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Program obfuscation is an exciting new area of research with wide-ranging

applications and implications throughout cryptography and computer science.

The most widely accepted security notion for obfuscation is indistinguishabil-

ity obfuscation (iO ), which on one hand is surprisingly useful for many appli-

cations [134, 42] and on the other hand can plausibly exist [70]. Despite this

amazing progress, there are still some barriers to its ambition as a “central hub”

in cryptography. Firstly, all known obfuscation mechanisms incur an overhead

proportional to the circuit size of the program being obfuscated, leading to a ma-

jor source of inefficiency. Secondly, there are no plausible, natural intractability

assumptions on which these mechanisms can be based.

In this thesis we study the above issues.

• We construct an indistinguishability obfuscator for Turing machines and

RAM programs, where the obfuscation overhead is independent of the

running time of the program.

• We introduce a natural assumption on multilinear encodings, a candidate

for which was provided in the seminal work of [66], and show this as-

sumption, together with other standard hardness assumptions, suffices to

construct iO for circuits.

• We show methods to bootstrap iO from quantitatively weaker notions of

iO (in particular, notions with significantly relaxed efficiency guarantees).



In the process of obtaining the above results, we discover fascinating connec-

tions between obfuscation and randomized encodings [8, 10]. In particular, we

study the notion of randomized encodings in a new setting where the time to

encode a program is independent of the running time of a program. We show

that this setting for randomized encoding is not only interesting in its own right

from a theoretical perspective, but also has many applications in cryptography.
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CHAPTER 1

INTRODUCTION

1.1 Program Obfuscation

The goal of program obfuscation is to scramble the code of a program, hid-

ing its implementation details and hence making it hard to “reverse engineer”,

while preserving the functionality (i.e. input-output behavior) of the program.

While program obfuscation is a useful primitive in practice, with several heuris-

tic solutions widely prevalent, it is also potentially very useful in cryptography.

For example, in their seminal paper on public-key cryptography [64], Diffie and

Hellman envision the use of a program obfuscator (called a “one-way compiler”

in their paper 1) to heuristically construct a public-key encryption scheme from

any private-key encryption scheme: the public key is simply the obfuscated

private-key encryption algorithm (with the private key hardcoded in it). In-

deed, the prospect of program obfuscation has potential “dream” applications

in almost all areas of cryptography. However, formally defining what it means

to “scramble” a program is non-trivial: on the one hand, we want a definition

that can be plausibly satisfied, on the other hand, we want a definition that is

useful for applications.

A first formal definition of such program obfuscation was provided by Hada

[98]: roughly speaking, Hada’s definition—let us refer to it as strongly virtual

black-box—is formalized using the simulation paradigm. It requires that any-

thing an attacker can learn from the obfuscated code, could be simulated using

1[64] describe an obfuscator as a compiler “which takes an easily understood program writ-
ten in a high level language and translates it into an incomprehensible program in some machine
language”.
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just black-box access to the functionality. Unfortunately, as noted by Hada, only

learnable functionalities can satisfy such a strong notion of obfuscation: if the

attacker simply outputs the code it is given, the simulator must be able to re-

cover the code by simply querying the functionality and thus the functionality

must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work

of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [17]. Their

central result shows that even if we consider a more relaxed simulation-based

definition of program obfuscation—called virtual black-box (VBB) obfuscation—

where the attacker is restricted to simply outputting a single bit, impossibility

can still be established. Their result is even stronger, demonstrating the exis-

tence of families of functions such that given black-box access to fs (for a ran-

domly chosen s), not even a single bit of s can be guessed with probability sig-

nificantly better than 1/2, but given the code of any program that computes fs,

the entire secret s can be recovered. Thus, even quite weak simulation-based

notions of obfuscation are impossible.

But weaker notions of obfuscation may be achievable, and may still suffice

for (some) applications. Indeed, Barak et al. [17] also suggested such a notion

called indistinguishability obfuscation. Roughly speaking, this notion requires that

obfuscations O(C1) and O(C2) of any two functionally equivalent circuits C1 and

C2 (i.e. whose outputs agree on all inputs) from some class C are computation-

ally indistinguishable. In a breakthrough result, Garg, Gentry, Halevi, Raykova,

Sahai, and Waters [70] provided the first candidate constructions of indistin-

guishability obfuscators for all polynomial-size circuits, based on so-called mul-

tilinear (a.k.a. graded) encodings [38, 133, 66]—for which candidate constructions
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were discovered in the seminal work of Garg, Gentry and Halevi [66].

Applicability of Indistinguishability Obfuscation

It may not be immediately clear why indistinguishability obfuscation is a

useful security notion: it only guarantees that the obfuscation of a program does

not leak more information than what an obfuscation of a functionally equiva-

lent program would leak. However, there has been a long line of work that

shows indistinguishability obfuscation suffices for many of the “dream” appli-

cations of obfuscation (see e.g., [134, 99, 42, 99, 40, 67, 88, 111, 110]). Most no-

table among these is the work of Sahai and Waters [134] (and the “punctured

program” paradigm it introduces) which shows that for many interesting appli-

cations of virtual black-box obfuscation (including turning private-key primi-

tives into public-key one), the weaker notion of indistinguishability obfuscation

suffices. Furthermore, as shown by Goldwasser and Rothblum [96], indistin-

guishability obfuscators provide a very nice “best-possible” obfuscation guar-

antee: if a functionality can be VBB obfuscated (even non-efficiently!), then any

indistinguishability obfuscator for this functionality is VBB secure.

Despite this amazing progress, a key obstacle in the applicability of the can-

didate obfuscation mechanisms is that they are highly inefficient. A key source

of inefficiency is that these mechanisms require the program being obfuscated

be expressed as a boolean circuit, and these obfuscators incur a polynomial

overhead in the size of the circuit. As a result, the time to obfuscate a program,

and the size of the obfuscated program, is polynomial in the running time of

the program. Not only does this make the use of obfuscation in the above ap-

plications inefficient but also limits its use in a number of settings. For example,

consider the scenario of a weak client wishing to delegate some computation to

3



a powerful albeit untrusted server. This computation may have some private

information in its implementation which it wishes to hide from the server. The

natural solution of the client uploading an obfuscation of the program does not

work because it is more expensive than running the computation itself.

In this thesis we will address the following question.

Can we obfuscate programs such that the obfuscator running time is inde-

pendent of the running time of the program?

Foundations of Indistinguishability Obfuscation

We now turn our attention to the goal of basing indistinguishability obfusca-

tion on some natural intractability assumption. While the construction of indis-

tinguishability obfuscation of Garg et al is based on some intractability assump-

tion on the underlying multilinear encoding scheme, the assumption is very

tightly tied to their scheme—in essence, the assumption stipulates that their

scheme is a secure indistinguishability obfuscator. In particular, their obfuscator

proceeds in two steps: They first provide a candidate construction of an indis-

tinguishability obfuscator for NC1. Their assumption essentially stipulates that

this construction is secure. Next, they demonstrate a “bootstrapping” theorem

showing how to use fully homomorphic encryption (FHE) schemes [79] and in-

distinguishability obfuscators for NC1 to obtain indistinguishability obfuscators

for all polynomial-size circuits.

Further constructions of obfuscators for NC1 were subsequently provided by

Brakerski and Rothblum [50] and Barak, Garg, Kalai, Paneth and Sahai [16]—

in fact, these constructions achieve the even stronger notion of virtual-black-
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box obfuscation in idealized “generic” multilinear encoding models. These

models require all attacks to treat multilinear encoding as if they were “phys-

ical envelopes” on which multilinear operations can be performed. But at the

same time, non-generic attacks against their scheme are known—since general-

purpose VBB obfuscation is impossible. Thus, it is not clear to what extent se-

curity arguments in the generic multilinear encoding model should make us

more confident that these constructions satisfy a notion of indistinguishability

obfuscation.

Therefore, at this point, the following question still remains open:

Can the security of a general-purpose indistinguishability obfuscator be re-

duced to some “natural” intractability assumption?

In this thesis, we initiate a study of the above-mentioned question. In partic-

ular we study two approaches towards this goal.

Approach 1: Basing obfuscation directly on multilinear encodings. We are

concerned with the question of whether some succinct and general assumption

(that is interesting in its own right, and is not “tailored” to a particular obfus-

cation construction) on multilinear encodings can be used to obtain indistin-

guishability obfuscation. More importantly, we are interested in reducing the

security of the obfuscation to some simpler assumption, not just in terms of “de-

scription size” but in terms of computational complexity—that is, we are not

interested in assumptions that “directly” (without any security reduction) im-

ply security of the obfuscation.

Approach 2: Bootstrapping obfuscation from weaker notions. In this ap-
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proach, we are interested in studying weaker notions of indistinguishability ob-

fuscation that can amplified/bootstrapped into the standard notion of indistin-

guishability obfuscation:

Identify quantitatively weaker notions of indistinguishability obfuscation

(iO ) that can be amplified into the “standard” notion of iO .

Not only is this interesting from a theoretical perspective, but we believe this

has the potential to simplify future constructions of iO . Future constructions

from multilinear encodings can focus on the simpler task of achieving these

weaker notions, opening the possibility of better constructions and assumptions

to base iO on. Also, it may be possible to achieve these weaker notions, and

hence iO , from entirely different primitives.

Note that this approach is orthogonal to the aforementioned bootstrapping

theorem of [70], which studies whether iO for “weak” classes of circuits (e.g., NC1

circuits) can be bootstrapped to iO for all polynomial-size circuits. Instead, this

approach is similar to e.g., the hardness amplification approach of Yao [137] of

amplifying a weak one-way function into a strong one.

While uncovering answers to the aforementioned questions, we discover in-

triguing connections between obfuscation and a cryptographic primitive called

randomized encodings, introduced in the next section.
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1.2 Randomized Encodings

The beautiful notion of a randomized encoding (RE), introduced by Ishai and

Kushilevitz [100], aims to trade the computation of a “complex” (deterministic)

function Π on a given input x for the computation of a “simpler” randomized

function—the “encoding algorithm”—whose output distribution Π̂(x) encodes

Π(x) (from which Π(x) can be efficiently decoded, or “evaluated”). Furthermore,

the encoding Π̂(x) should not reveal anything beyond Π(x); this is referred to as

the privacy, or security, property of randomized encodings and is typically de-

fined through the simulation paradigm [95].

Most previous work have focused on randomized encodings where encod-

ings can be computed in lower parallel-time complexity than what is required

for computing the original function Π. For instance, all log-space computations

have perfectly-secure randomized encodings in NC0 [100, 102, 8], and assuming

low-depth pseudo-random generators, this extends to all polynomial-time com-

putations (with computational security) [10, 138]. Such randomized encodings

have been shown to have various applications to parallel cryptography, secure

computation, verifiable delegation, etc. (see [6] for a survey).

In this thesis, we focus on another natural complexity measure: the time re-

quired to compute f̂ (x). Specifically, given the description of f and the input x, we

would like to compute the encoding f̂ (x) in time T̂ that is significantly smaller

than the time T required to compute f (x). Decoding time, in contrast, would be

as large as T , perhaps with some tolerable overhead. For this goal to be achiev-

able, f has to be given in some succinct representation that is smaller than T ,

and cannot be given by, say, a size-T circuit. Concretely, we focus on the natural

7



case that f is represented by a succinct program Π, e.g., a Turing machine (TM)

or a random-access machine (RAM). For concreteness we will consider the case

of Turing machines in the rest of this section.

Besides being interesting from a purely complexity-theoretic perspective,

such randomized encodings may have powerful applications analogous to

those of the known randomized encodings. One such immediate application

is private delegation of computation: a weak client that wishes to use the aid

of a server to run a long computation Π on a short private input x, may quickly

compute a randomized encoding Π̂(x), and have the server decode the result

Π(x), without the server learning anything regarding x (with a little more effort,

we can even ensure privacy of the output, and be able to verify that the server

computed correctly).

Given a description of a Turing machine Π and input x with running time

T and output length l, we consider three notions of efficiency for randomized

encodings Π̂(x) of Π(x).

• succinct RE: Encoding time (and thus also size of the encodings) is

poly(|Π|, |x|, l).

• compact RE: Encoding time (and thus also size) is poly(|Π|, |x|, log T )

• sublinear RE: Encoding time (and thus also size) is bounded by poly(|Π|, |x|)∗

T 1−ε , for some ε > 0.

We assume without loss of generality that the randomized encoding Π̂(x) of Π, x

itself is a program, and that the decoding/evaluation algorithm simply executes

Π̂(x).
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Randomized encodings with compact or sublinear efficiency can be thought

of as output-compressing randomized encodings. For a machine with long out-

puts, an encoding of the machine will be shorter than the output, and hence

can be thought of as a compression of the output which can de-compressed by

decoding/evaluating the encoding.

It is easy to see that for output-compressing randomized encodings, the

standard simulation-based notion of security is impossible to achieve—roughly

speaking, the simulator given just Π(x) needs to output a “compressed” version

of it, which is impossible if Π(x) has high pseudo-Kolmogorov complexity (e.g.,

if Π is a PRG). Consequently, we consider weaker indistinguishability-based no-

tions of privacy.

• One natural indistinguishability based notion of privacy simply requires

that encoding Π̂0(x0) and Π̂1(x1) are indistinguishable as long as Π0(x0) =

Π1(x1) and Time(Π0(x0)) = Time(Π1(x1)), where Time(Π(x)) is the running-

time of Π(x).

• In this work, we consider a stronger notion which requires indistinguisha-

bility of Π̂0(x0) and Π̂0(x1) as long as Π0, x0 and Π1, x1 are sampled from

some distributions such that Π0(x0),Time(Π0(x0)) and Π1(x1),Time(Π1(x1))

are indistinguishable. We refer to this notion as distributional indistin-

guishability security.

At this point, it is worthwhile to note that randomized encoding schemes

for Turing machines that satisfy the first, weaker indistinguishability security

notion can be thought of as indistinguishability obfuscators for a very restricted

class of Turing machines: machines that have a fixed input hardcoded in them

and take no further input.
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In addition to the above, we highlight more fascinating connections between

obfuscation and randomized encodings as we describe our results on obfusca-

tion in the next section.

1.3 Our Contributions

We organize the contents of this thesis as answers to the three central questions

raised in Section 1.1, reproduced here for convenience.

• Can we obfuscate Turing machines and RAM programs directly? That

is, can we obfuscate programs such that the obfuscator running time is

independent of the running time of the program?

• Can the security of a general-purpose indistinguishability obfuscator be

reduced to some “natural” intractability assumption on the underlying

multilinear encoding scheme?

• What are quantitatively weaker notions of indistinguishability obfusca-

tion (iO ) that can be amplified into the “standard” notion of iO ?

The different notions of randomized encodings introduced in Section 1.2 will

serve as very useful intermediate notions in the following results, with applica-

tions and deeper implications of their own.

1.3.1 iO for Turing machines and RAM programs

In Chapter 2 of this thesis we describe how to construct an indistinguishabil-

ity obfuscator for both Turing machines and RAM programs from an indistin-
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guishability obfuscator from circuits. While our obfuscator running time is es-

sentially independent of the running time of the program being obfuscated Π, it

depends polynomially on the space complexity of Π.

Our core contribution is a succinct randomized encoding (relying on iO for

circuits) for any class of a-priori bounded-space computations. That is, the time to

encode depends on the space complexity of the computation, but is essentially

independent of its time complexity.

Theorem 1 (Main Theorem, Informally Stated). Assume the existence of iO for

P/poly and one-way functions. Then, for every polynomial s(·), there exists a succinct

randomized encoding (or garbling scheme) for all polynomial-time programs Π with

space-complexity S (n) ≤ s(n). Specifically, the time to encode depends polynomially on

the size of Π, the lengths (n,m) of its input and output, and the space bound s(n), but

only polylogarithmically on Π’s running-time.

We then demonstrate the power of succinct randomized encodings in sev-

eral applications, some new, and some analogous to previous applications of

randomized encodings, but with new succinctness properties. Examples in-

clude succinct functional encryption, succinct NIZKs and publicly verifiable

delegation (for more details see Chapter 2). However, our strongest applica-

tion of succinct randomized encodings is iO for bounded-space computations.

Indistinguishability here means that the obfuscations of two programs that

have the same output and running time on all input of some apriori-bounded

length n are computationally indistinguishable. The construction is based on

subexponentially-secure iO for circuits.

Theorem 2 (Informally Stated). Assume the existence of succinct randomized encod-

ings for space-bounded programs, one-way functions, and iO for P/poly that are all
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subexponentially-secure. Then, for every polynomial s(·), there exists a succinct iO for

all polynomial-time programs Π with space-complexity S (n) ≤ s(n), Specifically, the

time to obfuscate Π depends polynomially on the size of Π, the input length n, and the

space bound s(n), but only polylogarithmically on Π’s running-time and output length

m.

In concurrent work, Canetti, Holmgren, Jain, and Vaikuntanathan [54] con-

struct iO for RAMs assuming subexponentially-secure iO for P/poly. The com-

plexity of their iO is also such that obfuscation depends on an a-priori bound

on space, but not on the running time. This, in particular, implies a succinct

randomized encoding with similar parameters. In a beautiful subsequent work,

Koppula, Lewko, and Waters [113] construct fully-succinct randomized encod-

ings from iO i.e. succinct randomized encodings without the dependence on

the space complexity. Such a scheme yields an indistinguishability obfuscator

with similar parameters by the same transformation of Theorem 2.

1.3.2 iO from Semantically-secure Multilinear Encodings

In Chapter 3, we introduce a a new assumption on multilinear (a.k.a. graded)

encoding schemes called semantic security and show how to construct indistin-

guishability obfuscators for NC1 from semantically -secure schemes.

Multilinear encoding schemes, roughly speaking, are schemes to encode ring

elements in a way that hides the ring elements but enables computations of

certain restricted set of arithmetic circuits on the elements and finally determine

whether the output of the circuit is 0 or not; we refer to these circuits as the legal

arithmetic circuits.
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In essence, our notion of semantical security attempts to capture the intuition

that encodings of ring elements m0 and m1 are indistinguishable in the presence

of encodings of “auxiliary” ring elements~z, as long as m0,m1,~z are sampled from

any “nice” distribution D 2. Defining what makes a distribution D “nice” turns

out to be quite non-trivial: A first (and minimal) approach—similar to e.g., the

uber assumption of [35] in the context of bilinear maps—would be to simply

require that D samples elements ~m0, ~m1,~z such that no generic attacker (that is,

an attacker who can access these encodings only by querying legal arithmetic

circuits on them) can distinguish ~m0,~z and ~m1,~z. It turns out that the most nat-

ural formalization of this approach can be attacked assuming standard crypto-

graphic hardness assumptions!

However, the distribution D used in the above attack is a bit “unnatural”:

encodings of ~mb,~z actually leak information about ~mb even to generic attackers.

Our notion of a nice message distribution disallows such information leakage

w.r.t. generic attacks. More precisely, we require that the output of every (even

unbounded-size) legal arithmetic circuit C not only be the same on (m0,~z) and

(m1,~z) but be constant with overwhelming probability over (mb,~z). We refer to

any distribution D satisfying this property as being valid, and our formal defini-

tion of semantical security now only quantifies over such valid message distri-

butions.

Our central result shows how to construct indistinguishability obfuscators

for NC1 based on the existence of constant-message semantically-secure multilin-

ear encodings (where m0 and m1 are replced with constant-length sequences of

elements).
2This is reminiscent of the DDH assumption, where ~z is a vector of independent uniform

elements, m0 is the product of the elements in ~z and m1 is an independent uniform element.
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Theorem 1 (Informally stated). Assume the existence of semantically secure multi-

linear encodings. Then there exists an indistinguishability obfuscator for NC1.

As far as we know, this is the first result presenting indistinguishability ob-

fuscators for NC1 based on any type of assumption with a “non-trivial” security

reduction w.r.t. arbitrary attackers as opposed to generic attackers.

1.3.3 iO from Exponentially-efficient iO

In Chapter 5, we introduce a substantial weakening of iO called XiO and show

how to bootstrap XiO into standard iO (additionally assuming the LWE assump-

tion). The notion of sublinear randomized encodings, with distributional indis-

tinguishability plays a key role in this result as an intermediate primitive.

Recall that indistinguishability obfuscators with running time

T0(|C|, λ, n) = poly(|C|, λ) · 2n,

and size

Size0(|C|, λ, n) = poly(|C|, λ) · 2n,

where C is the circuit to be obfuscated, λ is the security parameter, and n is the

input length of C, exists unconditionally—simply output the function table of C

(i.e., the output of C on all possible inputs). Such inefficient iO , however, are

not useful for applications.

We here consider iO with just “slightly non-trivial” running-time; namely,

we allow the running time to be

T0(|C|, λ, n) = poly(|C|, λ) · 2n,
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but require the size of the obfuscation to be

Sizeε(|C|, λ, n) = poly(|C|, λ) · 2n(1−ε)

where ε > 0. We refer to this notion as iO with exponential efficiency, or simply

exponentially-efficient iO (XiO) (Recall that, in contrast, for “standard” iO , the

running time and size of the obfuscator is required to be poly(|C|, λ)). In essence,

XiO requires the obfuscator to be just slightly smaller than a brute-force canon-

icalization of the circuit. Note that XiO obfuscators are only efficiently com-

putable for circuits that take short inputs; we thus here restrict our attention to

XiO for PO(log λ)/poly, the class of polynomial size circuits with logarithmic input

length..

Theorem 3. Assume subexponential security of the LWE assumption, and the existence

of subexponentially-secure XiO for PO(log λ)/poly. Then there exists subexponentially-

secure iO for P/poly.

A crucial intermediate notion used to prove Theorem 3 is sublinear random-

ized encodings with distributional indistinguishability. In fact, the theorem only

relies on randomized encoding schemes that work in a weaker CRS model (a

one-time trusted setup is performed, generating public parameters which are

required when encoding machines). Such randomized encoding schemes are

an interesting primitive on its own and are extensively studied in Chapter 4.

There it is shown that in the standard model (i.e. without a setup phase) sublin-

ear randomized encodings are in fact not possible.

Theorem 4. Assume the existence of subexponentially secure one-way functions. Then,

there do not exists subexponentially-secure sublinear RE with distributional indistin-

guishability.
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A crucial part of the proof of both Theorem 3 and Theorem 4 is a trans-

formation from a sublinear randomized encoding scheme with distributional

indistinguishability to iO for circuits.

Lemma 1. The existence of subexponentially-secure sublinear (resp. compact) RE

with distributional indistinguishability and one-way functions implies the existence of

subexponentially-secure iO for circuits (resp. for Turing machines).

Recall that compact randomized encodings can be viewed as iO for a restric-

tive class of programs that take no input. In other words, while an obfuscated

program can be evaluated multiple times on different inputs, an encoded pro-

gram is only good for one-time evaluation. Hence, the above lemma can be

thought of as going from a one-time use primitive (randomized encodings) to

a multi-time use primitive (obfuscation). This is reminiscent of the result of

[87] which constructs a pseudorandom function from a pseudorandom gener-

ator, and indeed our construction is conceptually very similar to theirs. This is

indicative of a more general technique, which could find use in other areas of

cryptography and theoretical computer science.
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CHAPTER 2

SUCCINCT RANDOMIZED ENCODINGS AND APPLICATIONS

This chapter contains joint work with Nir Bitansky (MIT), Sanjam Garg (UC

Berkeley), Huijia Lin (UCSB) and Rafael Pass (Cornell University).

2.1 Introduction

The notion of a randomized encoding, coined by Ishai and Kushilevitz [101], aims

to trade the computation of a “complex” function f (x) for the computation of

a “simpler” randomized function whose output distribution f̂ (x) encodes f (x),

but hides anything else regarding f and x. The “complexity” of computing f is

shifted to a decoding procedure that extracts f (x) from f̂ (x).

The privacy of the function f and input x is naturally captured by an ef-

ficient simulator Sim( f (x)), who given only the output f (x), produces a sim-

ulated encoding indistinguishable from f̂ (x); privacy can be perfect, statisti-

cal, or computational, according to the attained indistinguishability. Capturing

what it means to “simplify the computation of f (x)” may take quite different

forms according to the complexity measure of interest. Most previous work

have focused on computing the randomized encoding f̂ (x) with lower parallel-

time complexity than required for computing the original function f , and has

been quite successful. In particular, all log-space computations were shown to

have perfectly-private randomized encodings in NC0 [101, 103, 9]. When set-

tling for privacy against computationally bounded adversaries, and assuming

low-depth pseudo-random generators, the latter extends to arbitrary poly-time

computations [11], which was already demonstrated in Yao’s seminal work on
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garbling circuits [138]. The constructed randomized encodings were in turn

shown to have various strong applications to parallel cryptography, secure com-

putation, verifiable delegation, and more (see [6] for a survey).

Succinct Randomized Encodings. In this work, we focus on another natural

complexity measure: the time required to compute f̂ (x). Specifically, given the de-

scription of f and the input x, we would like to compute the encoding f̂ (x) in

time T̂ that is significantly smaller than the time T required to compute f (x).

Decoding time, in contrast, would be as large as T , perhaps with some tolera-

ble overhead. For this goal to be achievable, f has to be given in some succinct

representation that is smaller than T , and cannot be given by, say, a size-T cir-

cuit. Concretely, we focus on the natural case that f is represented by a succinct

program Π, e.g., a Turing machine (TM) or a random-access machine (RAM).

Besides being interesting from a purely complexity-theoretic perspective,

such succinct randomized encodings may have powerful applications analogous

to those of the known randomized encodings. One such immediate application

is private delegation of computation: a weak client that wishes to use the aid

of a server to run a long computation Π on a short private input x, may quickly

compute a succinct randomized encoding Π̂(x), and have the server decode the

result Π(x), without the server learning anything regarding x (with a little more

effort, we can even ensure privacy of the output, and be able to verify that the

server computed correctly).

Beyond shifting computation from weak parties to strong parties, succinct

randomized encodings may sometimes save in communication and computa-

tion altogether. For instance, one of the first demonstrated applications of ran-

domized encodings [101, 103] was to achieve such savings in multi-party com-
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putation (MPC). Indeed, most known MPC solutions explicitly utilize the circuit

C f (x1, . . . , xm) representing a function f (x1, . . . , xm), and the overhead they incur,

e.g. in communication, may depend on the circuit size |C|. When the function

f is succinctly represented by a program Π, we may have the parties compute

first a succinct randomized Π̂(x1, . . . , xm), and only decode at the end, thereby

making communication overhead proportional to the smaller circuit that com-

putes Π̂. Furthermore, the effort of decoding (proportional to Π’s running time)

falls only on the parties that obtain the output. If the overhead of decoding is

small, it may reduce the computational complexity of the MPC protocol as well.

(For instance, now only a single party, rather than each one of the parties, has to

invest resources proportional to the running time of f .)

Do Succinct Randomized Encodings Exist? Under commonly believed

complexity-theoretic assumptions, perfectly-private randomized encodings for

all of P are unlikely to be computable too fast, e.g. in fixed polynomial time.1

In contrast, restricting attention to privacy against computationally-bounded

adversaries, no lower bounds or barriers are known. In fact, succinct indis-

tinguishability obfuscation (iO ) for any model of computation (e.g., iO for Tur-

ing machines) would directly imply corresponding succinct randomized encod-

ings.2 Still, constructions of succinct iO [43, 1], or direct constructions of succinct

randomized encodings [90, 83] are based on considerably strong computational

1Specifically, it can be shown that, for a language L, recognized by a given T (n)-time
Turing machine Π, succinct randomized encodings with perfect-privacy computable in time
t(n) � T (n), would imply that L has 2-message interactive proofs with a O(t(n))-time verifier,
which already suggests that t(n) should at least depend on the space (or depth) of the compu-
tation. Furthermore, under commonly believed derandomization assumptions (used to show
that AM ⊆ NP [109, 121]), the above would imply that L can be non-deterministically decided
in time poly(t(n)), for some fixed polynomial poly. Thus, any speedup in encoding would imply
related speedup by non-determinism, whereas significant speedup is believed to be unlikely.

2To encode (Π, x) simply obfuscate a program that given no input computes Π(x). This can
be simulated from y = Π(x) by obfuscating a program that only performs dummy steps and
outputs y.
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assumptions such as extractable witness encryption, succinct non-interactive

arguments, and differing-inputs obfuscation. In the language of [125] these

assumptions are not efficiently-falsifiable; furthermore, in some cases they have

been shown implausible [45, 29, 73].

2.1.1 Contributions

Our core contribution is a succinct randomized encoding relying on (non-

succinct) iO for circuits, for any class of a-priori bounded-space computations. That

is, the time to encode depends on the space complexity of the computation, but

is essentially independent of its time complexity. The construction, in fact, sat-

isfies the enhanced guarantee of a succinct garbling schemes [138, 11, 22], with the

extra feature that inputs can be encoded independently of the program and its

complexity.

Theorem 5 (Main Theorem, Informally Stated). Assume the existence of iO for

P/poly and one-way functions. Then, for every polynomial s(·), there exists a succinct

randomized encoding (or garbling scheme) for all polynomial-time programs Π with

space-complexity S (n) ≤ s(n). Specifically, the time to encode depends polynomially on

the size of Π, the lengths (n,m) of its input and output, and the space bound s(n), but

only polylogarithmically on Π’s running-time.

On the Underlying Assumption: Assuming puncturable pseudo-random func-

tions in NC1 (known based on various hardness assumptions, such as the hard-

ness of the learning with errors problem [36]), and restricting attention to any

class of computations with a-priori-bounded running time t(n), we can settle for

iO for circuits in NC1 with input size O(log(t(n)) (which is a poly(t(n))-time falsi-
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fiable assumption on its own). Obtaining iO for this class may be done based

on qualitatively weaker assumptions; indeed, for any polynomial t(·) the con-

struction of Gentry et al. [84] would imply iO for the corresponding class based

on a polynomial hardness assumption on multi-linear maps.3

We then demonstrate the power of succinct randomized encodings in several

applications, some new, and some analogous to previous applications of ran-

domized encodings, but with new succinctness properties.

Application 1: Succinct Indistinguishability Obfuscation. Our first (and

somewhat strongest) application of succinct randomized encodings is succinct

iO for bounded-space computations. Indistinguishability here means that the

(succinct) obfuscations of two programs that have the same output and running

time on all inputs inp of some apriori-bounded length n are computationally in-

distinguishable. The construction is based on subexponential iO , whereas any

form of succinct iO realized so far [1, 43, 104] relies on differing-inputs obfusca-

tion in conjunction with succinct non-interactive arguments (which already en-

tail strong succinctness properties); as mentioned before, these are considered

very strong up to implausible in certain settings.

Theorem 6 (Informally Stated). Assume the existence of succinct randomized encod-

ings for space-bounded programs, one-way functions, and iO for P/poly that are all

subexponentially-secure. Then, for every polynomial s(·), there exists a succinct iO for

all polynomial-time programs Π with space-complexity S (n) ≤ s(n), Specifically, the

time to obfuscate Π depends polynomially on the size of Π, the input length n, and the

space bound s(n), but only polylogarithmically on Π’s running-time and output length

3More generally, one of the challenges in basing iO on an efficient black-box reduction is
that the reduction may have to exhaust the input space to check if the challenge circuits are
functionally equivalent. In the above case, this can be done in time poly(t(n)).
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m.

The theorem is somewhat the succinct analog of previous bootstrapping the-

orems [7, 56] who show how (non-succinct) randomized encodings and pseudo-

random functions in NC1, together with obfuscation for NC1 circuits, imply ob-

fuscation for P/poly. Here, through succinct randomized encodings, we reduce

iO for arbitrarily long computations to iO for circuits of fixed polynomial size.

Application 2: Succinct Functional Encryption and Reusable Garbling. The

recent leap in the study of obfuscation has brought with it a corresponding leap

in functional encryption (FE). Today, (indistinguishability-based) functional en-

cryption for all circuits can be constructed from IO [71, 136], or even from con-

crete (and efficiently falsifiable) assumptions on composite order multilinear

graded-encodings [74]. For models of computation with succinct representa-

tions, we may hope to have succinct FE, where a secret key skΠ, allowing to de-

cryption Π(x) from an encryption of x, can be computed faster than the running

time of Π. However, here the state-of-art was similar to succinct randomized en-

codings, or succinct iO , requiring essentially the same strong (non-falsifiable)

assumptions.

One can replace iO for circuits, in the above FE constructions, with the suc-

cinct iO from Theorem 6, and obtain FE where computing skΠ is comparable to

(succinctly) obfuscating Π. This, however, will require the same sub-exponential

hardness of iO for circuits. Based on existing non-succinct functional encryp-

tion schemes, we show that succinct FE can be constructed without relying on

sub-exponentially hard primitives.

Theorem 7 (Informally Stated). Assume the existence of succinct randomized encod-
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ings for space-bounded programs, one-way functions, and iO for P/poly. Then, for

every polynomial s(·), there exists a succinct FE where a functional key skΠ could be

generated for any polynomial-time program Π with space-complexity S (n) ≤ s(n), and

can decrypt encryption of messages of apriori-bounded length. The time to derive skΠ

depends polynomially on the size of Π, the input and output lengths (n,m), and space

bound s(n), but only polylogarithmically on Π’s running-time.

The scheme is selectively-secure. Assuming also puncturable pseudo-random func-

tions in NC1, and the same assumptions on multi-linear maps made in [74], results in

full (adaptive) security.

As observed in previous work [83, 58, 91], FE (even indistinguishability-

based) directly implies an enhanced version of randomized encodings known as

reusable garbling. Here reusability means that an encoding consists of two parts:

The first part Π̂ is independent of any specific input, and only depends on the

machine Π. Π̂ can then be “reused” together with a second part înp encoding any

input inp. We get succinct reusable garbling for space-bounded computations:

encoding Π depends on the space, but is done once, subsequent input-encodings

depend only on the input size n and not on space.

Application 3: Publicly Verifiable Delegation and succinct NIZKs. Suc-

cinct randomized encodings directly imply a one-round delegation scheme for

polynomial-time computations with bounded space complexity. A main feature

of the scheme is public-verifiability, meaning that given the verifier’s message σ

anyone can verify the proof π from the prover, without requiring any secret

verification state. Previous publicly-verifiable schemes relied on strong knowl-

edge assumptions [94, 25, 63, 26] or proven secure only in the random oracle
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model [120].4 Another prominent feature of the scheme is that it guarantees in-

put privacy for the verifier. (While this can generically be guaranteed with fully

homomorphic encryption, the generic solution requires the prover to convert

the computation into a circuit, which could incur quadratic blowup; in our so-

lution, the complexity of the prover corresponds to decoding complexity, which

could be made quasi-linear. See further discussion below.)

The delegation scheme is based only on randomized encodings (and one-

way functions), and thus as explained above, can be based only on polynomial

assumptions. Assuming also iO , we can make the verifier’s message reusable;

namely, the verifier can publish his message σ once and for all, and then get

non-interactive proofs for multiple computations.5

Theorem 8 (Informally Stated).

1. Assume the existence of succinct randomized encodings for space-bounded pro-

grams and one-way functions. Then, there exists a publicly-verifiable 2-message

delegation scheme with input privacy where verifying a computation given by a

program Π and input x, is polynomial in the size of Π, input length and output

lengths (n,m), and the space S required to compute Π(x), but only polylogarith-

mic in Π’s running-time.

2. Assuming also iO for P/poly, the verifier message σ is made reusable for compu-

tations with a-priori bounded space s(n). Furthermore, only the one-time gener-

ation of σ depends on s(n), whereas subsequent verification depends only on the

4Notably, in the setting of private-verification Kalai, Raz, and Rothblum give a solution based
on the subexponential learning with errors assumption [106].

5Our transformation for reusing the verifier’s message is, in fact, a generic one that can
be applied to any delegation scheme, including privately-verifiable schemes (e.g., [106]). For
privately-verifiable schemes, the transformation has an additional advantage: it removes what
is known as the verifier rejection problem; specifically, in the transformed scheme, soundness holds
even against provers with a verification oracle.
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input size n (and the security parameter).

Plugging in our succinct iO into the perfect non-interactive zero-knowledge

(NIZK) arguments of Sahai-Waters [134] directly yields a construction of perfect

succinct NIZK for bounded-space NP from iO for P/poly and one-way functions

that are both sub-exponentially-secure. The NIZK has a succinct common ref-

erence string whose size is independent of the time required to verify the NP

statement to be proven, and only depends on the space, and the size of the in-

put and witness (verification time depends only on the length of the statement

as in [134]).

iO for NC1 is enough: We note that in all three theorems above, the assumption of

iO for P/poly can replaced with assuming iO for NC1 and puncturable pseudo-

random functions in NC1. Indeed, in the above applications the obfuscated cir-

cuit is dominated by computing a succinct randomized encoding and a punc-

turable PRF. Here we can rely on the observation that randomized encodings

can be composed [11]. Concretely, we can consider an outer layer of a non-

succinct shallow randomized encoding (like Yao [138]) that computes an inner

succinct randomized encoding.

Other Applications. We reinspect additional previous applications of (non-

succinct) randomized encodings and note the resulting succinctness features.

One application, briefly mentioned above, is to multiparty computation

[101, 103], where we can reduce the communication overhead from depending

on the circuit size required to compute a multiparty function f (x1, . . . , xm) to de-

pending on the space required to compute f , which can be much smaller. When

focusing merely on communication this problem has by now general one-round
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solutions based on (multi-key) fully-homomorphic encryption [80, 14, 117, 68].

Succinct randomized encodings allow in addition to shift the work load to one

party (the decoder) that obtains the output, without inducing extra rounds.

(With one extra message, outputs to weak parties can also be delivered, while

guaranteeing their privacy and correctness.)

Another application is to amplification of key-dependent message security

(KDM). In KDM encryption schemes, semantic security needs to hold, even

when the adversary obtains encryptions of functions of the secret key taken

from a certain class F. Applebaum [5] shows that any scheme that is KDM-

secure with respect to some class of functions F can be made resilient to a bigger

class F′ ⊇ F, if functions in F′ can be randomly encoded in F. Our succinct ran-

domized encodings will essentially imply that KDM-security for circuits of any

fixed polynomial size s(·) (such as the scheme of [18]) can be amplified to KDM-

security for functions that can be computed by programs with space S � s(n),

but could potentially have larger running time.

Dependence on the output length. As stated above, the size of our basic ran-

domized encodings grows with the output of the underlying computation. Such

dependence can be easily shown to be inherent as long as we require simulation-

based security (using a standard incompressibility argument). Nevertheless,

this dependence can be removed if we settle for a weaker indistinguishability-

based guarantee saying that randomized encodings of two computations lead-

ing to the same output are indistinguishable. This guarantee, in fact, suffices,

and allows removing output-dependence, in all of the applications above, ex-

cept for the multi-party application (which requires simulation on its own).

Optimizing Decoding Time. While we have so far concentrated on how fast
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can a randomized encoding be computed, one may also be interested in opti-

mizing the time and space complexity of decoding. Ideally the complexity of

decoding should be as close as possible to that of the original computation. In

our basic scheme, decoding Π̂(x) of a T -time S -space computation Π(x), where S

is a-priori bounded by some polynomial s(n), requires roughly time T ·poly(s(n))

and space poly(s(n)), while encoding takes only time poly(s(n)) (up to polynomial

factors in the security parameter). This complexity is naturally inherited by all

our applications of randomized encodings: for instance, the time to obfuscate a

program Π is roughly poly(s(n)), and the time to evaluate the obfuscation (given

by Theorem 6) on an input x is proportional to the decoding time for Π̂(x).

We show how to optimize our randomized encodings to improve decoding

time to roughly T + s(n). This optimization further reduces the encoding time

from poly(s(n)) to Õ(s(n)).

Proposition 1 (Improved Efficiency, Informally Stated). Assume the existence of

iO for P/poly and one-way functions. Then, for every polynomial s(·), there exists

a succinct randomized encoding (or garbling scheme) for all polynomial-time RAM Π

with space-complexity S (n) ≤ s(n). Specifically, the time to encode is quasi-linear

in the size of Π, input length n, and the space bound s(n). The time to decode Π̂(x) is

polynomial in the size of Π, and quasi-linear in the space bound s(n) and the time T

for evaluating Π(x).

The improvement in encoding and decoding efficiency leads to improved

efficiency for our applications of succinct randomized encoding. For instance,

we obtain a succinct iO for bounded space RAM that takes time roughly s(n)

to obfuscate, and T + s(n) to evaluate. Other applications such as FE, delega-

tion, MPC directly inherit the improved decoding complexity (leading to better
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decryption time, prover efficiency, and computational complexity respectively).

We note that the above efficiency optimizations are inspired by a concurrent

work of Canetti, Holmgren, Jain, and Vaikuntanathan [54], who constructed

succinct iO for bounded space RAM, where evaluation takes time roughly

T + s(n). We investigated these optimizations after being made aware that they

achieve this feature.

2.1.2 Techniques

We next overview our construction of succinct randomized encodings for

bounded space programs. Beyond iO , the main tool on which we rely is ex-

isting non-succinct randomized encodings, or more accurately their enhanced

version of garbling schemes. As mentioned before, garbling schemes have the

extra feature that the input x can be encoded separately of the program Π given

a shared (short) string key [138, 22]. When considering (non-succinct) garbling,

e.g. where Π is a circuit, a salient advantage of this separation is that the time

to compute the encoded x̂ depends on the length of x, but not on the typically

larger running time (or circuit size) of Π. In contrast, the time to compute the

encoded Π̂ may be as large as its running time. This feature of “independent

input encoding” is crucial for our construction.

We construct succinct randomized encodings, or in fact, succinct garbling

schemes, in two steps: we first construct a non-succinct garbling scheme for

bounded-space computations, with the property that the garbled program con-

sists of many “small garbled pieces” that can be generated separately. In the

second step, we use iO to “compress” the size of the garbled program, by pro-
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viding an obfuscated program that takes an index as input and generates the

“garbled piece” corresponding to that index. As a result, the final garbled pro-

gram (namely the obfuscated program) is small and can be efficiently computed.

It is only at evaluation time that the underlying non-succinct garbled program

is unravelled, by running the obfuscated program on every index, and decoded.

The Non-succinct Garbling Scheme. We outline the non succinct garbling scheme

for bounded computations, based on any one-way function. For concreteness,

we shall focus on Turing machines. (The solution extends to any model of

bounded-space computation, e.g. RAM, as long as a computation can be de-

composed into a sequence of steps operating on one memory.)

A “trivial” approach towards such garbling is to simply transform any

polynomial-time Turing machine into a circuit and then garble the circuit. While

our construction in essence relies on this principle, it will in fact invoke garbling

for “small” fixed-sized circuits. Concretely, we rely on the existence of a circuit

garbling scheme satisfying two additional properties. First, we require that the

shared string key, and thus also the input encoding, are generated indepen-

dently of the circuit to be garbled (e.g., key is sampled at random and given to

both the input-encoding and circuit-garbling procedures). Second, we require

that encoded inputs can be simulated, given only the input size, whereas the

garbled program is simulated using the result Π(x) of the computation (and the

randomness used to simulate the encoded input). We refer to such schemes as

garbling schemes with independent input encoding and note that Yao’s basic scheme

[138] satisfies the two properties.

Our non-succinct garbling scheme now proceeds as follows. Let Π be a Tur-

ing machine with bounded space complexity s(·), running-time t(·), and inputs
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of length n. We construct a “chain” of t(n) garbled circuits that evaluate Π step

by step. More precisely, we first generate keys key1, . . . ,keyt(n) for the t(n) gar-

bled circuits. The jth garbled circuit (which is computed using key key j) takes as

input some state of Π and computes the next state (ie., the state after one com-

putation step); if the next state is a final state, it returns the output generated by

Π, otherwise it outputs an encoding of this new state using the next key key j+1.

(Note that after t(n) steps we are guaranteed to get to a final state and thus this

process is well-defined.)

To encode the input, we simply encode the initial state of Π, including the

input x, using key1. To evaluate the garbled program, we sequentially evalu-

ate each garbled circuit, using the encodings generated in the previous one as

inputs to the next one, and so on until the output is generated.

Security of the Non-Succinct Scheme: an Overview. To show that this con-

struction is a secure (non-succinct) garbling scheme we need to exhibit a simu-

lator that, given just the output y = Π(x) of the program Π on input x and the

number of steps t∗ taken by Π(x), can simulate the encoded input and program.

(The reason we provide the simulation with the number of steps t∗ is that we

desire a garbling scheme with a “per-instance efficiency”—that is, the evalua-

tion time is polynomial in the actual running-time t∗ and not just the worst-case

running-time. To achieve such “per-instance efficiency” requires leaking the

running-time, which is why the simulator gets access to it.) Towards this, we

start by simulating the t∗th garbled circuit with the output being set to y; this

simulation generates an encoded input c̃onft∗−1 and a garbled program Π̃t∗ .

We then iteratively in descending order simulate the jth garbled circuits Π̃ j

with the output being set to c̃onf j+1 generated in the previously simulated gar-
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bled circuit. We finally simulate the remaining j > t∗ garbled circuits Π̃ j with

the output being set to some arbitrary output in the range of the circuit (e.g., the

output y). The simulated encoded input is then c̃onf1 and the simulated garbled

program is (Π̃1, . . . Π̃t(n)).6

To prove indistinguishability of the simulated garbling and the real garbling,

we consider a sequence of hybrid experiments H0, . . . ,Ht(n), where in H j the first

j garbled circuits are simulated, and the remaining t(n) − j garbled circuits are

honestly generated. To “stitch together” the simulated circuits with the honestly

generated ones, the jth garbled circuit is simulated using as output an honest

encoding ĉonf j of the actual configuration conf j of the TM Π after j steps.

It follows from the security of the garbling scheme that hybrids H j and H j+1

are indistinguishable and thus also H0 (i.e., the real experiment) and Ht(n).

Let us finally note a useful property of the above-mentioned simulation. Due

to the fact that we rely on a garbling scheme with independent input encoding,

each garbled circuit can in fact be independently simulated—recall that the inde-

pendent input encoding property guarantees that encoded inputs can be simu-

lated without knowledge of the circuit to be computed and thus all simulated

encoded inputs c̃onf1, . . . c̃onft(n) can be generated in an initial step. Next, the

garbled circuits can be simulated in any order.

The Succinct Garbling Scheme: an Overview. We now show how to make

this garbling scheme succinct. The idea is simple: instead of providing the ac-

tual garbled circuits in the clear, we provide an obfuscation of the randomized

program that generates these garbled circuits. More precisely, we provide an

6This “layered” simulation strategy resembles that of Applebaum, Ishai, and Kushilevitz in
the context of arithmetic garbling [13].
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iO of a program Πs,s′(·) where s and s′ are seeds for a PRF F: Πs,s′( j), given a

“time-step” j ∈ [t(n)], generates the jth garbled circuit in the non-succinct gar-

bling of Π using pseudo-random coins generated by the PRF with seed s and

s′. Specifically, it uses F(s, j) and F(s, j + 1) as randomness to generate key j and

key j+1 (recall that the functionality of the jth circuit depends on key j+1), and uses

F(s′, j) as randomness for garbling the jth circuit.

Now, the new succinct garbled program is the obfuscated program Λ
$
←

iO(Πs,s′), and the encoding x̂ of x remains the same as before, except that now

it is generated using pseudo-random coins F(s, 1). Given such a garbled pair

Λ and x̂, one can compute the output by gradually generating the non-succinct

garbled program, one garbled circuit at a time, by computing Λ on every time

step j, and evaluating the produced garbled circuit with x̂ until the output is

produced. (This way, the evaluation still has “per-instance efficiency”.)

Security of the Succinct Scheme: an Overview. Given that the new succinct

garbled program Λ produces “pieces” of the non-succinct garbled program, the

natural idea for simulating the succinct garbled program is to obfuscate a pro-

gram that produces “pieces” of the simulated non-succinct garbled program.

The above-mentioned “independent simulation” property of the non-succinct

garbling (following from independent input encoding) enables to fulfill this

idea.

More precisely, given an output y and the running-time t∗ of Π(x), the simu-

lator outputs the obfuscation Λ̃ of a program Π̃y,t∗,s,s′ that, given input j, outputs

a simulated jth garbled circuit, using randomness F(s, j + 1) to generate c̃onf j+1

as the output, and F(s, j) and F(s′, j) as the extra randomness needed to simulate
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the input c̃onf j and the garbled Π j. 7 The encoded input x̃ is simulated as in the

non-succinct garbling scheme, but using pseudo-random coins F(s, 1).

It is not hard to see that this simulation works if the obfuscation is virtually

black-box secure, as (non-succinct) garbling security guarantees that the entire

truth tables of the two programs Πs,s′ and Π̃y,t∗,s,s′ are indistinguishable given an

encoding of x, when the hardwired PRF keys s, s′ are chosen at random. Our

goal, however, is to show that iO suffices. Towards this goal, we consider a

sequence of hybrid experiments H′0, . . . ,H
′
t(n) with a corresponding sequence of

obfuscated programs Π̃s,s′

0 , . . . , Π̃s,s′

t(n) that “morph” gradually from the real Π to

the fully simulated Π̃. Specifically, the program Π̃s,s′

j obfuscated in H′j produces

a non-succinct hybrid garbled program as in hybrid H j in the proof of the non-

succinct garbling scheme, except that pseudo-random coins are used instead of

truly random coins. That is, for the first j inputs, Π̃ j produces simulated garbled

circuits, and for the rest of the inputs, it produces honestly generated garbled

circuits, having hardwired the true configuration conf j+1.

To prove indistinguishability of any two consecutive hybrids H′j and H′j+1, we

rely on the punctured program technique of Sahai and Waters [134] to replace

pseudo-random coins F(s, j+1), F(s′, j+1) for generating the j+1st simulated gar-

bled circuit with truly random coins, and then rely on the indistinguishability

of the simulation of the j + 1st garbled circuit. A bit more concretely, at each step

we puncture the seeds s, s′ only on the (three) points corresponding to the j + 1st

step, and hardwire instead the corresponding outputs generated by Π̃s,s′

j ; next,

relying on the puncturing guarantee, we can sample these outputs using true in-

dependent randomness. At his point, we can already replace the real hardwired

7Recall that simulating a garbled circuit requires both the output and the randomness for
simulating the input encoding.
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garbling with a simulated one. Finally, we go back to generating the hardwired

value pseudorandomly as part of the circuit’s logic, now identical to Π̃s,s′

j+1, and

“unpuncture” the seeds s, s′. We note that each such step requires hardwiring

a new (real) intermediate configuration conf j+1 (used to simulate the j + 1st gar-

bling), but now the previous hardwired configuration conf j can be “forgotten”

and blowup is avoided.

iO for a Simple Class of Circuits is Enough. The obfuscated circuits in the

construction are of a special kind—their input size is O(log t(n)). Canetti et al.

[56] show that iO for NC1 can be bootstrapped to obtain iO for all circuits,

assuming puncturable PRFs in NC1 [36], and incurring a security loss that is

exponential in the size of the input. Accordingly, for polynomial t(n), it suffices

to assume (polynomially-secure) iO for classes in NC1 with logarithmic-size

inputs.

Generalizing and Optimizing. The solution described above does not apply

uniquely to Turing machines, but rather to any model of computation that can

be divided into sequential steps using one memory, for instance random ac-

cess machines (RAMs). Thus it directly gives a succinct garbling scheme for

bounded space RAMs.

Also note that, in the described solution, we can in fact replace the under-

lying circuit garbling scheme, with any garbling scheme, as long as it admits

independent input encoding. For instance, in the case the program Π is a RAM,

we may use previous garbled RAM solutions [118, 82, 76]. The benefit is that

this allows optimizing the efficiency of our scheme. Indeed, in the solution de-

scribed above, each step of the machine is translated to a garbled circuit of size

O(s(n)) (up to polynomial factors in the security parameter), which means that
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the complexity of encoding is polyiO (s(n)), where polyiO (·) is the overhead due

to obfuscation, and the complexity of decoding for a T -time computation Π(x)

is at least T · polyiO (s(n)), which may be significantly larger than the original

computation.

In contrast, known garbled RAM solutions provide a more efficient way of

garbling RAMs than converting them into circuits, taking into consideration the

RAM structure, and guaranteeing that encoding and decoding require essen-

tially the same time and space as the original RAM computation. Aiming to

leverage this efficiency in our solution, instead of partitioning a RAM computa-

tion into t(n) steps, each implemented by a circuit of size s(n), we can partition

it to t(n)/s(n) pieces, where each piece is an s(n)-step RAM. The encoding and

decoding time for each piece are essentially linear in its running time O(s(n))

(whereas a circuit implementing any such piece might be of size Ω(s(n)2)).

This modification on its own may still be insufficient; indeed, obfuscating the

circuit that produces the garbled RAM may incur non-linear overhead polyiO (·),

so that eventually decoding may take time polyiO (s(n)) · t(n)/s(n) which may be

again as large as t(n) · s(n).

To circumvent this blowup, and as a result of independent interest, we show

how to bootstrap any iO for circuits to one that has quasi-linear blowup. Overall,

in the new solution, for a T -time S -space computation computation Π(x) where

S < s(n), encoding takes time Õ(s(n)) and decoding Π̂(x) takes time O(T + s(n)).
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Main Ideas behind the Applications

We briefly sketch the main ideas behind our main applications of succinct ran-

domized encodings.

Succinct iO . The construction of succinct iO from randomized encoding and ex-

ponential iO for circuits is a natural instantiation of the bootstrapping approach

suggested by Applebaum [7]. There, the goal is to reduce obfuscation of gen-

eral circuits to obfuscation of NC1 circuits; our goal is to reduce obfuscation of

programs with large running time (but bounded space) to obfuscation of signifi-

cantly smaller circuits. To obfuscate a succinct program Π with respect to inputs

of size at most n, we obfuscate a small circuit CΠ,K that has a hardwired seed K

for a PRF, and given input inp, applies the PRF to inp to derive randomness, and

then computes a succinct randomized encoding of Π̂(inp). The obfuscated iO(Π),

given input inp computes the encoding, decodes it, and returns the result.

The analysis in [7] establishes security in case that the circuit obfuscator iO

is virtually black-box secure. We show that if iO has 2−λ
ε-security for security

parameter λ � nε, and the PRF is puncturable that is also 2−λ
ε-secure, then a

similar result holds for iO (rather than virtual black-box). The proof is based on

a general probabilistic iO argument, an abstraction recently made by Canetti et

al. [56].

Succinct FE. The construction of succinct functional encryption follows rather

directly by plugging in our randomized encodings into previous constructions

of non-succinct functional encryption. Concretely, starting with the scheme of

Gentry et al. [83], we can replace the non-succinct randomized encodings for

RAM in their construction with our succinct randomized encodings, and ob-
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tain selectively-secure FE.8 Alternatively, starting from the scheme of Garg et

al. [74], we can replace randomized encodings for circuits in their construction

with our succinct randomized encodings, and get an adaptively secure succinct

FE scheme. (Here we also need to rely on the fact that succinct randomized

encodings can be computed in low depth, which is required in their construc-

tion.) We note that in both cases, our succinct randomized encodings already

satisfy the required security for their security proof to go through, and only the

succinctness features change.

Publicly-Verifiable Delegation. Finally, we sketch the basic ideas behind the

delegation scheme. The delegation scheme is pretty simple and similar in spirit

to previous delegation schemes (in a weaker processing model) [12, 77, 127, 91].

To delegate a computation, given by Π and inp, the verifier simply sends the

prover a randomized encoding Π̂′(inp, r), where Π′ is a machine that returns

r if and only if it accepts inp, and r is a sufficiently long random string. The

security of the randomized encoding implies that the prover learns nothing of

r, unless the computation is accepting. The scheme can be easily made publicly

verifiable by publishing f (r) for some one-way function f . Furthermore, the

scheme ensures input-privacy for the verifier.

We then propose a simple transformation that can be applied to any dele-

gation scheme in order to make the first verifier message reusable. The idea is

natural: we let the verifier’s first message be an obfuscation of a circuit CK that

has a hardwired key K for a puncturable PRF, and given a computation (Π, inp),

applies the PRF to derive randomness, and generates a first message for the del-

8Formally, their construction is given in terms of garbling for RAM rather than randomized
encodings, but these are actually used as randomized encodings, without making special use of
independent input encoding.
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egation scheme. Thus, for each new computation, a first message is effectively

sampled afresh. Relying on iO and the security of the puncturable PRF, we can

show that (non-adaptive) soundness is guaranteed. The transformation can also

be applied to privately-verifiable delegation schemes, such as the one of [106]

and maintains soundness, even if the prover has a verification oracle.

2.1.3 Concurrent and Subsequent Work

In concurrent work, Canetti, Holmgren, Jain, and Vaikuntanathan construct suc-

cinct iO for RAMs assuming subexponentially-secure iO for P/poly. The com-

plexity of their succinct iO is also such that obfuscation depends on an a-priori

bound on space, but not on the running time. This, in particular, implies a suc-

cinct randomized encoding with similar parameters.

The technique that they employ is quite different from ours, and requires

stronger computational assumptions. Their main step is also the construction of

a succinct garbling scheme for RAMs; however, their succinct garbling scheme

is very different. At a high-level, in our solution, the obfuscation is only respon-

sible for garbling (or encoding); the evaluation of the garbled components (or

decoding) is done “externally” by the evaluator; encoding and decoding them-

selves are implemented using existing garbling schemes. In their solution, the

obfuscation deals not only with encoding, but also with decoding, getting as

input at every step the encrypted and authenticated current state of the com-

putation. They implement this mechanism by designing a primitive that they

call Asymmetrically Constrained Encapsulation, in a careful combination with an

oblivious RAM scheme. (In our basic solution, oblivious RAMs are not needed
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as we rely on garbling for circuits, which are already an oblivious model of com-

putation, but an inefficient one that touches all of the state in every step. In our

optimizations, the use of oblivious RAM is abstracted by the underlying garbled

RAMs, which are indeed implemented in [118, 82, 76] using oblivious RAMs.)

A disadvantage of their approach is that the circuit deals with inputs of size

proportional to the security parameter (due to encryption and authentication

of state bits), whereas in our case the circuit just takes a logarithmic size index

(representing a time point in the computation); as discussed above, iO for log-

arithmic length input seems to be a weaker assumption (in particular, it is falsi-

fiable), and can be based on polynomial assumptions on multilinear maps. On

the other hand, performing the entire evaluation “inside the obfuscation” as in

their approach would eventually lead to a fully succinct solution in subsequent

work (see below).

Full Succinctness. At first glance, our approach seems to suggest a natural way

to achieve full succinctness, without any dependence on space. Instead of gar-

bling a sequence of transition circuits, we can garble each gate in the circuit rep-

resentation of the computation separately; indeed, the circuit corresponding to

the computation can be succinctly represented by a small circuit that can output

each gate and its corresponding neighbours. More accurately, as in the previous

solution, we will garbled an augmented gate that encodes the output under the

keys corresponding to its (constant number of) neighbours (towards the output

gate). Again, garbling will be derandomized using a pseudo-random function.

This approach will, in fact, give a fully succinct garbling scheme if we as-

sume virtual black-box security for the above “gate garbler”, as once again the

truth tables of a real and a simulated garbling will be computationally indistin-
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guishable. However, assuming iO it is not clear how to achieve any advantage

over the previous solution. Intuitively, whenever we invoke iO we cannot “for-

get” an intermediate value in the computation, before all the connected gates

in the layer above are simulated (inducing new values to remember). In the

worst-case, we are forced to remember an entire configuration.

In a beautiful subsequent work, Koppula, Lewko, and Waters [113] construct

fully-succinct randomized encodings from iO . Their solution takes a similar

route to that of Canetti et al. [54] in that each step of the computation is done

“under the obfuscation”. To overcome the space barrier, they introduce a clever

“selective enforcement mechanism” that allows avoiding storage of the entire

state, by storing a special purpose succinct commitment. In the analysis, this

commitment can be indistinguishably replaced with a commitment that statisti-

cally binds some selected location in the memory corresponding to a given step

of the computation, and is thus “iO -friendly” in their terminology.

Organization In Section 2.2, we provide preliminaries, including: different

models of computation considered in the paper, definitions of garbling schemes

and iO with different efficiency levels. In Section 2.3, we construct succinct

garbling schemes for bounded space Turing machines. We then generalize this

construction to any model of bounded space computation, in particular, RAM,

and optimize the decoding efficiency in Section 2.4. Finally, in Section 2.5, we

present applications of succinct randomized encodings to succint iO and dele-

gation; we omit details for other applications that are achieved by directly plug-

ging in randomized encodings in previous works. In Appendix 2.6, we show

how to bootstrap any circuit iO to one with quasi-linear blowup.
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2.2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We

denote by PPT probabilistic polynomial time Turing machines. The term neg-

ligible is used for denoting functions that are (asymptotically) smaller than one

over any polynomial. More precisely, a function ν(·) from non-negative integers

to reals is called negligible if for every constant c > 0 and all sufficiently large n,

it holds that ν(n) < n−c.

2.2.1 Models of Computation

In this work we will consider different models of computation. Below we de-

fine formally different classes of algorithms; we will start by defining classes

of deterministic algorithms of fixed polynomial size, and then move to define

classes of randomized algorithms and classes of algorithms of arbitrary polyno-

mial size.

Classes of deterministic algorithms of fixed polynomial size.

Polynomial-time Circuits. For every polynomial D, the class CIR[D] = {Cλ} of

include all deterministic circuits of size at most D(λ).

NC1 Circuits. For every constant c and polynomial D, the class NCc[D] = {Cλ} of

polynomial-sized circuits of depth c log λ include all deterministic circuits

of size D(λ) and depth at most c log λ.

Exponential-time Turing Machines. We consider a canonical representation of

Turing machines M = (M′, n,m, S ,T ) with |n| = |m| = |S | = |T | = λ and
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n,m ≤ S ≤ T ; M takes input x of length n, and runs M′(x) using S space

for at most T steps, and finally outputs the first m bits of the output of M′.

(If M′(x) does not halt in time T or requires more than S space, M outputs

⊥.) In other words, given the description M of a Turing machine in this

representation, one can efficiently read off its bound parameters denoted

as (M.n,M.m,M.S ,M.T ).

Now we define the class of exponential time Turing machines. For every

polynomial D, the class TM[D] = {Mλ} includes all deterministic Turing

machines ΠM containing the canonical representation of a Turing machine

M of size D(λ); ΠM(x, t) takes input x and t of length M.n and λ respectively,

and runs M(x) for t steps, and finally outputs what M returns.

Remark: Note that machine ΠM(x, t) on any input terminates in t < 2λ,

and hence its output is well-defined. Furthermore, for any two Turing

machines M1 and M2, they have the same functionality if and only if they

produce identical outputs and run for the same number of steps for every

input x. This property is utilized when defining and constructing indistin-

guishability obfuscation for Turing machines, as in previous work [43].

Exponential-time RAM Machines. We consider a canonical representation of

RAM machines R = (R′, n,m, S ,T ) identical to the canonical representation

of Turing machines above.

For every polynomial D, the class RAM[D] = {Rλ} of polynomial-sized

RAM machines include all deterministic RAM machines ΠR, defined as

ΠM above for Turning machines, except that the Turing machine M is re-

place with a RAM machine R.

Classes of randomized algorithms: The above defined classes contain only
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deterministic algorithms. We define analogously these classes for their corre-

sponding randomized algorithms. Let X[D] be any class defined above, we de-

note by rX[D] the corresponding class of randomized algorithms. For example

rCIR[D] denote all randomized circuits of size D(λ), and rTM[D] denote all ran-

domized turning machine of size D(λ).

Classes of (arbitrary) polynomial-sized algorithms: The above defined classes

consist of algorithms of a fixed polynomial D description size. We define cor-

responding classes of arbitrary polynomial size. Let X[D] be any class defined

above, we simply denote by X = ∪poly DX[D] the corresponding class of algo-

rithms of arbitrary polynomial size. For instance, CIR and rCIR denotes all

deterministic and randomized polynomial-sized circuits, and TM denotes all

polynomial-sized Turing machines.

In the rest of the paper, when we write a family of algorithms {ALλ} ∈ X, we

mean {ALλ} ∈ X[D] for some polynomial D. This means, the size of the family of

algorithms is bounded by some polynomial. Below, for convenience of notation,

when X is a class of algorithms of arbitrary polynomial size, we write AL ∈ Xλ

as a short hand for {ALλ} ∈ {Xλ}.

Classes of well-formed algorithms: In the rest of the preliminary, we define

various cryptographic primitives. In order to avoid repeating the definitions

for different classes of machines, we provide definitions for general classes of

algorithms {ALλ} that can be instantiated with specific classes defined above.

In particular, we will work with classes of algorithms that are well-formed, sat-

isfying the following properties:

1. For every AL ∈ ALλ, and input x, AL on input x terminates in 2λ steps.
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Note that this also implies that AL has bounded input and output lengths.

2. the size of every ensemble of algorithms {ALλ} ∈ {ALλ} is bounded by

some polynomial D in λ, and

3. given the description of an algorithm AL ∈ ALλ, one can efficiently read

off the bound parameters AL.n, AL.m, AL.S , AL.T .

All above defined algorithm classes are well-formed. Below, we denote by

TAL(x) the running time of AL on input x, and TAL the worst case running time

of AL. Note that well-formed algorithm classes are not necessarily efficient; for

instance the class of polynomial-sized Turing machines TM contain Turing ma-

chines that run for exponential time. In order to define cryptographic primitives

for only polynomial-time algorithms, we will use the notation ALGT =
{
AL

T
λ

}
to

denote the class of algorithms in ALG = {ALλ} that run in time T (λ) (in particu-

lar, these with ALλ.T < T (λ)).

In the rest of the paper, all algorithm classes are well-formed.

2.2.2 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation, adapting to arbitrary

classes of algorithms. As before, we first define the syntax, correctness and

security of iO , and then discuss about different efficiency guarantees.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform machine iO is a

indistinguishability obfuscator for a class of deterministic algorithms {ALλ}λ∈N, if the

following conditions are satisfied:
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Correctness: For all security parameters λ ∈ N, for all AL ∈ ALλ, for all input x, we

have that

Pr[AL′ ← iO(1λ, AL) : AL′(x) = AL(x)] = 1

Security: For every polynomial T , every non-uniform PPT samplable distributionD

over the support
{
AL

T
λ ×AL

T
λ × {0, 1}

poly(λ)
}
, and adversary A, there is a negli-

gible function µ, such that, for sufficiently large λ ∈ N, if

Pr[(AL1, AL2, z)← D(1λ) : ∀x, AL1(x) = AL2(x),TAL′(x) = TAL(x),

(|AL|, AL.n, AL.m, AL.S , AL.T ) = (|AL′|, AL′.n, AL′.m, AL′.S , AL′.T )] > 1−µ(λ)

Then,

∣∣∣∣ Pr[(AL1, AL2, z)
$
← D(1λ) : A(iO(1λ, AL1), z)]

−Pr[(AL1, AL2, z)
$
← D(1λ) : A(iO(1λ, AL2), z)]

∣∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap forD andA.

Furthermore, we say that iO is δ-indistinguishable if the above security condition holds

with a distinguishing gap µ bounded by δ. Especially, iO is sub-exponentially indis-

tinguishable if µ(λ) is bounded by 2−λ
ε for a constant ε.

Note that in the security guarantee above, the distribution D samples algo-

rithms AL1, AL2 that has the same functionality, and matching bound parame-

ters. This means, an obfuscated machine “reveals” the functionality (as desired)

and these bound parameters. We remark that the leakage of the latter is with-

out loss of generality: In the case of circuits, all bound parameters are set to 2λ.

In the case of other algorithm classes, say Turing and RAM machines. If an iO

scheme ensures that one parameter, say AL.S , is not revealed, one can simply
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consider a representation that always sets that parameter to 2λ; then security

definition automatically ensures privacy of that parameter. See Remark 1 for

more details.

Definition 2 (Different Levels of Efficiency of IO). We say that an indistinguisha-

bility obfuscator iO of a class of algorithms {ALλ} has optimal efficiency, if there is a

universal polynomial p such that for every λ ∈ N, and every AL ∈ ALλ, iO(1λ, AL)

runs in time p(λ, |AL|).

Additionally, we say that iO has input- / space- / linear-time- dependent

complexity, if iO(1λ, AL) runs in time poly(λ, |AL|, AL.n) / poly(λ, |AL|, AL.S ) /

poly(λ, |AL|)AL.T .

We note that unlike the case of garbling schemes, the optimal efficiency of an

iO scheme does not need to depend on the length of the output. Loosely speak-

ing, the stems from the fact that indistinguishability-based security does not

require “programming” outputs, which is the case in simulation-based security

for garbling.

iO for Specific Algorithm Classes. We recall the definition of iO for polynomial-

sized circuits, NC1 [17]; and give definitions of iO for polynomial time Turing

machines [43] and RAM machines with different efficiency guarantees.

Definition 3 (Indistinguishability Obfuscator for Poly-sized Circuits and NC1).

A uniform PPT machine iOCIR(·, ·) is an indistinguishability obfuscator for polynomial-

sized circuits if it is an indistinguishability obfuscator for CIR with optimal efficiency.

A uniform PPT machine iONC1(·, ·, ·) is an indistinguishability obfuscator for NC1

circuits if for all constants c ∈ N , iONC1(c, ·, ·) is an indistinguishability obfuscator for

NCc with optimal efficiency.
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Definition 4 (iO for Turing Machines). A uniform machine iOTM(·, ·) is a indistin-

guishability obfuscator for polynomial-time Turing machines, with optimal efficiency or

input- / space-dependent complexity, if it is an indistinguishability obfuscator for the

class TM with the same efficiency.

Recently, the works by [43, 1] give constructions of iO for Turing ma-

chines9 with input-dependent complexity assuming FHE, differing-input ob-

fuscation for circuits, and P-certificates [60]; furthermore, the dependency on

input lengths can be removed—leading to a scheme with optimal efficiency—if

assuming SNARK instead of P-certificates.

Definition 5 (iO for RAM Machines). A uniform machine iOTM(·, ·) is a indistin-

guishability obfuscator for polynomial-time Turing machines, with optimal efficiency or

linear-time-dependent complexity, if it is an indistinguishability obfuscator for the class

RAM with the same efficiency.

Remark 1 (Explicit v.s. Implicit Bound Parameters). In the above definitions of Gar-

bling Scheme and iO for general algorithms, we considered a canonical representation

of algorithms AL that gives information of various bound parameters of the algorithm,

specifically, the size |AL|, bound on input and output lengths AL.n, AL.m, space com-

plexity AL.S , and time complexity AL.T . This representation allows us to define, in

a unified way, different garbling and iO schemes that depend on different subsets of

parameters. For instance,

• The Garbling and iO schemes for TM that we construct in Section 2.3

and 2.5.1 (from iO and sub-exp iO for circuits respectively) has complexity

9Their works actually realize the stronger notion of differing-input, or extractability, obfus-
cation for Turing machines
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poly(|AL|, AL.S , log(AL.T )). (In particular, the size of the garbled TM and ob-

fuscated TM is of this order.)

• The garbling scheme for TM constructed (from iO for TM) sketched in the intro-

duction has complexity poly(|AL|, AL.n, AL.m, log(AL.T )).

• The garbling scheme for RAM from one-way functions by [118, 82] has complex-

ity scales polynomially in (|AL|, AL.n, AL.m) and quasi-linearly in AL.T . This

construction leads to an iO for RAM (from sub-exp iO for circuits) of the same

complexity in 2.5.1.

By using the canonical representation, our general definition allows the garbling

or iO scheme to depend on any subset of parameters flexibly. Naturally, if a scheme

depends on a subset of parameters, the resulting garbled or obfuscated machines may

“leak” these parameters (in the above three examples above, the size of the garbled or

obfuscated machines leaks the parameters they depend on); thus, the security defini-

tions must reflect this “leakage” correspondingly. The general security definitions 7

and 1 captures this by allowing leakage of all parameters |AL|, AL.n, AL.m, AL.S , AL.T .

However, this seems to “overshoot”, as if a specific scheme does not depend on a par-

ticular parameter (e.g. AL.S ), then this parameter should be kept private. This can be

easily achieved, by simply considering an algorithm representation that always set that

parameter to 2λ (e.g. AL.S = 2λ).

2.2.3 Garbling Schemes

In this section, we define garbling schemes; our definition is adapted from the

definition of [22]. As explained in the introduction the main difference between

garbling schemes and randomized encodings is that in garbling schemes the
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input is encoded separately from the program. These extra properties will be

utilized in our constructions of succinct randomized encodings (or more gener-

ally succinct garbling schemes). Our applications will only require randomized

encodings; their definition is given in Section 2.5, and is a direct projection of

the definition of garbling schemes.

Definition 6 (Garbling Scheme). A Garbling scheme GS for a class of (well-formed)

deterministic algorithms {ALλ}λ∈N consists of algorithms GS = (Garb,Encode,Eval)

satisfying the following properties:

Syntax: For every λ ∈ N, AL ∈ ALλ and input x,

• Garb is probabilistic and on input (1λ, AL) outputs a pair (ÂL,key).10

• Encode is deterministic and on input (key, x) outputs x̂.

• Eval is deterministic and on input (ÂL, x̂) produced by Garb,Encode out-

puts y.

Correctness: For every polynomial T and every family of algorithms {ALλ} ∈
{
AL

T
λ

}
and sequence of inputs {xλ}, There exists a negligible function µ, such that, for

every λ ∈ N, AL = ALλ, x = xλ,

Pr[(ÂL,key)
$
← Garb(1λ, AL), x̂

$
← Encode(key, x) : Eval(ÂL, x̂) , AL(x)] ≤ µ(λ)

Definition 7 (Security of a Garbling Scheme). We say that a Garbling scheme GS

for a class of deterministic algorithms {ALλ}λ∈N is secure if the following holds.

Security: There exists a uniform machine Sim, such that, for every non-uniform PPT

distinguisher D, every polynomial T ′, every sequence of algorithms {ALλ} ∈

10(Note that as the algorithm class is well-formed, Garb implicitly has all bound parameters
of AL.
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{AL
T ′
λ }, and sequence of inputs {xλ} where xλ ∈ {0, 1}ALλ.n, there exists a negli-

gible function µ, such that, for every λ ∈ N, AL = ALλ, x = xλ the following

holds:

∣∣∣∣ Pr[(ÂL,key)
$
← Garb(1λ, AL), x̂

$
← Encode(key, x) : D(ÂL, x̂) = 1]

−Pr[(ÃL, x̃)
$
← Sim(1λ, |x|, |AL|, (n,m, S ,T ),TAL(x), AL(x)) : D(ÃL, x̃) = 1]

∣∣∣∣ ≤ µ(λ)

where (n,m, S ,T ) = (AL.n, AL.m, AL.S , AL.T ) and Sim runs in time poly(λ,T ).

µ is called the distinguishing gap.

Furthermore, we say that GS is δ-indistinguishable if the above security condition

holds with a distinguishing gap µ bounded by δ. Especially, GS is sub-exponentially

indistinguishable if µ(λ) is bounded by 2−λ
ε for a constant ε.

We note that the sub-exponentially indistinguishability defined above is

weaker than usual sub-exponential hardness assumptions in that the distin-

guishing gap only need to be small for PPT distinguisher, rather than sub-

exponential time distinguishes.

We remark that in the above definition, simulator Sim receives many inputs,

meaning that, a garbled pair ÂL, x̂ reveals nothing but the following: The out-

put AL(x), instance running time TAL(x), input length |x| and machine size |AL|,

together with various parameters (n,m, S ,T ) of AL. We note that the leakage of

the instance running time is necessary in order to achieve instance-based effi-

ciency (see efficiency guarantees below). The leakage of |AL| can be avoided by

padding machines if an upper bound on their size is known. The leakage of pa-

rameters (n,m, S ,T ) can be avoided by setting them to 2λ; see Remark 1 for more

details. In particular, when the algorithms are circuits, inputs to the simula-

51



tion algorithm can be simplified to (1λ, |x|, |C|, AL(x)), since all bound parameters

n,m, S ,T can be set to 2λ.

Efficiency Guarantees. we proceed to describe the efficiency requirements

for garbling schemes. When considering only circuit classes, all algorithms

Garb,Encode,Eval should be polynomial time machines, that is, the complexity

of Garb,Eval scales with the size of the circuit |C|, and that of Encode with the in-

put length |x|. However, when considering general algorithm classes, since the

description size |AL| could be much smaller than the running time AL.T , or even

other parameters AL.S , AL.n, AL.m, there could be different variants of efficiency

guarantees, depending on what parameters the complexity of the algorithms

depends on. Below we define different variants.

Definition 8 (Different Levels of Efficiency of Garbling Schemes). We say that a

garbling scheme GS for a class of deterministic algorithms {ALλ}λ∈N has succinctness

or I/O / space / time-dependent complexity if the following holds.

Optimal efficiency: There exists universal polynomials pGarb, pEncode, pEval, such

that, for every λ ∈ N, AL ∈ ALλ and input x ∈ {0, 1}AL.n,

• (Â,key)
$
← Garb(1λ, AL) runs in time pGarb(λ, |AL|, AL.m),11

• x̂ = Encode(key, x) runs in time pEncode(λ, |x|, AL.m), and

• y = Eval(ÂL, x̂) runs in time pEval(λ, |AL|, |x|, AL.m) × TAL(x), with over-

whelming probability over the random coins of Garb. We note that Eval has

instance-based efficiency.
11Note that the running time of Garb and similarly other algorithms that takes AL as an input,

implicitly depends logarithmically on the time bound of AL, as its description contains the time
bound AL.T .
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I/O-dependent complexity: The above efficiency conditions hold with pGarb, pEncode,

pEval taking AL.n as additional parameters.

Space-dependent complexity: The above efficiency conditions hold with pGarb,

pEncode, pEval taking AL.S as an additional parameter.

Linear-time-dependent complexity: The above efficiency conditions hold with

pGarb, pEncode taking AL.T as an additional parameter and depending

(quasi-)linearly in AL.T , and the running time of Eval is bounded by

pEval(λ, |AL|, |x|)AL.T .

Furthermore, we say that the garbling scheme GS has succinct input encodings if the

encoding algorithm Encode(key, x) runs in time pEncode(1λ, |x|).

We say that a garbling scheme is “succinct” if its complexity depends only

poly-logarithmically on the time bound. Thus a scheme with space-dependent

complexity is succinct for a class of algorithms whose space usage is bounded

by a fixed polynomial.

On the dependency on the length of the output. Note that in the optimal efficiency

defined above, the complexity of the algorithms depends on the length of their

respective inputs and the bound on their output lengths AL.m. We argue that

this is necessary. This is because that the garbling of an algorithm ÂL together

with an encoding of an input x̂ encodes the output AL(x), while leaking nothing

beyond AL(x). (ÂL, x̂ is a randomized encoding of AL, x.) Then, assuming the

existence of pseudorandom generators G, the total size of the garbled function

Ĝ and encoded input x̂ must be at least the length of the output of the function.

Otherwise, the simulator can “compress” random strings with overwhelming

probability, which is a contradiction. Therefore, we allow the complexity of the
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algorithms to depend on the length of the output in optimal efficiency.

Static v.s. Adaptive Security Throughout this work, we consider statically secure

garbling scheme, that is, the privacy guarantees only hold when the entire com-

putation (AL, x) to be garbled is chosen statically. In the literature, stronger

privacy guatantees have been considered [21, 20], allowing the input x to be

chosen maliciously and adaptively depending on the garbling of the algorithm

AL. In fact, such adaptive security can be further strengthed, when considering

garbling schemes that are “input decomposable”, that is, the garbling consists

of k parts {Fi(xi; r)}i∈[k] each depending on one input. In this more general set-

ting, adaptive security allows inputs to be gradually and adaptively choosen

depending on the garbling (or encoding) of previously chosen inputs.

In this work, we however consider only the, weaker, static security, which

suffices for all our applications. We leave open the question of constructing

succinct adaptively secure garbling schemes.

Garbling Schemes for Specific Algorithm Classes. Next we instantiate the

above definition of garbling scheme for general algorithm classed with concrete

classes.

Definition 9 (Garbling Scheme for Polynomial-sized Circuits). A triplet of algo-

rithms GSCIR = (GarbCIR,EncodeCIR,EvalCIR) is a garbling scheme (with linear-time-

dependent complexity) for polynomial sized circuits if it is a garbling scheme for class

CIR (with linear-time-dependent complexity).

We note that in the case of circuits, succinctness means the complexity scales

polynomially in |C|, whereas linear-time-dependency means the complexity

scales linearly with |C|.

54



Definition 10 (Garbling Schemes for Polynomial Time Turing Machines). A

triplet GSTM = (GarbTM,EncodeTM,EvalTM) of algorithms is a garbling scheme with

optimal efficiency or I/O- / space- / linear-time-dependent complexity (and succinct in-

put encodings) for Turing machines, if it is a garbling scheme for class TM, with the

same level of efficiency.

Different efficiency requirements impose qualitatively different restrictions.

In this work, we will construct a garbling scheme for Turing machines with

space-dependent complexity assuming indistinguishability obfuscation for cir-

cuits. The construction of garbling scheme from iO for Turing machines,

sketched in the introduction, has I/O-dependent complexity. On the other

hand, we show that a scheme with is impossible; in particular, the complexity

of the scheme must scale with the bound on the output length.

Definition 11 (Garbling Schemes for Polynomial Time RAM Machines). A triplet

GSRAM = (GarbRAM,EncodeRAM,EvalRAM) of algorithms is a garbling scheme for

polynomial-time RAM machines with optimal efficiency or I/O- / space- / linear-time-

dependent-complexity, (and succinct input encodings), if it is a garbling scheme for

class RAM, with the same level of efficiency.

Recently, the works by [118, 82] give construction of a garbling scheme for

RAM machines with linear-time-dependent complexity and succinct input en-

codings, assuming only one-way functions.

Garbled Circuits with independent input encoding. In this work, we will

make use of a garbling scheme for circuits with a special structural property.

In Definition 9, the key key for garbling inputs is generated depending on the

circuit (by Garb(1λ,C)); the special property of a circuit garbling scheme is that
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the key can be generated depending only on the length of the input 1|x| and the

security parameter, which implies that the garbled inputs x̂ can also be gener-

ated depending only on the plain input x and the security parameter λ, inde-

pendently of the circuit—we call this independent input encoding.

Definition 12 (Garbling Scheme for Circuits with Independent Input Encoding).

A Garbling scheme GS = (Garb,Encode,Eval) for a deterministic circuit class {Cλ}λ∈N

has independent input encoding if the following holds: For every λ ∈ N, and every

C ∈ Cλ,

• The algorithm Garb on input (1λ,C) invokes first key
$
← Gen(1λ, 1|x|) and then

Ĉ
$
← Gb(key,C), where Gen and Gb are all PPT algorithms.

• The security condition holds w.r.t. a simulator Sim that on input

(1λ, 1|x|, 1|C|,TC(x),C(x)) invokes first (x̃, st)
$
← Sim·Gen(1λ, |x|) and then

C̃
$
← Sim·Gb((1λ, |x|, |C|,C(x), st), where Sim·Gen and Sim·Gb runs in time

poly(λ, |x|) and poly(λ, |C|) respectively.

It is easy to check that many known circuit garbling schemes, in particular

the construction by Yao [138], has independent input encoding.

Proposition 2. Assume the existence of one-way functions that are hard to invert in

Γ time. Then, there exists a garbling scheme GSCIR for polynomial-sized circuits with

independent input encoding that is Γ−ε-indistinguishable for some constant ε ∈ (0, 1).

2.2.4 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF)

from [134]. Since in this work, we only uses puncturing at one point, the defini-
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tion below is restricted to puncturing only at one point instead of at a polyno-

mially many points.

Definition (Puncturable PRFs). A puncturable family of PRFs is given by a triple of

uniform PPT machines (PRF·Gen,PRF·Punc,F), and a pair of computable functions

n(·) and m(·), satisfying the following conditions:

Correctness. For all outputs K of PRF·Gen(1λ), all points i ∈ {0, 1}n(λ), and K(−i) =

PRF·Punc(K, i), we have that F(K(−i), x) = F(K, x) for all x , i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2), there is a

negligible function µ, such that in an experiment where A1(1λ) outputs a point

i ∈ {0, 1}n(λ) and a state σ, K
$
← PRF·Gen(1λ) and K(i) = PRF·Punc(K, i), the

following holds

∣∣∣ Pr[A2(σ,K(i), i,F(K, i)) = 1] − Pr[A2(σ,K(i), i,Um(λ)) = 1]
∣∣∣ ≤ µ(λ)

where µ is called the distinguishing gap for (A1,A2).

Furthermore, we say that the puncturable PRF is δ-indistinguishable if the above pseu-

dorandom property holds with a distinguishing gap µ bounded by δ. Especially, the

puncturable PRF is sub-exponentially indistinguishable if µ(λ) is bounded by 2−λ
ε for

a constant ε.

As observed by [39, 44, 107], the GGM tree-based construction of PRFs [87]

from pseudorandom generators (PRGs) yields puncturable PRFs. Further-

more, it is easy to see that if the PRG underlying the GGM construction is

sub-exponentially hard (and this can in turn be built from sub-exponentially

hard OWFs), then the resulting puncturable PRF is sub-exponentially pseudo-

random.
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2.3 Succinct Garbling for Bounded-Space Turing Machines

In this section, we construct a garbling scheme for the class of Turing machines

TM with space-dependent complexity. Thus when the space complexity of the

TM is bounded, it yields a succinct scheme. We will see in the next section that

our construction for Turing machines directly applies to general bounded space

computation.

Theorem 9. Assuming the existence of iO for circuits and one-way functions. There

exists a garbling scheme for TM with space-dependent complexity.

Towards this, we proceed in two steps: In the first step, we construct a non-

succinct garbling scheme for TM, which satisfies the correctness and security

requirements of Definition 6 and 7, except that the garbling and evaluation al-

gorithms can run in time polynomial in both the time and space complexity, M.T

and M.S , of the garbled Turing machine M (as well as the simulation algorithm);

the produced garbled Turing machine is of size in the same order. In the second

step, we show how to reduce the complexity to depend only on the space com-

plexity M.S , leading to a garbling scheme with space-dependent complexity.

Since in this section, only the space and time bound parameters matter, we will

simply write S and T as M.S and M.T , and we use the notion D to represent the

description size of M.

2.3.1 A Non-Succinct Garbling Scheme

Overview. The execution of a Turing machine M consists of a sequence of steps,

where each step t depends on the description of the machine M and its current
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configuration conft, and produces the next configuration conft+1. In the Turing

machine model, each step takes constant time, independent of the size of the

Turing machine and its configuration. However, each step can be implemented

using a circuit NextD,S that on input (M, conft) with |M| ≤ D, | conft | ≤ S , outputs

the next configuration conft+1—we call this circuit the “universal next-step cir-

cuit”. The size of the circuit is a fixed polynomial pNext in the size of the machine

and the configuration, that is, pNext(D, S ). The whole execution of M(x) can be

carried out by performing at most T evaluations of NextD,S (M, ·), producing a

chain of configurations denoted by,

CONFIG(M, x) = (T ∗, conf1, · · · , confT , confT+1), where T ∗ = TM(x),

conf1 is the initial configuration with input x {conf1, · · · , confT ∗−1, confT ∗}

are the sequence of configurations until M(x) halts (conft is the config-

uration before the tth step starts), and {confT ∗ , · · · , confT+1} are simply

set to the output y = M(x).

We note that the initial configuration conf1 can be derived efficiently

from x, confT ∗ is called the final configuration, which can be effi-

ciently recognized and from which an output y can be extracted effi-

ciently.

When succinctness is not required, the natural idea to garble a T -step Tur-

ing machine computation of M(x) is to produce a chain of T garbled circuits

(Ĉ1, · · · , ĈT ), for evaluating the next step circuit NextD,S (M, ·) for M. The tth cir-

cuit Ct is designated to compute from the tth configuration conft (as input) to the

next conft+1; if the produced conft+1 is a final configuration, then it simply out-

puts the output y; otherwise, to enable the evaluation of the next garbled circuit

Ĉt+1, it translates conft+1 into the corresponding garbled inputs ĉonft+1 for Ĉt+1—
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we call Ct the tth step-circuit. Then evaluation propagates and the intermediate

configurations of the execution of M on x is implicitly computed one by one,

until it reaches the final configuration, in which case, an output is produced ex-

plicitly (without translating into the garbled inputs of the next garbled circuit).

Since each computation step is garbled, and all intermediate configurations, ex-

cept from the final output y, are “encrypted” as garbled inputs, the entire chain

of garbled circuits can be simulated given only the output y.

Finally, we note that each step-circuit Ct evaluates NextD,S (M, ·) and has the

capability of garbling an input for the next garbled circuit Ĉt; this can only be

achieved if the circuit garbling scheme has independent input encoding, which

ensures that the input garbling can be done independently of the circuit gar-

bling, and only takes time polynomial in the length of the input (rather than, in

the size of the circuit).

Our Non-Succinct Garbling Scheme. We now describe formally our non-

succinct garbling schemeGSns = (Garbns,Encodens,Evalns). We rely on a garbling

scheme for polynomial-sized circuits with independent input encoding.

• Let GSCIR = (GarbCIR,EncodeCIR,EvalCIR) be a garbling scheme for

polynomial-sized circuits, and SimCIR the simulation algorithm. We re-

quire GSCIR to have independent input encoding, that is, GarbCIR =

(GenCIR,GbCIR), and SimCIR = (Sim·GenCIR,Sim·GbCIR) as described in Defi-

nition 12.

Let NextD,S be the universal next step circuit for machine of size at most D

and space complexity at most S ; it has a fixed polynomial size pNext(D, S ) and

can be generated efficiently given D and S . For every λ and M ∈ TMλ, our
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scheme proceeds as follows:

The garbling algorithm Garbns(1λ,M):

Let S = M.S , T = M.T and D = |M|.

Sample 2T sufficiently long random strings α1, · · · , αt and β1, · · · βt; pro-

duce a chain of T garbled circuits using GarbCIR by running the following

program for every t ∈ [T ].

Program Pλ,S ,M(t ; (αt, αt+1, βt)) :

1. Generate the key keyt+1 for the next garbled circuit:

If t < T , compute the key for the t + 1st garbled circuit keyt+1 =

GenCIR(1λ, 1S ;αt+1) using randomness αt+1. (Note that keyt is gener-

ated for inputs of length S .)

2. Prepare the step-circuit Ct:

S tept on a S -bit input conft (i) compute conft+1 = NextD,S (M, conft);

(ii) if conft+1 is a final configuration, simply outputs the output

y contained in it12; (iii) otherwise, translate conft+1 to the gar-

bled inputs of the t + 1st garbled circuit, by computing ĉonft+1 =

EncodeCIR(keyt+1, conft+1).

3. Garble the step-circuit Ct:

Compute the key using randomness αt, keyt = GenCIR(1λ, 1S ;αt), and

garble Ct using randomness βt, Ĉt = GbCIR(keyt,Ct; βt),

4. Output Ĉt.

Generate key as follows: Compute the key for the first garbled circuit using

randomness α1, key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1
S .

12Pad y with 0 if it is not long enough
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Finally, output M̂ = (Ĉ1, · · · , ĈT ),key.

The encoding algorithm Encodens(key, x): Let conf1 ∈ {0, 1}S be the initial con-

figuration of M with input x; compute x̂ = ĉonf1 = EncodeCIR(key1, conf1).

The evaluation algorithm Evalns(M̂, x̂): Evaluate the chain of garbled circuits

M̂ = (Ĉ1, · · · , ĈT ) in sequence in T iterations: In iteration t, compute

z = EvalCIR(Ĉt, ĉonft); if z is the garbled inputs ĉonft+1 for the next garbled

circuit Ĉt+1, proceed to the next iteration; otherwise, terminate and output

y = z.

Next, we proceed to show that GSns is a non-succinct garbling scheme for

TM.

Efficiency. We summarize the complexity of different algorithms of the non-

succinct scheme. It is easy to see that for any Turing machine M with D = |M|,

S = M.S and T = M.T , the garbling algorithm Garbns runs in time poly(λ,D, S ) ×

T , and produces a garbling machine of size in the same order. Thus the garbling

scheme is non-succinct. On the other hand, the encoding and evaluation al-

gorithms Encodens and Evalns are all deterministic polynomial time algorithms.

Finally, the simulation run in time poly(λ,D, S ) × T as the garbling algorithm.

Correctness. We show that for every polynomial T ′, every sequence of algo-

rithms {M = Mλ} ∈ {TMT ′
λ }, and sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n,

there exists a negligible function µ, such that,

Pr[(key, M̂)
$
← Garbns(1λ,M), x̂ = Encodens(key, x) : Evalns(M̂, x̂) , M(x)] ≤ µ(λ)

Let CONFIG(M, x) = (T ∗, conf1, · · · , confT , confT+1) be the sequence of config-

urations generated in the computation of M(x), where T ≤ T ′(λ). It follows from
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the correctness of the circuit garbling scheme GarbCIR that with overwhelming

probability (over the randomness of Garbns), the following is true: (1) for every

t < T ∗, the garbled circuit Ĉt, if given the garbled input ĉonft corresponding to

conft, computes the correct garbled inputs ĉonft+1 corresponding to conft+1, and

(2) for t = T ∗, the garbled circuit ĈT ∗ , if given the garbled input ĉonfT ∗−1 corre-

sponding to confT ∗−1, produces the correct output y. (Note that the evaluation

procedure terminates after T ∗ iterations and circuits Ĉt for t > T ∗ are never eval-

uated). Then since the garbled input x̂ equals to the garbled initial configuration

ĉonf1, by conditions (1) and (2), the evaluation procedure produces the correct

output with overwhelming probability.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ },

and any sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the

security of GSns, we construct a simulation algorithm Simns, and show that the

following two ensembles are indistinguishable: For convenience of notation, we

suppress the appearance of M.n and M.m as input to Sim.{
realns(1λ,M, x)

}
=

{
(M̂,key)

$
← Garbns(1λ,M), x̂ = Encodens(key, x) : (M̂, x̂)

}
λ

(2.1){
simuns(1λ,M, x)

}
=

{
(M̃, x̃)

$
← Simns(1λ, 1|x|, 1|M|, S ,T,TM(x),M(x)) : (M̃, x̃)

}
λ
(2.2)

Below we describe the simulation algorithm. Observe that the garbled ma-

chine M̂ consists of T garbled circuits (Ĉ1, · · · , ĈT ) and the garbled input x̂ is

simply the garbled input of the initial configuration conf0 (corresponding to x)

for the first garbled circuit Ĉ1. Naturally, to simulate them, the algorithm Simns

needs to utilize the simulation algorithm SimCIR = (Sim·GenCIR,Sim·GbCIR) of the

circuit garbling scheme, which requires knowing the output of each garbled cir-

cuit. In a real evaluation with M̂, x̂, the output of the (T ∗)th garbled circuit is

y = M(x), the output of the garbled circuits t < T ∗ is the garbled input ĉonft+1 for
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next garbled circuit t+1, and the garbled circuits t > T ∗ are not evaluated, but for

which y is a valid output. Thus, in the simulation, garbled circuits t = T ∗, · · · ,T

can be simulated using output y; whereas garbled circuits t = 1, · · · ,T ∗ − 1 will

be simulated using the simulated garbled inputs for circuit t + 1. More precisely,

The simulation algorithm Simns(1λ, 1|x|, 1|M|, S ,T,T ∗ = TM(x), y = M(x)):

Sample 2T sufficiently long random strings α1, · · · , αT , β1, · · · , βT . Simulate

the chain of garbled circuits by running the following program for every

t ∈ [T ].

Program Qλ,S ,|M|,T ∗,y(t ; (αt, αt+1, βt)) :

1. Prepare the output outt for the tth simulated circuit C̃t:

If t ≥ T ∗, outt = y. Otherwise, if t < T ∗, set the output as the garbled

input for the next garbled circuits, that is, outt = c̃onft+1 computed

from (c̃onft+1, stt+1) = Sim·GenCIR(1λ, S ; αt+1) using randomness αt+1.

2. Simulate the tth step-circuit C̃t:

Given the output outt, simulate the tth garbled circuit C̃t by com-

puting first (c̃onft, stt) = Sim·GenCIR(1λ, S ; αt) and then C̃t =

Sim·GbCIR(1λ, S , q, outt, stt ; βt), using randomness αt, βt where q =

q(λ, S ) is the size of the circuit Ct.

3. Output C̃t.

Simulate the garbled input x̃ by computing again (c̃onf1, st1) =

Sim·GenCIR(1λ, S ; α1) using randomness α1, and setting x̃ = c̃onf1.

Finally, output (M̃ = (C̃1, · · · , C̃T ), x̃).

Towards showing the indistinguishability between honestly generated gar-

bling (M̂, x̂) and the simulation (M̃, x̃), we will consider a sequence of hybrids
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hyb0
ns, · · · , hybT

ns, where hyb0
ns samples (M̂, x̂) honestly, while hybT

ns generates the

simulated garbling (M̃, x̃). In every intermediate hybrid hybγns, a hybrid simula-

tor HSimγ
ns is invoked, producing a pair (M̃γ, x̃γ) . At a high-level, the γth hybrid

simulator on input (1λ,M, x) simulate the first γ − 1 garbled circuits using the

program Q, generates the last T − γ garbled circuits honestly using the program

P, and simulates the γth garbled circuits using the program R described below,

which “stitches” together the first γ − 1 simulated circuits with the last T − γ

honest circuits into a chain that evaluates to the correct output. More precisely,

we will denote by

COMBINE[(P1, S 1), ·, (P`, S `)] a merged circuit that on input x in the

domain X, computes P j(x) if x ∈ S j, where S 1, · · · , S ` is a partition of

the domain X.

The hybrid simulation algorithm HSimγ
ns(1

λ,M, x) for γ = 0, · · · ,T :

Compute T ∗ = TM(x) and y = M(x), and the intermediate configuration

confγ+1 as defined by CONFIG(M, x).

Sample 2T sufficiently long random strings {αt, βt}t∈[T ]. Simulate the chain

of garbled circuits by running the following program for every t ∈ [T ],

which combines programs P, Q and R as below.

Program Mγ = COMBINE
[
(Q, [γ − 1]), (R, {γ}), (P, [γ + 1,T ])

]
(t ; (αt, αt+1, βt)) :

• If t ≤ γ − 1, compute C̃t = Qλ,S ,|M|,T ∗,y(t ; (αt, αt+1, βt)); output C̃t.

• If t ≥ γ + 1, compute Ĉt = Pλ,S ,M(t ; (αt, αt+1, βt)); output Ĉt.

• If t = γ, compute C̃t = Rλ,S ,confγ+1(γ ; (αγ, αγ+1, βγ)) define as follow:

1. Prepare the output outγ of the simulated γth circuit C̃t:
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Set the output outγ to y if confγ+1 is a final configuration. Oth-

erwise, the output should be the garbled input corresponding

to confγ+1 for the next garbled circuit; since the γ + 1st circuit is

generated honestly, we compute outγ = ĉonfγ+1 by first comput-

ing keyγ+1 = GenCIR(1λ, 1S ; αγ+1), and then encoding ĉonfγ+1 =

EncodeCIR(keyγ+1, confγ+1).

(Note that the difference between program Q and R is that the

former prepares the output outγ using simulated garbled input

c̃onft+1, whereas the latter using honestly generated garbled input

ĉonfγ+1.)

2. Simulate the γth circuit C̃t:

Given the output outγ, simulate the γth garbled circuit C̃γ

by computing (c̃onfγ, stγ) = Sim·GenCIR(1λ, S ; αγ) and C̃t =

Sim·GbCIR(1λ, S , q, outγ, stγ ; βγ), where q = q(λ, S ) is the size of

the circuit Ct.

If γ > 0, simulate the garbled input x̃γ as Simns does. Otherwise, if γ = 0,

generate the garbled input x̃0 honestly as in Garbns and Encodens.

Finally, output (M̃γ = (C̃1, · · · , C̃γ, Ĉγ+1ĈT ), x̃γ).

We overload notation hybγns(1
λ,M, x) as the output distribution of the hybrid sim-

ulator HSimγ
ns. By construction, in HSimγ

ns, when γ = 0, M0 = P and the garbled

input x̃0 is generated honestly; thus, {hyb0
ns(1

λ,M, x)} = {realns(1λ,M, x)} (where

realns is the distribution of honestly generated garbling; see equation (2.1)); fur-

thermore, when γ = T , M0 = Q and the garbled input x̃γ is simulated; thus{
hybγns(1

λ,M, x)
}

=
{
simuns(1λ,M, x)

}
(where simuns is the distribution of simulated

garbling; see equation (2.2)). Thus to show the indistinguishability between
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{realns(1λ,M, x)} and {simuns(1λ,M, x)}, it suffices to show the following claim:

Claim 1. For every γ ∈ N, the following holds

{
hybγ−1

ns (1λ,M, x)
}
λ
≈

{
hybγns(1

λ,M, x)
}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. The only

difference between the garbling (M̃γ−1, x̃γ−1) sampled by hybγ−1
ns (1λ,M, x) and the

garbling (M̃γ, x̃γ) sampled by hybγns(1
λ,M, x) is the following: Let confγ be the

intermediate configuration at the beginning of step γ.

• In hybγ−1
ns , the γth garbled circuit Ĉγ is generated honestly using program P.

The circuit Cγ (as described in algorithm Garbns) is the composition of the

circuit Nextλ,S (M, ·) and the encoding algorithm EncodeCIR(keyγ+1, ·), where

keyγ+1 = GenCIR(1λ, 1S ;αγ+1) is generated honestly.

Furthermore, the first γ − 1 garbled circuits are simulated using R and

Q. The simulation of the first γ − 1 circuits as well as the generation of

the garbled input x̃γ depends potentially on the garbled input ĉonfγ corre-

sponding to confγ for Ĉγ (when confγ is not a final configuration; see Step

1 in R).

In other words, the output of hybγ−1
ns can be generated by the following

alternative sampling algorithm:

– Generate garbled circuits γ + 1, · · · ,T honestly using program P; pre-

pare the γth circuit Cγ using keyγ+1.

– Receive externally honest garbling (Ĉγ, ĉonfγ) of (Cγ, confγ).

– Simulate the first γ − 1 circuits using R and Q, with ĉonfγ hardwired

in R.
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• In hybγns, the γth garbled circuit C̃γ is simulated using program R; the out-

put outγ used for simulation is set to either y (if confγ+1 is a final config-

uration) or the honestly generated gabled input ĉonfγ+1. In other words,

outγ = Cγ(confγ), where Cγ is prepared in the same way as above.

Furthermore, the previous γ − 1 garbled circuits are also simulated using

program Q. Their simulation as well as the generation of the garbled input

x̃γ+1 depends potentially on the corresponding simulated garbled input

c̃onfγ of C̃γ.

In other words, the output of hybγns can be generated by the same alter-

native sampling algorithm above, except that the second step is modified

to:

– Receive externally simulated garbling (C̃γ, c̃onfγ) generated using

output Cγ(confγ).

Then it follows from the security of the circuit garbling scheme GSCIR that the

distributions of (Ĉγ, ĉonfγ) and (C̃γ, c̃onfγ) received externally by the alternative

sampling algorithm above are computationally indistinguishable, and thus the

distributions of outputs of hybγ−1
ns and hybγns, which can be efficiently constructed

from them, are also indistinguishable �

Finally, by the above claim, it follows from a hybrid argument over γ, that

{realns(1λ,M, x)} and {simuns(1λ,M, x)} are indistinguishable; Hence, GSns is a se-

cure garbling scheme for TM.
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2.3.2 A Garbling Scheme for TM with Space-dependent Com-

plexity

In this section, we construct a garbling scheme GS = (Garb,Encode,Eval) for TM

with space-dependent complexity. This scheme will rely on the non-succinct

garbling scheme GSns = (Garbns,

Encodens,Evalns) in a non-black-box, but largely modular, way.

Overview. The garbling scheme GSns described in the previous section is non-

succinct because its garbling algorithm Garbns runs in time proportional to the

time-bound T (and generates a garbling of size proportional to T .) Our first

observation is that the “bulk” of the computation of Garbns is evaluating the

same randomized program P(·) for T times with coordinated random coins, to create

a chain of garbled circuits:

M̂ = (Ĉ1, · · · , ĈT ), Ĉt = P(t;αt, αt+1, βt)

The complexity of each garbled circuit depends only on the size of M and its

space complexity S , that is, poly(D, S ) (independent of T ). Our main idea to-

wards constructing a garbling scheme GS with space-dependent complexity is

to defer the T executions of P, from garbling time (that is, in Garb), to evaluation

time (that is, in Eval), by using an indistinguishability obfuscator iO for circuits.

More specifically, instead of computing the chain of garbled circuits M̂ directly,

the new garbling algorithm Garb generates an obfuscation of the program P,

that is P = iO(P), and use that as the new garbled machine; (since P has size

poly(D, S ), the obfuscation is “succinct” and so is the new garbling algorithm).

The procedure for creating garbled inputs x̂ remains the same as in the non-

succinct scheme GSns. Then, on input (P, x̂), the new evaluation algorithm Eval
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first generates the chain of garbled circuits M̂ = (Ĉ1, · · · , ĈT ) by evaluating P on

inputs from 1, · · · T ; once the chain M̂ of garbled circuits is generated, the out-

put can be computed by evaluating Evalns(M̂, x̂) as in the non-succinct scheme

GSns. (Note that to make sure that evaluation algorithm has instance-based effi-

ciency, the algorithm Eval actually generates and evaluates Ĉt’s one by one, and

terminates as soon as an output is produced.)

To make the above high-level idea go through, a few details need to be taken

care of. First, the program P is randomized, whereas indistinguishability obfus-

cators only handles deterministic circuits. This issue is resolved by obfuscating,

instead, a wrapper program P(t) that runs P(t) with pseudo-random coins gener-

ated using a PRF on input t. In fact, the use of pseudo-random coins also allows

coordinating the random coins used in different invocations of P on different in-

puts, so that they will produce coherent garbled circuits that can be run together.

The second question is how to simulate the new garbled machine P
$
← iO(P). In

the non-succinct scheme the chain M̂ of garbled circuits is simulated by running

the program Q for T times (again with coordinated random coins),

M̃ = (C̃1, · · · , C̃T ) Ĉt = Q(t;αt, αt+1, βt)

Naturally, in the succinct scheme, the simulation creates Q
$
← iO(Q) (where Q

is the de-randomized version for Q, as P is for P). By the pseudo-randomness

of PRF and the security of garbled circuits, we have that the truth tables M̂

and M̃ of P and Q are indistinguishable; but this does not directly imply that

their obfuscations are indistinguishable. We bridge the gap by considering the

obfuscation of a sequence of hybrid programs (as in the security proof of the

non-succinct garbling scheme).

∀γ ∈ [0,T+1], Mγ = COMBINE
[
(Q, [γ − 1]), (R, {γ}), (P, [γ + 1,T ])

]
, M

γ $
← iO(Mγ)
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The sequence of hybrid programs “morphs” gradually from program P = M0

to program Q = MT+1; since every pair of subsequent programs Mγ−1,Mγ differs

only at two inputs (γ − 1 and γ) with indistinguishable outputs, we can use

standard techniques such as puncturing and programming to show that their

obfuscations are indistinguishable, and hence so are P and Q.

Our Succinct Garbling Scheme. We now describe the formal construction,

which relies on the following building blocks.

• A garbling scheme for polynomial-sized circuits, with indepen-

dent input encoding: GSCIR = (GarbCIR,EncodeCIR,EvalCIR), where

GarbCIR = (GenCIR,GbCIR) and its the simulation algorithm is SimCIR =

(Sim·GenCIR,Sim·GbCIR).

• An indistinguishability obfuscator iOCIR(·, ·) for polynomial-sized circuits.

• A puncturable PRF (PRF·Gen,PRF·Punc,F) with input length n(λ) and out-

put length m(λ), where n(λ) can be set to any super-logarithmic function

n(λ) = ω(log λ), and m is a sufficiently large polynomial in λ.

For every λ and M ∈ TMλ, the garbling scheme GS proceeds as follows:
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Circuit P = Pλ,S ,M,Kα,Kβ : On input t ∈ [T ], does:

Generates pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t + 1) and
βt = F(Kβ, t);

Compute Ĉt = Pλ,S ,M(t ; (αt, αt+1, βt)) and output Ĉt.

Circuit Q = Qλ,S ,|M|,T
∗,y,Kα,Kβ : On input t ∈ [T ], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t + 1) and
βt = F(Kβ, t);

Compute C̃t = Qλ,S ,|M|,T ∗,y(t ; (αt, αt+1, βt)) and output C̃t.

The circuits in Figure 2.1, 2.2 and 2.3 are padded to their maximum size.

Figure 2.1: Circuits used in the construction and simulation of GS

The garbling algorithm Garb(1λ,M):

1. Sample PRF keys: Kα

$
← PRF·Gen(1λ) and Kβ

$
← PRF·Gen(1λ).

2. Obfuscate the circuit P:

Obfuscate the circuit P(t) = Pλ,S ,M,Kα,Kβ(t) as described in Figure 2.1,

which is essentially a wrapper program that evaluates P on t using

pseudo-random coins generated using Kα and Kβ as described above.

Obtain P
$
← iO(1λ,P).

3. Generate the key for garbling input:

Compute key in the same way as the garbling scheme Garbns does, but

using pseudo-random coins generated using Kα. That is, Compute

the key for the first garbled circuit using randomness α1 = F(Kα, 1),

key1 = GenCIR(1λ, 1S ;α1); set key = key1 ‖1
S .

4. Finally, output (P,key).

The encoding algorithm Encode(key, x): Compute x̂ = Encodens(key, x).
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The evaluation algorithm Eval(P, x̂): Generate and evaluate the garbled circuits

in the non-succinct garbling M̂ one by one; terminate as soon as an output

is produced. More precisely, evaluation proceeds in T iterations as follows:

At the beginning of iteration t ∈ [T ], previous t−1 garbled circuits has been

generated and evaluated, producing garbled input ĉonft (ĉonf1 = x̂). Then,

compute Ĉt = P(t); evaluate z = EvalCIR(Ĉt, ĉonft); if z is a valid output,

terminate and output y = z; otherwise, proceed to the next iteration t + 1

with ĉonft+1 = z.

Next, we proceed to show that GS is a garbling scheme for TM with space-

dependent complexity.

Correctness. Fix any machine M ∈ TM and input x. Recall that the garbling

algorithm Garb generates a pair (P,key); the latter is later used by the encoding

algorithm Encode to obtain garbled input x̂, while the former is later used by the

evaluation algorithm Eval to create the non-succinct garbling M̂ = {Ĉt = P(t)}t∈[T ];

the non-succinct garbling M̂ is then evaluated with x̂ using algorithm Evalns.

The distribution of the garbled input and the non-succinct garbling recovered

by Eval is as follows:

D1 =
{
(P,key)

$
← Garb(1λ,M) :

(
x̂ = Encode(key, x), M̂ =

{
Ĉt = P(t)

}
t∈[T ]

)}
It follows from the construction of Garb,Encode and the correctness of the indis-

tinguishability obfuscator that the above distributionD1 is identical to the distri-

butionD2 of a garbled pair (M̂′, x̂′) generated by the algorithms Garbns,Encodens

of the non-succinct scheme, using pseudo-random coins, formalized below.
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D2 =
{
Kα,Kβ

$
← PRF·Gen(1λ), ∀t ∈ [T ], αt = F(Kα, t), βt = F(Kβ, t) :(

x̂′ = Encodens(key′ = GenCIR(1λ, 1S ;α1), x), M̂′ =
{
Ĉt = P(t;αt, αt+1, βt)

}
t∈[T ]

)}
By the pseudo-randomness of PRF, distribution D2 is computationally indis-

tinguishable from the garbled pair generated by Garbns,Encodens, using truly

random coins.

D3 =

{
(M̂′′,key′′)

$
← Garbns(1λ,M) :

(
x̂′′ = Encodens(key′′, x), M̂′′

)}
The correctness of the non-succinct garbling scheme GSns guarantees that with

overwhelming probability, evaluating M̂′′ with x̂′′ produces the correct output

y = M(x); furthermore, the correct output y is produced after evaluating only the

first T ∗ = TM(x) garbled circuits. Thus, it follows from the indistinguishability

between D1 and D3 that, when evaluating a garbled pair (M̂, x̂) sampled from

D1, the correct output y is also produced after evaluating the first T ∗ garbled

circuits. Given that D1 is exactly the distribution of the non-succinct garbled

pairs generated in Eval, we have that correctness holds.

Efficiency. We show that the garbling scheme GS has space-dependent com-

plexity.

• The garbling algorithm Garb(1λ,M) runs in time poly(λ, |M|, S ). This is be-

cause Garb produces an obfuscation of the program P (a de-randomized

version of P) which garbles circuits Ct using pseudo-random coins for ev-

ery input t ∈ [T ]. Since the program Ct has size q = poly(λ, |M|, S ) as ana-

lyzed in the non-succinct garbling scheme, so does P and P (note that the

input range T of these two programs are contained as part of the descrip-

tion of M, and hence |M| > log T ). Therefore, Garb takes time poly(λ, |M|, S )
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to produced the obfuscation of P. Additionally, notice that Garb generates

the key as the algorithm Garbns does, which in turn runs GarbCIR(1λ, 1S ) and

takes time poly(λ, S ). Overall, Garb runs in time poly(λ, |M|, S ) as claimed.

• Encode run in time the same as the Encodens algorithm which is

poly(λ, |M|, S ).

• The evaluation algorithm Eval on input (P, x̂) produced by (P,key)
$
←

Garb(1λ, 1S ) and x̂ = Encode(key, x) runs in time poly(λ, |M|, S ) × T ∗, T ∗ =

TM(x), with overwhelming probability.

It follows from the analysis of correctness of GS that with overwhelming

probability over the coins of Garb, the non-succinct garbling M̂ defined by

P satisfies that when evaluated with x̂, the correct output is produced after

T ∗ iterations. Since Eval does not compute the entire non-succinct garbling

M̂ in one shot, but rather, generates and evaluates the garbled circuits in

M̂ one by one. Thus it terminates after producing and evaluating T ∗ gar-

bled circuits. Since the generation and evaluation of each garbled circuit

takes poly(λ, |M|, S ) time, overall Eval runs in time TM(x) × poly(λ, |M|, S ) as

claimed.

Security. Fix any polynomial T ′, any sequence of algorithms {M = Mλ} ∈ {TMT ′
λ },

and any sequence of inputs {x = xλ} where xλ ∈ {0, 1}M.n. Towards showing the

security of GS, we construct a simulator Sim, satisfying that the following two

ensembles are indistinguishable in λ:{
real(1λ,M, x)

}
=

{
(P,key)

$
← Garb(1λ,M), x̂ = Encode(key, x) : (P, x̂)

}
λ
(2.3){

simu(1λ,M, x)
}

=

{
(Q, x̃)

$
← Sim(1λ, |x|, |M|, S ,T,TM(x),M(x)) : (Q, x̃)

}
λ

(2.4)

As discussed in the overview, the simulation will obfuscate the program Q
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used for simulating the non-succinct garbled machine M̃ = (C̃1, · · · , C̃T ). More

precisely,

The simulation algorithm Sim(1λ, |x|, |M|, S ,T,T ∗ = TM(x), y = M(x)):

1. Sample PRF keys: Kα

$
← PRF·Gen(1λ) and Kβ

$
← PRF·Gen(1λ).

2. Obfuscate the circuit Q:

Obfuscate the circuit Q(t) = Qλ,S ,|M|,T
∗,y,Kα,Kβ(t) as described in Fig-

ure 2.1, which is essentially a wrapper program that evaluates Q on t,

using pseudo-random coins {αt, βt} generated by evaluating F on keys

Kα and Kβ and inputs t ∈ [T ]. Obtain Q
$
← iO(1λ,Q).

3. Simulate the garbled input:

Simulate the garbled input x̃ in the same way as simulator Simns

does, but using pseudo-random coins. That is, compute (c̃onf1, st1) =

Sim·GenCIR(1λ, S ; α1), where α1 = F(Kα, 1); set x̃ = c̃onf1.

4. Finally, output (Q, x̃).

The simulator Sim(1λ, |x|, |M|, S ,T,T ∗, y = M(x)) runs in time poly(λ, |M|, S ). This

follows because the simulator simulates the garbled Turing machine by obfus-

cating the program Q. As the program Q simply runs Q using pseudo-random

coins, its size is poly(λ, |M|, S ); thus obfuscation takes time in the same order.

On the other hand, Sim simulates the garbled input x̃ as the simulator Simns

does, which simply invokes SimCIR(1λ, S ) of the circuit garbling scheme, which

takes time poly(λ, S ). Therefore, overall the simulation takes time poly(λ, |M|, S )

as claimed.

Towards showing the indistinguishability between honestly generated gar-

bling (P, x̂)
$
← real(1λ,M, x) and the simulation (Q, x̃)

$
← simu(1λ,M, x) (see equa-

76



tion (2.3) and (2.4) for formal definition of real and simu), we will consider a se-

quence of hybrids hyb0, · · · , hybT , where the output distribution of hyb0 is iden-

tical to real, while that of hybT is identical to simu. In every intermediate hybrid

hybγ, a hybrid simulator HSimγ is invoked, producing a pair (M
γ
, x̃γ), where M

γ

is the obfuscation of (the de-randomized wrapper of) a merged program Mγ

that produces a hybrid chain of garbled circuit as in the security proof of the

non-succinct garbling scheme, where the first γ garbled circuits are simulated

and the rest are generated honestly. More precisely,

The hybrid simulation algorithm HSimγ(1λ,M, x) for γ = 0, · · · ,T :

Compute T ∗ = TM(x) and y = M(x), and the intermediate configuration

confγ+1 as defined by CONFIG(M, x).

1. Sample PRF keys: Kα

$
← PRF·Gen(1λ) and Kβ

$
← PRF·Gen(1λ).

2. Obfuscate the circuitMγ:

Obfuscate the circuit Mγ(t) = (Mγ)λ,S ,M,T
∗,y,confγ+1,Kα,Kβ(t) as described in

Figure 2.1, which is essentially a wrapper program that evaluates the

combined program

Mγ = COMBINE
[
(Q, [γ − 1]), (R, {γ}), (P, [γ + 1,T ])

]
(t ; (αt, αt+1, βt)),

using pseudo-random coins {αt, βt} generated using Kα and Kβ. Ob-

tainM
γ $
← iO(1λ,Mγ).

3. Simulate the garbled input:

If γ > 0, simulate the garbled input x̃γ in the same way as in Sim.

Otherwise, if γ = 0, generate x̃0 honestly, using Garb and Encode.

4. Finally, output (M
γ
, x̃γ).
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CircuitMγ = (Mγ)λ,S ,M,T
∗,y,confγ+1,Kα,Kβ : On input t ∈ [T ], does:

Generate pseudo-random strings αt = F(Kα, t), αt+1 = F(Kα, t + 1) and
βt = F(Kβ, t);

Compute C̃t = Mγ(t ; (αt, αt+1, βt)) and output C̃t, where Mγ is:

(Mγ)λ,S ,M,T
∗,y,confγ+1 =

COMBINE
[
(Q, [γ − 1]), (R, {γ}), (P, [γ + 1,T ])

]
(t ; (αt, αt+1, βt))

The circuits in Figure 2.1, 2.2 and 2.3 are padded to their maximum size.

Figure 2.2: Circuits used in the security analysis of GS

We overload the notation hybγ(1λ,M, x) as the output distribution of the γth

hybrid. By construction, when γ = 0, M0 = P and the garbled input x̃0 is

generated honestly; thus, {hyb0(1λ,M, x)} = {real(1λ,M, x)}; furthermore, when

γ = T , MT = Q and the garbled input x̃T is simulated; thus
{
hybT (1λ,M, x)

}
={

simu(1λ,M, x)
}
. Therefore, to show the security of GS, it boils down to proving

the following claim:

Claim 2. For every γ ≥ 0, the following holds

{
hybγ(1λ,M, x)

}
λ
≈

{
hybγ+1(1λ,M, x)

}
λ

Proof. Fix a γ ∈ N, a sufficiently large λ ∈ N, an M = Mλ and a x = xλ. Note

that the only difference between (M
γ
, x̃γ)

$
← hybγ and (M

γ+1
, x̃γ+1)

$
← hybγ+1 is the

following:

• For every γ, the underlying obfuscated programs Mγ,Mγ+1 differ on their

implementation for at most two inputs, namely γ, γ + 1, and,

• when γ = 0, the garbled input x̃0 is generated honestly in hyb0, whereas x̃1

is simulated in hyb1.
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To show the indistinguishability of the two hybrids, we consider a sequence of

sub-hybrids from Hγ
0 = hybγ to Hγ

7 = hybγ+1. Below we describe these hybrids

Hγ
0, · · ·H

γ
7, and argue that the output distributions of any two subsequent hy-

brids are indistinguishable. We denote by (M
γ

i , x̃
γ
i ) the garbled pair produced in

hybrid Hγ
i for i = 0, · · · , 7. For convenience, below we suppress the superscript

γ, and simply use notations Hi = Hγ
i ,Mi = M

γ

i ,Mi = Mγ
i and x̃i = x̃γi .

Hybrid H1: Generate a garbled pair (M1, x̃1) by running a simulation procedure

that proceeds identically to HSimγ, except from the following modifica-

tions:

• In the first step, puncture the two PRF keys Kα,Kβ at input

γ + 1, and obtain Kα(γ + 1) = PRF·Punc(Kα, γ + 1) and Kβ(γ + 1) =

PRF·Punc(Kβ, γ + 1). Furthermore, compute αγ+1 = F(Kα, γ + 1) and

βγ+1 = F(Kβ, γ + 1).

• In the second step, obfuscate a circuit M1 slightly modified from

Mγ: Instead of having the full PRF keys Kα,Kβ hardwired in, M1 has

the punctured keys Kα(γ + 1),Kβ(γ + 1) and the PRF values αγ+1, βγ+1

hardwired in; M1 proceeds identically to M1, except that it uses the

punctured PRF keys to generate pseudo-random coins correspond-

ing to input t , γ + 1 and directly use αγ+1, βγ+1 as the coins for input

t = γ + 1. See Figure 2.1 for a description ofM1 = Mγ
1.

By construction, H1 only differs from hybγ at which underlying program

is obfuscated, and program M1 has the same functionality as Mγ. Thus

it follows from the security of indistinguishability obfuscator iO that, the

obfuscated programs M
γ

and M1 are indistinguishable. (Furthermore, the

garbled inputs x̃γ and x̃1 in these two hybrids are generated in the same
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way.) Thus, we have that the output (M1, x̃1) of H1 is indistinguishable

from the output (M
γ
, x̃γ) of hybγ. That is,

{
hybγ(1λ,M, x)

}
λ
≈

{
H0(1λ,M, x)

}
λ

Hybrid H2: Generate a garbled pair (M2, x̃2) by running the same simulation

procedure as in H1 except from the following modifications: Instead of us-

ing pseudo-random coins αγ+1 and βγ+1, hybrid H2 samples two sufficiently

long truly random string α′γ+1, β
′
γ+1

$
← {0, 1}poly(λ) and replace αγ+1, βγ+1 with

these truly random strings. More specifically, H2 obfuscates a program

M2 that is identical to M1, but with (Kα(γ + 1),Kβ(γ + 1), α′γ+1, β
′
γ+1) hard-

wired in; furthermore, if γ = 0, α′1 (as opposed to α1) is used to generate

the garbled input x̃2. Since only the punctured keys Kα(γ + 1),Kβ(γ + 1)

are used in the whole simulation procedure, it follows from the pseudo-

randomness of the punctured PRF that the output (M2, x̃2) of H2 is indis-

tinguishable from that (M1 x̃1) of hyb1. That is,

{
H1(1λ,M, x)

}
λ
≈

{
H2(1λ,M, x)

}
λ

Hybrid H3: Generate a garbled pair (M3, x̃3) by running the same simulation

procedure as in H2 with the following modifications:

• Observe that in programM2, α′γ+1, β
′
γ+1 are used in the evaluation of at

most two inputs, γ and γ + 1:

For input γ + 1, program P is invoked with input γ + 1 and random-

ness α′γ+1, αγ+2, β
′
γ+1, in which a circuit Cγ+1 is prepared depending on

αγ+2, and then obfuscated by computing

keyγ+1 = GenCIR(1λ, 1S ;α′γ+1) Ĉγ+1 = GbCIR(keyγ+1,Cγ+1; β′γ+1)
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If γ > 0, for input γ , program R is invoked with input γ and ran-

domness αγ, α′γ+1, βγ, in which a garbled circuit C̃γ is simulated; the

output outγ used for the simulation depends potentially on an honest

garbling of confγ+1, that is,

ĉonfγ+1 = EncodeCIR

(
GenCIR(1λ, 1S ;α′γ+1), confγ+1

)
Using outγ, C̃γ is simulating using randomness αγ, βγ.

First modification: Hybrid H3 receives externally the above pair

Ĉγ+1, ĉonfγ+1. Instead of obfuscatingM2 (which computes Ĉγ+1, ĉonfγ+1

internally), H3 obfuscatesM3 that has Ĉγ+1, ĉonfγ+1 directly hardwired

in (as well as Kα(γ + 1),Kβ(γ + 1)). M3 on input γ + 1, directly outputs

ĉonfγ+1; on input γ, it uses ĉonfγ+1 to compute C̃γ; on all other inputs, it

proceeds identically asM2. (See Figure 2.1 for a description ofM3.) It

is easy to see that when the correct values Ĉγ+1, ĉonfγ+1 are hardwired,

the programM3 has the same functionality asM2.

• In H2, if γ = 0, α′1 is used for garbling the input,

key1 = GenCIR(1λ, 1S ;α′1) ĉonf1 = EncodeCIR(key1, conf1)

where conf1 is the initial state corresponding to x.

Second modification: Instead, if γ = 0, hybrid H3 receives ĉonf1 ex-

ternally, and directly outputs it as the garbled inputs x̂3 = ĉonf1.

When H3 receives the correct values of (ĉonfγ+1, Ĉγ+1) externally, it follows

from the security of iO that the output distribution of H3 is indistinguish-

able from that of H2. That is,

{
H2(1λ,M, x)

}
λ
≈

{
H3(1λ,M, x)

}
λ
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Hybrid H4: Generate a garbled pair (M4, x̃4) by running the same procedure as

in H3, except that H4 receives externally a simulated pair (c̃onfγ+1, C̃γ+1) pro-

duced as follows:

(c̃onfγ+1, stγ+1) = Sim·GenCIR(1λ, S ;α′γ+1) (2.5)

C̃γ+1 = Sim·GbCIR

(
1λ, S , 1q, outγ+1, stγ+1; β′γ+1

)
(2.6)

where outγ+1 is set to be the output of circuit Cγ+1 on input confγ+1. Thus,

it follows from the security of the circuit garbling scheme GSCIR that the

simulated pair (c̃onfγ+1, C̃γ+1) that hybrid H4 receives externally is indis-

tinguishable to the honest pair (ĉonfγ+1, Ĉγ+1) that H3 receives externally.

Since these two hybrids only differ in which pair they receive externally, it

follows that:

{
H3(1λ,M, x)

}
λ
≈

{
H4(1λ,M, x)

}
λ

Hybrid H5: Generate a garbled pair (M5, x̃5) by running the same procedure as

in H4, except that instead of receiving (c̃onfγ+1, C̃γ+1) externally, it computes

them internally using truly random coins α′γ+1, β
′
γ+1. More precisely,

• It obfuscate a program M5 that have Kα(γ + 1),Kβ(γ + 1), α′γ+1, β
′
γ+1

hardwired in:

On input γ + 1, it computes C̃γ+1 using the program R with ran-

domness α′γ+1, αγ+2, β
′
γ+1 (which computes C̃γ+1 as described in equa-

tions (2.5) and (2.6)).

On input γ, it computes C̃γ using the program Q with randomness

αγ, α
′
γ+2, βγ (which computes internally c̃onfγ+1 as described in equa-

tion (2.5)).

On other inputs t , γ, γ + 1, it computes asM4 does.
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• If γ = 0, α′1 is used for computing c̃onf1 as described in equation (2.5),

and then output x̃4 = c̃onf1.

It follows from the fact that M5 computes (c̃onfγ+1, C̃γ+1) correctly inter-

nally, it has the same functionality as M4; thus, the obfuscation of these

two programs are indistinguishable. Combined with the fact that the dis-

tribution of the garbled inputs x̃4 is identical to x̃3, we have that{
H4(1λ,M, x)

}
λ
≈

{
H5(1λ,M, x)

}
λ

Hybrid H6: Generate a garbled pair (M6, x̃6) by running the same procedure

as in H5, except that instead of using truly random coins α′γ+1, β
′
γ+1, use

pseudo-random coins αγ+1 = F(Kα, γ + 1) and βγ+1 = F(Kβ, γ + 1). In par-

ticular, H6 obfuscates a program M6 that is identical to M5 except that

Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1 are hardwired in, and if γ = 0, α1 is used to

generate the garbled input x̃6. It follows from the pseudo-randomness of

the punctured PRF that:{
H6(1λ,M, x)

}
λ
≈

{
H5(1λ,M, x)

}
λ

Hybrid H7: Generate a garbled pair (M7, x̃7) by running the hybrid simulator

HSimγ+1. Note that the only difference between HSimγ+1 and the simu-

lation procedure in H6 is that instead of obfuscating M6 that has tuple

(Kα(γ + 1),Kβ(γ + 1), αγ+1, βγ+1) hardwired in, HSimγ+1 obfuscates Mγ+1 that

has the full PRF keys Kα,Kβ hardwired in and evaluates αγ+1, βγ+1 inter-

nally.

Since Mγ+1 and Mγ

6 has the same functionality, it follows from the security

of iO that {
H6(1λ,M, x)

}
λ
≈

{
H5(1λ,M, x)

}
λ
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Finally, by a hybrid argument, we conclude the claim. �

Given the above claim, by a hybrid argument over γ, we have that

{real(1λ,M, x)} and {simu(1λ,M, x)} are indistinguishable; Hence, GS is a secure

garbling scheme for TM.

2.4 Succinct Garbling in Other Models of Computation

In the section, we observe that our approach for constructing a succinct garbling

scheme for bounded space TM in the previous two sections applies generally

to any bounded space computation (e.g., bounded-space RAM). This immediately

yields a garbling scheme for any model of computation with space-dependent

complexity.

Theorem 10. Assuming the existence of iO for circuits and one-way functions. There

exists a garbling scheme for any abstract model of sequential computation, such as TM

and RAM, with space-dependent complexity.

A Garbing Scheme for Any Bounded Space Computation: Given an underly-

ing circuit garbling scheme GS = (Garb,Encode,Eval) with independent input

encoding, to construct a garbling scheme GSA for {ALλ}, proceed in the follow-

ing two steps:

Step 1: Construct a non-succinct garbling scheme: Observe that the computa-

tion of a machine AL of AL.T steps can be divided into AL.T 1-step “blocks”

that transforms the current configuration to the next; therefore, to garble

AL, it suffices to produce a sequence of “garbled blocks”, one for each 1-step
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block. The actual programs being garbled is an “augmented block”, whose

execution consists of a 1-step block followed by the encoding algorithm of

GS that encodes the output configuration for the next garbled block (when

an output is produced, it is output directly without encoding). The final

garbling then consists of a sequence of T garbled blocks.

Step 2: Compress the size using IO: As before, we then use iO to “compress”

the size of the non-succinct garbling constructed in the first step, by giv-

ing the obfuscation of the algorithm that on input t, runs Garb to garble

the tth augmented block, producing the tth garbled block. The obfuscated

program is the succinct garbled program.

The efficiency and security analysis remains the same as before. This concludes

Theorem 10.

2.4.1 Improved Construction and Analysis

Notice that our construction of GSA uses the underlying circuit garbling scheme

GS in a black-box way. In fact, the scheme does not even require the underlying

garbling scheme to be for circuits—any garbling scheme for any class of algorithms

that is “complete”, in particular can be used to implement the augmented blocks suffices.

Below we show that by plugging in the one-time garbled RAM of [118, 82],

and modifying the construction of Theorem 10 slightly, we can improve the

efficiency of GSA when the algorithm class is RAM. More precisely, we show

the following theorem.

Theorem 11. Assuming the existence of iO for circuits and one-way functions. There

exists a garbling schemeGSRAM for RAM with linear-space-dependent complexity. Fur-
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thermore, for any RAM R and input x, evaluation of a garbled pair (R̂, x̂) produced by

GS
RAM takes time poly(λ, |R|) × (TR(x) + S ).

Towards the theorem, we rely on a basic RAM garbling scheme with two

properties, independent input encoding and linear complexity. For complete-

ness, we describe the two properties in details below and note that they are

satisfied by the construction of garbled RAM of [118, 82].

The Basic RAM Garbling Scheme GS′: Theorem 11 relies on a basic garbling

scheme GS′ = (Garb′, Encode′, Eval′) with the following properties. Let R be a

RAM machine with parameters n,m, S ,T .

Independent input encoding. GS′ has independent input encoding as defined

in Definition 12 with a slight strengthening. We repeat the definition and

highlight the strengthening.

• The garbling algorithm Garb′ consists of:

(key, R̂)
$
← Garb′(1λ,R) : key

$
← Gen′(1λ), R̂

$
← Gb′(key,R)

Strengthening: Different from Definition 12, the PPT key generation

algorithm Gen′ depends only on the security parameter 1λ and not

on the length of the input 1|x|. As a result, the length of key produced

is bounded by poly(λ).

• The simulation procedure Sim′ consists of13:

(R̃, x̃)
$
← Sim′(1λ, (|x|, |R|, n,m, S ,T ),R(x)) :

(x̃, st)
$
← Sim·Gen′(1λ, |x|), R̃

$
← Sim·Gb′(1λ, (|x|, |R|, n,m, S ,T ),R(x), st)

13Note that the simulation procedure described here does not receive the instance running
time TR(x). This is because, as seen shortly, the complexity of the basic RAM garbling scheme
is linear in the time complexity of the RAM machine being garbled, and thus does not have
instance based efficiency.
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Linear complexity. The complexity of algorithms in the garbling scheme is:

• The garbling algorithm Gb′(1λ,R) and evaluation algorithm Eval′(R̂, x̂)

run in time poly(λ, |R|) × T . Note that unlike previous efficiency re-

quirements, this complexity bound here does not explicitly depend

on the lengths of input and output.

• The input encoding algorithm x̂
$
← Encode′(key, x) runs in time linear

in the length of the input poly(λ)|x|.

Instantiation of the Basic Garbling Scheme. We observe that the construction

of [118, 82] satisfies the above three properties, with some small modifications.

• independent input encoding: The construction of [118, 82] is based on Yao’s

garbled circuits. The latter has independent input encoding Gen that de-

pends on the length of the input. The construction of [118, 82] inherits this

property. To remove the dependence on the length of the input, one can

modify the scheme as follows: Let the new key generation algorithm Gen′

sample a PRF seed as the key key = k (which depends only on the secu-

rity parameter), and then augment the garbing and encoding algorithms

to first generate the actual key using Gen with pseudo-random coins pro-

duced with k and then proceed as before.

After the modification, the run-time of the garbling and encoding algo-

rithms increase by poly(λ)TGen(λ, |x|), where TGen(λ, |x|) is the time used by

the original key generation algorithm.

• Linear Complexity: The complexity of the garbling, evaluation and encod-

ing algorithms of the construction of [118, 82] is exactly as required above,
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namely poly(λ, |R|) × T for the first two and poly(λ)|x| for the last one.14

Furthermore, its key generation algorithm runs in time linear in the input

length poly(λ)|x|.

After applying the modification above, we remove the dependency of the

key generation algorithm on the input length (and reduce its run-time to

poly(λ)), while the complexity of garbling, evaluation and encoding re-

main at the same order as desired.

More Efficient Garbling Scheme for Bounds Space RAM: Let GS′ = (Garb′ =

(Gen′,Gb′),

Encode′,Eval′) be a basic garbling scheme as described above, with simulation

procedure Sim′ = (Sim·Gen′,Sim·Gb′). we now construct a garbling scheme GS

for bounded space RAM with improved efficiency. In particular, it has (1) linear-

space dependent complexity and (2) produces garbled RAM with poly(λ, |R|)

overhead (that is, evaluation of R̂, x̂ takes poly(λ, |R|)TR(x) steps). In comparison,

the previous general construction has polynomial space dependent complexity

and poly(λ, |R|, S ) overhead. Towards this, we plug in GS′ and Sim′ into our

general construction, and make the following modifications.

Modification to Step 1: As before, the first step is constructing a non-succinct

garbling scheme, by dividing a RAM computation into small blocks and

garbling all of them using GS′.

The only, and key, difference is, instead of dividing a T step RAM com-

putation into T 1-step “blocks”, dividing it into dT/S e S -step “blocks”.

14In [118, 82], the overhead of garbling is poly(λ) × |R| × poly log(n), where n is the size of the
persistent memory data. Since here we do not consider RAM machine with persistent memory
data, we ignore this term.
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As before, each block is then augmented with the encoding algorithm

Encode′(key, ·) for garbling the output configuration; and each augmented

block is garbled using Garb′, producing garbled blocks.

Efficiency. We now analyze various efficiency parameters.

• Each augmented block, say the tth, is a RAM consisting of S steps

of computation of R followed by Encode′(keyt+1, ·)15—denote the aug-

mented block as B(t,R,keyt+1, ·). Since keyt+1 has size poly(λ), we have,

Ψ = |B| = |R| + poly(λ), TB = poly(λ)S

The latter follows since encoding of an intermediate configuration of

R of size S takes poly(λ)S steps.

• By the efficiency of Gb′, each garbled block has size

Φ = poly(λ, |B|)TB = poly(λ, |R|)S

• Overall, there are dT/S e blocks, resulting in a non-succinct garbled

RAM R̂ of size

|R̂| = dT/S e × Φ = poly(λ, |R|)T

• We note that for any input x of instance complexity T ∗, the out-

put R(x) is produced after evaluating dT ∗/S e garbled blocks, taking

poly(λ, |R|)(T ∗ + S ) steps.

Modification to Step 2: As before, the second step is using obfuscation to

“compress” the size of the non-succinct garbling scheme constructed in

Step 1. However, if using any obfuscator to obfuscate the program that

generates each of dT/S e garbled blocks, it leads to an obfuscated program

15It also has the additional logic for deciding whether the output configuration is a final con-
figuration, and returns the output if so.
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of size at least poly(λ,Φ) = poly(λ, |R|, S ). In this case, the complexity of the

new garbling scheme is not linear in S , and the overhead of the produced

garbled RAM is at least poly(λ, |R|, S ).

Better efficiency: To avoid the polynomial overhead due to obfuscation, we

instead use an iO for circuits with quasi-linear complexity |C| poly(λ, n),

where |C| is the size of the circuit obfuscated and n is the length of the

input. As shown in Appendix 2.6, such an scheme can be constructed

generically from any iO (for circuits), puncturable PRF, and randomized

encoding that is local (as defined in Appendix 2.6 and satisfied, for in-

stance, by Yao’s garbled circuits), all with 2−(n+ω(log λ))-security.

Efficiency. Since the obfuscated programs Pi, Qi and Ri take input a time

index t of length O(log T ), and outputs a garbled block computated in time

poly(λ, |R|)S (roughly the same as Φ). Therefore, the size of the new garbled

RAM (and the complexity for generating it) is,

size of garbled RAM = poly(λ, |R|)S × poly(λ, log T ) = poly(λ, |R|) × S ,

which is linear in the space complexity of R.

Moreover, evaluation of an input x of instance complexity T ∗ requires gen-

erating and evaluating dT ∗/S e garbled blocks, which takes time

run-time of garbled RAM = dT ∗/S e×poly(λ, |R|)×S = poly(λ, |R|)× (S + T ∗) .

This concludes Theorem 11.

Remark 2 (RAM Garbling Scheme with Complexity Linear in the Program Size).

The RAM garbling scheme of Theorem 11 produces garbled RAM of size poly(λ, |R|)×S

and run-time poly(λ, |R|)T ∗ (for an input of instance complexity T ∗); both depending

polynomially in the description size of the underlying RAM |R|. We show that the
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complexity can be improved to depending linearly on |R|, that is, the garbled RAM has

size poly(λ) × (|R| + S ) and run-time poly(λ) × (|R| + S + T ∗).

To achieve this, we need to rely on a basic RAM garbling scheme that satisfies the

properties, independent input encoding and linear complexity, described above, and the

following strengthening: The complexity of the garbling algorithm Gb′ depends linearly

on |R|, that is, poly(λ)(|R|+T ) (as opposed to poly(λ, |R|)T ). To obtain such a basic RAM

garbling scheme, we observe that there is a universal RAM M, such that, any RAM

computation R(x) can be transformed into computing MR(x, |R|), where the description

of R is provided as a part of the initial memory. The universal machine M has constant

size and MR(x, |R|) takes at most cTR(x) steps for some constant c (since each step of R

depends on at most a constant number of bits of the description of R). Then applying

the construction of [118, 82] to M with a persistent database R yields a garbled RAM

of size poly(λ)(T + |R|) (where poly(λ)T corresponds to the size of garbling of M and

poly(λ)|R| corresponds to the garbling of the persistent database R).

Now, instantiate the construction of Theorem 11 with such a basic RAM garbling

scheme, and an additional modification: In Step 1, instead of dividing a T step RAM

computation into dT/S e S -step blocks, divide it into dT/(S + |R|)e (S + |R|)-step blocks;

the rest of the construction follows identically. We now argue that this construction

indeed has complexity linear in |R|. Each augmented block has the same size as before

poly(λ) + |R|, but a longer run-time of poly(λ)(S + |R|). By the complexity of the (new)

basic RAM garbling scheme, each of the garbled block has size poly(λ)(S +|R|). Therefore,

when obfuscating using a iO with quasi-linear complexity, the program that produces

the garbled blocks, it leads to a new garbled RAM of size poly(λ)(S + |R|). The evaluation

of such a garbled RAM with an input x of instance complexity T ∗ takes time dT ∗/(S +

|R|)e × poly(λ)(S + |R|) = poly(λ)(S + |R| + T ∗). Since the construction and analysis is
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essentially the same as in Theorem 11, we omit the details here.

2.5 Applications

In this section, we address two of our main applications of succinct garbling

schemes: succinct iO and publicly-verifiable delegation and SNARGs. (The

rest of the applications outlined in the introduction, follow directly by plugging-

in our succinct garbling into previous work.) In fact, all of our applications

can be instantiated with succinct randomized encodings; namely, they do not

required separate input encoding. We first recall the syntax and properties of

randomized encodings.

Randomized Encodings: A randomized encoding scheme RE = (RE,Dec) for

{ALλ} consists of a randomized encoding algorithm RE and a decoding algo-

rithm Dec. RE(1λ, AL, x), given any function AL ∈ ALλ and input x returns the

encoded computation ÂL(x). Given such an encoding, Dec can decode the re-

sult AL(x). Any garbling scheme GS = (Garb,Encode,Eval) for {ALλ} can be

projected to a corresponding randomized encoding where RE = Garb ◦ Encode

is given by

(ÂL, x̂)
$
← RE(1λ, AL, x), where (ÂL,key)

$
← Garb(1λ, AL, x), x̂ = Encode(key, x)

and the evaluation algorithm Eval is the decoding algorithm Dec.

In accordance, the correctness, security, and efficiency properties are all de-

fined similarly to garbling schemes, as defined in Section 2.2.3 (in particular, it

will be convenient to consider randomized encodings that like garbling schemes

also guarantee the privacy of the program and not just the input). When project-
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ing a garbling scheme to a randomized encoding scheme as above, the random-

ized encoding inherits the corresponding efficiency properties of the garbling

scheme.

2.5.1 From Randomized Encodings to iO

We present a generic transformation from a garbling scheme for an algorithm

class {ALλ} to an indistinguishability obfuscator for {ALλ}, assuming sub-

exponentially indistinguishability obfuscators for circuits. We require that the

algorithm class to have the property that for any λ < λ′ ∈ N, it holds that ev-

ery algorithm AL ∈ ALλ is also contained in ALλ′—we say that such a class is

“monotonically increasing”. For instance, the class of Turing machines TM and

RAM machines RAM are all monotonically increasing.

Proposition 3. Let {ALλ} be any monotonically increasing class of deterministic algo-

rithms. It holds that if there are

• i) a sub-exponentially indistinguishable iO , iOC, for circuits, and

ii) a sub-exponentially indistinguishable randomized encoding RE for {ALλ}.

• then, there is an indistinguishability obfuscator iOA for {ALλ}.

Furthermore, the following efficiency preservation holds.

• if RE has optimal efficiency or I/O-dependent complexity, iOA has I/O-dependent

complexity.

• If RE has space-dependent complexity, so does iOA.
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• If RE and iOC have linear-time-dependent complexity, so does iOA.

Before moving to the proof of the proposition, we first note that combining

Proposition 3 with constructions of garbling schemes for TM and RAM in Sec-

tion 2.3 and 2.4, we directly obtain iO for TM and RAM with space-dependent

complexity.

Theorem 12. Assume a sub-exponentially indistinguishable iO for circuits and sub-

exponentially secure OWF. There is an indistinguishability obfuscator for TM and RAM

with space-dependent complexity.

Proof of Proposition 3. This result relies on the following natural way of obfus-

cating probabilistic circuits, abstracted in [56].

Probabilistic iO . Let iO and F be 2λ
ε-indistinguishable iO and puncturable PRF.

Given a probabilistic circuit C, obfuscate it in the following way: Consider an-

other circuit ΠC,k that on input x, computes C using pseudo-random coins F(k, x)

generated with a hard-wired PRF key k, that is, ΠC,k(x) = C(x; F(k, x)). The ob-

fuscation of C, denoted as piO(1λ,C), is an iO obfuscation of ΠC,k for a randomly

sampled key C, that is,

Ĉ
$
← piO(1λ,C), where k

$
← PRF·Gen(1λ

′

); Ĉ
$
← iO(1λ

′

,ΠC,k)

where λ′ = (λ+ n)1/ε for n = C.n, so that iO and F are negl(λ)2n-indistinguishable.

The work of [56] showed that the above obfuscations are indistinguishable for

circuits whose output distributions are strongly indistinguishable for every in-

put. More specifically, circuits C1 and C2 with the same input length n are

strongly indistinguishable (w.r.t. auxiliary input z) if for every input x ∈ {0, 1}n,

the outputs C1(x) and C2(x) are negl(λ)2−n indistinguishable (given z). Summa-

rizing,
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Lemma 2 (piO for Circuits [56]). Assume sub-exponentially indistinguishable iO for

circuits iOC, and sub-exponentially indistinguishable OWF. Then, for every class {Cλ} of

polynomial-size circuits, and every non-uniform PPT samplable distributionD over the

support of
{
Cλ ×Cλ × {0, 1}poly(λ)

}
, if it holds that for every non-uniform PPT adversary

R, and input x,

∣∣∣ Pr[(C1,C2, z)
$
← Dλ, y

$
← C1(x) : R(C1,C2, x, y, z) = 1]

− Pr[(C1,C2, z)
$
← Dλ, y

$
← C2(x) : R(C1,C2, x, y, z) = 1]

∣∣∣ ≤ negl(λ)2−n

the following ensembles are computationally indistinguishable:

{
C1,C2, piO(1λ,C1), z

}
λ
≈

{
C1,C2, piO(1λ,C2), z

}
λ

For completeness, we include a proof sketch of the lemma.

Proof Sketch of Lemma 2. The lemma essentially follows from complexity level-

ing. To see the proof, first consider a simpler case, where the two circuits C1

and C2 have identical implementation on all but one input x∗, and the outputs

on x∗, C1(x∗) and C2(x∗), are indistinguishable. In this case, it follows directly

from the security iO that obfuscation of Cb, Ĉb
$
← piO(1λ,C1) is indistinguish-

able to the obfuscation of C′b
$
← iO(C′b) where C′b has a punctured key k(x∗) and

Cb(x∗; F(k, x∗)) hardwired in; then, it follows from the pseudo-randomness of

puncturable PRF and the indistinguishability of C1(x∗) and C2(x∗) that iO(C′0)

and iO(C′1) are indistinguishable. Therefore, overall obfuscation of C1 and C2 are

indistinguishable.

Now consider the case where C1 and C2 are sampled from D(1λ), and their

output distributions for every input are negl(λ)2−n-indistinguishable. To show

that their pIO obfuscation are indistinguishable, consider an exponential, 2n,
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number of hybrids, where in each hybrid, a circuit Ci is obfuscated, which out-

puts C2(x) for every input x ≤ i and outputs C1(x) for every input x > i. Since

in every two neighboring hybrids, Ci and Ci+1 are the same except on one input

x∗ = i + 1. By the argument above, neighboring hybrids have a distinguishing

gap O(negl(λ)2−n). Thus, by a hybrid argument, obfuscations of C1 and C2 are

indistinguishable. This concludes the lemma. �

Construction of iO for General Algorithms. Using Lemma 2, we now prove Propo-

sition 3.

Given 2−λ
ε-indistinguishable iO iOC and 2−λ

ε-indistinguishable randomized

encoding RE, let piO be the obfuscator for probabilistic circuits constructed

from iOC (and a sub-exponentially secure puncturable PRF implies by sub-

exponentially secure RE). Our iO for the a general algorithm class {ALλ} is

defined as follows,

ÂL(·)
$
← iOA(1λ, AL) where ÂL(·)

$
← piO(λ,RE(1λ

′

, AL, ·))

where the security parameter λ′ = (λ + n)1/ε for n = AL.n so that RE is negl(λ)2n-

indistinguishable. (Note that the reason that we can use the security parameter

λ′ > λ is because the algorithm class is monotonically increasing and thus AL ∈

ALλ also belongs to ALλ′ .) The correctness of iOA follows from the correctness

of RE and iOC underlying piO. Next, we show the security of iOA.

Security. Fix a polynomial T , a non-uniform PPT samplable distribution D over

the support
{
AL

T
λ ×AL

T
λ × {0, 1}

poly(λ)
}
, such that, with overwhelming probabil-

ity, (AL1, AL2, z) ← D(1λ) satisfies that AL1 and AL2 are functionally equivalent

and has matching parameters. We want to show that the following distributions
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are indistinguishable.{
(AL1, AL2, z)

$
← D(1λ) : (iOA(1λ, AL1), z)

}
λ{

(AL1, AL2, z)
$
← D(1λ) : (iOA(1λ, AL2), z)

}
λ

By construction of iOA, this is equivalent to showing{
(AL1, AL2, z)

$
← D(1λ) : (piO(1λ, RE(1λ

′

, AL1, ·)), z)
}
λ{

(AL1, AL2, z)
$
← D(1λ) : (piO(1λ, RE(1λ

′

, AL2, ·)), z)
}
λ

Consider the sampler D′(1λ) that outputs C′1,C
′
2, z, by sampling (AL1, AL2, z)

$
←

D(1λ) and setting C′b = RE(1λ
′

, ALb, ·). It follows from the security of RE that for

every non-uniform adversary R, and every input x, the output distributions of

C′1(x) and C′2(x) are negl(λ)2n-indistinguishable, given x, z,C′1,C
′
2. Thus, it follows

from Lemma 2 that the above two ensembles are indistinguishable, as well as

the obfuscations of AL1 and AL2.

Efficiency. Finally, we analyze the efficiency of iOA. It is easy to see that piO(1λ,C)

runs in time TpIO(λ,C.n, |C|), where TpIO is a polynomial depending on the run-

ning time of the underlying iO and PRF as well as the parameters of their sub-

exponential security; moreover, if the underlying iO has linear-time-dependent

complexity, ppIO also depends linearly in |C| (still polynomially in λ and C.n). Let

TRE(λ′, |AL|, n,m, S ,T ) be the running time of RE(1λ
′

, AL, x). Overall, the running

time of iOA(1λ, AL) is,

TpIO(λ, n, TRE(λ′, |AL|, n,m, S ,T )) where λ′ = poly(λ, n)

Therefore,

• If RE has optimal efficiency (that is, TRE depends only on m) or I/O-

dependent complexity (that is, TRE does not depend on S ,T ), iOA has I/O-

dependent complexity.
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• If RE has space-dependent complexity (that is, TRE does not depend on T ),

so does iOA.

• If RE and the underlying iO has linear-time-dependent complexity (that is,

TRE depends linearly on T and TpIO depends linearly on |C|), so does iOA.

This concludes the proof of Proposition 3.

More Efficient Construction. Evaluating the iO for TM and RAM obtained in

Theorem 12 on input x, involves evaluating the obfuscated program on x once

to obtain a randomized encoding ÂL(x), and then decode it. When relying on

an arbitrary randomized encoding with space-dependent complexity, the over-

all evaluation takes time TAL(x) × poly(λ, |AL|, S ). When the space is large, the

overhead on run-time is large.

We now improve the evaluation efficiency by combining Proposition 3 with

the specific RAM garbling scheme of Theorem 11.

Theorem 13. Assume a sub-exponentially indistinguishable iO for circuits and sub-

exponentially secure OWFs. There is an indistinguishability obfuscator for TM and

RAM with, where obfuscation of a machine R takes time linear in the space complex-

ity poly(λ, n, |R|) × S , and evaluation of the obfuscated program on input x takes time

poly(λ, n, |R|) × (TR(x) + S ), with n = R.n and S = R.S .

Towards the above theorem, consider instantiating the Proposition 3 using

the RAM garbling scheme of Theorem 11 and a sub-exponentially secure iO

scheme with quasi-linear complexity (implied by sub-exponentially secure iO

and OWF as shown in Appendix 2.6). Recall that the RAM garbling scheme of

Theorem 11 has linear-space-dependent complexity poly(λ, |R|) × S and evalua-

tion time poly(λ, |R|) × (T ∗ + S ) with T ∗ = TR(x); such a garbling scheme leads
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to a randomized encoding algorithm RE with the same encoding and decod-

ing complexity. By the same efficiency analysis as in Proposition 3, this instan-

tiation yields an iO for RAM with linear-space-dependent complexity, namely

poly(λ, |R|, n)S . Therefore, its evaluation time is now poly(λ, |R|, n)×S +poly(λ, |R|)×

(T ∗ + S ), which is poly(λ, |R|, n) × (S + T ∗).

Remark 3 (Indistinguishability Obfuscation with Complexity Linear in the Pro-

gram Size). In remark 2, we showed that the efficiency of our RAM garbling scheme

can be improved to depend only linearly in program description size |R|, namely, it has

garbling complexity of poly(λ)(|R|+S ) and evaluation complexity of poly(λ)(|R|+S +T ∗).

When using such a RAM garbling scheme as the underlying scheme in our construc-

tion of IO scheme for RAM, we obtain an iO scheme with complexity poly(λ, n)(|R|+ S )

and evaluation time poly(λ, n)(|R| + S + T ∗).

2.5.2 Publicly-Verifiable Delegation, SNARGs for P, and Suc-

cinct NIZKs for NP

We now present the publicly-verifiable delegation scheme for bounded-space

computations, following from our succinct randomized encodings, as well as

a general transformation from delegation schemes to succinct non-interactive

arguments. We also note the implications to succinct NIZKs as a corollary of

our succinct iO and the work of [135].
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P-delegation

A delegation system for P is a 2-message protocol between a verifier and a

prover. The verifier consists of two algorithms (G,V), given a (well-formed)

algorithm, input, and security parameter z = (AL, inp, λ), G generates a mes-

sage σ. The prover, given (z, σ), produces a proof π attesting that AL accepts inp

within AL.T steps. V then verifies the proof. In a privately-verifiable system,

the G produces, in addition to the (public) message σ, a secret verification state

τ, and verification byV requires (z, σ, τ, π). In a publicly-verifiable scheme, τ can

be published (together with σ), without compromising soundness.

We shall require that the running time of (G,V) will be significantly smaller

than AL.T , and that the time to prove is polynomially related to AL.T .

Definition (P-Delegation). A prover and verifier (P, (G,V)) constitute a delegation

scheme for P if it satisfies:

1. Completeness: for any z = (AL, inp, λ), such that AL accepts inp within AL.T

steps:

Pr

V (z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(z)

π← P (z, σ)

 = 1 .

2. Soundness: for any poly-size proverP∗, polynomial T (·), there exists a negligible

α(·) such that for any z = (AL, inp, λ), such that AL.T ≤ T (λ), and AL does not

accept inp within AL.T steps:

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(z)

π← P∗(z, σ)

 ≤ α(λ) .

3. Optimal verification and instance-based prover efficiency: There exists a

(universal) polynomial p such that for every z = (AL, inp, λ):
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• the verifier algorithms (G,V) run in time p(λ, |AL|, |inp|, log AL.T );

• the prover P runs in time p(λ, |AL|, |inp|)TAL(x).

3’. Space-dependent verification complexity: The scheme has space-dependent

verification complexity if the running time of the (G,V) may also depend on

space; concretely: there exists a (universal) polynomial p such that for every

z = (AL, inp, λ):

• the verifier algorithms (G,V) run in time p(λ, |AL|, log AL.T, AL.S ).

The system is said to be publicly-verifiable if soundness is maintained when the ma-

licious prover P∗ is also given the verification state τ.

Remark 4 (Input Privacy). Our construction achieves an additional property of input

privacy which states that the first message of the delegation scheme σ leaks no informa-

tion about the input x on which the computation of AL is being delegated, beyond the

output AL(x). This ensures that, in the outsourcing computation application, the server

performing the computation learns no more than is necessary about the input to the

computation.

We next present a publicly-verifiable delegation with fast verification based

on any succinct randomized encoding, and one-way functions.

The scheme. Let f be a one-way function and (RE,Dec) be a randomized en-

coding scheme. We describe (P, (G,V)) as follows. Let z = (AL, inp, λ) be a tuple

consisting of an algorithm, input, and security parameter.

Generator G(z):
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For r ← {0, 1}λ, let AL′(inp, r) be the machine that returns r if AL(inp) = 1 and

⊥ otherwise. G generates and outputs σ← RE(1λ,Π′, (inp, r)) and τ = f (r).

Prover P(z, σ):

P simply runs π← Dec(σ) and outputs π.

VerifierV(z, σ, τ, π):

V outputs 1 if and only if f (π) = τ.

We prove that (P, (G,V)) is a P-delegation scheme as follows.

Theorem 14. If (RE,Dec) is a randomized encoding scheme with optimal complexity

(resp. space dependent complexity), then (P, (G,V)) as described above is a publicly

verifiable P-delegation scheme with optimal verification (resp. space-dependent verifi-

cation).

Proof. The completeness of (P, (G,V)) follows directly from the correctness of

(RE,Dec). Also, note that the running time of the verifier algorithms (G,V)

is related to the running time of RE. Therefore, it also follows directly that

if (RE,Dec) has optimal complexity (resp. space dependent complexity) then

(G,V) satisfies the property of optimal verification (resp. space-dependent veri-

fication), and the instance-based prover efficiency follows from the fact the ran-

domized encoding has instance-efficiency. It remains to show the soundness of

(P, (G,V)).

To show soundness, we will rely on the security of (RE,Dec) and the one-

wayness of f . Assume for contradiction there exists poly-size prover P∗ and
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polynomial p(·) such that for infinitely many z = (AL, inp, λ) where AL does not

accept inp and AL.T ≤ p(λ), we have that

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(z)

π← P∗(z, σ, τ)

 ≥ 1
p(λ)

.

Let Z be the sequence of such z = (AL, inp, λ) and consider any z ∈ Z.

Recall that G(z) samples r ← {0, 1}λ and outputs σ ← RE(1λ, AL′, (inp, r)) and

τ ← f (r). Since AL does not accept inp, we have that AL′(inp, r) outputs ⊥. By

the security of (RE,Dec), there exists a PPT simulator Sim such that the ensem-

bles {RE(1λ, AL′, (inp, r)}r∈{0,1}λ,z∈Z and {Sim(1λ,⊥, AL′, 1|inp|+|r|)}r∈{0,1}λ,z∈Z are indistin-

guishable. Therefore, given a simulated σ← Sim(1λ,⊥, AL′, 1|inp|+|r|) we have that

P∗ still convinces V with some noticeable probability. More formally, for in-

finitely many z ∈ Z, we have that

Pr


V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r ← {0, 1}λ

σ← Sim(1λ,⊥, AL′, 1|inp|+|r|)

τ← f (r)

π← P∗(z, σ, τ)


≥

1
p(λ)

− α(λ) .

for some negligible function α(·).

Recall that V outputs 1 if and only if f (π) = τ. Therefore V(z, σ, τ, π) = 1

implies that P∗ when given τ = f (r) outputs π which is in the pre-image of f (r).

Hence P∗ can be used to break the one-wayness of f and we have a contradic-

tion. This completes the proof of the theorem. �
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SNARGs for P

A succinct non-interactive argument system (SNARG) for P is a delegation sys-

tem where the first message σ is reusable, it is independent of any specific com-

putation, and can be used to verify an unbounded number of computations. In

a privately-verifiableSNARG, soundness might not be guaranteed if the prover

learns the result of verification on different inputs, which can be seen as certain

leakage on the private state τ (this is sometimes referred to as the verifier rejec-

tion problem). Accordingly, in this case, we shall also address a strong soundness

requirement, which says that soundness holds, even in the presence of a verifi-

cation oracle.

Definition (SNARG). A SNARG (P, (G,V)) is defined as a delegation scheme, with

the following change to the syntax of G: the generator G now gets as input a security

parameter, time bound, and input bound λ,T, n ∈ N, and does not get AL, inp as before.

We require that

1. Completeness: for any z = (AL, inp, λ), such that AL.T ≤ T and |AL, inp| ≤ n,

and AL accepts inp:

Pr

V (z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(λ,T, n)

π← P (z, σ)

 = 1 .

2. Soundness: for any poly-size prover P∗, polynomials T (·), n(·), there exists a

negligible α(·) such that for any z = (AL, inp, λ), where AL.T ≤ T (λ), |AL, inp| ≤

n(λ), and AL does not accept inp:

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(λ,T (λ), n(λ))

π← P∗(z, σ)

 ≤ α(λ) .
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2∗. Strong soundness: for any poly-size oracle-aided prover P∗, polynomials

T (·), n(·), there exists a negligible α(·) such that for any z = (AL, inp, λ), where

AL.T ≤ T (λ), |AL, inp| ≤ n(λ), and AL does not accept inp:

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(λ,T (λ), n(λ))

π← P∗V(·,σ,τ,·)(z, σ)

 ≤ α(λ) .

3. Optimal verification and instance-based prover efficiency: There exists a

(universal) polynomial p such that for every z = (AL, inp, λ):

• the verifier algorithms (G,V) run in time p(λ, n(λ), log AL.T );

• the prover P runs in time p(λ, |AL|, |inp|)TAL(inp)).

As before, the system is said to be publicly-verifiable if soundness is main-

tained when the malicious prover is also given the verification state τ. (In this

case, strong soundness follows from standard soundness.) Also, we can natu-

rally extend the definition for the case of semi-succinctness, in which case, G

will also get a space bound S , and the running time of algorithms (G,V) may

also depend on S

Remark 5 (Non-adaptive soundness). Note that in the definition above and in our

construction, we will consider only non-adaptive soundness, as opposed to adaptive

soundness where the malicious prover P∗ can pick the statement z after seeing the first

message σ.

We now show a simple transformation, based on IO, that takes any 2-

message delegation scheme (e.g., the one constructed above), and turns it into a

SNARG forP. The transformation works in either the public or private verifica-

tion setting. Furthermore, it always results in a SNARGwith strong soundness,
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even the delegation we start with does not have strong soundness (such as the

scheme of [106]).

The scheme. Let (Pd, (Gd,Vd)) be a P-delegation scheme, (PRF·Gen,PRF·Punc,F)

be a puncturable PRF scheme, and iO be an indistinguishability obfuscator. We

describe a SNARG (P, (G,V))) as follows.

Let z = (AL, inp, λ) be a tuple consisting of an algorithm, input and security

parameter such that |AL, inp| ≤ n and AL.T ≤ T . For notational convenience,

we decompose Gd into (Gσd ,Gτd ) where Gσd (z) only outputs the message σd and

Gτd (z) only outputs the secret verification state τd.

Generator G(λ,T, n):

1. G samples a puncturable PRF key K ← PRF·Gen(1λ).

2. Let Cσ[K] be a circuit that on input z, runs r ← F(K, z) and outputs σd ←

Gσd (z; r). That is, Cσ runs Gσd to generate a first message of the delegation

scheme, using randomness from the PRF key K. Similarly, Cτ[K] on input

z runs r ← F(K, z) and outputs τd ← Gτd (z; r). G generates the circuits Cσ[K]

and Cτ[K], and pads them to be of size `σ and `τ respectively which will be

specified exactly later in the analysis. For now, we mention that if we use

a delegation scheme with optimal verification then `σ, `τ ≤ poly(λ, n, log T ).

We subsequently assume the circuits Cσ and Cτ are padded.

3. G runs σ← iO(1λ,Cσ[K]), τ← iO(1λ,Cτ[K]) and outputs (σ, τ).

Prover P(z, σ):
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P runs σ on input z to get σd ← σ(z). Note that σd is a first message of the un-

derlying delegation scheme (Pd, (Gd,Vd)). Next, P generates the corresponding

proof of the delegation scheme π← Pd(z, σd) and outputs π.

VerifierV(z, σ, τ, π):

V runs σd ← σ(z), τd ← τ(z), and outputs the result ofVd(z, σd, τd, π).

Theorem 15. If (Pd, (Gd,Vd)) is a privately verifiable (resp. publicly verifiable) P-

delegation scheme, then (P, (G,V))) as described above is a privately verifiable (resp.

publicly verifiable) SNARG with strong soundness. Moreover, if the delegation scheme

has optimal or space-dependent verification and relative prover efficiency, then so does

the SNARG.

Proof. The completeness of (P, (G,V)) follows directly from that of (Pd, (Gd,Vd))

and the correctness of iO . The running time of G(λ,T, n) is polynomial in λ and

the maximum running time of Gd on inputs z = (AL, inp, λ) where |AL, inp| ≤ n

and AL.T ≤ T . Similarly, the running times of P andV are polynomial in λ and

the running times of Pd and Vd respectively. Therefore, the optimal (or space-

dependent) verification and prover efficiency of (Pd, (Gd,Vd)) implies that the

same properties hold for (P, (G,V)).

To show strong soundness of (P, (G,V)), we will rely on the sound-

ness of (Pd, (Gd,Vd)), and the security of iO and the punctured PRF

(PRF·Gen,PRF·Punc,F). We will first consider the privately verifiable setting.

Assume for contradiction there exists poly-size oracle-aided prover P∗, polyno-

mials T (·),n(·),p(·) such that for infinitely many z = (AL, inp, λ), where AL.T ≤
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T (λ), |AL, inp| ≤ n(λ), and AL does not accept inp:

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣
(σ, τ)← G(λ,T (λ), n(λ))

π← P∗V(·,σ,τ,·)(z, σ)

 ≥ 1
p(λ)

.

We will refer to the above probability as the advantage A(z,P∗). We will

now construct a malicious prover P∗d to break the soundness of the delegation

scheme. P∗d gets as input z and σd which is some first message of the delegation

scheme. P∗ runs a subroutineD described in the following paragraph, on input

(z, σd), to obtain a “fake” SNARG message and verification state (σ, τ) which it

will then use to run P∗ and answer its queries. That is, P∗d runs (σ, τ)← D(z, σd),

π← P∗V(·,σ,τ,·)(z, σ) and outputs π. The subroutineD is defined as follows:

SubroutineD(z, σd):

1. D samples a puncturable PRF key K ← PRF·Gen(1λ) and punctures it at

the input z to obtain a punctured key Kz ← PRF·Punc(K, z).

2. Let C∗σ[Kz, σd] be a circuit that on input z∗ behaves as follows: if z∗ = z

then C∗σ simply outputs the hardwired value σd. Otherwise, C∗σ runs r ←

F(Kz, z∗) and outputs the result of Gσd (z∗; r).

3. Similarly, let C∗τ[Kz] be a circuit that on input z∗ behaves as follows: if z∗ = z

then C∗τ simply outputs ⊥. Otherwise, C∗τ runs r ← F(Kz, z∗) and outputs

the result of Gτd (z∗; r).

4. D generates the circuits C∗σ[Kz∗ , σd] and C∗τ[Kz∗] and pads them to sizes `σ

and `τ respectively, where `σ is the maximum size of the circuits C∗σ[Kz∗ , σ
∗
d]

and Cσ[K] and `τ is the maximum size of the circuits C∗τ[Kz∗] and Cτ[K]. We

subsequently assume the circuits C∗σ and C∗τ are padded.

5. D generates σ← iO(1λ,C∗σ[Kz, σd]), τ← iO(1λ,C∗τ[Kz]) and outputs (σ, τ).
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Note that when P∗d uses τ, as generated by D above, to answer P∗’s verifica-

tion oracle queries on the input z then, unlike a “real” verification state, τ simply

outputs ⊥. In this case, P∗d answers the query with the bit 0 (rejecting the proof

submitted in the query).

We now analyze the success probability of P∗d. We want to show there exists

a polynomial p′ such that for infinitely many z = (AL, inp, λ) where AL does not

accept inp the following holds:

Ad(z,P∗d) = Pr

Vd(z, σd, τd, π) = 1

∣∣∣∣∣∣∣∣∣
(σd, τd)← Gd(z)

π← P∗d(z, σd)

 ≥ 1
p′(λ)

.

LetZ be the sequence of such z = (AL, inp, λ).

To show P∗d succeeds with noticeable probability, we will consider a hybrid

malicious prover PHyb
d that is very similar to P∗d except that it also gets the secret

verification state τd as input and uses it in a different subroutine DHyb. We will

first show that for every z ∈ Z, Ad(z,P∗d) = Ad(z,PHyb
d ). Next, we show that re-

lying on the security of the indistinguishability obfuscator and the puncturable

PRF, Ad(z,PHyb
d ) is negligibly close to A(z,P∗) for all z ∈ Z. By assumption,

A(z,P∗), is noticeable and hence we have thatAd(z,P∗d) is noticeable, contradict-

ing the soundness of the P-delegation scheme.

We now describe the hybrid malicious prover PHyb
d . PHyb

d gets as input z and

both σd and τd. It uses the hybrid subroutineDHyb on input (z, σd, τd) to generate

a hybrid “fake” (σ, τ) to run P∗ and answer its queries. However, unlike P∗d, it

uses τ to answer all of P∗’s queries (including those on input z). DHyb is defined

as follows.
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SubroutineDHyb(z, σd, τd):

1. DHyb samples Kz and generates σ exactly as inD. The only difference is in

the generation of τ.

2. Let C∗τ[Kz, τd] be a circuit that on input z∗ behaves as follows: if z∗ = z then

C∗τ simply outputs the hardwired value τd. Otherwise, C∗τ runs r ← F(Kz, z∗)

and outputs the result of Gτd (z∗; r).

3. DHyb generates C∗τ[Kz, τd], pads it to the maximum size of C∗τ[Kz, τd] and

Cτ[K] and generates τ← iO(1λ,C∗τ[Kz, τd]). DHyb outputs (σ, τ).

We now observe that for every z ∈ Z, Ad(z,P∗d) = Ad(z,PHyb
d ). The only

difference in the two experiments is in the view of P∗: when run by P∗d then its

oracle responses are answered using τ as generated byD and when run by PHyb
d ,

its oracle responses are answered using τ as generated by DHyb. However, we

claim that the responses are distributed identically in both cases. They could

only potentially differ on queries on the input z, but since z is a “false” input, i.e.

AL does not accept inp, in both cases, the verification oracle response on such

queries is 0 (reject).

Next we show that there is a negligible function α(·) such that for every z ∈ Z,

|Ad(z,PHyb
d ) −A(z,P∗)| ≤ α(λ)

. We first observe that in the experiment corresponding toAd(z,PHyb
d ), the event

Vd(z, σd, τd, π) = 1 is equivalent to the event V(z, σ, τ, π) = 1 where (σ, τ) ←

DHyb(z, σd, τd). This follows directly from the construction ofV and the fact that
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σ and τ are hardwired to output σd and τd on input z. Hence we have that

Ad(z,PHyb
d ) = Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(σd, τd)← Gd(z)

(σ, τ)← DHyb(z, σd, τd)

π← P∗V(·,σ,τ,·)(z, σ)

 .

Now viewed this way, we can observe that the only difference between the

above experiment and that of A(z,P∗) is in how (σ, τ) are generated. In the

above experiment, (σ, τ) comes fromDHyb and Gd whereas in the experiment for

A(z,P∗), (σ, τ) comes from G. It suffices to show the following claim:

Claim 2. The following ensembles are computationally indistinguishable.

{(σ, τ) : (σ, τ, π)← DHyb(z, σd, τd), (σd, τd)← Gd(z)}z∈Z (2.7)

≈c{(σ, τ) : (σ, τ)← G(λ,T (λ), n(λ))}z∈Z (2.8)

Proof. Recall that in ensemble (2.7), σ ← iO(C∗σ[Kz, σd]) where Kz is a PRF key

punctured at input z and C∗σ on all input z outputs σd and on all other inputs z∗

outputs Gd(z∗; F(Kz, z∗)). However, in ensemble (2.8), σ← iO(Cσ[K]) where C on

input z∗ outputs Gd(z∗; F(K, z∗)). The difference between τ in ensembles (2.7) and

(2.8) is the same. Indistinguishability follows from the security of iO and that

of (PRF·Gen,PRF·Punc,F) in the standard way. We provide a brief overview.

Consider a hybrid ensemble that is identical to ensemble (2.7) except that

instead of uniform randomness Gd uses randomness from F(K, z) where K is a

PRF key. K is then punctured at input z and given to DHyb to use as Kz. By

the security of the punctured PRF, this hybrid ensemble is indistinguishable

from ensemble (2.7). Furthermore, the circuits obfuscated as σ and τ in this

hybrid ensemble and in ensemble (2.8) are functionally equivalent. Hence, by
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the security of iO , ensemble (2.8) is indistinguishable from the hybrid ensemble.

A hybrid argument completes the proof of the claim. �

This completes the proof of strong soundness in the privately-verifiable set-

ting. Proving strong soundness in the publicly-verifiable setting is very similar .

The malicious prover for the SNARGP∗ now also requires τ as input to generate

the convincing proof π. On the other hand the prover we want to construct for

the delegation scheme P∗d gets τd as input from the challenger. P∗d uses the same

strategy as PHyb
d to generate τ and simply gives it to P∗. Using the same proof

as above, we have that if P∗ succeeds with noticeable probability then so does

P∗d. �

Succinct Perfect NIZK for NP

In this section we briefly note that using the succinct indistinguishability ob-

fuscator from Section 2.5.1 in the construction of [134] we can obtain a NIZK

argument scheme for any NP language RL that is perfect zero-knowledge and

additionally succinct in the following sense: Let ΠR be a uniform programs that

computes the NP relation R(x,w), and let τ(n) and s(n) be respectively bounds on

the length of witness and space needed by ΠR for n-bit statements. The length of

the CRS of the scheme for proving n-bit statements grows polynomially with n,

τ(n), and s(n), (and is essentially independent of the verification time of the lan-

guage). Below We provide a brief overview of the [134] construction and how it

can be made succinct using succinct indistinguishability obfuscation.

In [134], the NIZK scheme relies on indistinguishability obfuscation for cir-

cuits as follows: the CRS contains an obfuscation of two circuits that contain the
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same PRF key. The first obfuscation is used by the Prover to generate proofs: the

circuit takes as input a statement and witness (x,w) of lengthes n and τ(n), and

outputs the image of the input under the PRF as the proof if the witness is valid,

that is, ΠR(x,w) = 1. The second obfuscation is used by the Verifier to check if

this proof is valid. [134] show how to use this idea relying on indistinguisha-

bility obfuscation and puncturable PRFs. In their construction, the length of

the proof is succinct: it depends only on the security parameter. However, the

length of the CRS is related to the size of the circuits obfuscated in the CRS,

which is related to the verification time. We note that by obfuscating the pair of

Turing machines that perform the above functionality, and using our succinct

indistinguishability obfuscator instead, the length of the CRS can be made to

depend on the statement and witness lengthes, as well as the space complexity

of the verification program, independent of the verification time.

Note that this succinct construction relies on our succinct indistinguishabil-

ity obfuscator which in turn relies on sub-exponentially secure iO for circuits (as

opposed to standard IO for circuits which the [134] construction is based on).

Theorem 16. (Follows from [134]) Assuming sub-exponentially secure iO for circuits

and sub-exponentially secure OWFs, there exists a NIZK argument scheme for every

NP language determined by a uniform polynomial-time program ΠR with the following

properties:

1. The scheme is perfectly zero knowledge.

2. The scheme has adaptive soundness16.

16The perfect NIZK construction of [134] only satisfies non-adaptive soundness. But by a
standard complexity leveraging trick, it can be made to satisfy adaptive soundness. Since we
anyway assume sub-exponential security of the iO this comes at no cost for us.
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3. There are universal polynomials p, p′ and p′′, such that the length of the CRS

of the scheme for verifying statements x of length n is p(λ, n, τ(n), s(n)), where

λ is the security parameter, τ(n) is a bound on the length of witness, and s(n)

is the space complexity of ΠR for verifying n-bit statements. The length of the

proof is p′(λ). The run-time of the prover for statement and witness (x,w) is

p′′(λ, n, τ(n), s(n))T , where T is the run-time of ΠR(x,w).

Remark 6 (Improved Efficiency of Delegation and SNARGs). When plugging in

the more efficient garbling scheme of Remark 2, we directly obtain a publicly verifiable

delegation scheme that the verification complexity is poly(λ)(|AL| + AL.S + |x|) and

the prover complexity for a T -time computation AL(x) is poly(λ)(|AL| + AL.S + T ).

Furthermore, combining this delegation scheme with Theorem 15, while applying the

trick of “obfuscating in a piecemeal fashion” as in Section 2.4.1 and 2.5.1, we obtain a

SNARG for P with the same verification and prover efficiency.

Finally, using the more efficiency succinct iO of Remark 3 in Theorem 16, the size

of the CRS can be improved to poly(λ, n, τ(n)) · s(n), and the prover efficiency can be

improved to poly(λ, n, τ(n))(s(n) + T ).
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2.6 Obfuscating Circuits with Quasi-Linear Blowup

In general, when considering iO for circuits, the size of an obfuscation |iO(C)| (or

more generally the time to required to obfuscate) is allowed to be an arbitrary

polynomial in the original circuit-size |C|. In known candidate constructions

(e.g., [70]) the blow-up is quadratic (see discussion in [78]). In this section, we

show how to construct from iO and one-way functions, iO for circuits where the

blowup is quasi-linear.

The high-level idea. The transformation relies on similar ideas to those used

in Section 2.5.1 to construct succinct iO from succinct randomized encodings,

which in turn go back to the bootstrapping technique of Applebaum [7]. Con-

cretely, we rely on plain randomized encodings [102, 11] for circuits are known

to have the following basic locality property: given a circuit C with s gates and

n-bit input x, computing a randomized encoding Ĉ(x; R) can be decomposed

into s computations Ĉ1(x; R), . . . , Ĉs(x; R), each of fixed size ` independent of the

circuit size |C|. In particular, each such computation Ĉi(x; R) involves at most `

bits of the shared randomness R.

Similarly to the transformation in Section 2.5.1, the transformation here is

based on the basic idea of obfuscating the circuit that computes the randomized

encoding Ĉ(x; r) for any input x, while deriving the randomness R, by applying a

puncturable PRF to the input x. The only difference is that, rather than obfuscat-

ing this circuit as a whole, we separately obfuscate s smaller circuits computing

the corresponding Ĉi(x; R). To make sure that deriving the randomness is also

local, we associate r = |R| PRF keys K1, . . . ,Kr with each of the bits of the shared

randomness R. Each one of the s obfuscated circuits only includes the PRF keys
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required for its local computation. The corresponding bits of randomness are

again derived by applying the corresponding PRFs to the input x.

The gain is that the size of the resulting obfuscated circuit is thus s · poly(λ, n)

as required. The proof of security relies on a variant of the probabilistic iO

argument invoked in Section 2.5.1, with the difference that puncturing is per-

formed simultaneously across all r PRF keys. Accordingly, it incurs a 2n security

loss in the input length n (which is polynomial when considering circuits with

logarithmic-size inputs, as is often the case in this work).

We next describe the transformation in more detail, and sketch the proof of se-

curity. We start by defining the required notion of locality for the randomized

encoding.

Definition (Locality of Randomized Encodings). A randomized encoding RE =

(RE,Dec) for circuits is said to be local if

RE(1λ,C, x; R) = Ĉ1(x; R|S 1), . . . , Ĉs(x; R|S s) ,

where s = Θ(|C|), S i ⊆ {1, . . . , |R|}, R|S i is the restriction of R to S i, and the following

properties are satisfied:

• Ĉi is a circuit of fixed size `(λ, |x|) = poly(λ, |x|), independent of |C|.

• The circuits
{
Ĉi

}
and sets {S i} can be computed from C in time |C| · poly(λ, |x|).

• Decoding can be done in time |C| · poly(λ, |x|).

Such randomized encodings can be constructed based on any one-way func-

tion [138, 11].
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A qausi-linear obfuscator iO∗. we now describe the new obfuscator. The obfus-

cator relies on the following building blocks:

• A randomized encoding RE = (RE,Dec) for circuits that is local and which

used randomness of length at most r = r(|C|, λ).

• An indistinguishability obfuscator iO for circuits (with arbitrary polyno-

mial blowup).

• A puncturable PRF (PRF·Gen,PRF·Punc,F).

All building blocks are assumed to be 2−n+ω(log λ)-secure.

The obfuscator iO∗(1λ,C) proceeds as follows:

1. Compute the circuits Ĉ1(·; ·), . . . , Ĉs(·; ·) and sets S 1, . . . , S s.

2. Sample PRF keys K1, . . . ,Kr ← PRF·Gen(1λ).

3. For each i ∈ [s], obfuscate using iO the circuit Ci that has hardwired{
K j : j ∈ S i

}
and given x operates as follows:

• Derive randomness R|S i by invoking FK j(x) for j ∈ S i.

• Output Ĉi(x,R|S i).

The circuit is further padded to be of total size is `(λ, x), where ` is deter-

mined in the analysis.

4. Output the obfuscations iO(C1), . . . , iO(Cs).

To evaluate iO∗(1λ,C) on input x, first evaluate each iO(Ci) on x, obtain the ran-

domized encoding

Ĉ(x) = Ĉ1(x; R|S 1), . . . , Ĉs(x; R|S s) ,
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end decode to obtain the result C(x).

Proposition. iO∗ is a circuit obfuscator with qausi-linear blowup.

Proof sketch. The functionality of iO∗ follows directly from the functionality of

the underlying iO and the correctness of decoding. The fact that the size

|iO∗(1λ,C)| obfuscated circuit is |C| · poly(λ, |x|), follows from the locality of the

randomized encoding. We next sketch the security.

We use a probabilistic iO argument similar to the one used in Section 2.5.1.

Concretely, given two circuits C,C′ of the same size and functionality, we con-

sider 2n + 1 hybrids that transition from iO∗(1λ,C) to iO∗(1λ,C′). In the jth hybrid,

the s obfuscations are with respect to hybrid circuits C j
1, . . . ,C

j
s where C j

i uses Ĉi

for all inputs x < j and Ĉ′i for all inputs x ≥ j. Each two consecutive hybrids

only differ on a single point j. Similarly to Section 2.5.1, we puncture the un-

derlying PRFs at this point j, and hardwire the values Ĉ1(x; R|S 1), . . . , Ĉs(x; R|S s)

(or Ĉ′1(x; R|S 1), . . . , Ĉ′s(x; R|S s), respectively), using true randomness instead of

pseudo-randomness. Then we can rely on the security of the randomized en-

codings to switch between the two.

The padding parameter `(λ, |x|) is chosen to account for the above hybrids

(and only induces quasi-linear blowup). �
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We describe circuits Mγ
1 to Mγ

6. They all have parameters λ, S ,M,T ∗, y, confγ+1
hardwired in; for simplicity, we suppress these parameters in the superscript.

CircuitMγ
1 = (Mγ

1)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 : On input t ∈ [T ], does:

If t , γ, generate pseudo-random string αt+1 = F(Kα(γ + 1), t + 1).

If t , γ + 1, generate pseudo-random strings αt+1 = F(Kα(γ + 1), t) and
βt = F(Kβ(γ + 1), t).

Proceed asMγ does using random coins αt, αt+1, βt.

CircuitMγ
2 = (Mγ

2)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 :

Identical to (Mγ
1)Kα(γ+1),Kβ(γ+1),α′γ+1,β

′
γ+1 , with α′γ+1, β

′
γ+1 sampled at random.

CircuitMγ
3 = (Mγ

3)Kα(γ+1),Kβ(γ+1),Ĉγ+1,ĉonfγ+1 : On input t ∈ [T ], does:

If t = γ + 1, output Ĉγ+1.

If t = γ, set outγ using ĉonfγ+1 as in Step 1 of program R; simulate and
output C̃γ as in Step 2 of R.

Otherwise, compute as M
γ
2 does using the punctured keys

Kα(γ + 1),Kβ(γ + 1).

CircuitMγ
4 = (Mγ

4)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 :

Identical to (Mγ
3)Kα(γ+1),Kβ(γ+1),C̃γ+1,c̃onfγ+1 , with simulated garbling pair

C̃γ+1, c̃onfγ+1.

CircuitMγ
5 = (Mγ

5)Kα(γ+1),Kβ(γ+1),α′γ+1,β
′
γ+1 : On input t ∈ [T ], does:

If t = γ + 1, compute C̃γ+1 using program R with randomness
α′γ+1, αγ+2, β

′
γ+1.

If t = γ, compute C̃γ using program Q, which internally computes c̃onfγ+1
for setting the output outγ using randomness α′γ+1.

Otherwise, compute as M
γ
4 does using the punctured keys

Kα(γ + 1),Kβ(γ + 1).

CircuitMγ
6 = (Mγ

6)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 :

Identical to (Mγ
5)Kα(γ+1),Kβ(γ+1),αγ+1,βγ+1 , with αγ+1 = F(Kα, γ + 1), βγ+1 =

F(Kβ, γ + 1)

The circuits in Figure 2.1, 2.2 and 2.3 are padded to their maximum size.

Figure 2.3: Circuits used in the security analysis of GS, continued
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CHAPTER 3

INDISTINGUISHABILITY OBFUSCATION FROM

SEMANTICALLY-SECURE MULTILINEAR ENCODINGS

This chapter contains joint work with Rafael Pass (Cornell University) and

Karn Seth (Cornell University).

3.1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding

its implementation details (making it hard to “reverse-engineer”), while pre-

serving the functionality (i.e, input/output behavior) of the program. Precisely

defining what it means to “scramble” a program is non-trivial: on the one hand,

we want a definition that can be plausibly satisfied, on the other hand, we want

a definition that is useful for applications.

A first formal definition of such program obfuscation was provided by Hada

[98]: roughly speaking, Hada’s definition—let us refer to it as strongly virtual

black-box—is formalized using the simulation paradigm. It requires that any-

thing an attacker can learn from the obfuscated code, could be simulated using

just black-box access to the functionality.1 Unfortunately, as noted by Hada,

only learnable functionalities can satisfy such a strong notion of obfuscation: if

the attacker simply outputs the code it is given, the simulator must be able to

recover the code by simply querying the functionality and thus the functionality

must be learnable.
1Hada actually considered a slight distributional weakening of this definition.
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An in-depth study of program obfuscation was initiated in the seminal work

of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [17]. Their

central result shows that even if we consider a more relaxed simulation-based

definition of program obfuscation—called virtual black-box (VBB) obfuscation—

where the attacker is restricted to simply outputting a single bit, impossibil-

ity can still be established.2 Their result is even stronger, demonstrating the

existence of families of functions such that given black-box access to fs (for a

randomly chosen s), not even a single bit of s can be guessed with probability

significantly better than 1/2, but given the code of any program that computes

fs, the entire secret s can be recovered. Thus, even quite weak simulation-based

notions of obfuscation are impossible.

But weaker notions of obfuscation may be achievable, and may still suffice

for (some) applications. Indeed, Barak et al. [17] also suggested two such no-

tions:

• The notion of indistinguishability obfuscation, first defined by Barak et al. [17]

and explored by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [70],

roughly speaking requires that obfuscations O(C1) and O(C2) of any two

equivalent circuits C1 and C2 (i.e., whose outputs agree on all inputs) from

some class C are computationally indistinguishable.

• The notion of differing-input obfuscation, first defined by Barak et al. [17]

and explored by Boyle, Chung and Pass [42] and by Ananth, Boneh, Garg,

Sahai and Zhandry [2] strengthens the notion of indistinguishability ob-

fuscation to also require that even if C1 and C2 are not equivalent circuits,

if an attacker can distinguish obfuscations O(C1) and O(C2), then the at-

2A similar notion of security (without referring to obfuscation) was considered even earlier
by Canetti [53] in the special case of what is now referred to as point-function obfuscation.
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tacker must “know” an input x such that C1(x) , C2(x), and this input can

be efficiently “extracted” from the attacker.

In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and

Waters [70] provided the first candidate constructions of indistinguishability ob-

fuscators for all polynomial-size circuits, based on so-called multilinear (a.k.a.

graded) encodings [38, 133, 66]—for which candidate constructions were recently

discovered in the seminal work of Garg, Gentry and Halevi [66], and more re-

cently, alternative constructions were provided by Coron, Lepoint and Tibouchi

[61].

The obfuscator construction of Garg et al proceeds in two steps. They first

provide a candidate construction of an indistinguishability obfuscator for NC1

(this construction is essentially assumed to be secure); next, they demonstrate

a “bootstrapping” theorem showing how to use fully homomorphic encryption

(FHE) schemes [79] and indistinguishability obfuscators for NC1 to obtain in-

distinguishability obfuscators for all polynomial-size circuits. Further construc-

tions of obfuscators for NC1 were subsequently provided by Brakerski and Roth-

blum [50] and Barak, Garg, Kalai, Paneth and Sahai [16]—in fact, these construc-

tions achieve the even stronger notion of virtual-black-box obfuscation in ide-

alized “generic” multilinear encoding models. Additionally, Boyle, Chung and

Pass [42] present an alternative bootstrapping theorem, showing how to employ

differing-input obfuscations for NC1 to obtain differing-input (and thus also in-

distinguishability) obfuscation for both circuits and Turing machines. (Ananth

et al [2] also provide Turing machine differing-input obfuscators, but start in-

stead from differing-input obfuscators for polynomial-size circuits.)

In parallel with the development of candidate obfuscation constructions,
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several surprising applications of both indistinguishability and differing-input

obfuscations have emerged (see e.g., [70, 134, 99, 41, 69, 42], and more recently

[28, 46, 88, 111, 110]). Most notable among these is the work of Sahai and Wa-

ters [134] (and the “punctured program” paradigm it introduces) which shows

that for some interesting applications of virtual black-box obfuscation (such as

turning private-key primitives into public-key one), the weaker notion of in-

distinguishability obfuscation suffices. Furthermore, as shown by Goldwasser

and Rothblum [96], indistinguishability obfuscators provide a very nice “best-

possible” obfuscation guarantee: if a functionality can be VBB obfuscated (even

non-efficiently!), then any indistinguishability obfuscator for this functionality

is VBB secure. Finally, as shown by Boyle, Chung and Pass [42] indistinguisha-

bility obfuscation in fact implies a notion of differing-input obfuscation (when

restricted to programs that differ on polynomially-many inputs); and this no-

tion already suffices for some applications of differing-input obfuscation (see

e.g., [23], [51], [52]).

3.1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains open:

Can the security of general-purpose indistinguishability obfuscator be re-

duced to some “natural” intractability assumption?

The principal goal of the current paper is to make progress toward addressing

this question. Note that while the construction of indistinguishability obfusca-

tion of Garg et al is based on some intractability assumption, the assumption
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is very tightly tied to their scheme—in essence, the assumption stipulates that

their scheme is a secure indistinguishability obfuscator. The VBB constructions

of Brakerski and Rothblum [50] and Barak et al [16] give us more confidence

in the plausible security of their obfuscators, in that they show that at least

“generic” attacks—that treat multilinear encoding as if they were “physical en-

velopes” on which multilinear operations can be performed—cannot be used

to break security of the obfuscators. But at the same time, non-generic attacks

against their scheme are known—since general-purpose VBB obfuscation is im-

possible. Thus, it is not clear to what extent security arguments in the generic

multilinear encoding model should make us more confident that these construc-

tions satisfy e.g., a notion of indistinguishability obfuscation. In particular, the

question of to what extent one can capture “real-world” security properties from

security proofs in the generic model through a “meta-assumption” (regarding

multilinear encodings) was raised (but not investigated) in [16]; see Remark 1

there.

In this work, we initiate a study of the above-mentioned question:

• We are concerned with the question of whether some succinct and general

assumption (that is interesting in its own right, and is not “tailored” to

a particular obfuscation construction) about some low-level primitive for

which candidate constructions are known (e.g., multilinear encodings),

can be used to obtain indistinguishability obfuscation.

• More importantly, we are interested in reducing the security of the obfusca-

tion to some simpler assumption, not just in terms of “description size” but

in terms of computational complexity—that is, we are not interested in as-

sumptions that “directly” (without any security reduction) imply security
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of the obfuscation.

• Finally, ideally, we would like the assumption to be efficiently falsifiable

[123], so that it is possible to efficiently check whether the assumption is

broken. This is particularly pressing since the assumption that a particular

scheme (e.g., one of the schemes of [70, 50, 16]) is an indistinguishability

obfuscator is not an efficiently falsifiable assumption, making it hard to

check whether they can be broken or not: a presumed attacker must ex-

hibit two functionally-equivalent circuits C1 and C2 that it can distinguish

obfuscations of; but checking whether two circuits are functionally equiv-

alent may not be polynomial-time computable. (In fact, assuming the exis-

tence of indistinguishability obfuscation and one-way functions, it is easy

to come up with a method to sample C1, C2, z such that with high probabil-

ity C1(z) , C2(z) (and thus, given z, we can easily distinguish obfuscations

of them), yet the pair of circuits (C1,C2) are indistinguishable from a pair of

functionally equivalent circuits.3 Thus, there are ”fake attacks” on indis-

tinguishability obfuscation that cannot be efficiently distinguished from a

real attack.)

3.1.2 Security of Multilinear (Graded) Encodings

Towards explaining the assumptions we consider, let us start by briefly recalling

multilinear (a.k.a. graded) encoding schemes [66, 70]. Roughly speaking, such

3In particular, (mirroring the ideas from the lower bound for witness encryption of [75]),
given a statement x, let Cx

b be an obfuscation of a circuit that given a witness w outputs b iff w is
an NP-witness for the statement x (and⊥ otherwise). If x is false, then by the indistinguishability
obfuscation property, (Cx

0,C
x
1) is indistinguishable from two obfuscations of the same constant ⊥

function. This still holds even if we sample a true x (and its associated witness z) from a hard-on-
the-average language (as long as we do not give z to the distinguisher). Yet given the trapdoor
z, we can clearly distinguish Cx

0,C
x
1 and also obfuscations of them.
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schemes enable anyone that has access to a public parameter pp and encodings

Ex
S = Enc(x, S ), Ey

S = Enc(y, S ′) of ring elements x, y under the sets S , S ′ ⊂ [k] to

efficiently:4

• compute an encoding Ex·y
S∪S ′ of x ·y under the set S ∪S ′, as long as S ∩S ′ = ∅;

• compute an encoding Ex+y
S of x + y under the set S as long as S = S ′;

• compute an encoding Ex−y
S of x − y under the set S as long as S = S ′.

(Given just access to the public-parameter pp, generating an encoding to a par-

ticular element x may not be efficient; however, it can be efficiently done given

access to the secret parameter sp.) Additionally, given an encoding Ex
S where the

set S is the whole universe [k]—called the “target set”—we can efficiently check

whether x = 0 (i.e., we can “zero-test” encodings under the target set [k].) In

essence, multilinear encodings enable computations of certain restricted set of

arithmetic circuits (determined by the sets S under which the elements are en-

coded) and finally determine whether the output of the circuit is 0; we refer to

these as the legal arithmetic circuits.

Semantical Security of Multilinear (Graded) Encodings The above description

only explains the functionality of multilinear encodings, but does not discuss se-

curity. As far as we are aware, there have been two approaches to defining secu-

rity of multilinear encodings. The first approach, initiated in [66], stipulates spe-

cific hardness assumptions closely related to the DDH assumption. The second

approach instead focuses on generic attackers and assumes that the attacker does

4Just as [50, 16], we here rely on “set-based” graded encoding; these were originally called
“generalized” graded encodings in [66]. Following [70, 16] (and in particular the notion of a
“multilinear jigsaw puzzles” in [70]), we additionally enable anyone with the secret parameter
to encode any elements (as opposed to just random elements as in [66]).
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not get to see the actual encodings but instead can only access them through

legal arithmetic circuits.

In this work, we consider the first approach, but attempt to capture a gen-

eral class of algebraic “decisional” assumptions (such as the the graded DDH

assumption of [66]) which hold against generic attackers (and as such, it can be

viewed as a merge of the two approaches). In essence, our notion of (single-

message) semantical security attempts to capture the intuition that encodings of

elements m0 and m1 (under the set S ) are indistinguishable in the presence of en-

codings of “auxiliary” elements ~z (under sets ~T ), as long as m0,m1,~z are sampled

from any “nice” distribution D; in the context of a graded DDH assumption,

think of ~z as a vector of independent uniform elements, m0 as the product of

the elements in ~z and m1 as an independent uniform element. We analogously

consider stronger notions of constant-message and multi-message semantical se-

curity, where m0,m1 (and S ) are replaced by either constant-length or arbitrary

polynomial-length vectors ~m0, ~m1 of elements (and sets ~S ).

Defining what makes a distribution D “nice” turns out to be quite non-trivial:

A first (and minimal) approach—similar to e.g., the uber assumption of [35]

in the context of bilinear maps—would be to simply require that D samples

elements ~m0, ~m1,~z such that no generic attacker can distinguish ~m0,~z and ~m1,~z.

As we discuss in Section 3.1.3, the most natural formalization of this approach

can be attacked assuming standard cryptographic hardness assumptions. The

distribution D considered in the attack, however, is “unnatural” in the sense that

encodings of ~mb,~z actually leak information about ~mb even to generic attackers

(in fact, this information fully determines the bit b, it is just that it cannot be

computed in polynomial time).
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Our notion of a valid message distribution disallows such information

leakage w.r.t. generic attacks. More precisely, we require that every (even

unbounded-size) legal arithmetic circuit C is constant over (mb,~z), b ∈ {0, 1} with

overwhelming probability; that is, there exists some bit c such that with over-

whelming probability over m0,m1,~z ← D, C(mb,~z) = c for b ∈ {0, 1} (recall that

a legal arithmetic circuit needs to end with a zero-test and thus the output of

the circuit will be either 0 or 1). We refer to any distribution D satisfying this

property as being valid, and our formal definition of semantical security now

only quantifies over such valid message distributions.

Obfuscation from Semantically-Secure Multilinear Encodings As a starting

point, we observe that slight variants of the constructions of [50, 16] can

be shown to satisfy indistinguishability obfuscation for NC1 assuming multi-

message semantically-secure multilinear encodings. In fact, any VBB secure ob-

fuscation in the generic model where the construction only releases encodings

of elements (as the constructions of [50, 16] do) satisfies indistinguishability ob-

fuscation assuming a slight strengthening of multi-message semantical security

where validity only considers polynomial-size (as opposed to arbitrary-size) le-

gal arithmetic circuits:5 let ~m0 denote the elements corresponding to an obfus-

cation of some program Π0, and ~m1 the elements corresponding to an obfusca-

tion of some functionally equivalent program Π1. VBB security implies that all

polynomial-size legal arithmetic circuits are constant with overwhelming prob-

ability over both ~m0 and ~m1 (as any such query can be simulated given black-

box access to the functionality of the program), and thus encodings of ~m0 and

~m1 (i.e., obfuscations of Π0 and Π1) are indistinguishable. By slightly tweaking

5We thank Sanjam Garg for this observation.
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the construction of [16] and the analysis6, we can extend this to hold against

all (arbitrary-size) legal arithmetic circuits, and thus indistinguishability of the

encodings (which implies indistinguishability of the obfuscations) follows as a

direct consequence of the multi-message security assumption.

While this observation does takes us a step closer towards basing the secu-

rity of obfuscation on a simple, natural, assumption, it is unappealing in that the

assumption itself directly implies the security of the scheme (without any secu-

rity reduction); that is, it does not deal with our second desiderata of reducing

security to a simpler assumption—in particular, simply assuming that the (slight

variant of the) scheme of [16] is secure is a special case of the multi-message

security assumption.

Our central result shows how to construct indistinguishability obfuscators

for NC1 based on the existence of constant-message semantically-secure multilin-

ear encodings; in the sequel, we simply refer to such schemes as being seman-

tically secure (dropping “constant-message” from the notation). Note that the

constant-message restriction not only simplifes (and reduces the complexity) of

the assumption, it also takes us a step closer to the more standard GDDH as-

sumption. (As far as we know, essentially all DDH-type assumptions in “stan-

dard”/bilinear or multilinear settings consider a constant-message setting, stip-

ulating indistinguishability of either a single or a constant number of elements in

the presence of polynomially many auxiliary elements. It is thus safe to say that

such constant-message indistinguishability assumptions are significantly better

understood their multi-message counterpart.)

Theorem 3 (Informally stated). Assume the existence of semantically secure multi-

6Briefly, we need to tweak the construction to ensure a “perfect” simulation property.
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linear encodings. Then there exists an indistinguishability obfuscator for NC1.

As far as we know, this is the first result presenting indistinguishability ob-

fuscators for NC1 based on any type of assumption with a “non-trivial” security

reduction w.r.t. arbitrary nuPPT attackers.

The core of our result is a general technique for transforming any obfuscator

for matrix branching programs that satisfies a weak notion of neighboring-matrix

indistinguishability obfuscation—which roughly speaking only requires indis-

tinguishability of obfuscations of branching programs that differ only in a con-

stant number of matrices—into a “full-fledged” indistinguishability obfuscator.

(We emphasize that this first result is unconditional—it does not pertain to any

particular construction and does not rely on any computational assumptions—

and we thus hope it may be interesting in its own right.) We next show how

to adapt the construction of [16] and its analysis to satisfy neighboring-matrix

indistinguishability obfuscation based on semantical secure multilinear encod-

ings; on a high-level, the security analysis in the generic model is useful for

proving that the particular message distribution we consider is “valid”.7

If additionally assuming the existence of a leveled FHE [132, 79] with de-

cryption in NC1—implied, for instance, by the LWE assumption [47, 48]—this

construction can be bootstrapped up to obtain indistinguishability obfuscators

for all polynomial-size circuits by relying on the technique from [70].

Theorem 4 (Informally stated). Assume the existence of semantically secure multi-

linear encodings and a leveled FHE with decryption in NC1. Then there exists indistin-

7As we explain in more details later, to use our transformation, we need to deal with branch-
ing programs that satisfy a slightly more liberal definition of a branching program than what is
used in earlier works. This is key reason why we need to modify the construction and analysis
from [16].
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guishability obfuscators for P/poly.

Semantical Security w.r.t. Restricted Classes of Distributions Our most basic

notion of semantical security requires indistinguishability to hold w.r.t. to any

“valid” message distribution. This may seem like a strong assumption. Firstly,

such a notion can clearly not be satisfied by a deterministic encoding schemes (as

envisioned in the original work of [38])—we can never expect encodings of 0

and 1 (under a non target set, and without any auxiliary inputs) to be indistin-

guishable. Secondly, even if we have a randomized encoding scheme in mind

(such as the candidates of [66, 61]), giving the attacker access to encodings of ar-

bitrary elements may be dangerous: As mentioned in [66], attacks (referred to as

“weak discrete logarithm attacks”) on their scheme are known in settings where

the attacker can get access to “non-trivial” encodings of 0 under any non-target

set S ⊂ [k]. (We mention that, as far as we know, no such attacks are currently

known on the candidate construction of [61].)

For the purposes of the results in our paper, however, it suffices to consider

a notion of semantical security w.r.t. restricted classes of distributions D. In partic-

ular, to deal with both of the above issues, we consider “high-entropy” distribu-

tions D that sample elements ~m0, ~m1,~z such that 1) each individual element has

high-entropy, and 2) any element, associated with a non-target set S ⊂ [k], that

can be obtained by applying “legal” algebraic operations to ( ~mb,~z) (for b ∈ {0, 1})

has high-entropy (and thus is non-zero with overwhelming probability).8 We

refer to such message distributions as being entropically valid.

Basing Security on a Single Falsifiable Assumption The assumption that a
8Technically, by high-entropy, we here mean that the min-entropy is at least log |R| −

O(log log |R|) where R is the ring associated with the encodings; that is, the min-entropy is “al-
most” optimal (i.e., log |R|).
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scheme satisfies semantical security may be viewed as an (exponential-size)

class of algebraic “decisional” assumptions (or as a “meta”-assumption, just like

the “uber assumption” of [35]): we have one assumption for each valid message

distributions D. Indeed, to prove indistinguishability of obfuscations of two

circuits C0,C1, we rely on an instance in this class that is a function of the cir-

cuits C0,C1—in the language of [75, 86], security is thus based on an “instance-

dependent” assumption.

This view-point also clarifies that semantical security is not an efficiently falsi-

fiable assumption [123]: the problem is that there may not exist an efficient way

of checking whether a distribution D is valid (as this requires checking that all

legal arithmetic circuits are constant with overwhelming probability, which in

our particular case would require checking whether C0 and C1 are functionally

equivalent).

We finally observe that both of these issues can be overcome if we make

subexponential hardness assumptions: there exists a single (uniform PPT sam-

plable) distribution Sam over nuPPT message distributions D that are provably

entropically valid such that it suffices to assume the existence of an encoding

scheme that is entropic semantically secure w.r.t., this particular distribution

with subexponentially small indistinguishability gap.9 Note that this is a single,

non-interactive and efficiently falsifiable, decisional assumption.

9These results were added to our e-Print report April 25, 2014, motivated in part by [86]
(which bases witness encryption [75] on an instant-independent assumption) and a question
asked by Amit Sahai.
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3.1.3 Alternative Security Notions for Multilinear Encodings

We finally investigate various ways of defining a “super” (or uber) assumption

for multilinear encodings. As mentioned above, a natural way of defining se-

curity of multilinear encodings would be to require that for specific classes of

problems, generic attacks cannot be beaten (this is the approach alluded to in

[16]). Perhaps the most natural instantiation of this in the context of a multi-

linear DDH assumption would be to require that for any distribution D over

~m0, ~m1,~z (where ~m0, ~m1 are constant-length sequences), if encodings of ~m0,~z and

and ~m0,~z are indistinguishable w.r.t. to generic attackers, then they are also

indistinguishable w.r.t. arbitrary nuPPT attackers; in essence, “if an algebraic

decisional assumption holds w.r.t. to generic attacks, then it also holds with re-

spect to nuPPT attackers”. We refer to this notion of security as extractable uber

security.10

Our second main result shows that, assuming the existence of a leveled FHE

with decryption in NC1, there do not exist extractable uber-secure multilinear

encodings (even if we only require security to hold w.r.t high-entropy distribu-

tions D).

Theorem 5 (Informally stated). Assume the existence of a leveled FHE with decryp-

tion in NC1. Then no multilinear encodings can satisfy extractable (entropic) uber

security.

The high-level idea behind this result is to rely on the “conflict” between

the feasibility of VBB obfuscation in the generic model of [16] and the impos-

10We use the adjective “extractable” as this security notion implies that if an nuPPT attacker
can distinguish encodings, then the arithmetic circuits needed to distinguish the elements can
be efficiently extracted out.
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sibility of VBB obfuscation in the “standard” model [17]: we let ~mb,~z contain

a generically-secure VBB obfuscation of a program Πb that hides b given just

black-box access to Πb, yet b can be recovered given the code of Πb. By generic

security of the obfuscation, it follows that efficient generic attackers cannot dis-

tinguish ~m0,~z and ~m1,~z yet, “non-generic” (i.e., standard PPT) attackers can. In

our formal treatment, to rule out constant-message (as opposed to multi-message)

security, we rely on a variant of the obfuscator presented in this paper, enhanced

using techniques from [16].

We emphasize that in the above attack it is cruicial that we restrict to efficient

(nuPPT) generic attacks. We finally consider several plausible ways of defining

uber security for multilinear encodings, which circumvent the above impossi-

bility results by requiring indistinguishability of encodings only if the encod-

ings are statistically close w.r.t. unbounded generic attackers (that are restricted to

making polynomially many zero-test queries). We highlight that none of these

assumptions are needed for our construction of an indistinguishability obfusca-

tion and are stronger than semantical security, but they may find other applica-

tions.

3.1.4 Construction Overview

The Basic Obfuscator We start by providing a construction of a “basic” obfus-

cator; our final construction will then rely on the basic obfuscator as a black-box.

The construction of this obfuscator closely follows the design principles laid out

in the original work by Garg et al [70] and follow-up constructions [50, 16] (in

fact, the basic obfuscator may be viewed as a simplified version of the obfusca-
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tor from [16]). As these works, we proceeds in three steps:

Following the original work of Garg et al (as well as subsequent works), the

basic obfuscator proceeds in three steps:

• We view the NC1 circuit to be obfuscated as a branching program BP (using

Barrington’s Theorem [19])—that is, the program is described by m pairs of

matrices (Bi,0, Bi,1), each one labelled with an input bit inp(i). The program

is evaluated as follows: for each i ∈ [m], we choose one of the two matrices

(Bi,0, Bi,1), based on the input. Next, we compute the product of the cho-

sen matrices, and based on the product determine the output—there is a

unique “accept” (i.e., output 1) matrix, and a unique “reject” (i.e., output

0) matrix.

• The branching program BP is randomized using Kilian’s technique [108]

(roughly, each pair of matrices is appropriately multiplied with the same

random matrix R while ensuring that the output is the same), and then

“randomized” some more—each individual matrix is multiplied by a ran-

dom scalar α. Let us refer to this step as Rand.

• Finally the randomized matrices are encoded using multilinear encodings

with the sets selected appropriately. We here rely on a (simple version) of

the straddling set idea of [16] to determine the sets. We refer to this step as

Encode.

(The original construction as well as the subsequent works also consisted of sev-

eral other steps, but for our purposes these will not be needed.) The obfuscated

program is now evaluated by using the multilinear operations to evaluate the

branching program and finally appropriately use the zero-test to determine the
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output of the program.

Roughly speaking, the idea behind the basic obfuscator is that the multilin-

ear encodings intuitively ensure that any attacker getting the encoding needs to

multiply matrices along paths that corresponds to some input to the branching

program (the straddling sets are used to ensure that the input is used consis-

tently in the evaluation)11; the scalars α, roughly speaking, ensure that a poten-

tial attacker without loss of generality can use a single “multiplication-path” and

still succeed with roughly the same probability, and finally, Kilian’s randomiza-

tion steps ensures that if an attacker only operates on matrices along a single

path that corresponds to some input x (in a consistent way), then its output can

be perfectly simulated given just the output of the circuit on input x. (The final

step relies on the fact that the output of the circuit uniquely determines prod-

uct of the branching program along the path, and Kilian’s randomization then

ensures that the matrices along the path are random conditioned on the prod-

uct being this unique value.) Thus, if an attacker can tell apart obfuscations

of two programs BP0, BP1, there must exist some input on which they produce

different outputs. The above intuitions can indeed be formalized w.r.t. generic

attackers (that only operate on the encodings in a legal way, respecting the set

restrictions), relying on arguments from [50, 16]. This already suffices to prove

that the basic obfuscator is an indistinguishability obfuscator assuming the en-

codings are multi-message semantically secure.12

The Merge Procedure To base security on the weaker assumption of (constant-

11The encodings, however, still permit an attacker to add elements within matrices.
12As mentioned above, there are still some minor subtleties involved in doing this: the anal-

yses of [50, 16] implicitly show that all polynomial-size legal arithmetic circuits are constant with
overwhelming probability, but by slightly tweaking the constructions and the analyses to ensure
a “perfect” simulation property, we can extend these arguments to hold against all (arbitrary-
size) legal arithmetic circuits and thus base security on multi-message semantical security.
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message) semantical security, we will add an additional program transforma-

tion steps before the Rand and Encode steps. Roughly speaking, we would

like to have a method Merge(BP0, BP1, b) that “merges” BP0 and BP1 into a

single branching program that evaluates BPb; additionally, we require that

Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) only differ in a constant number of

matrices. We achieve this merge procedure by connecting together BP0, BP1

into a branching program of double width and adding two “switch” matrices

in the beginning and the end, determining if we should go “up” or “down”.

Thus, to switch between Merge(BP0, BP1, 0) (which is functionally equivalent

to BP0) and Merge(BP0, BP1, 1) (which is functionally equivalent to BP1) we just

need to switch the “switch matrices”. More precisely, given branching programs

BP0 and BP1 described respectively by pairs of matrices {(B0
i,0, B

0
i,1), (B1

i,0, B
1
i,1)}i∈[m],

we construct a merged program Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m+2]

such that

B̂0
i,b = B̂1

i,b=

 B0
(i−1),b 0

0 B1
(i−1),b

 for all 2 ≤ i ≤ m + 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

 0 Iw×w

Iw×w 0

 for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0) and

Merge(BP0, BP1, 1) differ only in the first and the last matrices (i.e., the “switch”

matrices). Furthermore, it is not hard to see that Merge(BP0, BP1, b) is function-

ally equivalent to BPb.
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Our candidate obfuscator is now defined as

iO (B) = Encode(Rand(Merge(BP, I, 0)))

where I is simply a “dummy” program of the same size as BP.13

The idea behind the merge procedure is that to prove that obfuscations of

two programs BP0, BP1 are indistinguishable, we can come up with a sequence

of hybrid experiments that start with iO (BP0) and end with iO (BP1), but be-

tween any two hybrids only changes a constant number of encodings, and thus

we may rely on semantic security of multilinear encodings to formalize the

above intuitions. At a high level, our strategy will be to matrix-by-matrix, re-

place the dummy branching program in the obfuscation of BP0 with the branch-

ing program for BP1. Once the entire dummy branching program has been re-

placed by BP1, we flip the “switch” so that the composite branching program

now computes the branching program for BP1. We then replace the branching

program for BP0 with BP1, matrix by matrix, so that we have two copies of the

branching program for BP1. We now flip the “switch” again, and finally restore

the dummy branching program, so that we end up with one copy of BP1 and

one copy of the dummy, which is now a valid obfuscation of BP1. In this way,

we transition from an obfuscation of BP0 to an obfuscation of BP1, while only

changing a small piece of the obfuscation in each step. (On a very high-level,

this approach is somewhat reminiscient of the Naor-Yung “two-key” approach

in the context of CCA security [126] and the “two-key” bootstrapping result for

indistinguishability obfuscation due to Garg et al [70]—in all these approaches

the length of the scheme is artificially doubled to facilitate a hybrid argument.

It is perhaps even more reminiscient of the Feige-Shamir “trapdoor witness”
13This description oversimplifies a bit. Formally, the Rand step needs to depends on the field

size used in the Encode steps, and thus in our formal treatment we combine these two steps
together.
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approach for constructing zero-knowledge arguments [65], whereby an addi-

tional “dummy” trapdoor witness is introduced in the construction to enable

the security proof.)

More precisely, consider the following sequence of hybrids.

• We start off with iO (BP0) = Enc(Rand(Merge(BP0, I, 0)))

• We consider a sequence of hybrids where we gradually change

the dummy program I to become BP1; that is, we consider

Encode(Rand(Merge(BP0, BP′, 0))), where BP′ is “step-wise” being popu-

lated with elements from BP1.

• We reach Encode(Rand(Merge(BP0, BP1, 0))).

• We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).

• We consider a sequence of hybrids where we gradually change the BP0 to

become BP1; that is, we consider Encode(Rand(Merge(BP′, BP1, 1))), where

BP′ is “step-wise” being populated with elements from BP1.

• We reach Encode(Rand(Merge(BP1, BP1, 1))).

• We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).

• We consider a sequence of hybrids where we gradually change the second

BP1 to become I; that is, we consider Encode(Rand(Merge(BP1, BP′, 0))),

where BP′ is “step-wise” being populated with elements from I.

• We reach Encode(Rand(Merge(BP1, I, 0))) = iO (BP1).

By construction we have that if BP0 and BP1 are functionally equivalent, then so

will all the hybrid programs–the key point is that we only “morph” between two

branching programs on the “inactive” part of the merged branching program.
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Furthermore, by construction, between any two hybrids we only change a con-

stant number of elements. Thus, if some distinguisher can tell apart iO (BP0)

and iO (BP1), it must be able to tell apart two consecutive hybrids. But, by se-

mantic security it then follows that some “legal” arithmetic circuit can tell apart

the encodings in the two hybrids. Roughly speaking, we can now rely on sim-

ulation security of the basic obfuscator w.r.t. to just legal arithmetic circuits to

complete the argument. A bit more precisely, based on BP0, BP1 and the hy-

brid index i, we can define a message distribution Di,BP0,BP1 that is valid (by the

simulation arguments in [16]) as long as BP0 is functionally equivalent to BP1,

yet our distinguisher manages to distinguish messages samples from Di,BP0,BP1 ,

contradicting semantical security.

Dealing with branching programs with non-unique outputs There is a catch

with the final step though. Recall that to rely on Kilian’s simulation argument

it was crucial that there are unique accept and reject matrices. For our “merged”

programs, this is no longer the case (the output matrix is also a function of the

second “dummy” program), and thus it is no longer clear how to prove that

the message distribution above is valid. We overcome this issue by noting that

the first column of the output matrix actually is unique, and this is all we need

to determine the output of the branching program; we refer to such branching

programs as fixed output-column branching programs. Consequently it suffices to

release encodings of the just first column (as opposed to the whole matrices) of

the last matrix pair in the branching program, and we can still determine the

output of the branching program. As we show, for such a modified scheme, we

can also simulate the (randomized) matrices along an “input-path” given just

the first column of the output matrix.
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A Modular Analysis: Neighboring-Matrix Indistinguishability Obfuscation

In the actual proof, we provide a more modular analysis of the above two steps

(that may be interesting in its own right).

• We define a notion of neighboring-matrix indistinguishability obfuscation,

which relaxes indistinguishability obfuscation by only requiring security

to hold w.r.t. any two functionally equivalent branching programs that

differ in at most a constant number of matrices.

• We then use the above merge procedure (and the above hybrid argument)

to show that the existence of a neighboring-matrix iO for all “fixed output

column” branching programs implies the existence of a “full-fledged” iO .

• We finally use the “basic obfuscator” construction to show how to con-

struct a neighboring-matrix iO for all fixed output column branching pro-

grams based on (constant-message) semantical security.

Basing Security on a (Single) Falsifiable Assumption To base security on a fal-

sifiable assumption, we rely on a different merge procedure from the work of

Boyle, Chung and Pass [42]: Given two NC1 circuits C0,C1 taking (at most) n-bit

inputs, and a string z, let M̂erge(C0,C1, z) be a circuit that on input x runs C0(x) if

x ≥ z and C1(x) otherwise; in essence, this procedure lets us “traverse” between

C0 and C1 while provably only changing the functionality on at most one in-

put. ([42] use this type of merged circuits to perform a binary search and prove

that indistinguishability obfuscation implies differing-input obfuscation for cir-

cuits that differ in only polynomially many inputs.) We now define a notion

of neighboring-input iO , which relaxes iO by only requiring that security holds

with respect to “neigboring-input” programs M̂erge(C0,C1, z), M̂erge(C0,C1, z+1)
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that are functionally equivalent. Note that checking whether M̂erge(C0,C1, z),

M̂erge(C0,C1, z + 1) are functionally equivalent is easy: they are equivalent iff

C0(z) = C1(z). (As such, the assumption that a scheme satisfies neighboring-

input iO is already an efficiently falsfiable assumption.) Furthermore, by a sim-

ple hybrid argument over z ∈ {0, 1}n, exponentially-secure neighboring-input iO

implies “full” iO—exponential security is needed since we have 2n hybrids. (We

mention a very recent work by Gentry, Lewko and Waters [86] in the context of

witness encryption [75] that similarly defines a falsifiable primitive “positional

witness encryption” that implies the full-fledged notion with an exponential se-

curity loss.)

Additionally, note that to show that our construction satisfies exponentially-

secure neigboring-input iO , we only need to rely on exponentially-secure se-

mantical security w.r.t. classes of sets and message distributions corresponding

to programs of the form M̂erge(C0,C1, z), M̂erge(C0,C1, z + 1). Equivalently, it

suffices to rely on exponentially-secure semantical security w.r.t. a single dis-

tribution over sets and message distributions corresponding to uniformly se-

lected programs M̂erge(C0,C1, z), M̂erge(C0,C1, z + 1) (i.e., z, C0,C1 are picked

at random); again, this only results in an exponential security loss. Finally, by

padding the security parameter of the multilinear encodings in the construction,

it actually suffices to rely on subexponential security.

3.1.5 Discussion and Future Work

We have introduced a new security notion, semantical security, for multilinear

(a.k.a. graded) encodings, which captures a general (but quite restrictive) class
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of algebraic decisional assumption over multilinear encodings. Our main re-

sult demonstrates the existence of indistinguishability obfuscators (iO ) assum-

ing the existence of semantically secure multilinear encodings and the LWE as-

sumption; as far as we know, this yields the first construction of iO based on

a “simple-to-state” assumption about some algebraic primitive (namely, multi-

linear encodings) for which candidate constructions are known.

We additionally show that it suffices to assume the existence of encoding

schemes that satisfy a specific, falsifiable, instance of semantical security (i.e., that

a specific assumption in the class holds w.r.t. the encoding scheme); this time,

however, we need to assume subexponentially-hard semantical security. This

shows that under subexponential reductions, indistinguishability obfuscation

can be based on a single, non-interactive and falsifiable, assumption.

We finally consider various strengthenings of semantical security, which

(among other things) motivate why in our definition of semantical security,

we restrict the class of algebraic decisional assumptions: we show that the

assumption that “every non-interactive algebraic decisional assumption that

holds against generic attackers holds against nuPPT attackers” is false.

Our work leaves open several interesting questions:

• Can we base iO on polynomial-hardness of a falsfiable (and preferrably non-

interactive) assumption (using a security-preserving reduction)? Note that

for many applications of iO (e.g., functional encryption [70]) it suffices to

require indistinguishability for restricted distributions of programs that

(with overwhelming probability) are provably functionally equivalent; for

these applications, our proof already shows they can be based on specific,
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falsifiable, instances of semantical security (without assuming subexpo-

nential hardness).

• Even in the regime of subexponential hardness, the specific assumption

that we use—although it is a special case of semantical security—is not

particularly natural, and does not have a particularly “simple” descrip-

tion. In essence, we consider semantical security with respect to distribu-

tions over elements that describe the obfuscation of a random branching

program. (As such, in our eyes, perhaps the best reason to believe this

assumption is true that it is a falsifiable special case of semantical secu-

rity). It would be much more desirable to base security on semantical

security w.r.t. a single simple and natural distribution over ~m0, ~m1,~z, where,

for instance, similar to the GDDH assumption, ~z are uniformly random

elements. We conjecture that our assumption actually can be “massaged”

into a nicer looking assumption, closer in spirit to the GDDH assumption.

Two recent works take a major step in this direction. The elegant work

of Gentry, Lewko and Waters [86]14 bases witness encryption [75] on expo-

nential hardness of some simple assumptions over multinear encodings—

the “multilinear subgroup eliminations assumption” and the “multilinear

subgroup decision assumption” (which are closer in spirit to the GDDH

assumption); however, in contrast to our work they rely on multilinear

(graded) encodings over composite-order rings (for which the only can-

didate is a modified variant of [61]), or require more complex assump-

tions over prime-order rings (that still are false for the [66] construction);

furthermore, they require several additional functionalities from graded

encodings—in particular, “subring generation”, and “subring sampling”,

14This result is subsequent to our results on iO from (entropic) semantical security, but pre-
ceeds our results on iO from single-distribution semantical security.
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which require releasing additional “auxiliary elements” and thus chal-

lenges security (which is why a variant of the [61] construction is needed).

Even more recently, the beautiful work by Gentry, Lewko, Sahai and Wa-

ters [85] manages to demonstrate also iO from just the multilinear sub-

group assumption over composite-order rings.15 Just as [86] they require

the additional functionalities from graded encoding scheme (and as such

the only candidate construction currently know is the variant of the [61]

scheme introduced in [86]). Although the implementation details are quite

different, the construction in [85] follows our general approach of “merg-

ing” threads of branching programs (we here consider only two threads,

whereas they consider multiple), and using a switch between “active” and

“inactivate” threads. (Additionally, their notion of a “positional” iO is

closely related to our notion of neighboring-input iO .)16

• Another interesting question is finding other applications of entropic

semantically secure multilinear encodings. Our impossibility results—

which show that there exist algebraic decisional assumptions that are false

despite being true w.r.t. generic attackers—present a further challenge to

the practice of arguing the plausibility of an assumption (even a “DDH-

type” assumption) through security arguments in the generic model. At

this point it seems that checking whether some specific algebraic assump-

tion falls within the class of assumptions considered by entropic semanti-

cal security (or perhaps even just uber security) may be a viable replace-

ment to the standard “sanity check” of arguing security in the generic

15This result is subsequent to our results on iO from (entropic) semantical security, and ap-
pears to be concurrent to (appearing on e-Print only a few days after) our results on iO from
single-distribution semantical security.

16But as mentioned above, the results relying on neighboring-input iO were not part of our
original manuscript and appear to be concurrent to the ones in [85].
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model.

• In this paper we have focused on indistinguishability obfuscation. An

interesting problem is basing stronger notions of obfuscation on some

succinct and natural assumption on a low-level primitive. We mention

that our result that any scheme satisfying iO security w.r.t. “neighboring-

matrix” programs can be turned in a “fully” secure scheme, applies also

to differing-input security.

A recent beautiful work of Bitansky, Canetti, Kalai and Paneth [27] intro-

duces a strengthening of semantical security (called “strong-sampler” se-

mantical security) which also consider non-samplable (i.e., computation-

ally unbounded) message distributions (as opposed to nuPPT distribu-

tions as we consider here); their key result demonstrated the existence of

VGB (virtual grey-box secure) [24] obfuscators for NC1 assuming strong-

sampler semantical security. VGB security is a strengthening of iO ; but it

is not known how to bootstrap VGB for NC1 to all polynomial-size circuits.

3.1.6 Outline of the Paper

We provide some preliminaries in Section 3.2. We define semantical security of

multilinear (aka graded) encodings in Section 3.3. Our construction of an in-

distinguishability obfuscator and its proof of security is provided in Section 3.4.

We show how to slightly modify the construction to be based on a single (falsifi-

able) instance of semantical security in Section 3.5. We finally study alternative

notions of security for multilinear encodings in Section 3.6.
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3.2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. Let

Z denote the integers, and Zp the integers modulo p. Given a string x, we let

x[i], or equivalently xi, denote the i-th bit of x. For a matrix M, we let M[i, j]

denote the entry of M in the ith row and jth column. We use ek to denote the

vector that is 1 in position k, and 0 in all other positions. The length of ek is

generally clear from the context. We use Iw×w to denote the identity matrix with

dimension w × w.

By a probabilistic algorithm we mean a Turing machine that receives an aux-

iliary random tape as input. If M is a probabilistic algorithm, then for any input

x, M(x) represents the distribution of outputs of M(x) when the random tape is

chosen uniformly. M(x; r) denotes the output of M on input x when the random

tape is fixed to r. An oracle algorithm MO is a machine M that gets oracle access

to another machine O, that is, it can access O’s functionality as a black-box.

By x ← S , we denote an element x is sampled from a distribution S . If F is

a finite set, then x← F means x is sampled uniformly from the set F. To denote

the ordered sequence in which the experiments happen we use semicolon, e.g.

(x← S ; (y, z)← A(x)). Using this notation we can describe probability of events.

For example, if p(·, ·) denotes a predicate, then Pr[x ← S ; (y, z) ← A(x) : p(y, z)]

is the probability that the predicate p(y, z) is true in the ordered sequence of

experiments (x ← S ; (y, z) ← A(x)). The notation {(x ← S ; (y, z) ← A(x) : (y, z))}

denotes the resulting probability distribution {(y, z)} generated by the ordered

sequence of experiments (x ← S ; (y, z) ← A(x)). We define the support of a

distribution supp(S ) to be {y : Pr[x← S : x = y] > 0}.

147



By isZero, we denote the predicate such that isZero(x) = 1 exactly when x = 0,

and isZero(x) = 0 otherwise.

3.2.1 Obfuscation

We recall the definition of indistinguishability obfuscation due to [17].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is an

indistinguishability obfuscator for a class of circuits {Cn}n∈N if the following condi-

tions are satisfied

• Correctness: There exists a negligible function ε such that for every n ∈ N , for

all C ∈ Cn, we have

Pr[C′ ← iO (1n,C) : ∀x, C′(x) = C(x)] ≥ 1 − ε(n)

• Security: For every pair of circuit ensembles {C0
n}n∈N and {C1

n}n∈N such that for all

n ∈ N, for every pair of circuits C0
n,C

1
n ∈ Cn such that C0

n(x) = C1
n(x) for all x the

following holds: For every nuPPT adversary A there exists a negligible function

ε such that for all n ∈ N,

|Pr[C′ ← iO (1n,C0
n) : A(1n,C′) = 1] − Pr[C′ ← iO (1n,C1

n) : A(1n,C′) = 1]| ≤ ε(n)

We additionally say that iO is subexponentially-secure if there exists some

constant α > 0 such that for every nuPPT A the above indistinguishability gap is

bounded by ε(n) = 2−O(nα).

Note: We observe that the above definition allows for a negligible correctness

error. That is, for any circuit C, there is a negligible fraction of “bad” random-

ness r such that iO (C; r) is not functionally equivalent to C. However, if we can
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efficiently check if r is “bad”, we can modify iO so that iO (C; r) outputs C in the

clear if r is “bad”. Then the modified iO has perfect correctness, and its security

remains intact since only a negligible fraction of r are “bad”. We note that our

construction, as well as all previous ones, have the property that a “bad” r can

be efficiently detected, and thus these schemes can be modified to have perfect

correctness.

We now recall the definitions of iO for NC1 and P/poly.

Definition 2 (Indistinguishability Obfuscator for NC1). A uniform PPT machine

iO is an indistinguishability obfuscator for NC1 if for every constant c, iO (c, ·, ·) is

an indistinguishability obfuscator for the class of circuits Cc = {Cc
n}n∈N where Cc

n is the

set of circuits that have size at most nc, and have depth at most c log n.

Definition 3 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine

iO is an indistinguishability obfuscator for P/poly if for every constant c, iO (c, ·, ·)

is an indistinguishability obfuscator for the class of circuits Pc = {Pc
n}n∈N where Pc

n is

the set of circuits that have size at most nc.

The following simple lemma will be useful in the sequel.

Lemma 6. Let iO be a (subsexponentially-secure) indistinguishability obfuscator for

C1. Then iO ′ defined as iO ′(c, 1n,C) = iO (1nc
,C) is a (subexponentially-secure) indis-

tinguishability obfuscator for NC1.

Proof. Consider any pair of circuit ensembles {C0
n}n∈N, {C

1
n}n∈N in Cc. Assume for

contradiction that there exists some nuPPT A and a polynomial p(·) such that

A(1n) distinguishes iO ′(c, 1n,C0
n) = iO (1nc

,C0
n) and iO ′(c, 1n,C1

n) = iO (1nc
,C1

n)

with probability 1/p(n) for infinitely many n. Note that for every n, C0
n,C

1
n ∈
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C1
nc . Thus, for infinitely many n ∈ N , there exists circuits C0

n,C
1
n ∈ C

1
nc such

that A(1n) distinguishes iO (1nc
,C0

n) and iO (1nc
,C1

n) with probability 1/p(n). In

other words, for infinitely many n′ ∈ N of the form n′ = nc, there exist circuits

C̃0
n′ = C0

n, C̃1
n′ = C1

n such that the nuPPT A′(1n′) = A(1n) distinguishes iO (1n′ , C̃0
n′)

and iO (1n′ , C̃1
n′) with probability 1/p(n) = 1/p(n′1/c)), which contradicts that iO is

an indistinguishability obfuscator for C1.

The same argument also works in the context of subexponential security. �

3.2.2 Branching programs for NC1

We recall the notion of a branching program.

Definition 4 (Matrix Branching Program). A branching program of width w and

length m for n-bit inputs is given by a sequence:

BP = {inp(i), Bi,0, Bi,1)}mi=1

where each Bi,b is a permutation matrix in {0, 1}w×w, inp(i) ∈ [n] is the input bit position

examined in step i.

Then the output of the branching program on input x ∈ {0, 1}n is as follows:

BP(x)
de f
=


1, if (

∏m
i=1 Bi,x[inp(i)]) · e1 = e1.

0, otherwise
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The branching program is said to be oblivious if inp : [m] → [n] is a fixed function,

independent of the function being evaluated.

The above definition differs slightly from the definition of matrix branch-

ing programs generally used, which have the slightly stronger requirement that∏n
i=1 Bi,x[inp(i)] = Iw×w when BP(x) is accepting, and

∏n
i=1 Bi,x[inp(i)] = Preject for some

fixed permutation matrix Preject , Iw×w when BP(x) is rejecting. More generally,

Definition 5. The branching program is said to have fixed accept and reject matrices

Paccept and Preject if, for all x ∈ {0, 1}n,

m∏
i=1

Bi,x[inp(i)] =


Paccept when BP(x) = 1

Preject when BP(x) = 0

We now have the following theorem due to Barrington:

Theorem 7. ([19]) There exist 5×5 permutation matrices Paccept and Preject with Paccept ·

e1 = e1, and Preject · e1 = ek where k , 1 such that the following holds. For any depth

d and input length n, there exists a length m = 4d, a labeling function inp : [m] → [n]

such that, for every fan-in 2 boolean circuit C of depth d and n input bits, there exists

an oblivious matrix branching program BP = {inp(i), Bi,0, Bi,1}
m
i=1, of width 5 and length

m that computes the same function as the circuit C.

In particular, every circuit in NC1 has a polynomial length branching program

of width 5. Further, two circuits of the same depth d will have the same fixed ac-

cepting and rejecting permutations Paccept and Preject, and a fixed labelling func-

tion inp : [m]→ [n].

The branching programs we consider in this work will not have fixed out-

put matrices. However, the first column of their output matrices will be fixed
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and depend only on the output of the program. That is, the first column of

the output matrix is either paccept or preject, depending on whether the program

accepts or rejects. Furthermore, we will consider ensembles of classes of pro-

grams where these fixed columns paccept and preject are the same for all programs

in every class in the ensemble.

Definition 6 (Fixed Output Column Ensemble). An ensemble of classes of branch-

ing programs B = {Bn}n∈N where Bn contains branching programs of constant width w,

is a fixed output column ensemble if there exists vectors paccept, preject ∈ {0, 1}w such

that for every n ∈ N , every branching program BP = {inp(i), Bi,0, Bi,1)}mi=1 ∈ Bn and

every input x it holds that

(
m∏

i=1

Bi,x[inp(i)])) · e1 =


paccept when BP(x) = 1

preject when BP(x) = 0

Subsequently, whenever we refer to an ensemble of classes of branching pro-

grams we will implicitly be referring to a fixed output column ensemble.

3.3 Semantically Secure Graded Encoding Schemes

In this section we define what it means for a graded encoding scheme to be se-

mantically secure. We start by recalling the notion of graded encoding schemes

due to Garg, Gentry and Halevi [66].
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3.3.1 Graded Encoding Schemes

Graded (multilinear) encoding schemes were originally introduced in the work

of Garg, Gentry and Halevi [66]. Just as [50, 16], we here rely on “set-based”

(or “asymmetric”) graded encoding; these were originally called “generalized”

graded encodings in [66]. Following [70, 16] and the notion of “multilinear jig-

saw puzzles” from [70], we additionally enable anyone with the secret parame-

ter to encode any elements (as opposed to just random elements as in [66]).

Definition 7 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding scheme

for k ∈ N and ring R is a collection of sets {Eα
S : α ∈ R, S ⊆ [k]} with the following

properties

• For every S ⊆ [k] the sets {Eα
S : a ∈ R} are disjoint.

• There are associative binary operations ⊕ and 	 such that for every α1, α2 ∈ R,

S ⊆ [k], u1 ∈ Eα1
S and u2 ∈ Eα2

S it holds that u1 ⊕ u2 ∈ Eα1+α2
S and u1 	 u2 ∈ Eα1−α2

S

where ‘+′ and ‘−′ are the addition and subtraction operations in R.

• There is an associative binary operation ⊗ such that for every α1, α2 ∈ R, S 1, S 2 ⊆

[k] such that S 1 ∩ S 2 = ∅, u1 ∈ Eα1
S 1

and u2 ∈ Eα2
S 2

it holds that u1 ⊗ u2 ∈ Eα1·α2
S 1∪S 2

where ‘·’ is multiplication in R.

Definition 8 (Graded Encoded Scheme). A graded encoding scheme E is associated

with a tuple of PPT algorithms, (InstGenE,EncE,AddE,SubE,MultE, isZeroE) which

behave as follows:

• Instance Generation: InstGenE takes as input the security parameter 1n and mul-

tilinearity parameter 1k, and outputs secret parameters sp and public parameters
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pp which describe a (k,R)-graded encoding scheme {Eα
S : α ∈ R, S ⊆ [k]}. We re-

fer to Eα
S as the set of encodings of the pair (α, S ). We restrict to graded encoding

schemes where R is Zp and p is a prime exponential in n and k.

• Encoding: EncE takes as input the secret parameters sp, an element α ∈ R and set

S ⊆ [k], and outputs a random encoding of the pair (α, S ).

• Addition: AddE takes as input the public parameters pp and encodings u1 ∈

Eα1
S 1
, u2 ∈ Eα2

S 2
, and outputs an encoding of the pair (α1 + α2, S ) if S 1 = S 2 = S

and outputs ⊥ otherwise.

• Negation: SubE takes as input the public parameters pp and encodings u1 ∈

Eα1
S 1
, u2 ∈ Eα2

S 2
, and outputs an encoding of the pair (α1 − α2, S ) if S 1 = S 2 = S

and outputs ⊥ otherwise.

• Multiplication: MultE takes as input the the public parameters pp and encodings

u1 ∈ Eα1
S 1
, u2 ∈ Eα2

S 2
, and outputs an encoding of the pair (α1 · α2, S 1 ∪ S 2) if

S 1 ∩ S 2 = ∅ and outputs ⊥ otherwise.

• Zero testing: isZeroE takes as input the public parameters pp and an encoding

u ∈ ES (α), and outputs 1 if and only if α = 0 and S is the universe set [k].17

Whenever it is clear from the context, to simplify notation we drop the subscript E when

we refer to the above procedures (and simply call them InstGen,Enc, . . .).

In known candidate constructions [66, 61], encodings are “noisy” and the

noise level increases with each operation; the parameters, however, are set so
17In the candidate scheme given by [66], isZero may not have perfect correctness: the gener-

ated instances (pp, sp) can be “bad” with some negligible probability, so that there could exist
an encoding u of a nonzero element where isZero(pp, u) = 1. However, these “bad” parameters
can be efficiently detected during the execution of InstGen. We can thus modify the encoding
scheme to simply set Enc(pp, e) = e whenever the parameters are “bad” (and appropriately mod-
ify Add,Sub,Mult and isZero so that the operate on “unencoded” elements. This change ensures
that, for every pp, including “bad” ones, the zero test procedure isZero works with perfect cor-
rectness. We note that since bad parameters occur only with negligible probability, this change
does not affect the security of the encodings.
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that any poly(n, k) operations can be performed without running into trouble.

For convenience of notation (and just like all other works in the area), we ignore

this noise issue.18

Note that the above procedures allow algebraic operations on the encodings

in a restricted way. Given the public parameters and encodings made under

the sets ~S , one can only perform algebraic operations that are allowed by the

structure of the sets in ~S . We call such operations ~S -respecting and formalize

this notion as follows:

Definition 9 (Set Respecting Arithmetic Circuits). For any sequence ~S of subsets of

[k], we say that an arithmetic circuit C (i.e. gates perform only ring operations {+,−, ·})

is ~S -respecting if it holds that

• Eevery input wire of C is tagged with some set in ~S .

• For every + and − gate in C, if the tags of the two input wires are the same set S

then the output wire of the gate is tagged with S . Otherwise the output wire is

tagged with ⊥.

• For every · gate in C, if the tags of the two input wires are sets S 1 and S 2 and

S 1 ∩ S 2 = ∅ then the output wire of the gate is tagged with S 1 ∪ S 2. Otherwise

the output wire is tagged with ⊥.

• It holds that the output wire is tagged with the universe set [k].19

We say that a circuit C is weakly ~S -respecting if all the above conditions hold

except the last, that is, the output wire may be tagged with some set T ⊆ [k], where T

18The above definition can be easily generalized to deal with the candidates by only requiring
that the above conditions hold when u1, u2 have been obtained by poly(n, k) operations.

19For ease of notation, we assume that the description of a set S also contains a description of
the universe set [k].
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is not necessarily equal to [k]. We say that C is non terminal ~S -respecting if T is a

strict subset of [k].

3.3.2 Semantical Security

We now turn to defining semantical security of graded encoding schemes. To-

wards explaining our notion of semantical security, let us first consider a “DDH-

type” assumption for (asymmetric) multilinear encodings, similar in spirit to

the “graded DDH” assumption of Garg et al [66] (which was in the contex of

symmetric multilinear encodings, whereas we here consider asymmetric ones).

Consider a distribution D sampling n random elements ~z, and let m0 =
∏

i∈[n] zi

be the product of the elements in ~z, and m1 = z′ be just a random element. A

DDH-type assumption—let us refer to it as the “asymmetric graded DDH as-

sumption (aGDDH)”—would require that encodings of m0,~z and m1,~z under

the sets S , ~T are indistinguishable as long as (a) S is the target set [k], and (b)

S is not the disjoint union of the sets in ~T ; that is, the set-restrictions prohibit

“legally” multiplying all the elements of ~z and subtracting them from m0 or m1.

~z.

Note that for any such sets S , ~T , the particular (joint) distribution D over

m0,m1,~z has a nice “zero-knowledge” property w.r.t. generic attacker: for every

(S , ~T )-respecting circuit C, isZero(C(·)) is constant over (mb,~z), b ∈ {0, 1}with over-

whelming probability: that is, there exists some bit c such that with overwhelm-

ing probability over m0,m1,~z ← D, isZero(C(mb,~z)) = c for b ∈ {0, 1}, and as (ex-

cept with negligible probability) no zero-test query leaks anything to a generic

attacker. To see this, note that any such isZero(C(m,~z) function is of the form
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isZero(a · m + p(~z)) where p(·) is a polynomial of degree at most n − 1. If a = 0

and p(·) is the zero-polynomial, then clearly the function evaluates to 1. If ei-

ther a = 1 or p(·) is a non-zero polynomial, then no matter whether m = m0 or

m = m1, isZero(C(·, ·)) is evaluating a non-zero polynomial of degree at most n

at a random point; by the Schwartz-Zippel lemma, with overwhelming proba-

bility (proportional to the field size), both these polynomials will evaluate to a

non-zero value, and thus the zero-test will output 0.

We refer to any distribution D satisfying the above “zero-knowledge w.r.t.

generic attackers” property as being valid w.r.t. S , ~T . We formalize this notion

through what we refer to as a (S , ~T )-respecting message sampler. As mentioned in

the introduction, for our purposes, we need to consider a more general setting

where m0,m1, and S are replaced by constant-length vectors ~m0, ~m1, ~S ; for general-

ity, we provide a definition that considers arbitrary length vectors of messages.

Definition 10 (Set-Respecting Operations). Let {kn}n∈N be an ensemble where kn ∈

N . We say f = { fn}n∈N is an ensemble of set-respecting operations if for every n ∈ N ,

and every pair of sequences of sets ~S , ~T over [kn] we have that fn(~S , ~T ) outputs a (~S , ~T )-

respecting arithmetic circuit.

Definition 11 (Valid Message Sampler). Let E be a graded encoding scheme. We say

that a nuPPT M is a valid message sampler if

• M on input 1n and a public parameter pp ∈ InstGen(1n, 1kn) computes the ring R

associated with pp and next based on only 1n, 1kn and R generates and outputs

– a pair (~S , ~T ) of sequences of sets over [kn] and

– a pair ( ~m0, ~m1) of sequences of |S | ring elements and a sequence ~z of |T | ring

elements.
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• There exists a polynomial Q(·, ·) such that for every ensemble {kn}n∈N and ensemble

of set-respecting operations { fn}n∈N , for every n ∈ N there exists a constant c ∈

{0, 1} such that that for any b ∈ {0, 1},

Pr[( ~m0, ~m1,~z, ~S , ~T )← M(1n, pp); C ← fn(~S , ~T ) : isZero(C( ~mb,~z)) = c]

≥ 1 − Q(n, kn)/|R|.

Let us comment that Definition 11 allows the message sampler M to select

~m0, ~m1,~z based on the ring R = Zp; note that this is needed even to model the

aGDDH assumption (or else we could not define what it means to pick a uni-

form element in the ring). On the other hand, to make the notion of valid mes-

sage samplers as restrictive as possible, we prevent the message selection from

depending on pp in any other way. Looking ahead, this restriction makes the

notion somewhat nicer behaved; see Lemma 8.

We can now define what it means for a graded encoding scheme to be se-

mantically secure. Roughly speaking, we require that encodings of (~m0,~z) and

(~m1,~z) under the sets (~S , ~T ) are indistinguishable as long as (~m0, ~m1,~z) is sampled

by a message sampler that is valid w.r.t. (~S , ~T ).

Definition 12 (Semantic Security). Let E be a graded encoding scheme and q(·) and

c(·) be polynomials. We say a graded encoding scheme E is (c, q)-semantically secure

if for every polynomial k(·), every ensemble {(~S n, ~Tn)}n∈N where ~S n and ~Tn are sequences

of subsets of [k(n)] of length c(k(n))) and q(k(n)) respectively, for every {(~S n, ~Tn)}n∈N-set-

respecting message sampler M and every nuPPT adversary A, there exists a negligible

function ε such that for every security parameter n ∈ N,

|Pr[Output0(1n) = 1] − Pr[Output1(1n) = 1]| ≤ ε(n)

where Outputb(1n) is A’s output in the following game:
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• Let (sp, pp)← InstGen(1n, 1k(n)).

• Let ~m0, ~m1,~z← M(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~S n[i])}c(kn)
i=1 , {Enc(sp,~z[i], ~Tn[i])}q(k(n))

i=1 .

• Finally, run A(1n, pp, ~ub).

We say that E is (constant-message) semantically secure if it is (O(1),O(k))-

semantically secure; we say that E multi-message semantically secure if it is

(O(k),O(k))-semantically secure. We additionally say that E is subexponentially-

hard semantically secure if there exists some exists some constant α > 0 such that

for every nuPPT A the above indistinguishability gap is bounded by ε(n) = 2−O(nα).20

In analogy with the GDDH assumption, our notion of semantical security

restricts to the case when the number of elements encoded is O(k).21 As the

following lemma (whose proof is delegated to Section 3.9) shows, any such en-

coding scheme can be modified to one that is secure as long as the number of

elements in ~z is (a-priori) polynomially bounded.

Lemma 8. Let c, ε be constants and let E be a (c, kε)-semantically secure encoding

scheme. Then for every polynomial q(k) there exists a (c, q(k))-semantically secure en-

coding scheme.

Also, note that our notion of semantical security requires that security holds

w.r.t. to any polynomial multilinearity parameter k(·); again, this is without

20We could also have considered an even stronger notion where the adversary A is allowed
to be of subexponential-size; this will not be needed for our result, but may be useful in other
contexts.

21This restriction was suggested in [27] and independently by Hoeteck Wee; our original for-
mulation of semantical security considered an unbounded polynomial number of elements in
~z (but our proof of security only relied on security for O(k) elements). We now refer to this
stronger notion as unbounded semantical security; see below.
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loss of generality: Any encoding scheme E that is semantically secure for

any multilinearity parameter k(n) ≤ n, can be turned into a new scheme E′

that is (full-fledged) semantically secure, by simply letting InstGen′(1n, 1k) =

InstGen(1n+k, 1k).

Finally, one may also consider a notion of unbounded semantical security

(that is provably stronger than semantical security)22 which requires that E

is (O(1), q(k))-semantically secure for every polynomial q(k); this notion is not

needed for our results. A recent result by [27] shows that for natural special

cases of message samplers, unbounded single-message semantical security im-

plies multi-message semantical security; we mention that this result only ap-

plies in the regime of polynomial security (and in particular does not apply for

subexponential-hard semantical security).

Let us end this section by remarking that (sub-exponentially hard) seman-

tical security trivially holds against polynomial-time “generic” attackers that

are restricted to “legally” operating on the encodings—in fact, it holds even

against unbounded generic attackers that are restricted to only making polyno-

mially (or even subexponentially) many zero-test queries: recall that each legal

zero-test query is constant with overwhelming probability (whether we operate

on ~m0,~z or ~m1,~z) and thus by a Union Bound, the output of any generic attacker

restricted to polynomially many zero-test queries is also constant with over-

whelming probability; see Section 3.6 for a formal statement.

Semantical Security w.r.t. Restricted Classes of Message Samplers For our

22Any semantically secure encoding scheme E can be modified into a new encoding scheme
E′ that still is semantically secure but not unbounded semantically secure. Simply let each en-
coding additionally release a random share of a secret-sharing of sp. If few shares are released
(i.e.,~z is small) security is untouched, but if many shares are released security is trivially broken.
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specific construction of indistinguishability obfuscators it suffices to assume the

existence of semantically secure encodings w.r.t. restricted classes of message sam-

plers M, where the {(~S n, ~Tn)}n∈N-respecting condition on M is replaced by some

stronger restriction on M. It particular, it suffices to restrict to message samplers

M that induce a high-entropy distribution over ~m0, ~m1,~z—not only the individual

elements have high min-entropy but also any element computed by applying a

“non-terminal” sequence of legal arithmetic operations to ~mb,~z (for b ∈ {0, 1}).

More precisely, we say that a M is a H-entropic {(~S n, ~Tn))}n∈N-respecting message

sampler if M is {(~S n, ~Tn))}n∈N-respecting, where the sets S n and Tn are over the

universe set [kn] and additionally:

• For every security parameter n, every pp ∈ InstGen(1n, 1kn) describing

a ring R, every non-terminal (~S n, ~Tn)-respecting arithmetic circuit C that

computes a non-zero polynomial in its inputs, it holds that for b ∈ {0, 1},

H∞(C( ~mb,~z)) ≥ H(log |R|)

where ( ~m0, ~m1,~z)← M(1n, pp).

We here focus on “very” high entropy message samplers, where H(n) = n −

O(log n), and refer to such message samplers as simply entropic {~S n, ~Tn)}n∈N-

respecting message sampler (or entropically valid), and refer to encoding schemes

satisfying semantical security w.r.t. such restricted message samplers as entropic

semantically secure.

Additionally, for our purposes, we may consider semantic security with re-

spect to even more restricted types of message samplers M and sets (~S n, ~Tn). In

particular, where: (1) Each individual element sampled is statistically close to
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a uniform ring element; (2) Elements sampled are “almost” pair-wise indepen-

dent: each pair of elements encoded is statistically close to two uniform ring

elements;23 (3) The sets contained in the sequences ~S n, ~Tn are pairs of indices

{i, j}, i, j ∈ [kn]. Properties 1, 2 are natural abstractions of what happens in the

GDDH assumption (property 2 is a relaxation of the independence, as opposed

to just pair-wise independence, property satisfied by the GDDH assumption).

Property 3 implies that (if we consider a arithemtic circuit) exactly k/2 multipli-

cations on the elements must be performed before a zero-testing can be done;

combined with the above entropic message sampler condition, this implies that

any set-respecting arithmetic circuit of multiplicative degree smaller than k/2

produces a high-entropy element when applied to the sampled elements.24

3.4 iO from Semantically Secure Multilinear Encodings

In this section we prove that semantically secure multilinear encodings implies

indistinguishability obfuscators for NC1. We will show this through the follow-

ing steps.

• We first introduce a weaker notion of indistinguishability obfuscation for

branching programs, which we call neighboring-matrix indistinguishability

obfuscation. Roughly speaking, this notion guarantees that the obfusca-

tions of any pair of functionally equivalent branching programs that differ

in only a few matrices are computationally indistinguishable.

23We thank Hoeteck Wee to suggesting to consider independence properties among the ele-
ments.

24We thank Shai Halevi for this observation (and more generally for suggesting that we con-
sider the output of low-degree arithmetic circuits as an alternative to our entropic condition.).
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• We show that any neighboring-matrix indistinguishability obfuscator for

branching programs can be transformed into an full indistinguishability

obfuscator for NC1.

• Finally, we show that assuming the existence of semantically secure mul-

tilinear encodings, there exists a neighboring-matrix indistinguishability

obfuscator for branching programs.

3.4.1 Neighboring-Matrix Indistinguishability Obfuscation (nm-

iO)

We introduce a weaker notion of indistinguishability obfuscation for branch-

ing programs. This notion is similar to indistinguishability obfuscation except

that instead of requiring security to hold with respect to any pair of functionally

equivalent programs, we require security to hold with respect to any pair of

neighboring programs that are functionally equivalent. We say a pair of branch-

ing programs are neighboring if they differ in only a few matrices.

Definition 13 (Neighboring-Matrix Branching Programs). We say that BP0 and

BP1 are a pair of neighboring-matrix branching programs if they differ in at most

4 matrices. We say that {BP0
n}n∈N and {BP1

n}n∈N are a pair of neighboring-matrix

branching program ensembles if for every n ∈ N , BP0
n and BP1

n are a pair of

neighboring-matrix branching programs.

Definition 14 (Neighboring-Matrix Indistinguishability Obfuscator). A uniform

PPT machine Obf is an neighboring-matrix indistinguishability obfuscator for an

ensemble of classes of branching programs {Bn}n∈N if it satisfies the same correctness and

security conditions as in Definition 1 except that the security condition quantifies only
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over pairs of neighboring-matrix branching program ensembles (as opposed to pairs of

arbitrary circuit ensembles as in Definition 1).

3.4.2 From nm-iO to iO

In this section we show that any neighboring-matrix indistinguishability obfus-

cator for a particular ensemble of classes of branching programs can be trans-

formed into full indistinguishability obfuscators for NC1.

Roughly speaking, the indistinguishability obfuscator iO will use the

neighboring-matrix indistinguishability obfuscator Obf in the following way:

iO on input a circuit C, first converts it to an oblivious branching program

BP using Theorem 7. Next, iO doubles the width of BP by “merging” it with

a dummy branching program that computes the constant 1, and then adds a

branch at the very start that chooses whether to use the true program or the

dummy, based on a “switch”. iO simply returns the obfuscation of the above

“merged” branching program as produced by Obf.

At a high level, to show indistinguishability of iO (C1) and iO (C2), our strat-

egy will be to obfuscate (using Obf) the “merged” branching program for C1,

and then, matrix by matrix, replace the dummy branching program with the

branching program for C2. Once the entire dummy branching program has been

replaced by C2, we flip the “switch” so that the composite branching program

now computes the branching program for C2. We then replace the branching

program for C1 with C2, matrix by matrix, so that we have two copies of the

branching program for C2. We now flip the “switch” again, and finally restore

the dummy branching program, so that we end up with one copy of C2 and one
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copy of the dummy. In this way, we transition from iO (C1) to iO (C2), while only

changing a small piece of the branching program being obfuscated under Obf

in each step, and keeping the functionality the same. If Obf is a neighboring-

matrix indistinguishability obfuscator then each step of these transitions must

be indistinguishable, hence showing iO is an full indisntinguishability obfusca-

tor.

Merging Branching Programs

We first describe a method Merge for combining any two matrix branching pro-

grams together to create a composite branching program of double width, in a

way that enables switching by changing only a small number of matrices.

Construction 1 (Merging branching programs). Let BP0 = {inp(i), B0
i,0, B

0
i,1}

m
i=1 and

BP1 = {inp(i), B1
i,0, B

1
i,1}

m
i=1 be oblivious matrix branching programs, each of width w and

length m for n input bits. (We assume that the same labelling function inp : [m] → [n]

is used for each of BP0 and BP1, and this is without loss of generality because we can

add extra dummy levels so that this property holds.)

Define branching programs B̂P0 = {inp′(i), B̂0
i,0, B̂

0
i,1}

m+2
i=1 and B̂P1 = {inp′(i), B̂1

i,0,

B̂1
i,1}

m+2
i=1 , each of width 2w and length m + 2 on l input bits, where:

inp′(i)
de f
=



1, when i = 1

inp(i − 1), when 2 ≤ i ≤ m + 1

1, when i = m + 2

and, for all levels except the first and the last, B̂P0 and B̂P1 agree, given by:
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B̂0
i,b = B̂1

i,b
de f
=

 B0
(i−1),b 0

0 B1
(i−1),b

 for all 2 ≤ i ≤ m + 1 and b ∈ {0, 1}

and the first and last levels are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

 0 Iw×w

Iw×w 0

 for b ∈ {0, 1}

We define Merge so that Merge(BP0, BP1, 0) = B̂P0 and Merge(BP0, BP1, 1) = B̂P1.

We will show that B̂P0 and B̂P1 are matrix branching programs that compute

the same functions as BP0 and BP1 respectively, with the additional feature that

B̂P0 and B̂P1 differ from each other in only two levels, namely the first and the

last. Further, since inp′ does not depend on the function being computed, B̂P0

and B̂P1 are oblivious matrix branching programs.

Accordingly, with respect to Merge(BP0, BP1, b) we will often use the phrase

active branching program to refer to BPb.

Claim 9. For BP0 = {inp(i), B0
i,0, B

0
i,1}

m
i=1 and BP1 = {inp(i), B1

i,0, B
1
i,1}

m
i=1 each of width w

and length m on n input bits, define B̂P0 and B̂P1 as above. Then, for each b ∈ {0, 1},

x ∈ {0, 1}n,
m+2∏
i=1

B̂b
i,x[inp′(i)] =


∏m

i=1 Bb
i,x[inp(i)] 0

10
∏m

i=1 B1−b
i,x[inp(i)]


Proof. We observe that B̂P0 and B̂P1 agree on each level except the first and last,

that is,

B̂0
i,b = B̂1

i,b =

 B0
(i−1),b 0

0 B1
(i−1),b

 ∀ i : 2 ≤ i ≤ m + 1, b ∈ {0, 1}
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Then we have, for any x ∈ {0, 1}n,

m+1∏
i=2

B̂0
i,x[inp′(i)] =

m+1∏
i=2

B̂1
i,x[inp′(i)] =

m+1∏
i=2

 B0
(i−1),x[inp′(i)] 0

0 B1
(i−1),x[inp′(i)]


=

m∏
i=1

 B0
i,x[inp(i)] 0

0 B1
i,x[inp(i)]


=


∏m

i=1 B0
i,x[inp(i)] 0

0
∏m

i=1 B1
i,x[inp(i)]


Where the change of indices in the second step follows because inp′(i) = inp(i−1)

when 2 ≤ i ≤ m + 1. We now consider the two case for b ∈ {0, 1}.

Case 1: (b = 0)

In this case,

m+2∏
i=1

B̂0
i,x[inp′(i)] = I2w×2w ·


∏m

i=1 B0
i,x[inp(i)] 0

0
∏m

i=1 B1
i,x[inp(i)]

 · I2w×2w

=


∏m

i=1 B0
i,x[inp(i)] 0

0
∏m

i=1 B1
i,x[inp(i)]


as required.

Case 2: (b = 1)
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In this case,

m+2∏
i=1

B̂1
i,x[inp′(i)] =

 0 Iw×w

Iw×w 0

 ·

∏m

i=1 B0
i,x[inp(i)] 0

0
∏m

i=1 B1
i,x[inp(i)]

 · 0 Iw×w

Iw×w 0


=

 0
∏m

i=1 B1
i,x[inp(i)]∏m

i=1 B0
i,x[inp(i)] 0

 ·
 0 Iw×w

Iw×w 0


=


∏m

i=1 B1
i,x[inp(i)] 0

0
∏m

i=1 B0
i,x[inp(i)]


as required. �

Claim 10. For all BP0 and BP1 each of width w and length m on n input bits, for each

b ∈ {0, 1}, for all x ∈ {0, 1}n,

Merge(BP0, BP1, b)(x) = BPb(x)

Proof. Let BP0 = {inp(i), B0
i,0, B

0
i,1}

m
i=1 and BP1 = {inp(i), B1

i,0, B
1
i,1}

m
i=1. Define B̂P0 =

Merge(BP0, BP1, 0) and B̂P1 = Merge(BP0, BP1, 1) as above. We observe that for

any x ∈ {0, 1}n,

Merge(BP0, BP1, b)(x) = 1

⇐⇒ (
m+2∏
i=1

B̂b
i,x[inp′(i)]) · e1 = e1

⇐⇒


∏m

i=1 Bb
i,x[inp(i)] 0

0
∏m

i=1 B1−b
i,x[inp(i)]

 · e1 = e1 (from Claim 9)

⇐⇒ (
m∏

i=1

Bb
i,x[inp(i)]) · e1 = e1

⇐⇒ BPb(x) = 1
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Thus Merge(BP0, BP1, b)(x) = BPb(x). �

The following claim illustrates some useful properties of the Merge proce-

dure that we will use later. Firstly it notes that changing the bit Merge gets as

input changes only the “switch” matrices in the first and last level of the pro-

gram Merge outputs. Secondly, changing one level of a program Merge gets as

input changes the output program in one level only. Finally, the first column of

the output matrix of the widened program output by Merge depends only on

the first column of the output matrix of the active program. The claim follows

by observing the definition of Merge.

Claim 11. Let BP0 and BP1 be length m, width w branching programs, with input

length n.

• Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ in only 4 matrices, the matri-

ces corresponding to the first and last level.

• Let BP′1 be a length m branching program that differs from BP1 in only the

ith level for some i ∈ [m]. Then for both b ∈ {0, 1}, Merge(BP0, BP1, b) and

Merge(BP0, BP′1, b) also differ only in the ith level. A similar statement holds for

branching programs BP′0 that differ from BP0 in only one level.

• For any b ∈ {0, 1}, let BP = Merge(BP0, BP1, b), and Pout
BP(·) and Pout

BPb(·) be

the functions computing the output matrices on a given input for BP and BPb

respectively. Then for every input x ∈ {0, 1}n,

col1(Pout
BP(x)) = extend(col1(Pout

BPb(x)))

where extend extends a length w vector by appending w zeroes to the end.
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Let us emphasize that even if BP0 and BP1 have fixed accept and reject matri-

ces, Merge(BP0, BP1, b) may no longer be a branching program with fixed accept

and reject matrices; however, it will be a branching program having fixed out-

put column (as required by Definition 6).

The Construction

In this section we show how to construct an indistinguishability obfuscator

for the class C1, given a neighboring-matrix indistinguishability obfuscator for

branching programs Obf. By Lemma 6, iO can be converted into indistinguisha-

bility obfuscator for NC1.

Description of iO (1n,C) :

1. iO verifies that input C ∈ C1
n (that is, C is a circuit with size at most n and

depth at most log(n)), and aborts otherwise.

2. iO uses Barrington’s Theorem to convert C into an oblivious width 5 per-

mutation branching program. It pads this branching program as follows:

First, it increases the number of input bits to the branching program to

n. Next, it adds dummy levels to the end of the branching program un-

til its length is the same as the longest branching program for a circuit

in C1
n (which is O(4log(n)) = O(n2)). Then, for every level in the branching

program, it replaces it with n dummy levels that read every bit of the in-

put in sequential order, inserting the original level into the corresponding

position in this sequence.

This procedure ensures that every padded branching program for a circuit

in C1
n has the same length, same number of input bits, and the same input
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labelling function inp as the padded branching program for any other cir-

cuit in C1
n. Let the padded branching program be BP = {inp(i), Bi,0, Bi,1}

m
i=1.

3. iO generates a dummy width-5 branching program I = {inp(i), I5×5, I5×5}
m
i=1

of length m, where each permutation matrix at each level is the identity

matrix. iO then computes B̂P = Merge(BP, I, 0).

4. iO outputs Obf(B̂P).

Proof of security

Theorem 12. There exists a ensemble of classes of branching programs B such that if

there exists a neighboring-matrix indistinguishability obfuscator for B then there exist

indistinguishability obfuscators for NC1.

Proof. We first define the ensemble of classes B = {Bn}n∈N . The class Bn is simply

the class of all matrix branching programs of width 10, and length n3 + 2 such

that for every input x it holds that

(
m∏

i=1

Bi,x[inp(i)])) · e1 =


e1 when BP(x) = 1

ek when BP(x) = 0

where k , 1 is such that ek = extend(Preject · e1) and Preject is the rejecting matrix

from Theorem 7.

Let Obf be a neighboring-matrix indistinguishability obfuscator for B, and

let iO be the obfuscator relying on Obf constructed in Section 3.4.2 . We will

show iO is a indistinguishability obfuscator for C1; by Lemma 6, this implies

the existence of indistinguishability obfuscators for NC1.
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Assume for contradiction that there exists a nuPPT distinguisher D and poly-

nomial p such that for infinitely many n, there exist functionally equivalent cir-

cuits C0
n,C

1
n ∈ C

1
n such that D distinguishes iO (1n,C0

n) and iO (1n,C1
n) with ad-

vantage 1/p(n). For any n ∈ N, let BP0 and BP1 be the branching programs of

length m = poly(n) obtained by applying Theorem 7 to the circuits C0
n and C1

n

respectively, and padding them so they have the same length and same input

labelling function.

Let Hybi be a procedure that takes as input two length m branching pro-

grams P0 and P1 (with the same labeling function) and outputs a “hybrid”

length m branching program whose first i levels are identical to the first i lev-

els of P0 and all the other levels are identical to those of P1. Formally, let

P0 = {inp( j), B j,0, B j,1} j∈[m] and P1 = {inp( j), B′j,0, B
′
j,1} j∈[m].

Hybi(P0, P1) = {inp( j), B j,0, B j,1}
i
j=1, {inp( j), B′j,0, B

′
j,1}

m
j=i+1

For every n ∈ Nwe define hybrid distributions in the following way.

• We start with H0 which is the obfuscation of the circuit C0
n.

H0 = iO (1n,C0
n) = Obf(Merge(BP0, I, 0))

• For i = 1, 2 . . .m, let

Hi = Obf(Merge(BP0,Hybi(BP1, I), 0))

We change, one level at a time, the second branching program Merge takes

as input from I to BP1.

• We have that Hm = Obf(Merge(BP0, BP1, 0)). We change the “switch” input

to Merge so that the second branching program BP1 is active.

Hm+1 = Obf(Merge(BP0, BP1, 1))
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• For i = 1, 2 . . .m, let

Hm+i+1 = Obf(Merge(Hybi(BP1, BP0), BP1, 1))

We change the first program Merge takes as input from BP0 to BP1, one

level at a time as before.

• We have that H2m+1 = Obf(Merge(BP1, BP1, 1)). We switch back so that the

first program is active (which in this case is the same as the second pro-

gram BP1)

H2m+2 = Obf(Merge(BP1, BP1, 0))

• For i = 1, 2 . . .m, let

H2m+i+2 = Obf(Merge(BP1,Hybi(I, BP1), 0))

We change the second program Merge takes as input from BP1 to I, one

level at a time as before. Finally we get

H3m+2 = iO (1n,C1
n) = Obf(Merge(BP1, I, 0))

which is the obfuscation of the circuit C1
n.

Recall that by assumption D distinguishes between {iO (1n,C0
n)}n∈N and

{iO (1n,C1
n)}n∈N. That is, there is a polynomial p such that for infinitely many

n

|Pr[D(1n,H0) = 1] − Pr[D(1n,H3m+2)]| > 1/p(n)

By the above hybrid argument, D must distinguish between a pair of consecu-

tive hybrids. That is, there exists some i ∈ {0, 1, . . . 3m + 1} such that

|Pr[D(1n,Hi) = 1] − Pr[D(1n,Hi+1)]| > 1/4mp(n)
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We now show that Hi and Hi+1 can be expressed as the Obf(BP) and Obf(BP′)

respectively where BP and BP′ are relaxed matrix branching programs that dif-

fer in at most 4 matrices, agree on all inputs and come from Bn.

Claim 13. For every n, there exist branching programs BP, BP′ ∈ Bn such that

• Hi = Obf(BP) and Hi+1 = Obf(BP′).

• BP and BP′ differ in at most 4 matrices.

• For all x, BP(x) = BP′(x).

Proof. We consider three cases: when i is equal to m, 2m + 1 and otherwise.

Case 1: i = m: By definition of Hi and Hi+1, the branching programs BP and BP′

are Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) respectively. By Claim 11, BP and

BP′ differ in the “switch” matrices, which make up 4 matrices (the first and last

level). Furthermore, BP and BP′ compute BP0 and BP1 respectively which are

equivalent programs by assumption. It remains to show that BP, BP′ ∈ Bn. Note

that BP and BP′ have width 10 and length n3 + 2. By Claim 11, the first column

of the output matrix for a merged branching program only depends on the first

column of the output matrix of the active program. Hence, for every input x,

col1(Pout
BP(x)) = extend(col1(Pout

BP0(x))). By Theorem 7, Pout
BP0(x) is either Paccept

or Preject depending on the output BP0(x). Therefore, for all inputs x such that

BP(x) = 0,

col1(Pout
BP(x)) = extend(col1(Preject)) = ek

Similarly, for all inputs x such that BP(x) = 1,

col1(Pout
BP(x)) = extend(col1(Paccept)) = e1
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The same argument holds for BP′ too, in which case BP1 is active and has the

same accepting and rejecting permutations Paccept and Preject by Theorem 7.

Case 2: i = 2m + 1: By definition of Hi and Hi+1, the branching programs BP and

BP′ are Merge(BP1, BP1, 0) and Merge(BP1, BP1, 1) respectively. As before, these

programs differ in the 4 matrices only. Furthermore, both BP and BP′ compute

the same function, as the active program is the same (BP1). Also as before, from

Claim 11 and Theorem 7 we have that for all inputs x,

col1(Pout
BP(x)) = col1(Pout

BP′(x)) = extend(col1(Pout
BP1(x))) = et

where t = 1 if BP1(x) = 1 and t = k otherwise.

Case 3: i , m and i , 2m + 1: First, consider the subcase when i < m or i > 2m + 1.

The programs BP and BP′ are of the form Merge(BP0, Pi) and Merge(BP0, Pi+1)

respectively where Pi and Pi+1 are branching programs that differ only in the i +

1th level. By Claim 11, BP and BP′ differ only in the i+1th level too. Furthermore,

in both BP and BP′, the active program is BP0. Hence BP and BP′ compute the

same function and similarly as the previous case, we have that for all inputs x,

col1(Pout
BP(x)) = col1(Pout

BP′(x)) = extend(col1(Pout
BP0(x))) = et

where t = 1 if BP1(x) = 1 and t = k otherwise. The case when m < i < 2m + 1

follows similarly. This concludes the proof of the claim. �

Therefore we have that there is a polynomial p′ such that for infinitely many

n there exist functionally equivalent branching programs BP, BP′ ∈ Bn that differ

in only a few matrices such that

|Pr[D(1n,Obf(BP)) = 1] − Pr[D(1n,Obf(BP′))]| > 1/p′(n)
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This implies Obf is not a neighboring-matrix indistinguishability obfuscator for

B and hence a contradiction. �

3.4.3 From Semantic Security to nm-iO

In this section we show that assuming the existence of semantically secure mul-

tilinear encodings, there exists a neighboring-matrix indistinguishability obfus-

cator for any ensemble of classes of branching programs.

As in previous works [70, 50, 16], the strategy for our construction will be to

apply Kilian’s randomization technique to the matrices, and then encode these

matrices using the graded encoding scheme. The encoding will be using a so-

called “straddling set system” (as in [16]) that will enforce that any arithmetic

circuit operating on these encodings can be decomposed into a sum of terms

such that each term can be expressed using only encodings that come from

one branch of the branching program (more specifically, from the path through

the branching program corresponding to evaluating a particular input x to the

branching program).

As mentioned in the introduction, although we will closely follow tech-

niques from [50, 16] (our obfuscator may be viewed as a simplified version of the

obfuscator from [16]), we cannot directly rely on their proofs for two reasons:

1. The proofs in [50, 16] rely on the fact that we are only obfuscating branch-

ing programs with fixed accept and reject matrices; as mentioned, we need

to handle more general classes of branching programs.

2. The proofs in [50, 16] only reason about polynomial-size generic attackers.
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In contrast, to rely on semantical security, we need to reason about un-

bounded arithmetic circuits.

Randomizing Branching Programs

We start by describing Kilian’s randomization technique [108] for a branching

program, adapted to our setting, by defining a process Rand that randomizes

the matrices of a branching program BP. We will decompose the randomiza-

tion into two parts, RandB and Randα, defined below, and define Rand as their

composition.

Definition 15 (RandB). Let BP = {inp(i), Bi,0, Bi,1}
m
i=1 be a branching program of width

w and length m, with length-n inputs. Let p be a prime exponential in n. Then the

process RandB(BP, p) samples m random invertible matrices R1,R2, . . . ,Rm ∈ Zw×w
p uni-

formly and independently, and computes

B̃i,b = R(i−1) · Bi,b · R−1
i for every i ∈ [m], and b ∈ {0, 1}

where R0 is defined as Iw×w, and

t = Rm · e1

RandB then outputs

({B̃i,b}i∈[m],b∈{0,1}, t, p)

Definition 16 (Randα). Let ({B̃i,b}i∈[m],b∈{0,1}, t, p) be the output of RandB(BP, p) as

defined above. On this input, Randα({B̃i,b}i∈[m],b∈{0,1}, p) samples 2m non-zero scalars

{αi,b ∈ Zp : i ∈ [m], b ∈ {0, 1}} uniformly and independently, and outputs

({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)
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Definition 17 (Rand). Let BP = {inp(i), Bi,0, Bi,1}
m
i=1 be a branching program of width

w and length m, with length-n inputs. Let p be a prime exponential in n. Then we define

Rand(BP, p) to be:

Rand(BP, p) = (Randα(RandB(BP, p)))

= ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Where ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) are as computed in the executions of Randα and RandB.

Execution of a randomized branching program: To compute BP(x) from the

output of Rand(BP, p), given some input labelling function inp : [m] → [n], and

x ∈ {0, 1}n, we compute

Out(x) = (
m∏

i=1

αi,x[inp(i)] · B̃i,x[inp(i)]) · t

Where Out ∈ Zw
P is a w×1 vector. The intermediate multiplications cause each R−1

i

to cancel each Ri, and R0 = Iw×w, so the above computation can also be expressed

as:

Out(x) = (
m∏

i=1

αi,x[inp(i)] · Bi,x[inp(i)]) · e1

When BP(x) = 1, we have that

m∏
i=1

αi,x[inp(i)] · Bi,x[inp(i)] · e1 = (
m∏

i=1

αi,x[inp(i)]) · e1

When BP(x) = 0, we have that

m∏
i=1

αi,x[inp(i)] · Bi,x[inp(i)] · e1 = (
m∏

i=1

αi,x[inp(i)]) · ek

for k , 1. Hence, to compute BP(x), we compute Out(x) and output 0 if

Out(x)[1] = 0, and 1 otherwise.
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Simulating a randomized branching program: Previous works ([16, 50]) fol-

lowed [108] to show how to simulate the distribution of any single path corre-

sponding to an input x using just BP(x). However, the simulator required that

branching programs have unique accept and reject matrices Paccept and Preject.

We would also like a theorem, along the lines of [108], that shows that any

single path through a randomized branching program BP corresponding to an

input x can be simulated knowing just the accept/reject behavior of BP on x (i.e.

by knowing whether BP(x) = 1).

In our setting, however, branching programs only meet the relaxed require-

ment that the output matrix Pout(x) computed by evaluating BP on input x sat-

isfies Pout(x) · e1 = e1 ⇐⇒ BP(x) = 1. There can thus be multiple accept and

reject matrices, and the particular accept or reject matrix output by BP can de-

pend both on x and on the specific implementation of BP (and not simply its

accept/reject behavior). In contrast, in previous works, because Paccept and Preject

were unique, knowing just the accept/reject behavior of BP on x also determines

Pout(x).

What we will show is that, for the particular randomization scheme chosen

above, we can simulate any single path through a randomized branching pro-

gram BP corresponding to an input x without knowing the exact accept/reject

matrix Pout(x), but rather just knowing the first column pout(x) = col1(Pout(x)).

This will be sufficient for our applications, because the class of branching

programs we randomize will have the property that there are fixed columns

paccept and preject ∈ Z
w
p such that for all x ∈ {0, 1}n, if BP(x) = 1 then col1(Pout(x)) =

paccept, and if BP(x) = 0 then col1(Pout(x)) = preject. In the case of such programs,
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col1(Pout(x)) is determined solely by BP(x), and not the particular implementa-

tion of BP. Thus, for these programs, we can simulate given only BP(x).

Before we show this theorem, we define notation for a path through a

branching program corresponding to an input x.

Definition 18 (projx). Let inp : [m] → [n] be an input labelling function, and, for

any x ∈ {0, 1}n, define projx, relative to inp, such that for any branching program BP

with labelling function inp, for any prime p ∈ N , and for any ({B̃i,b}i∈[m],b∈{0,1}, t) ←

RandB(BP, p)

projx({B̃i,b}i∈[m],b∈{0,1}, t) = ({B̃i,x[inp(i)]}i∈[m], t),

that is, projx selects the elements from ({B̃i,b}i∈[m],b∈{0,1}, t) used when evaluating input x.

We now show a version of Kilian’s theorem, adapted to our construction.

Theorem 14. There exists an efficient simulator KSim such that the following holds.

Let BP = {inp(i), Bi,0, Bi,1}i∈[m] be a width-w branching program of length m on n bit

inputs, and p a prime exponential in n. Let x ∈ {0, 1}n be an input to BP, and let

bi = x[inp(i)] for each i ∈ [m]. Let Pout(x) =
∏m

i=1 Bi,bi denote the matrix obtained

by evaluating BP on x, and let pout(x) = col1(Pout(x)) denote the first column of this

output. Let projx(RandB(BP, p)) be defined respecting the labelling function inp. Then

KSim(1m, p, pout(x)) is identically distributed to projx(RandB(BP, p)).

Proof. We begin by defining KSim(1n, p, BP(x)) as follows:

• For each i, KSim selects B̃i,bi to be a uniformly random invertible matrix in

Zw×w
p .
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• KSim selects t ∈ Zw
p solving

(
∏
i∈[m]

B̃i,bi) · t = pout(x) (3.1)

where bi = x[inp(i)] for each i.

• KSim outputs {{B̃i,bi}i∈[m], t}

We want to show that the distribution output by KSim matches the real distri-

bution of {{B̃i,bi}i∈[m], t} in the output of RandB(BP, p). But from [108], we have the

following:

Claim 15. The distribution of {{B̃i,bi}i∈[m],Rm} can be exactly sampled given Pout(x), by

sampling {B̃i,bi}i∈[m], Rm to be uniformly random and independent invertible matrices in

Zw×w
p subject to

(
∏
i∈[m]

B̃i,bi) · Rm = Pout(x) (3.2)

The above claim implies the following:

Claim 16. The distribution of {{B̃i,bi}i∈[m],Rm} can be sampled by independently choos-

ing each B̃i,bi uniform and invertible, and fixing Rm solving equation (3.2).

Proof. This follows because for every choice of invertible B̃i,bi , there exists Rm

solving equation (3.2) given by

Rm = (
∏
i∈[m]

B̃i,bi))
−1 · Pout(x) (3.3)

Further, every solution to equation (3.2) can be represented as invertible B̃i,bi ,

and an Rm solving equation (3.3). Thus choosing a random solution to equation
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(3.2) corresponds to independently choosing each B̃i,bi uniformly and invertible,

and fixing Rm solving equation (3.3). �

From the above argument, we have that the distribution of projx(Rand(BP, p))

is exactly the same as the distribution produced by independently choosing

each B̃i,bi uniform and invertible, fixing Rm solving equation (3.3), setting t to be

the first column of Rm, and outputting {{B̃i,bi}i∈[m], t}. But note that each column

coli(Rm), i ∈ [w] is the unique solution to

(
∏
i∈[m]

B̃i,bi) · coli(Rm) = coli(Pout(x))

Thus we have that each B̃i,bi is independent, uniform, and invertible, and, using

i = 1, t is the unique solution to

(
∏
i∈[m]

B̃i,bi) · t = pout(x)

and, in particular, that t is determined by only the first column of Pout(x). Thus,

we see that the distribution of projx(RandB(BP, p)) is exactly the same as that

output by KSim. �

Choosing a Set System

In this section we will describe how to choose a collection of sets under which to

encode a randomized branching program using the graded encoding scheme.

Our selection of sets will closely follow [16], in that we use straddling set sys-

tems. However, one difference is that while they use dual input branching pro-

grams, we restrict our attention to single-input schemes. As a consequence, the

sets will be simpler and consist of fewer elements.

We first define straddling set systems.
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Definition 19 (Straddling Set Systems [16]). A straddling set system with n en-

tries is a collection of sets Sn = {S i,b : i ∈ [n], b ∈ {0, 1}} over a universe U, such

that: ⋃
i∈[n]

S i,0 =
⋃
i∈[n]

S i,1 = U

and for every distinct non-empty sets C,D ⊆ Sn, we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.

2. (Collision:)
⋃

S∈C S =
⋃

S∈D S

Then it must be that ∃b ∈ {0, 1} such that:

C = {S j,b} j∈[n] , D = {S j,(1−b)} j∈[n]

Informally, the guarantee provided by a straddling set system is that only way

to exactly cover U using elements from Sn is to use either all sets {S i,0}i∈n or

all sets {S i,1}i∈n. We use a slight variant of their construction, choosing U to be

[2n], each S i,0 to be one of {1, 2}, {3, 4}, . . . , {2n − 1, 2n}, and each S i,1 to be one of

{1, 2n}, {2, 3}, {4, 5} . . . , {2n−2, 2n−1}.25 By a proof exactly following [16], we have

that this construction is a straddling set system.

Theorem 17 (Following Construction 1 in [16]). For every n ∈ N, there exists a

straddling set system Sn with n entries, over a universe U of 2n elements; furthermore,

each set in the straddling set system has size exactly two.

We now define the process SetSystem which takes as input the length m of a

branching program, the number of input bits n, and the input labelling function

25In the construction of [16], U = [2n − 1], and each S i,0 is one of {1}, {2, 3}, . . . , {2n − 2, 2n − 1},
and each S i,1 is one of {1, 2}, {3, 4}, . . . , {2n−1}. We could have also worked with this construction,
but modify it slightly to ensure that all encodings are under sets of size exactly two.
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inp : [m] → [n] for a branching program. SetSystem will output the collection

of straddling set systems that we will use to encode any branching program of

length m on n input bits, with labelling function inp.

Execution of SetSystem(m, n, inp):

We let n j denote the number of levels that inspect the jth input bit in inp. That

is,

n j = |{i ∈ [m] : inp(i) = j}|

For every j ∈ [n], SetSystem chooses S j to be a straddling set system with n j

entries over a set U j, such that the sets U1, . . . ,Un are disjoint. Let U =
⋃

j∈[n] U j.

SetSystem then chooses S t be a set of two elements26, disjoint from U. We as-

sociate the set system S j with the j’th input bit of the branching program corre-

sponding to inp. SetSystem then re-indexes the elements of S j to match the steps

of the branching program as described by inp, so that:

S j = {S i,b : inp(i) = j, b ∈ {0, 1}}

By this indexing, we also have that S i,b ∈ S
inp(i) for every i ∈ [m], for every b ∈

{0, 1}.

Let k = |U ∪ S t|, and WLOG, assume that the U js and S t are disjoint subsets

of [k] (otherwise SetSystem relabels the elements to satisfy this property).

SetSystem then outputs

k, {S i,b}i∈[m],b∈{0,1}, S t

26We make this choice to ensure that every set in the output of SetSystemconsists of exactly
two indices {i, j} for i, j ∈ [k]
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The Construction

We finally describe our neighboring-matrix indistinguishability obfuscator Obf

for branching programs. Obf will use Rand and SetSystem as subroutines.

Description of Obf(BP) :

Input. Obf takes as input an oblivious permutation branching program BP =

{inp(i), Bi,0, Bi,1}
m
i=1 of width w, length m and taking n input bits.

Choosing sets. Obf runs SetSystem(m, n, inp) and receives k, {S i,b}i∈[m+2],b∈{0,1}, S t.

Initializing the GES. Obf runs InstGen(1n, 1k) and receives secret parameters sp

and public parameters pp which describe a (k,R)-graded encoding scheme.

We assume the ring R is equal to Zp for some p exponential in n and k.

Randomizing BP. Obf executes Rand(BP, p), and obtains its output, {{inp(i), αi,0 ·

B̃i,0, αi,1 · B̃i,1}i∈[m], t}

Output. Obf outputs:

pp, {inp(i), Enc(sp, αi,0·B̃i,0, S i,0), Enc(sp, αi,0·B̃i,0, S i,1)}i∈[m], Enc(sp, t, S t)

We also define a generic version of Obf, which we refer to as GObf. Its output

will be used to initialize an oracle M for the idealized version of the graded

encoded scheme. GObf(BP, pp) acts exactly as Obf(BP), except that it works with

a fixed public parameter pp supplied as input, and in the Output step, GObf

outputs

pp, {inp(i), (αi,0 · B̃i,0, S i,0), (αi,1 · B̃i,1, S i,1)}i∈[m], (t, S t)

that is, the output before it is encoded under the multilinear encoding scheme.
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Proof of security

We show that Obf defined in Section 3.4.3 is a neighboring-matrix indistin-

guishability obfuscator for any ensemble of classes of branching programs, if

the underlying multilinear encodings are semantically secure.

Theorem 18. Assume the existence of an entropic semantically secure multilinear en-

coding scheme. Then there exist a neighboring-matrix indistinguishability obfuscator

for any ensemble of classes of branching programs.

Proof. Consider any ensemble B = {Bn}n∈N of classes of branching programs.

We show that the obfuscator Obf is a neighboring-matrix indistinguishability

obfuscator for B. Assume for contradiction there exist a pair of ensembles

{BP0
n}n∈N , {BP1

n}n∈N nuPPT D and polynomial p such that for infinitely many n,

BP0
n, BP1

n are functionally equivalent programs in Bn that differ in at most 4 ma-

trices and

|Pr[D(1n,Obf(BP0
n)) = 1] − Pr[D(1n,Obf(BP1

n))]| > 1/p(n)

We will show that the semantic security of the multilinear encodings used

by Obf implies a contradiction. In particular, we construct a message sampler M

which samples ( ~m0, ~m1,~z) such that Obf(BP0
n) is simply the encoding of ( ~m0,~z) and

Obf(BP1
n) is the encoding of ( ~m1,~z). We then show that if BP0

n and BP1
n agree on

all inputs, then the message sampler M is valid in the sense of Definition 11 and

therefore D breaks the semantic security of the encoding scheme used, hence a

contradiction.

Fix n ∈ N, and let BP0
n = {inp(i), Bi,0, Bi,1}i∈[m] and BP1

n = {inp(i), B′i,0, B
′
i,1}i∈[m]. Let

L ⊂ [m]×{0, 1} be the set of indices of those matrices in which BP0
n and BP1

n differ.
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Note that by assumption |L| = 4. All other matrices of BP0
n and BP1

n are the same.

Let (k, {S i,b}i∈[m],b∈{0,1}, S t) = SetSystem(m, n′, inp) where n′ is the input length

of the branching programs BP0
n, BP1

n, and let

~S n = {S l}l∈L

~Tn = ({S l}l<L, S t)

We now define a message sampler M as follows. When run with security pa-

rameter 1n, M gets BP0
n and BP1

n as non-uniform advice. On input 1n, public

parameters pp that describe a (k,Zp)-graded encoding scheme, M samples m ran-

dom invertible 10× 10 matrices over Zp, {Ri}i∈[m] and 2m random scalars from Zp,

{αi,b}i∈[m],b∈{0,1}. M then uses these matrices and scalars to randomize BP0
n and BP1

n

as described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m′],b∈{0,1}, {αi,b · B̃′i,b}i∈[m′],b∈{0,1} and t.

M outputs

~m0 = {αl · B̃l}l∈L

~m1 = {αl · B̃′l}l∈L

~z = ({αl · B̃l}l<L, t)

We observe that D(1n,Obf(BPb
n)) is simply the output of D when playing the

semantic security game in Definition 12 parameterized by the bit b with the

message sampler M and sets (~S n, ~Tn) (as defined above). To see this, observe

that the distribution of ( ~m0,~z) is identical to Rand(BP0
n, p) and the distribution of

( ~m1,~z) is identical to Rand(BP1
n, p). When these elements are encoded under sets

~S n, ~Tn then we obtain the distributions Obf(BP0
n) and Obf(BP1

n) respectively.

Recall that for infinitely many n,

|Pr[D(1n,Obf(BP0
n)) = 1] − Pr[D(1n,Obf(BP1

n))]| > 1/p(n)
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Since the graded encoding scheme is semantically secure, and |~S n| ∈ O(1) and

|~Tn| ∈ O(k), it must be that M is not a {~S n, ~Tn}n∈N -respecting message sampler. In

the remainder of the proof we show that if BP and BP′ agree on all inputs then

M is a {~S n, ~Tn}n∈N -respecting message sampler, hence implying a contradiction.

Similar statements were shown in [16] and [50]. In particular, GObf is a simpli-

fied version of the obfuscator of [16], which [16] shows is VBB secure against

algebraic adversaries. We will follow the structure of the proof in [16], but can-

not use it in a black-box way due to the differences in the construction and the

fact that their proof only works for branching programs that have unique ac-

cepting and rejecting output matrices. The branching programs we consider

may not have this property.

To prove that M is a {~S n, ~Tn}n∈N -respecting message sampler we need to show

that there exists a polynomial Q such that for every n ∈ N, every (sp, pp) in

the support of InstGen(1n, 1k), and every (~S n, ~Tn)-respecting arithmetic circuit C,

there exists a constant c ∈ {0, 1} such that for any b ∈ {0, 1},

Pr[( ~m0, ~m1,~z)← M(1n, pp) : isZero(C( ~mb,~z)) = c] ≥ 1 − Q(n, k)/|R|.

where R is the ring associated with pp. We show that the result of applying

any (~S n, ~Tn)-respecting arithmetic circuit C on ( ~m0,~z) (resp. ( ~m1,~z)), can be sim-

ulated with overwhelming probability given just BP0
n. This implies (by a union

bound over b ∈ {0, 1}) that for every such C there exists some bit c such that with

overwhelming probability C( ~mb,~z) = c for b ∈ {0, 1}, and thus M is {~S n, ~Tn}n∈N -

respecting. It suffices to show the following lemma and to note that BP0
n and

BP1
n are functionally equivalent.

Lemma 19. There exists a Turing machine CSim such that for every m, n,w ∈ N,

v0, v1 ∈ {0, 1}w, labeling function inp : [m] → [n], prime number p, and ~S -respecting
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arithmetic circuit C where ~S = SetSystem(m, n, inp), the following holds. For every

branching program BP of length m, width w and labeling function inp for which on

every input x, col1(Pout(x)) = vBP(x) it holds that

Pr[isZero(C(Rand(BP, p))) , CSimBP(1m, p,C, v0, v1)] ≤ 32wm/p

The proof of the lemma follows the structure of the VBB simulation in [16],

appropriately adapted to deal with the fact that our branching programs do not

have a unique output by relying on Theorem 14.

Proof. Roughly speaking the lemma follows from the the property that ~S -

respecting arithmetic circuits, due to the straddling set systems in ~S , can only

evaluate expressions that are “consistent” with some inputs. In particular, fol-

lowing [16], the polynomial evaluated by C can be expressed as the sum of

single-input terms where each single-input term is a function of elements that are

consistent with some single input to the branching program. Next, we rely on

Theorem 14 to show that the sum of these single-input terms will depend only

on the value of the branching program on these inputs.

The following proposition states that the function a ~S -respecting arithmetic

circuit computes can be expressed as the sum of several single-input terms. This

decomposition is very similar to the one shown in [16].27

Proposition 1. Fix m, n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m, n, inp) =

({S i,b}i∈[m],b∈{0,1}, S t), and let C be any ~S -respecting arithmetic circuit. There exists a set

X ⊆ {0, 1}n of inputs such that

27The key difference is that [16] proves such a decomposition for “dual-input” branching
program, and use the “dual-input” property to show that there are only polynomially many
terms in the decomposition.
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(i)

C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡
∑
x∈X

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cx is a ~S -respecting arithmetic circuit, whose input wires are labelled

only with sets respecting a single input x ∈ {0, 1}n, that is, only with sets ∈

{S i,x[inp(i)]}i∈[m] ∪ {S t}.

(ii) For each Cx above, for every branching program BP of width w and length m on

n input bits, with input labelling function inp, every prime p, and every ({αi,b ·

B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p)

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where px is some polynomial, and αx = (
∏

i∈[m] αi,x[inp(i)]). Furthermore, when px

is viewed as a sum of monomials, each monomial contains exactly one entry from

each B̃i,x[inp(i)], and one entry from t.

The proof of Proposition 1 uses the following lemma:

Lemma 20. Fix m, n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m, n, inp) =

({S i,b}i∈[m],b∈{0,1}, S t), and let C be any weakly ~S -respecting arithmetic circuit whose out-

put wire is tagged with T ⊆ [k]. Then there exists a set U ⊆ {0, 1, ∗}m such that for

every branching program BP of width w and length m on n input bits, with input tag-

ging function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p),

(i)

C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡
∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S -respecting arithmetic circuit, whose input wires are

tagged only with sets ∈ {S i,u[i]}i∈[m]:u[i],∗ ∪ {S t}, and whose output wire is tagged

with T .
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(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial cir-

cuit performs only multiplications of elements in ({αi,b · B̃i,b}i∈m,b∈{0,1}, t), is weakly

~S -respecting, and has output wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i],∗, t)

where pu is some polynomial, and αu = (
∏

i∈[m]:u[i],∗ αi,u[i]). Furthermore, when pu

is viewed as a sum of monomials, each monomial contains exactly one entry from

each B̃i,u[i] such that u[i] , ∗, and possibly one entry from t. Further, pu can be

computed by a weakly ~S -respecting circuit whose output wire is tagged with T .

The lemma can be proved using a simple induction. We provide a complete

proof of the lemma in Section 3.8. Given this lemma, the proof of Proposition 1

is as follows:

Proof. Part (i) We consider the special case of Lemma 20 part (i), in which C is

~S -respecting (as opposed to only weakly ~S -respecting). In this case, we have

that each Cu in the decomposition of C is also ~S -respecting, and in particular,

each Cu for u ∈ U has its output wire tagged with the universe set [k].

We first observe that for any Cu in the decomposition of C, u cannot contain

∗. This is because the output of Cu is tagged with [k], and thus must have at least

one input wire tagged with either of S i,0 or S i,1 for each i, or else the straddling

set Sinp(i) will be incomplete, and thus the output wire cannot be tagged with [k].

Further, we observe that for every u ∈ U, for every j ∈ [n], there must be a bit

b j ∈ {0, 1} such that for every i ∈ [m] such that inp(i) = j, u[i] = b j. This can be seen

by considering any monomial circuit in Cu individually. Recall from Lemma 20
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part (ii) that Cu is formed by summing some number of monomials circuits,

each of which is ~S -respecting and has output wire tagged with [k]. This means

that S j ⊆ [k] is covered by the elements of the monomial. However, since S j is

constructed as a straddling set, the only way to cover S j in a monomial circuit

that only contains multiplication gates, is by using either all sets from {S i,0 :

inp(i) = j}i∈m or all sets from {S i,1 : inp(i) = j}i∈m. This means, correspondingly,

that u must be such that there is a bit b j ∈ {0, 1}, for every i ∈ [m] such that

inp(i) = j, u[i] = b. Define x ∈ {0, 1}n so that x[ j] = b j for all j ∈ [n]. In this way,

we can define a one-to-one correspondence from each u ∈ U to corresponding

x ∈ {0, 1}n, and we simply relabel each Cu to the corresponding Cx to get the

desired decomposition of C. We observe that the additional conditions on each

Cx can be achieved from the corresponding conditions on Cu as guaranteed by

Lemma 20.

Part (ii) Part (ii) follows directly from Part (i) of this proposition, together with

Lemma 20 part (iii), and the observation that each Cu in Lemma 20 is relabelled

to Cx for some x ∈ {0, 1}n in Part (i) of this proposition. �

Now we are ready to describe the simulator CSim. CSim gets as input 1m,

prime p, a ~S -respecting circuit C, vectors v0, v1 and has oracle access to a length m

branching program BP. Let X be the set of inputs and {px}x∈X be the single-input

polynomials corresponding to the decomposition of C. For every x ∈ X, CSim

queries BP on x, samples dx ← KSim(1m, p, vBP(x)) and checks whether px(dx) = 0.

CSim outputs 1 if and only if for every input x ∈ X, px(dx) = 0.

Now we prove correctness of our simulation. First, we prove some claims

that will be useful. In each of these claims, let projx be defined with respect to the

labeling function inp of the branching program BP. The following claim states

192



that if C(Rand(BP, p)) is always zero, then every single-input term is always zero.

Claim 21. If Pr[C(Rand(BP, p) = 0] = 1 then for every input x ∈ X,

Pr[px(projx(RandB(BP, p))) = 0] = 1

Proof. Consider a fixed d = ({B̃i,b}i∈[m],b∈{0,1}, t) in the support of RandB(BP, p) and

let Cd({αi,b}i∈[m],b∈{0,1}) = C({αi,b · B̃i,b}i∈[m],b∈{0,1}, t). By Proposition 1, we know that

Cd({αi,b}) =
∑
x∈X

(
∏
i∈[m]

αi,x[inp(i)])px(projx(d))

and Cd is a degree m + 2 polynomial. By assumption, C(Rand(BP, p)) is always

zero (over the support of Rand(BP, p)); hence, Cd({αi,b}) = 0 for all non-zero {αi,b}.

By the Schwartz-Zippel lemma, this can happen only if Cd is the zero polyno-

mial. By the structure of Cd, this implies that for every x ∈ X, px(projx(d)) = 0.

This argument works for every fixed value of d, hence we have that for every

x ∈ X, Pr[px(projx(RandB(BP, p))) = 0] = 1. �

The next claim states that if C(Rand(BP, p)) is not always zero, then it is zero

with small probability. Furthermore, there exists a single-input term that is zero

with small probability.

Claim 22. For any ~S -respecting circuit C, if Pr[C(Rand(BP, p)) = 0] < 1 then the

following holds.

1. Pr[C(Rand(BP, p)) = 0] ≤ 16wm/p

2. There exists x ∈ X such that Pr[px(projx(RandB(BP, p))) = 0] ≤ 16wm/p, where

X is obtained from the decomposition of C by Proposition 1.

Proof. We start by showing part 1.
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Part 1: If Rand(BP, p) = Randα(RandB(BP, p)) can be expressed as a low-degree

(≤ 2w) polynomial on uniformly random values in Zp—namely, the α’s and the

randomization matrices Ri’s—then by the Schwartz-Zippel lemma the first part

of the claim directly follows. However, there are two barriers to applying this

argument:

• RandB does not sample uniformly random matrices {Ri}i∈[m]; rather, it

chooses uniformly random invertible matrices Ri. Similarly, Randα does

not sample uniformly random {αi,b}i∈[m],b∈{0,1}; rather, it chooses uniformly

random non-zero αi,b.

• RandB also needs to compute inverses R−1
i to Ri for every i ∈ [m] (which

may no longer be expressed as low degree polynomials in the matrices

{Ri}i∈[m]).

To handle the second issue, consider the distribution RandB
ad j(BP, p) that is de-

fined exactly as RandB(BP, p) except that for every i ∈ [m] it uses ad j(Ri) =

R−1
i det(Ri) instead of R−1

i . Note that every entry of the adjoint of a w × w ma-

trix M is some cofactor of M (obtained by the determinant of the w − 1 × w − 1

matrix obtained by deleting some row and column of A). Hence every entry of

ad j(Ri) can be expressed as a degree w polynomial in Ri. Let Randad j(BP, p) =

Randα(RandB
ad j(BP, p)). It follows that Randad j(BP, p) is computed by degree (at

most) 2w polynomial in the matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1}.

Furthermore, we show that Pr[C(Randad j(BP, p)) = 0] = Pr[C(Rand(BP, p)) =

0]. Recall that by Proposition 1,

C ≡
∑
x∈X

Cx
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and for each Cx above and every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p) ,

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏

i∈[m] αi,x[inp(i)]) and px is a polynomial such that, when viewed

as a sum of monomials, each monomial contains exactly one entry from each

B̃i,x[inp(i)], and one entry from t. Recall that for every i ∈ [m],

B̃i,x[inp(i)] = Ri−1Bi,x[inp(i)]R−1
i

For every i ∈ [m], replacing R−1
i with ad j(Ri) has the effect of multiplying each

monomial in px with the scalar det(Ri). Hence

Cx(Randad j(BP, p)) = (
∏
i∈[m]

det(Ri)) ·Cx(Rand(BP, p))

Since C is the sum of such Cx terms, it holds that C(Randad j(BP, p)) =

(
∏

i∈[m] det(Ri))C(Rand(BP, p)). For every i ∈ [m], by invertibility, det(Ri) , 0 and

hence

Pr[C(Randad j(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]

So far, we have that Randad j(BP, p) is computed by a degree 2w polynomial in

the matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1}. However the first issue remains:

each Ri is uniformly random invertible and each αi,b is uniformly random non-

zero, whereas we need them to be uniformly random. Consider the distribution

Randad j,U(BP, p) that is obtained by the computing the same polynomial on uni-

formly random matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1} over Zp. In Claim 31,

we show that the statistical distance between Randad j(BP, p) and Randad j,U(BP, p)

is at most 8wm/p. Furthermore, the support of Randad j,U(BP, p) contains the sup-

port of Randad j(BP, p). This implies that if Pr[C(Randad j(BP, p)) = 0] < 1 then

Pr[C(Randad j,U(BP, p)) = 0] < 1.

195



We now turn to proving the statement of the claim. Using facts shown above,

we have that

Pr[C(Rand(BP, p)) = 0] < 1 =⇒ Pr[C(Randad j(BP, p)) = 0] < 1

=⇒ Pr[C(Randad j,U(BP, p)) = 0] < 1

By Proposition 1, C evaluates a m + 1 degree polynomial, and Randad j,U(BP, p) is

computed by a degree 2w polynomial in uniformly random values in Zp. By the

Schwartz-Zippel lemma,

Pr[C(Randad j,U(BP, p)) = 0] < 1

=⇒ Pr[C(Randad j,U(BP, p) = 0] ≤ 2w(m + 1)/p ≤ 8wm/p

We have that the statistical distance between Randad j,U(BP, p) and Randad j(BP, p)

is at most 8wm/p. Therefore, Pr[C(Rand(BP, p)) = 0] = Pr[C(Randad j(BP, p)) =

0] ≤ 16wm/p thus proving the first part of the claim. We proceed to show part 2.

Part 2: By Proposition 1, for every x ∈ X, there exists a ~S -respecting arithmetic

circuit Cx such that for every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p),

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏

i∈[m] αi,x[inp(i)]) and C =
∑

x∈X Cx. In particular, px({B̃i,x[inp(i)]}i∈[m], t) = 0

iff Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = 0 (since αi,b is non-zero).

Thus, we have that

Pr[C(Rand(BP, p))) = 0] = Pr[Cx(Randα(RandB(BP, p))) = 0]

= Pr[px(projx(RandB(BP, p))) = 0]

There must exist an input x ∈ X such that Pr[Cx(Rand(BP, p))) = 0] < 1 or

else Pr[C(Rand(BP, p))) = 0] = 1. By the first part of the claim, it follows that

Pr[C(Rand(BP, p))) = 0] ≤ 16wm/p,

196



which concludes the proof. �

Now we analyze the correctness of the simulator CSim. We consider the

following two cases: when C(Rand(BP, p)) is always zero, and otherwise.

Case 1: Pr[C(Rand(BP, p)) = 0] = 1: In this case we will show that the simula-

tion always succeeds. If Pr[C(Rand(BP, p)) = 0] = 1 then by Claim 21, for every

x ∈ X, Pr[px(projx(RandB(BP, p))) = 0] = 1. Recall that KSim(1m, p, vBP(x)) simu-

lates projx(RandB(BP, p)) perfectly. Therefore, CSim always outputs 1 and hence

succeeds.

Case 2: Pr[C(Rand(BP, p)) = 0] < 1: In this case, by the first part of Claim 22 we

have that

Pr[isZero(C(Rand(BP, p))) = 1] ≤ 16wm/p

By the perfect simulation of KSim, we have that

Pr[CSimBP = 1] = Pr[∀x (dx ← projx(RandB(BP, p)) : px(dx) = 0)]

By second part of Claim 22 there exists input xC such that Pr[pxC (projxC
(

RandB(BP, p))) = 0] ≤ 16wm/p. Therefore,

Pr[CSimBP = 1] ≤ Pr[pxC (projxC
(RandB(BP, p))) = 0] ≤ 16wm/p

Therefore, by a union bound we have that

Pr[isZero(C(D)) = CSimBP = 0] > 1 − 32wm/p

This concludes the proof of the lemma. �

�
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Restricting to Entropic Message Samplers

We here show that the message samper M in the previous section satisfies the

required high-entropy condition (required by the notion of entropic semantical

security); that is, M is entropically valid.

Recall that the message sampler M in the proof of Theorem 18 gets as input

the description of a ring R = Zp and samples ( ~m0, ~m1,~z) such that ( ~m0,~z) and

( ~m1,~z) are the “randomizations” (as defined in the description of Rand) of fixed

branching programs. We now show the following proposition, which combined

with the fact that the length m of the branching programs is polynomial in log |R|

(recall that R = Zp where p is a prime exponential in the multilinearity parameter

k which is < 3m), implies that the output of a non-terminal set-respecting circuit

on input ( ~mb,~z) (for both b ∈ {0, 1}) has min-entropy log |R| − O(log log |R|), as

required.

Proposition 2. Let BP be a branching program of length m, width w, input length n

and input labeling function inp. Let p be a prime and ~S = SetSystem(m, n, inp). Let C

be a non-terminal ~S -respecting arithmetic circuit that computes a non-zero polynomial.

Then we have that

H∞(C(Rand(BP, p))) ≥ log(
p

12wm
)

or equivalently, for any fixed output a ∈ Zp

Pr[C(Rand(BP, p)) = a] ≤ 12wm/p

Proof. Let T be the set that tags the output wire of C as per the construction given

in Definition 9. Since C is non-terminal ~S -respecting, we have that T is a strict

subset of [k] where (k, ~S ) = SetSystem(m, n, inp). By Lemma 20 part (iii), there
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exists a set U of labels u ∈ {0, 1, ∗} such that for every ({α j,b · B̃ j,b} j∈[m],b∈{0,1}, t) ←

Rand(BP, p) we have that

C({α j,b · B̃ j,b} j∈[m],b∈{0,1}, t) =
∑
u∈U

αu · pu({B̃ j,u[ j]} j∈[m]:u[ j],∗, t) (3.4)

where αu =
∏

j∈[m]:u[ j],∗ α j,u[ j]. Furthermore, each pu is computed by a weakly ~S -

respecting circuit whose output wire is also tagged with T . Since C computes a

non-zero polynomial, there must exist v ∈ U such that pv is a non-zero polyno-

mial. We now have the following claim.

Claim 23. Pr[pv({B̃ j,v[ j]} j∈[m]:v[ j],∗, t) = 0] ≤ 10wm/p.

Proof. To see this, we first observe that since T is a strict subset of [k] and pv is

computed by a ~S -respecting circuit whose output wire is tagged with T , either pv

does not operate on some level of the branching program or it does not operate

on t; that is, either,

• there exists j ∈ [m] such that v[ j] = ∗, or

• pv is not a function of t.

In the first case, by an argument similar to that in Claim 16, we can

show that the distribution ({B̃ j,v[ j]} j∈[m]:v[ j],∗, t) is identical to the distribution

({R j} j∈[m]:v[ j],∗, col1(Rm+1)) where {R j}
m+1
j=1 are random invertible matrices over Zw×w

p .

By Claim 31, this distribution is statistically 8wm/p-close to the distribution

where each matrix entry is uniformly random in Zp. Furthermore, since pv

is computed by a ~S -respecting circuit, it is of degree at most m + 1 < 2wm.

By the Schwartz Zippel lemma, the evaluation of pv on such random in-

puts from Zp is zero with probability at most 2wm/p. All in all, we have

Pr[pv({B̃ j,v[ j]} j∈[m]:v[ j],∗, t) = 0] ≤ 10wm/p.
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In the second case, pv acts on the {B̃ j,v[ j]} j∈[m]. Following Claim 16, this distri-

bution is identical to that of m random invertible matrices over Zw×w
p . Similarly

to the first case, it follows that Pr[pv({B̃ j,v[ j]} j∈[m]) = 0] ≤ 10wm/p. �

Let E be the event that pv({B̃ j,v[ j]} j∈[m]:v[ j],∗, t) , 0. For any fixed output a ∈ Zp

we have that

Pr[C(Rand(BP, p)) = a] ≤ Pr[C(Rand(BP, p)) = a|E] + Pr[Ē] (3.5)

For a fixed {B̃ j,b} j∈[m],b∈{0,1} let q(B̃,a) be a polynomial in variables {α j,b} j∈[m],b∈{0,1}

such that

q(B̃,a)({α j,b} j∈[m],b∈{0,1}) = C({α j,b · B̃ j,b} j∈[m],b∈{0,1}) − a

When the event E occurs, we claim that the resulting polynomial q(B̃,a) is a

non-zero polynomial of degree at most m. This can be easily seen given the

decomposition of C in (3.4). When q(B̃,a) is a non-zero polynomial then by the

Schwartz Zippel lemma, its evaluation on uniformly random non-zero inputs

{α j,b} j∈[m],b∈{0,1} is zero with probability at most m/p − 1 ≤ 2wm/p. Therefore, we

have

Pr[C(Rand(BP, p)) = a|E] = Pr[qB̃({α j,b}) = 0|E] ≤
2wm

p
(3.6)

Combining (3.6) and (3.5) and Claim 23, we have Pr[C(Rand(BP, p)) = a] ≤

12wm/p. �

3.4.4 Achieving Obfuscation for Arbitrary Programs

[70] show that any indistinguishability obfuscation scheme for NC1 can be boot-

strapped into an indistinguishability obfuscation scheme for all poly-sized cir-
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cuits using FHE. That is, they prove the following theorem.

Theorem 24 ([70]). Assume the existence of indistinguishability obfuscators iO for

NC1 and a leveled Fully Homomorphic Encryption scheme with decryption in NC1.

Then there exists an indistinguishability obfuscator iO ′ for P/poly.

Applying their construction to our indisinguishability obfuscator yields an

indistinguishability obfuscator for arbitrary polynomial size circuits:

Theorem 25. Assume the existence of a entropic semantically secure multilinear en-

coding scheme and a leveled Fully Homomorphic Encryption scheme with decryption in

NC1. Then there exists indistinguishability obfuscators for P/poly.

3.5 iO from Single-Distribution Semantical Security

The assumption that a scheme satisfies semantical security w.r.t. some class of

message samplers may perhaps be best viewed as a class of assumptions (or a

“meta-assumption”, just like the “uber assumption” of [35]), or alternatively as

an interactive assumption, where the attacker first selects the sets ~S , ~T and the

message sampler M, and then gets a challenge according to the message sam-

pler.

This view point also clarifies that even for the above-mentioned restricted

classes of message distributions, semantical security is not an efficiently falsifiable

assumption [123]: the problem is that there may not exist an efficient way of

checking whether a message sampler is valid (which requires checking that all

set-respecting circuits are constant with overwhelming probability).
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We here show that a single, falsifiable, instance of this class of assumptions

suffices for proving security of indistindinguishability obfuscator, albeit at the

cost of subexponential hardness.

3.5.1 Single-Distribution Semantical Security

Let us start by formalizing a “single-distribution” version of semantical security,

where we restrict semantical security to hold w.r.t. to a single efficiently samplable

distribution over pairs of message samplers M, and sets ~S , ~T . We call this dis-

tribution over message samplers and sets an instance sampler. Analogously to

the notion of a valid message sampler, we now define a notion of a valid instance

sampler as follows:

Definition 20. We say that a PPT Sam is a (c, q)-(entropically) valid instance sam-

pler if

• There exist a polynomial k(·), such that for every n ∈ N, for every rn ∈ {0, 1}∞ ,

Sam(1n, rn) outputs a tuple (~S n, ~Tn,Mn), where ~S n, ~Tn are sequences of sets over

[k(n)] with |~S n| = c(k(n)) and |~Tn| = q(k(n)).

• For every sequence of random tapes {rn}n∈N , {Mn}n∈N is (entropically) { ~S n, ~Tn}n∈N -

respecting, where for every n ∈ N , (~S n, ~Tn,Mn)← Sam(1n; rn).

Definition 21 (Single-distribution Semantic Security). Let E be a graded encoding

scheme and Sam be a (c, q)-valid instance sampler. We say that E is semantically

secure w.r.t. Sam if for every nuPPT adversary A, there exists a negligible function ε

such that for every security parameter n ∈ N,

|Pr[Output’0(1n) = 1] − Pr[Output’1(1n) = 1]| ≤ ε(n)
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where Output’b(1n) is A’s output in the following game:

• Let ~S n, ~Tn,Mn ← Sam(1n).

• Let kn be such that ~S n and ~Tn are sequences of sets over [kn]. Let (sp, pp) ←

InstGen(1n, 1kn).

• Let ~m0, ~m1,~z← Mn(1n, pp).

• Let ~ub ← {Enc(sp, ~m0[i], ~S n[i])}c(n)
i=1 , {Enc(sp,~z[i], ~Tn[i])}q(n)

i=1 .

• Finally, run A(1n, pp, (~S n, ~Tn),Mn, ~ub).

Note that given an (O(1),O(k))-valid instance sampler Sam, the assumption

that E is semantically-secure w.r.t. Sam is a special case of the assumption

that E is (constant-message) semantically secure; if E is not semantically se-

cure w.r.t. Sam, there exists ensembles {rn}n∈N , {~S n, ~Tn}n∈N and {Mn}n∈N such

that ~S n, ~Tn,Mn = Sam(1n; rn) (and thus {Mn}n∈N is a valid message sampler for

{~S n~Tn}n∈N , yet the nuPPT A(1n, ·, ~S n, ~Tn,Mn, ·) breaks semantical security when

considering {~S n, ~Tn}n∈N and {Mn}n∈N .

Furthermore, that given an (O(1),O(k))-(entropically) valid instance sampler

Sam, the assumption that E is semantically-secure w.r.t. Sam is a non-interactive

and efficiently falsifiable (decisional) assumption—in essence, it is a specific in-

stance of a DDH-type assumption over multilinear encodings.
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3.5.2 Basing Security on Single-Distribution Semantical Secu-

rity

We now show how to slightly modify the construction iO from Section 3.4.3 so

that we can base it on single-distribution semantical security assumption. This

time, however, we require subexponentially-hard semantical security (and as

such the assumption is incomparable to the one needed for the scheme from

Section 3.4.3.)

Towards this, we introduce a new notion of neighboring-input indistinguisha-

bility obfuscation. As we shall see, the assumption that a scheme satisfies

neighboring-input iO is already an efficiently falsifiable assumption. We then

show that a) exponentially-secure neighboring-input iO implies “full” iO , and b)

exponentially-secure neighboring-input iO can be based on subexponentially-

hard single-distribution semantic security. (We mention a very recent work by

Gentry, Lewko and Waters [86] in the context of witness encryption [75] that simi-

larly defines a falsifiable primitive “positional witness encryption” that implies

the full-fledged notion with an exponential security loss.)

Neighboring-input Indistinguishability Obfuscation

We start by recall a different “merge” procedure from the work of Boyle, Chung

and Pass [42]: Given two NC1 circuits C0,C1 taking (at most) n-bit inputs, and

a string z, let M̂erge(C0,C1, z) be a circuit that on input x runs C0(x) if x ≥ z

and C1(x) otherwise. ([42] use this type of merged circuits to perform a binary

search and prove that indistinguishability obfuscation implies differing-input

obfuscation for circuits that differ in only polynomially many inputs.) Also,
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M̂erge is defined such that M̂erge(C0,C1, 0) = C0 and M̂erge(C0,C1, 2n) = C1. It

is easy to see that an NC1 circuit computing M̂erge(C0,C1, z) can be efficiently

found given NC1 circuits C0,C1 and z; (abusing notation) let M̂erge denote an

efficient procedure that outputs such a circuit.

The notion of neighboring-input iO relaxes iO by only requiring that

security holds with respect to “neigboring-input” programs M̂erge(C0,C1, z),

M̂erge(C0,C1, z + 1) that are functionally equivalent. Note that checking whether

M̂erge(C0,C1, z), M̂erge(C0,C1, z + 1) are functionally equivalent is easy: they are

equivalent iff C0(z) = C1(z). As such, the assumption that a scheme satisfies

neighboring-input iO is efficiently falsfiable.

Definition 22. A uniform PPT machine iO is a neighboring-input indistinguisha-

bility obfuscator for the class of circuits {Cn}n∈N if it satisfies the same correctness

condition as in Definition 1 but the security condition is replaced by:

• Security: For every nuPPT adversary A there exists a negligible function ε such

that for all n ∈ N, all C0,C1 ∈ C
1
n and all z ∈ {0, 1} such that C0(z) = C1(z),

|Pr[A(1n,C′0,C
′
1, z, iO (1n,C′0) = 1] − Pr[A(1n,C′0,C

′
1, z, iO (1n,C′1) = 1]| ≤ ε(n)

where C′b = M̂erge(C0,C1, z + b).

We additionally say that iO is exponentially-secure if for every nuPPT A the above

indistinguishability gap is bounded by ε(n) = 2−O(n2).

Theorem 26. There exists an (O(1),O(k))-entropically valid instance sampler Sam,

such that if there exists an encoding scheme that is subexponentially-hard semantically

secure w.r.t. Sam, then there exists an exponentially-secure neighboring-input indis-

tinguishability obfuscator for C1.
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Proof. Consider the obfuscator iO (·, ·, ·) for NC1 presented in Section 3.4.3. We

change it to run the underlying multilinear encoding scheme with security

parameter n′ = n2/α, where α is the subexponential security constant for the

encoding scheme. Let c∗ be the constant such that the sizes and depth of

M̂erge(C0,C1, z) where C0,C1 ∈ C
1
n and z ∈ {0, 1}n are bounded by nc∗ and c∗ log(n)

respectively. We show that iO (c∗, ·, ·) = iO (·, ·) = is an exponentially-secure in-

distinguishability obfuscator for C1 based on subexponentially-hard semantical

security with respect to an instance sampler Sam.

Assume for contradiction there exists nuPPT A such that for infinitely many

n, there exist C0,C1 ∈ C
1
n, z ∈ {0, 1} such that C0(z) = C1(z) and A given (1n,C′0,C

′
1, z)

where C′0 = M̂erge(C0,C1, z) and C′1 = M̂erge(C0,C1, z+1), distinguishes iO (1n,C′0)

and iO (1n,C′1), with probability, say, 2−n2 .

We define hybrid distributions similarly as in the proof in Section 3.4.2 cor-

responding to iO (1n,C′0) and iO (1n,C′1). Recall that each of these hybrids corre-

spond to one step in the transition from a branching program for C′0 to a branch-

ing program C′1, where each step changes at most two levels of the branching

program. Let h(n) be the number of such hybrids. We have that the circuits C′0

and C′1 determine for every j ∈ [h(n)− 1] a hybrid distribution H j such that H0 is

identical to iO (1n,C′0), Hh(n) is identical to iO (1n,C′1) and for every j ∈ [h(n) − 1],

indistinguishability of H j and H j+1 follows from neighboring-matrix indistin-

guishability obfuscation which in turn follows from a reduction to semantic se-

curity.

We now define Sam(1n′; rn′) as follows: Using random coins rn′ , Sam uni-

formly samples C0,C1 ← C1
n, z← {0, 1}n and a random hybrid index j ∈ [h(n)−1].

It checks whether C0(z) = C1(z) and if not, it sets C1 = C0. Next, it generates
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C′0 = M̂erge(C0,C1, z) and C′1 = M̂erge(C0,C1, z + 1). Finally, it outputs the sets

(~S n′ , ~Tn′) and message sampler Mn′ used in the reduction to semantic security

when arguing indistinguishability of hybrids H j and H j+1, as determined by the

circuits C′0 and C′1.

Note that since the pair of the circuits C′0,C
′
1 sampled by Sam are always

functionally equivalent, by the same proof as in Section 3.4.3 (more specifically,

Lemma 19), we have that the messages ~m0, ~m1,~z output by Mn′ are such that

every (~S n′ , ~Tn′)-respecting circuit is constant on both ~m0,~z and ~m1,~z, except with

probability at most Q(n′, k)/|R| for some fixed polynomial Q(·, ·). Thus, for every

sequence of random tapes {rn}n∈N , {Mn}n∈N is { ~S n, ~Tn}n∈N -respecting, where for

every n ∈ N , ~S n, ~Tn,Mn = Sam(1n; rn). We conclude that Sam is a (O(1),O(k))-

valid instance sampler.

By assumption, there exists a j ∈ [h(n) − 1] such that A distinguishes H j and

H j+1 with advantage 2−n2
/h(n). We now define a nuPPT attacker A′ for semantical

security w.r.t. Sam: For each n′, A′ receives as non-uniform advice the index j∗

and proceeds as follows: A′(1n′ , pp, , (~S n′ , ~Tn′),Mn′ , ~ub) examines Mn′ and extracts

the underlying circuits C∗0,C
∗
1 the underlying merge index z∗ and the underlying

hybrid index j∗ from it. (We assume Mn′ is defined so that this information

is efficiently extractable.) If j = j∗, C∗0 = C′0,C
∗
1 = C′1 and z∗ = z, A′ executes

A(1n,C∗0,C
∗
1, z
∗, (pp, ~ub)), and otherwise simply outputs 1.

Let us now analyze the success probability of A′:

• Conditioned on the event when j = j∗, C∗0 = C′0,C
∗
1 = C′1 and z∗ = z, A′

distinguishes with advantage 2−n2
/h(n).

• Otherwise A′’s output is 1.
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Since C∗0,C
∗
1, z
∗, j∗ are chosen at random, it follows that A′ has a total distinguish-

ing advantage of at least 2−3n · 2−n2
/h(n)2 = 2−O(n2) = 2−O(n′α), which contradicts the

assumption that the encoding scheme is subexponentially secure with respect

to Sam. �

From ni-iO to iO

Theorem 27. If there exists PPT iO that is an exponentially-secure neighboring-

input indistinguishability obfuscator for C1, then there exists a PPT iO ′ that is a

subexponentially-secure indistinguishability obfuscator for NC1.

Proof. Assume the existence of a PPT iO that is an exponentially-secure

neighboring-input indistinguishability obfuscator for the class C1. We show

that iO is a (subexponentially-secure) indistinguishability obfuscator for C1; by

Lemma 6, this suffices for concluding the existence of (subexponentially-secure)

indistinguishability obfuscators for NC1.

Assume there exists some nuPPT A such that for infinitely many n, there

exists a pair of functionally equivalent circuits C0
n, C1

n ∈ C
1
n such that A dis-

tinguishes iO (1n,C0
n) and iO (1n,C1

n) with probability, say, 2−n. For any such n,

consider a sequence of 2n + 1 hybrid distributions, where

• H0 = iO (1n,C0
n) = iO (1n, M̂erge(C0

n,C
1
n, 0))

• Hi = iO (1n, M̂erge(C0
n,C

1
n, i)) for i ∈ [1, . . . , 2n − 1]

• H2n = iO (1n,C1
n)) = iO (1n, M̂erge(C0

n,C
1
n, 2

n))

There must exist some z such that A distinguishes Hz and Hz+1 with advantage

at least 2−n · 2−n = 2−2n. Thus, there exists some sequence of programs {C0
n,C

1
n}n∈N
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where C0
n,C

1
n ∈ C

1
n and a sequence of of inputs {zn}n∈N , zn ∈ [0, . . . , 2n − 1],

such that for infinitely many n, A distinguishes iO (1n, M̂erge(C0
n,C

1
n, zn)) and

iO (1n, M̂erge(C0
n,C

1
n, zn + 1)) with advantage 2−2n. This directly contradicts the

exponential security of the neighboring-input indistinguishability obfuscator

iO . �

Combing the above theorems, we get the following corollary.

Theorem 28. There exists an (O(1),O(k))-entropically valid instance sampler Sam,

such that if there exists an encoding scheme that is subexponentially-hard semantically

secure w.r.t. Sam, then there exists a subexponentially-secure indistinguishability ob-

fuscator for NC1.

3.6 Alternative Security Notions of Semantical Security Encod-

ings

In this section we consider alternative ways of defining security of multilinear

encodings. First, in section 3.6.1 we show that semantical security holds (in a

very strong sense) w.r.t. generic attackers. Next, in section 3.6.2 we consider var-

ious “uber assumptions” (similar to the uber-assumption of [35] in the context

of bilinear maps)28 which capture the intuition that “if an algebraic decisional

assumption holds w.r.t. to generic attacks, then it also holds with respect to

nuPPT attackers”. As we shall see the perhaps most natural formalization of

this notion is false (under standard cryptographic assumptions)—in particular,

we give a concrete example of a algebraic decisional assumption that holds in

28We thank Shai Halevi for pointing out the connection with [35].
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the generic model but is false w.r.t. nuPPT attackers. We finally consider alter-

native ways for formalizing such an uber assumption.

3.6.1 Semantical Security w.r.t. Algebraic Attackers

We begin by showing that semantic security holds in the generic model. We

formally define an algebraic adversary or generic adversary by considering adver-

saries that interact with the following oracle.

Definition 23 (OracleM). LetM be an oracle which operates as follows:

• M gets as initial input a ring R, k ∈ N and list L of m pairs {(αi, S i)}mi=1, α ∈ R

and S ⊆ [k].

• Every oracle query toM is an arithmetic circuit C : Rm → R. When queried with

C,M checks whether C is a ~S -respecting arithmetic circuit where ~S = {S i}
m
i=1. If

not,M outputs ⊥. Otherwise,M computes C on {αi}
m
i=1 and outputs 1 if and only

if the output of C is zero, and outputs 0 otherwise.

To formalize that (even subexponentially-hard) semantical security holds

w.r.t. generic attackers, we define a stronger notion of a set-respecting mes-

sage samplers—which requires not only that the output of every set-respecting

circuit is constant with overwhelming probability, but also that this holds for

the output of any unbounded algebraic attacker that is restricted to polynomially-

many zero-test queries— and show that this notion in fact already is implied by

the standard one. This shows that semantical security holds in a very strong

sense w.r.t. to generic attackers.
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Definition 24 (Strongly Respecting Message Sampler). We say that a nuPPT M

is a strongly {(~S n, ~Tn)}n∈N-respecting message sampler (or strongly valid w.r.t.

{(~S n, ~Tn)}n∈N) if it satisfies the same conditions as in Definition 11 but where the sec-

ond bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈

N, every (sp, pp) in the support of InstGen(1n, 1kn), every (deterministic) oracle

algorithm A that on input 1n makes at most p(n) oracle queries, there exists some

string α ∈ {0, 1}∗ such that

Pr[( ~m0, ~m1,~z)← M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n) = α]

≥ 1 − Q(n, kn)/|R|.

where ~pb = {(mb[i], S i)}
c(n)
i=1 , {(z[i],Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~S n

and ~Tn respectively.

Note that validity is the special case of strong validity where we restrict to

the case when p(n) = 1.

Theorem 29. A message sampler M is strongly {(~S n, ~Tn)}n∈N-respecting if and only

it is {(~S n, ~Tn)}n∈N-respecting.

Proof. The ”only if” direction is trivial (as mentioned, if p(n) = 1 strong validity

collapses down to validity). To prove the ”if direction”, consider some M, p(·),

security parameter n ∈ N, (sp, pp) ∈ InstGen(1n, 1k(n)) where pp defines a ring R,

and oracle machine A (the algebraic adversary) such that A(1n) makes at most

p(n) oracle queries. From semantic security of E, we have that there exists some

polynomial Q(·, ·) such that for every (~S , ~T )-respecting arithmetic circuit C, there
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exists a constant cC ∈ {0, 1} such that for every b ∈ {0, 1} ,

Pr[( ~m0, ~m1,~z)← M(1n, pp) : isZero(C( ~mb,~z)) , c] ≤ Q(n, k(n))/|R|

For b ∈ {0, 1}, consider an execution of both AM(pp,~pb)(1n) where ~m0, ~m1,~z are sam-

pled by M. Note that except with probability Q(n, k(n))/|R| it holds the first

oracle query C1 by A is answered as cC1 . Analogously, if the first i queries

C1, . . . ,Ci were answered as cC1 , . . . cCi , then except with probability Q(n, k(n))/|R|,

the (i+1)th query Ci+1 will be answered as cCi+1 . It follows that except with prob-

ability p(n)Q(n, k(n))/|R| over ~m0, ~m1,~z, the output of A is identical to the output

of an execution of A where every oracle query C is answered by the bit cC. Thus,

for every algebraic attacker A there exists some string α—namely the output of

A where every oracle query C is answered by cC—such that for b ∈ {0, 1}, except

with probability p(n)Q(n, k(n))/|R|, the output of AM(pp,~pb)(1n) is α. �

Note that for the above proof to go through it is cruicial that we restrict the

algebraic attacker to making polynomially-many (or subexponentially-many)

oracle queries. This is not just an anomaly of the proof: if we allow the attacker

to make an unbounded number of queries, then strong validity would no longer

imply validity; we discuss this point further in Section 3.6.2.

3.6.2 Uber Assumptions for Multilinear Encodings

A natural question is whether there are reasonable qualitative strengthenings of

semantical security that can be used to achieve stronger notions of obfuscation,

such as differing-input (a.k.a. extractability) obfuscation. We here consider such

a strengthening.
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At first sight, it may seem like the most natural way of defining security of

multilinear encodings would be to require that for specific classes of problems,

generic attacks cannot be beaten (this is the approach alluded to in [16]). A nat-

ural “uber assumption” (similar to the uber-assumption of [35] in the context of

bilinear maps) would be to require that “if an algebraic decisional assumption

holds w.r.t. to generic attacks, then it also holds with respect to nuPPT attack-

ers”. Let us now formalize this notion.

Extractable Uber Security

We start by defining a notion of a computationally valid message sampler:

roughly speaking, we want to capture the intuition that no generic attacker can

distinguish ~m0,~z from ~m1,~z. To get a definition that is a strong as possible, we re-

quire indistinguishability to hold in a pointwise sense: with overwhelming prob-

ability, the output of AM(pp, ~p0)(1n, pp) is required to be the same as the output of

AM(pp, ~p1)(1n, pp).

Definition 25 (Computationally Respecting Message Sampler). We say that a

nuPPT M is a computationally {(~S n, ~Tn)}n∈N-respecting message sampler (or com-

putationally valid w.r.t. {(~S n, ~Tn)}n∈N) if it satisfies the same conditions as in Defini-

tion 11 but where the second bullet is replaced by the following:

• For every nuPPT oracle machine A, there exists some negligible function ε such

that for every n ∈ N,

Pr[(sp, pp)← InstGen(1n, 1kn), ( ~m0, ~m1,~z)← M(1n, pp) :

AM(pp, ~p0)(1n, pp) , AM(pp, ~p1)(1n, pp)] ≤ ε(n)
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where ~pb = {(mb[i], S i)}
c(n)
i=1 , {(z[i],Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~S n

and ~Tn respectively.

Note that computational validity differs from strong validity (which is

equivalent to “ plain” validity) in two main aspects: 1) we no longer require the

output of the algebraic attacker to be constant with overwhelming probability;

rather, we only require that it cannot tell apart ~m0 and ~m1, and 2) the algebraic

attacker is restricted to be nuPPT (as opposed to being unbounded and only

making polynomially many queries).

We now define extractable “uber security” in exactly the same way as semantic

security except that we only require the message sampler to be computation-

ally valid (and define entropic uber security in the analogous way). In other

words, extractable uber security implies that whenever ~m0,~z and ~m1,~z are point-

wise computationally indistinguishable w.r.t. legal algebraic attackers, encodings of

them computationally indistinguishable. (We use the term “extractable” since

this notion of security requires that if encodings can be distinguished, then we

can efficiently find (or “extract”) set-respecting circuits that distinguish the ele-

ments.)

We now have the following theorem.

Theorem 30. Assume the existence of a leveled Fully Homomorphic Encryption scheme

with decryption in NC1. Then no graded encoding scheme satisfies entropic extractable

uber security.

Proof. Consider any graded encoding scheme E. To show that E is not entropic

extractable uber secure we need to show that there exists an entropic computa-
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tionally respecting message sampler M and PPT adversary A such that A distin-

guishes between encodings of (~m0,~z) and (~m1,~z) where (~m0, ~m1,~z)← M.

Our M will sample obfuscations of the following circuit family, that

was shown to be unobfuscatable in the virtual black box setting [17].Let

(Gen,Enc,Dec,Eval) be a semantically secure fully homomorphic encryption

scheme with ciphertext size N(·); for simplicity of exposition, let us first assume

that it is an “unleveled” FHE. For each security parameter n, consider the class

of circuits

Cn = {Cn,a,b,v,pk,sk,â}a,b∈{0,1}n,v∈{0,1},(pk,sk)∈Gen(1n),â∈Enc(pk,a)

taking N(n)-bit inputs, where

Cn,a,b,v,pk,sk,â(x) =



(pk, â) if x = 0

b if x = a

v if Dec(sk, x) = b

0 otherwise

Then M(1n, pp) operates as follows, given public parameters pp to a graded

encoding scheme it first computes the ring R = Zp associated with pp.

• M samples (pk, sk) ← Gen(1n) and a, b ← {0, 1}n uniformly at random, and

computes â = Enc(pk, a).

• M generates branching programs BP0 and BP1 corresponding to

Cn,a,b,0,pk,sk,â and Cn,a,b,1,pk,sk,â respectively, and computes B̂P0 = Merge(BP0,

BP1, 0) and B̂P1 = Merge(BP0, BP1, 1), each of width 10 and length m. Re-

call, from Claim 11, that B̂P0 and B̂P1 differ only in levels 1 and m, and that

B̂P0 and B̂P1 are functionally equivalent to BP0 and BP1 respectively.
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• M samples m random invertible matrices over Z10×10
p , {Ri}i∈[m] and 2m ran-

dom scalars from Zp, {αi,b}i∈[m],b∈{0,1}. M then uses these matrices and

scalars to randomize B̂P0 and B̂P1 as described by Rand(·, p) to obtain

{αi,b · B̃i,b}i∈[m],b∈{0,1}, {αi,b · B̃′i,b}i∈[m],b∈{0,1} and t.

• M outputs

~m0 = ({α1,b · B̃1,b}b∈{0,1}, {αm,b · B̃m,b}b∈{0,1})

~m1 = ({α1,b · B̃′1,b}b∈{0,1}, {αm,b · B̃′m,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m′]/{1,m},b∈{0,1}, t)

Note that (~m0,~z) is identically distributed to Rand(B̂P0, p) and similarly

(~m1,~z) is identically distributed to Rand(B̂P1, p) As a result, by Proposition

2, we have that M is an entropic message sampler.

Let ({S i,b}i∈[m],b∈{0,1}, S t) = SetSystem(m,N, inp), where inp is the labelling func-

tion for the branching programs B̂P0 and B̂P1, and let

~S n = {S 1,b, S m,b}b∈{0,1}

~Tn = ({S i,b}i∈[m′]/{1,m},b∈{0,1}, S t)

We show that M is a computationally {~S n, ~Tn}n∈N -respecting message sampler,

i.e. no nuPPT oracle machine A′ can pointwise distinguish the oraclesM( ~m0,~z)

andM( ~m1,~z). We note that by Lemma 19 and a Union Bound over A′’s queries,

the output of A′M( ~m0,~z) (resp. A′M( ~m1,~z)) can be simulated with only oracle access to

BP0 (resp. BP1), or equivalently, to Cn,a,b,0,pk,sk,â (resp. Cn,a,b,1,pk,sk,â)29. In fact, with

high probability over the randomness of M, A′ and the simulator, the simulator’s

output is identical to the output of A′. We observe that this simulation can be

29To apply the Union Bound it is important that the query response C( ~mb,~z) depends only on
the queried arithmetic circuit C and the input-output behavior of BPb as shown in Lemma 19
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made efficient using the techniques introduced in [16] (i.e. by modifying BP0

and BP1 to be dual-input branching programs and correspondingly changing

SetSystem); this requires encodings elements using sets of size 4 (as opposed to

2 as in our original construction). Let this efficient simulator be Sim.

We would now like to argue that with high probability over the randomness

of M and Sim, SimBP0 = SimBP1 . Recall that the circuits Cn,a,b,0,pk,sk,â (equivalent

to BP0) and Cn,a,b,1,pk,sk,â (equivalent to BP1) differ only on inputs x for which

Dec(sk, x) = b (on these inputs Cn,a,b,0,pk,sk,â(x) = 0, whereas Cn,a,b,1,pk,sk,â(x) = 1).

Since b was randomly chosen from an exponentially large set of values, to find

such an input with noticeable probability, Sim must query one of the circuits

on input a with noticeable probability, otherwise its view is independent of b.

However, if the original ciphertext â is an encryption of 0 instead of a, then the

view of Sim is independent of a, and thus Sim can only query a with negligible

probability. Thus by the semantic security of the FHE scheme, the probability

that Sim can query a when given BP0 or BP1 is negligible. This implies that the

outputs of SimBP0 and SimBP1 differ with only negligible probability.

We now have that :

• A′M(~m0,~z) = SimBP0 , except with negligible probability;

• SimBP0 = SimBP1 , except with negligible probability;

• SimBP1 = A′M(~m1,~z), except with negligible probability.

By a union bound, we have that A′M(~m0,~z) = A′M(~m1,~z), except with negligible prob-

ability. Thus M must be a computationally respecting sampler. Finally, it fol-

lows using identically the same argument as in Section 3.4.3 that the message
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sampler satisfies the required high-entropy condition and thus is an entropic

computationally respecting message sampler.

Now we will show an nuPPT adversary A that distinguishes between encod-

ings of (~m0,~z) and (~m1,~z) when encoded under sets (~S n, ~Tn) Note that given en-

codings of one of (~m0,~z) and (~m1,~z), A in fact receives either Obf(B̂P0) or Obf(B̂P1).

Let us refer to this input to A as O.

A evaluates O on input 0 to receive (pk, â), and then simply homomorphically

evaluates O on the ciphertext â in order to generate a valid encryption of the

hidden value b, and then feeds this new ciphertext back into O to reveal the

secret bit v, and then outputs v. Thus A succeeds in distinguishing (~m0,~z) and

(~m1,~z) with probability 1. Additionally, note that since O is a constant-width

branching program, O can be computed by a NC1 circuit, thus for this argument

it suffices to use a leveled FHE.

We thus have that no graded encoding scheme can satisfy entropic ex-

tractable uber security. �

“Plain” Uber Security

Due to the above impossibility result, we here consider a weaker variant of an

uber security—which we simply refer to as (plain) “uber security”, where we

strengthen the “computational validity” condition to a “weak validity” condi-

tion where the the algebraic attacker is allowed to be unbounded while making

polynomially many queries. Note that weak validity differs from strong va-

lidity only in the respect that weak validity does not require the output of the

algebraic attacker is constant (with overwhelming probability).
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Definition 26 (Weakly Respecting Message Sampler). We say that a nuPPT

M is a weakly {(~S n, ~Tn)}n∈N-respecting message sampler (or weakly valid w.r.t.

{(~S n, ~Tn)}n∈N) if it satisfies the same conditions as in Definition 11 but where the second

bullet is replaced by the following:

• For every polynomial p, there exists some polynomial Q such that for every n ∈

N, every (sp, pp) in the support of InstGen(1n, 1kn), every (deterministic) oracle

algorithm A that on input 1n makes at most p(n) oracle queries,

Pr[( ~m0, ~m1,~z)← M(1n, pp) : AM(pp, ~p0)(1n) = AM(pp, ~p1)(1n)] ≥ 1 − Q(n, kn)/|R|.

where ~pb = {(mb[i], S i)}
c(n)
i=1 , {(z[i],Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of ~S n

and ~Tn respectively.

We define “uber security” in exactly the same way as semantic security ex-

cept that we only require the message sampler to be weakly valid (and define

entropic uber security in the analogous way). In other words, uber security

implies that whenever ~m0,~z and ~m0,~z are pointwise statistically close w.r.t. legal

algebraic attackers, encodings of them computationally indistinguishable.

Let us remark that for uber security to imply semantical security, it is im-

portant that we restrict the algebraic attacker (in the definition of a weakly

valid message sampler) to only make polynomially many queries. Otherwise,

even the aGDDH distribution (described in Section 3.3) is not weakly valid:

With high probability over (m0,m1,~z) sampled from the aGDDH distribution,

there always exists some legal arithmetic circuit C such that isZero(C(m0,~z)) ,

isZero(C(m1,~z)).30 Therefore, an unbounded-query algebraic adversary could
30Consider a very simple aGDDH instance, where |~z| = 2, T1 = T2 = S = [k]. For non-zero

z1, z2, there always exists some a such that the circuit C(m, z1, z2) = isZero(m−az1) yields different
outputs on input (m0,~z) and (m1,~z)—namely, a = z2.
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simply go over all legal arithmetic circuits and distinguish the elements.

We are not aware of any attacks (like those against extractable uber security)

against “plain” uber security, and it thus seems like a reasonable strengthen-

ing of semantical security, which may have other applications. In fact, we may

consider an even further strengthening of this notion—which we refer to as sta-

tistical uber security— by replacing the the weakly valid message sampler by a

super weakly valid message sampler which only requires ~m0,~z and ~m1,~z to be sta-

tistically indistinguishable by algebraic attackers (as opposed to be pointwise sta-

tistically indistinguishable); that is, the second bullet in Definition 11 is replaced

by:

• For every (computationally unbounded) oracle machine A that makes at

most polynomially many oracle queries, there exists a negligible function

ε such that for every security parameter n ∈ N,

|Pr[(sp, pp)← InstGen(1n, 1k(n)), ( ~m0, ~m1,~z)← M(1n, pp) :

AM(pp, ~p0)(1n, pp) = 1] −

Pr[(sp, pp)← InstGen(1n, 1k(n)), ( ~m0, ~m1,~z)← M(1n, pp) :

AM(pp, ~p1)(1n, pp) = 1]| ≤ ε(n)

where ~pb = {(mb[i], S i)}
c(n)
i=1 , {(z[i],Ti)}

q(n)
i=1 and c(n) and q(n) are the lengths of

~S n and ~Tn respectively.

3.6.3 Strong Semantical and Uber Security

Recall that in the definition of both validity and weak validity, we consider

arbitrary-size set-respecting circuits. We may weaken both validity conditions
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(and thus obtain stronger notion of semantical and uber security) by restricting

attention to only polynomial-size arithmetic circuits. Note that in the context

of uber security, this takes us a step closer to extractable uber security (which

is impossible under reasonable assumption): we restrict to algebraic attackers

that make polynomially-many queries and each query is polynomial-size, but

the attacker may generate these queries (and generate its final output) in a com-

putationally unbounded way. We refer to these notions respectively as strong

semantical security and strong uber security.

3.6.4 Weak Semantic Security

We end this section by considering a weaker notion of semantical security—let

us refer to it as weak semantical security—where the definition of a valid mes-

sage sampler requires the the answer to every set-respecting circuit is actually

constant (as opposed to only being constant with overwhelming probability); a

similar relaxation can be applied also to uber security. While we do not know

whether any of these weaker assumptions suffices for obtaining obfuscation

(and they do not imply the aGDDH assumption), the weak notion of seman-

tical security suffices for obtaining witness encryption [75]—roughly speaking,

the notion of witness encryption enables a sender to encrypt a message m using

an NP-statement x such that a) if the statement is false, then encodings of any

two messages are indistinguishable, and b) if the statement is true, then anyone

who has a witness w for x can recover m. Let us briefly sketch this construction:31

As in [75], we focus on the NP-language Exact-Cover where an x instance con-

sist of sets S 1, . . . , S n ⊆ [k]; for a true instance, there exists some “exact cover”
31The observation that semantically secure multilinear encoding directly implies witness en-

cryption was obtained in a conversation with Sanjam Garg, Craig Gentry and Shai Halevi.
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of [k] using a subset of the sets, whereas for a false instance no such exact cover

exists. Now, to encrypt the bit m under the instance S 1, . . . S n, use a multilinear

encoding scheme over the set [k + 1], encode 1 under each of the sets S 1, . . . S n

and finally encode m under the set {k + 1}. Clearly anyone who knows an exact

cover can obtain an encoding of m under [k + 1] (by appropriately multiplying

the sets corresponding to the exact cover and additionally the encoding of m

under {k + 1}). On the other hand, if the instance is false, there is no exact cover,

and thus “legal” algebraic operation can never be used to obtain an encoding

under the full set [k + 1] and thus zero-testing can never be used; thus indistin-

guishability of encryptions follows by weak semantical security.

3.7 Technical Lemma

Claim 31. Fix m,w ∈ N , and let p ∈ N be a prime. LetD0 be the following distribution:

D0 = {{Ri}i∈[m], {αi,b}i∈[m],b∈{0,1}}

where each Ri is a uniformly random invertible matrix in Zw×w
p (i.e det(Ri) , 0, and each

αi,b is a uniformly random non-zero scalar in Zp.

Let D1 be a distribution defined identically to D0, except with each Ri being a uni-

formly random (not necessarily invertible) matrix in Zw×w
p , and each αi,b a uniformly

random (not necessarily non-zero) scalar in Zp.

Then:

∆(D0,D1) ≤ 8wm/p

where ∆(D0,D1) denotes the statistical distance between distributionsD0 andD1.
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Proof. Note that D0 and D1 are each uniformly distributed on their respective

supports, and that supp(D0) ⊆ supp(D1). Then the statistical distance between

D0 andD1 can be computed as follows:

∆(D0,D1) =
∑

d∈supp(D0)∪supp(D1)

|Pr[D0 = d] − Pr[D1 = d]|

=
∑

d∈supp(D0)

|Pr[D0 = d] − Pr[D1 = d]| +
∑

d∈supp(D1)\supp(D0)

|Pr[D1 = d]|

=
∑

d∈supp(D0)

|
1

|supp(D0)|
−

1
|supp(D1)|

| +
∑

d∈supp(D1)\supp(D0)

|
1

|supp(D1)|
|

=(|supp(D0)| · |
1

|supp(D0)|
−

1
|supp(D1)|

|)+

(|supp(D1) \ supp(D0)| · |
1

|supp(D1)|
|)

=2 · (1 −
|supp(D0)|
|supp(D1)|

)

But notice that (1 − |supp(D0)|
|supp(D1)| ) can be interpreted as Pr[∃i ∈ [m], b ∈ {0, 1} : det(Ri) =

0 ∨ αi,b = 0]. For each i ∈ [m], the probability det(Ri) = 0 can be bounded by

applying the Schwartz-Zippel lemma to the det(·), which is a polynomial of de-

gree w. Thus we have that Pr[det(Ri) = 0] ≤ w/p. Further, each αi,b is zero with

probability 1/p. Hence, applying a union bound, we have that

∆(D0,D1) = 2 · (1 −
|supp(D0)|
|supp(D1)|

)

≤ 2 · (2m/p + mw/p)

≤ 8wm/p

�

3.8 Proof of Lemma 20

In this section, we prove Lemma 20, restated below for clarity:
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Lemma 24. Fix m, n,w ∈ N and inp : [m] → [n]. Let ~S = SetSystem(m, n, inp) =

({S i,b}i∈[m],b∈{0,1}, S t), and let C be any weakly ~S -respecting arithmetic circuit whose out-

put wire is tagged with T ⊆ [k]. Then there exists a set U ⊆ {0, 1, ∗}m such that for

every branching program BP of width w and length m on n input bits, with input tag-

ging function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p),

(i)

C({αi,bB̃i,b}i∈[m],b∈{0,1}, t) ≡
∑
u∈U

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t)

where each Cu is a weakly ~S -respecting arithmetic circuit, whose input wires are

tagged only with sets ∈ {S i,u[i]}i∈[m]:u[i],∗ ∪ {S t}, and whose output wire is tagged

with T .

(ii) Each Cu above is the sum of several “monomial” circuits, where each monomial cir-

cuit performs only multiplications of elements in ({αi,b · B̃i,b}i∈m,b∈{0,1}, t), is weakly

~S -respecting, and has output wire tagged with T .

(iii) For each Cu above,

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i],∗, t)

where pu is some polynomial, and αu = (
∏

i∈[m]:u[i],∗ αi,u[i]). Furthermore, when pu

is viewed as a sum of monomials, each monomial contains exactly one entry from

each B̃i,u[i] such that u[i] , ∗, and possibly one entry from t. Further, pu can be

computed by a weakly ~S -respecting circuit whose output wire is tagged with T .

Proof. Part (i) We begin by expressing the circuit C as a polynomial in variables

({αi,b · B̃i,b}i∈m,b∈{0,1}, t), in the form of a sum of monomials (possibly exponentially

many). We do so recursively: we associate each wire w of the circuit with a

multiset S w of pairs of monomials and signs (“+1” or “-1”), such that the sum
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of the monomials multiplied by their respective signs computes the same value

as the value computed by the circuit at that wire. We eventually output the

multiset of monomial pairs corresponding to the output wire. We compute the

sets of monomials as follows:

• Any input wire of the circuit reading input variable v can be represented

as the set {(v,+)}.

• The output wire of an addition gate can be represented as the union of the

multisets of monomial pairs representing the gates left and right children.

• The output wire of an subtraction gate can be similarly represented as the

union of the multisets of the gate’s left input wire, and of its right input

wire with the “sign” component of every pair negated (from “+1” to ”-1”

and vice versa), to reflect subtraction.

• For the output wire of a multiplication gate, for each pair (M1, s1) in the

multiset of its left input and each pair (M2, s2) in the multiset of its right

input, we add (M1 · M2, s1 · s2) to the multiset of the output wire.

We note that it holds inductively in the above process that the sum of the mono-

mials in the multiset associated with each wire w in C, multiplied by its appro-

priate sign, equals the value computed on that wire w.

We also show that each monomial in the set corresponding to a wire can be

computed by a weakly ~S -respecting circuit whose output wire has the same tag

as the wire. This can again be seen inductively:

• This property holds at any input wire of C, since the only monomial in the

set can be computed using the input wire itself as the “monomial circuit”.
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• This property also holds at any output wire of an addition or subtraction

gate, since the circuit corresponding to any monomial in this wire’s set is

the same as the circuit for the monomial from the corresponding incoming

wire to the gate.

• Finally, at the output wire of a multiplication gate G, for any monomial

M in this wire’s set computed as the product of monomials M1 and M2,

the circuit for M is simply the circuit for each of M1 and M2, joined by a

multiplication gate. Since G performs a set respecting multiplication, and

the output wires of M1 and M2’s circuits have the same tags as the input

wires of G, we have that the multiplication joining M1 and M2’s circuits to

produce M’s circuit is set-respecting, and so the circuit corresponding to

M is a weakly ~S -respecting circuit whose output wire has the same tag as

the output wire of G.

Thus each of the monomials in the decomposition of C can be represented as a

weakly set-respecting arithmetic circuit with output wire tagged with T , where

this circuit simply multiplies together all terms in the monomial in some order,

and performs no additions. Finally, the tags of the input wires of these mono-

mial circuits must be mutually disjoint, otherwise the monomial circuit would

perform a non-set-respecting multiplication at some level.

We label each monomial M with an element u ∈ {0, 1, ∗}m, where u[i] = b if

S i,b is the label on one of input wires in M’s circuit representation, and u[i] = ∗

if neither S i,0 and S i,1 are labels on any of M’s input wires. We note that no

monomial can have both S i,0 and S i,1 on its input wires because these two sets

are not disjoint, and the tags of the input wires of the monomial circuits must

be mutually disjoint.
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We now let Cu be the circuit representing the subtraction of all momonials

in the the decomposition of C labelled with u and sign (−1) from the sum of all

momonials in the the decomposition of C labelled with u and sign (+1). Since

each monomial can be represented as a weakly set-respecting circuit with out-

put wire tagged with T , adding several monomials together is a set-respecting

operation, as is subtracting several monomials from the sum, and thus each Cu

is a weakly set-respecting circuit. Further, since each monomial circuit has out-

put wire tagged with T , each Cu also has output wire tagged with T . Further, by

the way we labelled each monomial, each of the input wires of Cu is tagged only

with sets ∈ {S i,u[i]}i∈[m]:u[i],∗ ∪ {S t}. Finally, if we sum over all the u, we capture all

the monomials in the decomposition of C multiplied by their respective signs,

so we have that
∑

u Cu = C.

Part (ii) We observe that by construction of Cu, it is a sum of several monomial

circuits each of which performs only multiplications of its inputs, is weakly ~S -

respecting, and has output wire tagged with T .

Part (iii) From part (ii), we have that for each Cu, it is a sum of several monomial

circuits each of which performs only multiplications of its inputs, is weakly ~S -

respecting, and has output wire tagged with T . Furthermore, for each such

monomial circuit the input tags are drawn from sets ∈ {S i,u[i]}i∈[m]:u[i],∗ ∪ {S t}. In

fact, each of these monomials must contain exactly one input wire tagged with

each of the sets in {S i,u[i]}i∈[m]:u[i],∗, and exactly one set tagged with S t if and only

if S t ⊆ T . This means that each of these monomials is the product of one element

chosen from each of the matrices ({αi,u[i] · B̃i,u[i]}i∈m:u[i],∗, and possibly one element

from t. Thus each monomial in the decomposition of Cu has a common factor of

αu = (
∏

i∈[m]:u[i],∗ αi,u[i]).
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We can now write Cu as a polynomial (namely the sum of its monomials mul-

tiplied by their respective signs), and by factoring αu from each of it monomials

and letting pu be the remaining polynomial, we have, as required, that

Cu({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αu · pu({B̃i,u[i]}i∈[m]:u[i],∗, t)

Finally, we note that computing pu is the same as computing Cu if the alphas are

set to 1. Since Cu is ~S -respecting, we thus have that pu can be computed by a

weakly ~S -respecting circuit whose output wire is tagged with T . �

3.9 Proof of Lemma 8

In this section we prove Lemma 8, restated below for clarity.

Lemma 32. Let c, ε ∈ N and E be an (c, kε)-semantically secure encoding scheme. Then

for every polynomial q(k) there exists a (c, q(k))-semantically secure encoding scheme.

Proof. Consider any polynomial q(·) and constants c, ε. Given a (c, kε)-

semantically secure encoding E, we construct a new multilinear encod-

ing scheme E′ and prove that E′ is (c, q(k))-semantically secure. Let

(InstGen,Enc,Add,Sub,Mult, isZero) be the algorithms associated with E. We de-

fine a new encoding scheme E′ = (InstGen′,Enc′,Add′,Sub′,Mult′, isZero′) as fol-

lows.

• InstGen′ on input (1n, 1k) runs (pp, sp) ← InstGen(1n, 1(q(k)+1)1/ε
) and gener-

ates an encoding of a uniformly random non-zero element e under the set

{k + 1, . . . (q(k) + 1)1/ε} by running u1 ← Enc(sp, e, {k + 1, . . . (q(k) + 1)1/ε}).

InstGen′ outputs (pp, u1) as the public parameters and sp as the secret pa-

rameters.
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• Enc′,Add′,Sub′,Mult′ are identical to Enc,Add,Sub,Mult respectively.

• isZero′ takes as input public parameters (pp, u1) and an encoding u un-

der the set [k] to zero-test. isZero′ simply outputs isZero(Mult(pp, u, u1)).

The correctness of isZero′ follows from that of isZero and the fact that

Mult(pp, u, u1) returns an encoding, under the set [(q(k) + 1)1/ε], of an ele-

ment which is zero if and only if u is an encoding of zero.

It is easy to see that the correctness of E′ follows from that of E.

We now show that E′ is (c, q(k))-semantically secure. Assume for contradic-

tion there exists a polynomial k′(·), ensemble {~S ′n, ~T ′n}n∈N of sets where |~S ′n| = c,

|~T ′n| = q(k′(n)), {~S ′n, ~T ′n}n∈N -respecting message sampler M′ and nuPPT adversary

A′ such that for sufficiently large n, A′ distinguishes encodings of elements as

described in the semantic security game in Definition 12.

Let k(·) be a polynomial such that k(n) = (q(k′(n)) + 1)1/ε. For every n ∈ N,

let ~S n, ~Tn be a sequence of sets over [k(n)] where ~S n = ~S ′n and ~Tn = (~T ′n, {k
′(n) +

1, . . . k(n)}). We will construct a {~S n, ~Tn}n∈N -respecting message sampler M and

nuPPT adversary A such that (M, A) breaks the (c, kε)-semantic security of E.

We define the message sampler M as follows: on input 1n, pp ∈

InstGen(1n, 1k(n)), M samples ( ~m0, ~m1,~z) ← M′(1n, pp). and outputs the elements

( ~m0, ~m1, (~z, e)) where e is a uniformly random non-zero element, i.e. M outputs

the same elements sampled by M′ with an additional element e. Note that M′

samples elements based only on the ring associated with the public parameters

pp, which in this case, is the same ring associated with pp′ ∈ InstGen′(1n, 1k′(n)).

To show that M is {~S n, ~Tn}n∈N -respecting, we claim that for any (~S n, ~Tn)-

respecting circuit C acting on ( ~m0, ~m1, (~z, e)) there exists a (~S ′n, ~T
′
n)-respecting cir-
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cuit C′ acting on ( ~m0, ~m1,~z) such that isZero(C(·)) = isZero(C′(·)). C′ is simply the

circuit C computes to obtain an element corresponding to the set [k′(n)], with

which it must multiply an element under the set {k′(n) + 1, . . . k(n)} to reach the

target set [k(n)]. Since M′ is {~S ′n, ~T ′n}n∈N -respecting, the output of isZero(C′(·)) is

constant with overwhelming probability. Therefore, the output of isZero(C(·)) is

constant with overwhelming probability too, and M is {~S n, ~Tn}n∈N -respecting.

We now define a nuPPT adversary A that breaks the semantic security of

E. On input encodings ~u and public parameters pp, A simply removes the last

encoding u from ~u and runs A′ on input public parameters (pp, u) and the re-

maining encodings. Observe that for any security parameter n, the output of A

in the semantic security game in Definition 12 when played with message sam-

pler M and sets ~S n, ~Tn is identical to the output of A′ in the game played with

message sampler M′ and sets ~S ′n, ~T ′n. Recall that ~S n, ~Tn are sequences of sets over

[k(n)] and |~S n| = c and |~Tn| = k(n)ε. Therefore, this contradicts the (c, kε)-semantic

security of E. �
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CHAPTER 4

OUTPUT-COMPRESSING RANDOMIZED ENCODINGS AND

APPLICATIONS

This chapter contains joint work with Huijia Lin (UCSB), Rafael Pass (Cor-

nell University) and Karn Seth (Cornell University).

4.1 Introduction

The beautiful notion of a randomized encoding (RE), introduced by Ishai and

Kushilevitz [100], aims to trade the computation of a “complex” (deterministic)

function Π on a given input x for the computation of a “simpler” randomized

function—the “encoding algorithm”—whose output distribution Π̂(x) encodes

Π(x) (from which Π(x) can be efficiently decoded, or “evaluated”). Furthermore,

the encoding Π̂(x) should not reveal anything beyond Π(x); this is referred to as

the privacy, or security, property of randomized encodings and is typically de-

fined through the simulation paradigm [95].

Most previous work have focused on randomized encodings where encod-

ings can be computed in lower parallel-time complexity than what is required

for computing the original function Π. For instance, all log-space computations

have perfectly-secure randomized encodings in NC0 [100, 102, 8], and assuming

low-depth pseudo-random generators, this extends to all polynomial-time com-

putations (with computational security) [10, 138]. Such randomized encodings

have been shown to have various applications to parallel cryptography, secure

computation, verifiable delegation, etc. (see [6] for a survey).
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Bitansky, Garg, Lin, Pass and Telang [31] recently initiated a study of succinct

randomized encodings where we require that the time required to compute Π̂(x) is

smaller than the time required to compute Π(x); their study focused on functions

Π that have single-bit outputs. [31, 54, 112] show that subexponentially-secure

indistinguishability obfuscators (iO ) [17, 70] and one-way functions1 imply the

existence of such succinct randomized encodings for all polynomial-time Turing

machines that output just a single bit.

We here further the study of such objects, focusing on functions Π with long

outputs. Given a description of a Turing machine Π and an input x, we consider

two notions of efficiency for randomized encodings Π̂(x) of Π(x) with running

time T .

• compact RE: Encoding time (and thus also size of the encodings) is

poly(|Π|, |x|, log T )

• sublinear RE: Encoding time (and thus also size) is bounded by poly(|Π|, |x|)∗

T 1−ε , for some ε > 0.

We assume without loss of generality that the randomized encoding Π̂(x) of Π, x

itself is a program, and that the decoding/evaluation algorithm simply executes

Π̂(x).

It is easy to see that for such notions of efficiency, the standard simulation-

based notion of security is impossible to achieve—roughly speaking, the sim-

ulator given just Π(x) needs to output a “compressed” version of it, which is

impossible if Π(x) has high pseudo-Kolmogorov complexity (e.g., if Π is a PRG);

we formalize this argument in Theorem 32 in Section 4.7. Consequently, we

1The one-way function assumption can be weakened to assume just that NP * ioBPP [110].
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consider weaker indistinguishability-based notions of privacy. One natural in-

distinguishability based notion of privacy simply requires that encoding Π̂0(x0)

and Π̂1(x1) are indistinguishable as long as Π0(x0) = Π1(x1) and Time(Π0(x0)) =

Time(Π1(x1)), where Time(Π(x)) is the running-time of Π(x); such a notion was re-

cently considered by Ananth and Jain [4]. In this work, we consider a stronger

notion which requires indistinguishability of Π̂0(x0) and Π̂0(x1) as long as Π0, x0

and Π1, x1 are sampled from some distributions such that Π0(x0),Time(Π0(x0))

and Π1(x1),Time(Π1(x1)) are indistinguishable. We refer to this notion as distribu-

tional indistinguishability security, and note that it easily follows that the standard

simulation-based security implies distributional indistinguishability security.

The goal of this paper is to investigate compact and sublinear RE satisfying

the above-mentioned distributional indistinguishability notion. For the remain-

der of the introduction, we refer to randomized encodings satisfying distribu-

tional indistinguishability security as simply RE. For comparison, we refer to

randomized encodings with the weaker (non-distributional) indistinguishabil-

ity security as weak RE.

We note here that [78] previously introduced a very similar notion of distri-

butional indistinguishability in the setting of reusable garbled circuits. In the

CRS model, reusable garbled circuits are equivalent to a “secret key” version

of randomized encoding, thus the [78] security notion can be seen as very re-

lated to ours. Indeed, similar to our approach in this work, [78] also used dis-

tributional indistinguishability to achieve reusable garbled circuits with long

outputs, and in doing so, circumvent an impossibility result. 2

Compact RE v.s. Obfuscation Before turning to describe our results, let us point

2We thank Daniel Wichs for pointing out the connection to [78].
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out that RE can be viewed as (a degenerate form) of obfuscation for special

classes of programs.

Recall that an indistinguishability obfuscator (iO ) [17, 70] is a method O for

“scrambling” a program Π into O(Π) such that for any two functionally equiv-

alent programs Π0,Π1 (that is, their outputs and run-time are the same on all

inputs,) O(Π0) is indistinguishable from O(Π1). iO for Turing machines [17, 42, 2]

additionally requires that the size of the obfuscated code does not grow (more

than polylogarithmically) with the running-time of the Turing machine.

We may also consider a useful strengthening of this notion—which we call

“puncturable iO ”—which, roughly speaking, requires indistinguishability of

O(Π0) and O(Π1) as long as Π0 and Π1 differ on at most one input x∗ and their out-

puts on input x∗ are indistinguishable. More precisely, we say that a distribu-

tion D is admissible if there exists some x∗ such that a) for every triple (Π0,Π1,Π)

in the support of D, and every x , x∗, it holds that Π0(x) = Π1(x) = Π(x),

and b) (Π,Π0(x∗)) and (Π,Π1(x∗)) are computationally indistinguishable when

(Π0,Π1,Π) are sampled randomly from D. Puncturable iO requires indistin-

guishability of O(Π0) and iO(Π1) for Π0,Π1 sampled from any admissible dis-

tribution. Interestingly, for the case of circuits, puncturable iO is equivalent to

(standard) iO .3 Indeed, such a notion is implicitly used in the beautiful and

powerful punctured-program paradigm by Sahai and Waters [134], and all its

applications. (In this context, think of Π as the “punctured” version of the pro-

grams Π0, Π1.)

In the case of Turing machines, when restricting to the degenerate case of

3To see this, consider a hybrid program Πy(x) that runs Π(x) if x , x∗ and otherwise (i.e.,
if x = x∗ outputs y). By the iO property we have that for every Π,Π0,Π1 in the support of
D, O(ΠΠb(x∗)) is indistinguishable from O(Πb). Thus, if O(Π0), O(Π1) are distinguishable, so are
O(ΠΠ0(x∗)), O(ΠΠ1(x∗)), which contradicts indistinguishability of (Π,Π0(x∗)) and (Π,Π1(x∗)).
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Turing machines with no inputs (or more precisely, we only consider the exe-

cution of Π() on the ”empty” input), the notion of iO for Turing machines is

equivalent to the notion of a compact weak RE. Compact RE, on the other hand,

is equivalent to puncturable iO for Turing machines (without inputs). (Jump-

ing ahead, as we shall see, for the case of Turing machines it is unlikely that

puncturable iO is equivalent to standard iO .)

4.1.1 Our results

iO from sublinear RE We start by showing that sublinear RE is an extremely

useful primitive: Subexponentially-secure sublinear RE implies indistinguisha-

bility obfuscators for all polynomial-size circuits.

Theorem 17. The existence of subexponentially-secure sublinear RE and one-way

functions implies the existence of subexponentially-secure iO for circuits.

Before continuing, let us mention that Theorem 1 is related to a recent beau-

tiful result by Ananth and Jain [4] which shows that under the LWE assumption,

subexponentially-secure compact RE (satisfying only the weak indistinguisha-

bility security) implies iO for circuits. Their construction goes from RE to func-

tional encryption (FE) [37], and then from FE to iO ; (the first step relies on pre-

vious constructions of FE [92, 97], while the second step relies on a sequence

of complex transformations and analysis). In contrast, the proof of Theorem

1 directly constructs iO from RE in a surprisingly simple way: We essentially

use the GGM construction [87] that builds a PRF from a PRG using a tree, but

replace the PRG with a RE. Let us explain in more details below.
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Consider a program Π taking n-bit inputs. We consider a binary tree where

the leaves are randomized encodings of the function applied to all possible in-

puts, and each node in the tree is a randomized encoding that generates its two

children. More precisely, given a sequence of bits x1, · · · , xi, let Π̃R,x1,··· ,xi denote

an (input-less) program that

• if i = n simply outputs a RE of the program Π and input (x1, · · · , xn) using

R as randomness, and

• otherwise, after expanding R0,R1,R2,R3 from R using a PRG, outputs ran-

domized encodings of (input-less) programs Π̃R0,x1,··· ,xi,0 and Π̃R1,x1,··· ,xi,1 us-

ing respectively R2,R3 as randomness.

We associate each node in the binary tree that has index x1, · · · , xi with a ran-

domized encoding of the program Π̃R,x1,··· ,xi , denoted as Π̂R,x1,··· ,xi . In particular,

the root of the tree is associated with a randomized encoding Π̂ of the (initial)

program Π̃R hardwired with a randomly chosen R.

The obfuscation of Π is now a program with the “root” Π̂ hardcoded, and

given an input x, computes the path from the root to the leaf x – by recursively

evaluating the randomized encodings associated with nodes on the path – and

finally outputs the evaluation of the leaf. More precisely, on input x, evaluate Π̂

to obtain Π̂0, Π̂1, next evaluate Π̂x1 to obtain Π̂x1,0, Π̂x1,1, so on and so forth until

Π̂x1,··· ,xn is evaluated, yielding the output Π(x1, · · · , xn).

Note that for any two functionally equivalent programs, the randomized

encodings associated with individual leaf node are computationally indistin-

guishable by the indistinguishability security property (the non-distributional

version suffices here). Then, by the distributional indistinguishability security,
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the randomized encodings associated with tree nodes one layer above are also

indistinguishable. Thus, by induction, it follows that the roots are indistinguish-

able, which implies that obfuscations of functionally equivalent programs are

indistinguishable. Let us note that the reason that subexponential security is

needed is that each time we go up one level in the tree (in the inductive argu-

ment), we lose at least a factor 2 in the indistinguishability gap (as each node

generates two randomized encodings, its children). Hence, we need to ensure

that encodings are at least poly(2n)-indistinguishable, which can be done by scal-

ing up the security parameter.

On the existence of Compact and Sublinear RE We next turn to investi-

gating the existence of compact and sublinear RE. We show—assuming just

the existence of subexponentially-secure one-way functions—impossibility of

subexponentially-secure sublinear (and thus also compact) RE.4

Theorem 18. Assume the existence of subexponentially secure one-way functions.

Then, there do not exists subexponentially-secure sublinear RE.

As observed above, compact RE can be interpreted as a stronger notion of iO

(which we referred to as puncturable iO ) for “degenerate” input-less Turing ma-

chines, and as such Theorem 2 rules out (assuming just one-way functions) such

a natural strengthening of iO for (input-less) Turing machines. We note that this

impossibility stands in contrast with the case of circuits where puncturable iO

is equivalent to iO .

We remark that although it may seem like Theorem 2 makes Theorem 1

pointless, it turns out that Theorem 1 plays a crucial role in the proof of Theorem
4This result was established after hearing that Bitansky and Paneth had ruled out compact

RE assuming public-coin differing-input obfuscation for Turing Machines and collision-resistant
hashfunctions. We are very grateful to them for informing us of their result.
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2: Theorem 2 is proven by first ruling out sublinear (even just polynomially-

secure) RE assuming iO and one-way functions. Next, by using Theorem 1, the

iO assumption comes for free if considering subexponentially-secure RE. That

is, assuming one-way functions, we have the following paradigm:

exp secure sublinear RE
Theorem 1

=⇒ iO

=⇒ impossibility of (poly secure) sublinear RE

Let us now briefly sketch how to rule out sublinear RE assuming iO and one-

way functions (as mentioned, Theorem 2 is then deduced by relying on Theorem

1). The idea is somewhat similar to the non-black-box zero-knowledge protocol

of Barak [15].

Let Πb
s,u be a program that takes no input and outputs a sufficiently long

pseudo-random string y = PRG(s) and an indistinguishability obfuscation R̃b
y

(generated using pseudo-random coins PRG(u)) of the program Rb
y . The pro-

gram Rb
y takes input Σ of length |y|/2, and outputs b iff Σ, when interpreted as an

input-less Turing machine, generates y; in all other cases, it outputs ⊥.5 We note

that the size of the program Πb
s,u is linear in the security parameter λ, whereas

the pseudo-random string y it generates could have length |y| = λα for any suffi-

ciently large constant α.

Consider the pair of distributions Π0
Uλ,Uλ

and Π1
Uλ,Uλ

that samples respectively

programs Π0
s,u and Π1

s,u as described above with random s and u. We first argue

that their outputs are computationally indistinguishable. Recall that the output

of Πb
s,u is a pair (y, R̃b

y). By the pseudorandomness of PRG, this output distribu-

tion is indistinguishable from (X, R̃b
X) where X a uniformly distributed random

5To enable this, we require iO for bounded-input Turing machines, whereas Theorem 1 only
gives us iO for circuits. However, by the results of [31, 54, 112] we can go from iO for circuits
to iO for bounded-inputs Turing machines.
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variable over λα bit strings. With overwhelming probability X has high Kol-

mogorov complexity, and when this happens Rb
X is functionally equivalent to

the program R⊥ that always outputs ⊥. Therefore, by the security of the iO , the

output of programs sampled from Πb
Uλ,Uλ

is computationally indistinguishable

to (X, R̃⊥), and hence outputs of Π0
Uλ,Uλ

and Π1
Uλ,Uλ

are indistinguishable.

Let us now turn to showing that randomized encodings of Π0
Uλ,Uλ

and Π1
Uλ,Uλ

can be distinguished. Recall that a randomized encoding Π̂b of Πb
Uλ,Uλ

itself can

be viewed as a (input-less) program that outputs (y, R̃b
y). Given Π̂b, the distin-

guisher can thus first evaluate Π̂b to obtain (y, R̃b
y) and next evaluate R̃b

y(Π̂b) to

attempt to recover b. Note that Π̂b clearly is a program that generates y (as its

first input); furthermore, if the RE scheme is compact, the length of the program

|Π̂b| is bounded by poly(λ, log λα), which is far smaller than |y|/2 = λα/2 when α is

sufficiently large. Therefore, Σ = Π̂b is indeed an input that makes R̃b
y output b,

enabling the distinguisher to distinguish Π̂0 and Π̂1 with probability close to 1!

Finally, if the RE is only sublinear, the length of the encoding |Π̂b| is only

sublinear in the output length, in particular, bounded by poly(λ)(λα)1−ε for some

constant ε > 0. If α > 1/(1 − ε) (which clearly happens if ε is sufficiently small),

then we do not get enough “compression” for the above proof to go through.

We circumvent this problem by composing a sublinear RE with itself a suffi-

cient (constant) number of times—to compose once, consider creating random-

ized encoding of the randomized encoding of a function, instead of the function

itself; each time of composition reduces the size of the encoding to be w.r.t. a

smaller exponent 1 − ε′. Therefore, it is without loss of generality to assume

that ε is any sufficiently big constant satisfying α << 1/(1 − ε); so the desired

compression occurs.

240



Sublinear RE in the CRS model from sublinear FE Despite Theorem 2, not

all is lost. We remark that any sublinear functional encryption scheme (FE) [4,

33] almost directly yields a sublinear RE in the Common Reference String (CRS)

model; roughly speaking, an FE scheme is called sublinear if the encryption

time is sublinear in the size of the circuit that can be evaluated on the encrypted

message.

Theorem 19. Assume the existence of subexponentially-secure sublinear (resp. com-

pact) FE. Then there exists a subexponentially-secures sublinear (resp. compact) RE in

the CRS model.

Furthermore, Theorem 1 straightforwardly extends also to RE in the CRS

model. Taken together, these result provide an alternative, modular, sim-

pler proof of the recent results of Ananth and Jain [4] and Bitansky and

Vaikuntanathan [33] showing that subexponentially-secure sublinear FE implies

subexponentially-secure iO . (All these approaches, including a related work

by Brakerski, Komargodski and Segev [49] have one thing in common though:

they all proceed by processing inputs one bit at a time, and hard-coding parts

of input to the program.)

Theorem 20 (informal, alternative proof of [33, 4]). Assume the existence of

subexponentially-secure sublinear FE. Then there exists a subexponentially-secure iO

for circuits.

But there are also other ways to instantiate sublinear RE in the CRS model.

We show that under the subexponential LWE assumption (relying on [93, 3, 97])

sublinear RE in the CRS model can be based on a significantly weaker notion of

sublinear FE—namely FE schemes where the encryption time may be fully poly-

nomial (in the size of the circuit to be evaluated) but only the size of the ciphertext
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is sublinear in the circuit size—we refer to this notion as a FE with sublinear ci-

phertexts. Roughly speaking, we show this by 1) transforming the “succinct” FE

(i.e. compact FE for 1-bit outputs) of [93, 3] into an RE which depends linearly

on the output length but only polylogarithmically on the running time, 2) trans-

forming an FE with sublinear ciphertext into an RE with “large” running-time

but short output, and 3) finally composing the two randomized encodings (i.e,

computing the step 1 RE of the step 2 RE).

Combining this result with (the CRS-extended version of) Theorem 1, we

get:

Theorem 21 (informal). Assume the existence of subexponentially-secure FE with

sublinear ciphertexts and the subexponential LWE assumption. Then there exists a

subexponentially-secure iO for circuits.

Toward Turing Machine Obfuscation with Unbounded Inputs We finally ad-

dress the question of constructing indistinguishability obfuscators for Turing

machines with unbounded inputs. (For the case of Turing machine obfuscation

with unbounded-length inputs, the same obfuscated code needs to work for ev-

ery input-length, and in particular, the size of the obfuscated code cannot grow

with it.) Although it is known that subexponentially secure iO for circuits im-

plies iO for Turing machines with bounded inputs lengths [31, 54, 112] , the only

known construction of iO for Turing machines with unbounded inputs relies on

(public-coin) differing-input obfuscation for circuits and (public-coin) SNARKs

[42, 2, 105]—these are strong “extractability” assumptions (and variants of them

are known to be implausible [28, 72, 32]).

We note that the construction from Theorem 1 easily extends to show that
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subexponentially-secure compact RE implies iO for Turing machines with un-

bounded input: instead of having a binary tree, we have a ternary tree where

the “third” child of a node is always a leaf; that is, for a tree node corresponding

to x1, · · · , xi, its third child is associated with a randomized encoding of program

Π, and input (x1, · · · , xi), which can be evaluated to obtain output Π(x1, · · · xi).

Then, by using a tree of super-polynomial depth, we can handle any polynomial-

length input. Note that since obfuscating a program only involves computing

the root RE (as before), the obfuscation is still efficient. Moreover, for any input,

we still compute the output of the program in time polynomial in the length of

the input by evaluating the “third” child of the node when all input bits have

been processed.6

But as shown in Theorem 2, compact RE cannot exist (assuming one-way

functions)! However, just as for the case of differing-inputs obfuscation and

SNARKs, we may assume the existence of compact RE for restricted types of

“nice” distributions (over programs and inputs), for which impossibility does

not hold, yet the construction in Theorem 1 still works. We formalize one natu-

ral class of such distributions, and may assume that the iO for bounded-input

Turing machines construction of [112] (based on iO for circuits) yields such a

compact RE (for the restricted class of distributions). This yields a new candi-

date construction of unbounded input Turing machines (based on a very differ-

ent type of assumption than known constructions).

6Proving security becomes slightly more problematic since there is no longer a polynomial
bound on the depth of the tree (recall that we required poly(2n)-indistinguishable RE to deal with
inputs of length n). Thus issue, however, can be dealt with by using larger and larger security
parameters for RE that are deeper down in the tree.
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4.2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We

denote by PPT probabilistic polynomial time Turing machines. The term neg-

ligible is used for denoting functions that are (asymptotically) smaller than one

over any polynomial. More precisely, a function ν(·) from non-negative integers

to reals is called negligible if for every constant c > 0 and all sufficiently large n,

it holds that ν(n) < n−c.

Turing machine notation For any Turing machine Π, input x ∈ {0, 1}∗ and time

bound T ∈ N, we denote by ΠT (x) the output of Π on x when run for T steps.

We refer to {Mλ}λ∈N as a class of Turing machines. One particular class we will

consider is the class of Turing machines that have 1-bit output. We call such a

machine a Boolean Turing machine. Throughout this paper, by Turing machine

we refer to a machine with multi-bit output unless we explicitly mention it to be

a Boolean Turing machine.

4.2.1 Concrete Security

Definition 13 ((λ0, S (·))-indistinguishability). A pair of distributions X, Y are S -

indistinguishable for some S ∈ N if every S -size distinguisher D it holds that

|Pr[x
$
← X : D(x) = 1] − Pr[y

$
← Y : D(y) = 1]| ≤

1
S

A pair of ensembles {Xλ}, {Yλ} are (λ0, S (·))-indistinguishable for some λ0 ∈ N and

S : N → N if for every security parameter λ > λ0, the distributions Xλ and Yλ are S (λ)

indistinguishable.
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Discussion on (λ0, S (·))-indistinguishability: We remark that the above defi-

nition requires that there is a universal λ0 that works for all distinguisher D. A

seemingly weaker variant could switch the order of quantifiers and only require

that for every distinguisher D there is a λ0. We show that the above definition

is w.l.o.g, since it is implied by the following standard definition with auxiliary

inputs in the weaker fashion.

Let U be a universal TM that on an input x and a circuit C computes C(x).

Let S ′ : N → N denote the run time S ′(S ) of U on input a size S circuit.

Definition 14. A pair of ensembles {Xλ}, {Yλ} are S (·)-indistinguishable if for every

S ′ ◦ S (·)-time uniform TM distinguisher D, there exists a λ0 ∈ N, such that, for every

security parameter λ > λ0, and every auxiliary input z = zλ ∈ {0, 1}∗,

|Pr[x
$
← Xλ : D(1λ, x, z) = 1] − Pr[y

$
← Yλ : D(1λ, y, z) = 1]| ≤

1
S (λ)

This definition implies (λ0, S (·))-indistinguishability. Consider a distin-

guisher D that on input (1λ, x, z) runs the universal TM U(x, z), and let λU be

the constant associated with it. For any λ > λU , and every S (λ)-size circuit C,

by setting the auxiliary input z = C, the above definition implies that the distin-

guishing gap by C is at most 1/S (λ). Therefore, λU is effectively the universal

constant that works for all (circuit) distinguisher.

Below, we state definitions of cryptographic primitives using (λ0, S (·)) in-

distinguishability. Traditional polynomial or sub-exponential security can be

directly derived from such more concrete definitions as follows:

Definition 15 (Polynomial Indistinguishability). A pair of ensembles {Xλ}, {Yλ} are

polynomially indistinguishable if for every polynomial p(·), there is a constant λp ∈ N,

such that, the two ensembles are (λp, p(·))-indistinguishable.
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Definition 16 (Sub-exponential Indistinguishability). A pair of ensembles {Xλ},

{Yλ} are sub-exponentially indistinguishable, if there is a sub-exponential function

S (λ) = 2λ
ε with ε ∈ (0, 1) and a constant λ0 ∈ N, such that, the two ensembles are

(λ0, S (·))-indistinguishable.

4.2.2 Standard cryptographic primitives

Definition 17 (Pseudorandom Generator). A deterministic PT uniform machine

PRG is a pseudorandom generator if the following conditions are satisfied:

Syntax For every λ, λ′ ∈ N and every r ∈ {0, 1}λ, PRG(r, λ′) outputs r′ ∈ {0, 1}λ
′

(λ0, S (·))-Security For every function p(·), such that, p(λ) ≤ S (λ) for all λ, the follow-

ing ensembles are (λ0, S (·)) indistinguishable{
r

$
← {0, 1}λ : PRG(r, p(λ))

} {
r′

$
← {0, 1}p(λ)

}

4.2.3 Indistinguishability Obfuscation

In this section, we recall the definition of indistinguishability obfuscation for

Turing machines from [17, 42, 2]. Following [42], we consider two notions of

obfuscation for Turing machines. The first definition, called bounded-input in-

distinguishability obfuscation, only requires the obfuscated program to work

for inputs of bounded length and furthermore the size of the obfuscated pro-

gram may depend polynomially on this input length bound. (This is the notion

achieved in [31, 54, 112] assuming subexponentially-secure iO for circuits and

one-way functions.)
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The second notion considered in [42] is stronger and requires the obfus-

cated program to work on any arbitrary polynomial length input (and the size

of the obfuscated machine thus only depends on the program size and secu-

rity parameter). We refer to this notion as unbounded-input indistinguishabil-

ity obfuscation. (This stronger notion of unbounded-input indistinguishabil-

ity obfuscator for Turing machines is only known to be achievable based on

strong “extractability assumptions”—namely, (public-coin) differing-input ob-

fuscation for circuits and (public-coin) SNARKs [42, 2, 105], variants of which

are known to be implausible [28, 72, 32]).

Definition 18 (Indistinguishability Obfuscator (iO) for a class of Turing ma-

chines). An indistinguishability obfuscator for a class of Turing machines {Mλ}λ∈N is a

uniform machine that behaves as follows:

Π̂ ← iO(1λ,Π,T ): iO takes as input a security parameter 1λ, the Turing machine to

obfuscate Π ∈ Mλ and a time bound T for Π. It outputs a Turing machine Π̂.

We require the following conditions to hold.

Correctness: For every λ ∈ N, Πλ ∈ Mλ, input xλ and time bound Tλ,

Pr[(Π̃
$
← iO(1λ,Πλ,Tλ) : Π̃(xλ) = ΠT (xλ)] = 1 .

Efficiency: The running times of iO and Π̂ are bounded as follows:

There exists polynomial p such that for every security parameter λ, Turing ma-

chine Π ∈ Mλ, time bound T and every obfuscated machine Π̂ ← iO(1λ,Π,T )

and input x, we have that

TimeiO(1λ,Π,T ) ≤ p(λ, |Π|, log T )

TimeΠ̂(x) ≤ p(λ, |Π|, |x|,T )
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(λ0, S (·))-Security: For every ensemble of pairs of Turing machines and time bounds{
Π0,λ,Π1,λ,Tλ

}
where for every λ ∈ N, Π0 = Π0,λ, Π1 = Π1,λ, T = Tλ, satisfying

the following

Π0,Π1 ∈ Mλ |Π0| = |Π1| ≤ poly(λ) T ≤ poly(λ)

∀x,ΠT
0 (x) = ΠT

1 (x) ,

the following ensembles are (λ0, S (·))-indistinguishable{
iO(1λ,Π0,λ,Tλ)

} {
iO(1λ,Π1,λ,Tλ)

}
.

Definition 19 (Unbounded-input indistinguishability obfuscator for Turing ma-

chines). An unbounded-input indistinguishability obfuscator for Turing machines

iO(·, ·, ·) is simply an indistinguishability obfuscator for the class of all Boolean Tur-

ing machines.

Remark 7 (Obfuscation for Boolean Turing machines is without loss of gener-

ality). The above definition is equivalent to one that considers the class of all Turing

machines. Any Turing machine with output length m can be represented as a Boolean

Turing machine that takes in an additional input i ∈ [m] and returns the ith bit of the

m-bit long output.

Definition 20 (Bounded-input indistinguishability obfuscator for Turing ma-

chines). A bounded-input indistinguishability obfuscator for Turing machines

iO(·, ·, ·, ·) is a uniform machine such that for every polynomial p, iO(p, ·, ·, ·) is an indis-

tinguishability obfuscator for the class of Turing machines {Mλ}whereMλ are machines

that accept only inputs of length p(λ). Additionally, iO(p, 1λ,Π,T ) is allowed to run in

time poly(p(λ) + λ + |Π| + log T ).

Finally, we define weaker variants of the above definitions where the size of

the obfuscated program is sub-linear (instead of poly-logarithmic) in the time

bound.
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Definition 21 (Sub-linear efficiency for Indistinguishability Obfuscators). We

say an indistinguishability obfuscator iO for a class of Turing machines {Mλ} has sub-

linear efficiency if it satisfies the requirements in Definition 18 with the efficiency re-

quirement replaced with the following.

Efficiency: The running times of iO and Π̂ are bounded as follows:

There exists polynomial p and constant ε > 0 such that for every security pa-

rameter λ, Turing machine Π ∈ Mλ, time bound T and every obfuscated machine

Π̂← iO(1λ,Π,T ) and input x, we have that

TimeiO(1λ,Π,T ) ≤ p(λ, |Π|)T 1−ε

TimeΠ̂(x) ≤ p(λ, |Π|, |x|,T )

4.2.4 Functional Encryption

Definition 22 (Selectively-secure Single-Query Public-key Functional Encryp-

tion). A tuple of PPT algorithms (FE.Setup,FE.Enc,FE.Dec) is a selectively-secure

functional encryption scheme for a class of circuits {Cλ} if it satisfies the following prop-

erties.

Completeness For every λ ∈ N, C ∈ Cλ and message m ∈ {0, 1}∗,

Pr


(mpk,msk)← FE.Setup(1λ)

c← FE.Enc(1λ,m)

skC ← FE.KeyGen(msk,C)

: C(m)← FE.Dec(skC, c)

 = 1

(λ0, S (·))-Selective-security For every ensemble of circuits and pair of messages{
Cλ,m0,λ,m1,λ

}
where Cλ ∈ Cλ, |Cλ|, |m0,λ|, |m1,λ| ≤ poly(λ), and Cλ(m0,λ) =
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Cλ(m1,λ), the following ensembles of distributions
{
D0,λ

}
and

{
D1,λ

}
are (λ0, S (·))-

indistinguishable.

Db,λ =


(mpk,msk)← FE.Setup(1λ)

c← FE.Enc(1λ,mb,λ)

skC ← FE.KeyGen(msk,Cλ)

: mpk, c, skC


We note that in this work, we only need the security of the functional en-

cryption scheme to hold with respect to statically chosen challenge messages

and functions.

Definition 23 (Compact Functional Encryption). We say a functional encryption

scheme is compact if it additionally satisfies the following requirement:

Compactness The running time of FE.Enc is bounded as follows.

There exists a polynomial p such that for every security parameter λ ∈ N and mes-

sage m ∈ {0, 1}∗, TimeFE.Enc(1λ,m) ≤ p(λ, |m|, polylog(s)), where s = maxC∈Cλ |C|.

Furthermore, we say the functional encryption scheme has sub-linear compact-

ness if there exists a polynomial p and constant ε > 0 such that for every security

parameter λ ∈ N and message m ∈ {0, 1}∗, TimeFE.Enc(1λ,m) ≤ p(λ, |m|)s1−ε .

We also define a notion of succinctness, as follows:

Definition 24 (Succinct Functional Encryption). A compact functional encryption

scheme for a class of circuits that output only a single bit is called a succinct functional

encryption scheme.

Theorem 22 ([93]). Assuming (sub-exponentially secure) LWE, there exists a (sub-

exponentially secure) succinct functional encryption scheme for NC1.
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We note that [93] do not explicitly consider sub-exponentially secure suc-

cinct functional encryption, but their construction satisfies it (assuming sub-

exponentially secure LWE).

Theorem 23 ([93, 3]). Assuming the existence of symmetric-key encryption with de-

cryption in NC1 (resp. sub-exponentially secure) and succinct FE for NC1 (resp. sub-

exponentially secure), there exists succinct FE for P/poly (resp. sub-exponentially se-

cure).

We also consider an even weaker notion of sublinear-compactness, where

only the ciphertext size is sublinear in the size bound s of the function being

evaluation, but the encryption time can depend polynomially on s.

Definition 25 (Weakly Sublinear Compact Functional Encryption). We say a

functional encryption scheme for a class of circuits {Cλ} is weakly sublinear com-

pact if there exists ε > 0 such that for every λ ∈ N, pk ← FE.Setup(1λ) and m ∈ {0, 1}∗

we have that

TimeFE.Enc(pk,m) = poly(λ, |m|, s)

outlenFE.Enc(pk,m) = s1−ε · poly(λ, |m|)

where s = maxC∈Cλ |C|.

4.3 Randomized Encoding Schemes

Roughly speaking, randomized encoding schemes encodes a computation of a

program Π on an input x, into an encoded computation (Π̂, x̂), with the follow-

ing two properties: First, the encoded computation evaluates to the same output
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Π(x), while leaking no other information about Π and x. Second, the encoding

is “simpler” to compute than the original computation. In the literature, differ-

ent measures of simplicity have been considered. For instance, in the original

works by [102, 10], the depth of computation is used and it was shown that

any computation in P can be encoded in NC1 using Yao’s garbled circuits [138].

A recent line of works [31, 54, 112] uses the time-complexity as the measure

and show that any Boolean Turing machine computation can be encoded in time

poly-logarithmic in the run-time of the computation.

Traditionally, the security of randomized encoding schemes are capture via

simulation. In this work, we consider a new distributional indistinguishability-

based security notion, and show that it is implied by the transitional simulation

security. Additionally, we further explore how compact the encoded compu-

tation can be: Similar to the recent works [31, 54, 112], we consider encoding

whose size depends poly-logarithmically on the run-time of the encoded com-

putation; but differently, we directly consider Turing machines with arbitrary

length outputs, and require the size of the encoding to be independent of the

output length. Such scheme is called a compact randomized encoding scheme.

4.3.1 Randomized Encoding with Simulation Security

In this section, we recall the traditional definition of randomized encoding with

simulation security [102, 10].

Definition 26 (Randomized Encoding Scheme for a Class of Turing Machines).

A Randomized Encoding scheme RE for a class of Turing machines {Mλ} consists of

two algorithms,
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• (Π̂, x̂)
$
← Enc(1λ,Π, x,T ): On input a security parameter 1λ, Turing machine

Π ∈ Mλ, input x and time bound T , Enc generates an encoded machine Π̂ and

encoded input x̂.

• y = Eval(Π̂, x̂): On input (Π̂, x̂) produced by Enc,Eval outputs y.

Correctness: The two algorithms Enc and Eval satisfy the following correctness con-

dition: For all security parameters λ ∈ N, Turing machines Π ∈ Mλ, inputs x and

time bounds T , it holds that,

Pr[(Π̂, x̂)
$
← Enc(1λ,Π, x,T ) : Eval(Π̂, x̂) = ΠT (x))] = 1

Definition 27 ((λ0, S (·))-Simulation Security). A randomized encoding scheme RE

for a class of Turing machines {Mλ} satisfies (λ0, S (·))-simulation security, if there

exists a PPT algorithm Sim and a constant c, such that, for every polynomial B, and

ensemble {Πλ, xλ,Tλ} where Πλ ∈ Mλ and |Πλ|, |xλ|,Tλ ≤ B(λ), the following ensembles

are (λ0, S ′(λ)) indistinguishable with S ′(λ) = S (λ) − B(λ)d for all λ ∈ N.{
(Π̂, x̂)

$
← Enc(1λ,Π, x,T ) : Π̂, x̂

}
{
(Π̂, x̂)

$
← Sim(1λ,ΠT (x), 1|Π|, 1|x|,T ) : Π̂, x̂

}
where Π = Πλ, x = xλ, and T = Tλ.

A recent line of works [31, 54, 112] constructed randomized encoding with

polynomial simulation security (i.e., the simulation is polynomially indistin-

guishable to the honest encoding in the above definition) for the class of Boolean

Turing machines, where the time complexity of encoding is independent of the

run-time of the Turing machine.

Theorem 24 (Simulation-Based Randomized Encoding for Boolean Turing Ma-

chines [112]). Assuming the existence of indistinguishability obfuscation for circuits
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and injective pseudo-random generators, there is a randomized encoding scheme RE =

(Enc,Eval) satisfying polynomial simulation security for the class of Boolean Turing

machines, with the following efficiency:

• For every security parameter λ, Boolean Turing machine Π, input x, time bound

T and every encoded pair (Π̂, x̂)← Enc(1λ,Π, x,T ), we have that

TimeEnc(1λ,Π, x,T ) = poly(λ, |Π|, |x|, log T )

TimeEval(Π̂, x̂) = poly(λ, |Π|, |x|,T )

In this paper, we consider the class of all Turing machines, including ones

with arbitrarily long outputs. One can obtain a randomized encoding for Tur-

ing machines with `-bit outputs, by encoding a collection of ` Turning machines

each outputting one output bit, using a randomized encoding for Boolean Tur-

ing machines. It yields a scheme whose encoding time, as well as the size of

encoding, scales linearly with the output length (and still poly-logarithmically

with the run-time of the encoded computation). As we show later in the pa-

per, this essentially is tight, meaning that there is certain computation (namely,

evaluating pseudo-random generators) for which the size of the randomized

encoding cannot be sub-linear in the output length. In other words, when sim-

ulation security is required, encoding has to be as long as the output length in

general.

4.3.2 Distributional Indistinguishability Security

In this paper, we study randomized encoding for all Turing machine com-

putation, whose encoding size is independent of the output length of the
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computation—we say such randomized encoding schemes are compact. To-

wards this, we must consider weaker security notions than simulation secu-

rity, and indistinguishability-based security notions are natural candidates. One

weaker notion that has been considered in the literature requires encoding of

two computation, (Π1, x1) and (Π2, x2) with the same output Π1(x1) = Π2(x2), to

be indistinguishable. In this work, we generalize this notion to, what called dis-

tributional indistinguishability security—this notion requires encoding of com-

putations sampled from two distributions, (Π1, x1)
$
← D1 and (Π2, x2)

$
← D2, to

be indistinguishable, provided that their outputs are indistinguishable.

Definition 28 (Distributional (λ0, S (·))-Indistinguishability Security). A random-

ized encoding scheme RE for a class of Turing machines {Mλ} satisfies distributional

(λ0, S (·))-indistinguishability security, (or (λ0, S (·))-ind-security for short) if the fol-

lowing is true w.r.t. some constant c > 0:

For every ensembles of distributions
{
D0,λ

}
and

{
D1,λ

}
with the following property:

1. there exists a polynomial B, such that, for every b ∈ {0, 1}, Db,λ is a distribution

over tuples of the form (Πb, xb,Tb), where Πb is a Turing machine, xb is an input

and Tb is a time bound, and λ, |Πb|, |xb|,Tb ≤ B(λ).

2. there exist an integer λ′0 ≥ λ0, and a function S ′ with S ′(λ) ≤ S (λ) for

all λ, such that, the following ensembles of output distributions are (λ′0, S
′(·))-

indistinguishable, {
(Π0, x0,T0)

$
← D0,λ : Π

T0
0 (x0),T0, |Π0|, |x0|

}
{
(Π1, x1,T1)

$
← D1,λ : Π

T1
1 (x1),T1, |Π1|, |x1|

}

the following ensembles of encoding is (λ′0, S
′′(·))-indistinguishable, where S ′′(λ) =
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S ′(λ)
λc − B(λ)c. {

(Π0, x0,T0)
$
← D0,λ : Enc(1λ,Π0, x0,T0)

}
{
(Π1, x1,T1)

$
← D1,λ : Enc(1λ,Π1, x1,T1)

}
For convenience, in the rest of the paper, we directly refer to distributional

indistinguishability security as indistinguishability security. The above concrete

security directly gives the standard polynomial and sub-exponential security.

Definition 29 (Polynomial and Sub-exponential Indistinguishability Security).

A randomized encoding scheme RE for a class of Turing machines {Mλ} satisfies poly-

nomial ind-security , if it satisfies (λp, p(·))-indistinguishability security for every

polynomial p and some λp ∈ N. Furthermore, it satisfies sub-exponential ind-security

if it satisfies (λ0, S (·))-indistinguishability security for S (λ) = 2λ
ε with some ε ∈ (0, 1).

We note that, by definition, it holds that any randomized encoding scheme

that is (λ0, S (·))-ind-secure, is also (λ′0, S
′(·))-ind-secure for any λ′0 ≥ λ0 and S ′ s.t.

S ′(λ) ≤ S (λ) for every λ. Therefore, naturally, sub-exponential ind-security is

stronger than polynomial ind-security.

Later, in Section 4.3.4 , we show that RE schemes with ind-security are com-

posable just as RE schemes with simulation security are. Additionally, in Sec-

tion 4.3.5, we show that RE schemes satisfying simulation security also satisfy

ind-security.

4.3.3 Compactness and Sublinear Compactness

With indistinguishability-security, we now define compact randomized encod-

ing schemes for all Turing machines, whose time-complexity of encoding is in-
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dependent of the output length.

Definition 30 (Compact Randomized Encoding for Turing machines). A

(λ0, S (·))-ind-secure compact randomized encoding scheme for Turing machines, is

a randomized encoding scheme with (λ0, S (·))-indistinguishability security for the class

of all Turing machines, with the following efficiency:

• For every security parameter λ, Turing machine Π, input x, time bound T and

every encoded pair (Π̂, x̂)← Enc(1λ,Π, x,T ), it holds

TimeEnc(1λ,Π, x,T ) = poly(λ, |Π|, |x|, log T )

TimeEval(Π̂, x̂) = poly(λ, |Π|, |x|,T )

In this work, we also consider a weaker variant of the above compactness re-

quirement, where the encoding time is sub-linear (instead of poly-logarithmic)

in the computation time. For our results a compact randomized encoding

scheme with sub-linear efficiency will suffice.

Definition 31 (Sub-linear Compactness of Randomized Encoding schemes). We

say a randomized encoding scheme RE = (Enc,Eval) for a class of Turing machines

{Mλ} has sub-linear compactness if the efficiency requirement on Enc in Definition 30

is relaxed to: For some constant ε ∈ (0, 1),

TimeEnc(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|) · T 1−ε

4.3.4 Composition of Ind-Security

It was shown in [103, 10] that randomized encoding schemes with simulation

security are composable. We show that the same holds for indistinguishability
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security. Let RE1 = (Enc1,Eval1) be a randomized encoding scheme for a class

of Turing machines {Mλ}, RE2 = (Enc2,Eval2) a randomized encoding for an

appropriate class of Turing machines that includes the ensembles of functions

{G[λ,Π,T, s]} defined below, and PRG a pseudo-random generator. Consider

the following composed randomized encoding scheme (Enc,Eval):

Enc(1λ,Π, x,T ) : (Ĝ, x̂)
$
← Enc2(1λ,G, x,TG(x))

where G[λ,Π,T, s](x) = Enc1(1λ,Π, x,T ; PRG(s))

Eval(Ĝ, x̂) : (Π̂, x̂′) = Eval2(Ĝ, x̂), y = Eval1(Π̂, x̂′)

where TG(x) is an upper bound on the run-time of G on input x, it can be effi-

ciently calculated using an upper bound on the run-time of Enc1 and PRG, in

particular, TG(x) = poly(TimeEnc1(1
λ,Π, x,T )).

Lemma 3 (Composition). If RE1 is (λ1, S 1(·))-ind-secure, and RE2 and PRG are

(λ2, S 2(·))-ind-secure, with λ2 ≤ λ1 and S 2(λ) ≥ S 1(λ). then (Enc,Eval) is (λ1, S 1(·))-

ind-secure.

Proof. Let c1 be the constant w.r.t. which the ind-security of RE1 holds, and c2 the

constant for RE2. We show that the composed scheme (Enc,Eval) is (λ1, S 1(·))-

ind-secure w.r.t. some sufficiently large constant c, whose value would become

clear in the proof below.

To show this, consider any pair of ensembles of distributions
{
D0,λ

}
and

{
D1,λ

}
that are (λ′0, S

′)-indistinguishability for λ′0 ≥ λ1 and S ′(λ) ≤ S 1(λ) for all λ,

and all parameters λ, |Πb|, |xb|,Tb ≤ B(λ) for some polynomial B. We need to

show that encodings generated using Enc are (λ′0, S
′′)-indistinguishable, where

S ′′(λ) ≤ S ′(λ)/λc − B(λ)c.
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First, it follows directly from the indistinguishability security of RE1 that

the distributions H1 and H2 of encodings produced by Enc1 are (λ′0, S 1)-

indistinguishable, where S H(λ) = S ′(λ)/λc1 − B(λ)c1 ,

H1 =

{
(Π0, x0,T0)

$
← D0,λ : Enc1(1λ,Π0, x0,T0)

}
H2 =

{
(Π1, x1,T1)

$
← D1,λ : Enc1(1λ,Π1, x1,T1)

}
Consider two modified distributions, where the encodings are generated using

pseudo-random coins.

H+
1 =

{
s

$
← {0, 1}λ, (Π0, x0,T0)

$
← D0,λ : Enc1(1λ,Π0, x0,T0; PRG(s))

}
H+

2 =

{
s

$
← {0, 1}λ, (Π1, x1,T1)

$
← D1,λ : Enc1(1λ,Π1, x1,T1; PRG(s))

}
Since λ, |Πb|, |xb|,Tb ≤ B(λ), TimeEnc1(1

λ,Πb, xb,Tb) is bounded by B(λ)d for some

constant d. Then, by the (λ2, S 2)-indistinguishability of PRG, it follows that for

every b no adversary of size S̃ H(λ) = S 2(λ)−B(λ)d can distinguish H+
b and Hb with

probability larger than 1/S 2(λ). Therefore, (by a hybrid argument,) no adversary

of size min(S H(λ), S̃ H(λ)) can distinguish H+
1 and H+

2 with probability larger than

2/S̃ H(λ) + 1/S H(λ). Since S ′(λ) ≤ S 1(λ) ≤ S 2(λ), there is a S +
H(λ) = S ′(λ)/λe −

B(λ)e with a sufficiently large constant e, such that,
{
H+

1

}
and

{
H+

2

}
are (λ′0, S

+
H)-

indistinguishable.

Consider the following ensembles of distributions
{
E0,λ

}
and

{
E1,λ

}
:

Eb,λ : s
$
← {0, 1}λ, (Πb, xb,Tb)

$
← Db,λ output (Gb, xb,T ′b)

where Gb[λ,Πb,Tb, s](xb) = Enc1(1λ,Πb, xb,Tb ; PRG(s)), T ′b = TGb(xb).

where TGb(xb) = poly(λ, |Πb|, |xb|, log Tb), determined by the run time of algo-

rithms PRG and Enc1. By the indistinguishability of H+
1 and H+

2 , the output

distributions of E0,λ and E1,λ are also (λ′0, S
+
H)-indistinguishable. Moreover, all

parameters T ′b, |Gb|, |xb| are bounded by B(λ)k for some constant k.
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Therefore, it follows from the (λ2, S 2)-security of RE2 (and the fact that λ2 ≤

λ1 ≤ λ
′
0, and S +

H(λ) ≤ S 2(λ)) that, encoding of G0 and G1 sampled from E0,λ and

E1,λ are (λ′0, S
′′
3 )-indistinguishable, where S ′′(λ) = S +

H(λ)/λc2 − B(λ)kc2 ≥ S ′(λ)/λc −

B(λ)c for a sufficiently large c.{
(G0, x0,T ′0)

$
← E0,λ : Enc2(1λ,G0, x0,T ′0)

}
{
(G1, x1,T ′1)

$
← E1,λ : Enc2(1λ,G1, x1,T ′1)

}
This concludes the proof. �

The above composition lemma implies that if there is a sublinear RE with

complexity scaling with T β, one can reduce the complexity by an arbitrary poly-

nomial factor by recursively composing the RE with itself. This fact with be very

instrumental later. More precisely,

Lemma 4 (Recursive Composition). Let α and β be any constants satisfying 0 < α <

β < 1. If there is a sublinear RE (Enc′,Eval′) with time complexity

TimeEnc′(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)T β ,

then, there is a sublinear RE (Enc,Eval) with time complexity

TimeEnc(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)Tα .

Proof of Claim 4. Given any sublinear RE RE′ = (Enc′,Eval′) with time complex-

ity

TimeEnc′(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)T β

We show how to construct a sublinear RE RE = (Enc,Eval) with time complexity

TimeEnc(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)Tα
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The new scheme RE is constructed by “composing” RE′ iteratively for a suffi-

ciently large, constant, number of times, depending on α and β.

COMPOSING ONCE: Recall that in Section 4.3.4, it was shown that given two

ind-secure RE schemes for Turing machines, one can compose them into a new

RE scheme that still satisfies indistinguishability security, as shown in Lemma 3.

It follows from this lemma that by composing the scheme RE′ with itself, we

obtain a new scheme RE1 as follows.

G[λ,Π,T, s](x) = Enc′(1λ,Π, x,T ; PRG(s))

Enc1(1λ,Π, x,T ) : (Ĝ, x̂)
$
← Enc′(1λ,G, x,TG(x))

where TG(x) is an upper bound on the run-time of G(x). We show that RE1 is

more “compact” than RE′ – with a time complexity depending on T β2 as op-

posed to T β.

TG(x) = TEnc′(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)T β

TEnc1(1
λ,Π, x,T ) = TEnc′(1λ,G, x,TG(x)) ≤ poly(λ, |Π|, |x|)T β2

COMPOSING k TIMES: Since RE1 itself is a sublinear RE scheme, one can apply

the same composition technique on it to obtain a new scheme RE2 whose time

complexity depends on T (β2)2 . More generally, applying the composition tech-

nique recursively for a constant number d of times yields a scheme REd with

time complexity

TEncd (1λ,Π, x,T ) = poly(λ, |Π|, |x|)T βe
, for e = 2d .

For a sufficiently large d, TEncd ≤ poly(λ, |Π|, |x|)Tα, which concludes the claim. �
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4.3.5 Simulation Security implies Indistinguishability Security

In this section, we show that simulation security for a randomized encoding

scheme implies indistinguishability security for the same scheme. More for-

mally,

Theorem 25. Let RE be a (λ0, S )-simulation-secure randomized encoding scheme for a

sufficiently large λ0. Then RE is also (λ0, S )-ind-secure.

Proof. Let Sim be the PPT simulator of RE = (Enc,Eval); let c be a sufficiently

large constant whose value will become clear in the proof below. To show

that RE is (λ0, S )-ind-secure w.r.t. constant c, consider arbitrary ensembles of

distributions
{
D0,λ

}
and

{
D1,λ

}
whose output distributions below are (λ′0, S

′)-

indistinguishability for λ′0 ≥ λ0 and S ′(λ) ≤ S (λ) for all λ,

O0 =

(
(Π0, x0,T0)

$
← D0,λ : Π

T0
0 (x0),T0, |Π0|, |x0|

)
O1 =

(
(Π1, x1,T1)

$
← D1,λ : Π

T1
1 (x1),T1, |Π1|, |x1|

)
and all parameters λ, |Πb|, |xb|,Tb ≤ B(λ) for some polynomial B. We show that

encoding generated using Enc are (λ′0, S
′′)-indistinguishable, where S ′′(λ) ≤

S ′(λ)/λc − B(λ)c.

Consider the following sequence of hybrids:

H0: (
(Π0, x0,T0)

$
← D0,λ : Enc(1λ,Π0, x0,T0)

)
H1: (

(Π0, x0,T0)
$
← D1,λ : Sim(1λ,ΠT0

0 (x0), 1|Π0 |, 1|x0 |,T0)
)
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H2: (
(Π1, x1,T1)

$
← D1,λ : Sim(1λ,ΠT1

1 (x1), 1|Π1 |, 1|x1 |,T1)
)

H3: (
(Π1, x1,T1)

$
← D1,λ : Enc(1λ,Π1, x1,T1)

)

In other words, our goal is to show that {H0} and {H3} are (λ′0, S
′′)-

indistinguishable. Towards this, we argue the indistinguishability of every two

neighboring hybrids and use a hybrid argument to conclude.

First, it follows directly from the (λ0, S )-simulation security of RE (and the

fact that λ′0 ≥ λ0) that {H0} and {H1}, as well as {H2} and {H3}, are (λ′0, S 0,1)-

indistinguishable with S 0,1(λ) = S (λ) − B(λ)d for some constant d.

Next, to argue the indistinguishability of H1 and H2, we first note that

the run-time of the simulator TSim = TimeSim(1λ,ΠTb
b (xb), 1|Πb |, 1|xb |,Tb) ≤ B(λ)c

with a sufficiently large constant c determined by Sim, since the length of ev-

ery input argument is bounded by B(λ). Then, it follows from the (λ′0, S
′)-

indistinguishability of the output distributions {O0}, {O1} that for every adver-

sary of size S 1,2(λ) = S ′(λ) − TSim = S ′(λ) − B(λ)c, the probability that it dis-

tinguishes H1 and H2 is bounded by 1/S ′(λ) (as otherwise one can construct

a S ′(λ)-size adversary that distinguishes {O1} and {O2} with probability larger

than 1/S ′(λ), by internally running Sim to sample from H1 or H2, and then the

distinguisher for H1 and H2 to distinguish).

Therefore, it follows from a hybrid argument that for every adversary of size

min(S 0,1(λ), S 1,2(λ)), the probability of distinguishing H0 and H3 is bounded by

2/S 0,1(λ) + 1/S ′(λ). For sufficiently large c > d and λ′0, {H0} and {H3} are (λ′0, S
′′)-

indistinguishable. �
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4.4 Unbounded-Input IO from Compact RE

In this section, we define our succinct indistinguishability obfuscator for Turing

machines. Let RE = (Enc,Eval) be a compact randomized encoding scheme for

Turing machines with sub-exponential indistinguishability security. Let c be the

constant for the security loss associated with the indistinguishability security of

RE. We assume without loss of generality that Enc(1λ, ·, ·) requires a random

tape of length λ. Let PRG be a sub-exponentially secure pseudorandom gen-

erator and let ε be the constant associated with the sub-exponential security of

PRG.

For every λ ∈ N, D ≤ 2λ, define

l(λ,−1) = λ

l(λ,D) = l(λ,D − 1) + (2dλ)1/ε

where d > 0 is any constant strictly greater than c.

Construction 2. Consider a Turing machine Π, security parameter λ ∈ N, and time

bound T of Π. For every partial input s ∈ {0, 1}∗ with |s| ≤ 2λ and R ∈ {0, 1}2l(λ,|s|), we

recursively define a Turing machine Π̃s,R to be as follows:

When |s| < 2λ:

On the empty input, Π̃s,R outputs:

Enc(1l(λ,|s|+1), Π̃s0,R0 ,T
′(λ, |s| + 1, |Π|, log(T )); R1)

Enc(1l(λ,|s|+2), Π̃s1,R2 ,T
′(λ, |s| + 1, |Π|, log(T )); R3)

Enc(1l(λ,|s|+1),Π, s,T ; R4)
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where (R0,R1,R2,R3,R4) ← PRG(R, 5 · 2l(λ, |s| + 1)) and T ′ is some fixed poly-

nomial in λ, |s| + 1, |Π| and log(T ). In the special case when |s| = 2λ − 1, the time

bound used in the first two encodings is set to T .

On all other inputs, Π̃s,R outputs ⊥.

When |s| = 2λ:

On the empty input, Π̃s,R outputs Enc(1l(λ,|s|+1),Π, s,T ; R). On all other inputs,

Π̃s,R outputs ⊥.

We define T ′(·, ·, ·, ·) (corresponding to the bound placed on the running time of Π̃s,R) to

be the smallest polynomial such that for all λ, s ∈ {0, 1}≤2λ , R ∈ {0, 1}2l(λ,|s|), Π and T ,

T ′(λ, |s|, |Π|, log(T )) ≥ p(λ|s|+1, |Π̃s0,R|, 0, log(T ′|s|+1))

+ p(λ|s|+1, |Π̃s1,R|, 0, log(T ′|s|+1))

+ p(λ|s|+1, |Π|, |s|, log(T ))

+ TimePRG(R, 5 · 2l(λ, |s| + 1))

where λ|s|+1 = l(λ, |s| + 1), T ′
|s|+1 = T ′(λ, |s| + 1, |Π|, log(T )) (corresponding to the se-

curity parameter and time bound used for each of Π̃s0,R0 and Π̃s1,R1), TimePRG is the

bound on the running time of the PRG, and p(·, ·, ·, ·) is the bound on TimeEnc from the

compactness of RE. We note that the polynomial T ′ exists because p is a polynomial,

each of λ|s|+1 and |Π̃s,R| are of size polynomial in λ, |s| and |Π|, and the self-dependence of

T ′(λ, |s|, |Π|, log(T )) on T ′
|s|+1 is only poly-logarithmic.

Remark: We note that |Π̃s,R| is always poly(λ, |Π|, |s|, log(T )). This is because Π̃s,R

is fully described by λ, Π, s, R and T , and the size of each of these is bounded by

poly(λ, |Π|, |s|, log(T )).
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Given this definition of Π̃s,R, we define our indistinguishability obfuscator as

follows:

Construction 3 (Indistinguishability Obfuscator). On input λ ∈ N, Turing ma-

chine Π and time bound T , define Π̃, the indistinguishability obfuscation of Π, to be

Π̃ = iO (1λ,Π,T ) = Enc(1l(λ,0), Π̃ε,R,T ′(λ, 0, |Π|, log(T )))

Where ε is the empty string, and R
$
← {0, 1}2l(λ,0) and T ′ a fixed polynomial in λ, |Π|

and log(T ), as described above.

Evaluation: The algorithm to evaluate Π̃ on input x ∈ {0, 1}d, d < 2λ proceeds as

follows:

1. For every 0 ≤ i ≤ d, compute encodings of Π̃x≤i,R successively, starting with

Π̃, an encoding of Π̃ε,R, and subsequently, for every 0 < i ≤ d, computing

the encoding of Π̃x≤i,R by evaluating the encoding of Π̃x<i,R, and selecting

the encoding of Π̃x≤i,R from its output.

2. Evaluate the encoding of Π̃x,R = Π̃x≤d ,R and obtain from its output (Π̂, x̂) =

Enc(1l(λ,|x|+1),Π, x,T ; R4).

3. Run Eval(Π̂, x̂) to obtain Π(x).

To analyze the correctness, running time, and compactness of our iO con-

struction, we make use of the following lemma:

Lemma 5. Let Π be a polynomial-time TM, λ ∈ N be a security parameter, and T ≤ 2λ

be a running time bound. Then, for every s ∈ {0, 1}∗ with |s| ≤ 2λ and every R ∈

{0, 1}2l(λ,|s|), the running time of Π̃s,R is bounded by T ′(λ, |s|, |Π|, log(T )).
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Proof. We prove the lemma by fixing a λ ∈ N, and inducting on the size of s.

Base case: |s| = 2λ. In this case, the running time T ′s of Π̃s,R is given by

T ′s = TimeEnc(1l(λ,|s|+1),Π, s,T )

≤ p(l(λ, |s| + 1), |Π|, |s|, log(T ))

≤ T ′(λ, |s|, |Π|, log(T ))

This completes the base case.

Inductive step: |s| < 2λ By the induction hypothesis, we assume that the lemma

holds for all s′ with |s′| = |s| + 1, in particular, for s′ = s0 and s′ = s1.

Then, an execution of Π̃s,R runs a single evaluation of a PRG, and produces

encodings of each of Π̃s0,R0 , Π̃s1,R2 and (Π, s). The PRG runs in time TimePRG(R, 5 ·

2l(λ, |s|+1)), while the encoding (Π, s) takes time TimeEnc(1l(λ,|s|+1),Π, s,T ). Further,

by the inductive hypothesis, the encodings of Π̃s0,R0 and Π̃s1,R2 each take time ≤

T ′(λ, |s|+ 1, |Π|, log(T ). Combining these facts together, we have that the running

time T ′s of Π̃s,R is given by:

T ′s = p(λ|s|+1, |Π̃s0,R|, 0, log(T ′|s|+1))

+ p(λ|s|+1, |Π̃s1,R|, 0, log(T ′|s|+1))

+ p(λ|s|+1, |Π|, |s|, log(T ))

+ TimePRG(R, 5 · 2l(λ, |s| + 1))

≤ T ′(λ, |s|, |Π|, log(T ))

This concludes the inductive step, and the lemma follows. �

Correctness of iO : The correctness of iO applied to any polynomial-length x

follows from the correctness of evaluating encodings RE, applied at every level
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of the evaluation. More concretely, for each index i ≤ |x| of the evaluation, except

with probability µ(l(λ, i)), the evaluation of Π̃x<i,R correctly produces Π̃x≤i,R. Fur-

ther, the final evaluation of Π̂, x̂ produces ΠT (x) correctly except with probability

µ(l(λ, i + 1)).

Crucially, the correctness at each step relies on the fact that each encoding

Π̃x<i,R uses time bound T ′(λ, i, |Π|, log(T )), which, as argued above, is sufficiently

large to compute Π̃x≤i,R for the next level.

Overall, the probability of incorrect evaluation is ≤
∑|x|

i=1 µ(λ, i), which is neg-

ligible for any polynomial-length x.

Running time of iO : Again, considering step i, the evaluation at this step takes

time p(l(λ, i), |Πx<i,R|, 0,T
′(λ, i, |Π|, log(T )), which is poly(λ, i, |Π|, log(T )). Further,

the evaluation of Π̂, x̂ is p(l(λ, |x| + 1), |x|, |Π|,T ), which is poly(λ, |x|, |Π|,T ). There-

fore, overall the running time is poly(λ, |x|, |Π|,T ).

Efficiency of iO : The size of iO (1λ,Π,T ) is the same as the size of Π̃ε,R,

which itself is bounded by TimeEnc(1l(λ,0),Πε,R,T ′(λ, 0, |Π|, log(T ))), which is

poly(λ, |Π|, log(T )) by the efficiency of RE.

4.4.1 Security Proof

Theorem 26. Let (Enc,Eval) be a sub-exponentially-indistinguishability-secure, com-

pact randomized encoding scheme and let PRG be a sub-exponentially-secure pseudo-

random generator. Then the indistinguishability obfuscator defined in Construction 3

is subexponentially-secure.
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Proof. Consider any pair of ensembles of Turing machines and time bounds{
Π0
λ,Π

1
λ,Tλ

}
where for every λ ∈ N, Π0 = Π0

λ, Π1 = Π1
λ, T = Tλ,

|Π0| = |Π1| ≤ poly(λ) |T | ≤ poly(λ)

∀x,Π0,T (x) = Π1,T (x)

We first introduce some notation to describe the distributions of randomized

encodings generated by iO(1λ,Π0
λ,Tλ) and iO(1λ,Π1

λ,Tλ). For λ ∈ N, s ∈ {0, 1}∗, |s| ≤

2λ, we define the following distributions

Dλ,0,s = Enc(1l(λ,|s|), Π̃0
s,R,T

′)

Dλ,1,s = Enc(1l(λ,|s|), Π̃1
s,R,T

′)

where R is uniformly random, T ′ is as described in Construction 2 and Π̃b
s,R is

defined for the Turing machine Πb
λ, security parameter λ and time bound Tλ.

We will show something stronger than the theorem statement. In particular, we

have the following claim.

Claim 3. There exists λ0, ε ∈ N such that for every λ > λ0, for every s ∈ {0, 1}∗, |s| ≤ 2λ

we have that the distributions Dλ,0,s and Dλ,1,s are S (λ) indistinguishable where S (λ) ≥

10 · 2l(λ,|s|−1)ε .

Using the above claim with s as the empty string and recalling l(λ, 0) = λ, the

theorem statement follows. Therefore, in the remainder of the proof, we prove

the above claim.

Proof of claim Let ε be the larger of the constants associated with the sub-

exponential security of the pseudorandom generator PRG and the indistin-

guishability security of the encoding scheme (Enc,Eval) (these constants are also

named ε in their respective security definitions). Similarly, We consider λ0 to be
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large enough so that the security of the encoding scheme (Enc,Eval) and the

pseudorandom generator PRG is applicable. We will actually require a larger λ0

so that certain asymptotic conditions (depending only on the polynomial size

bounds of Π0
λ, Π1

λ and Tλ) hold, which we make explicit in the remainder of the

proof. For every λ > λ0, we prove the claim by induction on |s|. Our base case

will be when |s| = 2λ and in the inductive step we show the claim holds for all s

of a particular length d, if it holds for all s of length d + 1.

Induction statement, for a fixed λ > λ0: For every s ∈ {0, 1}≤2λ , the distributions

Dλ,0,s and Dλ,1,s are 10 · 2l(λ,|s|−1)ε indistinguishable.

Base case: |s| = 2λ.

In this case, recall that the output of Π̃b
s,R is simply (Π̂b,T

λ , ŝ). We first claim

that, for all s, (Π̂0,T
λ ŝ) and (Π̂1,T

λ , ŝ) are 2λ
′ε indistinguishable where λ′ = l(λ, |s|), as

follows.

Recall that the output of evaluating Π̂b,T
λ , ŝ is simply Πb,T

λ (s). Since we have

that Π0,T
λ (s) = Π1,T

λ (s) for all s, we can apply the security of the randomized

encoding scheme. More concretely, since the output (point) distributions are

identical, they are 10 · 2λ
′ε -indistinguishable where λ′ = l(λ, |s| + 1). Let B(·) be a

polynomial such that B(λ′) bounds from above |Πb|, |s| and T . By the security of

the encoding scheme, the encodings (Π̂0,T
λ ŝ) and (Π̂1,T

λ ŝ) are S ′ indistinguishable

where

S ′ ≥
10 · 2l(λ,|s|+1)ε

l(λ, |s| + 1)c − B(l(λ, |s| + 1))c ≥
10 · 2l(λ,|s|+1)ε

l(λ, |s| + 1)d ≥ 10 · 2l(λ,|s|)ε

where the first inequality holds for sufficiently large λ and in the second in-

equality, we use the fact that l(λ, |s|+ 1) = l(λ, |s|) + λd/ε . Thus (Π̂0,T
λ , ŝ) and (Π̂1,T

λ , ŝ)

are 10 · 2l(λ,|sλ |)ε -indistinguishable.
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Now, recall that the output of Π̃b
s,R is simply (Π̂b,T

λ , ŝ). By the above argu-

ment, we have that, for all s, (Π̂0,T
λ ŝ) and (Π̂1,T

λ , ŝ) are 2λ
′ε -indistinguishable where

λ′ = l(λ, |s|). Let B′ be the polynomial such that B′(l(λ, |s|)) bounds |Π̃b
s,R| and

the running time of Π̃b
s,R as per Lemma 5. The encodings Dλ,0,s and Dλ,1,s are S ′

indistinguishable where

S ′ ≥
10 · 2l(λ,|s|)ε

l(λ, |s|)c − B′(l(λ, |s|))c ≥
10 · 2l(λ,|s|+1)ε

l(λ, |s|)d ≥ 10 · 2l(λ,|s|−1)ε

where, as before, the first inequality holds for sufficiently large λ and in the

second inequality, we use the fact that l(λ, |s|+ 1) = l(λ, |s|) +λd/ε . Hence the claim

holds for |s| = 2λ.

Inductive step: |s| < 2λ. By the induction hypothesis, we assume the claim

holds for all s′ such that |s′| = |s| + 1. Recall that the output of Π̃b
s,R (where

R
$
← {0, 1}2l(λ,|s|)) is

Enc(1l(λ,|s|+1), Π̃b
s0,R0

,T ′; R1)

Enc(1l(λ,|s|+1), Π̃b
s1,R2

,T ′; R3)

Enc(1l(λ,|s|+1),Πb
λ, s,T ; R4)

where (R0,R1,R2,R3,R4) ← PRG(R, 5 · 2l(λ, |s| + 1)). Let Hb denote the above

output distribution. We will show H0 and H1 are indistinguishable by a hybrid

argument as follows.

• Let G1 be a hybrid distribution exactly as H0 except that (R0,R1,R2,R3,R4)
$
←

{0, 1}5·2l(λ,|s|+1). We claim that for both the distributions H0 and G1 are 5 · 2λ
′ε

indistinguishable where λ′ = l(λ, |s|).

This follows from the PRG security as follows: any size 5 · 2λ
′ε adversary A

that distinguishes H0 and G1 can be turned into an adversary A′ that can
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break the PRG security with seed length 2λ′ with the same advantage. A′

has Π0
λ, Π1

λ, Tλ and s hardcoded in it. Hence, the size of A′ is

5 · 2λ
′ε

+ poly(λ) + poly(|s|) ≤ 5 · 2λ
′ε

+ poly(λ′) ≤ 2(2λ′)ε

where the last inequality holds when λ is sufficiently large. Hence, A′

breaks the 2(2λ′)ε -security of PRG and we have a contradiction.

Writing out the components of G1, we have that it is identical to

G1 ≡ Dλ,0,s0,Dλ,0,s1,Enc(1l(λ,|s|+1),Π0
λ, s,Tλ; R)

• Let G2 be a hybrid distribution obtained by modifying the first component

of G1 as follows.

G2 ≡ Dλ,1,s0,Dλ,0,s1,Enc(1l(λ,|s|+1),Π0
λ, s,Tλ; R)

We show that G1 and G2 are 5 ·2λ
′ε indistinguishable. This follows from the

induction hypothesis as follows: any size 5 · 2λ
′ε adversary A that distin-

guishes G1 and G2 with advantage better than 1/(5 ·2λ
′ε
) can be turned into

an adversary A′ that can distinguish Dλ,0,s0 and Dλ,1,s0 with the same advan-

tage. As before, A′ has Π0
λ, Π1

λ, Tλ and s hardcoded in it, and therefore the

size of A′ is at most 5·2λ
′ε
+poly(λ′) ≤ 10·2λ

′ε . Hence, A′ breaks the induction

hypothesis that says Dλ,0,s0 and Dλ,1,s0 are 10 · 2λ
′ε -indistinguishable.

• Similarly, let G3 be a hybrid distribution obtained by modifying the second

component of G2 as follows.

G3 ≡ Dλ,1,s0,Dλ,1,s1,Enc(1l(λ,|s|+1),Π0
λ, s,Tλ; R)

Similarly as above, we have that G2 and G3 are 5 · 2λ
′ε -indistinguishable.
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• Let G4 be a hybrid distribution obtained by modifying the third compo-

nent of G3 as follows.

G4 ≡ Dλ,1,s0,Dλ,1,s1,Enc(1l(λ,|s|+1),Π1
λ, s,Tλ; R)

We show G3 and G4 are 5 · 2λ
′ε -indistinguishable. First, since Π0,T

λ (s) =

Π1,T
λ (s), by the security of the encoding scheme, we have that the encodings

that form the third component of G3 and G4 are S ′ indistinguishable where,

similar to the base case, B(l(λ, |s|)) bounds from above |Πb
λ|, |s| and T

S ′ ≥
10 · 2l(λ,|s|)ε

l(λ, |s|)c − B(l(λ, |s|))c ≥
10 · 2l(λ,|s|)ε

l(λ, |s|)d ≥ 10 · 2l(λ,|s|−1)ε

Hence by a similar argument as before, the hybrid distributions are 5 · 2λ
′ε -

indistinguishable.

• Finally we observe that G4 and H1 are 5 · 2λ
′ε -indistinguishable just as G1

and H0 were. By a simple hybrid argument, we have that H0 and H1 are

2λ
′ε -indistinguishable.

Recall that H0 and H1 are the distributions of outputs of Π̃0
s,R and Π̃1

s,R re-

spectively. By the security of the randomized encoding scheme, the en-

codings of these machines, i.e. Dλ,0,s and Dλ,1,s are S ′(λ)-indistinguishable

where

S ′(λ) ≥
2l(λ,|s|)ε

l(λ, |s|)c − B′(l(λ, |s|)c ≥
2l(λ,|s|)ε

l(λ, |s|)d ≥
2l(λ,|s|−1)ε · 2(2dλ)

2dλ · (2dλ)d/ε ≥ 10 · 2l(λ,|s|−1)ε

where B′(l(λ, |s|)) bounds from above |Πb
s,R| and T ′ as in Lemma 5. The

second inequality holds for sufficiently large λ. In the third inequality, we

use the fact that l(λ, |s|) ≤ |s|(2dλ)1/ε ≤ 2λ(2dλ)1/ε and the last inequality

holds for sufficiently large λ.

�
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4.4.2 Nice Distributions

Later in Section 4.7, we show that compact RE does not exist for general dis-

tributions in the plain model. However, here we observe that the above con-

struction of unbounded input IO relies only on compact RE for certain “special

purpose” distributions that is not ruled out by the impossibility result in Sec-

tion 4.7. We now abstract out the structure of these special purpose distribu-

tions. Let RE = (Enc,Dec) be a randomized encoding scheme; we define “nice”

distributions w.r.t. RE.

0-nice distributions: We say that a pair of distribution ensembles
{
D0,λ

}
and{

D1,λ
}

are 0-nice if D0,λ always outputs a fixed tuple (Π0, x,T ) while D1,λ

always outputs a fixed tuple (Π1, x,T ), satisfying that ΠT
0 (x) = ΠT

1 (x).

k-nice distributions: We say that a pair of distribution ensembles
{
D0,λ

}
and{

D1,λ
}

are k-nice if there exist some ` = poly(λ) pairs of distributions

({Ei
0,λ}, {E

i
1,λ})i∈[`], where the ith pair is ki-nice with ki ≤ k − 1, such that, Db,λ

samples tuple (Πb, xb,Tb) satisfying the following:

• For each i ∈ [`], sample (Λi
b, z

i
b,T

i
b)

$
← Ei

b,λ.

• The output of Πb(xb) consists of ` randomized encodings, where the ith

encoding is in the support of Enc(1λ
′

,Λi
b, z

i
b,T

i
b), for some λ′ = poly(λ).

Finally, we say that a pair of distribution ensembles
{
D0,λ

}
and

{
D1,λ

}
are nice

w.r.t. RE if they are k-nice w.r.t. RE for some integer k.

Our construction of unbounded input IO and its analysis in previous sec-

tions relies only on compact RE for nice distribution ensembles. Hence we can

refine Theorem 26 to the following:
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Proposition 4. Assume the existence of a compact randomized encoding scheme RE

which is sub-exponentially-indistinguishability-secure for every pair of distribution en-

semble that are nice w.r.t. RE; assume further the existence of sub-exponentially secure

one-way functions. Then, there is an unbounded-input indistinguishability obfuscator

for Turing machines.

We stress again that compact RE for nice distributions is not ruled out by the

impossibility result in Section 4.7. Hence, we obtain unbounded input IO from

a new assumption different from the extactability assumptions used in previous

work [42, 2, 105].

Candidate Construction: Finally, we describe a candidate construction of com-

pact RE for nice distributions using the KLW indistinguishability obfuscator for

bounded-input Boolean Turing machines: Given input (1λ,M, x,T ), the encod-

ing is an obfuscation, using the KLW scheme, of the program ΠM,x that on input

i ∈ [T ] outputs the ith bit of the output MT (x). Since ΠM,x is Boolean, the KLW

obfuscator can be applied, and the encoding time is poly(λ, |M|, |x|, log T ) (hence

compact). By the security of indistinguishability obfuscation, for any M1, x1 and

M2, x2 with identical outputs, their encodings are indistinguishable, and thus

this construction is a weak compact RE. We here consider it also a candidate

construction for compact RE with distributional indistinguishability.

4.5 Bounded-Input IO from Sublinear RE

In this section, we construct a bounded-input indistinguishability obfuscator

for Turing machines, using randomized encoding schemes with sublinear com-
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pactness. The construction is very similar to the construction described earlier

in Section 4.4. The main difference is that due to the fact that we only use sub-

linear compactness, the depth of the tree of encodings we construct must be

bounded to some polynomial size given as a parameter, rather than being of

depth 2λ. Further, the correctness and efficiency analysis is slightly different to

account for the semi-compactness of the RE scheme used, as opposed to full

compactness in the previous construction.

Let RE = (Enc,Eval) be a randomized encoding scheme for Turing machines

with sub-exponential indistinguishability security and sublinear efficiency. Let

c be the constant associated with the security loss in the security of (Enc,Eval).

We assume that Enc(1λ, ·, ·) requires a random tape of length λ, and this is with-

out loss of generality for two reasons: First, one can always apply a PRG to ex-

pand the λ-bit random string to a pseudo-random string of arbitrary polynomial

length, and second, by Claim 4 in Section 4.3.4 it is without loss of generality to

assume that we start with a RE scheme with a sufficiently small sublinear time

complexity and thus even counting the time for PRG expansion, the overall time

complexity is still sublinear. Let PRG be a sub-exponentially secure pseudoran-

dom generator and let ε be the constant associated with the sub-exponential

security of PRG.

For every λ ∈ N, D ≤ 2λ, define

l(λ,−1) = λ

l(λ,D) = l(λ,D − 1) + (2dλ)1/ε

where d is any constant strictly greater than c.

Construction 4. Consider a Turing machine Π, security parameter λ ∈ N, an input-
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length bound n, and time bound T on the running time of Π. For every partial input

s ∈ {0, 1}∗ with |s| ≤ n and R ∈ {0, 1}2l(λ,|s|), we recursively define a Turing machine Π̃s,R

as follows:

When |s| < n:

On the empty input, Π̃s,R outputs:

Enc(1l(λ,|s|+1), Π̃s0,R0 ,T
′(λ, |s| + 1, |Π|, n,T ); R1)

Enc(1l(λ,|s|+1), Π̃s1,R2 ,T
′(λ, |s| + 1, |Π|, n,T ); R3)

Enc(1l(λ,|s|+1),Π, s,T ; R4)

where (R0,R1,R2,R3,R4)← PRG(R, 5 · 2l(λ, |s| + 1)) and T ′ is a fixed polynomial

in λ, |s| + 1, |Π|, n and T , defined below. In the special case when |s| = n − 1, the

time bound used in the first two encodings is set to T .

On all other inputs, Π̃s,R outputs ⊥.

When |s| = n:

On the empty input, Π̃s,R outputs Enc(1l(λ,|s|+1),Π, s,T ; R). On all other inputs,

Π̃s,R outputs ⊥.

Let p(·) and ε′ respectively be the polynomial and constant corresponding to the sub-

linear efficiency of RE. For any λ, n,Π and T , we define the following terms (which are

implicitly functions of λ, n,Π and T ):

λn = l(λ, n)

λn+1 = l(λ, n + 1)

Π̃n = Π̃0n,02λn

A = 2 · p(1λn , |Π̃n|, 0)
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B = p(1λn+1 , |Π|, n)T 1−ε′

C = TimePRG(02λn , 5 · 2λn+1)

We note that Π̃n is the largest size of any Π̃s,R we ever need to consider, and further, that

it has a description of polynomial size, and hence every Π̃s,R has polynomial size.

We define the polynomial T ′(·, ·, ·, ·) (corresponding to the bound placed on the run-

ning time of Π̃s,R), for all λ, s ∈ {0, 1}≤n, R ∈ {0, 1}2l(λ,|s|), Π and T , to be

T ′(λ, |s|, |Π|, n,T ) = (n − |s| + 1) · (A1/ε′ + B + C)

where each of A, B and C are defined relative to λ, |Π|, n and T given as input to T ′.

Given this definition of Π̃s,R and T ′, we define our indistinguishability obfus-

cator as follows:

Construction 5 (Indistinguishability Obfuscator). On input λ ∈ N, Turing ma-

chine Π, input length bound n and time bound T , define Π̃, the indistinguishability

obfuscation of Π, to be

Π̃ = iO (1λ,Π, n,T ) = Enc(1l(λ,0), Π̃ε,R,T ′(λ, 0, |Π|, n,T ))

Where ε is the empty string, and R
$
← {0, 1}2l(λ,0) and T ′ a fixed polynomial in λ, |Π|,

n and T , as described above.

Evaluation: The algorithm to evaluate Π̃ on input x ∈ {0, 1}d, d ≤ n proceeds as

follows:
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1. For every 0 ≤ i ≤ d, compute encodings of Π̃x≤i,R successively, starting with

Π̃, an encoding of Π̃ε,R, and subsequently, for every 0 < i ≤ d, computing

the encoding of Π̃x≤i,R by evaluating the encoding of Π̃x<i,R, and selecting

the encoding of Π̃x≤i,R from its output.

2. Evaluate the encoding of Π̃x,R = Π̃x≤d ,R and obtain from its output (Π̂, x̂) =

Enc(1l(λ,|x|+1),Π, x,T ).

3. Run Eval(Π̂, x̂) to obtain Π(x).

To analyze the correctness, running time, and compactness of our iO con-

struction, we make use of the following lemma:

Lemma 6. Let Π be a polynomial-time TM, λ ∈ N be a security parameter, n an input

length bound, and T ≤ 2λ be a running time bound. Then, for every s ∈ {0, 1}∗ with |s| ≤

2λ and every R ∈ {0, 1}2l(λ,|s|), the running time of Π̃s,R is bounded by T ′(λ, |s|, |Π|, n,T ).

Proof. We prove the lemma by fixing λ ∈ N, and inducting on the size of s.

Base case: |s| = n. In this case, the running time T ′s of Π̃s,R is given by

T ′s = TimeEnc(1l(λ,|s|+1),Π, s,T )

≤ p(l(λ, |s| + 1), |Π|, n)T 1−ε′

≤ B

≤ T ′(λ, |s|, |Π|, n,T )

This completes the base case.

Inductive step: |s| < n By the induction hypothesis, we assume that the lemma

holds for all s′ with |s′| = |s| + 1, in particular, for s′ = s0 and s′ = s1.
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Then, an execution of Π̃s,R runs a single evaluation of a PRG, and produces

encodings of each of Π̃s0,R0 , Π̃s1,R2 and (Π, s). The PRG runs in time TimePRG(R, 5 ·

2l(λ, |s| + 1)) ≤ C, while the encoding (Π, s) takes time TimeEnc(1l(λ,|s|+1),Π, s,T ) ≤

B. By the inductive hypothesis, the machines Π̃s0,R0 and Π̃s1,R2 each run in time

≤ T ′(λ, |s| + 1, |Π|,T ). Then, we have that the encoding time of Π̃s0,R0 and Π̃s1,R2 is

bounded by:

2 · TimeEnc(1l(λ,|s|+1), Π̃s0,R0 , 0,T
′(λ, |s| + 1, |Π|,T ))

≤ 2 · p(1l(λ,|s|+1), Π̃s0,R0 , 0) · T ′(λ, |s| + 1, |Π|,T )1−ε′

≤ A · T ′(λ, |s| + 1, |Π|,T )1−ε′

≤ A · T ′(λ, |s| + 1, |Π|,T )1 · T ′(λ, |s| + 1, |Π|,T )−ε
′

≤ A · T ′(λ, |s| + 1, |Π|,T ) · (A1/ε′)−ε

≤ T ′(λ, |s| + 1, |Π|,T )

Combining these facts together, we have that the running time T ′s of Π̃s,R is

given by:

T ′s ≤ T ′(λ, |s| + 1, |Π|,T ) + B + C

≤ (n − (|s| + 1) + 1) · (A1/ε′ + B + C) + B + C

≤ (n − |s| + 1) · (A1/ε′ + B + C)

≤ T ′(λ, |s|, |Π|,T )

This concludes the inductive step, and the lemma follows. �

Correctness of iO : As in the construction in Section 4.4, the correctness of iO

applied to any polynomial-length x follows from the correctness of evaluating

encodings RE, applied at every level of the evaluation. More concretely, for each
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index i ≤ |x| of the evaluation, except with probability µ(l(λ, i)), the evaluation

of Π̃x<i,R correctly produces Π̃x≤i,R. Further, the final evaluation of Π̂, x̂ produces

ΠT (x) correctly except with probability µ(l(λ, i + 1)).

Crucially, the correctness at each step relies on the fact that each encoding

Π̃x<i,R uses time bound T ′(λ, i, |Π|, log(T )), which, as argued above, is sufficiently

large to compute Π̃x≤i,R for the next level.

Overall, the probability of incorrect evaluation is ≤
∑|x|

i=1 µ(λ, i), which is neg-

ligible for any polynomial-length x.

Running time of iO : Again, considering step i, the evaluation at this step takes

time p(l(λ, i), |Πx<i,R|, 0,T
′(λ, i, |Π|,T ), which is poly(λ, i, |Π|,T ). Further, the evalua-

tion of Π̂, x̂ to produce the final output of the iO is p(l(λ, |x|+ 1), |x|, |Π|,T ), which

is poly(λ, |x|, |Π|,T ). Therefore, overall the running time is poly(λ, |x|, |Π|,T ).

Efficiency of iO : The size of iO (1λ,Π,T ) is the same as the size of Π̃ε,R, which

itself is bounded by TimeEnc(1l(λ,0),Πε,R,T ′(λ, 0, |Π|,T )), which is poly(λ, |Π|,T ) by

the efficiency of RE.

Security of iO : We note that the security proof for Construction 3 presented

in Section 4.4 carries over exactly to the construction presented in this section.

The only difference is that the base case for the induction starts from |s| = n

rather than |s| = 2λ. Given this change, exactly the same inductive argument

can be used to show that subexponential security of RE implies subexponential

security of the iO construction given above.
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4.6 Bounded-Input IO from Compact RE in the CRS Model

In this section we consider compact RE schemes for Turing machines in the

common reference string (CRS) model. We show that (1) such encoding schemes

can be constructed from compact functional encryption for circuits, and that (2)

such encoding schemes suffice to get IO for circuits, which then by [112] suffices

to get bounded-input IO for Turing machines.

4.6.1 Randomized Encoding Schemes in the CRS model

We first formally define a randomized encoding scheme for a class of Turing

machines in the CRS model. In this model, a one-time setup is performed which

takes (in addition to the security parameter) a bound on machine size, input

length, running time and output length. Only computations that respect these

bounds can be encoded using this setup. The setup outputs a long CRS (the

length is polynomial in the aforementioned bounds) and a short public encoding

key (which depends only on the security parameter). The public encoding key

is used by the encoding algorithm, which produces encodings that are compact

as before. The CRS is used by the evaluation algorithm.

Definition 32 (Randomized Encoding Schemes in the CRS Model). A Random-

ized Encoding scheme RE for a class of Turing machines {Mλ} in the CRS model consists

of the following algorithms:

• (crs, pk)
$
← Setup(1λ, 1m, 1n, 1T , 1l): Setup gets as input (in unary) the security

parameter λ, a machine size bound m, input length bound n, time bound T and

output length bound l.
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• Π̂x
$
← Enc(pk,Π, x): Enc is probabilistic and gets as input a public key pk gen-

erated by Setup, Turing machine Π ∈ Mλ and input x. It outputs an encoding

Π̂x
7.

• y ← Eval(Π̂x, crs): On input Π̂x produced by Enc and crs produced by Setup,

Eval outputs y.

Correctness: For every security parameters λ ∈ N, m, n,T, l ∈ N, Turing machine

Π ∈ Mλ and input x, such that, |Π| ≤ m, |x| ≤ n, and |ΠT (x)| ≤ l, we have that

Pr

 (crs, pk)
$
← Setup(1λ, 1m, 1n, 1T , 1l)

Π̂x
$
← Enc(pk,Π, x)

: Eval(Π̂x, crs) = ΠT (x)

 = 1

The simulation security in the CRS model is essentially the same as that in

the plain model (Definition 27), except that simulator can additionally simulate

the CRS.

Definition 33. A randomized encoding scheme RE for a class of Turing machines {Mλ}

in the CRS model satisfies (λ0, S (·))-simulation security, if there exists a PPT algo-

rithm Sim and a constant c, such that, for every ensemble {Πλ, xλ,mλ, nλ, lλ,Tλ} where

Πλ ∈ Mλ and |Πλ|, |xλ|,mλ, nλ, lλ,Tλ ≤ B(λ) for some polynomial B, the following en-

sembles are (λ0, S ′(λ)) indistinguishable, with S ′(λ) = S (λ) − B(λ)c for all λ ∈ N.{
(crs, pk)

$
← Setup(1λ, 1m, 1n, 1T , 1l), Π̂x

$
← Enc(pk,Π, x) : (crs, pk, Π̂x)

}
{
(crs, pk, Π̂x)

$
← Sim(1λ,ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l) : (crs, pk, Π̂x)

}
where subscripts of security parameter are suppressed.

7Encoding Π̂x can be viewed as the combination of the program encoding Π̂ and the input
encoding x̂ of Definition 26
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Indistinguishability-security in the CRS model can be defined similar to that

in the plain model, except now we need to work with distributions Db,λ that

samples (Πb, xb,Tb,mb, nb, lb).

Definition 34 (Distributional (λ0, S (·))-Indistinguishability Security). A random-

ized encoding scheme RE for a class of Turing machines {Mλ} in the CRS model satisfies

(λ0, S (·))-ind-security, if the following is true w.r.t. some constant c > 0: For every en-

sembles of distributions
{
D0,λ

}
and

{
D1,λ

}
with the following property:

1. there exists a polynomial B, such that, for every b ∈ {0, 1}, Db,λ is a distri-

bution over tuples of the form (Πb, xb,Tb,mb, nb, lb) with polynomial size and

λ, |Πb|, |xb|,Tb,mb, nb, lb ≤ B(λ).

2. there exist an integer λ′0 ≥ λ0, and a function S ′ with ≤ S ′(λ) ≤ S (λ) for all λ,

such that, the ensembles of output distributions
{
O0,λ

}
and

{
O1,λ

}
are (λ′0, S

′(·))-

indistinguishable,

Ob,λ =

(
(Πb, xb,Tb,mb, nb, lb)

$
← Db,λ : Π

Tb
b (xb), |Πb|, |xb|,Tb,mb, nb, lb

)

the ensembles of encoding
{
E0,λ

}
and

{
E1,λ

}
defined below is (λ′0, S

′′(·)) indistinguishable,

where S ′′(λ) =
S ′(λ)
λc − B(λ)c.

Eb,λ =
(
(Πb, xb,Tb,mb, nb, lb)

$
← D0,λ,

(crs, pk)
$
← Setup(1λ, 1mb , 1nb , 1Tb , 1lb), Π̂x

$
← Enc(pk,Πb, xb) : (crs, pk, Π̂x)

)

(We note that [78] previously defined a notion of distributional indistin-

guishability security for reusable garbled circuits. In the CRS model, reusable

garbled circuits are equivalent to a secret key variant of RE (where one needs a

secret key related to the CRS in order to encode). Thus our definition of distri-
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butional indistinguishability of RE in the CRS model (modified to have secret

key-based encoding) can be viewed as similar to their definition.)

In the CRS model, it is possible to have a compact RE for all Turing machines

with simulation security. Therefore, we define compactness in the CRS model

independent of security notion.

Definition 35 (Compactness and Sublinear Compactness in the CRS model). A

randomized encoding scheme RE = (Setup,Enc,Eval) for Turing machines in the CRS

model is compact (or sublinear compact) if Setup is PPT, and Enc and Eval have the

same efficiency as their counterparts in a compact (or sublinear compact) randomized

encoding scheme for Turing machines in the plain model.

Remark 8. As mentioned in Section 4.3.5, in the plain model (λ0, S )-simulation secu-

rity implies (λ0, S )-indistinguishability security. We remark that the same holds in the

CRS model and the proof is essentially the same. We omit the details here.

4.6.2 Succinctness and Weak Sublinear Compactness

We also consider a different weakening of compactness, called succinctness [31],

where encoding time can depend linearly on the length of the output (but only

polylogarithmically on the time bound T ).

Definition 36 (Succinct Randomized Encoding for Turing machines [31]). A suc-

cinct randomized encoding scheme for Turing machines in the CRS model is succinct

if it has the following efficiency:

• For every security parameters λ ∈ N, m, n,T, l ∈ N, Turing machine Π ∈ Mλ

and input x, such that, |Π| ≤ m, |x| ≤ n, and |ΠT (x)| ≤ l, every (pk, crs) ←
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Setup(1λ, 1m, 1n, 1T , 1l) and every encoding Π̂x ← Enc(1λ,Π, x,T ), it holds

TimeSetup(1λ, 1m, 1n, 1T , 1l) = poly(λ,m, n,T, l)

TimeEnc(pk,Π, x) = ` · poly(λ, |Π|, |x|, log T )

TimeEval(Π̂, x̂, crs) = poly(λ,m, n,T )

We finally consider another notion of RE that is weaker than sublinear-

compactness, where we allow the encoding time to be polynomially dependent

on the time bound T , but still require the encoding size be sub-linear in T . We

call such RE schemes weakly sublinear compact.

Definition 37 (Weakly Sublinear Compact Randomized Encoding scheme). We

say a randomized encoding scheme RE = (Setup,Enc,Eval) in the CRS model for a

class of Turing machines {Mλ} is weakly sublinear compact if the efficiency require-

ment on Enc in Definition 36 is changed to: For some constant ε ∈ (0, 1),

TimeEnc(pk,Π, x) = poly(λ, |Π|, |x|,T )

outlenEnc(pk,Π, x) = T 1−ε · poly(λ, |Π|, |x|)

Next, we observe that RE schemes satisfying the notions defined above (i.e.

succinctness and weak sublinear compactness) can be composed to get a RE

scheme satisfying sub-linear compactness. In particular, by composing a suc-

cinct RE scheme with a weakly compact RE scheme, one can obtain a sub-

linearly compact RE scheme.

Theorem 27. Assume the existence of pseudorandom generators. If there is a succinct

RE scheme and a weakly sublinear compact RE scheme for Turing machines, then

there is a sub-linearly compact randomized encoding scheme for Turing machines.
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Proof. Let RE1 = (Setup1,Enc1,Eval1) be a succinct RE scheme, and RE2 =

(Setup2,Enc2,Eval2) be a weakly sublinear compact RE scheme. Our sub-linearly

compact scheme RE = (Setup,Enc,Eval) is as follows: the encoding of a machine

Π is a succinct encoding of a machine G that itself computes a weakly compact

encoding of Π. Weak compactness ensures the output length of G is sub-linear

in ` (i.e. the output length of Π) and hence the time to encode G is also sub-linear

in `. Details follow.

Setup(1λ, 1m, 1n, 1T , 1l) : Output (pk1, crs1, pk2, crs2) where

(pk1, crs1)← Setup1(1λ, 1mG , 1n, 1TG , 1lG )

(pk2, crs2)← Setup2(1λ, 1m, 1n, 1T , 1l)

Enc(pk1, pk2,Π, x) : s
$
← {0, 1}λ

Ĝx
$
← Enc1(pk1,G, x)

where G[λ,Π, s](x) = Enc2(pk2,Π, x, ; PRG(s))

Eval(crs1, crs2, Ĝx) : Π̂x = Eval1(crs1, Ĝx), y = Eval2(crs2, Π̂x)

where TG,mG, lG are upper bounds on the run-time, description size and output

length of G, which can be efficiently calculated using similar bounds on Enc2

and PRG.

It was shown in [103, 10] that randomized encoding schemes with simula-

tion security are composable, i.e. the composed scheme defined above is also

simulation secure. We note that their proof essentially goes through in the CRS

model too. For concreteness, the simulator is as follows, where Sim1 and Sim2

287



are the simulators for RE1 and RE2 respectively:

Sim(1λ,ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l) : Output (pk1, crs1, pk2, crs2, Ĝx) where

(pk2, crs2, Π̂x)← Sim2(1λ,ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l)

(pk1, crs1, Ĝx)← Sim1(1λ, Π̂x, 1|G|, 1|x|, 1mG , 1n, 1TG , 1lG )

The output of Sim is indistinguishable from the real encodings, by a hybrid

argument. We sketch the order of the hybrids as follows: starting with the real

encoding, we first replace (pk1, crs1, Ĝx) with a simulation using Sim1 on de-

sired output Π̂x, where Π̂x is honestly generated using Enc2 and randomness

from PRG(s). Next, we replace Π̂x so that it is generated using Enc2, but using

fresh randomness instead of that from PRG(s). Finally, we replace Π̂x (and also

(pk2, crs2)) with a simulation using Sim2 on desired output ΠT (x). By the security

of Sim1, PRG and Sim2, these hybrids are indistinguishable.

It remains to analyze the efficiency. By construction, the time complexity of

Enc is:

TimeEnc(pk1, pk2,Π, x) = TimeEnc1(pk1,G, x) = `G · poly(λ,mG, n, log TG)

Note that by the definition of G,

`G = outlenEnc2(pk2,Π, x) = T 1−ε · poly(λ, |Π|, |x|)

TG = TimeEnc2(pk2,Π, x) = poly(λ, |Π|, |x|,T )

mG = |G[λ,Π]| = poly(λ, |Π|)

Hence, we obtain that

TimeEnc(pk1, pk2,Π, x) = łG · poly(λ,mG, n, log TG)

= T 1−ε · poly(λ, |Π|, |x|) · poly(λ,mG, n, log TG).
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Bringing all this together, using that mG is polynomial is poly(λ, |Π|), and choos-

ing appropriate ε′ with 0 < ε′ < ε, we have that:

TimeEnc(pk1, pk2,Π, x) = poly(λ, |Π|, |x|) · T 1−ε′ .

This concludes the theorem. �

4.6.3 Randomized encodings with CRS from Compact Func-

tional Encryption

In this section we construct RE schemes in the CRS model from Compact Func-

tional encryption schemes and pseudorandom generators.

Let (FE.Setup,FE.Enc,FE.Dec) be a public key, compact functional encryp-

tion scheme for P/poly, and let PRG be a pseudorandom generator. We define a

randomized encoding scheme in the CRS model (Setup,Enc,Eval) as follows.

The setup algorithm Setup(1λ, 1m, 1n, 1T , 1l) :

• Setup first generates keys for the functional encryption scheme

(mpk,msk) ← FE.Setup(1λ) and samples a uniformly random string

s← {0, 1}λ.

• Next, it generates the string c ← 0l ⊕ PRG(s, l). That is, it encrypts 0l

using a one-time pad with the key coming from PRG(s, l)

• Let U be the universal circuit that on input (Π, x) where |Π| ≤ m and

|x| ≤ n runs machine Π on x for at most T steps and outputs the first l

bits of the tape as output. We define a circuit CU,c, that has the string

c and circuit U hardcoded in it, as follows.
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1. CU,c takes as input (Π, x, s′, b) where (Π, x) satisfies the size con-

straints as described above, s′ ∈ {0, 1}λ and b ∈ {0, 1}.

2. If b = 0 then CU,c outputs U(Π, x).

3. Otherwise CU,c outputs c ⊕ PRG(s′).

• Setup runs skC ← FE.KeyGen(msk,CU,c) and outputs skC as the com-

mon reference string crs and mpk as the public encoding key pk

The encoding algorithm Enc(pk,Π, x): Enc parses pk as the functional public

key mpk and runs ct ← FE.Enc(mpk, (Π, x, 0λ, 0)). Enc outputs the func-

tional ciphertext ct as the encoding Π̂x.

The evaluation algorithm Eval(Π̂x, crs) : Eval parses Π̂x as a functional ci-

phertext ct and crs as the functional secret key skCU,c . Eval runs y ←

FE.Dec(skCU,c , ct) and outputs y.

The correctness of the above encoding scheme follows directly from that of

the underlying functional encryption scheme. When a randomized encoding

of (Π, x) is evaluated, it outputs the result of running the universal circuit U on

(Π, x) that is ΠT (x). Also the efficiency properties of the above scheme follow

directly from the compactness properties of the functional encryption scheme.

For example, if the functional encryption scheme we start from has sub-linear

compactness (the ciphertext size is sub-linear in the circuit size of the function

for which the functional secret keys are generated) then we get an encoding

scheme with sub-linear compactness.

We have the following theorem.

Theorem 28. Let (FE.Setup,FE.Enc,FE.Dec) be a public key functional encryption

scheme for P/poly with (λ0, S (·)) selective security, and let PRG be a pseudorandom

290



generator with (λ0, S (·)) security. The randomized encoding scheme defined above is

(λ0,
S (·)

4 )-simulation secure.

Corollary 1. If there exists a public key, compact (resp. succinct, weakly sublinear

compact) functional encryption for P/poly scheme with selective security, and a secure

PRG, then there exists a compact (resp. succinct8, weakly sublinear compact) random-

ized encoding scheme for Turing machines in the CRS model that is simulation secure.

Proof. Let (Setup,Enc,Eval) be the randomized encoding scheme as defined

above. We need to show there exists a PPT algorithm Sim that, when given

the output of a machine on some input (together with the bound parameters of

the machine and input), simulates an encoding that is indistinguishable from

the real encoding of the machine and input. We define Sim as follows. The

simulator Sim(1λ, 1m, 1n, 1T , y, 1|Π|, 1|x|): Here we denote

• Sim first generates functional keys (mpk,msk) ← FE.Setup(1λ) and a ran-

dom string s← {0, 1}λ.

• Next, Sim generates the string c ← y ⊕ PRG(s, |y|). That is, it encrypts the

output y under a one-time pad with the key coming from PRG(s, |y|).

• Sim runs skC ← FE.KeyGen(msk,CU,c) where CU,c is same as in the construc-

tion of the encoding scheme, except with c being the string generated in

the above step.

• Sim generates ct ← FE.Enc(mpk, (0|Π|, 0|x|, s, 1)).

• Sim outputs skC as the simulated crs, mpk as the public encoding key pk

and ct as simulated machine encoding Π̂x.

8We note that for succinct RE, we first apply the transformation from succinct FE to get suc-
cinct RE with 1-bit output, and to encode Turing Machines with multi-bit outputs, we generate
one such RE for each output bit
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Now we formally prove that the above simulator is secure. Consider any

ensemble {Πλ, xλ,mλ, nλ, lλ,Tλ}where Πλ ∈ Mλ and |Πλ|, |xλ|,mλ, nλ, lλ,Tλ ≤ B(λ) for

some polynomial B. Subsequently, we suppress the security parameter in the

subscript.

We need to show that for every λ > λ0,

D0 =

 (pk, crs)
$
← Setup(1λ, 1m(λ), 1n(λ), 1T (λ))

(Π̂x)
$
← Enc(pk,Π, x)

: crs, pk, Π̂x


D1 =

(
(pk, crs, Π̂x)

$
← Sim(1λ, 1m(λ), 1n(λ), 1T (λ),ΠT (x), 1|Π|, 1|x|) : crs, pk, Π̂x

)
are S (λ)

4 − B(λ)d indistinguishable, where λ0, S (·) is the security of functional en-

cryption scheme, and d is some constant. We show this by a hybrid argument

as follows.

• Let H0 be the distribution of the real encoding D0. Rewriting H0 in terms

of the underlying primitives we have

H0 =



(mpk,msk)← FE.Setup(1λ)

s← {0, 1}λ

c← 0l ⊕ PRG(s, l)

skCU,c ← FE.KeyGen(msk,CU,c)

ct ← FE.Enc(mpk, (Π, x, 0λ, 0)

: mpk, skCU,c , ct


• Let H1 be a hybrid distribution exactly as above, except that c is generated

as c← 0l⊕R where R is uniformly random from {0, 1}l. We claim H0 and H1

are S (λ)− B(λ)d′ indistinguishable, where d′ is some constant. This follows

from the security of the pseudorandom generator. Any adversary A that

distinguishes H0 and H1 can be turned into an adversary A′ that breaks the

security of the pseudorandom generator with the same advantage. A′ has

292



Π, x,T hard-coded and needs to run the setup and generation algorithms

of the functional encryption schemes. Therefore the size of A′ is

size(A) + poly(B(λ)) = (S (λ) − B(λ)d′) + B(λ)d′ = S (λ)

Hence A′ breaks the (λ0, S (·)) security of the pseudorandom generator and

we have a contradiction.

• Let H2 be a hybrid distribution just as above except that c is generated

from the output y as c ← y ⊕ R where, as before, R is uniformly random

from {0, 1}l. Since R is uniformly random, the distributions H2 and H1 are

identical.

• Let H3 be a hybrid distribution just as above except that the one-time

pad key is generated using the pseudorandom generator. That is, c ←

y ⊕ PRG(s, l). As before, the distributions H3 and H2 are S (λ) − B(λ)d′ indis-

tinguishable, where d′ is some constant.

• Let H4 be a hybrid distribution just as above except that ct is generated as

ct ← FE.Enc(mpk, (0m(λ), 0n(λ), s, 1))

This is exactly the distribution as generated by the simulator Sim. We

claim H3 and H4 are S (λ) − B(λ)d′′ indistinguishable where d′ is some con-

stant. This follows from the security of the functional encryption scheme.

Any adversary A that distinguishes H3 and H4 can be turned into an adver-

sary A′ that breaks the security of the functional encryption scheme with

the same advantage. A′ selects the challenge messages as (0m(λ), 0n(λ), s, 1)

and (Π, x, 0λ, 0) and secret key query CU,c which has the same output y on

both messages. A′ needs to additionally run the pseudorandom generator.

Hence the size of A′ is size(A) + B(λ)d′ for some constant d′, which as before
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results in size S (λ). Hence A′ breaks the (λ0, S (·)) security of the functional

encryption scheme and we have a contradiction.

Each of the hybrid distribution pairs above are S (λ) − B(λ)d′ indistinguish-

able. By a simple hybrid argument we have that the distributions D0 = H0 and

D1 = H4 are S (λ)−B(λ)d′

4 ≥
S (λ)

4 − B(λ)d indistinguishable, for some constant d, hence

completing the proof.

�

The above theorem and corollary also work in the regime of sub-exponential

security. That is, starting with a functional encryption scheme and pseudoran-

dom generator that are sub-exponentially secure we obtain a RE scheme with

sub-exponential security.

The following corollary is obtained by combining Corollary 1 with Theorem

22 and Theorem 23. While we use this corollary in our results, we believe it is of

independent interest too. Succinct RE schemes for Turing machines were shown

by [31] to have a variety of applications. However the only known construction

of it ([112]) relies on iO for circuits. We observe that in the CRS model, succinct

RE schemes can be based simply on LWE.

Corollary 2. Assuming LWE (resp. with sub-exponential hardness), there exists a

succinct RE scheme for Turing machines in the CRS model with (resp. sub-exponential)

simulation security.

Finally, the following corollary shows that, assuming LWE, weakly sublinear

compact FE is sufficient to construct sublinearly-compact RE in the CRS model.
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This corollary follows by combining Corollary 1, which shows that weakly sub-

linear compact FE implies weakly sublinear compact RE in the CRS model,

Corollary 2, which constructs succinct RE in the CRS model from LWE, and fi-

nally Theorem 27, which shows that weakly sublinear compact RE and succinct

RE can be combined to produce sublinearly-compact RE in the CRS model.

Corollary 3. Assuming LWE (resp. with sub-exponential hardness), if there exists a

weakly sublinear compact FE scheme for P/poly (resp. with sub-exponential security),

then there exists a sublinearly-compact RE scheme for Turing machines in the CRS

model with (resp. sub-exponential) simulation security.

4.6.4 IO for Circuits from RE in the CRS model

In this section we show that compact RE schemes for Turing machines in the

CRS model implies iO for circuits; combining with the result of [112] that iO for

circuits implies iO for (bounded-input) Turing machines, we obtain the follow-

ing theorem:

Theorem 29. Assume the existence of sub-exponentially secure one-way functions. If

there exists a sublinearly compact randomized encoding scheme in the CRS model with

sub-exponential simulation security, then there exists an bounded-input indistinguisha-

bility obfuscator for Turning machines.

We note that the theorem also holds w.r.t. sublinearly compact randomized

encoding scheme in the CRS model, satisfying, weaker, distributional indistin-

guishability security, with auxiliary inputs (i.e., Definition 34 w.r.t. distributions{
Db,λ

}
that additionally samples an auxiliary input zb, and the security require-

ment is that if the output distributions together with the auxiliary inputs are in-
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distinguishable, then the encodings together with the auxiliary inputs are also

indistinguishable, with appropriate security loss). Since the distributional indis-

tinguishability security is implied by simulation security, and in the CRS model,

we can construct sublinearly compact RE with simulation security from sublin-

early compact FE schemes, for simplicity, we directly state and prove the theo-

rem w.r.t. simulation security.

The construction and proof is very similar to that of unbounded-input iO

from compact RE schemes in the plain model presented in Section 4.4.

Proof sketch for Theorem 29. We first briefly recall the main ideas behind the

unbounded-input iO construction. The unbounded-input iO generates an en-

coding of a recursively defined Turing machine Πε,R (where ε is the empty string

and R is uniformly random). Πs,R generates encodings of Πs0,R0 , Πs1,R1 and of the

machine to be obfuscated with input s, where R0 and R1 are pseudorandom

strings derived from R. For every such machine Πs,R, we refer to |s| as the level

of the machine. Evaluating the obfuscation on an input of length n involves

evaluating an encoding of a machine at every level i ∈ {0, . . . , n} = [n].

Construction: Our circuit obfuscator iO gets as input the security parameter

1λ and the circuit to obfuscate C. Let n be the input length of C. To use RE

schemes in the CRS model, iO first generates a RE setup (pki, crsi) for every level

i ∈ [n]. The obfuscation consists of ~crs = {crsi}
n
i=0, and an encoding of the ma-

chine Π ~pk1,C,ε,R
which has public keys ~pk1 = {pki}

n
i=1 hardcoded (more generally

~pki denotes
{
pk j

}n

j=i
). For every level i < n and s ∈ {0, 1}i, the machine Π ~pki+1,C,s,R

uses pki+1 to generate encodings of Π ~pki+2,C,s0,R0
and Π ~pki+2,C,s1,R1

. When i = n, the

machine Π ~pki+1,C,s,R
simply outputs C(s). To evaluate the obfuscation on an input

x, one evaluates an encoding of the machine Π ~pki+1,C,x[1...i],R at every level i ∈ [n],
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using crsi ∈ ~crs.

Note that, just as in the unbounded-input iO construction (Lemma 5), the

compactness of the RE ensures that the size of the encodings at each level is

some fixed polynomial in the security parameter and the circuit size. The obfus-

cation additionally contains a crsi for every level i ∈ [n] where the length of crsi

is polynomial in the running time of machines at that level (i.e. the time taken

to encode machines at the next level), which by the same argument (Lemma 5)

is some fixed polynomial in the security parameter and the circuit size. All in

all, the size of the obfuscated circuit is polynomial in the security parameter and

the circuit size.

Security: We need to show that, for any pair of functionally equivalent cir-

cuits C0 and C1, the joint distribution ( ~crs, Π̃ ~pk1,ε,C0,R
) is indistinguishable from

( ~crs, Π̃ ~pk1,ε,C1,R
). Just as in the proof of Theorem 26, we prove a stronger statement

by induction. We claim that for every level i ∈ [n], and every s ∈ {0, 1}i, the joint

distribution (Π̃ ~pki+1,s,C0,R
, ~crsi, ~pki) is indistinguishable from (Π̃ ~pki+1,s,C1,R

, ~crsi, ~pki).

When i = n (the base case), the above distributions are indistinguishable

since the output of Π ~pki+1,s,C0,R
(in this case C0(s)) is identical to the output of

Π ~pki+1,s,C1,R
. Hence by the indistinguishability security of the RE scheme (which

is implied by simulation security, see Remark 8), (Π̃ ~pkn+1,s,C0,R
, pkn, crsn) is indis-

tinguishable from (Π̃ ~pkn+1,s,C1,R
, pkn, crsn).

For the inductive step, we show the distributions are indistinguishable at

any level i < n assuming they are indistinguishable at level i + 1. We do this by

a hybrid argument as follows. Let H0 be the joint distribution of the encoding

at level i with C0 hardcoded, with ~crsi and ~pki. Writing this a bit differently, we
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have,

H0 = ((Π̃ ~pki+1,s,C0,R
, crsi, pki), ~crsi+1, ~pki+1)

Next, we define hybrid distribution H1 as follows.

H1 = (Sim(out(Π̃ ~pki+1,s,C0,R
)), ~crsi+1, ~pki+1)

where Sim is the simulator for the RE scheme (for the sake of brevity in this

proof sketch, we omit the other inputs to the simulator). By simulation security,

H0 and H1 are indistinguishable.

Next, we define hybrid distribution H2 by changing the underlying circuit to

C1.

H2 = (Sim(out(Π̃ ~pki+1,s,C1,R
)), ~crsi+1, ~pki+1)

To show H2 and H1 are indistinguishable, we show that the following distribu-

tions are indistinguishable.

(out(Π ~pki+1,s,C0,R
), ~crsi+1, ~pki+1) ≈ (out(Π ~pki+1,s,C1,R

), ~crsi+1, ~pki+1)

This follows from the induction hypothesis as follows. Recall that the output of

Π ~pki+1,s,C0,R
is a pair of level i + 1 encodings (Π̃ ~pki+2,s0,C0,R0

, Π̃ ~pki+2,s1,C0,R1
). By the in-

duction hypothesis, each of these encodings is indistinguishable from one with

C1 hardcoded, in the presence of ( ~crsi+1, ~pki+1). By a simple hybrid argument, the

above indistinguishability holds, and hence H2 is indistinguishable from H1.

Finally, we define hybrid distribution H3 which contains the encoding at

level i with C1 hardcoded.

H3 = ((Π̃ ~pki+1,s,C1,R
, crsi, pki), ~crsi+1, ~pki+1)
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By the simulation security of the RE scheme H3 is indistinguishable from H2.

Hence, by a hybrid argument H0 is indistinguishable from H3 hence completing

the inductive step. �

4.6.5 Summary of Results using RE in the CRS model

We observe that by combining Theorem 29 with Corollary 1, we reprove the

results of [4, 33]

Theorem 30. Assuming the existence of compact functional encryption with subexpo-

nential security, there exists a bounded-input indistinguishability obfuscator for Turing

Machines.

Further, we get the following new result, as a consequence of Corollary 3

and Theorem 29:

Theorem 31. Assuming the existence of weakly sublinear compact functional encryp-

tion with subexponential security and LWE with subexponential security, there exists a

bounded-input indistinguishability obfuscator for Turing Machines.

4.7 Impossibility of Compact RE

In this section, we show several impossibility results related to sublinear (and

hence compact) RE with different security:

Theorem 32. The following impossibility results hold in the plain model:
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1. Sublinear randomized encoding schemes with (polynomial) simulation security

do not exist, assuming one-way functions.

2. Sublinear randomized encoding schemes with sub-exponential indistinguisha-

bility security do not exist, assuming sub-exponentially secure one-way func-

tions.

3. Sublinear randomized encoding schemes with (polynomial) indistinguishability

security do not exist, assuming bounded-input iO for Turing machines and one-

way functions.

Next we proceed to prove Theorem 32.

Impossibility 1. The impossibility of sublinear RE with simulation security fol-

lows from standard techniques that leverages the sublinear-size of the encoding

to derive a contradiction to the imcompressibility of pseudo-random strings;

below, we provide a proof sketch.

Proof Sketch. We argue that assuming one-way functions, compact RE with sim-

ulation security does not exist in the plain model. Suppose not and there is a

compact RE that admits a simulator Sim which on input the output y = Π(x)

can simulate an encoding (Π̃, x̃) that is indistinguishable from an honestly gen-

erated encoding (Π̂, x̂). By the indistinguishability, it follows that evaluating

(Π̃, x̃) yields the output y. Now, consider the specific computation of evaluating

a PRG G on a short random seed s, that is, Π = G and x = s. The simulator Sim

on the pseudo-random output y = G(s), produces (G̃, s̃), that can be evaluated

to generate y. By the pseudo-randomness of PRG, it follows that Sim on input

a truly random string y′, can also output a tuple (G̃′, s̃′) that evaluates to y′, and
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the length of the tuple is sublinear in the length of y′. However, this contradicts

the imcompressibility of random strings. �

Impossibility 2. The impossibility of sub-exponentially (ind-)secure sublinear

RE is implied by impossibility 3, and the fact that bounded-input iO for Turing

machines can be constructed from sub-exponentially (ind-)secure sublinear RE.

More precisely, by our construction in Section 4.5, sub-exp secure sublinear-RE

(and one-way functions) imply sub-exp secure iO for circuits; combined with

the result of [112] that sub-exp secure iO for circuits (and one-way functions)

imply (polynomially secure) bounded-input iO for Turing machines, we have

that assuming sub-exp secure one-way functions,

Sub-exp (ind-)secure Sublinear RE =⇒ Bounded-input iO for TMs

On the other hand, impossibility 3 states that

Bounded-input iO for TMs =⇒ NO (ind-)secure Sublinear RE

Therefore, if impossibility 3 is true, sub-exponentially secure sublinear RE is

impossible assuming sub-exp secure one-way functions.

Impossibility 3. We show that (poly-secure) sublinear RE does not exist assum-

ing the following two primitives.

• A bounded-input iO for Turing machines iO, which on input (1λ, 1n,R,T )

runs in time

TimeiO(1λ, 1n,R,T ) ≤ poly(λ, n, |R|, log T ) .
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• A pseudo-random generator PRG that on input a seed s of length λ and a

length k outputs a string of length k in time poly(λ, k). This is implied by

the existence of one-way functions.

The efficiency of iO and PRG means that there is a constant d, such that, the

following holds:

• For every λ ∈ N, ` = `(λ), program R with size |R| ≤ λ + `, input length

n = `/2, and T = 2λ, the run-time of iO is

TimeiO(1λ, 1`/2,R, 2λ) ≤ (λ`)d , (4.1)

• and for every string s ∈ {0, 1}λ, and k ∈ N, the run-time of the PRG is

TimePRG(s, k) ≤ (λk)d . (4.2)

Assuming such iO and PRG, we first show that there does not exist sublinear

RE that are sufficiently compact in the following sense:

Claim 4. Let d be a constant defined as above w.r.t. iO and PRG. There is no sublinear

RE with time complexity satisfying the following:

TimeEnc(1λ,Π, x,T ) ≤ poly(λ, |Π|, |x|)Tα, for α ≤ 1/2d . (4.3)

Before proving the claim, we argue that the above claim suffices for ruling

out the existence of any sublinear RE schemes. By Claim 4 in Section 4.3.4, given

any sublinear RE with complexity scaling with T β for an arbitrary constant β > 0,

one can reduce the time complexity to scaling with Tα for an arbitrary smaller

constant α, by recursively composing it for some constant times. Combining

this fact with the above claim, we conclude that assuming bounded-input iO for

TMs and one-way function, sublinear RE do not exist.
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Proof of Claim 4. Assume for contradiction that there is a sublinear RE scheme

RE = (Enc,Eval) whose time complexity depends on Tα with a sufficiently small

α ≤ 1/2d (and some multiplicative polynomial factor poly(λ, |Π|, |x|)). Below,

we derive a contradiction by constructing two ensembles of distributions
{
D0,λ

}
,{

D1,λ
}

that both sample triplets of form (Π, x,T ); we show that (1) the outputs of

the program and input sampled from these two distributions are indistinguish-

able, yet (2) the encoding of the program and input are distinguishable with

probability close to 1. This violates the ind-security of RE, and gives a contra-

diction.

Let ` = `(λ) be a sufficiently large polynomial in λ, whose magnitude will

become clear in the description below.

Distribution Db,λ samples triplet (Πb, 0,T ) as follows:

• Sample two seeds s
$
← {0, 1}λ, and u

$
← {0, 1}λ.

• Turing machine Πb[λ, s, u] (with (λ, s, u) hardwired in), on input 0, pro-

ceeds in two steps

1. Compute PRG(s, `) = y, and PRG(u,Γ) = r where Γ = (λ`)d.

2. Obfuscate the program Rb[b, y] described in Figure 4.1 to obtain

R̂b = iO(1λ, 1`/2,Rb, 2λ ; r) .

(The input length of Rb is bounded by `/2 and its run time is

bounded by 2λ.)

3. Output (y, R̂b).

• Set T = 2(λΓ)d.

Note that T is an upper bound on the run-time of Πb, as the first step of Πb
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takes at most (λ`)d + (λΓ)d (according to condition (4.2)), and the second

step takes at most (λ`)d steps (according to condition (4.1)).

The program Rb[b, y]

Hardwired Values [b, y]: b is in {0, 1,⊥}, and y an `-bit length string.
Input (Π̂, x̂): encoding of a program and an input, s.t. |Π̂| + |x̂| ≤ `/2.
The program proceeds as follow:

• Compute z← Eval(Π̂, x̂).

• Output b if the first ` bits of z equals to y, otherwise output ⊥.

Figure 4.1: The program Rb used in the proof of impossibility of sublinear RE in the
plain model.

We first show that the distributions, out0,λ and out1,λ, of outputs of the pro-

gram and input sampled from D0,λ and D1,λ are indistinguishable

outb,λ =

(
(Πb, 0,T )

$
← Db,λ : ΠT

b (0),T, |Πb|, |0|
)

=
(
s, u

$
← {0, 1}λ, y = PRG(s, `), r = PRG(u,Γ),

R̂b = iO(1λ, 1`/2,Rb[b, y], 2λ ; r) : (y, R̂b),T, |Πb|, |0|
)

Towards this, consider the following hybrid distributions.

Distribution Hb,λ samples output tuple in the same way as outb,λ does, except

that the pseudo-random strings y and r are replaced with truly random

strings ỹ
$
← {0, 1}` and r̃

$
← {0, 1}Γ. More precisely,

Hb,λ =
(
ỹ

$
← {0, 1}`, r̃

$
← {0, 1}Γ,

R̃b = iO(1λ, 1`/2,Rb[b, ỹ], 2λ ; r̃) : (ỹ, R̃b),T, |Πb|, |0|
)

By the security of PRG, the above distribution is indistinguishable from

outb,λ.
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Distribution Gb,λ samples output tuple in the same way as Hb,λ does, except

that, instead of obfuscating the program Rb, it obfuscate the program R⊥,

which always outputs⊥ (and has the same run time as Rb). More precisely,

Gb,λ =
(
ỹ

$
← {0, 1}`, r̃

$
← {0, 1}Γ,

R̃⊥ = iO(1λ, 1`/2,R⊥[⊥, ỹ], 2λ ; r̃) : (ỹ, R̃⊥),T, |Πb|, |0|
)

We claim that it follows from the security of iO that Gb,λ and Hb,λ are indis-

tinguishable. Towards this, it suffices to show that with probability 1−2−`/2

over the random choice of ỹ, the program Rb[b, ỹ] (obfuscated in Hb,λ) al-

ways outputs ⊥, in which case Rb[b, ỹ] and R⊥[⊥, ỹ] agree on all inputs and

their obfuscation is indistinguishable. By construction, Rb outputs a value

that is not ⊥ only when the input (Π̂, x̂) satisfies that the first ` bits of the

string z evaluated from it matches ỹ. However, the encoding length is

bounded by `/2, there are at most 2`/2 possible string z; when ỹ is chosen

at random, the probability that z agrees with ỹ is at most 2−`/2. Except with

this probability, Rb always outputs ⊥.

On the other hand, we show that the distributions, enc0,λ and enc1,λ, of

the encoding of the program and input sampled from D0,λ and D1,λ are

efficiently distinguishable.

encb,λ =

(
(Πb, 0,T )

$
← Db,λ : (Π̂b, 0̂)

$
← Enc(1λ,Πb, 0,T )

)
Towards this, we first show that the length of the encoding (Π̂b, 0̂) is

bounded by `/2. This is because the run-time of Enc satisfies

TimeEnc(1λ,Πb, 0,T ) ≤ poly(λ, |Πb|, |0|)Tα for α ≤ 1/2d

≤ poly(λ)(2(λΓ)d)1/2d2
= poly(λ)Γ1/2d

= poly(λ)((λ`)d)1/2d

≤ λc
√
` ≤ `/2
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where the second line follows from that |Πb| = O(λ) and T = 2(λΓ)d, the

third line follows from that Γ = (λ`)d, and in the last line, c is a constant

independent of d and the last inequality holds for sufficiently large ` =

`(λ).

�
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CHAPTER 5

INDISTINGUISHABILITY OBFUSCATION WITH EXPONENTIAL

EFFICIENCY

This chapter contains joint work with Huijia Lin (UCSB), Rafael Pass (Cor-

nell University) and Karn Seth (Cornell University).

5.1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding

its implementation details (making it hard to “reverse-engineer”), while pre-

serving the functionality (i.e, input/output behavior) of the program. In recent

years, the notion of indistinguishability obfuscation (iO ) [17, 70] has emerged as

the central notion of obfuscation: Roughly speaking, this notion requires that

obfuscations iO (C1), iO (C2) of any two functionally equivalent circuits C1 and C2

(i.e., whose outputs agree on all inputs) from some class C (of circuits of some

bounded size) are computationally indistinguishable.

On the one hand, this notion of obfuscation is strong enough for a plethora

of amazing applications (see e.g., [134, 42, 40, 67, 31, 54, 112]); on the other hand,

it may plausibly exist [70, 16, 129, 85], whereas stronger notion of obfuscations

have run into strong impossibility results, even in idealized models (see e.g.,

[17, 89, 55, 131, 119, 114])

However, despite all these amazing progress, to date, all candidate construc-

tions of iO rely on candidate constructions of multi-linear maps [66, 61, 81, 62],

all of which have non-trivial attacks [59, 122], and it is not clear to what extent
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the security of the obfuscators that rely on them are affected.

In this paper, rather than studying new candidate construction of iO , we are

interested in studying weaker notions of indistinguishability obfuscation that can

amplified/bootstrapped into the standard notion of iO :

Identify quantitatively weaker notions of iO that can be amplified into the

“standard” notion of iO .

Our hope that that doing so will simplify future constructions of iO . This ap-

proach is orthogonal to the approach of [70], which studies whether iO for

“weak” classes of circuits (e.g., NC1 circuits) can be bootstrapped to iO for all

polynomial-size circuits, but is similar to e.g., the hardness amplification ap-

proach of Yao [137] of amplifying a weak one-way function into a (strong) one.)

One initial weakening of iO appeared (implicitly) in [31], where the authors

consider iO for polynomial-size circuits with O(log λ) length inputs, where λ is

the security parameter; we refer to this class of circuits as PO(log λ)/poly and refer

to iO for PO(log λ)/poly as short-input iO . Short-input iO is more appealing than

standard iO (for P/poly) in the sense that it can be efficiently checked whether an

attack on a candidate scheme succeeds [124] (an attacker needs to come up with

two circuits C1,C2 that are functionally equivalent for which it can distinguish

obfuscations; checking whether two circuits are functionally equivalent may be

hard in general, but becomes efficient if the circuits are restricted to inputs of

length O(log λ) by simply enumerating all inputs). Additionally, [31] show that

for some (but far from all) applications of iO , this weaker notion actually suffices.

But it is not known whether this weaker notion of iO implies “standard iO ”;

we shall return to this question shortly.
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Inefficient iO : We here consider a further weakening of short-input iO . Recall

that indistinguishability obfuscators with running time

T0(|C|, λ, n) = poly(|C|, λ) · 2n,

and size

Size0(|C|, λ, n) = poly(|C|, λ) · 2n,

where C is the circuit to be obfuscated, λ is the security parameter, and n is the

input length of C, exists unconditionally—simply output the function table of C

(i.e., the output of C on all possible inputs). Such inefficient iO , however, are

not useful for applications.

We here consider iO with just “slightly non-trivial” running-time; namely,

we allow the running time to be

T0(|C|, λ, n) = poly(|C|, λ) · 2n,

but require the size of the obfuscation to be

Sizeε(|C|, λ, n) = poly(|C|, λ) · 2n(1−ε)

where ε > 0. We refer to this notion as iO with exponential efficiency, or simply

exponentially-efficient iO (XiO) (Recall that, in contrast, for “standard” iO , the

running time and size of the obfuscator is required to be poly(|C|, λ)). In essence,

XiO requires the obfuscator to be just slightly smaller than a brute-force canon-

icalization of the circuit.

Note that XiO obfuscators are only efficiently computable for circuits that

take short inputs; we thus here restrict our attention to XiO for PO(log λ)/poly (or

“short-input” XiO).
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Main Theorem: Perhaps surprisingly, we show that in the regime of subexpo-

nential security, under the LWE assumption, XiO for PO(log λ)/poly implies (stan-

dard) iO for P/poly.

Theorem 33. Assume subexponential security of the LWE assumption, and the

existence of subexponentially-secure XiO for PO(log λ)/poly. Then there exists

subexponentially-secure iO for P/poly.

As a corollary of Theorem 33, we get that subexponentially-secure short-

input iO implies subexponentially-secure “standard” iO (since iO trivially im-

plies XiO).

Techniques [114], improving on results of Ananth and Jain [4] and Bitansky and

Vaikuntanathan [33], show that the existence of subexponentially-secure func-

tional encryption with weakly sublinearly compact ciphertexts (a.k.a. weakly sublinear

compact FE) for P/poly implies iO for P/poly. Roughly speaking, a (single-key)

functional encryption scheme is a public-key encryption scheme for which it

is possible to release a (single) functional secret-key skC (for circuit C of some

a-priori bounded size S ) such that knowledge of skC enables efficiently comput-

ing C(m) given any encryption of the message m, (but nothing more); sublinear

compactness means that the ciphertext size is sublinear in the upper bound S on

the circuit-size (though the encryption time is allowed to depend polynomially

on S ).1

Our main technical contribution will be showing that XiO for PO(log λ)/poly

implies sublinear compact FE for P/poly, which by the above-mentioned result

implies our main theorem.
1More precisely, in a functional encryption scheme (Setup,KeyGen,Enc,Dec), Setup samples

a public-key, secret-key pair (pk,msk), KeyGen(msk,C) generates the functional secret key skC ;
Enc(pk,m) outputs an encryption c of m, and Dec(skC , c) outputs C(m) if c is an encryption of m.
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Theorem 34. Assume the LWE assumption (resp. subexponential security of the LWE

assumption) holds, and the existence of XiO for PO(log λ)/poly (resp. subexponentially-

secure XiO for PO(log λ)/poly). Then there exists weakly sublinear compact FE for P/poly

(resp. subexponentially-secure sublinear compact FE for NC1).

Note that Theorem 34 is interesting in its own right as it applies also in the

regime of polynomial security.2

The proof of Theorem 34 proceeds as follows. Following a proof template

from [4] (we discuss this result in more detail below), we start off with the result

of Goldwasser et al [93] which shows that under the LWE assumption, there

exists a functional encryption scheme for boolean functions (i.e., functions with

1-bit outputs) in NC1 that has logarithmic compactness. Combined with [3], this

can be used to construct a functional encryption scheme for boolean functions in

P/poly that still has logarithmic compactness. We next show how to use XiO for

PO(log λ)/poly to extend any such compact FE scheme for boolean functions to one

that handles arbitrary polynomial-sized circuits (with potentially long outputs).

([4] provided a similar transformation assuming so-called compact randomized

encoding instead of XiO.)

We now turn to describe our transformation from ”single-bit compact FE” to

”multi-bit weakly sublinear compact FE”. As an intial approach, instead of sim-

ply encrypting a message m, encrypt the sequence (m; 1), (m; 2), . . . (m; `), where

` is the maximum output length of the class of functions we want to be able to

evalute. Then, instead on simply releasing a functional secret key for a circuit C,

release a secret key for the function C′(m; i) = Ci(m), where Ci(m) denotes the ith

2Furthemore, as we remark later on, sublinear compact FE trivially implies a variant of XiO
and this variant of XiO is also sufficient for our theorems. As such, by our results, XiO may be
viewed as a new way to characterize the complexity of sublinear compact FE.
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output bit of C(m). This approach clearly enables evaluating circuits with multi-

bit outputs; but the encryption scheme is no longer compact! The length of the

ciphertext grows linearly with the number of output bits. To retain compactness

(or at least sublinear compactness), we have the encryption algorithm release

an obfuscation of a program Π that generates all the ` encryptions—more pre-

cisely, given an index i, it applies a PRF (with a hard-coded seed) to the index i

to generate randomness ri and then outputs an encryption of (m; i). As long as

obfuscation size is “just-slightly-compressing”, the functional encryption will

have weak sublinear compactness; furthermore, the program we obfuscate only

needs to take inputs of length O(log λ). Thus, it suffices to assume the obfuscator

satisfies XiO for PO(log λ)/poly.

To prove security of the construction, we use the ”one-input-at-a-time” tech-

nique from [42, 86, 130, 85, 57], and the punctured program technique of Sa-

hai and Waters [134]; the crucial point that enables us to keep the obfuscation

small is that the output of the program Π on different inputs uses independent

randomness (since they are independent encryptions) and thus in the hybrid

arguments it suffices to puncture the PRF on a single point.

Let us end this section by briefly comparing our transformation to that of

Ananth and Jain [4]; as mentioned above [4] shows how to use “compact ran-

domized encoding” to transform single-bit compact FE for NC1 into multi-bit

compact FE for NC1. As we explain in more detail in Remark 11, compact ran-

domized encoding can be viewed as a special case of XiO for the class of Turing

machines (as opposed to circuits) with short input. Turing machine obfuscation

is a significantly more challenging task than circuit obfuscation. We provide

a brief description of their transformation in Section 5.5 and explain why the
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transformation fails when using XiO.

5.2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We

denote by PPT probabilistic polynomial time Turing machines, and by nuPPT

non-uniform probabilistic polynomial time Turing machines. The term negli-

gible is used for denoting functions that are (asymptotically) smaller than one

over any polynomial. More precisely, a function ν(·) from non-negative integers

to reals is called negligible if for every constant c > 0 and all sufficiently large n,

it holds that ν(n) < n−c For any algorithm A and input x we denote by outlenA(x),

the output length of A when run with input x.

Definition 38. We denote by PO(log λ)/poly the class of circuits {Cλ} where Cλ are

poly(λ)-size circuits that have input length c log λ for some constant c.

5.2.1 Puncturable PRF

Definition 39 (Puncturable PRF). A puncturable pseudo-random function F is given

by a triple of efficient algorithms (F.Key, F.Punc, F.Eval), and a pair of computable

functions n(·) and m(·), satisfying the following conditions:

• Functionality preserved under puncturing: For every polynomial size set

S ⊆ {0, 1}n(λ) and for every x ∈ {0, 1}n(λ)\S , we have that:

Pr[F.Eval(K, x) = F.Eval(KS , x) : K ← F.Key(1λ),KS = F.Punc(K, S )] = 1
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• Pseudorandom at punctured points: For every polynomial size set S ⊆

{0, 1}n(λ) we have that for every nuPPT adversary A we have that:

|Pr[A(KS ,F.Eval(K, S )) = 1] − Pr[A(KS ,Um(λ)·|S |) = 1]| = negl(λ)

where K ← F.Key(1λ) and KS = F.Punc(K, S ) and F.Eval(K, S ) denotes the

concatenation of F.Eval(K, x1), . . . ,F.Eval(K, xk) where S = {x1, ..., xk} is the enu-

meration of the elements of S in lexicographic order, U` denotes the uniform dis-

tribution over ` bits.

5.2.2 Functional Encryption

We note that in this work, we only need the security of the functional encryption

scheme to hold with respect to statically chosen challenge messages and func-

tions. We further consider FE schemes that only produce a single functional

secret key for each public key.

Definition 40 (Functional Encryption). A public key functional encryp-

tion scheme for a class of circuits {Cλ} is a tuple of PPT algorithms

(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) that behave as follows:

• (msk, pk) ← FE.Setup(1λ): FE.Setup takes as input the security parameter λ

and outputs the master secret key msk and public key pk.

• skC ← FE.KeyGen(msk,C): FE.KeyGen takes as input the master secret key and

a circuit C ∈ Cλ and outputs the functional secret key skC.

• c← FE.Enc(pk,m): FE.Enc takes as input the public key and message m ∈ {0, 1}∗

and outputs the ciphertext c.
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• y ← FE.Dec(skC, c): FE.Dec takes as input the functional secret key and cipher-

text and outputs y ∈ {0, 1}∗.

We require the following conditions hold:

• Correctness: For every λ ∈ N, C ∈ Cλ with input length n and message m ∈

{0, 1}n, we have that

Pr


(pk,msk)← FE.Setup(1λ)

skC ← FE.KeyGen(msk,C)

c← FE.Enc(pk,m)

: C(m) = FE.Dec(skC, c)

 = 1

• Selective Security: For every nuPPT A there exists a negligible function µ such

that for every λ ∈ N, every circuit C ∈ Cλ with input length n and pair of

messages m0,m1 ∈ {0, 1}n such that C(m0) = C(m1) we have that |Pr[A(D0) =

1] − Pr[A(D1) = 1]| ≤ µ(λ) where

Db = Pr


(pk,msk)← FE.Setup(1λ)

skC ← FE.KeyGen(msk,C)

cb ← FE.Enc(pk,mb)

: (pk, skC, cb)


We say the scheme has sub-exponential security if there exists a constant ε such

that for every λ, every 2λ
ε -size adversary A, |Pr[A(D0) = 1] − Pr[A(D1) = 1]| ≤

1/2λ
ε whereDb is defined above.

We recall the definition of compactness and succinctness for functional en-

cryption schemes, as defined in [33, 4].

Definition 41 (Compact Functional Encryption). We say a functional encryption

scheme for a class of circuits {Cλ} is compact if for every λ ∈ N, pk ← FE.Setup(1λ)

and m ∈ {0, 1}∗ we have that Time(FE.Enc(pk,m)) = poly(λ, |m|, log s) where s =
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maxC∈Cλ |C|.

We say the scheme has sub-linear compactness if the running time of FE.Enc is

bounded as Time(FE.Enc(pk,m)) = poly(λ, |m|) · s1−ε where ε > 0.

Definition 42 (Succinct Functional Encryption). A compact functional encryption

scheme for a class of circuits that output only a single bit is called a succinct functional

encryption scheme.

Theorem 35 ([93]). Assuming (sub-exponentially secure) LWE, there exists a (sub-

exponentially secure) succinct functional encryption scheme for NC1.

We note that [93] do not explicitly consider sub-exponentially secure suc-

cinct functional encryption, but their construction satisfies it (assuming sub-

exponentially secure LWE). Additionally, we have the following bootstrapping

theorem:

Theorem 36 ([78, 3, 4]). Assuming the existence of symmetric-key encryption with

decryption in NC1 (resp. sub-exponentially secure) and succinct FE for NC1 (resp.

sub-exponentially secure), there exists succinct FE for P/poly (resp. sub-exponentially

secure).

In this paper, we will consider a weaker compactness notion, where only the

ciphertext size (but not the encryption time) is sub-linear in the output length

of the function being evaluated.

Definition 43 (Weakly Sublinear Compact Functional Encryption). We say a

functional encryption scheme for a class of circuits {Cλ} is weakly sublinear com-

pact if there exists ε > 0 such that for every λ ∈ N, pk ← FE.Setup(1λ) and m ∈ {0, 1}∗
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we have that

TimeFE.Enc(pk,m) = poly(λ, |m|, s)

outlenFE.Enc(pk,m) = s1−ε · poly(λ, |m|)

where s = maxC∈Cλ |C|.

5.2.3 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO ).

Definition 44 (Indistinguishability Obfuscator). A PPT machine iO is an indis-

tinguishability obfuscator for a circuit class {Cλ}λ∈N if the following conditions are

satisfied:

• Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x,

we have that

Pr[C′(x) = C(x) : C′ ← iO (C)] = 1 .

• Indistinguishability: for any polysize distinguisherD, there exists a negligible

function µ such that the following holds: For all security parameters λ ∈ N, for

all pairs of circuits C0,C1 ∈ Cλ of the same size, we have that if C0(x) = C1(x) for

all inputs x, then

∣∣∣∣ Pr
[
D(iO (C0)) = 1

]
− Pr

[
D(iO (C1)) = 1

]∣∣∣∣ ≤ µ(λ) .

We say the scheme has sub-exponential security if there exists a constant

ε such that for every λ, every 2λ
ε -size adversary D, |Pr[D(iO (C0)) = 1] −

Pr[D(iO (C1)) = 1]| ≤ 1/2λ
ε .
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We recall the following result from [114].

Theorem 37. ([114]) Assume the existence of sub-exponentially secure LWE. If there

exists a weakly sublinear compact functional encryption scheme for P/poly with sub-

exponential security, then there exists a sub-exponentially secure indistinguishability

obfuscator for P/poly.

5.3 Exponentially-Efficient iO (XiO)

In this section, we define our new notion of “inefficient” iO , which allows the

obfuscator to to have running time as long as a brute-force canonicalizer that

outputs the entire input-output table of the function, but requires the obfuscated

program to be slightly smaller in size than a brute-force canonicalization.

Definition 45 (Exponentially-Efficient Indistinguishability Obfuscation (iO )). A

machine XiO is an weak indistinguishability obfuscator for a circuit class {Cλ}λ∈N

if the following conditions are satisfied:

• Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x,

we have that

Pr[C′ ← XiO(1λ,C) : C′(x) = C(x)] = 1 .

• Indistinguishability: for any nuPPT distinguisher A, there exists a negligible

function µ such that the following holds: For all security parameters λ ∈ N, for

all pairs of circuits C0,C1 ∈ Cλ of the same size, we have that if C0(x) = C1(x) for

all inputs x, then

|Pr
[
A(XiO(1λ,C0)) = 1

]
− Pr

[
A(XiO(1λ,C1)) = 1

]
| ≤ µ(λ)
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We say the scheme has sub-exponential security if there exists a constant ε such

that for every λ, every 2λ
ε -size adversary A,

|Pr
[
A(XiO(1λ,C0)) = 1

]
− Pr

[
A(XiO(1λ,C1)) = 1

]
| ≤ 1/2λ

ε

• Non-trivial Efficiency: There exists a constant ε > 0 such that for any security

parameter λ ∈ N, circuit C ∈ Cλ with input length n and C′ ∈ XiO(1λ,C), we

have that

TimeXiO(1λ,C) = poly(λ, |C| · 2n)

outlenXiO(1λ,C) = poly(λ, |C|) · 2n(1−ε)

Remark 9. (Circuits with logarithmic input length) Note that if we want the obfusca-

tion to be efficient (i.e., polynomial-time in λ and the size of the circuit to be obfuscated),

then the above definition is only meaningful when the class of circuits Cλ has input

length O(log λ). Our results in this paper hold assuming Exponentially-Efficient iO

for such classes.

Remark 10. (Exponentially-Efficient iO in the preprocessing model and compari-

son with Compact Functional Encryption) We can consider further a relaxation of the

running-time requirement of the obfuscator. The obfuscator may first perform a long

”pre-processing” step (without having seen the program to be obfuscated), taking time

poly(λ, s, 2n) (where s is the size bound on circuits to be obfuscated), and outputting a

(potentially long) pre-processing public-key Opk. The actual obfuscation then takes Opk,

and the circuit C as inputs, runs in time poly(λ, s, 2n) and outputs an obfuscated pro-

gram of size poly(λ, s) · 2n(1−ε), and then the evaluation of the obfuscated program may

finally also access the public-key Opk. All our results also apply to this relaxed notion of

exponentially efficient iO .
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Additionally, we note that weakly sublinear compact FE directly implies this notion

as follows: pre-processing public key Opk (generated in the pre-processing step) is the

public key pk for the FE and the functional secret key skFT corresponding to a function

table generator program that takes as input a circuit and outputs the function table of

it; the obfuscation of a circuit C is an encryption of the circuit C (w.r.t., the FE public

key pk), and evaluation of the obfuscated code uses the functional secret key skFT inside

Opk to compute the function table of C and selects the appropriate output. Sub-linear

compactness of the functional encryption scheme implies the obfuscator has exponential

efficiency.

Remark 11. (Comparison with Compact Randomized Encoding for Turing machines)

[4] and [114] study a notion of compact randomized encodings [102, 8]. Roughly speak-

ing, a randomized encoding (RE) is a method for encoding a Turing Machine Π,

an input x and a running-time bound T , into a randomized encoding Π̂(x) from which

Π(x) can be efficiently decoded; furthermore the encodings does not leak anything more

about Π and x than what can be (inefficiently) deduced from just the output Π(x) (trun-

cated at T steps).3 A randomized encodings is compact (resp. sublinearly compact) if

the encoding time is poly-logarithmic (resp sublinear) in T (and polynomial in the size

of Π and x). We note that sublinear compact RE directly implies XiO as follows: to

obfuscate a circuit C, compute an encoding F̂TC of the function table generator Tur-

ing machine FTC that has the circuit C hardcoded (i.e., FTC takes no inputs and simply

computes the function table of C); evaluation of the obfuscation on an input i simply

decodes the encoding F̂TC picks out the ith output. Sublinear compactness of the RE

implies that the obfuscator is exponentially-efficient.

In fact, the above methods extend to show that (sublinearly) compact RE implies

3Or equivalently, for any two programs Π1,Π2 and inputs x1, x2 such that Π1(x1) = Π2(x1), a
randomized encoding of Π1, x is indistinguishable from an encoding of Π2, x2.
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a notion of XiO for Turing machines. We note that Turing machine obfuscation is

a significantly harder task than circuit obfuscation (indeed, all known construction of

Turing machine obfuscators first go through circuit obfuscation). We also point out

that whereas (subexponentially-secure) iO for circuits is known to imply iO for Turing

machine [31, 54, 112], these techniques do not apply in the regime of programs with

short input.

5.4 iO from XiO

In this section, we show how to achieve (full-fledged) iO from XiO.

5.4.1 Weakly Sublinear Compact FE from Succinct FE and XiO

We first give our construction of weakly sublinear compact FE from succinct FE

and XiO for circuits with input-size O(log(λ)). At a high-level, our idea is to have

the ciphertext for the FE scheme be XiO of a circuit that, on input i, generates a

succinct FE encryption of (m, i). The secret key corresponding to C consists of a

single key for the succinct FE scheme, that, given a ciphertext encrypting (m, i),

computes the ith output bit of C(m).

Let F be a puncturable pseudorandom function, XiO be a exponentially effi-

cient indistinguishability obfuscator for PO(log λ)/poly and sFE be a succinct func-

tional encryption scheme (resp. with sub-exponential security) for an appro-

priate class of circuits that includes C′ defined below.. We define a compact

functional encryption scheme FE for a class of poly-size circuits {Cλ} as follows:
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(msk, pk)← FE.Setup(1λ): FE.Setup is identical to sFE.Setup and has the same

output.

c← FE.Enc(pk,m): FE.Enc samples a PRF key K ← F.Key(1λ) and outputs

XiO(1λ,G[pk,K]) where G[pk,K] is a circuit with input length n = log s

where s = maxC∈Cλ outlen(C), defined as follows:

G[pk,K](i) = sFE.Enc(pk, (m, i); F.Eval(K, i))

G is padded to be the same size as another circuit G′′, which we will define

later in the security proof. Both G and G′′ will ultimately have size S =

poly(λ, |m|, log s) where s = maxC∈Cλ |C|.

skC ← FE.KeyGen(msk,C): FE.KeyGen outputs sFE.KeyGen(msk,C′) where C′ on

input (m, i) outputs the ith bit of C(m), or outputs ⊥ if i is greater than the

output length of C.

y← FE.Dec(skC, c): FE.Dec runs ci ← G[pk,K](i) and yi ← sFE.Dec(skC, ci) for

every i and outputs y1, . . . y2n .

Let {C′λ} be a class of circuits that includes C′ as defined above for every

C ∈ Cλ.

Theorem 38. Assuming F is a pseudorandom function (resp. with subexponen-

tial security), XiO is an exponentially efficient indistinguishability obfuscator for

PO(log λ)/poly (resp. with subexponential security) and sFE is a succinct functional

encryption scheme for {C′λ} (resp. with subexponential security), we have that FE as

defined above is a functional encryption scheme for {Cλ} with weakly sub-linear com-

pactness (resp. and with subexponential security).

Proof. We first show weak sublinear compactness of FE. Consider any λ, C ∈ Cλ,

message m, pk ∈ FE.Setup(1λ) and PRF key K ∈ {0, 1}λ. Time(FE.Enc(pk,m))
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is the time XiO takes to obfuscate the circuit G[pk,K], which is of size S =

poly(λ, |m|, log s) where s = maxC∈Cλ |C|. Hence we have that

TimeXiO(1λ,G[pk,K]) = poly(λ, |m|, log s, ·2n) ≤ poly(λ, |m|, s)

outlenXiO(1λ,G[pk,K]) = poly(λ, |m|, log s) · 2n(1−ε) ≤ poly(λ, |m|) · s1−ε′

where ε′ is a constant with 0 < ε′ < ε.

Next we show the selective security of FE. The proof proceeds by a hybrid

argument where in each hybrid distribution, the circuit being obfuscated, on

input i, produces ciphertexts of m1 when i is less than a “threshold”, and ci-

phertexts of m0 otherwise. Indistinguishability of neighboring hybrids is shown

using the “punctured programming” technique” of [134], as was done in [57]

for constructing iO for probabilistic functions. This technique is also used ex-

tensively in other applications of iO , eg., [31], [54], [112] and more.

Assume for contradiction there exists a nuPPT A and polynomial p such that

for sufficiently large λ, circuit C ∈ Cλ and messages m0,m1 such that C(m0) =

C(m1), A distinguishes D0 and D1 as defined in Definition 40 with advantage

1/p(λ). For j ∈ [l], we define the jth hybrid distribution H j as follows:

H j =


(msk, pk)← FE.Setup(1λ)

K ← {0, 1}λ

skC ← FE.KeyGen(msk,C)

: pk, skC,XiO(G′[pk,K, j,m0,m1])


where G′[pk,K, j,m0,m1], where G′ is defined as follows

G′[pk,K, j,m0,m1](i) =


sFE.Enc(pk, (m0, i); F(K, i)) if i > j

sFE.Enc(pk, (m1, i); F(K, i)) if i ≤ j

We also require G′ to be padded to be of the same size S as G[pk,K,m].
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We consider the hybrid sequence D0,H1, . . . ,Hl,D1. By a hybrid argument,

there exists a pair of neighboring hybrids in this sequence such that A distin-

guishes the pair with probability 1
p(λ)·(l+2) = 1

poly(λ) . We show a contradiction by

proving that each pair of neighboring hybrids is computationally indistinguish-

able.

We first note thatD0 is indistinguishable from H0. This follows by observing

that G′[pk,K, 0,m0,m1] is functionally identical to G[pk,K,m0], and applying the

security of XiO. The same argument also shows that Hl is indistinguishable

fromD1.

Next, we show H j∗ and H j∗+1 are indistinguishable for each j∗ ∈ [l]. De-

fine hybrid distribution H′0 which is identical to H j∗ except that XiO obfus-

cates a different circuit G′′[pk,K j∗ , j∗,m0,m1, c] where K j∗ ← Punc(λ, j∗) and

c ← sFE.Enc(pk, (m0, j∗); R) using uniformly sampled randomness R. G′′ on in-

put i has the same behavior as G′ except i = j∗, where it outputs the hardcoded

ciphertext c. The padding parameter S is defined as the size of G′′, which is

poly(λ, |m|, log s). By the “punctured programming” technique of Sahai-Waters

[134], which relies on the security of the obfuscator XiO and puncturable PRF F,

it follows that for sufficiently large λ, A distinguishes between H j∗ and H′0 with

negligible probability.

The puncturing programming technique itself works in two hybrid steps:

• First the circuit G′ is modified on input j∗ to output a hardcoded value

sFE.Enc(pk, (m0, j∗); F(K, j∗)), which is the same ciphertext G′ previously

computed. Also, the PRF key in G′ is modified to be punctured on input

j∗. Since this doesn’t change the functionality of the circuit, indistinguisha-
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bility follows from the security of XiO.

• Second, the hardcoded ciphertext is modified to be generated from real

randomness R, and indistinguishability follows from the security of the

puncturable PRF.

Next, we define hybrid distribution H′1 which is identical to H′0 except that

the hardcoded ciphertext c is generated as sFE.Enc(pk, (m1, j∗); R) for uniformly

sampled randomness R. Since C(m0) is identical to C(m1), from the security of

sFE, A distinguishes H′0 and H′1 with negligible probability.

Finally, note that H′1 and H j∗+1 differ in the same way H′0 and H j∗ do, and are

hence indistinguishable by a similar argument. Hence A distinguishes H j∗ and

H j∗+1 with negligible probability and we have a contradiction. This completes

the proof.

We note that the proof above is described in terms of computational indistin-

guishability, but in fact also can be applied to show that FE is subexponentially-

secure, if both XiO and sFE are subexponentially secure. �

Theorem 39. Assuming sub-exponentially hard LWE, if there exists a sub-

exponentially-secure exponentially efficient indistinguishability obfuscator for P/poly

then there exists an indistinguishability obfuscator for P/poly with sub-exponential se-

curity.

Proof. By Theorem 35 and Theorem 23, assuming subexponentially secure

LWE, there exists a succinct functional encryption scheme for P/poly that is

subexponentially-secure. Using this with a subexponentially-secure exponen-

tially efficient indistinguishability obfuscator, by Theorem 38, we get weakly
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sublinear compact function encryption for P/poly with sub-exponential selec-

tive security. Together with Theorem 37, this gives us iO for P/poly. �

Remark 12. (XiO for NC1 suffices) Note that we can also achieve the above results as-

suming XiO for only NC1 instead of P/poly, with the caveat that we must additionally

assume the existence of puncturable PRFs in NC1. To do so, we modify our above con-

struction, so that instead of obfuscating the circuit G, we instead obfuscate a different

circuit H that generates a “garbling” [138] of G. Since H lies in NC1, we only need

XiO for NC1.

5.5 Comparison with [4]

In this section we briefly describe the related result by [4] and compare it with

our result. [4] show how to construct a Compact Functional Encryption scheme

from a Succinct Functional Encryption scheme and Compact Randomized En-

codings for Turing machines. The rough idea is as follows: the compact func-

tional secret key for a function f is a sequence of ` independent succinct func-

tional secret keys where ` is the output length of f . The ith succinct functional

secret key corresponds to the function that outputs the ith bit of f . The compact

functional ciphertext for a message m is the randomized encoding of a machine

Π that takes no input and when run, outputs {Enc(pki,m)}i∈[`] where pki is the

public key corresponding to the ith instance of the succinct functional scheme

(these instances are generated using a PRF, hence the description size of Π is in-

dependent of `). The compactness of the functional encryption scheme follows

from the compactness of the randomized encoding scheme.

Note that the above result necessarily requires the computation being en-
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coded be represented as a Turing machine, since the description size is required

to be independent of the output length. In contrast we are able to rely on XiO

for circuits, which is significantly weaker (see Remark 11).
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