integrated with sEMG for possible 

diagnosis of neuromuscular disorders including Parkinson’s disease, as well as for 

feedback control of electromyostimulation (EMS). ROG can be further applied to 

rapid eye movement (REM) monitoring with eyes closed during sleep.   

Operational Principles 

Challenges for deep-layer muscle tracking 

Muscles in a forearm are divided into anterior and posterior muscles, both 

containing superficial and deep layers. Hand gestures by the superficial muscle layers 

can be captured by motion sensors like accelerometers with tight skin contact. 

However, deep-layer muscles are critical for HGR but can raise ambiguity for surface-

based sensors. The forearm muscles actuating the hand gestures are listed in Table 1. 

For example, flexor digitorum profundus is the only major muscle that can flex the 

distal interphalangeal joints of the fingers, and four of deep posterior muscles are 

important for thumb and index finger movements. Hence, forearm muscle sensors for 

hand and wrist gestures will be able to differentiate hand gestures reliably only if all 

muscle groups, not just the surface ones, are included in the sensor readout. Here, 

RMG provides a new solution to detect muscle actuation in superficial as well as deep 

layers for accurate HGR.  

NCS: Near-field coupling inside the muscles 

From near-field EM coupling, NCS directly modulates the superficial and deep 

muscle motion onto multiplexed radio signals. Previous radar-based systems often 
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operated in the far field when the EM energy is mostly reflected at the body surface, 

so only the surface motion would be captured [37].  In comparison, NCS has more EM 

energy directed inside the body so the modulated signal from internal tissues and 

organs is significantly larger. In our previous studies, NCS has been validated for deep 

coupling into human body to monitor heart valve motion [35][38], femoral pulses 

[39], and diaphragmatic breathing [40][41]. 

RMG adopted the sensing principle of NCS for muscle monitoring. In the near-

field region of the forearm, the sensing antenna is designed to couple more EM energy 

into the muscles with high signal-to-noise ratio (SNR). The dielectric change of the 

internal muscle groups during the manipulation of hand gestures will be represented as 

the RF channel characteristics in terms of the scattering (S) parameters. Owing to the 

high penetration capability of UHF in the near field, RMG can potentially monitor all 

muscle groups in the forearm.  

MIMO: Rich N2 channel by N points 

  In this work, we adopt MIMO to incorporate N2 usable channels from N 

observation points [35]. MIMO is a mature RF technique where different transmitters 

(Tx) can be well isolated by either frequency or code multiplexing.  Similar techniques 

can be employed by colors in vision and subcarriers in ultrasound, but RF MIMO 

offers higher channel isolation than optical or acoustic waves with much lower cost 

thanks to the mature wireless industry. N Tx can then be simultaneously received and 

demodulated by N receivers (Rx) to accomplish N2 synchronous channels to fulfill the 

spatial diversity requirement to observe complex 3D geometry and motion. Due to 
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tissue dispersion and near-field nonlinearity, the channel by Tx1–Rx2 would represent 

different information from Tx2−Rx1. Our RMG prototype utilized N = 4 sensing 

points around the forearm, and collected signals from 16 channels, and can be 

extended to even more channels with modest system cost. 

Electromagnetic simulation for RMG  

We further demonstrated the sensing principle of RMG using a numerical 

simulation in CST Microwave Studio [42]. The human forearm model for EM 

simulation was constructed from the Tom anatomical model in the CST Bio Extension 

4.0 library. This voxel-based forearm model has a resolution of 0.5 mm3 and contains 

accurate dielectric properties of the biological tissues in the UHF band including skin, 

muscle, blood, fat, and other tissues. Four dipole Tx antennas, as shown in Fig. 1(a), 

were deployed on the arm circumference without direct contact, as was done in the 

box RMG experiment in later sections. Each Tx was driven with a 1-W input source at 

1 GHz and 50-Ω source impedance. The power here was selected for normalization 

convenience, as the radiated power level was less than 1 mW in actual experiments. 

Fig. 1(b) shows the electric field magnitude originating from each of the four Tx 

antennas at the cross section of forearm. We can clearly observe that the electric field 

was strongly coupled into the layers of skin, fat, and muscles. The sensing locality of 

the RMG system can be observed by different antenna coupling into different nearby 

muscle groups, providing high spatial diversity.  

To show the change in the antenna characteristics by the NCS principle during 

the different muscle contraction phases, we performed a mock muscle contraction in 
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CST by isotropic muscle scaling of 1, 0.95, 0.9, and 0.85. Fig. 1(c) shows the 

normalized antenna reflections as the backscattering S parameters of S11, S22, S33 and 

S44, which have small percentage changes demanding differential extraction or direct-

path cancellation [43]. Fig. 1(d) presented cross channels between 4 antennas.  The 

magnitude of the cross channels is smaller, but contains distinctive features during 

muscle scaling.  

System design 

Experimental setup  

1

2

4

3

Port1 Port2

Port3 Port4

SDR1

SDR2

(a)

(b)

(c) (d)

Tx2Tx1 Tx3 Tx4

RX1 RX2 RX3 RX4

 

Fig. 2.  (a) Forearm placement of a wearable RMG by SDR. (b) Four sensing antenna pairs 

attached to the armband. (c) The cross section view of RMG placement of 4 measuring points. 
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The third probe is on the anterior side of the forearm. (d) The transceiver s setup by two 

software-defined radios. 

 

The first RMG prototype employed four pairs of the sensing antennas attached 

to a wearable armband on the middle forearm as shown in Fig. 2(a). Each sensing unit 

consisted of two monopole whip antennas (Taoglas TG.19.0112) mounted on a 3D-

printed holder, and had a dimension of 69 × 17 × 11 mm. As shown in Fig. 2(b), the 

antennas were aligned in parallel to the forearm muscle for enhanced coupling. Unit 1 

was placed close to extensor pollicis longus and flexor pollicis longus, which 

controlled extension and flexion of the thumb. Unit 2 was placed close to the extensor 

muscles, which produced extension at the wrist and fingers. Unit 3 was placed close to 

the flexion muscles, which were associated with pronation of the forearm, as well as 

TABLE I 

Major muscle groups generating the hand gestures           

 Basic Gesture Step 1 Major Muscles Step 2 Major Muscles

Grasp Extend 5 fingers ED, EPL, EDM Flex 5 fingers FDP, FDS, FPL

Point Thumb Extend thumb EPL Flex thumb FPL

Point Index Extend index EI Flex index FDP, FDS

Point Ind.+Mid. Extend ind.+mid. EI, ED Flex ind.+mid. FDP, FDS

Point 4 Fingers Extend 4 fingers EI, ED, EDM, Flex 4 fingers FDP, FDS

Fist Flex 5 fingers FDP, FDS, FPL Rest 

Wrist Up Extend wrist ECU, ECRL,ECRB Flex wrist FCU, FCR

Wrist Down Flex wrist FCU, FCR Extend wrist ECU, ECRL,ECRB

Muscle groups: ECU: Extensor Carpi Ulnaris; ECRL: Extensor Carpi Radialis Longus; ECRB: Extensor Carpi Radialis Brevis; FCU: Flexor Carpi

Ulnaris; FCR: Flexor Carpi Radialis; ED: Extensor digitorum; EDM: Extensor digiti minimi; FDS: Flexor Digitorum Superficialis; EPL: Extensor

Pollicis Longus; EI: Extensor Indicis; FDP: Flexor Digitorum Profundus; FPL: Flexor Pollicis Longus.

Green font: Superficial; Blue font: Intermediate; Red font: Deep.

Basic Gesture

Point 

Thumb

Point 

Index

Point Ind. 

+Mid.

Point 4 

Finger

Grasp Wrist Up Wrist Down Fist Rest

Quick P1 P2 P23 P4 G U D

Quick Double P1 2 P2 2 P23 2 P4 2 G 2 U 2 D 2

Slow sP1 sP2 sP23 sP4 sG sU sD sF R

Wrist Gestures Finger Gestures Other

Fig. 3.   23 hand gestures used in the study protocol. 
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flexion of the wrist and fingers. Unit 4 was close to flexor digitorum profundus which 

flexed the four fingers except the thumb.  Multi-channel observation can help decode 

the convoluted muscle motion in various hand gestures by sensor proximity and rich 

MIMO channels.  

The RMG transceiver was prototyped by two synchronized software defined 

radios (SDR, Ettus B210). The two SDRs were synchronized by an external local 

oscillator (LO, BG7TBL-GPSDO) with 10 MHz reference and 1 PPS (pulse per 

second) baseband synchronization. The SDRs were connected to a host computer 

through universal serial bus  (USB), and the control software was implemented in 

LabVIEW. Each port of the MIMO system consisted of one Tx and one Rx, which 

was then connected to one sensing antenna pair. Each SDR supported two 

synchronous ports. Note that the present RMG on the armband were connected by 

cables to off-body SDR for fast and flexible prototyping of RF transceiver parameters. 

An all-in-one wireless unit of RMG can be a straightforward extension in the future 

[44], and further implementation by integrated circuits (IC) and custom packaging can 

make use of the present findings for product development with reduced size, power 

and cost.   

The digital baseband tone fBB of each Tx went through the digital-to-analog 

converter (DAC) and was then mixed with the carrier frequency fRF in a standard 

quadrature scheme. The RF power was less than −10 dBm or 0.1 mW, well under the 

safety limits set by occupational safety and health administration (OSHA) in the UHF 

band [45]. The Tx signal was coupled into the forearm muscle groups, received by all 

Rx, and then demodulated and sampled by the analog-to-digital converter (ADC) to 
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retrieve the baseband. We employed the quadrature scheme as the baseband tone fBB, 

and the NCS signal can be represented by the amplitude and phase modulation on the 

quadrature signal as 

 

                                  (1) 

        (2)  

                                        (3) 

                                       (4) 

 

where  was the phase offset accumulated from the Tx−Rx signal chain and 

was not constant among different channels or setups. The antenna pair here can 

operate around 900 MHz and 1.8 GHz. Lower frequency often provided stronger 

penetration into human body and better signal coupling. Therefore, fRF was selected at 

900 MHz. The multiple Tx channels utilized frequency-division multiple access 

(FDMA) by setting fBB =10, 25, 40, and 125 kHz, respectively, for Tx1−Tx4.  

We configured the dual SDR as 4 self-channels and 12 cross channels.  For 

example, Tx1 can be received by Rx1 as self backscattering, which was most affected 

by the muscle changes around Unit 1 to detect the extension and flexion of the thumb.  

Tx1 can also be received by Rx2−Rx4 as cross channels to collect information on the 

individual paths.  All 16 channels are sampled at 106 samples per second (Sps) to 

implement Tx FDMA, and further down-sampled to 500 Sps to retrieve NCS 

magnitude and phase. 
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Human study protocol 

RMG was tested on 8 healthy participants. The human study was approved by 

Cornell Institutional Review Board (IRB) under Protocol ID #1812008488, and 

conducted with the written consent of the participants.  We designed 23 gestures 

including finger, palm, and wrist motions with various speeds and multiple DoFs as 

shown in Fig. 3. We had 8 basic dynamic gestures and 1 static resting gesture. Basic 

gestures were extended to three versions including quick, double quick, and slow, 

except that the gesture ‘Fist’ only had the slow version. These gestures are chosen for 

their common rendition in HGR, as well as for confirmation of deep muscle sensing. 

Every gesture was performed in a fixed time window of 5 s. All gestures excluding 

‘Rest’ were dynamic and comprised two steps as described in Table 1. For the quick 

version, step 2 was performed immediately after step 1, while the slow version had a 

holding time around 2 s between steps 1 and 2. For each dynamic gesture, after step 2, 

the hand would relax back to the ‘Rest’ gesture. The on-off timing for each gesture 

motion inside the 5-s window was not fixed due to subject difference and variation in 

the response time for different repetitions. Each gesture was repeated around 30 times 

for each participant. The study procedures were divided into several repetitions of 5-

min routines of two kinds. Routine 1 contained 16 finger-based gestures with 3 

repetitions; Routine 2 contained 6 wrist-based gestures with 8 repetitions. The ‘Rest’ 

gesture was inserted between routines. Total recording time for each participant was 

around 1 hour. Participants occasionally made mistakes on the instructed gesture, and 

were suggested to report their mistakes after each 5-min routine. Routines with 

reported mistakes were removed from the datasets.  
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Data Processing  

   After collecting data on multiple participants, we processed the raw data 

before feeding the output to the machine learning (ML) models for classification. The 

signal processing before learning helped de-noise the dataset and avoid overfitting, 

which will become apparent when comparison was made against the ML model based 

on raw waveforms. The data flow is shown in Fig. 4.  

 

Multi-channel augmentation 

From the MIMO configuration in RMG, we obtained 16 channels on a 

forearm. Each channel contained the baseband phase NCSph(t) and amplitude NCSam(t) 

in the quadrature scheme on fBB. In addition to employing phase and amplitude, we 

also augmented the original complex number as part of the information to retain the 

intricate relation between NCSam(t) and NCSph(t) [43]. Therefore, from 16 MIMO 

channels, we had 48 temporal series in total.        

Filtering and segmentation 

The 48 1D waveforms in time was then processed by: 

1) Bandpass filtering (0.1 Hz to 5 Hz) to eliminate the noises in the higher 

frequency. 

Fig. 4. Schematic for data pre-processing to feed spectrogram into 

machine learning. 
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2) Waveform normalization with center 0 and standard deviation 1. 

3) Waveform segmentation into individual segments of Tseg = 5 s. Each 

segment now contained one gesture guided by voice instruction. 

4) Waveform detrending by subtracting the best-fit linear line from the data 

within Tseg. 

5) Annotation of the instructed gesture for each segment.  

 

1D waveforms to 2D spectrograms 

We employed STFT and CWT to generate 2D spectrograms to feed into the 

ML model. Transformation of 1D time waveforms to 2D time-frequency spectrograms 

would bring forth significant improvement in accuracy. The ensemble of five 2D 

spectrograms from different transforms were incorporated into ML for classification. 

Fig. 5.   Examples of 1D waveforms and transformed 

2D spectrograms.  

(a) (b) (c)
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We explored two STFT outputs with different window lengths (Twin1 = 0.6 s and Twin2 

= 1 s). Two window lengths can allow us to acquire information with different time 

and frequency resolutions [4]. CWT [5] takes advantage of multi-resolution analysis 

(MRA), which can effectively mitigate time-frequency resolution tradeoff. We used 

three different mother wavelets to capture different patterns and extend the feature 

diversity: 1) Ricker; 2) Gaussian; 3) Morelet.   

    In Fig. 5, three columns represent gestures of (a) fast grasp, (b) double 

grasps, and (c) slow grasps in the 5-s time windows. In each column, the first row 

shows the RMG time waveform, and the second to fourth rows are STFT (Twin1 = 0.6 

s), CWT1 (Ricker) and CWT2 (Gaussian) spectrograms. Note that STFT requires a 

short time window for n-point Fourier transform, so the starting and ending times of 

the spectrogram is truncated to 0.3 and 4.7 s.  

Classification by vision transformer 

Though classical ML models can be computationally less expensive, 

algorithmic and hardware improvements in recent years have facilitated complex 

neural networks on embedded systems efficiently [46]. We implemented vision 

transformer (ViT) as the classification ML model.  

ViT has a deep-learning architecture inherited from the transformer model in 

natural language processing (NLP) [47] and is now gaining popularity in computer 

vision. To benchmark ViT performance, we also built a conventional CNN classifier.  

   Over the ViT architecture, patches of the 2D input image (size = 5) were 

constructed from the time-frequency spectrogram, and were then linearly embedded 
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with dimension = 512. Position embedding was added, and the resulting vector 

sequences were fed to a standard transformer encoder. Inside the encoder, we had 6 

transformer blocks, 16 heads in the multi-head attention layer, 64 dimensions of the 

multi-layer perceptron (MLP) (feed-forward) layer, and the dropout rate was set to 0.1. 

In CNN, each convolution layer was followed by a BatchNorm layer, and then 2 linear 

layers. Adam optimizer was used for both ViT and CNN.  

 

Results and Analyses 

Dataset composition  

The final output dataset from all 8 participants consisted of 5,847 samples of 
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 Fig. 6.  The confusion matrices showing the overall accuracy on all participants using (a) The personal training 

model; (b) Transfer learning on the unseen participant by 1/5 of new data.  
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23 gestures. The ‘Rest’ gesture had 461 samples, each wrist-based gesture had around 

283 − 288, each grasp-based gesture had 293 − 294, and each finger-based gesture had 

215 − 222. Data exclusions were mostly due to reported mistakes by the participants, 

such as failing to follow the instruction on time and performing the wrong gestures.  

The personal training model 

We evaluated the classification accuracy of RMG by different cross-validation 

(CV) methods, feature sets and deep learning models. First, we built the personal 

training model for each participant. From individual person’s dataset, each gesture was 

repeated around 30 times, and the total sample number was around 700 − 800. K-fold 

(k = 7) CV was performed to estimate the mean accuracy for each participant. An 

overall accuracy was averaged on results from all participants. Fig. 6(a) shows the 

overall confusion matrix of ViT by the personal training model, which is normalized 

to the percentage of samples. RMG achieved an overall accuracy of 99.0% ± 0.48% 

for 23 gestures, which employed the ensemble method by majority voting of all 

feature sets from 2 STFT and 3 CWT versions. Fig. 7(a) shows an example of the 

trend of training and testing losses during model training on one subject. 6/7 of the 

overall data from one subject was trained, and 1/7 of the data was tested as unseen 

cases. We chose the learning rate of 10-4 and the epoch number of 20, and each epoch 

iteration has a batch size of 16. In the first 5 epochs, both training and testing losses 

decreased rapidly. In the following 5-20 epochs, training and testing losses both 

tended to be stable in low values, which indicated that the testing loss had a highly 

correlated decreasing pattern with the training loss and their eventual values at the end 
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did not have distinctive difference. Overfitting during training can often be spotted 

when the error on the training data decreased to a small value but the testing error 

increased in a reverse trend.  

Fig. 7(b) then showed the accuracy when different portion of the dataset was 

chosen for training and testing. We changed to train on 4/5 (k = 5), 3/4 (k = 4), 1/2 (k = 

2), and 1/4 (k = 4 with training and testing swapped). Though training on ¼ data had 

lower accuracy, when the model had at least half of the overall data to learn, the 

accuracy maintained at 96.9%. We can observe that the model performance did not 

degrade much even with limited training cases. These results indicated that there was 

no apparent overfitting in our classification model. We also compared the results using 

different feature sets individually and presented the results in Fig. 7(c). STFT2 used a 

Fig. 7.  Performance of the personal training model. (a) Example of training and testing loss during model 

training (Epoch number=20, learning rate=10-4). (b) Accuracy using different portion of total dataset. (c) 

Accuracy using different transforms, (d) Accuracy for individual participants, (e) Accuracy by different ML 

models. (f) Accuracy using all RMG sensor units vs. individual sensor. 

(f) 

 

(e) 

(c) (a) (b) 

(d) 
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longer time window length and thus had a higher frequency resolution and accuracy 

than STFT1. CWT features generally outperformed STFT. CWT3 by Morelet wavelet 

achieved the highest accuracy of 98.6% among all individual feature sets. The 

ensemble method with the flexibility to choose among all alternatives achieved the 

highest accuracy.  

Our data were collected based on 5-min routines (around 60 repetitions of each 

gesture in total) in the hour-long study for each participant to allow some rest and 

sensor adjustment. Each subject had around 12 routines. Between the 5-min routines, 

the hardware would be reset, and the subjects would take off the sensor to rest, 

followed by redeployment. Small sensor position variation around 1-2 cm or rotation 

around 5-15° would occur between the routines. Due to the hardware restart and 

sensor position alteration, signals collected by different routines can have more 

variations. Therefore, we presented another CV process, where all routines were 

independently tested, i.e., the gestures in the same routine were never divided between 

training and testing. As shown in Fig. 7(d), routine-independent CV still achieved a 

high accuracy of 97.0% ± 1.27% for all 8 subjects. Compared with the random shuffle 

k-fold, routine-independent CV had lower mean accuracy and higher standard 

deviation across different subjects. This observation of maintaining high accuracy in 

routine-independent CV corroborated the system robustness against the hardware 

reboot and small position variation in practical scenarios.  

ViT was compared to CNN in Fig. 7(e), where the accuracy dropped from 

99.0% in ViT to 97.0% in CNN for personal training CV, and from 98.0% in ViT to 

94.6% in CNN for routine-independent CV. To illustrate the advantage of 2D 
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spectrogram, we also built a 1D-CNN model using the time waveforms directly. 

Accuracies dropped from 97.0% in 2D CNN to 88.5% in 1D CNN for personal 

training CV, and similarly from 94.6% to 88.0% for routine-independent CV. As ViT 

is often computationally more expensive than CNN, this comparison can be regarded 

as a tradeoff between accuracy and computing resources. 

We adopted the MIMO setup for RMG in order to collect both self and cross 

channels. We also tested the recognition accuracy using only self-backscattering 

channels as the input for the ViT model. Accuracy degraded from 99.0% to 95.0% in 

the personal training CV.  Currently, we have 4 RF antennas functioning as sensing 

units on the armband. We further analyzed the accuracy degradation in Fig. 7(f) when 

the number of the sensing units was reduced. We chose one subject as an example 

where MIMO achieved higher accuracy than any other individual sensor used alone.  

Sensor 2 on the anterior side had the highest accuracy of 93.2%, while sensor 3 on the 

posterior side had the lowest accuracy of 69.9%. Large accuracy variation from 

different sensors was probably due to the different coupling to various muscle groups. 

In summary, the channel spatial diversity in MIMO played a critical role in HGR 

accuracy.              

Transfer learning for unseen users  

The HGR system must be robust to various practical conditions, especially for 

subject variation. Not only people perform hand gestures differently, but also the 

forearm size and muscle conditions have considerable distribution. Here, we adopted 

conventional transfer learning (TL) [48] where we leveraged a pre-trained model with 
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large amount of 

data from multiple 

users to test on a 

new user with a 

small amount of 

individual training 

data. TL also has 

been widely used 

by other HGR 

systems with high 

generalization and 

low training burden 

[46][48]. We first generated the pre-trained model using all data from 7 participants. 

We then fine-tuned the model with 1/m data from the new participant as short personal 

calibration. The final model was tested on the rest (1 − 1/m) data. This CV process is 

similar to k-fold, but only one fold is for training, and (m − 1) folds are for testing. Fig. 

8(a) shows the accuracies for all participants rotating as the new test case by the above 

TL strategy with m = 5. The model was entirely reset for each rotation. The averaged 

accuracy is 96.6%0.736%, and the normalized confusion matrix is presented in Fig. 

6(b).   

ViT also outperformed CNN for our TL strategy[36]. Fig. 8(b) shows 

accuracies for m = 4 or 5 with and without TL in the ViT and CNN models. ViT 

achieved higher accuracy than CNN in every scenario. Direct learning from 1/m data 

(a)

(b)

Fig. 8.  Performance of transfer learning on unseen participants. (a) 

Accuracy using TL with m = 5 on individual participants.  (b) 

Accuracy with and without TL for m = 4 or 5 by ViT and CNN. 
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without TL had much lower accuracy than the pre-trained model by TL. When the 

personal training set increased from ⅕ to ¼, accuracy also noticeably increased, 

indicating the trade-off between high accuracy and the amount of personal training 

data.  

Variations in experimental designs 

TABLE II EVALUATION FOR POSITION AND DESIGN VARIATIONS 

 D = 

3CM 

WITH 

TL 

D = 3CM 

WITHOUT 

TL 

NO

TCH 

BO

X 

WRI

ST 

ACCURAC

Y (%) 
97.2 87.2 99.0 97.4 95.8 

  Apart from subject dependence, accuracy degradation can also be induced 

from the sensor placement on the forearm. To test the adaptability against large sensor 

position variation, we performed another test on one participant with the same 

protocol but with the sensor position moved to a higher position by d = 3 cm. We used 

the same TL strategy to achieve the result in the first two columns of Table II. After 

adopting TL, accuracy was boosted from 87.2% to 97.2%.   

For the human study above, we used the antenna-based sensing unit on the 

forearm. We also explored more sensor design variations.   The first design in Fig. 

9(a) was notch RMG, where the muscle motion was coupled to an RF coaxial cable 

with an open notch leaking out a portion of the EM energy[49]. The notch RMG has 

the potential to miniaturize the sensor size, and can be readily adapted to flexible 

wearables. The second design in Fig. 9(b) is a non-contact square box with the antenna 

sensors attached to the inside walls. Forearm can be placed into the box freely without 

direct contact. The third design in Fig. 9(c) is by the same sensing antenna, but placed 
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on the wristband, which can be convenient for integration into the smart watch as a 

new input method. Present user interface by fingers on the smart watch display has 

been impeded by the small screen size, and hand gestures can be a promising 

alternative [22]. Table II presents the HGR accuracies using the above three design 

variations. Notch RMG showed the highest accuracy and can be favorable in certain 

applications. Box RMG can still attain reasonable accuracy by the non-contact setup, 

which further enhance the design flexibility over clothing or in armrests. Wrist RMG 

showed lower accuracy than the forearm placement because tendon and ligament 

motion had less dielectric contrast than the muscle motion.  

To validate that strong RF coupling was from the forearm muscles and not 

from the direct hand motion in the radar mode, we conducted measurements with the 

hand inside a radar-absorption-material (RAM) box, as shown in Fig. 9(d), where 

minimal difference in collected waveforms and achievable HGR accuracy was 

observed.  

   

BENCHMARK WITH sEMG 

We performed RMG with synchronous sEMG for the baseline comparison and 

physiological correlation. Notice that our sEMG setup had only one or two channels 

and was implemented by a commercial device without optimization.  The performance 

of our sEMG study is expected to lag behind many state-of-the-art multi-channel 

implementations 27. Nevertheless, the two sensing schemes can be complementary in 

operation to establish the complete physiological sequence of stimulation and 
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actuation, as well as to study the neuromuscular disorders in the future.    

 

 

RMG and sEMG placement 

For the reference sEMG setup, we used BIOPAC MP36R with the SS2LB 

leads set and EL503 electrodes (BIOPAC Systems, Goleta, CA). Fig. 9(e) shows the 

experimental setup with RMG and EMG both on the forearm. Each EMG channels has 

Fig. 9.   Experimental setups of various designs: 

(a) A notch RMG; (b) A non-contact box; (c) A 

wristband; (d) Verification by the hand inside an 

RAM box; (e) Benchmark with sEMG with short 

+/− separation; (f) Slow grasp strength testing with 

sEMG and accelerometer. 

(c)

G +
-

sEMG

Wrist

BoxNotch

(a) (b)

(d)

(e)

RAM

RMG

G

+
-

(f)

Quick SlowDouble Quick

Time (s)

Fig. 10.  RMG and sEMG waveforms for various gestures by DTW averaging on all samples. 
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3 electrodes on skin as +, −, and ground. We used 2 sEMG channels on the anterior 

and posterior sides of the forearm. The ground electrodes for two sEMG channels 

were both placed close to a wrist spot with minimal muscles. RMG and sEMG 

channels were synchronized on Labview.  We performed the same study protocol on 

two participants as Exp1 and Exp2 in Table III. The two participants had the same 

sEMG placement, where + and − electrodes were on the two longitudinal sides of the 

RMG armband to capture more differential signals with a large distance. Exp3 was the 

same participant as Exp1, but had a different sEMG placement where the + and − 

electrodes were on the lower position from the RMG armband. The smaller distance 

would measure only the muscles close to the electrodes with less voltage resolution.  

 

RMG and sEMG waveform comparison 

As our sEMG waveforms were noisy during the hand gestures, we added two 

pre-processing procedures: Enveloping the raw data by spline interpolation over local 

maxima, and smoothing by moving average 28. The subsequent signal transformation 

and learning models were the same for sEMG and RMG. The overall HGR accuracy 

by 7-fold CV is shown in Table III. Accuracy of sEMG was relatively low in 

comparison with RMG in our setup, which may be caused by the small number of 

sEMG channels under the large number of gesture classes. Our sEMG implementation 

TABLE III 

ACCURACY COMPARISON OF RMG VS. SEMG 

 EXP1 EXP2 EXP3 MEAN 

RMG 99.0% 98.5% 98.7% 98.7% 

SEMG 68.2% 70.8% 66.7% 68.6% 
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was mainly for comparative purposes and was far from ideal. A more comprehensive 

comparison with the literature results will be presented in next section. 

As shown in Fig. 10, we also compared the averaged waveforms of different 

gestures obtained from RMG and sEMG using global dynamic time warping (DTW) 

[50]. Each gesture had a time segment of 5 s, while the y-axis was the normalized 

amplitude. The RMG waveforms were examples from Tx2-Rx2 and the sEMG from 

channel 2, both positioned on the posterior side of the forearm. For quick and double 

quick gestures, both RMG and sEMG presented sharp peaks corresponding to the fast 

muscle motion. However, compared with RMG, sEMG signals had longer duration of 

pulse waveforms and showed more tailing after the gesture motion terminated. For 

slow gestures, RMG showed a more consistent square-wave pattern from the holding 

period. The sEMG signal showed a shorter pulse duration for gestures that do not 

require continuous myoelectrical simulation such as the point-finger gestures. For 

other gestures that require continuous efforts to maintain the position such as the wrist 

up/down, the sEMG pulse duration were extended. During ‘Rest’ and between 

gestures with no intended hand motion, sEMG had more interference and ambiguity 

due to either hardware sources such as inconsistent electrode contact resistance or 

from biological sources such as the neural signals from vital signs[32]. In comparison, 

RMG is less susceptible to vital signs or noises from electrode contacts. 
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To compare the waveform features further, we performed peak detection in the 

14 quick gestures. Fig. 11(a) shows the scatter plot of peak locations of quick gestures 

in synchronous RMG and sEMG in all samples, where the Pearson correlation 

coefficient r = 0.929 and the mean time difference is a delay of 0.183 s, i.e., RMG and 

sEMG have a high temporal correlation and a consistent time lag. This delay may 

indicate the time offset between neural stimulation and muscle actuation. Fig. 11(b) 

compares the feature of the pulse width, computed as the time duration between the 

points to the left and right of the half peak magnitude. Most data points are scattered 

above y = x line, which indicates that RMG waveforms have sharper peaks with less 

spreading during the quick gestures. Note that the few outliers are probably due to 

peak detection errors caused by the cases of questionable signal quality. For slow 

gestures, peak detection is not an appropriate comparison because the waveform 

features are not always consistent.  

Timing and latency of RMG  

RMG has ultra-low latency with the sampling rate readily over 105 samples per 

Fig. 11.    Scatter plots of RMG and sEMG for peak location 

and pulse width during quick gestures.  

(a) (b)
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second (Sps), which is important for dynamic HGR. Here, we performed the high-

speed gesture tracking by RMG and sEMG. The participant followed a metronome of 

150 beats/minute and performed the gesture of ‘point index and middle fingers’ with 

equal strength at each beat. The sensor setup was the same as Fig. 9(d). The 

waveforms from one of each RMG and sEMG channels are shown in Fig. 12(a).  We 

can observe from the time waveforms that RMG had a consistent signal pattern 

corresponding to the quick motions, while sEMG had more fluctuations.  

 

(a)

(b)
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Fig. 13.  Setup of the ROG and leg RMG systems. (a) One ROG sensor unit by a notched transmission 

line; (b) Four ROG sensor units on a mask; (c) ROG on a participant’s face; (d) EOG setup for 

baseline comparison; (e) One lower leg RMG sensor unit by whip antennas together with one EMG; 

(f) Four leg RMG sensor units on two legs.   

G

- +

EOG

1 2

3 4

ROG

2

43

1

(c) (d)

(a)

(b)

+

-
G

431 2

(e) (f)

Fig. 12.   Waveforms recorded from RMG, sEMG, and accelerometer for (a) fast finger 

motion; (b) slow grasps in 3 times/min with equal strength.  

Compared with surface-motion based sensors including MMG and 

accelerometers, RMG possesses the unique capability to capture deep muscle 

contraction. To further corroborate this claim, we tested a slow grip strength detection 

by RMG together with accelerometers and sEMG. As shown in Table I, during the 

grip motion, the main muscles include the flexor digitorum superficialis 

(intermediate), flexor digitorum profondus (deep) and the flexor policus longus (deep) 

[51]. The participant performed firm holds on the hand dynamometer with a speed of 3 

times/minute in equal strength as shown in Fig. 9(f). The waveforms from one of each 

RMG, sEMG, and accelerometer channels are shown in Fig. 12(b). RMG had a clear 

and stable signal pattern reflecting the strong and slow grip motion, while sEMG 

showed some ambiguity and the accelerometer presented even more noisy patterns.  

This is likely due to the different coupling strength to the deep muscle groups by 

different sensors.  

Extension to eye and leg RMG   

To validate the general applicability of RMG to different skeletal muscles, we 
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further extended the setup to wearable radiooculogram (ROG) on eyes and RMG on 

legs.  

As shown in Figs. 13(a)(b), the ROG system integrated four notch RMG to a 

facemask around the eyes. A participant wearing ROG and electrooculorgram (EOG) 

was shown in Figs. 13(c)(d). In a human study of 5 subjects, participants were 

instructed to move eyes in four directions (up, down, left, and right) with eyes closed, 

all of which had 2 versions of moving once and twice. Hence, we had 8 distinctive eye 

movements, and each motion was performed in a time segment of Tseg = 5 s with 

around 24 repetitions for each participant. Then the training model within each 

participant was built and 7-fold CV was performed to estimate the mean accuracy. 

ROG achieved an overall accuracy of 94.2%. ROG can monitor fine eye muscle 

activities with eyes open or shut. In the future, ROG can be applied for sleep REM and 

dream stage monitoring[52], and facilitate HCI applications using eye motion control. 

Another extension is for monitoring lower leg muscles. We implemented 2 

RMG sensing units on each leg with sEMG for reference, as shown in Figs. 13(e)(f). 

We tested 7 postures: 1) tiptoe standing; 2) tiptoe sitting; 3) reverse tiptoe standing; 4) 

reverse tiptoe sitting; 5) tiptoe sitting with only the right foot; 6) tiptoe sitting with 

only the left foot; 7) squat. Each posture was also performed in a time segment of Tseg 

= 5 s with around 34 repetitions. Leg RMG achieved accuracy of 100% for one 

participant using 7-fold CV. RMG on lower legs can monitor body postures and can 

be applied for balance training and fall warning[53].    
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DISCUSSION 

Comparison to previous HGRworks 

A comparison of RMG to previous HGR systems is presented in Table IV. Li 

et al. [17] can achieve high accuracy of 98.5% for 8 classes, but requires off-body 

line-of-sight (LoS) cameras, and is vulnerable to change of light and background. 

Zhang et al. [33] used Electrical Impedance Tomography (EIT) to recover the interior 

impedance distribution of the tested arm, which was similar to RMG because both 

techniques monitored interior muscle activities. However, EIT needs many electrodes 

and suffers from reproducibility and accuracy degradation across users. Many 

previous efforts employed sEMG for HGR, which required direct skin contact and a 

large number of electrodes to achieve high accuracy. McIntosh et al. [30] successfully 

integrated pressure sensor with sEMG, but needed 8 wet electrodes and 4 pressure 

TABLE IV 

COMPARISON TO PREVIOUS WORKS 

 

LI 

2019 

[17] 

ZHANG 

2016 

[25] 

ZHANG 

2015 [33] 

MCINTO

SH 

2016 

[30] 

SAVUR 

2016 

[14] 

QI 

2020 

[29] 

CÔTÉ-

ALLARD 

2019 [46] 

MOIN 

2021 [27] 

THIS 

WORK 

CLASS 8 8 5 15 27 9 7/18 13/21 23 

SUBJECT 5 4 10 12 1 - 17/10 2 8 

SENSOR 
CAMER

A 

FMCW 

RADAR 
EIT 

SEMG+ 

PRESSU

RE 

SEMG SEMG SEMG SEMG RMG 

MODEL CNN CNN SVM SVM 
ENSEMB

LE 
GRNN CONVNET NEURAL VIT 

ACCURA

CY 
98.5% 96.0% 

97% 

(HAND) 

87% 

(PINCH) 

95.8% 79.4% 95.3% 
98.3% (7) 

69.0% (18) 

97.1% (13) 

92.9% (21) 
99.0% 
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sensors. The recent work from Moin et al. [27] showed 92.9% for 21 gestures with 

high in-sensor adaptability, but required 64 electrodes integrated on the armband.  In 

comparison, RMG only utilized 4 sensing units to achieve 16 channels by MIMO. In 

this work, we demonstrated the competitive RMG to recognize 23 gestures (including 

8 basic gestures in three different speeds) with accuracy up to 99.0%. Notice that the 

number of hand gestures was different in various works due to the intended 

applications, and the larger number did not directly indicate higher sensor capability 

except for the increased complexity in the classification algorithm.  Moreover, the 

wearable and armrest RMG setups without requiring direct skin contact or restricting 

the capture volume offer inherent operational advantages over sEMG and camera-

based systems. Our choice of ViT classification on spectrograms also shows better 

performance than traditional ML models adopted in previous works.  

Potential future improvements 

A. Sensor hardware improvement 

In future hardware implementations, we should be able to miniaturize RMG 

into convenient and comfortable packages as all-in-one wireless wearables, because 

the expected power consumption and data bandwidth are both very low in view of 

modern RF devices. The notch RMG offers a promising design path to reduce cost, 

form factors, and complexity, especially for integration with a wristwatch.  

B. Real-time classification for HCI  

For HCI in robotic and gaming control, real-time HGR with minimal latency is 

an important feature. Embedded learning capability with local signal processing and 
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accurate HGR output of RMG will be attractive to many applications. With a given 

pre-trained ViT model, an inference on a single gesture presently took less than 1 ms 

for the execution time in a modest PC gaming console.  Further custom hardware 

acceleration and algorithmic optimization can be applied to enable future real-time 

HGR. 

C. Fusion with sEMG  

sEMG can estimate neural stimulation of muscle actuation, and RMG can 

directly detect the actual muscle change. Thus RMG should not be viewed as a 

competition of sEMG, but the two sensors can be combined for a fuller physiological 

interpretation. Our consistent observation of the RMG delay from sEMG possibly 

indicated the non-trained muscle actuation without the participation of proprioceptive 

neurons, which can be promising for neuromuscular disorder diagnosis with RMG and 

sEMG fusion.     

D. Closed-loop EMS control 

A closed-loop control of EMS is another possible future application. EMS has 

long been employed to either supplement or substitute voluntary muscle stimulation in 

many settings of rehabilitation and electroceuticals [54]. However, inadequate EMS 

due to personal and daily differences can cause confusion of antagonistic and 

synergistic coordination of the muscle groups, and even induce serious spasm. For a 

more precise control on EMS, RMG can give feedback on actual muscle actuation to 

control the EMS signal with higher adaptability to personal and conditional variations.  
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CONCLUSION 

We have reported a novel muscle monitoring technique, named as 

radiomyography (RMG), which can directly measure the muscle motion by coupling 

RF energy to superficial and deep internal muscles. Operation over clothing without 

direct skin touch enables convenient setup and comfortable operation.  

The MIMO approach enriches the collected information with a relatively small 

number of sensing points. We implemented RMG as a wearable forearm sensor to 

accurately track forearm muscles. For the HGR purpose, we adopted ViT as the 

classification model and effectively boosted the accuracy up to 99.0% for 23 hand 

gestures tested on 8 participants. We further adopted TL to address cross-subject and 

operational variations. For HGR systems, RMG has lower cost, lower complexity, 

lower latency and less privacy issues than camera-based devices, as well as higher 

user comfort and accuracy than contact-based devices.  

RMG has the unique advantage to monitor internal muscles non-invasively. In 

the future, RMG and sEMG can be fused together to derive the closed-loop 

information of stimulation and actuation. RMG can potentially lead to new methods 

for assessment of muscle functions, monitoring of muscle fatigue, and diagnosis of 

neuromuscular disorders. RMG is also promising for future HCI applications 

including exoskeleton robotic control, virtual reality interface, and in-air gesture 

capture. 
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CHAPTER 7 

RADIOOCULOGRAM (ROG) FOR EYE MOVEMENT SENSING WITH EYE 

CLOSED  

Introduction 

 

Eye movement (EM) measurement can derive profuse information in emotion 

perception [1], neurodegenerative diseases [2], and monitoring of sleep and dream 

stages [3]. It can also facilitate human-computer interface (HCI) and virtual reality 

(VR) applications [4][5]. Current eye tracking systems with eyes open by camera-

based methods can achieve high accuracy, though still have concerns of privacy, 

complexity, and occlusions [6][7]. Sensing EM with eyes shut under low ambient light 

can be even more difficult for cameras. EM sensing with eyes closed during sleep is 

important for the detection of rapid eye movement (REM), a sleep phase characterized 

by random rapid EM with an inclination of vivid dreaming. REM as an important 

sleep stage can be an indicator of health and cognitive performance, such as brain 

maturation [8], memory  consolidation [9], and learning facilitation [10]. Existing 

methods for REM recording during sleep mainly used biopotential signals from 

electrooculogram (EOG) [11] and electroencephalography (EEG) [12], as parts of the 

clinical polysomnography (PSG) [13]. However, the electrode-based sensor can be 

limited by low user comfort and skin irritation as well as ambiguity and interferences 

due to skin potentials and leaky neural signals.  

Here we propose radiooculogram (ROG), a novel EM sensor based on radio-

frequency (RF) signals that can accurately and non-invasively monitor internal eye 
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muscle activities with eyes open or shut. We validated accurate measurement of EM 

frequencies and directions by a human study of 5 participants with selected 

longitudinal experiments. We further benchmarked ROG with synchronous EOG as 

the baseline comparison and physiological correlation. The main advantage of the 

proposed ROG system can be summarized as: 

Improved user comfort. EOG and EEG measurements demand numerous 

electrodes around the eye region with stable electrical contact, which are inconvenient, 

uncomfortable, and prone to face motion interference. ROG can operate without direct 

skin contact.   

Unmediated sensing of directional EM. While the biopotential-based sensors 

such as EOG, EEG, and electromyography (EMG) measure neural stimulus for muscle 

activity, ROG directly measures the muscle motion by coupling RF energy to deep 

internal muscles. EOG and ROG can be used together to derive the closed loop of 

stimulation and actuation.  

Baseline for sleep REM detection. While camera-based methods are difficult to 

use for sleep REM, ROG has the flexibility to operate when eyes are open or closed 

without privacy concern. This work can formulate a validation baseline for future 

sleep REM monitoring.     

Sensor setup and experiement protocol 

Sensor Setup 

ROG is based on the near-field coherent sensing (NCS) [14][15] of ultra-high 

frequency (UHF) RF signals to monitor the dielectric boundary change of internal 
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muscles during EM. As shown in Fig. 1(a), one ROG sensing unit consisted of a 

notched miniature coaxial RF cable, where the metal shield of the 1-inch middle part 

was removed to allow a small amount of RF energy leaking into the user’s upper face 

region [16]. The ROG system integrated four sensing units attached to an eye mask 

around the eyes, as indicated in Fig. 1(b). The ROG RF transceiver was implemented 

by software-defined radios (SDR) to drive the notched sensors and to interface with 

the host computer through USB.  Two National Instrument Ettus B210 were used, 

each of which had two transmitter/receiver (Tx/Rx) ports as shown in Fig. 1(c). The 

two SDRs were synchronized by an external local oscillator (LO, BG7TBL-GPSDO) 

with 10 MHz reference and 1 PPS (pulse per second) baseband synchronization. The 

experimental setup on a user’s face was in Fig. 1(d) for ROG and in Fig. 1(e) for 

EOG. The ROG system can be alternatively implemented in wireless active [17] and 

passive [14]. units, although the present prototype is a wired system for convenient 

benchmarking.   

In the near-filed region, the dielectric boundary change of associated eye 

muscles during EM would couple into the leaked RF energy, and hence affected the 

signals between Tx and Rx. Four sensors at different positions around the eyes 

provided more observation diversity to improve the amplitude and direction 

resolution. We adopted the multiple-input multiple-output (MIMO) strategy to explore 

N2=16 coupling channels from N=4 sensing units to further enhance the spatial 

diversity [18]. 
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The digital baseband of each Tx went through the digital-to-analog converter 

(DAC) and was then mixed with the carrier frequency fRF, selected at 1 GHz. The RF 

power was less than −10 dBm or 0.1 mW, well under the safety limits set by 

Occupational Safety and Health Administration (OSHA). The RF signal leaked from 

the notched structure is coupled into internal muscle motion, received by Rx, and then 

demodulated and sampled by the analog-to-digital converter (ADC) to retrieve the 

baseband. The quadrature scheme was employed as the baseband tone fBB. The 

multiple Tx channels utilized frequency-division multiple access (FDMA) by setting 

fBB =10, 25, 40, and 125 kHz, respectively, for Tx1−Tx4. The system were configured 

as 4 self and 12 cross channels, which were all sampled at 106 samples per second 

(Sps), and further down-sampled to 500 Sps after demodulation. 

Human Study Protocol 

Two routines of human study on 5 volunteers were executed when eyes were 

Fig. 1.  The ROG system. (a) One ROG sensor unit by a notched 

transmission line; (b) Four ROG sensor units on a mask; (c) The SDR 

transceiver; (d) ROG on a participant’s face; (e) EOG setup for baseline 

comparison. 
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closed. The ROG signals were similar with open eyes, but with interference from 

blinking. Routine 1 was for EM frequency detection when the participant followed 

voice instructions and exercised EM with 10, 15, 20, 30, and 60 beats per minute 

(BPM). The eye exercise in each frequency had a duration of 30s with eyes moving 

left and right. Figs. 2(a)-(b) presented several examples of ROG (Tx3 – Rx3) and 

EOG waveforms. Participants were then instructed to move eyes in four directions in 

Routine 2. All directions had 2 versions of moving once and twice. Hence, we had 8 

distinctive EMs, and each motion was performed in a time window of Twin =5s with 

around 24 repetitions. Unlike gaze localization with open eyes [19], the ground truth 

of EM direction and voluntary control of eyeball rotation were less precise when eyes 

were closed. 

Benchmark with EOG 

The reference EOG setup was by BIOPAC MP36R with the three EL513 

electrodes around the eyes as + (under right eye), − (under left eye), and ground (left 

to left eye). ROG and EOG channels were synchronized in Labview and transferred to 

the host computer by USB. The same study protocol was performed on two 

participants with longitudinal iterations.   

Signal processing  

EM Frequency Estimation  

For the EM frequency testing in Routine 1, the signal was first bandpass-

filtered from 0.05Hz to 2Hz to remove the DC drift and high-frequency noises. Then 
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we utilized the moving average-crossing algorithm to first extract a moving-average 

curve in a given window length, and then label local maximum and  minimal points 

[15]. The EM rate is estimated by counting the number of detected cycles over an 

epoch of 10s. One EM cycle includes moving eyeballs from left to right and then back 

to left. We have collected 16 quadrature channels from ROG, and each channel has 

amplitude and phase separately. We selected the channel with minimum covariance of 

the EM rate to output the final estimates. EOG was processed in a similar way, 

although there was only one channel in our setup. 

EM Direction Estimation  

For the EM direction testing in Routine 2, after obtaining 1D time waveforms 

from 32 channels, we first applied bandpass filtering (0.05 Hz to 10 Hz) and 

normalization. The waveforms were then segmented into motion-based windows of 

Twin =5s, each containing one instructed EM.  We transformed the 1D waveforms to 

2D spectrograms using continuous wavelet transform (CWT) by Morelet and Gaussian 

mother wavelets. Finally, the 2D image-like data was fed into the deep learning 

network as the classifier to differentiate all EM directions. We adopted vision 

transformer (ViT) [20], a deep learning model in natural language processing (NLP) 

and computer vision, for classification.  

Results and analyses 

EM frequency estimation  

Fig. 2(c) shows the EM rate in beats per minute (BPM) calculated from EOG 
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(blue) and ROG (red) in comparison with the ground truth (green) from instruction in 

Routine 1. Fig. 2(d) shows the correlation of the EM rate from ROG (red markers) and 

EOG (blue markers) against the ground truth. In the left figure, both ROG and EOG 

achieved high correlation to the ground truth with Pearson coefficients denoted as rROG 

= 0.99 and rEOG = 0.98. In the right figure, the Bland-Altman plot presents the 

agreement by the mean (m) and limits of agreement (LoA). The X axis is the average 

of the estimation and ground truth, and the Y axis is the difference. Both EOG and 

ROG achieved low m and narrow LoA. Note that m is positive for both sensors, which 

implies that the ground-truth EM rate is higher than the estimated results. Notice that 

the participant may not perfectly follow the instruction especially for very fast EM at 

60 BPM. Fig. 2(e) further presents the correlation between ROG and EOG in a similar 

format. In comparison with Fig. 2(d), correlation between ROG and EOG is higher 

than that to the ground truth, indicating higher consistency between the two sensors. 

Table I summarizes all correlation and B&A statistics of the EM rate using only ROG 

across 5 participants.  

 

We further compared the temporal correlation between ROG and EOG 

waveforms. We extracted the optimal time lag that can maximize the cross-correlation 

between the two waveforms. When the time lag = 0.032s, cross-correlation achieves 

the maximum value of 0.96, which indicates that the ROG waveform has a time delay 

following EOG events, as EOG detects the neural stimulation of EM and ROG detects 

the actual EM. Table II presents the statistics of time lag and correlation between EOG 

and ROG in two subjects during longitudinal tests, where rR&E is the Pearson 
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coefficient. Table III presents the correlation and B&A statistics of EM rate estimation 

using ROG and EOG in comparison with the ground truth in the longitudinal tests, 

where both ROG and EOG remain highly accurate.  

 

TABLE I.   CORRELATION AND B&A STATISTICS OF THE EM RATE ESTIMATION USING ROG 

FOR EACH SUBJECT 

SUBJECT NO. RROG M± Σ  (BPM) 

1 0.987 0.70 ± 2.90 

2 0.986 0.75 ± 3.02 

3 0.985 1.04 ± 3.21 

4 0.982 1.00 ± 3.11 

5 0.984 1.46 ± 3.26 

MEAN 0.985 0.99 ± 3.10 

(a)

(b)

(c)

(d)

(e)

Slow

Very 

Slow Median Fast

Very

Fast

Fig. 2. EM frequency estimation. (a) ROG amplitude from 

Tx3- Rx3 and (b) EOG waveform samples. (c) EM rate in 

BPM. Correlation and agreement (d) between the ground truth 

and estimation from ROG and EOG, and (e) between ROG 

and EOG.  
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TABLE II.   TIME LAG AND CORRELATION BETWEEN ROG AND EOG  

SUBJ

ECT 

NO. 

ITERA

TION 

NO. 

TIME 

LAG 

(S) 

MA

X 

COR

R. 

RR&E M± Σ 

(BPM) 

1 2 0.090 0.88 0.99 0.28 ± 2.24 

2 2 0.054 0.97 0.95 −1.75 ± 6.02 

2 3 0.052 0.92 0.99 0.31 ± 3.00 

2 4 0.032 0.96 0.99 −0.43 ± 2.91 

MEAN 0.057 0.93 0.98 −0.40 ± 3.54 

 

TABLE III.   CORRELATION AND B&A STATISTICS OF EM RATE ESTIMATION USING ROG AND 

EOG  AGAINST THE GROUND TRUTH 

SUBJECT 

NO. 

ITER. 

NO. 

RROG M± Σ 

(ROG) 

REOG M± Σ  

(EOG) 

1 2 0.98

5 

0.11 ± 3.13 0.99

2 

0.39 ± 2.26 

2 2 0.97

9 

0.95 ± 4.10 0.95

0 

2.75 ± 5.68 

2 3 0.97

0 

1.43 ± 4.50 0.97

9 

1.74 ± 4.07 

2 4 0.98

6 

0.56 ± 3.16 0.98

3 

0.14 ± 3.61 

MEAN 0.98

0 

0.76 ± 3.72 0.97

6 

1.26 ± 3.90 

EM direction estimation 

Routine 2 for EM direction estimation include 5 subjects with 947 samples of 

8 classes of EM, namely 4 directions (up, down, right, and left) and 2 instances (once 

and twice). We built the training model within each participant and performed k-fold 

(k = 7) cross validation to estimate the mean accuracy for each participant. An overall 

accuracy was averaged on results from all participants.  Fig. 3 shows the normalized 

confusion matrix by ViT. ROG can achieve high accuracy for distinguishing different 

directions. Note that the class ‘D’ (down) has relatively lower accuracy than other 

classes. It may be difficult for participants to follow the instruction to move eyeballs 

downwards in a consistent way with eyes closed.  We also collected data from EOG in 
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the benchmark experiment using the same protocol and signal processing procedures. 

Accuracy by one EOG channel only achieved 57.3%.    

 

Conclusion 

In this work, we present a new non-invasive and touchless radiooculogram 

(ROG) for EM monitoring with eyes closed. ROG can accurately detect the EM 

frequencies in a broad range and recognize different EM directions. In comparison 

with conventional EOG, ROG has high accuracy and improved user comfort without 

requiring  direct skin contact. ROG can capture direct muscle actuation during EM 

with less ambiguity and interference. The consistent delay of ROG trailing EOG 

events indicates the lag of muscle actuation after the neural stimulation. In the future, 

ROG can be a promising alternative for sleep REM monitoring in clinical studies.   

Fig. 3. The confusion matrix showing the overall accuracy of 94.2% for EM 

direction detection on all 5 subjects.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

Conclusion of my contribution 

My present research interests focus on non-invasive sensing of physiological 

signals including respiratory efforts, muscle activities, heartbeat dynamics, and tissue 

properties using RF sensor. I established smart healthcare systems powered by 

machine learning that can be implemented as wearables, or invisibly integrated to the 

furniture to enable many medical applications, especially for remote continuous 

diagnosis. The summary of major contributions is as follows: 

1. I presented a new respiration sensor integrated into a bed or a chair by 

modifying a radio-frequency (RF) coaxial cable structure with a designed 

notch. Non-invasive respiration sensors integrated into furniture can be 

invisible to the user and greatly enhance comfort and convenience to 

facilitate many applications.  

2. I provided a new way to generate the objective score for physiologically 

induced dyspnea, using a comfortable and continuous respiratory sensor 

and an established ML model which can simultaneously consider multiple 

factors with different importance weighting.  As far as we know, this is the 

first study to examine the association between dyspnea sensation and 

continuous respiratory metrics that account for changes in respiratory 

behavior over a period of time under exertion and increased airway 

resistance. The method can potentially formulate a baseline for clinical 
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dyspnea assessment and help caregivers track dyspnea continuously, 

especially for patients who cannot report themselves. 

3. I developed a bed-integrated RF sensor can covertly and reliably detect and 

predict apneic events. Respiratory disturbances during sleep are a prevalent 

health condition that affects a large adult population. Predictive warning of 

the sleep disorders in advance can intervene serious apnea, especially for 

infants, servicemen, and patients with chronic conditions. 

4. I validated the viability to use my objective dyspnea scoring for clinical 

dyspnea assessment on COVID patients. The proposed system can help the 

identification of dyspneic exacerbation in conditions such as COVID, 

leading to early intervention and possibly improving their outcome. This 

approach can be potentially applied to other pulmonary disorders such as 

asthma, emphysema, and pneumonia.   

I also developed novel muscle sensing technique for biomedical application 

including muscle assessment for Parkinson’s disease and human computer interface 

(HCI) including gesture recognition and biometric authentication. 

1. I proposed a novel radiomyography (RMG) for continuous muscle 

actuation sensing that can be wearable or touchless, capturing both 

superficial and deep muscle groups. I verified RMG experimentally by a 

forearm wearable sensor for detailed hand gesture recognition. RMG can 

be used with synchronous EMG to derive stimulation-actuation waveforms 

for many potential applications in kinesiology, physiotherapy, 

rehabilitation, and human-machine interface.     



191 

 

2. I presented radiooculogram (ROG), a novel sensor for non-invasive eye 

movement (EM) monitoring with eyes closed. I have experimentally 

demonstrated accurate measurements of EM frequency and directions for 5 

participants and benchmarked ROG with electrooculogram (EOG). 

Compared with biopotential-based sensors, ROG has higher user comfort 

due to touchless operation and can capture direct muscle activity even in 

deep tissues. This work on voluntary EM sensing can serve as the baseline 

implementation for eventual sleep rapid EM monitoring.     

Future work 

Apart from my Ph.D. research in the last 4 years with substantial supporting 

evidences, I will introduce research work that can be extended in the future.  

 Sensing Vital Signs and Internal Tissues 

Promotion of remote healthcare 

As evident from the COVID-19 pandemic, telemedicine has seen great 

promises to transform healthcare delivery. The COVID-19 pandemic has driven rapid 

growth in telemedicine use for urgent care and primary care far beyond previous 

baseline periods. In the future, telemedicine has the potential to further become a 

standard service offered across all primary care settings. Telemedicine can 

dramatically change the interaction between consumers and clinicians, but can at the 

same time improve patient engagement and experience. While telemedicine has the 

potential to drive significant values in many areas, nevertheless, there remain 
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significant challenges to developing and scaling the virtual-care platform, such as lack 

of physical and digital infrastructure, limited choices of at-home diagnostic sensors 

with acceptable reliability, and a suboptimal user experience.  

My present research focuses on developing the non-invasive platform of vital-

sign monitoring that can hopefully address these challenges. The proposed radio-

frequency (RF) sensor can be integrated into an apparel, a bed, or a chair, hidden 

behind layers of fabrics. The senor can be cost-effective, compact, stable and 

compatible to various digital wireless protocols. It can further interact with various 

accessories such as body-electrode based sensors, cameras, accelerometers, and smart 

phones. Integrating our sensing hardware with telemedicine software can provide 

physicians with real-time continuous vital-sign data, while maintaining high user 

comfort and avoiding unnecessary public exposure. The sensing technology I plan to 

develop can potentially help virtual healthcare gain momentum and become a core 

component in the overall clinical infrastructure, as well as to improve early diagnosis 

and proper choices of specific therapy.   

Preventive and chronic care delivery  

Today, chronic disease management has been, and will continue to be, one of 

the biggest burdens for medical care in terms of cost and patience satisfaction. Nearly 

half of all adults in the US have a chronic disease, almost 33% of the population is 

living with more than one chronic diseases, which eventually are responsible for seven 

out of 10 deaths in the U.S., or approximately 1.7 million Americans each year. Heart 

diseases, chronic obstructive pulmonary diseases (COPD), and strokes are among the 
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top chronic diseases with high prevalence. Identifying patients at risk and getting 

access to useful data with least privacy invasion can be crucial for preventive care 

towards these chronic diseases.   

My research on non-invasive and continuous vital-sign sensing can potentially 

provide an effective solution and transform how preventive care will be delivered in 

the future. By implementing the proposed sensor system, remote physicians and care 

providers can access the full record of the patient’s vital signs or examine the analysis 

processed by artificial intelligence, surely under the appropriate protection of security 

and privacy. Obtaining accurate readings from unbiased and objective data, in addition 

to the patient self report, can help develop an improved strategy for proper care. The 

wearable sensors can track respiratory patterns, heart rates and blood pressures, which 

are the significant indicators for these chronic diseases. Mobile app can be further 

integrated with the hardware to keep long-term and real-time recording data and 

provide real-time feedback for early warning and diagnosis, which are the keys to 

successful preventive care. Another aspect of my research is to provide automated 

prognosis with high accuracy, leveraging data-driven decision making. After tracking 

and recording long-term continuous vital signs associated with chronic 

cardiopulmonary diseases, pre-warning for the upcoming symptoms can be provided 

to ameliorate disease deterioration. Sophisticated human machine interfaces with 

convenience and ease of use can further enhance patient engagement for compliance 

to medical treatment.                                                                                    

For instance, my current research develops a new approach to invisibly and 

precisely identify prevalent sleep disorders, including central sleep apnea (CSA) and 
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obstructive sleep apnea (OSA). Sleep apnea is very common with more than 3 million 

cases per year in US. Current sleep disorder symptoms are mostly scored by human 

operators during sleep studies, which is time-consuming. Real-time identification of 

the sleep disorders with predicative warning in a few minutes in advance can be 

extremely beneficial as episodes of serious apnea during sleep can be very dangerous, 

especially for infants and senior citizens.   

Diagnosis powered by artificial intelligence  

Another aspect of my research is to utilize machine-learning (ML) algorithms 

that can take the physiological data from our sensors to provide holistic diagnostics 

and to assist therapeutics to people at home or clinics. My previous work has 

developed new hardware-software co-design systems that can continuously track the 

cardiac and respiratory waveforms for accurate symptomatic evaluation through 

conventional signal processing and ML. The method can formulate a baseline for 

assessment of wellness and disorders, and provide caregivers with prognosis 

information, especially for patients who cannot communicate or cooperate themselves.  

The current practice of diagnosis of cardiopulmonary disorders, such as 

asthma, cardiac arrest, COVID-19, dyspnea, and COPD, heavily replies on physical 

examinations by experienced doctors or self-reports by patients, which can be costly 

for doctor’s time, inconvenient during patient rest time, as well as inaccurate and 

subjective from individual variations. My goal is to develop cost-effective ML-based 

diagnosis platforms that can complement or substitute visits to doctor’s office with 

improved accuracy and quality of service to patients. The most common problem for 
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ML-based diagnosis today is the lack of rigorous data and continuous evaluation. 

Many studies have not used real patient data, or do not have the continuous data from 

patient monitoring. Robust, real-world studies are of high priority to train and validate 

the ML algorithm. I believe the use of my hardware-software co-design system in 

cardiopulmonary disorders will potentially transform the diagnostic system to become 

available to more people regardless of their financial means and accessible 

infrastructure.   

Internet of beings (IoB) 

 The Internet of Things (IoT) has been regarded as the emerging technology 

sector where all things around us can be digitally connected with unique item-level ID. 

At the same time, integration of the man-made items and the living ecosystem now 

becomes possible to achieve a long-term sustainable future, where IoT can be 

morphed into the Internet of Beings (IoB) to bring forth broader impacts to overall 

wellness and happiness. The emerging biotechnology will herald an exciting and 

promising new era, in which biology and technology will be finally merged into one 

synthetic system.  Our sensing technology has been able to measure vital signs in 

human as well as animals without having to shave, sedate, or force for basic veterinary 

care. The sensor can be implemented as a passive tag, or integrated into the habitat and 

feeder.  Our technology can improve our understanding of the living beings, and hence 

bring forth benefits, instead of harms, to the broad ecosystem in the long run.  

Microwave imaging of internal body organs 

Imaging the interior body is essential for disease diagnosis and precision 
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treatment in clinical practice. Current X-ray radiography, MRI, and ultrasound usually 

require bulky devices and provide snapshots. In the future, our RF system has the 

potential to revolute 3D internal imaging by massive multiple-input-multiple-output 

(MIMO) sensors. RF signals can permeate through the body and reveal internal 

dielectric boundaries with the least concern for harmful dosage. The RF imaging 

system can be highly economical in comparison with existing devices for medical 

imaging. Wearable RF devices can be developed in the future so that continuous 

disease diagnosis and precision medicine can be realized remotely. Present RF 

imaging for pulmonary edema and breast tumors suffers insufficient resolution and 

still requires a lot of research works to serve as a useful diagnostic tool. 

 Muscle sensing by Radiomyography (RMG) and its application in biomedical 

research 

Continuous monitoring of skeletal muscle activities has significant medical and 

commercial applications, including detection of muscle fatigue and injury, diagnosis 

of neuromuscular disorders, assessment for physical training and rehabilitation, 

human-computer interface (HCI), and robotic control. Conventional electromyography 

(EMG) measures the neural activity during muscle contraction, but lacks explicit 

quantification of the actual contraction. Mechanomyography (MMG) and 

accelerometers only measure body surface motion, while ultrasound, CT-scan and 

MRI are restricted to in-clinic snapshots. For the first time, I proposed 

radiomyography (RMG), a novel muscle sensor that can non-invasively and 

continuously capture muscle contraction in various layers [5].  RMG uses MIMO 
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near-field coherent sensing (NCS) signals to measure the dielectric property change 

and boundary movement of nearby muscle groups. As shown in Fig. 2, I verified 

RMG experimentally on a forearm wearable sensor for detailed hand gesture 

recognition, and further demonstrated monitoring of eye and leg muscles with high 

accuracy of eye movement and posture tracking. In the following, I will present 

several directions worth of future endeavor. 

Study of Parkinson’s disease  

Parkinson's disease (PD) is a brain disorder that causes unintended or 

uncontrollable body movements, such as shaking, stiffness, and difficulty with balance 

and coordination. Many studies have used EMG to detect the abnormalities in 

electrical signals produced by muscles such as increased muscle tone, abnormal 

posture, gait and tremor. Compared with EMG measuring neural stimulation, RMG 

can directly detect the actual muscle change. The two sensors can be combined for a 

fuller physiological interpretation. In my previous work [], consistent observation of 

the RMG delay from synchronized EMG indicated the non-trained muscle actuation 

without the participation of proprioceptive neurons which can be transferable to PD 

detection.  

In the future, I believe RMG and EMG fusion can be used as a powerful 

combination to diagnosis and prognosis of PD, including 1) gait abnormality, where 

RMG and EMG can be combined to measure leg muscle activities to detect abnormal 

gaits, and 2) Tremor detection, where wearable RMG and EMG can be attached to 

wrist and arm to monitor the resting tremor with differentiation of tremor pattern and 
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severity. The signal correlation between RMG and EMG can also help investigate the 

control of muscle actuation by the central nervous system (CNS).  

Sleep rapid eye movement (REM) monitoring  

Eye movement sensing with eyes closed during sleep is important for the 

detection of rapid eye movement (REM), a sleep phase characterized by random rapid  

eye movement with an inclination of vivid dreaming. REM as an important sleep stage 

can be an indicator of health and cognitive performance, such as brain maturation, 

memory consolidation, and learning facilitation. Sensing eye movement with eyes shut 

under low ambient light can be difficult for cameras. Biopotential signals from 

electrooculogram (EOG) and electroencephalography (EEG) are other alternatives. 

However, these electrode-based sensor can be limited by low user comfort and skin 

irritation as well as ambiguity and interferences due to skin potentials and leaky neural 

signals. I demonstrated a new radiooculogram (ROG) for non-invasive eye movement 

monitoring with eyes open or closed. In my future work, ROG will be used to further 

study sleep REM in Sleep Clinic.  

Assessment for muscle fatigue, pain, and rehabilitation   

RMG can directly and non-invasively measure the muscle motion by coupling 

RF energy to superficial and deep internal muscles. In the future, my research can be 

extended to a wide range of studies for muscle function assessment. For example, 

fatigue is a common non-specific symptom experienced by many people related to 

difficulty in performing voluntary tasks. Currently, muscle fatigue is mainly evaluated 

by EMG with limited capability. I will explore new methods using RMG along with 
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EMG to have a more comprehensive interpretation of dynamic fatigue in muscle 

contraction. The study will be from acute short-term muscle fatigue stimulated on 

healthy subjects to long-term chronic fatigue syndrome (CFS) experienced by patients. 

I will develop a novel technology in rehabilitation research by providing quantifiable 

information on the myoelectric output of a muscle. Physical rehabilitation aims to 

restore functional ability from pain or disability in muscle or nerve damage, where 

RMG and EMG can provide quantifiable and continuous information on the muscle 

contraction.  

Closed-loop Electrical muscle stimulation (EMS) control 

A closed-loop control of EMS is another possible future application. EMS has 

long been employed to either supplement or substitute voluntary muscle stimulation in 

many settings of rehabilitation and electroceuticals. However, inadequate EMS due to 

personal and daily differences can cause confusion of antagonistic and synergistic 

coordination of the muscle groups, and even induce serious spasm. For a more precise 

control on EMS, I will develop RMG to give feedback on actual muscle actuation to 

EMS with higher adaptability to personal and conditional variations. 

 Intelligent Human Computer Interface (HCI) based on muscle tracking  

Gesture interface  

Gestures provide effective non-verbal communication and can help deliver 

intuitive interactions to machines. There has been high interest to develop new 

technologies in gesture recognition to facilitate HCI. Gesture interface can be applied 
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to various applications including 3D virtual reality/augmented reality (VR/AR) 

control; sign-language detection for hard of hearing persons; assistive robotic control; 

communication in hostile environment such as fire and covert operations; non-contact 

navigation and infotainment in smart cars. In my future work, I will continue work on 

RMG for an effective method of gesture interface to provide: 1) High recognition 

accuracy for a large diversity of gestures; 2) Robustness against subject difference, 

background noise, and scenario variations; 3) Free movement without obstruction and 

discomfort; 4) Convenience to configure and deploy; 5) Low computing and network 

loads, and real-time response with ultra-low latency.  

Eye tracking  

I have demonstrated the capability using ROG, a novel sensor for non-invasive 

and accurate eye movement monitoring. Current eye tracking systems with eyes open 

by camera-based methods can achieve high accuracy, though still have concerns of 

privacy, complexity, and occlusions. ROG has higher user comfort due to touchless 

operation and can capture direct muscle activity even in deep tissues. It can facilitate 

various HCI and VR/AR applications. In the future, I will explore solutions using 

ROG for device interaction, including car navigation, interface control replacing the 

mouse, and VR/AR training. ROG can also be potentially used for analyzing driver’s 

attention, cybersickness, and emotion extraction.  

Biometric authentication based on muscle recognition  

Handwriting recognition is an essential form of verification system for security 

and privacy. However, handwriting can often be faked and matching handwriting is 
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not always accurate. I will explore the new dynamic air signature system by writing in 

the air and recognizing the unique muscle behavior pattern using wearable forearm 

RMG. Compared with traditional handwriting, this new technique requires dynamic 

recording of muscle activities which can be an important next-generation marker that 

is mostly immune to presentation and eavesdropping attacks. 



202 

PUBLICATION LIST 

1 Z. Zhang, and E. C. Kan, " Novel muscle monitoring by radiomyography (RMG) 

and its application to hand gesture recognition ", submitted to IEEE Sens. J. 

2 Z. Zhang, J. Zhou, T. B. Conroy, S. Chung, J. Choi, P. Chau, D. B. Green,A. C. 

Krieger and E. C. Kan, " Objective dyspnea evaluation on COVID-19 patients 

learning from exertion-induced dyspnea scores," submitted to Sensors 

3 Z. Zhang, T. B. Conroy, A. C. Krieger and E. C. Kan, " Identification and 

prediction of sleep disorder by covert bed integrated RF sensors," IEEE. Trans. 

Biomed. Engr., 2022, doi: 10.1109/TBME.2022.3212619.   

4 Z. Zhang, and E. C. Kan, " Radiooculogram (ROG) for eye movement sensing 

with eyes closed", in 21st IEEE Conf. on Sensors, Dallas, TX, Oct. 30 – Nov. 2, 

2022  

5 Z. Zhang, G. Xu, and E. C. Kan, "Outlooks for RFID-based autonomous retails 

and factories", IEEE J. Radio Frequency Identification (RFID), 2022, doi: 

10.1109/JRFID.2022.3211474  

6 Z. Zhang, G. Xu, and E. C. Kan, "3D geometry recognition by RFID Box based 

on deep learning", in 16th Intl. Conf. on RFID, Las Vegas, NV, May 16 – 19, 

2022.  

7 Z. Zhang, P. Sharma, T. B. Conroy, V. Phongtankuel, and E. C. Kan, "Objective 

scoring of physiologically induced dyspnea by non-invasive RF sensors," IEEE. 

Trans. Biomed. Engr., vol. 69, no. 1, pp. 432-442, 2021.  

8 Z. Zhang, P. Sharma, J. Zhou, X. Hui and E. C. Kan, "Furniture-integrated 

respiration sensors by notched transmission lines," IEEE Sens. J., vol. 21, no. 4, 

pp. 5303-5311, 2021  

9 P. Sharma, Z. Zhang, T. B. Conroy, X. Hui, and E. C. Kan, "Attention Detection 

by Heartbeat and Respiratory Features from Radio-Frequency Sensor," Sensors, 

vol. 22, no. 20, p. 8047, 2022.  

10 X. Hui, J. Zhou, P. Sharma, T. B. Conroy, Z. Zhang and E. C. Kan, “Wearable RF 

near-field cough monitoring by frequency-time deep learning”, IEEE Trans. 

Biomed. Circuits & Sys, vol. 15, no. 4, pp. 756 – 764, 2021  

 

11 Z. Zhang, et al., "Wideband and continuously-tunable fractional photonic Hilbert 

transformer based on a single high- birefringence planar Bragg grating," Opt. 

Express, vol. 26, pp. 20450-20458, 2018.  



203 

 

12 Z. Zhang, et al., "Design of a broadband achromatic dielectric meta-lens for linear 

polarization in the near-infrared spectrum," OSA Contin., vol. 1, pp. 882-890, 

2018.  

13 Z. Zhang, et al., "Micro-machining for TE/TM mode phase matching in high-

birefringence planar waveguide and implementation in continuously-tunable 

fractional Hilbert transform," Intl. Photonics & Optoelectronics Mtg., OSA Tech. 

Dig., OT4A.2, 2018.  

14 H. Sun, W. Zhou, Z. Zhang and Z. Wan. "A MEMS variable optical attenuator 

with ultra-low wavelength-dependent loss and polarization-dependent loss," 

Micromachines, vol. 9, no. 12, p. 632, 2018.  


