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The quantum control of mechanical resonators requires the realization of excep-

tionally low dissipation in conjunction with strong nonlinear interactions. In this

thesis, we demonstrate the simultaneous realization of both these features in ultra-

high quality factor silicon nitride membrane resonators, a promising new optome-

chanical platform in the emerging field of cavity optomechanics.

The mechanical properties of the silicon nitride resonators are studied through a

combination of spectroscopic and interferometric imaging techniques. We demon-

strate ultrahigh quality factors of 5 × 107 and frequency-quality factor products

of 1 × 1014 Hz corresponding to the largest values yet reported for mesoscopic

membrane resonators, and an order of magnitude larger than what is required for

room temperature quantum control. We perform a study of the limiting dissipa-

tion mechanisms as a function of resonator and substrate geometries and iden-

tify radiation loss through the supporting substrate as the dominant loss process.

We proceed to alleviate radiation loss through the engineering of substrates with

phononic bandgaps and present preliminary demonstrations of increased quality

factors for a wide range of membrane modes.

We also realize a two-mode parametric nonlinear process, and use it to demonstrate

nondegenerate mechanical parametric amplification and two-mode thermomechan-

ical noise squeezing. The observed phenomena show excellent agreement, over five

orders of magnitude in displacement, with a two-mode model with the parametric



coupling between the modes mediated by an excitation of the supporting substrate

platform. The realization of a strong nonlinear interaction in a mechanical plat-

form that is compatible with optomechanical cooling, room temperature quantum

control and quantum limited detection is an important step towards the realiza-

tion of non-classical mechanical states, the observation of entanglement between

macroscopic mechanical degrees of freedom and quantum enhanced metrology.

The last chapter of this thesis is unrelated to the rest of the work presented in it.

This chapter discusses the coupling between the underlying elastic medium and

electronic nematic order in high temperature cuprate superconductors and sug-

gests the use of acoustic phonons as a probe of nematic order.
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CHAPTER 1

QUANTUM CONTROL OF ULTRAHIGH Q MECHANICAL

RESONATORS

Decades ago, pioneering interferometric experiments performed by Braginsky[1],

resulted in the coming together of a highly influential group of scientists with the

goal to realize an ambitious aim, the direct detection of gravitational waves, as

postulated by Einstein. This collaborative effort, now known as LIGO, attempted

to realize a great challenge, requiring a displacement sensitivity of 10−21m/
√

Hz.

Undeterred by this, these scientists went ahead to do precisely that. As has always

been the case, the goal of realizing precise measurements not only resulted in new

technologies, it also led to progress in fundamental physics. One of the first real-

izations that came out of this was, that quantum mechanics can have an influence

on the dynamics of massive objects, captured succinctly by Carlton Caves in [2]:

“ The interferometers now being developed to detect gravitational waves work

by measuring small changes in the positions of free masses. There has been a con-

troversy whether quantum-mechanical radiation-pressure fluctuations disturb this

measurement. This Letter resolves the controversy: They do. ”

The ensuing developments have brought together a wide spectrum of physicists

in optics, atomic physics, material science and engineering, culminating in the birth

of the emerging field of cavity optomechanics[3]. Cavity optomechanics studies the

influence of electromagnetic radiation on mechanical objects, using it to probe,

detect and control mechanical motion. Building upon an effort to control, trap,

manipulate and probe atomic systems, recent years have seen rapid progress in this

field, culminating in the use of the radiation pressure from light, in conjunction

with cryogenic cooling, to realize mesoscopic mechanical resonators in the quan-
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tum ground state of vibration[4][5]. Along with an earlier realization of ground

state cooling purely through conventional cryogenics[6], this has set the stage for

addressing fundamental questions regarding the classical to quantum divide[7], en-

abling quantum enhanced metrology and promising a rich bounty of technological

advances, such as improved global positioning systems.

Notwithstanding this success, cavity optomechanics is faced with extreme tech-

nological challenges, the foremost among them being the issue of dissipation. Me-

chanical systems, unlike pristine atomic systems, are plagued by this issue. This is

a challenging problem, arising from the fact that its study involves many different

systems and many disparate mechanisms. The preparation of a mechanical system

in a quantum state and the observation of quantum effects in a mechanical de-

gree of freedom require overcoming the deleterious effect of thermal decoherence.

Thermal decoherence can be overcome either by reducing the temperature of the

ambient bath or by reducing the coupling between the mechanical degree of free-

dom and the environment. Observing quantum effects in a mechanical degree of

freedom, at room temperature, requires exceptionally low dissipation. As a result,

ground state cooling[4][5][6] of mechanical degrees of freedom has to date only been

demonstrated in conjunction with cryogenic cooling to reduce the thermal coupling

to the environment.

Additionally, the high degree of isolation required for cooling a mechanical

system to the quantum regime, typically precludes the presence of strong nonlinear

interactions involving the mechanical degree of freedom, necessary for the creation

of interesting quantum states and essential for the manipulation of the engineered

states. Therefore, while the mechanical degrees of freedom must be isolated from

sources of dissipation, it must also be possible for there to be strong coherent
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interactions, either between distinct mechanical degrees of freedom or between

the mechanical degrees of freedom and other auxiliary quantum systems, such as

atomic systems.

This thesis describes the realization of an optomechanical platform that ad-

dresses both these issues. Chapter 2 of this thesis describes the realization of

silicon nitride membrane resonators with the lowest dissipation measured to date,

with quality factors of 50×106 and f×Q products approaching 1014 Hz[8] and dissi-

pation that is an order of magnitude lower than that required for room temperature

quantum control of the mechanical resonator. This along with the low optical ab-

sorption of silicon nitride[9] results in the realization of an optomechanical platform

that is compatible with ground state cooling, room temperature quantum control

and quantum limited detection when integrated with a Fabry-Perot Cavity[10].

We perform studies of a host of limiting dissipation mechanisms in these mem-

brane resonators, identifying radiation loss from the resonator to the surrounding

substrate[11] as the dominant source of loss for a wide range of membrane param-

eters, pointing the way towards further decrease in the dissipation through the

engineering of substrates with a phononic bandgap that prevent energy loss into

the surrounding substrate. In Chapter 3, we proceed to engineer resonators on

bandgapped substrate and present preliminary demonstrations of reduced radia-

tion loss, through increased quality factors for a wide range of membrane modes.

Chapters 4 through 5 of this thesis address the second issue, regarding strong

nonlinear interactions. We demonstrate a form of reservoir engineering[12] through

an excitation of the supporting substrate platform to realize a strong two-mode

parametric nonlinearity between distinct modes of the membrane resonator. We

demonstrate an understanding of this nonlinear interaction through a two-mode
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model that accurately captures the observed phenomena over five orders of magni-

tude in displacement. We demonstrate the use of this nonlinearity for mechanical

parametric amplification and two-mode thermomechanical noise squeezing[13].

We have thereby realized an optomechanical platform that simultaneously pre-

serves the high degree of isolation required for ground state cooling and room

temperature quantum control and also simultaneously possesses the strong non-

linearities that are required for the useful manipulation of quantum states of the

mechanical degrees of freedom.
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CHAPTER 2

DISSIPATION IN ULTRAHIGH QUALITY FACTOR SILICON

NITRIDE MEMBRANE RESONATORS

2.1 Introduction

Among the primary tasks of optomechanics are the preparation of one or more

modes of a mechanical resonator in a well-defined quantum state, coherent ma-

nipulation of the engineered state, and quantum-limited measurements of the dis-

placement or the energy. Typically, this is done by coupling the mechanical res-

onator to the electromagnetic field either at optical or at microwave frequencies,

by placing the resonator in an optical cavity. This results in both optomechanical

cooling[14, 15] of the mechanical modes of interest, and quantum-limited measure-

ment and control of their motion.

The inevitable coupling to the surrounding bath results in an open system, with

the coherent coupling always competing with thermal decoherence. This results in

stringent constraints on the mechanical properties of the resonator. For observing

quantum coherent effects, the lifetime of a single phonon must exceed the time

scale for coherent dynamics, which is set by the mechanical oscillation frequency.

This translates to the condition that the frequency-quality factor product exceed

kBT/h for the mechanical mode of interest[3]. The observation of quantum co-

herent behavior in a mechanical resonator coupled to a room temperature bath

therefore requires frequency-quality factor products exceeding kBT/h = 6 × 1012

Hz (T = 300 K). For this reason, and for a host of other applications such as

in sensing, communication and precision measurements, there has been a flurry of
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research in producing resonators of higher quality and in the study of their limiting

dissipation mechanisms.

Stressed silicon nitride (SiN) membranes and strings have in recent years been

shown to have remarkable mechanical properties[16][17] with recent demonstra-

tions of f × Q products of 2 × 1013 Hz at room temperature in commercial high

stress silicon nitride membrane resonators[17]. In addition they have favorable

optical properties[9] with an extremely low optical absorption (less than a part in

106) in the near infrared. Since the pioneering experiment of Thompson et al[10],

who showed how such membranes could be coupled efficiently to an optical mode

of a Fabry-Perot Cavity using the so-called membrane-in-the-middle approach, SiN

membranes have become one of the most promising platforms in optomechanics.

When our group embarked on its program for optomechanics, one of the first

steps was to realize high Q resonators, building on the work previously described.

As a preliminary study, we first reproduced the previously reported results for

quality factors of commercial high stress stoichiometric silicon nitride membrane

resonators, in the process understanding key elements of the experimental proce-

dure such as the handling of the resonators and appropriate clamping mechanisms.

This led us to embark on a systematic study of quality factors of resonators of dif-

ferent geometries, i.e., different widths and thicknesses, with heuristics pointing

towards measurements on resonators with larger aspect ratios. This resulted in

the realization of resonators with peak quality factors of 5×107 and a frequency-Q

product approaching 1× 1014 Hz, the highest quality factors reported to date for

membrane resonators at room temperature, which are an order of magnitude larger

than what is required for room temperature quantum control.
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The exceptionally high quality factors measured, and the quest for even higher

quality factors necessitated an understanding of the limiting dissipation mecha-

nisms in these resonators.

This chapter is organized as follows. We start with a description of the mechanical

resonator in Sec.[2.2], followed by a description of our apparatus and the optical

setup for membrane motion detection in Sec.[2.3]. Sec.[2.4] provides a descrip-

tion of our method for interferometric imaging of membrane motion. In Sec.[2.5],

we present the results of our measurements of the mechanical properties of these

membranes, particularly the dissipation, characterized by the quality factors of the

resonator modes. This is followed by an overview of the dissipation mechanisms

in these systems as given in Sec.[2.6] and an analysis of each of their roles in ex-

plaining the measured quality factors in the sections that follow. The contents of

this chapter are an elaboration of [8].
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2.2 Mechanical description of silicon nitride membrane

resonators

The SiN membranes that are studied in this work are suspended on a square win-

dow etched on a silicon substrate (chip). The membrane sizes range from 0.5 - 5

mm and their thicknesses range from 30 - 200 nm. The silicon substrate width

ranges from 5 - 10 mm with thicknesses ranging from 200 - 500 µm. All the silicon

nitride membrane resonators that we study are fabricated by NORCADA inc., a

Canadian MEMS company which produces these membranes for their use as trans-

mission electron microscopy windows.

The SiN membrane is grown on the silicon substrate through a low pressure chem-

ical vapor deposition (LPCVD) process. This results in silicon nitride membranes

that are highly stressed with an intrinsic stress of ≈ 900 MPa [18].

A stressed two dimensional membrane is described by the following equation of

motion[19],

D

(
∂2

∂x2
+

∂2

∂y2

)2

w − σh
(
∂2w

∂x2
+
∂2w

∂y2

)
= −ρh∂

2w

∂t2
(2.1)

where in the above, w(x, y) gives the z displacement of the membrane as a function

of location on the membrane, σ = 900 MPa is the intrinsic tensile stress, ρ =

2.7 g/cm3 is the mass density of silicon nitride. D is the flexural rigidity of the

membrane, which is related to the Young’s modulus (E), the thickness (h) and

the Poisson ratio (νp) via the expression D = Eh3

12(1−ν2
p)

. In the absence of tensile

stress, this equation describes the vibrations of a plate. The relative strength of

the flexural rigidity in comparison with the intrinsic tensile stress is parametrized

by ε = D
σhL2 , where L is the lateral dimension of the membrane. ε ranges from

10−7 - 10−10 for the membranes studied. The mechanical eigenfrequencies of the

membrane are hence well approximated by that of a stressed membrane with no
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flexural rigidity, i.e.,

νmn =

√
σ

4ρL2

√
m2 + n2 (2.2)

where m and n describe the number of antinodes along the x and y directions.

A characteristic plot of the eigenfrequencies of the membrane as a function of
√
m2 + n2 shown in Fig.[2.1] demonstrates the validity of the above expression for

these membranes.

The motion of a single mode of the membrane can be characterized by a time de-
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Figure 2.1: Frequency of the modes of a membrane (L = 5 mm; h = 100 nm)
as a function of

√
m2 + n2. The fit to the line provides a slope of

57569 ± 5 Hz. Therefore the phase velocity of the membrane is

cR =
√

σ
ρ

= 565.69± 0.05 m/s. Assuming ρ = 2.7 g/cm3 results

in a tension of σ = 895 MPa.

pendent amplitude z(t). The displacement of each point of the membrane is related

to the eigenmode un(x, y), and the amplitude z(t) via w(x, y, t) = un(x, y)z(t).

This effective coordinate z(t) satisfies the equation for a damped harmonic oscil-
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lator:

meff
d2z

dt2
+ Γmmeff

dz

dt
+meffω

2
nz = Fext(t) (2.3)

where Γeff is the decay rate of the membrane mode and meff is the effective

mass of the membrane which is related to the physical mass of the membrane as

meff = m
4

. This is obtained by equating the potential energy of the membrane

to that of the single harmonic oscillator[20]. In the above z(t) is the antinodal

displacement. If z(t) is instead the displacement as read out by a laser beam with

a finite waist incident at an arbitrary point on the membrane, the effective mass

is larger than m
4

.

The transient solution of the equation for a damped harmonic oscillator is given

by

z(t) = Ae−
Γmt

2 cos(ω′nt+ φ) (2.4)

with ω′n =
√
ω2
n −

Γ2
m

4
. The driven response of the oscillator to a harmonic force

given by f(t) = |f(ω)|eiωt is given by A(ω)eiωt where the response amplitude and

phase are in turn given by

|A(ω)| =
|F (ω)|

meff (
√

(ω2 − ω2
0)2 + Γ2

mω
2)

cotφ(ω) =
Γmω

ω2
0 − ω2

The quality factor of the resonance is the ratio of the energy stored in the resonator

(E) to the energy lost by the resonator per period ∆E, i.e.,

Q =
2πE

∆E
=
ωE

Ė
=
ωm
Γm

(2.5)

10



Reference mirror 
with piezo

Photodetector

ECDL

PID

Lock-in

Low Pass
Filter 

Membrane

Vacuum

Actuation

Piezo

θ
R

(a) (b)

Lock
pt. 

δxm = λ/4

vpp (c)

Figure 2.2: (a) Schematic of Michelson interferometer setup for detection of
membrane motion. The interferometer is locked to the side of
the interference fringe (see (c)) using a home built lock circuit.
(b) The mounting scheme: substrate is mounted on an aluminum
chuck with a dab of torr-seal on one corner with the substrate
making contact with the aluminum chuck atmost at 3 corners.
(c) A schematic of the interference fringe obtained by moving the
reference piezo with the arrow indicating the side of the fringe,
where the interferometer is locked.

2.3 Apparatus for membrane characterization

To handle and characterize the resonator, the silicon substrate is mounted on an

aluminum chuck ∼ 1.5 cm in diameter, using a small dab of torr-seal on one cor-

ner, with the substrate making contact with the aluminum chuck at two to three

corners (Fig.[2.2(b)]). This aluminum chuck screws into a second cylindrical alu-

minum piece with a slot,which is glued on to a ring piezo (PhysicsInstrumente

(P-010.00H), Travel: 5 µm/1000V ; Resonance frequency: 144 kHz), mounted on
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a cylindrical piece of copper. The entire setup screws into a standard lens mount

which is mounted on a copper feed through and vibrationally isolated using a set

of viton rings. The system goes inside a vacuum chamber which is pumped down

to a pressure of 2 × 10−7 torr using a roughing and a turbo pump, followed by

an ion pump (Varian: 18 l/s). The membrane properties are characterized with

the turbo pump switched off, in order not to be affected by the resulting vibrations.

The mechanical properties of the membrane are characterized by using the mem-

brane as one arm of an actively stabilized Michelson interferometer (Fig.[2.2(a)])

using a home built external cavity diode laser (ECDL) operating at ≈ 795 nm.

The reference arm of the interferometer has a mirror mounted on a low voltage

piezo. A low pass filtered output of the photodetector is input to a feedback cir-

cuit, that actively stabilizes the interferometer to the side of the interference fringe

(Fig.[2.2(c)]). The displacement of the membrane is imprinted in the light and

measured using the unfiltered photodetector output using either a lockin-amplifier

or a spectrum analyzer. A change in the total path length by λ
2

results in a change

in the photodetector voltage by Vpp. When the interferometer is locked to the side

of the fringe, the displacement of the membrane is related to the measured voltage

through the expression,

δx =
Vsig
Vpp

(
λ

2π

)
(2.6)

The lengths of the two arms of the interferometer are matched in order to reduce

the effect of phase noise. A focusing lens is placed before the membrane in order

to obtain as small a spot size as possible. A large spot size results in lower signal

to noise arising from the larger effective mass. Additionally, it results in detection

nonlinearities. For instance, a spurious signal is seen at twice the frequency of

oscillation of a driven membrane mode, when the spot size is comparable to the
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wavelength of the membrane mode. The size of the spot after focusing is estimated

to be ∼ 100µm. This realizes a position measurement with a sensitivity of ∼ 0.03

pm/
√

Hz with powers of 200 µW incident on the membrane.

2.4 Dark ground imaging of mechanical motion

f fff

Spatial Filter

     Membrane

Camera

Figure 2.3: Schematic for dark-ground imaging of membrane motion. A dark
spot in the Fourier plane of the first lens blocks the spatial DC
background.

In addition to standard displacement measurements through a small focused

beam incident on the membrane, we also implement interferometric imaging of the

membrane motion. In addition to providing clues regarding the limiting dissipation

mechanisms in these resonators, this technique allows for optical addressability of

resonator modes of one’s choosing and is a powerful tool for studies of multimode

optomechanics[21].

The schematic for obtaining the interferometric images is shown in Fig.[2.3]. The

setup consists of two identical lenses spaced apart by twice their focal length, with

the membrane at the focus of the first lens and the camera at the focus of the
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second. A small dark spot is placed in between the two lenses, in the Fourier plane

of the first lens. The light reflected off of the membrane consists of a part that is

directly reflected, i.e., with a well defined wavevector along the axis of the incident

beam, and a part that is scattered. The information about the membrane motion

is contained in the scattered light. The signal is obtained by the interference

from the scattered light and light that is directly reflected. The light that is

directly reflected results in a background that drowns out the signal resulting from

the membrane motion. The dark spot (∼ 200 µm) blocks out this (spatial DC)

background component thereby increasing the signal to noise.

The signal detected on the camera is proportional to the square of the amplitude

of the membrane motion. This can be easily seen as follows. If the reflected

light from the membrane is given by E(x, y) = E0e
iφ(x,y), where φ(x, y) is the

phase accrued from the motion of the membrane. This phase is related to the

displacement δz(x, y) of the membrane via φ(x, y) = 4π
λ
δz(x, y). The dark spot

blocks the spatial DC component of the light and the intensity of the light on the

camera I(x, y) is therefore given by,

I(x, y) = E2
0 |(eiφ(x,y) − 1)|2

≈ I0φ(x, y)2

= I0
16π2

λ2
δz(x, y)2

Fig.[2.4] shows images of membrane motion acquired through such a method using

an incident beam with a waist of 3.5 mm and ∼ 10µW of power and 3 ms of

camera exposure. The intensity of the light being the square of the membrane

displacement is reflected in neighbouring antinodes being bright. This imaging

scheme is therefore not sensitive to the phase of the membrane vibration.
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Figure 2.4: Interferometric imaging of the mechanical modes: in situ images
of the (left) (9,9) mode and (right) (1,10) mode of the mem-
brane. Neighbouring antinodes are bright, indicating insenstivity
of imaging scheme to the phase of vibration.

2.5 Quality factor measurements

We first identify the frequencies of the resonator modes by monitoring the pho-

todiode output on a spectrum analyzer and identifying either the thermal mo-

tion peaks or by identifying the response frequencies through piezo actuation of

the membrane. We know where the resonances are expected to be based on the

membrane dimensions and the approximate stress. Once the fundamental mode

frequency is identified, it is easy to identify the other mode frequencies because

of the excellent agreement between the resonance frequencies with Eqn.[2.2] (See

Fig.[2.1]).

The dissipation is characterized through ring down measurements of the oscilla-

tion (see Fig.[2.5](left)). The membrane is piezo actuated for periods upto 10 ms,

resulting in the excitation of the membrane to amplitudes ranging from 10-1000

pm, after which the drive is switched off and the decay in amplitude measured

15



2

4
6

1

2

4
6

10

2

 A
m

pl
itu

de
 (p

m
)

1.20257x10
6

1.202561.202551.202541.20253

 Frequency [Hz]

-3

-2

-1

0

 P
ha

se
 (r

ad
)

0.1

1

10

100

 A
m

pl
itu

de
 (p

m
)

6040200
 Time (s)

Thermal motion

Figure 2.5: (Left) Ringdown curve corresponding to τ = 5.63 s, ν = 1202.553
kHz and Q = 21.3× 106, Γ = 56 mHz. (Right) Amplitude (red)
and phase (blue) response to a sweep of the piezo drive frequency.
The dashed black curve is the driven response of a harmonic
oscillator with a linewidth of 60 mHz.

using a lock-in amplifier, with the decay fit to an exponential to extract the fall

time τ . The quality factor is then calculated using the expression Q = πντ , where

ν is the frequency of the mode in question. The quality factors measured are as

high as 50× 106. The exceptionally high quality factors measured, necessitated a

careful study of systematic errors that might affect the measurements.

2.5.1 Validating the Q-factor measurements

We performed various checks to ensure the validity of our quality factor measure-

ments. These include:

(1) The negligible effect of radiation pressure and heating due to the laser field on

the mechanical motion. We found no change in quality factor for a change in the

intensity of incident light by an order of magnitude.

(2) The linearity of the drive. Changes in the peak amplitude by up to a factor
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of 5 in either direction do not change the measured value of the quality factor,

indicating that we are in a regime far away from nonlinearities of the mechanical

resonator.

(3) Negligible influence of viscous damping at the operating background pressure

of 2 × 10−7 torr. Fig.[2.6] shows the variation in quality factor for a mode of a

membrane (21 mode of a L = 1 mm, h = 50 nm membrane) as a function of

17



pressure in the vacuum chamber. The quality factor saturates well before the

operating pressure. The black curve shows the pressure limit to the mechanical

quality factor[22] given by the expression,

Qjk(p) =
(π

2

)3/2

ρhνjk

√
kBT

mg

1

p
(2.7)

with h = 50nm being the thickness, and ρ the mass density of silicon nitride. The

dashed curve is the same expression scaled by a factor of 2.1, required to match

with the rise in the experimentally measured quality factors.

(4) The mechanical line width inferred from thermal Brownian motion, and from

the response to frequency sweeps of the drive force, near resonance are consistent

with that derived from the ringdown measurements. This can be seen for instance

in Fig.[2.5], where we see that the quality factor obtained from a ringdown mea-

surement (left) is consistent with the width obtained from the driven response

(right). For high Q modes, this required the stabilization of the frequencies of the

membrane modes (see Sec.[4.2]).

2.5.2 Summary of results

The quality factor measurements were performed for a host of membrane geome-

tries ranging in width from L = 0.5 to 5 mm and in thickness from h = 30 to 200

nm. The measured quality factor versus frequency for the L = 5 mm membranes

are shown in Fig.[2.7], with the blue open squares representing the quality factors

for h = 30 nm membrane, while the green squares represent those of a h = 100

nm membrane. We can clearly distinguish between two regimes of behavior. For

mode indices (j, k) such that
√
j2 + k2 <∼ 4, the peak quality factor values in

a given frequency window increase with increasing frequency. In this regime, we
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Figure 2.7: Peak mechanical quality factors of a L = 5 mm, h = 100 nm
SiN membrane versus frequency (green squares). The solid line
corresponds to f × Q = kB/h × 300K. For low mode frequen-
cies (ν < 300 kHz), the quality factors can be improved by an
order of magnitude (red diamonds) by reducing the contact re-
gion between the substrate and the in-vacuum mount. The weak
frequency dependence of the measured Qs at high frequencies is
further reduced for a h = 30 nm membrane (blue open squares).

observe a large variation and a sensitive dependence of the quality factors on the

clamping mechanism, which can be greatly reduced by ensuring minimal contact

between the supporting silicon wafer and the in-vacuum mount. See for instance

the data represented by the filled diamonds in Fig.[2.7], which are measurements

performed with the membranes mounted using a sharp piece of aluminum making

contact with the edge of the silicon chip at one point. The observations in this
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regime are consistent with the dominant loss mechanism being anchor losses from

the membrane into the supporting mount.

For mode indices
√
j2 + k2 >∼ 4, we observe a characteristic variation of peak

quality factors, where the peak quality factors plateau at around 40 − 50 × 106

and then weakly decrease with frequency. The frequency dependence becomes

weaker with decreasing thickness, decreasing lateral dimensions and increasing

tensile stress (see Fig.[2.7]).

The peak quality factors in this plateau regime, for membranes ranging in width

from L = 0.5 to 5 mm and in thickness from h = 30 to 200 nm, are shown in

Fig.[2.8], as a function of the membrane aspect ratio
(
L
h

)
. The peak quality factor
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Figure 2.8: Peak mechanical quality factor versus membrane geometry,
parametrized by the ratio of the membrane width (L) to the
thickness (h). The squares indicate membranes with a width of
5 mm, with the aspect ratio changed by changing the thickness,
while the circles indicate membranes with a thickness of 50 nm,
with the aspect ratio changed by changing the width.
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increases with the membrane aspect ratio and for L
h
< 105 scales approximately

as Q ∼ (L
h

)2 and f × Q ∼ (L
h

). The thinnest membranes (h = 30 nm) however

do not obey this scaling. In order to rule out additional surface contamination

of the 30 nm membrane, we annealed the membrane in an argon environment at

650◦ C. This did not lead to an increase in the mechanical quality factors, as can

be seen from Fig.[2.10]. XPS measurements of the surface constitution of these

6
810

6

2

4

6
810

7

2

4

6
810

8

 Q
ua

lit
y 

Fa
ct

or
 

3.0x10
62.52.01.51.00.5

 Frequency (Hz)

 30 nm membrane (Non Annealed)
 30 nm membrane  (Annealed)

Figure 2.9: Quality factors of a 30 nm membrane before and after annealing
at 650◦ C.

membranes revealed no additional contamination of these membranes, in compar-

ison to membranes of other thicknesses. The reason for the apparently discrepant

behavior of the thinnest membranes is therefore still unknown.
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2.6 Overview of dissipation mechanisms

The sources of dissipation in silicon nitride membranes have received a lot of at-

tention in recent years [9][23][11][17][24][25][26][27], with still no consensus on the

limiting damping mechanism in these resonators. The range of damping mech-

anisms in these membranes can be broadly classified into intrinsic mechanisms,

where the loss process occurs inside the membrane resonator and extrinsic mech-

anisms, where the loss occurs due to inevitable coupling between the membrane

and the supporting substrate.

Among these intrinsic processes, some are fundamental, i.e., they would be present

even in a defect free ‘ideal’ material. These include, thermoelastic damping and

Akheizher damping (arising from phonon-phonon coupling). Other intrinsic mech-

anisms occur due to the coupling between the phonons and surface or bulk defects

in the membrane resonator.

Even if these processes were absent, which we could imagine would be the case at

low temperatures and for more perfect materials, there would still be loss due to

coupling between the resonator and the surrounding substrate. Once the energy

leaks from the resonator to the supporting substrate, it may either be dissipated

there or propagated away. This corresponds to radiation loss of the elastic energy

from the resonator. A summary of the damping mechanisms in these resonators is

listed in the table below.

22



Intrinsic Extrinsic
Fundamental Material Loss in the sub-

strate
Anchor loss

Thermoelastic
Damping

Surface loss in
the membrane

Thermoelastic
damping: sub-
strate

Loss due to
phonon tun-
neling into the
substrate

Akheizer Damp-
ing

Loss in the bulk
of the membrane

Material loss in
the substrate

Corrections
from substrate
induced mode
hybridization

2.7 Thermoelastic damping

We start by considering thermoelastic damping (TED) originally considered by

Zener in [28]. TED arises as a result of the nonlinear coupling between the acoustic

resonator mode and the bath of thermal phonons, in the limit where the mean free

path of the thermal phonons is much smaller than the wavelength of the acoustic

wave/resonator mode. In this limit, where the thermal phonons are diffusive, the

resonator can be associated with a local temperature which is different at different

locations as a result of the local changes in volume arising from the resonator

motion. Thermoelastic dissipation arises due to irreversible heat flow from these

local temperature gradients. The interactions between the acoustic mode and the

bath of thermal phonons is characterized by the coefficient of thermal expansion

α. The term in the free energy that captures this is given by

δF = Eα(T − T0)
∑
j

ujj (2.8)

This is the only symmetry allowed term that is linear in the temperature deviation

and the strain. Zener’s model for thermoleastic damping is obtained through a

generalization of Hooke’s law in which the stress and the strain are related by,

σ + τeσ̇ = ER(ε+ τσ ε̇) (2.9)
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where τe and τr are relaxation constants for the strain and the stress respectively.

Fourier transforming the above equation and calculating the ratio of the imaginary

and real part of the complex elastic modulus results in the quality factor limit given

by

Q−1 = ∆M
ωτ

1 + (ωτ)2
(2.10)

where in the above,

∆M =
Ead − E

E
=
Eα2T0

Cp
(2.11)

where Ead and E are the adiabatic and isothermal elastic moduli, T0 is the res-

onator temperature, α is the coefficient of thermal expansion and Cp is the heat

capacity. The relaxation timescale goes as τ ∝ b2 where b is the smallest dimen-

sion of the resonator. The exact derivation is done for a cantilever, whose width

is b. The dependence on the square of the dimension arises as a result of the

diffusive nature of the heat flow. Thermoelastic dissipation therefore grows with

decreasing dimensions of the resonator and decreases with decreasing temperature.

The above expressions are valid for an unstressed cantilever resonator. The simple

Zener model provides results that are similar to a more exact calculation of the

same done in [29].

We now model the thermoelastic damping for a silicon nitride membrane resonator,

under stress, based on the formalism introduced in Ref.[29],[30]. The internal stress

in the silicon nitride drastically changes the quality factor limit set by thermoe-

lastic damping. We start with Eqn.[2.1] for a membrane with flexural rigidity,

under tension. We note that in terms of the deviation of the membrane along the

z direction w(x, y), the strain tensor is given by

uij =
1

2

(
∂ui
∂xk

+
∂uj
∂xi

)
=

1

2
z

(
∂2w

∂xi∂xj
+

∂2w

∂xj∂xi

)
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The equation of motion in the presence of thermal strain becomes ([31]),

D∇4w − σh∇2w + ρh
∂2w

∂t2
= −∇2MT −NT∇2w (2.12)

The terms on the right of the above equation are effective forces resulting from

thermal stresses and are decomposed into a thermal axial force and thermal bend-

ing moment[31] as given below:

NT =
Eα

1− νp

∫
θdz

MT =
Eα

1− νp

∫
zθdz

The temperature field itself satisfies the standard diffusion equation which is mod-

ified in the presence of the thermoelastic term, as given below

κ∇2θ = ρCp
∂θ

∂t
− EαT0

1− νp
∂

∂t
(z∇2w)

The thermal diffusion that needs to be considered is along the smallest dimension,

i.e., the thickness of the membrane. In the above, θ(x, y, z, t) = T (x, y, z, t)−T0 is

the deviation in temperature from the equilibrium temperature T0, κ is the thermal

conductivity, ρ the density and Cp the specific heat. The coupled thermoelastic

equations (2.12),(2.13) can be solved for the normal modes of vibration by obtain-

ing an effective equation for membrane vibration in the presence of thermoelastic

damping. The quality factor can then be extracted from the corresponding eigen-

frequencies using,

Q−1 = 2
=(ω̃)

<(ω̃)
(2.13)

The effective equation for membrane vibration is obtained by first solving the

diffusion equation with the boundary conditions corresponding to no heat flow at

the top and bottom membrane surfaces, i.e., ∂θ0
∂z

= 0; z = ±h
2
, which gives

θ0(x, y) =
EαT0

(1− νp)ρCp
∇2w0(x, y)

(
z − sin(k̃z)

k̃ cos(1
2
k̃h)

)
(2.14)
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where k̃ = (1 − i)
√

ωρCp
2κ

. We now return to the equation (2.12) describing the

membrane displacement w(x, y, t). Substituting the expressions for the thermal

axial strain and bending moment (2.13), we get,

D∇4w0 − σh∇2w0 +
Eα

1− νp
∇2w0

∫ h/2

−h/2
θ0dz +

Eα

1− νp

∫ h/2

−h/2
z∇2θ0dz = ρhω2w0

(2.15)

Substituting the solution of the heat equation into the above results in a modified

equation for membrane vibration [31]:

(D +Dt)∇4w0 − σh∇2w0 = ρhω2w0 (2.16)

where in the above, we have written w(x, y, t) = w0(x, y)eiωt and,

Dt =
E2α2T0

(1− νp)2ρCp

(
h3

12
+
h

k̃2
−

2 tan( k̃h
2

)

k̃3

)
(2.17)

is the correction due to thermoelasticity. Dt has a non zero imaginary part which

quantifies the thermoelastic damping of the membrane vibrations.

Solving Eqn.[2.17] to obtain the normal modes and eigenfrequencies assuming stan-

dard clamped boundary conditions at the membrane edges gives the eigenfrequen-

cies,

ωmn =

√
σπ2

ρL2
(m2 + n2) +

(D +Dt)

ρhL4
(m2 + n2)2π4 (2.18)

In the limit of large stress, the first term in the above equation is much larger

than the second term. The small parameter comparing the tension term and the

flexural rigidity D is η = D
σhL2 which for the 5 mm membranes is ∼ 10−7. In this

case (2.18) reduces to,

ωmn = ω0
mn

(
1 +

π2(D +Dt)

2σhL2
(m2 + n2)

)
(2.19)

where ω0
mn =

√
σπ2(m2+n2)

ρL2 . The quality factor is therefore given by

Q−1
mn = 2

=[ωmn]

<[ωmn]

≈ π2(m2 + n2)

σhL2
=[Dt]
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We have

=[Dt] =
E2α2T0h

3

12(1− νp)2ρCp
=[

24

h3k̃3

(
k̃h

2
− tan

(
k̃h

2

))
] (2.20)

The imaginary part in the expression above is identical to Eqn.[22] of [29]. The

above expression thus evaluates to,

=[Dt] =
E2α2T0h

3

12(1− νp)2ρCp
g(ξ) (2.21)

where,

g(ξ) =

(
6

ξ3

sinh(ξ) + sin(ξ)

cosh(ξ) + cos(ξ)
− 6

ξ2

)
(2.22)

and ξ in the expressions above is a dimensionless parameter given by,

ξ = h

√
ω0ρCp

2κ
(2.23)

The quality factor in the limit of high stress as a function of mode index and as a

function of frequency therefore reduces to:

Qmn =
12(1− νp)2

π2

1

(m2 + n2)

(
ρCp
Eα2T0

)
σ

E

(
L

h

)2
1

g(ξ)

Q(ν) =
3(1− νp)2Cpσ

π2ν2E2α2T0h2

1

g(ξ)

It is straight forward to obtain the result for intermediate stresses as

Q =
12(1− νp)2ρCp
E2α2T0h3g(ξ)

(σhL2 +Dπ2(m2 + n2))

(m2 + n2)π2
(2.24)

where in the above the function g(ξ) and ξ are as defined in Eqns.[2.22,2.23].

In the limit σ → 0, the above equation reduces to the expression obtained for

an unstressed plate in [30]. The low stress limit for the quality factor is the

dashed orange curve plotted in Fig.[2.10]. The measured quality factors for the

5 mm membranes exceed this bound1 which does not apply for these high stress

membranes.

1Prior comparisons of quality factor data for high stress membranes with this low stress bound
necessitated the above analysis. This error has also been noted in [18][32].
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Figure 2.10: Quality factors for high stress silicon nitride (5mm, 100 nm),
and the thermoelastic damping limit curves. The thermoelastic
damping limit in the high stress case (black curve) is around
QTED = 1012 for ν = 500 kHz, which is 5 orders of magni-
tude larger than the measured mechanical quality factors. The
quality factor limit in the limit of low stress is given by the
dashed orange curve. Material parameters: E = 270 GPa,
α = 1.6 × 10−6/K, Cp = 710.6 J/kg/K, κ = 10 W/m/K,
νp = 0.27, σ = 900 MPa, ρ = 2.7× 103 kg/m3

For the high stress membranes, for material parameters used in our study, we

find that the thermoelastic damping (TED) limit is QTED ≈ 1012 at ν = 500 kHz,

which is consistent with the estimate in [32]. This therefore discounts thermoelastic

damping in the membrane as the limiting cause for damping in high stress silicon

nitride membranes.
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2.7.1 Thermoelastic damping in the silicon substrate

In addition to thermoelastic damping in the membrane, another source of damping

that we considered was thermoelastic damping in the supporting substrate plat-

form. This is of interest since, while the substrate dimensions are larger, it is not

under stress. As a result the thermoelastic damping limit for modes of the sub-

strate platform are lower than that of the high stress membrane. The thermoelastic

damping limit for the modes of the substrate platform are shown in Fig.[2.11(a)].

The two different arcs correspond to the thermoelastic damping limits for flexu-
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Figure 2.11: (a) Thermoelastic damping of vibrations of the susbtrate plat-
form. The flexural modes have a lower thermoelastic damping
limit since the limiting dimension is the substrate thickness as
opposed to the substrate width. (b) Fraction of the elastic en-
ergy in the substrate, obtained through COMSOL simulations of
the membrane and the substrate. Eigenfrequencies of the com-
bined membrane substrate system are obtained and the fraction
of elastic energy in the substrate are obtained for each eigen-
mode.

ral modes (orange squares), corresponding to out of plane vibrations and shear

modes corresponding to in plane vibrations (blue squares). For flexural modes of
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the substrate platform the quality factor limit is commensurate with the measured

membrane quality factors (see Fig.[2.11]). An estimate of the membrane quality

factor limit set by this mechanism can be obtained by considering the thermoe-

lastic limit for the substrate modes in conjunction with the elastic energy of the

membrane substrate system that is stored in the substrate (Fig.[2.11](b)). This

fraction, estimated through COMSOL simulations of the membrane substrate sys-

tem, is < 10−6. Therefore a naive lower bound for the mechanical quality factors

would be Emem/Esub × Qsub
TED > 1012, i.e., much larger than the measured mem-

brane quality factors. We therefore discount this as a limiting mechanism for the

observed quality factors.

2.8 Akheizer damping

Akheizer damping[33] is a fundamental source of intrinsic damping arising from

phonon-phonon coupling. Unlike thermoelastic damping, where a spatially modu-

lated strain leads to heat flow between different spatial locations, Akheizer damping

involves energy flow between different phonon modes. The strength of Akheizer

damping is given by the Gruneisen parameter γ, characterizing the strength of the

coupling between phonons. The quality factor limit arising from this coupling is

of the general form[34],

Q−1
akh =

CTγ2

ρv2

ωτph−ph
1 + ωτ 2

ph−ph
(2.25)

here C is the specific heat, T is the temperature, ρ is the density and v is the speed

of sound. The relaxation time τph−ph for this process is given by τph−ph = 3k
Cv2 ≈

0.1− 10 ps [35], where k is the thermal conductivity. An estimate of the Akheizer
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damping limit to the quality factors is therefore,

Q−1
akh =

CTγ2

ρv2
ωτ ≈ 6πνTkγ2

ρv4
≈ 3× 10−9 (2.26)

for ν = 1 MHz and using the bulk properties of silicon nitride (k = 10W/m/K;

γ = 1, ρ = 3.2 g/cm3, v = 8800 m/s). While this analysis does not take into

account the intrinsic stress of the silicon nitride, it provides an order of magnitude

estimate that suggests that the phenomenon is not relevant for explaining the

observed quality factors.

2.9 Intrinsic material dissipation

Having discounted thermoelastic damping and Akheizer damping, we proceed to

intrinsic damping arising from the phonons coupling to defects present in the sili-

con nitride membranes. The nature of the defects in the silicon nitride that play

a role in the mechanical dissipation is largely unknown. One that has received

some attention[23], is the coupling between mechanical motion and intrinsic, lo-

calized defects within the membrane. The losses in this case are modeled as being

due to coupling between phonons and two-level systems, with the energy splitting

of the two level systems being modulated by an oscillating strain field[36]. The

re-equilibration of excited two-level systems results in the attenuation of the me-

chanical energy.

Given that our experiments are conducted at room temperature, we may consider

these two-level systems to be thermally activated over a wide range of energies.

The temperature dependence of the dissipation within this model, while not show-

ing an Arrhenius type behavior, still shows a strong temperature dependence with

Q−1 ∝ T 3 (See [37]). However it is well known that dissipation in silicon nitride
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does not show a significant temperature dependence[23]. Our own data on the tem-

perature dependence of the mechanical quality factors, shown in Fig.[2.12], albeit

over a small temperature range of ∼ 50◦C, does not appear to show a change in the

peak quality factor values (The variation of the qaulity factor with temperature

seen for a few modes, such as those designated by the black squares in Fig.[2.12]

are due to resonances with modes of the substrate platform[38]).

Additionally, for the mechanical frequencies in this work, the two-level system
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Figure 2.12: Temperature dependence of mechanical quality factors over a
temperature range of 50◦C. Most of the modes show barely any
change in the mechanical quality factors. The large change in
the mechanical quality factor of one of the modes (88 mode:
black) is believed to be due to resonance with a mode of the
substrate platform.

model [39] predicts a scaling of Qjk ∝ 1
νjk

and a dissipation that is independent
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of the mode geometry, dimensions of the resonator and the details of the support

structure, which are inconsistent with our observations.

We therefore discount this intrinsic loss mechanism based on the absence of the

correct scaling of quality factors with frequency and the absence of temperature

dependence of the measured quality factors.

2.9.1 Mechanism agnostic intrinsic damping: defects cou-

pling to membrane curvature

Another intrinsic damping mechanism is that proposed in [25],[26]. Here a specific

microscopic mechanism is not considered, but the intrinsic damping is instead phe-

nomenologically modeled through an imaginary elastic modulus. The dissipation

is proportional to the imaginary part of the elastic energy, which is proportional to

the square of the curvature of the displacement field, the leading symmetry allowed

term. Given the quartic term in Eqn.[2.1] and given that the resonator satisfies

clamped boundary conditions2 at the resonator substrate interface,

w(x, y)|edge =
∂w

∂n
|edge = 0 (2.27)

where n is the direction normal to the edge, the membrane displacement near

the edges deviates from sinusoidal functions. The length scale of this exponential

tail, obtained by solving Eqn.[2.1], with the above boundary conditions is given

by λL
4

, where λ =
√

Eh2

12(1−ν2
p)σL2 , where E is the Young’s modulus and νp is the

Poisson ratio, and L is the width of the resonator[25]. Most of the curvature of the

membrane occurs at clamped edges, given the short length scale over which the

2assuming that the substrate is rigid. The basis of anchor loss models is that the base at the
point of attachment is not rigid. Instead the point of attachment moves, resulting in work being
done by the resonator and concomitant energy loss.
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membrane deviates from sinusoidal behavior (∼ 100 nm). This model therefore

predicts a quality factor that is largely flat with frequency, with a slight decrease

in the quality factors due to the small additional contribution coming from the

curvature at the antinodes. The predicted quality factor as a function of mode

index is,

Qm,n =
Qintr

2λ+ (n2 +m2)π2λ2
(2.28)

The model does not explain the variation seen in the measured quality factors

with mode number over a given frequency window. This can be seen by plotting

the quality factor as a function of the measured curvature using modal images ob-

tained through our interferometric imaging technique. We observe that the quality

factors can vary by almost 2 orders of magnitude for a corresponding variation in

the integrated curvature of less than 20%, pointing to a weak correlation between

the two quantities. This can be seen in Fig.[2.13], where the green squares show

the variation of the measured quality factors as a function of the measured curva-

ture. The red diamonds show the expected variation of the quality factors based

on Eqn.[2.28]. We note here that the measured curvature does not include the

contribution from the curvature near the clamp, which is below the resolution of

our images. This notwithstanding, such a source of loss cannot explain the dra-

matic variation in quality factors seen for a given frequency with variation in mode

index. Additionally, as we will see in Sec.[2.10], the large variation in quality factor

has a specific functional dependence on the mode index that is not captured by

this model. The model however appears to be consistent with the observed weak

decrease in peak quality factor with increasing frequency, and its dependence on

the membrane width and thickness, as can be seen in Fig.[2.14]. The loss modu-

lus, extracted from these, which is a phenomenological fit parameter, varies by a

factor of 2 over the membrane geometries considered and is found to increase with
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Figure 2.13: Quality factor vs measured curvature. There is no correlation
between the measured quality factors and the measured curva-
ture. The figure shows the quality factors of all modes between
300 and 400 kHz for a membrane with parameters: σ = 250
MPa, L = 5 mm, h = 100 nm. The relation between the mea-
sured curvature and the calculated curvature can be found in
Fig.[2.20] of Appendix.[2.1].

decreasing membrane thickness (Inset of Fig.[2.14]).

A purely intrinsic loss modulus can also not explain the variation in the peak qual-

ity factor for the same membrane geometry, through a change in just the substrate

thickness (See Fig. 4.9 of [18]). It remains to be seen if such an imaginary loss

modulus can arise an from effective coupling to the substrate, i.e., through anchor

loss.
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Figure 2.14: Graphs of peak quality factor versus frequency for various mem-
brane geometries, membrane parameters shown in the legend,
with fits to an intrinsic loss model parametrized by an imagi-
nary frequency independent elastic (loss) modulus. (Inset) Loss
moduli values from the fit are plotted as a function of mem-
brane thickness (Blue squares correspond to high stress (900
MPa) membranes, orange square corresponds to low stress mem-
brane(250 MPa)). For comparison, the Young’s modulus of SiN
is ∼ 270 GPa.

2.10 Radiation loss to the surrounding substrate

Finally, we consider the role of radiation loss from the membrane into the support-

ing substrate, arising from the work done by the resonator on the substrate, as

the resonator moves. There are various treatments of anchor loss that have been

considered in the literature [11][24][40][41][42][43]. The one that we consider here
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is based on the picture of ’phonon tunneling’ [11][24][40], wherein the resonator

can be regarded as a phononic cavity, weakly coupled to the surrounding substrate.

Every time the phonon wavepacket hits the boundary of the resonator, there is a

probability of transmission to the substrate. The anchor loss limited quality factor

is therefore heuristically given by[40],

Q(ω)−1 ≈ cR
ωL

T (ω) (2.29)

where T (ω) is the transmission coefficient from the resonator to the substrate and

cR
ωL

is the rate at a phonon wavepacket hits the wall of the resonator per oscillation

period. The transmission coefficient can be obtained by solving for the boundary

conditions at the resonator substrate interface, in a manner similar to the case of

an electromagnetic cavity.

An alternative way to calculate the transmission probability is to use Fermi’s golden

rule to obtain the decay rate of a phonon of the resonator coupled to the continuum

of modes of the support[44], and use it to extract the anchor loss limited quality

factor in the classical limit. We consider the resonator, the substrate and the

resonator substrate coupling to be characterized by the following Hamiltonian[11],

Ĥ = Ĥ0 + Ĥ ′ = h̄ωRb
†
RbR +

∫
q

h̄ω(q)b†qbq + h̄

∫
q

(ξ(q)bq + hc)
(
b†R + bR

)
(2.30)

H ′ parametrizes the coupling between the resonator and the substrate, and in

what follows will be related to the physical interaction between the resonator and

the substrate at the periphery of the resonator. The rate of transition from state

|n, 0〉 → |n− 1, q〉, through Fermi’s golden rule is,

Γn→n−1 =
2π

h̄

∫
d3q
∣∣∣〈n, 0|Ĥ ′|n, q〉∣∣∣2 δ(E − Eq) (2.31)

The matrix element in the above equation evaluates to,

〈n, 0|h̄
∫
q

[
ξ(q)b†Rbq + hc

]
|n, q〉 =

√
nh̄ξ(q) (2.32)

37



The quality factor is hence given by,

Q−1 =
Ė

ωE
=

Γn→n−1h̄ω

ω (nh̄ω)
=

Γn→n−1

nω
=

2π
∫
d3q
|ξ(q)|2 δ(ω − ωq)

ω
(2.33)

Note that the Fock state index n and the factors of h̄ cancel in the equation above.

The coupling between the resonator and the substrate is computed through the

expression for the work done at the resonator substrate interface[19][11] and is

given by,

H ′ =

∫
S

d~S.
(
σ̆0
sub.~ures − σ̆′res.~usub

)
(2.34)

where S indicates the contact area between the resonator and the substrate at the

resonator periphery. In order to go from Eqn.2.34 to the expression for ξ(q) in

Eqn.[2.30], we write the resonator, substrate stress and displacement in terms of

their respective normal modes using the standard decomposition given by[11],

~usub(r) =

∫
q

√
h̄

2ρsω(q)

(
~uqb
†
q + hc

)
~ures(r) =

∑
n

√
h̄

2ρRωR,n

(
~uRb

†
R + hc

)
Substituting the expressions above into Eqn.[2.34] results in,

ξ(q) =

√
1

2ρsω(q)

√
1

2ρRωR,n

∫
S

d~S.(σ̆0
q .~uR,n − σ̆′R,n.~u0

q) (2.35)

The above equation, along with Eqn.[2.33] results in the following expression for

the anchor loss limited quality factor, identical to that obtained in [11],

1

Q
=

π

2ρsρRω3
R

∫
q

ddq

∣∣∣∣∫
S

d~S.(σ̆0
q .~uR − σ̆′R.~u0

q)

∣∣∣∣2 × δ(ωR − ω(q)) (2.36)

Note that σ′R is the change in stress field associated with the normalized resonator

mode and ~uq the displacement field for the continuum of free modes of the sub-

strate. Given the clamped boundary conditions satisfied by the resonator, ~uR = 0,

only the second term in Eqn.[2.36] contributes, i.e.,

1

Q
=

π

2ρsρRω3
R

∫
q

ddq

∣∣∣∣∫
S

d~S.(σ̆′R.~u
0
q)

∣∣∣∣2 × δ(ωR − ω(q)) (2.37)
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The support modes are labeled by a wave vector index q, with ωq being the corre-

sponding eigenfrequency. Note that the in the above expression, ρs, ρR are 2d/3d

densities depending on the model for the resonator and the substrate. The mem-

brane can typically be well approximated as 2 dimensional and therefore ρR = ρSiN t

where t is the thickness of the silicon nitride. In [24] the substrate is modeled as an

elastic half space with infinite thickness (see inset Fig.[2.15]). Further more, the

under etched gap between the resonator and the substrate is ignored. Such a space

supports longitudinal, transverse and surface acoustic waves. The wavelength of

the various substrate waves are plotted as a function of frequency in Fig.[2.15].

At low frequencies, i.e. upto 300-400 kHz, the wavelengths of the acoustic waves
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Figure 2.15: Half wavelengths of various waves in a silicon substrate as a
function of frequency. The width of the substrate is 10 mm and
the thickness of the substrate is 500 µm.

are larger than the lateral size of the silicon substrate. This is consistent with

39



the fact that for frequencies less than 300 - 400 kHz, the quality factors are dras-

tically affected by the clamping mechanism of the substrate to the underlying

aluminum chuck (See Sec.[2.5]). At all frequencies of interest, the half wavelengths

are greater than the thickness of the substrate. Typically, the quality factor limit

is determined by the impedance mismatch between waves in the resonator and

waves in the substrate[24], characterized by the parameter

ηγ =
cγ
cR
∼

√
EsρR
σρs

(2.38)

where cγ and cR are the sound velocities in the resonator and the substrate. The

larger this parameter is, the lesser the radiated acoustic energy and the higher the

quality factor limit (with a dependence going as η3
γ for coupling to a 3d substrate).

This can be heuristically understood from the fact that Q−1 is proportional to the

substrate density of states. As the speed of sound in the substrate is increased,

the density of modes of the substrate at a given frequency decreases as 1
c3

where c

is the speed of sound in the substrate.

There are additional factors arising from an explicit evaluation of the integral in

Eqn.[2.37] associated with the overlap between the resonator and the substrate

mode. The large intrinsic stress of the stoichiometric SiN and the extremely small

thickness of the membrane allow us to relate the stress field at the periphery to

the slope of the resonator mode evaluated at the clamp[24],∫
ẑ.σ̆′R.x̂dz = σt

∂φR
∂x

(2.39)

where in the above expression x is the direction normal to clamp edge, t is the mem-

brane thickness and σ is the intrinsic tensile stress and φR(x, y) is the membrane

eigenmode. For a square membrane, this results in the expression,∫
S

d~S.σ̆′R.~u
0
q = 2σt

∫
uγ,λ(x = L/2, y)

∂φR
∂x
|x=L/2dy

+ 2σt

∫
uγ,λ(x, y = L/2)

∂φR
∂y
|y=L/2dx
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where in the above, γ indexes the type of substrate wave, i.e. longitudinal (l),

transverse (t) and surface acoustic waves (s), and λ an index of the substrate

eigenmodes based on ts symmetry. The ideal square membrane and the substrate

system is reflection symmetric about the x-z and y-z planes and the eigenmodes

of the substrate can be decomposed into eigenmodes of these reflection symmetry

operators. The contributions to the integral in Eqn.[2.40] only arise from substrate

and resonator modes that share the same symmetry, i.e. resonator modes with even

parity only couple to substrate modes with even parity etc. An explicit evalua-

tion of the integral above[24],results in the following expression for the mechanical

quality factor,

1

Qnm

=
16πn2m2ρRt√
m2 + n2ρsD

∑
l,γ

n3
γw̃

n,m
l,γ (
√
m2 + n2ηγ, νs) (2.40)

with the function wn,ml,γ are functions that parametrize the resonator substrate over-

lap, listed in [24][11].

This phonon tunneling model leads to a large difference in the quality factors

for modes with even and odd parity[24], with the even parity modes having a

higher predicted quality factor due to destructive interference of the radiated elas-

tic waves. This is observed to a degree for modes with low mode indices (see

Fig.[2.16]), particularly for the membranes with small sizes and correspondingly

higher frequencies. In contrast, for the low mode indices of the L = 5 mm mem-

branes, the distinctive parity dependence predicted by the above formalism is not

seen in the measured data. This is due to the fact that the wavelengths of the

modes of the substrate are larger than the substrate length which means that the

radiated elastic waves see the underlying mount which breaks the x-y reflection

symmetry which is crucial for the destructive interference effect.
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Figure 2.16: Parity dependence of the measured quality factors for the low
mode indices. Membrane dimensions; L = 0.5 mm, h = 50 nm.

2.10.1 Modification arising from substrate mediated hy-

bridization

The mode patterns for the high mode indices
√
j2 + k2 > 4 (the plateau regime)

also do not show this distinctive parity dependence. These modes are observed

to be often hybridized into linear combinations of (j,k) and (k,j) on account of

substrate induced mode coupling (See Fig.[2.17]). In order to isolate the geomet-

rical dependence of the quality factor, we consider the Qs measured over a narrow

range of frequency corresponding to an arc of radius
√
j2 + k2 ∼ 12 in the (j, k)

(shown in Fig.[2.18]). We model this substrate induced mode coupling by using

the hybridized modes to calculate the radiation loss based on the phonon tunneling

expression Eqn.[2.37] and Eqn.[2.40], with φR now being the hybridized modes. We

see that the substrate-induced mode coupling and ensuing hybridization suppresses

the large Q variation between modes of even and odd parity (see Fig.[2.18(b)]). In-

stead, we observe a more gradual variation with lower Qs measured for modes with
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Figure 2.17: Interferometric images of the modal structures resulting from
substrate-mediated coupling. (Left) hybridized mode corre-
sponding to φ3,11−φ11,3,(Right) hybridized mode corresponding
to φ10,6 + φ6,10.

either j � k or j � k, and higher Qs measured for j ∼ k. The close agreement

between our observations and the tunneling model, modified to include interference

effects arising from substrate-induced hybridization (see Fig.[2.18(c)](blue circles),

clarifies the role of anchor losses in determining the peak quality factors. Shown

alongside is the calculation that does not take into account any hybridization (blue

squares). The two predictions differ the most for modes of low symmetry. The

hybridization suppresses the large variations of Q with alternating parity observed

in the original model. For large mode indices j, k � 1 with j, k > ηγ
√
j2 + k2,

the suppressed parity dependence can be well approximated by the asymptotic

expression,

Q−1
kj,asympt ≈

16πj2k2√
j2 + k2

[
1

j4
+

1

k4

]
ρRh

ρsL

∑
γ

η3
γ|u(0)

γ |2 (2.41)

where the summation is now carried out over the various modes (surface acous-

tic, transverse, longitudinal and flexural waves) supported by the substrate. Here,

ηγ = cR/cγ � 1 is the ratio of phase velocities in the membrane and the substrate.

Note that, in this limit, the summation evaluates to a constant and the entire
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Figure 2.18: (a) Predicted quality factors versus mode indices based on
asymptotic limits of our anchor loss model (b) Predicted quality
factors versus φ = arctan(j/k) for mode indices (j2+k2)1/2 = 12
with (without) substrate-mediated hybridization are shown as
squares (•). Also shown is the asymptotic expression for the
quality factors from our model (dashed line). (c) Measured Qs
for mode indices indicated by the green arc in (a). (d) Compar-
ison between the measured Qs in this arc and our predictions
from (b).

mode index dependence is contained in the prefactor. This approximate expres-

sion is plotted alongside the exact calculation in Fig.[2.18(b)] (dashed red lines).

To summarize, hybridization between degenerate resonator modes results in modal

structures that are more symmetric than either of the constituent modes (see

Fig.[2.17]). As can be seen in Fig.[2.18(b)], this results in an increased quality

factor due to destructive interference of substrate modes radiated from the evenly
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spaced antinodal segments around membrane periphery and a suppressed depen-

dence of Q on the parity of the resonator mode.

2.11 Conclusions

We extend previous work [9][17] to realize silicon nitride membrane resonators

with quality factors of 5 × 107 and f × Q products of 1 × 1014 Hz which to our

knowledge, are the largest yet reported at room temperature for membrane res-

onators. We considered various possible limiting dissipation mechanisms in these

resonators and identified radiation loss as the dominant source of dissipation. We

have modelled this loss through a modification of the phonon-tunneling model[24]

to include the effect of substrate induced hybridization, which accurately captures

the modal dependence of the quality factors for the high mode numbers in the

plateau regime.

We have thus realized a platform for the optomechanical cooling and quantum

control of a mesoscopic mechanical resonator that meets all the criteria for ground

state cooling and room temperature quantum control. Additionally, the ultrahigh

quality factors have been realized in resonators with low mechanical frequencies

(100’s of kHz). These are as a result, ideally suited for various schemes to inter-

face mechanical resonators with atomic gases or solid state spin systems, thereby

allowing for the realization of hybrid quantum systems for sensor and transduction

applications as well as for fundamental studies.
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2.12 Appendix: Extraction of membrane curvature

We outline here the procedure for obtaining the curvature from the mode images

measured through our dark field imaging technique. The images obtained are

proportional to the z displacement squared, as can be seen from neighbouring

antinodes having the same intensity.

The images after background subtraction and normalization with the beam profile,

with intensities given by I(x, y) approximate to

Im,n(x, y) ∝ sin2
(mπx

L

)
sin2

(nπy
L

)
(2.42)

for unhybridized modes. For hybridized modes, the corresponding intensities are,

Im,n,± ∝
(

sin
(mπx

L

)
sin
(nπy
L

)
± sin

(nπx
L

)
sin
(mπy

L

))2

(2.43)

Processing of the Images

To image a given mode, the resonator is driven on resonance with that mode to

an amplitude of ≈ 200pm. The membrane (5 mm x 5 mm) is incident with an

expanded beam with a waist of ≈ 3.5mm and a power of ≈ 10µW. The reflected

light from the membrane focusses on a spot of size 200µm, to block out the DC

component, and the resulting images are obtained with a camera exposure time of

1ms. The distances were calibrated with a Michelson interferometer with a small

spot size (≈ 700µm) focused at the center of the membrane.

A background image Ibkg is obtained while the membrane is not driven. The beam

profile (Ibp) of the beam is extracted by imaging at lower power with the dot

removed.

The raw image obtained is rotated to align the square with the x and y axes. The
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edge of the membrane can be clearly identified and the substrate portion of the

image is cut out. The effect of the background and the beam profile is removed to

obtain the an image proportional to the squared displacement z̃2 using,

z̃2(x, y) =
I(x, y)− Ibkg(x, y)

Ibp(x, y)
(2.44)

An image proportional to the modulus of the displacement is therefore,

|z̃(x, y)| =

√
I(x, y)− Ibkg(x, y)

Ibp(x, y)
(2.45)

The sign of the displacement is not present in the image. However since the modes

can be accurately identified (even for the case of the hybridized modes) this sign

information can be added in by hand. We use the calculated displacement for

the mode zcalc(x, y) to extract the sign of the displacement (Sign [zcalc(x, y)]). We

multiply this with the measured |z̃| to obtain,

z̃(x, y) = |z̃(x, y)| × Sign [zcalc(x, y)] (2.46)

Fig.[2.19] shows modal images for the hybridized (6,10) mode before (left) and

after (right) processing. The curvatures are now obtained from z̃(x, y) as outlined

in the next section.

Extracting the curvature

The mean curvature of the membrane is given by

C(x, y) =

(
∂2z

∂x2
+
∂2z

∂y2

)
(2.47)

For a membrane with a loss given by some loss modulus, the energy loss in the

membrane is given as an integral of the mean curvature squared, over the mem-

brane [25].

∆U ∝
∫ ∫ (

∂2z

∂x2
+
∂2z

∂y2

)2

dxdy (2.48)
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Figure 2.19: Image of mode φ(10,6) − φ(6,10) before (left) and after (right)
image processing.

Furthermore the energy stored in the membrane is proportional to the integral of

the displacement squared

U =
ρhω2

2

∫ ∫
z(x, y)2dxdy (2.49)

The intrinsic loss limited curvature contribution to the Q is

Q =
2πU

∆U
∝

∫ ∫
z(x, y)2dxdy∫ ∫ (

∂2z
∂x2 + ∂2z

∂y2

)2

dxdy
(2.50)

The image is a 266 × 266 pixel grid. We replace the functions of coordinates,

with functions of pixel index, i.e., z̃(x, y) → z̃[i, j]. The derivatives in the above

expression are extracted from z̃ by taking finite differences as below.

C(x, y) =

(
∂2z̃

∂x2
+
∂2z̃

∂y2

)
C[i, j] =

(z̃[i+ d, j] + z̃[i− d, j]− 2z̃[i, j])

d2
+

(z̃[i, j + d] + z̃[i, j − d]− 2z̃[i, j])

d2
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A quick optimization of the smoothness of the extracted curvatures gave led to a

choice of d = 5pix. The curvature contribution to the 1/Q, labelled C̃ is given by

C̃ =

∑
i,j C[i, j]2∑
i,j z̃[i, j]2

(2.51)

The above quantity is a normalized curvature that does not depend on the mag-

nitude of the z displacement of the membrane. A plot of the measured curvature

extracted using the method described, versus the calculated curvature is shown in

Fig.[2.20].
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Figure 2.20: Plot of the measured membrane curvature versus the calculated
curvature
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CHAPTER 3

ENGINEERING HIGH-Q RESONATORS THROUGH PHONONIC

BANDGAP SUBSTRATES

3.1 Introduction

The previous chapter identified radiation loss as the dominant source of dissipation

in stressed silicon nitride membrane resonators. In order to verify this hypothesis

and mitigate radiation loss, we engineer devices with silicon nitride membranes

suspended on silicon substrates, which are patterned to have an acoustic band

gap[45, 46]. This chapter reports progress towards increasing the mechanical qual-

ity factors using this approach.

Materials with engineered phononic substructures are now being used for a variety

of applications[47]. In optomechanics, there has been an upsurge of interest in such

structures with the creation of optomechanical crystals[45], structures with simul-

taneous phononic and photonic bandgaps which allow for enhanced interactions

between sound and light, in a small localized mode volume. In SiN membranes

resonators on silicon substrates, apart from mitigation of radiation loss, acoustic

bandgaps also play a role in reducing noise from the substrate modes, which poses

limitations on optomechanical cooling and thermometry[48].

Acoustic bandgaps have previously been engineered in the supporting substrates

of resonators similar to the ones we consider[46, 49], to achieve these ends1. Apart

from the differences in fabrication methods, which we discuss below, a key dif-

1Ref.[46] saw a decrease in the density of substrate modes and a 30 dB suppression of propa-
gating substrate modes, but no change in the mechanical quality factors. Ref.[49] saw the same
mechanical quality factors in a bandgapped substrate, rigidly clamped to the support, as a sub-
strate with no bandgap that is weakly coupled to the support, indirectly indicating mitigation
of radiation loss. Neither however saw an increase in mechanical quality factors.
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ference between these works and ours is that we engineer the devices to have a

large number of membrane modes within the band gap and hence unambiguously

identify the effect of the acoustic band gap on the quality factors of the modes

of the mechanical resonator, measuring a quantitative difference in the mechani-

cal quality factors inside and outside the acoustic band gap. We find that inside

the acoustic bandgap, the typical radiation loss limited quality factor dependence

with modal angle[8] is replaced by uniformly high quality factors for all the modes

within the band gap, irrespective of the modal angle.

However, while we have therefore managed to increase the quality factors of several

modes within the bandgap by more than two orders of magntitude, we have not

yet measured an increase in the peak mechanical quality factors, which remains

ongoing work. We discuss the possible reasons for this in Sec.[3.5].

We engineer the spatial modulation necessary for the creation of a phononic

SiN membrane

1.7 mm

h wb/2

a

(a) (b)

Figure 3.1: (a) Image of device with a bandgapped substrate (b) The unit cell
of the band gap pattern for the device shown in (a). Dimensions;
a = 1250 µm; b = 250 µm; w = 150 µm; h = 200 µm.
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bandstructure by removing parts of the silicon from the sustrate. The patterns are

laser cut on silicon substrates precoated with LPCVD nitride.2 This is also unlike

[46, 49], where deep reactive ion etching (DRIE) is used to create the pattern on

the silicon substrate, before the LPCVD coating of the nitride.

The rest of this chapter is organized as follows. We describe the design of the

bandgapped substrates, using the finite element package COMSOL, in Sec.[3.2]. In

Sec.[3.3], we describe tests of the efficacy of the bandgap on prototype bandgapped

silicon substrates3, with no membrane, through interferometric measurements of

displacements at different locations on the substrate. Lastly, we present the re-

sults of the dissipation measurements of membranes on substrates with acoustic

bandgaps and conclude with a discussion of future steps to enhance the peak qual-

ity factors.

3.2 Design of phononic band gaps in the silicon substrate

The creation of a phononic band structure requires a periodic modulation of the

density of the silicon, which is engineered through a periodic array of holes of spe-

cific shapes in the silicon substrate. The size of the unit cell a is related to the

frequency of the bandgap through νbg = α v
2a

, where v is the speed of sound in

silicon and prefactor α depends on the geometry of the hole in the substrate. This

implies that if one is interested in a band gap at low frequencies, of around a MHz,

the unit cell size is ∼ a few mm. We pick a cross shaped hole, which for a given

unit cell size is found to have a low value of α[45].

2The membrane is protected from the debris of the laser cutting through a protective coating.
The devices are fabricated by NORCADA inc.

3Fabricated by Yogesh Patil using the laser cutter at the group of A. K Lal, Electrical and
Computer Engineering, Cornell University.
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The cross shape retains the symmetry of a square and results in structures com-

posed of square blocks of silicon, connected through tethers (See Fig.[3.1]). Each

block can be thought of as an individual oscillator with modes. The connecting

tethers result in a coupling between the different blocks. If one thinks of this in the

sense of the tight binding model, one can see that the connecting tethers will result

in the formation of phononic bands. As the tether width is decreased, the struc-

ture becomes less stiff. This reduces the speed of sound in the structure which in

turn pushes down the frequency of the lower acoustic band. It also makes the high

frequency optical band narrower and thereby increases the size of the phononic

band gap[45]. In order that the final structure not be too fragile, and because of

constraints from the laser cutting process, the tether width was constrained to a

minimum of 150 µm.

Additionally the bandgap size was found to grow larger and decrease in frequency,

through an increase in the thickness of the substrate. The substrate thickness was

constrained to be 200 µm, because of the challenge of laser cutting the substrate,

with a fragile membrane already grown on it. Given these constraints, the aspect

ratio of the cross shaped hole was optimized to maximize the size of the bandgap.

3.2.1 COMSOL simulations of band structure

The band structure for a given unit cell is obtained in COMSOL by finding the

eigenfrequencies and eigenmodes of the structure, while imposing Floquet periodic

boundary conditions at the edge of the unit cell (see Fig.3.1(b)), i.e.,

d(~r) = ei
~Q.~a.d(~r + ~a)

where in the above, d is the displacement of a point ~r on the boundary of the

unit cell, ~a is the lattice vector and ~Q is the wave vector corresponding to a given
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Figure 3.2: (a) Band structure obtained by solving for the eigenfrequencies of
the structure shown (b), using Floquet periodic boundary condi-
tions, with a bandgap near 2 MHz, with a width of 200 kHz. (b)
Schematic of unit cell and periodic boundary conditions used. (c)
The characteristic displacement profile of modes above and below
the band gap at the M point. (d) The closed loop in momentum
space over which the eigenfrequency analysis is performed.

point in the Brillouin zone. We obtain the eigenfrequencies and eigenmodes of

the structure while doing a parametric sweep of the wave vector ~Q across a closed

loop in k space (see Fig.[3.2](d)) in order to obtain the band structure. Fig.[3.2](a)

shows the band structure for the device shown in Fig.[3.1] with the gray shaded

region indicating a bandgap with ∆ ≈ 200 kHz at 2 MHz.

The geometry of the membrane and the bandgap structure is chosen such that

there were at least two unit cells between the outer edge of the membrane and the

outer edge of the substrate, with the bandgap at as low a frequency and as wide

as possible. We chose the membrane dimensions to be such that there would be
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enough membrane modes within the bandgap so as to obtain a meaningful quality

factor versus modal angle (tan−1 (m/n)) graph for the frequency band within the

bandgap, in order to compare with the case outside the bandgap, for which we

would expect to see the characteristic dependence that is a signature of radiation

loss.

3.2.2 COMSOL simulations for a finite substrate
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Figure 3.3: Response on the chip edge (red curve in inset) to a sinusoidal
out of plane drive force on the inner membrane rim (blue curve
in inset), mimicking the force from the membrane. The green
points show the response of the bangpapped substrate while the
black points show the corresponding response of a substrate with
no band gap pattern. The gray region indicates the bandgap
for the corresponding infinite system and the dashed black lines
show the frequency band corresponding to a 30 dB suppression
in the displacement.
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The simulations described in the previous section are done for an infinite sys-

tem. Given the large size of the unit cell required for band gaps at the relatively

low frequencies of interest, we can fit only a few unit cells between the membrane

edge and the edge of a standard 1 cm wide substrate chip. However, just 2 unit

cells between the membrane boundary and the substrate edge are sufficient for the

bandgap to have an effect on the energy transfer between the membrane and the

substrate periphery. This was seen from simulations of a finite substrate with the

band gap pattern between the membrane frame and the edge of the chip in which

we actuate the substrate on the inner (membrane) rim with an out of plane force

of fixed magnitude and varying frequency and compute the resulting displacement

of the outer edge of the substrate. Fig.[3.3] (green points) shows the displacement

of the outer edge of the substrate in such simulations on a finite substrate for the

bandgap design for the device in Fig.[3.1(a)]. The suppression of the outer edge

displacement coincides with the grey shaded region, which indicates the bandgap

from the infinite system simulations in Fig.[3.2(a)]. No such suppression is seen for

the standard non-patterned substrates (black points). The simulations produce a

30 dB reduction in the displacement inside the band gap, in comparison to that

produced in an unpatterned substrate actuated at the same frequency, even for a

design with two unit cells between the membrane edge and the edge of the sub-

strate platform. The suppression as defined above, was seen to increase by 10 dB

for each additional unit cell between the membrane edge and the outer substrate

edge.

56



10-13

10-12

10-11

10-10

10-9

D
is

pl
ac

em
en

t (
m

)

2.5x1062.01.51.00.5
Frequency (Hz)

 Outer edge
 Inner edge

Band Gap
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the underlying piezo. Resonances of the substrate are measured
through interferometry using a beam focused to a spot near the
outer corner (green spot in the inset schematic of substrate). The
green points show the displacements measured at the outer corner
(green spot) for a fixed piezo drive. The gradual decrease in the
displacement is a result of the band width of piezo response. The
red points are the corresponding displacements measured through
a beam focused to a spot on the inner membrane rim of the
substrate (spot marked in red). The displacement is reduced at
the location of the bandgap for the corresponding infinite system
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3.3 Interferometric tests of bandgap efficacy

Before the fabrication of the final bandgapped devices, the efficacy of the band gap

was tested through prototype band gap substrates with no membrane on them.
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Figure 3.5: Measured displacement suppression for a design with two unit
cells between the membrane and chip edge (light blue scales) and
for the same design with six unit cells between the membrane and
chip edge (light red diamonds).

The tests were conducted out of vacuum with the substrate mounted on an alu-

minum chuck attached to a ring piezo, similar to the mounting of the resonator

chips described in Sec.[2.3]. The suppression of propagating substrate modes is

extracted through interferometric measurements of the displacements, at different

spot locations of a focused beam incident on the substrate. Fig.[3.4] shows one

such measurement for a design with six unit cells between the inner membrane

edge and the outer chip edge. The green squares show the displacements, for a

fixed piezo drive voltage, of resonances of the substrate platform as measured on

the outer edge of the substrate (green spot on the outer frame in the inset). The

red squares are displacements as measured using the same piezo drive, with the
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beam spot incident near the membrane edge of the substrate (red spot shown in the

inset). The gradual decrease in amplitude for the green data points as a function

of frequency is a result of the bandwidth of the piezo actuation. The displacement

of the inner edge shows a pronounced dip at the location of the expected band gap

(indicated by the shaded region).

We define the suppression of propagating modes resulting from the bandgap as the

ratio of the displacement of the inner edge, to that on the outer edge which we

extract through measurements such as the one described. Fig.[3.5] shows a plot of

suppression obtained through such means for a design with 2 unit cells across the

chip frame and one with 6 unit cells across the chip frame. A two unit cell design

shows a displacement suppression of a factor of ∼ 30, while a 6 unit cell design

shows a displacements suppression of a factor of ∼ 500 in the displacement.

While the extent of the suppression is lower by an order of magnitude, compared

to the predictions of COMSOL, we were not too concerned by this on account of

of the differences in the details of the measurements, and the simulations. In the

simulations, the substrate was excited uniformly on the membrane edge and the

displacements measured on the chip outer edge. In comparison, in the measure-

ments, the substrate was excited on the outer edge along one corner. Additionally,

a factor of 30 suppression in displacement, would correspond to a factor of 1000

suppression in the energy, which was deemed sufficient to have a substantial effect

on the quality factors of the membrane resonances within the bandgap.

Morover, the frequency of the measured band gap is very close to that predicted

by the simulations, as can be seen in Fig.[3.4,3.5].
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3.4 Mechanical quality factors of membranes on bandgapped

substrates
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Figure 3.6: Quality factor versus mode index for a membrane on a
bandgapped substrate with 2 unit cells between the inner mem-
brane rim and outer chip frame. The band gap is over a 200 kHz
window between 1.9 - 2.1 MHz, indicated by the region between
the green arcs.

In this section, we present the results of the measurements of the mechanical

quality factors for membranes on bandgapped substrates. Our measurements of

the quality factors use the setup described in Sec.[2.3], with the membrane dis-

placements measured while in vacuum, using a Michelson interferometer. The

quality factors are measured through ringdown measurements of the decay time,

using a lock-in amplifier.
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We first measured the quality factors for the 2 unit cell substrate. Fig.[3.6] shows

the quality factor as a function of the mode index for this device. The mode indices

can largely be uniquely identified based on the frequency, with the two near degen-

erate modes arbitrarily assigned with indices (m,n) and (n,m). In case of quadruple

degeneracies, the mode indices were identified through modal images obtained us-

ing the technique described in Sec.[2.4]. The green arcs enclose the region of the

measured band gap, obtained by sweeping the piezo drive, while monitoring the

displacement near the membrane frame (analogous to the red point in Fig.[3.4]).

The swept spectrum is shown in Fig.[3.7(b)(right axis)]. From the mode indices,

we obtain a mode angle as before, through φ = tan−1
(

m
n

)
.

A plot of the quality factors as a function of the mode angle, for the 2 unit cell

device, are shown in Fig.[3.8]. The green squares indicate the modes within the

band gap, while the blue diamonds indicate modes that are outside the bandgap

(between the blue arcs in Fig.[3.6]). The latter show the typical radiation loss

limited angular dependence, while the former, by comparison show quality factors

that are independent of mode angle. This is a strong indication that radiation

loss has been suppressed. The peak mechanical quality factors for this membrane

were however not higher than those measured for the same membrane without a

bandgap pattern, with the peak Q factor of the band gapped substrate being the

additional red square in Fig.[3.7(a)].

Having not observed an increase in the peak quality factors, we began to ques-

tion whether a measured suppression only a factor of ∼ 30 in displacement, was

responsible for the clamping of the peak quality factors. We therefore proceeded

with measurements of a structure with more unit cells and enhanced suppression,

the 6 unit cell design. The quality factors for the six unit cell device as a func-

tion of mode angle are shown in Fig.[3.9](This data is courtesy of Yogesh Patil).
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strate displacement (red trace), (Left axis) quality factors in this
frequency window (black diamonds)

Once again we see that the quality factor as a function of mode angle within the

bandgap (black squares) has a flat modal dependence in comparison to the quality

factor versus modal angle outside the band gap. Here the (light blue) diamonds

are the quality factors of modes in an arc that is lower in frequency than the band

gap, while the red circles indicate the quality factors of modes in a corresponding

arc that is higher in frequency than the band gap, both showing a large variation

with modal angle. Additionally, as further corroboration that radiation loss is

suppressed within the bandgap, we see a pronounced modal angular dependence

for the quality factor in the same frequency window (as the bandgap), for a de-

vice with no band gap pattern. This is shown in Fig.[3.10] (data taken by Yogesh

Patil). The peak quality factors within the bandgap are still however about the

same, about the same as for the 2 unit cell device.
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Figure 3.8: Quality factor versus mode angle for modes inside and outside
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not seen within the bandgap, indicating suppression of radiation
loss.

3.5 Conclusions and future work

The quality factor measurements on the bandgapped substrate, indicate a sup-

pression of radiation loss within the bandgap, as can be seen from the uniformly

high quality factors measured as a function of modal angle. The increase in the

quality factors is by almost two orders of magnitude for some of the modes within

the bandgap.

The peak quality factors, i.e., the highest quality factors in a given frequency

window have however not yet seen an increase, and remain clamped at values con-
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sistent with that expected given the aspect ratio of the membrane.

If the quality factors of the membrane modes were still limited by radiation loss,

we would not see a flat dependence of quality factor on modal angle, but would

instead still see the arc dependence with much higher Qs. The fact that the quality

factors of all the modes within the arc are limited to the same value suggests that

they are limited though some other mechanism.

The naive explanation is that the quality factors are limited by intrinsic loss in the

nitride, i.e., by curvature induced coupling near the edge of the membrane. This

explanation is however at variance with the known dependence of the mechanical
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quality factors of similar membranes on the thickness of the substrate[18].

The hypothesis being pursued stems from the observation that, while the bandgap

is reasonably successful at suppressing propagating modes of the substrate plat-

form, it still is the case that the bandgapped substrate has a large number of

localized frame modes. These non propagating disturbances of the substrate have

been seen in COMSOL simulations and through laser doppler vibrometry mea-

surements of the substrate vibration profile. The coupling to this bath of frame

modes might not have the same angular dependence that arises from the coupling

to radiating modes. The coupling to such frame modes and subsequent decay of
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the acoustic energy, through for instance, thermoelastic damping in the substrate

platform might be accentuated by the small dimensions of the connecting struc-

tures in the bandgapped substrate. Tests of these hypotheses are being pursued

through the fabrication of devices on thicker substrates, which are expected to

show higher quality factors.

Additionally, new bandgap designs with a larger suppression of propagating modes

and with fewer localized frame modes near the membrane rim are being pursued.
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CHAPTER 4

PARAMETRIC NONLINEAR MECHANICS IN HIGH Q

MEMBRANE RESONATORS

4.1 Introduction

One of the outstanding goals of cavity optomechanics is the creation and manip-

ulation of nonclassical states of mechanical degrees of freedom. The realization

of such states would be an important step, both for fundamental studies of quan-

tum physics and for metrology. Unlike in the case of radiation pressure cooling

and detection of mechanical motion, this mandates a strong nonlinear interaction

between the mechanical degrees of freedom. With this in mind, there have been

numerous theoretical and experimental studies devoted to the realization of nonlin-

ear interactions in mesoscopic mechanical resonators. Broadly, these schemes can

be categorized into those that use optically mediated nonlinearities[21, 50, 51, 52],

those that involve dispersive coupling to other auxiliary quantum systems[53, 54]

and those that use various kinds of nonlinear mechanical interactions[55, 56, 57], a

subset of which are parametric processes, where the nonlinear interaction involves

a modulation of a parameter of the mechanical system, such as the spring constant,

and, can be tuned in strength.

Parametric phenomena[58] have been extensively studied in mechanical res-

onators. They have been realized in single and coupled cantilever and torsional

resonators[59, 60] and have been used for signal amplification[55] and thermo-

mechanical squeezing[61, 62]. They have been recently used in coupled beam

resonators for coherent manipulation of phonon populations[63, 56]. These are

however typically studies that have been done in lossy mechanical systems that
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are not compatible with optomechanical cooling and room temperature quantum

control.

This chapter reports on the realization of a strong two-mode parametric non-

linearity between distinct modes of a single high stress silicon nitride membrane

resonator suspended on a silicon substrate similar to the ones studied in Chapter 2,

i.e., in a platform that has been demonstrated to be compatible with optomechan-

ical cooling to the quantum regime and quantum limited detection. The nonlinear

system realized is a nondegenerate parametric amplifier[59, 60], characterized by

spontaneous self oscillation of two nondegenerate mechanical modes (signal and

idler) when the membrane is piezo actuated at the sum frequency (pump) above

a critical drive strength (For a schematic illustration, see Fig.4.1). Remarkably,

the nonlinearity results in the onset of subharmonic response at pump drives as

low as a few tens of fm despite the high degree of isolation from the environment.

68



This system is therefore very promising for the nonlinear manipulation of phononic

fields, similar in spirit to studies in nonlinear optics.

This chapter is organized as follows. In Sec.[4.2], we describe a scheme to stabilize

the frequency of the mechanical resonator, which because of the narrow linewidths

of the resonator modes, is essential for a quantitative study of the parametric

nonlinearity. This is followed in Sec.[4.3] by a description of the observed phe-

nomenology including subharmonic generation at a threshold drive strength, the

characteristic frequency dependence of the threshold (instability tongue) and the

observation of hysteresis in the response of the signal and idler modes as function

of the pump drive amplitude. In Sec.[4.4], we describe experiments to pinpoint the

microscopic origin of the nonlinearity. Sec.[4.5] provides a description and solution

of a model involving the coupling between the membrane modes and a third mode

located at the pump. We compare the predictions of this model with experimental

observations and find excellent agreement over many orders of magnitude in dis-

placement.

This chapter, the first of two chapters on this subject, focuses on the identification

of the appropriate model for the observed phenomena and discusses primarily the

behavior seen above or at threshold. In chapter 5, we describe experiments done

below threshold, where the system operates as a parametric amplifier. We demon-

strate the parametric amplification of weak membrane mode signals by almost 30

dB and the phase dependence of the amplification of one of the modes (signal)

in the presence of the parametric drive and a coherent drive for the other mode

(idler) and realize dynamics akin to that seen in an optical parametric amplifiers.

Lastly, we demonstrate the use of this parametric amplifier for thermomechanical

noise squeezing.
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4.2 Photothermal feedback control of mechanical frequen-

cies
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Figure 4.2: Schematic of the setup for studies of parametric nonlinearities.
One of the modes of the membrane is used as a modal thermome-
ter. The frequency of this mode is stabilized through photo ther-
mal heating from an auxiliary beam, whose intensity is controlled
to stabilize the frequency.

This study was performed on 100 nm thick, 5 mm wide high stress membranes,

mounted on 10 mm wide, 500 µm thick single crystal silicon substrates. These

membranes show peak quality factors of 45 × 106 with the membrane mount-

ing and assembly as previously described. The membrane is piezoactauted and

displacements are measured using an actively stabilized Michelson interferometer

with a sensitivity of 0.03 pm/
√

Hz using a lock-in amplifier (Zurich Instruments:

HF2LI).

The high quality factors of the modes of the resonator in question result in ex-

tremely narrow line widths (The linewidth of the 77 mode of the membrane, at
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580 KHz and Q = 30 × 106 is 20 mHz). The coefficient for the shift in frequency

of this mode versus temperature is 120 mHz/mK. As a result, stabilization of the

temperature of the membrane mount to 1 mK still results in a shift in frequency

that is several times the linewidth of the mode, preventing a quantitative study

of the nonlinear dynamics under investigation. This problem is circumvented by

using one mode of the membrane as a modal thermometer[64], whose frequency

we stabilize using the frequency shifts that are caused by photo thermal heating

from an auxiliary laser beam.

The thermometer mode is actuated periodically through burst waveforms sent to

the membrane piezo, actuating the membrane to amplitudes of ∼ 1− 5 pm. The

beat frequency with a reference signal is measured using a lock-in amplifier. This

beat frequency is converted to a voltage using a frequency to voltage converter

circuit and this voltage serves as the measured voltage for an intensity stabiliza-

tion circuit. This circuit controls the intensity of the auxiliary beam through an

acousto-optic modulator. The auxiliary beam has a large waist (few mm), and

an increase in the intensity of light results in heating of both the membrane and

the substrate. (Schematic shown in Fig.4.2). The thermal expansion coefficient

of silicon is larger than that of silicon nitride, and as a result, heating of the

membrane and the substrate results in an effective increase in tension and a cor-

responding frequency increase. We use this feedback to stabilize the frequency of

the thermometer mode (at 580 kHz) to 10 mHz over 100 s of observation.1

1Yogesh Patil improved the frequency stability by more than an order of magnitude by im-
plementing a phase locked loop that directly locks the phase of a driven membrane mode, akin
to the method used in [64]. This stabilization scheme is used in the experiments described in
Chapter 5.
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4.3 Phenomenology of subharmonic response of the SiN

membrane

Nondegenerate parametric amplifier pairs were identified through frequency sweeps

of the membrane piezo drive, while monitoring the photodetector response on a

spectrum analyzer and looking for responses nearly subharmonic to the drive fre-

quency. These subharmonic responses are identified as modes of the membrane

through their large ringdown times and also through interferometric images of the

membrane motion. Having identified a pair of modes that are parametrically cou-

pled, we precisely measure the frequency of the membrane modes, typically to an

accuracy of < 10 mHz. On driving at the sum frequency, and gradually increasing

the drive voltage (proportional to the drive force), one finds that below a critical

drive, there is no response at the signal and idler membrane mode frequencies,

while above this threshold drive, the signal and idler modes self oscillate, with

their amplitudes growing exponentially in time (Fig.4.3(a)). The growth rate in-

creases with drive voltage, showing a linear dependence (Fig.4.3(b)). This growth

rate extrapolates to zero at a critical voltage (force)- the instability threshold.

4.3.1 Instability tongue and hysteretic response

The threshold drive voltage is found to have a characteristic frequency dependence.

The threshold is least when the drive is exactly at the sum frequency. When

the drive is detuned from the sum frequency, the instability threshold voltage

grows. While the frequency dependence of the instability threshold can be obtained

through measurements of the growth rate versus the drive voltage and subsequent
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Figure 4.3: (a) Exponential growth of the amplitudes of the signal and idler
modes as a function of time after turn on of the pump drive. The
growth rate is obtained through a fit of the initial exponential
rise. (b) Growth rate of modes approaches zero at a critical
value of the drive amplitude; the instability threshold, with a
functional dependence that is linear in the drive force.

extrapolation of the growth rate at different drive detunings (δ = νd − ν1 − ν2), a

faster way of obtaining the same, and one that is less prone to errors from long term

frequency drifts is by doing slow amplitude sweeps, i.e., at each detuning, the pump

amplitude is swept linearly from 0 → maximum value → 0, while monitoring the

modal response. The modal response to one such drive amplitude sweep is shown

in Fig.[4.4(a)].

The response of the signal and idler modes to these amplitude sweeps is hysteretic

(Fig.[4.4(b)]) with the onset of the modal response during the upsweep, occurring

at a different voltage from the end of the signal and idler response during the down

sweep of the drive amplitude. Fig.[4.4(a)] shows the pump amplitudes (arb. units)

for the onset of the signal and idler response during the upsweep (orange squares)

and the end of the signal and idler response during the down sweep (light blue
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quency dependence of voltage of onset (fall) of signal and idler
response during up (down) sweep. The onset of the response of
the membrane modes occurs at the instability threshold which is
fit to the form

√
1 + αδ2

squares) as a function of detuning from the parametric resonance. In Fig.[4.4(b)],

the threshold for the onset of the down-conversion (upsweep) is fit to:

Vth(δ) = V0

√
1 + αδ2 (4.1)

α dictates the sharpness of the parametric resonance with a smaller α and a nar-

rower resonance for membrane modes with higher quality factors. We show in a

Sec.[4.5.1] that this is the predicted frequency dependence of the threshold of a

nondegenerate parametric amplifier with a low Q mode situated at the pump. Fur-

thermore, as is discussed futher in that section, the data agrees very well with the

predicted α = 4(
νi
Qi

+
νj
Qj

)2 , where νi,j, Qi,j are the frequencies and the quality factors

of the signal and idler modes. The fit in Fig.[4.4 (b)] is based on the measured

value of the frequencies and the quality factors of the signal and idler modes with
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only V0 in Eqn.[4.1] free to vary, indicating remarkable agreement.

4.4 Investigation of the microscopic origin of mechanical

nonlinearity

The observed phenomenon of parametric down-conversion is found to be quite ubiq-

uitous, and we observe that most high Q mode pairs, when driven at a large enough

drive amplitude exactly at their sum frequency, show parametric down-conversion.

However, we observe that some of the mode pairs show down-conversion at re-

markably low drive voltages/pump amplitudes. We address here the question of

what is responsible for the efficient parametric coupling between the membrane

modes that leads to the observed down-conversion. The scenarios that we consider

are resonant enhancement arising from proximal modes of the membrane resonator

and resonant enhancement arising from the modes of the substrate platform. The

former is ruled out based on the experimental evidence presented in Sec.[4.4.1].

The latter is discussed in Sec.[4.4.2]. We have so far found no spectroscopic evi-

dence in support of this claim. However, this cannot be ruled out because of the

existence of substrate modes that our detection is insensitive to, i.e., shear modes

of the substrate platform (see Fig.[4.6(b)]).

The existence of a third low Q mode, at the pump frequency is suggested by the

observation of a strong dependence of the quality factor of the signal mode on the

idler mode amplitude, as we discuss in Sec.[4.4.3]. The shift in the quality factor

of the signal mode is a result of coupling to the highly lossy mode, located near

the pump, through the amplitude of the idler.

Furthermore, as is discussed there, the correlation between the quality factor
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shift and the down-conversion provides strong evidence that the parametric down-

conversion is explained by a coupling of the form Hij = −gxixjXS, where xi,j are

the displacements of the membrane mode, while XS is the displacement of the

substrate mode.

We detail the above arguments in what follows before solving for the predictions

of this model and comparing them closely with the experimental results.

4.4.1 Mediation of the parametric coupling by a mode of

the membrane

We study the role of membrane modes near the parametric resonance (pump fre-

quency) by studying specific test cases of the down-conversion nonlinearity while

simultaneously spectroscopically monitoring the membrane modes near the pump

drive. In Fig.4.5, we monitor the membrane response to a small piezo sweep drive

in the vicinity of 2 parametric resonances (a) and (b). We identify all the mem-

brane modes (Modes (31,34), (1,46) and their degenerate partners) in a 1 KHz

frequency window near parametric resonances. Parametric resonance (a) shows

a low down-conversion threshold (half the parametric resonance threshold of (b))

despite being several tens of linewidths away from the nearest membrane mode.

(b) and (c) both correspond to the precise sum frequencies of membrane modes

(ν5, ν6) and (ν5, ν7). Parametric resonance (b) shows a low down-conversion thresh-

old while (c), just as proximate to a membrane mode as (b), does not show any

down-conversion for even the highest drive voltages (300 times larger than the

down-conversion threshold for (b)).

Additionally, we find that there is no change in the frequencies/response ampli-

tudes of the proximate membrane modes as the drives at (a) and (b) are increased
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Figure 4.5: Spectroscopy of membrane modes near parametric resonances (a)
and (b), indicated by arrows. All the membrane modes within the
window are identified, with Lorentzian fits (dashed black curves)
based on measured frequencies and quality factors. Parametric
resonance (a = ν1 + ν2), showing the lowest parametric reso-
nance threshold is several tens of linewidths away from the near-
est membrane mode. (b = ν5 + ν6) also shows a low parametric
resonance threshold while (c = ν6 + ν7) does not show down-
conversion even at the highest drive voltages, despite being as
proximate to a membrane mode as (b).

above the instability threshold, indicating further that membrane modes proximate

to the parametric resonance play no role in the down-conversion.
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(a) (b)

Figure 4.6: Modes of the substrate platform (a) Flexural mode at 537 kHz
(b) Shear mode at 470 kHz.

4.4.2 Mediation of the parametric coupling by a mode of

the substrate

The silicon substrate on which the membrane is mounted supports a host of modes

(Fig.[4.6]). These modes consist of flexural modes with vibrations out of the plane

which can be detected spectroscopically and shear modes with in plane vibrations.

We envisage that, when the substrate is driven on resonance with these modes,

there will be easy transfer of energy to the modes of the membrane. In order to

detect if there is a flexural substrate mode at the location of the parametric pump,

we pointed the interferometer beam on the substrate. We did not detect any flexu-

ral modes in the frequency windows where we saw the parametric resonances, even

at the largest piezo drive (At the largest piezo drive, the motion due to a possible

flexural mode was < 300 fm. The noise floor was higher by a factor of 10 on account

of the poor reflectivity of silicon substrates with 100 nm coating of SiN, at 794 nm

of ∼ 3 %). While we have not yet found direct spectroscopic evidence for modes

of the substrate playing a role in mediating the nonlinearity, the interferometer is

insensitive to in-plane vibrations and cannot be used to detect a host of substrate
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modes, even in principle. We have possibly only ruled out flexural modes playing

a role in the nonlinearity. Furthermore, we find strong indirect evidence of the

mediation of the nonlinearity through a substrate excitation, as is detailed in the

following sections.

4.4.3 Correlation between down-conversion threshold and

quality factor shift

Pairs of signal and idler modes showing a low amplitude down-conversion nonlin-

earity also show a curious decrease in quality factor when the other mode is driven.

Fig.4.7 shows the normalized quality factor of the signal mode as a function of the

drive amplitude of the idler mode for many pairs of membrane modes. The dis-

placement of the idler mode is calibrated using the measured thermal motion, with

the detected RMS value scaled to that which is theoretically expected for thermal

motion at T = 300 K. The RMS value of the thermal motion is typically measured

over 100 s and shows a 10 % variation across iterations.

As is detailed in the next section, this shift in the quality factor is most eas-

ily explained through the coupling between the membrane modes and a low Q

mode at the pump frequency, through a coupling in the Hamiltonian of the form

Hij = gxixjXS, where xi,j and XS are respectively, the displacements of the mem-

brane modes(i,j) and the third mode located at the pump frequency(S). Driving one

of the modes to a large amplitude couples the other membrane mode (idler) with

the mode at the pump and pulls its quality factor. The predicted functional form

for the Quality factor shift is derived in the next section and given by Eqn.[4.45].

We use this to fit the quality factor versus amplitude curves in Fig.[4.7]. The fit

79



4
5
6

0.1

2

3

4
5
6

1

 N
or

m
al

iz
ed

 s
ig

na
l q

ua
lit

y 
fa

ct
or

102 103 104 105

Idler displacement (pm)

 {ν2, ν1}
 {ν1, ν2}
 {ν5, ν6}
 {ν1, ν2b}
 {ν2b, ν1}
 {ν3, ν2}
 {ν2, ν3}
 {ν2, ν7}
 {ν2, ν5}
 {ν11, ν10}
 {ν9, ν8}
 {ν12, ν13}
 {ν14, ν15}
 {ν17,ν16}

Figure 4.7: Normalized quality factor of the signal as a function of the am-
plitude that the idler mode is driven to. The quality factor of the
signal mode is normalized with its bare value, with the idler un-
driven. The functional dependence of the normalized signal mode
quality factor as function of the idler amplitude is fit to Eqn.4.45.
Some mode pairs showing a much larger shift than others. The
displacement of the idler mode is calibrated by scaling the mea-
sured RMS thermal motion to the theoretically expected thermal
motion at T = 300 K.

takes as input, the measured quality factor of the signal mode Qi, the quality factor

of the putative pump mode QS, and the parameter ξ, which is a length scale that

parametrizes the strength of the coupling. We extract ξ from the fits assuming a

fixed value for the quality factor for the putative pump mode (Qp = 5000). ξ is

correlated with the parametric instability threshold for the mode pairs as can be

seen in Fig.[4.8], where the dashed black line is a power law with exponent of one,

drawn as a guide to the eye. The instability threshold voltage is converted to a
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Figure 4.8: Correlation between length scale (ξ) parametrizing the quality
factor shift of the signal mode with the idler drive and the thresh-
old substrate displacement for parametric down-conversion. The
dashed black line is a power law with an exponent of 1.

threshold displacement by monitoring the response of the membrane as a function

of the drive voltage far away from a mode of the membrane, but close in frequency

to the parametric resonance to calibrate out the frequency dependence of the piezo

response.

The approximate linear relationship between ξ and the threshold displacement,

arises from the fact that they are both inversely related to the strength of the two-

mode coupling g and provides strong support to the model. A model with just two

parametric coupled modes, without a third mode located at the pump frequency,

will also show Q pulling arising from the coupling between the two membrane
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Figure 4.9: (a) Frequency pulling of the signal mode as a function of the
drive amplitude of the idler (b) Plot of frequency shift of pairs of
membrane modes and their corresponding parametric instability
thresholds.

modes. This Q pulling arising from the coupling between the signal and the idler

does not lead to the dramatic quality factor shift, by over two orders of magnitude,

that we see for membrane modes of comparable damping rates.

In addition to a shift in the quality factor of the signal mode as a function of the

idler amplitude, there is also, in addition, a frequency shift of the signal mode

(Fig.[4.9(a)]). This frequency shift shows a quadratic dependence on the ampli-

tude of the idler mode. Unlike the quality factor shift, the frequency shift does

not show as pronounced a correlation with the parametric instability threshold

(Fig.[4.9(b)]).
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4.5 Nondegenerate parametric amplifier: Model

We now examine a model of two resonator modes, parametrically coupled to each

other through a mode at the sum frequency, and quantitatively compare its pre-

dictions with the experimental observations of the previous section. The para-

metrically coupled membrane modes (i,j) and the pump substrate mode (S) have

frequencies ωi,j,S, damping rates γi,j,S and are described by displacements xi,j,S.

We think of the pump mode as a mode of the substrate with a low quality fac-

tor (QS ∼ 103-104). The two resonator modes are modes of the SiN membrane

with Qi,j ∼ 107, leading to subhertz damping rates for the MHz frequencies of

the modes under consideration. The term in the Hamiltonian responsible for the

coupling between the modes is considered to be of the form,

Hij = −gxixjXS (4.2)

We assume for simplicity that ωS = ωi + ωj. The equation of motion (EOM) for

the different modes are,

ẍi + γiẋi + ω2
i xi =

fi(t)

mi

+
g

mi

xjXS (4.3)

ẍj + γjẋj + ω2
jx2 =

fj(t)

mj

+
g

mj

xiXS (4.4)

ẌS + γSẊS + ω2
SXS =

fS(t)

mS

+
g

mS

xixj (4.5)

If we are not interested in the dynamics of the pump mode, we can obtain the

limit of XS being a non-dynamical field through a suitable choice of mS, γS & fS.

We are going to be considering forces fk that are going to be nearly resonant with

the oscillators ωi. We therefore rewrite

fk(t) = <[Fk(t)e
iωkt] (4.6)
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Note that Fk(t) is complex and is allowed to vary slowly in time. We also com-

plexify the displacements, i.e.,

xk = <[zk] k ∈ [i, j, S]

The equations of motion now become,

z̈i + γiżi + ω2
i zi =

Fie
iωit

mi

+
g

2mi

(
ZSz

∗
j +���ZSzj

)
(4.7)

z̈j + γj żj + ω2
j zj =

Fje
iωit

mj

+
g

2mj

(ZSz
∗
i +�

��ZSzi) (4.8)

Z̈S + γSŻS + ω2
SZS =

FSe
iωSt

mS

+
g

2mS

(
zizj +

�
��ziz
∗
j

)
(4.9)

We solve the equation above with an ansatz of the form,

zk = Ak(t)e
iωkt (4.10)

where the Ak’s are complex displacements which also encode the phase of the

response. They vary slowly in time, over time scales set by the coupling and the

decay times of the modes. We drop terms in Eqn.[4.7] of the form ZSzj since they

are off resonant with the membrane mode by ≈ ωS, akin to the rotating wave

approximation. Rewriting Eqn.[4.7,4.8] in terms of Ak gives,

�
��Äi,j + (2iωi,j +��γi,j)Ȧi,j + iγiωiAi,j =

Fi,j
mi

+
g

2mi,j

A∗SAj,i (4.11)

We ignore the Äi,j & γi,jȦi,j terms in the above equations, which are small if the

envelopes Ai are slowly varying. We obtain the same equations of motion through

a two-time scale approximation2 as performed in [58]. This results in the following

2The fast time scale is by ω̃ =
ωi+ωj

2 . We define a non-dimensionalized slow time variable as
T = εω̃t, where ε = 1

Q where Q is the quality factor of the lowest Q mode (pump). The terms in

Eqn.[4.11] that are dropped are at least ε smaller than the ones that remain.
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equations of motion for the slowly varying envelopes,

2Ȧi + γiAi = −i
(

Fi
miωi

+
g

2miωi
A∗jAS

)
= −i

(
vi + κiA

∗
jAS

)
(4.12)

2Ȧj + γiAi = −i
(

Fj
mjωj

+
g

2mjωj
A∗iAS

)
= −i (vj + κjA

∗
iAS) (4.13)

2ȦS + γSAS = −i
(

FS
mSωS

+
g

2mSωS
AiAj

)
= −i (vS + κSAiAj) (4.14)

In the above, we define the following parameters for ease of manipulation,

vk =
Fk
mkωk

; κk =
g

2mkωk
=
gγkχk

2
; k ∈ [i, j, S] (4.15)

The vk’s defined above are proportional to the applied forces Fk’s and have dimen-

sions of velocity and the κk’s parametrize the coupling between the modes. We

will use the vk’s interchangeably with forces, using Eqn.[4.15] to convert between

them.

Firstly, we look at the steady state solution, which can be obtained by setting the

time derivatives in Eqns.[4.12-4.14] to zero. We consider the case where only the

pump mode is being driven, i.e. Fi,j = 0.

At small values of the pump force FS, the only allowed solutions are with Ai,j = 0.

Above a threshold pump force, the probe modes aquire non-zero steady state am-

plitudes. This corresponds to the system undergoing self-oscillation. The threshold

pump force is obtained from Eqn.[4.12] and Eqn.[4.13] and is given by,

|vS,th| = γS

√
γ1γj
κ1κj

(4.16)

⇒ FS,th = mSωSγS

√
γ1γj
κ1κj

(4.17)

It is convenient to rewrite the above equation and the ones that follow in terms of

the magnitude of the on-resonant susceptibility of the oscillators as

χk =
1

mkωkγk
(4.18)

k ∈ [i, j, S]
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Note that the susceptibility is complex, and is given by χk(ω = ωk) = −iχk, with

χk as defined above i.e., |χk(ω = ωk)| = χk. In terms of the susceptibility the

threshold drive force and drive displacement are given by

FS,th =
2

gχS
√
χiχj

XS,th =
2

g
√
χiχj

(4.19)

Above threshold, the saturated/steady state amplitudes of the probe modes grow

with increasing pump drive. The functional form for the saturated probe ampli-

tudes as a function of pump drive are given by

⇒ |Ai|2 = 2

√
χi
χj

(
FS − FS,th

g

)
(4.20)

|Aj|2 = 2

√
χj
χi

(
FS − FS,th

g

)
(4.21)

We parametrize the drive force in terms of the threshold drive force and define

the normalized parametric drive µ = FS
FS,th

. Fig.[4.10] shows a plot of the predicted

pump and signal and idler amplitudes as a function of this scaled parametric drive.

We see that the pump amplitude grows linearly with drive force until the instability

threshold, where it saturates, at which point the signal and idler amplitudes grow

∝
√
FS − FS,th. The functional dependence of the saturated amplitude of the

signal and idler amplitudes agrees very well with that predicted by the model as

can be seen in Fig.[4.11] (left axis).

An additional prediction of the model that is borne out by the data is the

linear dependence of the growth rate of the modes above the instability threshold

(See Fig.[4.11](right axis)). This predicted growth rate ∝ (V − Vth) is easily seen

by solving the time dependent Eqns.[4.12-4.14] with a drive force exceeding the

threshold drive.
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Figure 4.10: Signal/Idler (blue) and Pump (Substrate mode) (red) ampli-
tudes as a function of the scaled drive parametric drive µ = FS

FS,th

showing the functional dependence predicted by the model.

4.5.1 Threshold as a function of detuning

We now consider the case where the pump drive (νd) is detuned from νi + νj. We

assume for simplicity the case where the substrate mode is still on resonance with

the sum of the membrane mode frequencies, i.e. νS = νi + νj. Given the fact that

modes of the substrate are much broader than modes of the membrane, this is a

valid assumption.

We solve the same equations (Eqns.[4.12-4.14]), except that the drive at the pump,

in Eqn.[4.14] is detuned from resonance and hence has a slow time dependence.
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Figure 4.11: Saturation amplitude of the probe (red squares) fit to f(V ) =

α(V − Vth)
1
2 and growth rate (blue crosses) as a function of the

drive voltage with linear fit.

We therefore make the following replacements in Eqn.[4.14],

vS → vSe
iδSt (4.22)

FS → FSe
iδSt (4.23)

δS = ωd − ωi − ωj = ωd − ωS (4.24)

The variables vS, FS are now once again time independent. Since the pump drive

is detuned from νi + νj, when driven above threshold, the probe modes will no

longer oscillate at their natural frequencies. We therefore write the slowly varying

complex amplitudes as

Ak = Bke
iδkt

k ∈ [i, j, S]
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The equations of motion for the variables Bi become,

2Ḃi + γiBi = −2iδiBi − i
(
vi + κiB

∗
jBS

)
(4.25)

2Ḃj + γjBj = −2iδjBj − i (vj + κjB
∗
iBS) (4.26)

2ḂS + γSBS = −2iδSBS − i (vS + κSBiBj) (4.27)

Note that in the above, we have once again defined,

vk =
Fk
mkωk

; κk =
g

2mkωk
=
gγkχk

2
; k ∈ [i, j, S]

We once again obtain the steady-state solutions by setting the time-derivatives in

Eqn.[4.25-4.27] to zero. Doing so and substituting Eqn.[4.26] into Eqn.[4.25] gives,

κiκjBi|BS|2 = Bi(γi + 2iδi)(γj − 2iδj) (4.28)

= Bi (γiγj + 4δiδj + 2i(δiγj − δjγi)) (4.29)

The reality of |BS|2 in Eqn.[4.29] results in the following relation between the

detunings of the probe modes for the case of a pump drive detuned from resonance.

δi
δj

=
γi
γj

(4.30)

The extent of frequency pulling of each the probe modes is therefore predicted to

be proportional to their respective damping rates. This does not always bear out

with what is observed experimentally (See Fig.4.12).

The critical pump mode amplitude above which there exists a non trivial self

oscillating solution, with Bi,j 6= 0 is also obtained from Eqn.[4.29] and noting that

δi
γi

=
δj
γj

=
δi + δj
γi + γj

=
δS
γtot

(4.31)

where γtot = γi + γj. The critical pump amplitude for onset of self-oscillation is

therefore,

|BS| =

√
γiγj
κiκj

(
1 +

4δ2
S

γ2
tot

)
(4.32)

=
2

g
√
χiχj

(
1 +

4δ2
S

γ2
tot

) 1
2

(4.33)
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of frequency shifts ( δνi
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) = −9.4 ; γi
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= 15.6 (b) Measured ratio

of frequency shifts (Probe1/Probe2) = 0.89; γi
γj

= 0.9.

The threshold force for parametric oscillation as a function of drive detuning is in

turn obtained by substituting Eqn.[4.32] into Eqn.[4.27] and is given by,

FS,th =
2

gχS
√
χiχj

(
1 +

4δ2
S

γ2
tot

) 1
2
(

1 +
4δ2
S

γ2
S

) 1
2

(4.34)

which reduces to,

FS,th ≈
2

gχS
√
χiχj

(
1 +

4δ2
S

γ2
tot

) 1
2

(4.35)

in the limit that the damping rate of the pump mode is much larger than damping

rate of the signal and idler modes, and the drive detuning. The detuning depen-

dence of the threshold voltage data fits the functional dependence predicted by

the above formula. Furthermore the width of the instability tongue is in quantita-

tive agreement with that expected from the measured signal mode damping rates.

Fig.[4.13] show the instability tongues for two different parametric resonances, with

the width of the tongues input using the measured quality factors and frequencies
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of the signal and idler modes.

4.5.2 Predicted quality factor shift

Lastly we consider the quality factor shifts occurring in one of the membrane

modes (signal), when the other (idler) is driven to a large amplitude. This arises

as a result of the mixing of the signal mode with the lossy substrate mode through

the idler mode. In the experiments, the idler is driven to a large amplitude through

an external drive thus freezing out its dynamics. The relevant equations of motion
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Figure 4.14: Q pulling of the signal mode as a function of the idler amplitude
fit to functional form resulting from mixing with the substrate
mode

are Eqn.[4.3,4.5] in the absence of applied forces, i.e.,

ẍi + γiẋi + ω2
i xi =

g

mi

XSxj (4.36)

ẌS + γSẊS + ω2
SXS =

g

mS

xixj (4.37)

The quality factor pulling is most easily seen in the slow time scale approximation

which gives the envelopes of the decay, which is what we are interested in anyway.

We assume for simplicity that Aj is purely imaginary, which we can do by choosing

the phase of the idler drive. The EOM’s for the slowly varying envelope are then,

2Ȧi + γiAi = κi|Aj|AS (4.38)

2ȦS + γSAS = −κSAi|Aj| (4.39)

κk =
g

2mkωk
=

gγkχk
2

k ∈ [i, j, S] (4.40)
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The mixing between the modes leads to a change in their respective quality factors,

which are obtained by diagonalizing the above equations. This results in a modified

signal mode (i) decay rate that is given by,

γ′i =
1

2

(
γi + γS −

√
(γS − γi)2 − 4κiκSA2

j

)
(4.41)

=
γS
2

1 +
γi
γS
−

√(
1− γi

γS

)2

−
A2
j

ξ2

 (4.42)

⇒ ξ = γS
(mimSωiωS)

1
2

g
(4.43)

We note the limits of the above. When Aj = 0, γ′i = γi, the bare damping rate

of the signal mode. As Aj increases, the signal mode hybridizes with the mode

of the substrate, leading to an increase in the effective damping rate to γ′i. In

the opposite limit, when Aj → ξ, γ′i →
γi+γS

2
≈ γS

2
. At this point, the effective

damping rate of the substrate γ′S →
γS
2

and signal membrane mode and the pump

substrate mode cannot be distinguished. Given that γi
γS
∼ 10−4, we may further

simplify the expressions above, i.e.,

γ′i ∼
γS
2

1 + 2
γi
γS
−

√
1−

A2
j

ξ2

 (4.44)

The normalized quality factor shift is therefore given by,

Qi(Aj)

Qi(0)
=

γi
γ′i
∼ 2γi

γS

(
1 + 2γi

γS
−
√(

1− A2
j

ξ2

)) (4.45)

From Eqn.4.19 and Eqn.4.43, we obtain the following linear relationship between

the length scale ξ, parametrizing the variation in the quality factor of the signal

mode as a function of the amplitude of the idler, and the down-conversion threshold

force.

ξ(g) =

√
χSχj

2

√
γS
γi
FS,th(g) (4.46)
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Obtaining ξ assuming a constant value QS for the pump mode quality factor, re-

sults in a correlation between ξ and Vth that is shown in Fig.4.8. The expected

relationship between the ξ and Fth has an additional factor of γi/γj. Including

this factor results in the corrected relation between the derived ξ and Fth does not

change the qualitative trend of correlation between the coupling, as obtained from

the quality factor shift and that obtained from the parametric instability thresh-

old, suggesting that they are the result of the same two-mode coupling.

4.6 Conclusions

The proposed two-mode model proposed captures many of the observed paramet-

ric amplifier phenomena. These include:

(1) The linear dependence of the growth rate as a function of drive strength, above

threshold.

(2) Functional dependence of the probe amplitude as a function of drive strength,

above threshold.

(3) The dependence of the threshold drive amplitude on the drive detuning.

(4) The functional dependence of the quality factor shift (of signal) versus the

amplitude of the idler, i.e., the two-mode control of dissipation.

(5) The correlation between the length scale parametrizing the quality factor shift

versus amplitude and the parametric instability threshold.

This corroboration of the model with the experimental data is extremely good, over

a large dynamic range in the displacement. The phenomena that as yet do not

have a quantitative explanation are the two-mode frequency pulling (See Fig.[4.9]),

and the bistability in the response to pump amplitude sweeps Fig.[4.4]. Both these
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phenomena show variations across different mode pairs. Naively one might think

that these phenomena might require the addition of extra nonlinear terms such as

the cubic Duffing term. However, it is likely that these phenomena can also be

explained by small changes to the two-mode model. For instance the introduction

of a frequency mismatch between the substrate mode ωS, and the sum of the mode

frequencies ωi + ωj could explain the bistable response in analogy with the expla-

nation of similar behavior seen in optical parametric oscillators [65].

In summary, we have realized a mechanical parametric amplifier in a platform

that is compatible with ground state cooling, room temperature quantum control

and quantum limited detection. Most of the observed parametric amplifier phe-

nomena are explained using a simple two-mode model with a parametric coupling

between the resonator modes mediated by a mode of the supporting substrate plat-

form. The model agrees remarkably well with experiments, over several orders of

magnitude in displacement. This opens up a powerful new tool for optomechanics,

some of the applications of which will be explored in the next chapter.
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CHAPTER 5

THERMOMECHANICAL TWO-MODE SQUEEZING IN A HIGH Q

RESONATOR

5.1 Introduction

The previous chapter reported on the realization of a nondegenerate parametric

amplifier in an ultrahigh Q membrane resonator compatible with optomechanical

cooling to the quantum regime and quantum limited detection. The observed dy-

namics of the parametric amplifier is well described by a two-mode model with a

parametric coupling between the resonator modes mediated through an excitation

of the silicon substrate platform on which the resonator is suspended. We focused

on the experimental validation of the model and largely discussed the dynamics

above the parametric instability threshold, focusing on the dynamics of the steady

state or average amplitudes and paying no attention to thermal fluctuations and

their correlations. In this chapter, we discuss amplitude fluctuations and corre-

lations in the fluctuations of the mechanical modes arising in a nondegenerate

mechanical parametric amplifier coupled to a thermal bath.

The parametric coupling that we have realized between distinct modes of the mem-

brane is analogous to the nonlinear parametric coupling between optical fields in

an optical parametric amplifier system and allows for a similar manipulation of

phononic fields. Among the significant uses of optical parametric amplifiers are

the generation of squeezed light[66], the demonstration of continuous variable EPR

entanglement[67, 68] and metrology beyond the standard quantum limit[69]. The

realization of an optomechanical system with strong two-mode mechanical para-
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metric nonlinearities, compatible with ground state cooling holds promise for the

realization of similar phenomena in mesescopic mechanical resonators, i.e., the

creation of non classical mechanical states and the observation of entanglement

between macroscopic mechanical degrees of freedom[70, 52] which are long stand-

ing goals in cavity optomechanics.

Additionally, the parametric coupling demonstrated here is of relevance for quan-

tum non-demolition[71] and backaction evading measurement[72] protocols for the

measurement of the position of the mechanical resonator and are therefore cru-

cial for the realization of position measurements beyond the standard quantum

limit[73].

Even in the classical regime, the exploration of analogies with optical parametric

amplifiers suggests the possibility of interferometric schemes[74, 75] for metrology

that beat the limitations set by thermal noise, resulting from the correlations be-

tween the signal and idler modes.

The first step towards this goal is thermomechanical noise squeezing[61], which

in a nondegenerate parametric amplifier, manifests as two-mode squeezing of a

composite quadrature formed from linear combinations of the quadratures of the

individual resonator modes, the demonstration[13] of which is described in this

chapter.

This chapter is organized as follows. We first study the coherent below threshold

dynamics through the weak actuation of the membrane modes in the presence of

the parametric drive. This results in a phase dependent gain in the nondegener-

ate parametric amplifier, described in Sec.[5.2] and experimentally demonstrated

in Sec.[5.3], with close agreement with theoretical predictions providing further

validation for the two-mode model (Sec.[4.5]). In the absence of coherent drive

forces, i.e., in the presence only of thermal noise forces and with the pump driven
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below the parametric instability threshold, the thermal fluctuations of the two

mechanical modes become highly correlated. These correlations manifest as two-

mode squeezing of a composite quadrature formed from linear combinations of the

quadratures of the individual resonator modes. This thermomechanical analogue

of two-mode squeezing seen in optical parametric amplifiers[68] is demonstrated in

Sec.[5.4]. The degree of squeezing closely follows the predictions of the two-mode

model (cf. Sec.[4.5]) with the addition of thermomechanical noise forces. Sec.[5.5]

describes the formalism for the calculation of fluctuation spectra in the presence of

thermal noise and Sec.[5.6] presents the results of this calculation for thermome-

chanical noise squeezing below threshold. In Sec.[5.7], we discuss the behavior of

the fluctuations of membrane modes with the pump driven above the parametric

instability threshold. Here, we observe noise squeezing of a different kind, viz.,

amplitude difference squeezing, with the observed behavior analogous to inten-

sity difference squeezing seen in optical parametric oscillators[76] and contrast this

squeezing with what is observed below threshold.

5.2 Phase dependent amplification: Model predictions

In this section, we consider the coherent dynamics of a nondegenerate parametric

amplifier with the pump field driven below the instability threshold for self oscil-

lation. In this regime, the weak actuation of a membrane mode (idler, i), in the

presence of the pump drive results in the phase coherent production of phonons

in the other membrane mode (signal, j). The coherent dynamics observed in this

case is a result of the interference of the downconverted signal field, which has

a well defined phase relationship between the pump and the idler field and any

preexisting signal field arising from the weak actuation of the signal. This results
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in the gain of the signal field having a strong dependence on the phase of the pump

field (φ).

This behavior, and the expected phase dependent gain, is obtained by the analy-

sis of the slow time equations Eqn.[4.12-4.14] of Sec.[4.5], describing the temporal

variation of the envelopes of mode displacements (Ai), reproduced below:

2Ȧi = γi

[
−Ai + i

g

2
χiA

∗
jAS + iχiF̃i(t)

]
(5.1)

2Ȧj = γj

[
−Aj + i

g

2
χjA

∗
iAS + iχjF̃j(t)

]
(5.2)

2ȦS = γS

[
−AS + i

g

2
χSAiAj + iχSF̃S(t)

]
(5.3)

In the above g is the strength of the two-mode coupling, given by Eqn.[4.2], i.e.,

Hij = −gxixjXS, and χk = 1
mkωkγk

are the on resonant susceptibilities of the me-

chanical modes. F̃i,j are the slowly varying (complex) amplitudes of the external

forces on the individual membrane modes. Even in the absence of external forces

F̃i,j, these coupled equations allow for non-zero steady state amplitudes, i.e., para-

metric self-oscillation, above a threshold substrate amplitude and corresponding

force given by

XS,th =
2

g
√
χiχj

; FS,th =
2

gχS
√
χiχj

(5.4)

In the presence of external actuation of the individual membrane modes and the

substrate (‘pump’) mode, i.e., F̃i,j 6= 0, AS 6= 0, the amplitude of each mode is

a coherent superposition of its individual response to the external force and the

down-converted phonons arising from the two-mode nonlinearity. The complex

amplitudes in the steady state are obtained by solving Eqn.[5.1-5.3] with time

derivatives set to zero. These are:

Ai =
ei(φi−π/2)

1− µ2

(
χi|F̃i|+ µ

√
χiχj|F̃j|eiδφ

)
(5.5)

Aj =
ei(φj−π/2)

1− µ2

(
χj|F̃j|+ µ

√
χiχj|F̃i|eiδφ

)
(5.6)
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where µ = XS/XS,th is the pump amplitude normalized to the threshold for para-

metric instability and δφ = φS − φi − φj with φi,j,S being the various phases

associated with the external forces. The above equation can be recast in terms

of a phase-dependent gain Gi,j(δφ) = |Ai,j|/|A0
i,j| where A0

i,j are the steady state

amplitudes of the respective modes in the absence of down-conversion. This phase-

dependent gain is then given by

Gj(δφ) =
1

1− µ2

×

√√√√1 + µ2
χi
χj

(
|F̃i|
|F̃j|

)2

− 2µ

(
χi
χj

)1/2 |F̃i|
|F̃j|

cos(δφ)

=
1

1− µ2

√
1 + µ2η2

ji − 2µηji cos(δφ) (5.7)

where ηji = (χj/χi)
1/2 × (x̄i/x̄j) and x̄i,j are the amplitudes of the membrane

modes in the absence of the pump. We note that the gain diverges at the instablity

threshold, µ = 1 . This gives us the predicted functional dependence of the gain

as a function of the amplitudes of the signal and idler modes and the amplitude of

the pump mode.

5.3 Experimental demonstration of phase dependent am-

plification

The phase dependent gain of a nondegenerate amplifier is demonstrated by mon-

itoring the amplitudes of the signal and idler modes while directly driving them,

with the parametric pump drive on. The signal and idler drive amplitudes and

phases and the pump drive amplitude are fixed while the pump phase is changed

slowly, to avoid transient effects.

For simplicity of analysis of experimental results, one of the modes is driven much
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more strongly than the other. The signal mode is driven to 35 × (kBT/mω
2
j )

1/2,

while the idler mode was actuated to an amplitude of 400 × (kBT/mω
2
i )

1/2. The
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Figure 5.1: Parametric gain verus the phase of the pump excitation. The
data is fit to Eqn.[5.7] and the known values of the signal and
idler amplitude used to extract the pump amplitude µ. (Inset)
Normalized pump amplitude µ extracted from the fits, as a func-
tion of the measured normalized pump amplitude.

phase dependent gain of the signal mode for different values of the normalized pump

amplitude µ and pump phase φ is shown in Fig.[5.1] (This data was obtained cour-

tesy Yogesh Patil). The parametric drive strengths extend from µ = 0.02 → 0.2.

We fit the data in Fig.[5.1] to the functional form given by Eqn.[5.7], where both

ηji and µ are independently measured quantities. ηji is extracted from the mea-

sured displacements of the membrane modes in the absence of the pump drive

and µ is the ratio of the pump drive amplitude and the independently measured

threshold drive amplitude. We fit the phase dependent gain curves using Eqn.[5.7],
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and use the measured probe displacements to make an independent measurement

of µ. The inset of Fig.[5.1] shows a plot of the µ’s extracted from the fits as a

function of the µ’s calculated directly using the drive voltages and the measured

threshold drive voltage. They agree to within 5% providing further credence to

the two-mode model.

There is an important distinction between the phase-dependent gain as seen in

our system and that observed in a degenerate parametric amplifier. In the lat-

ter case, the maximal deamplification is limited to 0.5 (3 dB) before the onset

of parametric instability[61]. In contrast, the additional degree of freedom in a

nondegenerate parametric amplifier (the idler field), allows for an arbitrarily large

degree of deamplification of the signal mode.

5.4 Experimental demonstration of two-mode thermome-

chanical squeezing

With the parametric pump driven below the instability threshold and in the pres-

ence of coherent drive forces acting on the signal and idler modes, their ampli-

tudes, are a function of the pump phase. This resulted in the phase dependent

gain discussed in the previous section. In the absence of coherent actuation and

in the presence only of thermomechanical noise forces acting on the resonator

modes, the phase dependent gain feature gets washed out. In this case, with

the pump field driven below threshold, the motion of the membrane modes be-

come highly correlated. These correlations manifest as the squeezing of a compos-

ite quadrature formed from linear combinations of quadratures of the individual

membrane modes. To quantify the degree of two-mode squeezing, we construct
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cross-quadratures from the displacements of the membrane modes, according to

the relations x± = (αi±αj)/
√

2, y± = (βi±βj)/
√

2 where {αi, βi} are the respective

quadratures of the individual membrane modes normalized to thermomechanical

amplitudes. Phase-space distributions of these quadratures, accumulated over typ-

αj

αi

0 4 8-8 -4

0

4

8

-4

-8

x+ x-

Figure 5.2: Phase space distributions of the quadratures αi, αj in the absence
(blue) and presence (red) of the pump field, showing the emer-
gence of correlations, i.e., thermemechanical two-mode squeezing,
due to nondegenerate parametric amplification.

ical durations of 300 s (∼ 100 decay periods), are shown in Fig.[5.2](This data was

obtained courtesy Yogesh Patil). The phase space distributions are symmetric

(blue filled circles) in the absence of down-conversion, with the pump drive off.

In the presence of the pump drive, these phase space distributions acquire a large

ellipticity (red filled circles) for increasing amplitudes of the pump field (µ = 0.95).

The variances and standard deviations of the amplified (x−) and squeezed (x+)

quadratures are extracted from such distributions. These standard deviations, for
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various values of the normalized pump drive, are plotted in Fig.[5.3]. Here the y
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Figure 5.3: The standard deviations of the cross-quadratures x−, y+ (am-
plified) and x+, y− (squeezed) vs pump amplitude. The shaded
curves indicate the no-free-parameter steady prediction of the
two-model with added thermal noise (Sec.[5.5,5.6]), based on in-
dependently measured frequencies and damping rates of the me-
chanical mode. The solid and dashed black lines indicate the
bounds for the predictions of the noise model after accounting
for the finite observation time.

error bars in the data points reflect the variation in the standard deviations across

different iterations of the experiment, for the same value of the normalized pump

drive (µ). The x error bars are errors in the normalized drive, arising from tem-

poral variations of the threshold voltage due to frequency fluctuations. The gray

shaded curves indicate the no-free-parameter prediction of the two-mode model

with added thermal noise (Sec.[5.5,5.6]), based on independently measured fre-
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quencies and damping rates of the mechanical mode. These shaded curves are the

predicted standard deviations from the noise squeezing model in the steady state,

i.e., assuming infinite sampling time. The agreement with the model predictions

becomes even closer once the finite time of measurement is taken into account (See

Sec.[5.6.4]) as indicated by the black solid and dashed curves. The noise squeezing

model predicts that the maximal degree of steady state thermomechanical squeez-

ing is limited by thermal averaging across all possible phases between the fields,

to a peak noise squeezing (variance reduction) of 1
2

or 3 dB (See Sec.[5.6]). Since

an arbitrarily large degree of squeezing may be obtained for specific phase rela-

tionships between the signal, idler and pump fields, we estimate that mechanical

squeezing of more than 40 dB may be obtained with our demonstrated parameters

by harnessing weak measurements and feedback[77].

In the sections that follow, we describe the noise squeezing model, elaborate on

the reason for 3 dB noise reduction in the steady state and study the dependence

of the degree of squeezing on asymmetries in the frequencies, loss rates of the two

mechanical modes and pump detuning which are all detrimental to squeezing. We

then discuss the manifestations of squeezing above threshold, where quadrature

squeezing gives way to amplitude difference squeezing, akin to intensity difference

squeezing seen in optical parametric oscillators and discuss the crossover of corre-

lations between the two limits.
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5.5 Solving for fluctuation spectra in the presence of ther-

mal noise

We obtain the correlations that develop between the resonator modes in the pres-

ence of the pump drive, by analyzing the coupled equations for the resonator

modes under the influence of a classical actuation of the pump/substrate mode

along with thermomechanical Langevin noise forces acting on the membrane and

substrate modes.

We distinguish between the mean displacement and its fluctuations by writing

zi,j = (Āi,j + δAi,j)e
−iωi,jt where 〈δAi,j〉 = 0. The coupled equations for the fluctu-

ations can be written as,

2


δȦi

δȦj

δȦS

 =


−γi 0 iκiĀ

∗
j

0 −γj iκjĀ
∗
i

iκSĀj iκSĀi −γS




δAi

δAj

δAS



+


0 iκiĀS 0

iκjĀS 0 0

0 0 0




δA∗i

δA∗j

δA∗S

+ i


γiχiFi

γjχjFj

γSχSFS

 (5.8)

where we have defined coupling parameters,

κk =
gγkχk

2
=

g

2mkωk
; k ∈ [i, j, S] (5.9)

for notational simplicity. The thermomechanical noise forces are assumed to be

white noise correlated and obey,

〈Fi(t)〉 = 〈Fi(t)Fj(t′)〉 = 0, (5.10)

〈Fi(t)F ∗j (t+ τ)〉 = 8γimikBTδijδ(τ) (5.11)

We decompose the complex displacements into real quadratures according to δA =

δ~α + iδ~β and where δA = (δAi, δAj, δAS)T . Correspondingly the noise, v =
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i(γiχiFi, γjχjFj, γSχSFS)T is also decomposed into real and imaginary parts, v =

vα + ivβ . Expressing Eqn.[5.8] in terms of these quantities gives,

δ~̇α = Mαδ~α + vα (5.12)

δ~̇β = Mβδ~β + vβ (5.13)

For the general case, valid both above and below threshold,

Mα,β =
1

2


−γi ∓κi|ĀS| κi|Āj|

∓κj|ĀS| −γj κj|Āi|

−κS|Āj| −κS|Āi| −γS

 (5.14)

and the elements of vα,β satisfy 〈vi〉 = 0, 〈vk(t)vl(t+τ)〉 = γlkBT
mlω

2
l
δklδ(τ). In writing

Eqn.[5.14], we have made a choice for the pump drive phase (φS = 0) and the

resonator mode detection phases (φi,j = 0). In general, these phases can also be

chosen such that there is a coupling between the δ~α and δ~β quadratures, as they

have been defined. When the pump drive phase is not fixed, but evolving in time,

for instance with the pump drive detuned, this coupling is physical and does not

vanish through a suitable choice of detection phases.

The spectrum in the steady state is obtained by taking the expectation value after

Fourier transforming and inverting Eqns.[5.42,5.43], and are given by the matrix

equation,

Sα,β(ω) =
1

2π
(Mα,β + iωI)−1D(MT

α,β − iωI)−1 (5.15)

where I is the identity and

D = 〈vvT 〉 = kBT


γi

miω2
i

0 0

0
γj

mjω2
j

0

0 0 γS
MSω

2
S

 (5.16)

is a matrix characterizing the diffusion due to thermal forces. The variances in

the steady state can be obtained from the spectrum using the Wiener-Khintchine
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theorem, by integrating the fluctuations over frequency, i.e.,

σα,β =

∫ ∞
−∞

Sα,β(ω)dω (5.17)

The formalism described, is valid both above and below the parametric instability

threshold. We first discuss the squeezing bound arising for the case where the

pump is driven below the instability threshold, the case that was experimentally

explored in Sec.[5.4].

5.6 Thermomechanical two-mode squeezing: below thresh-

old predictions

When the pump is driven below the instability threshold, correlations develop

between the displacements of the two mechanical modes, as we have seen, resulting

in two-mode squeezing, i.e., squeezing of a combined quadrature of the individual

oscillators. In this regime, the fluctuations of the individual quadratures, δ~α and δ~β

are given by Eqns.[5.42,5.43] with Mα,β given by Eqn.[5.14], setting the average

signal and idler amplitudes, Āi,j = 0. As the pump drive force increases, the

increase in the pump amplitude results in greater correlations between the two

modes. These correlations, as before, are quantified by defining cross-quadratures

constructed from {αi,j, βi,j}, here normalized to their respective thermomechanical

amplitudes, according to the relations,

x± = (αi ± αj)/
√

2 (5.18)

y± = (βi ± βj)/
√

2 (5.19)

The correlations between the two modes manifest as amplification and squeez-

ing of these collective quadratures. We represent the fluctuations in these cross-
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quadratures, along with the fluctuation of the pump substrate mode, through the

column vectors X = (δx+, δx−, δxS)T , Y = (δy+, δy−, δyS)T , related to the original

quadrature fluctuations δ~α,δ~β via,

X = Rδα̃; Y = Rδβ̃; R =
1√
2


1 1 0

1 −1 0

0 0 1

 (5.20)

with the correlations of the cross quadratures obtained through a corresponding

transformation of Sα,β(ω),

SX(ω) =
〈
X(ω)X(ω)†

〉
= RSαR

T (5.21)

along with the analogous equation for Y (X → Y & α→ β in the above). The

degree of squeezing/amplification is measured through the variances of these cross

quadratures, obtained by integrating the spectra in Eqn.[5.21] over frequency.

The variances obtained depend on the frequencies and loss rates of the two modes,

with unequal frequencies and loss rates reducing the degree of peak squeezing in the

steady state, i.e., for infinite measurement time. The degree of squeezing for a given

value of the normalized drive µ is independent of the mean loss rate (γ̄ = (γi+γj)/2)

and frequency (ω̄ = (ωi + ωj)/2), which only affect the absolute value of the

threshold force. The degree of two-mode squeezing depends on the loss rates and

the frequencies of the individual resonator modes through a dimensionless loss

asymmetry parameter δ = (γi− γj)/(γi + γj) and frequency asymmetry parameter

δω = (ωi − ωj)/(ωi + ωj). To build an understanding of quadrature squeezing

below threshold, we first consider the simplest case of distinct resonator modes

with identical frequencies (δω = 0) identical losses (δ = 0).
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5.6.1 Symmetric losses and frequencies: Thermomechani-

cal squeezing bound

We first consider the simplest case of distinct resonator modes with identical fre-

quencies (δω = 0) identical losses (δ = 0). For this case, the evolution matrices in

Eqn.[5.14] reduce to,

Mα,β =
1

2


−γ ∓γµ 0

∓γµ −γ 0

0 0 −γS

 (5.22)

where in the above γ is the damping rate of the membrane modes, µ is the nor-

malized parametric drive strength and γS is the decay rate of the substrate mode.

Calculating the spectrum of fluctuations using Eqn.[5.15] and Eqn.[5.21] results in

the following spectra for the collective quadratures.

SX,Y =
2

π


γ

(γ2(1±µ)2+4ω2)
0 0

0 γ
(γ2(1∓µ)2+4ω2)

0

0 0 γS

(γ2
S+4ω2)

 (5.23)

The variances of the collective quadratures of the mechanical modes, normalized

to thermal motion are, through Eqn.[5.17], given by,

σx±,x± =
1

1± µ
= σy∓,y∓ (5.24)

We see that x−, y+ are amplified quadratures with variances that grow as µ → 1,

while x+, y− are squeezed quadratures showing reduction in the variance and hence

a peak noise squeezing of 1
2

(3 dB) as µ → 1, as can be seen from the solid black

curves in Fig.[5.4], showing the variances of amplified and squeezed quadratures

as a function µ for δ = δω = 0.

The reason for the bound for the peak noise squeezing is transparent when we
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Figure 5.4: Normalized variances of amplified and squeezed collective
quadratures as a function of the normalized parametric drive,
the dashed blue lines indicate the variances for oscillators with
identical frequencies (δω = 0) and loss rates (δ = 0). Solid red
lines indicate the amplified and squeezed variances for δ = 0.31,
δω = 0.09.

look at the equations of motion for the collective quadratures, through a rotation

of Mα,β, i.e.,

Ẋ = MXX + v′X (5.25)

Ẏ = MY Y + v′Y (5.26)

where,

MX,Y = RMα,βR
T = −1

2


γ(1± µ) 0 0

0 γ(1∓ µ) 0

0 0 γs


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and v′ = Rv results in noise with the same diffusion matrix D as before, with

DXX = DY Y = γ kBT
mω2 , as the baths of the two modes are uncorrelated.

The squeezing arises from the fact that while the thermal forces (fluctuations)

remain the same in the presence/absence of the parametric drive, as µ → 1, the

dissipation of the squeezed quadrature goes to twice its bare value, resulting in a

reduction in the variance by a factor of 2. Simultaneously, the decay rate of the

amplified quadrature goes to zero, signaling the onset of the parametric instability.

The onset of the instability thus explains the 3 dB bound for squeezing. This

is generically true for squeezing through parametric processes, in the absence of

feedback.

We note that in the above, we have assumed that the bandwidth of detection is

large enough that all the thermal noise is measured, i.e., the variances described

above were calculated by integrating the noise over all frequencies, i.e., they are as

measured with a lock-in amplifier with an infinite bandwidth (BW ). As BW → 0,

Sx+,x+(ω = 0, µ)

Sx+,x+(ω = 0, µ = 0)
=

1

(1 + µ)2
→ 1

4
(5.27)

resulting in a peak noise squeezing approaches 6 dB. The above analysis was for

the simplest case of symmetric frequencies and loss rates. The introduction of

asymmetries in the frequencies and loss rates is detrimental to squeezing, as we

will see in the next section.

5.6.2 Effect of asymmetric frequencies and loss rates

We now consider the case where the frequencies and the damping rate of the

two resonators are not the same, i.e., δ, δω 6= 0. In this situation, the collective

quadratures x+, x− and correspondingly y+, y−, defined as per Eqns.[5.18,5.19],
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are no longer decoupled from each other, as they were for the symmetric case

previously considered. This coupling between collective quadratures, resulting

from non-zero loss and frequency asymmetry has been noted to be detrimental

to entanglement[70], and backaction evasion[72] protocols involving two coupled

modes, coupled either mechanically or through a mode of an optical cavity. It also

results in a degradation of peak two-mode thermomechanical squeezing, from the

3 dB limit. This is a result of the coupled quadratures x+, x− and y−, y+ being

respectively, amplified and squeezed in the presence of the parametric drive, as can

be seen from Eqn.[5.24].

The variances of the collective quadratures are obtained using Eqn.[5.15], subse-

quent rotation using Eqn.[5.21] and integration over frequency, and are,

σy±,y± = σx∓,x∓ (5.28)

=
1

1− µ2

{
1 + µ2 δω(δω − δ)

1− δ2
ω

± µ

√
1− δ2

1− δ2
ω

}
with the cross correlation between (x+, x−), (y+, y−) given by,

σy+,y− = σx+,x− =
µ2 (δω − δ)

2 (1− µ2) (1− δ2
ω)

(5.29)

The variances of the amplified(blue, solid) and squeezed (red, solid) collective

quadratures for the case where (δ 6= 0, δω 6= 0, δ 6= δω), are shown in Fig.[5.4],

showing a peak noise squeezing of the squeezed quadrature of greater than 1
2

the

thermal variance, and with the maximum squeezing occurring for µ < 1. We

find that any coupling between the amplified and squeezed quadratures leads to a

divergence of the squeezed quadrature at the instability threshold, in the steady

state. The dependence of the peak squeezing on the loss and frequency asymmetry

parameters are shown in Fig.[5.5]. Fig.[5.5(a)] shows a plot of the peak squeezing

as a function of the loss asymmetry for the case of distinct mechanical modes with

the same frequency (δω = 0), showing a linear dependence of peak squeezing versus
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Figure 5.5: (a) Peak noise squeezing as a function of loss asymmetry δ for
δω = 0 with the squeezing going linearly from 1

2
→ 1 as δ = 0→

1. (b) Peak squeezing as a function of the frequency asymmetry
δω, for δ = 0. (c) Plot of peak squeezing as a function δ and δω

the loss asymmetry. Correspondingly, Fig.[5.5(b)] shows the peak squeezing as a

function of the frequency mismatch parameter (δω) for the case of no loss asym-

metry (δ = 0), while Fig.[5.5(c)] shows a density plot of the minimum squeezing

as a function of δ and δω.

As can be seen in Fig.[5.5(c)], we find that the minimum squeezing of 1
2

can be

attained whenever δ = δω. For this case, the normalized cross correlations be-
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tween amplified and squeezed collective quadratures, still vanish and Eqn.[5.28]

reduces to Eqn.[5.24], resulting in a squeezing as a function of the parametric

drive strength that is identical to that for δ = δω = 0, the case of symmetric losses

and frequencies.

5.6.3 Effect of pump detuning

Before proceeding to the above threshold case, we consider the thermomechanical

squeezing bound for the case where the pump drive is detuned from paramet-

ric resonance, with the drive frequency given by ωd = ωS + ∆, where ∆ is the

drive detuning. Apart from our interest in checking the robustness of two-mode

squeezing as a function of the detuning, this case is of interest since a detuned para-

metric drive introduces dynamic correlations between the δ~α and δ~β quadratures,

which in turn lead to correlations between the amplified and squeezed x± and y±

quadratures. These correlations are different from those arising as a result of the

asymmetry in loss rates/frequencies on account of the fact that, the correlations

are between quadratures that exert a back action on each other, i.e., x±, y± are

observables that do not commute with each other, unlike (x+, x−), (y+, y−), which

commute with each other. These correlations allow for enhanced squeezing in the

presence of feedback, since the correlations in the amplified quadrature now have

information about the squeezed quadrature which can be used for enhanced local-

ization through estimation[77]. Additionally in the detuned two-mode case, like

the one we consider, special choices of the drive detuning lead to some of the collec-

tive quadratures becoming quantum non-demolition observables[70]. The bound

for the two-mode squeezing is calculated by similar means as before, and is detailed

the Appendix of the chapter, with time independent equations (Eqn.[5.41]) for the
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mechanical motion obtained by going to a frame rotating at ∆/2 for each mode.

As is shown there, the correlations between the x± and y± are proportional to the

drive detuning. Note that x+ and y− are amplified quadratures while x− and y+

are squeezed. Again non zero detuning introduces correlations between (x+, y+)
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Figure 5.6: (a) Normalized y+ (amplified,blue) and y− (squeezed,red)
quadratures for the case of zero detuning (solid lines) and a
detuning of ∆ = γ (dashed lines). The amplified quadrature
diverges at the instability threshold. For ∆ = 0, this occurs
at µ = 1 (solid black vertical line). For ∆/γ, this occurs at
µ =

√
1 + (∆/γ)2 =

√
2 (dashed black vertical line). The black

horizontal line is at 1/2. (b) Peak noise squeezing as a function
of normalized detuning ∆

γ
, below threshold for the case of no

loss/frequency asymmetry.

and (x−, y−), i.e., between amplified and squeezed quadratures. This is distinct

from the case of loss/frequency asymmetry, which introduced correlations between

(x+, x−) and (y+, y−). This coupling between amplified and squeezed quadratures

also results in a decrease in the peak squeezing at non-zero detunings, as can be seen

in Fig.[5.6(a)]. Here, the solid lines correspond to amplified (blue) and squeezed

(red) quadratures for ∆ = 0, with the squeezed quadrature showing a peak noise

squeezing of 3 dB (infinite bandwidth), as µ→ 1. The dashed lines correspond to
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amplified (blue) and squeezed (red) quadratures for a detuning of ∆ = γ. For the

detuned case, the amplified quadrature diverges at µ =
√

1 + (∆/γ)2, the insta-

bility threshold for ∆ 6= 0, as expected.

The peak squeezing as a function of the detuning, normalized with respect to the

decay rate (for no loss/frequency asymmetry) is shown in Fig.[5.6(b)]. We see

that squeezing is almost completely lost by the time the detuning equals to the

linewidth of the signal and idler modes.

5.6.4 Corrections arising from finite measurement time

The discussion of the preceding sections predicts an upturn in the variance of

the squeezed quadrature, for the case of non-zero and unequal loss and frequency

asymmetry, as the drive approaches the parametric instability threshold, i.e., µ→

1. This predicted upturn in the steady state variances of the squeezed quadrature is

not seen in the experimental data presented in Sec.[5.4](See Fig.[5.3]). The reason

for this arises from considerations of the time scale of measurement, which is large

enough that the measured variances of the thermal motion, in the absence of the

parametric drive, are within 5% of the steady state thermal variance(see Fig.[5.3]

as µ→ 0).

As was seen in Sec.[5.6.1], the gain of the amplified quadrature, and the steady state

variance resulting from the gain in the amplified quadrature diverges as µ → 1.

This is a result of the effective damping rate of the amplified quadrature, γ(1−µ),

going to zero, as the drive approaches the parametric instability threshold. This

is the quality factor enhancement seen in parametric amplifiers[78], which results

in the increased sensitivity of the amplifier to a narrow bandwidth coherent force
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at the mechanical frequency.

This vanishing of effective damping rate however, also results in a divergence in

the response time. The divergence in the response time results in deviations of the

measured variances from the steady state variance for a finite measurement time

(τm). results in a smoothing out of the divergence of the amplified quadrature.

The variances measured over a finite time are extracted by truncating the integral

in Eqn.[5.17], by the time of measurement, i.e.,

σα,β = 2

∫ ∞
2π
τm

Sα,β(ω)dω (5.30)

The variances of the amplified (blue) and squeezed(red) quadratures extracted us-

ing Eqn.[5.30], for the parameters in Fig.[5.2] are shown in Fig.[5.7](a) as a function

of the normalized drive, for various times of measurement. Fig.[5.7](b) shows the
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Figure 5.7: (a) Variance of amplified (blue) and squeezed (red) quadratures
as a function of the normalized parametric drive (µ) for steady
state (solid lines), τm = 100τ (dot-dashed lines) and τm = 500τ
(dashed lines) (b) Variance of the squeezed quadrature as a func-
tion of time (normalized to the decay time) for the experimental
parameters of Fig.[5.2] (solid red curve) and corresponding vari-
ance for the case, δ = δω = 0 (where there is no coupling to the
amplified quadrature).
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variance of the squeezed quadrature at (µ = 1) as a function of the measurement

time. We see that in the absence of coupling to the amplified quadrature, the

squeezed quadrature variance approaches the steady state value within a period of

∼ 100τ , where τ is the decay time of the mechanical mode (dashed blue curves).

In contrast, for the case of asymmetric frequencies and losses (experimental pa-

rameters of Fig.[5.2]), the coupling to the amplified quadrature leads to an increase

in the variance of the squeezed quadrature over a longer time scale as a result of

the enhanced decay/response time of the amplified quadrature. We note that for

corresponding two-mode squeezing experimental data in [57], loss and frequency

asymmetries predict an upturn in the squeezed quadrature, which is realized in

the experiment because of the orders of magnitude smaller decay time (and qual-

ity factors), and a similar measurement time.

In the preceding sections, we calculated the degree of two-mode quadrature squeez-

ing, for the case of of a parametric drive below the instability threshold, paying

attention to dependence on loss and frequency asymmetries, drive detuning and

effects arising from finite measurement time. We were motivated in doing so in

order to obtain a quantitative understanding of our experimental demonstration

of two-mode thermomechanical squeezing described in Sec.[5.4]. A significant, but

not the entire reason for interest in two-mode squeezing is the extension of such

two-mode squeezing to the quantum regime[52], a realistic possibility given the

current status of cavity optomechanics. Our demonstration of a strong two-mode

nonlinearity, in a platform compatible with ground state cooling of the mechanical

modes is a step in this direction. In the quantum regime, two-mode squeezing

with a variance of half the quantum variance will lead to an entangled state of the

macroscopic mechanical modes. It is straightforward to extend the calculations

performed here to that case, with thermal noise now replaced by quantum noise.
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The thermomechanical squeezing calculations were themselves inspired by analysis

of quantum two-mode squeezing in optical parametric amplifiers[79, 80].

The other reason for interest in squeezing is for metrology in the classical regime.

A naive explanation for the increased sensitivity afforded by thermomechanical

squeezing might be the transduction of a smaller force resulting from the reduc-

tion of the thermal noise floor. However, as we have seen, the squeezing arose

from the increased damping of the squeezed quadrature. This actually renders the

squeezed quadrature less sensitive to the force. Taking advantage of squeezing for

metrology, as in the optical case, requires interferometric measurements, mechan-

ical analogues of which have been recently proposed[74]. With the possibility of

such interferometric schemes in mind, we proceed to look at two-mode squeezing,

above the parametric instability threshold.

5.7 Amplitude difference squeezing above threshold

An optical parametric oscillator, with the pump driven above the parametric insta-

bility threshold produces entangled signal and idler photons. This entanglement

results in the signal and idler beams having shot noise that is exactly correlated.

This results in intensity difference squeezing, where the intensity difference of the

signal and idler modes is below shot noise [80].

We here discuss analogous above threshold behavior seen in a mechanical nonde-

generate parametric amplifier, where now, the difference in the amplitudes of the

signal and idler modes above threshold has a variance that is below thermal vari-

ance, i.e., the amplitude difference is squeezed. In addition to amplitude difference

squeezing another interesting feature of this is system concerns the fluctuations of

the phases of the membrane modes. Above threshold, the sum of the phases of
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the membrane modes, is locked to the phase of the pump drive. This can be seen

from Eqn.[5.3], which in steady state can be rewritten in terms of the normalized

drive µ and the drive force phase φS (FS = |FS|eiφS) as,

−(µ− 1)eiφS =
g

2

χS
|AS,th|

AiAj (5.31)

Defining the phases of the resonator modes as Ai,j = i|Ai,j|eiφi,j , we have,

φi + φj = φS (5.32)

Note that the difference in the phases is however not constrained by these equations

and is free to fluctuate.

We obtain the fluctuations in the amplitudes and phases about the steady state

values by decomposing the complex amplitude fluctuations δ ~A into δαi and δβi

quadratures, i.e δ ~A = δ~α + iδ~β, with the equations of motion of δ~α and δ~β given

by Eqns.[5.42, 5.43], with the evolution matrices Mα,β given by Eqn.[5.14], after

substituting |ĀS| =
√

γiγj
κiκj

and Āi,j =
√

γiγS
κiκS

√
µ− 1, the mean amplitude of the

pump substrate mode and the probe modes above threshold.

We have chosen the drive and detection phases such that φ̄i,j = φS = 0. Given

this choice of phases, the complex mean amplitudes Āi and the fluctuations are as

shown in the inset of Fig.[5.8]. δβi,j = δRi,j give the amplitude fluctuations. The

fluctuations in the phase are obtained from δαi,jthrough δφi,j =
δαi,j
Āi,j

.

As for the below threshold case, the correlations of the signal and idler modes

resulting from the pump drive are manifest in combined quadratures,

x± =
1√
2

(δαi ± δαj) ∝ δφ± (5.33)

y± =
1√
2

(δβi ± δβj) = δR± (5.34)

where δR± are the amplitude sum and difference quadratures and δφ± are the

phase sum and difference quadratures. The spectrum of fluctuations of δα± and
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δβ± are given by Eqn.[5.15] in Sec.[5.5].

For the above threshold case, the non-zero amplitudes of the signal and idler mem-

brane modes cause the fluctuations of the pump mode to now affect their corre-

lations, unlike in the below threshold case. Given that the damping rate of the
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Figure 5.8: Variance of the difference (δR−) (red, solid) and sum (δR+) (blue,
dashed) of the normalized amplitude fluctuations of the signal
and idler modes, as a function of the parametric drive strength
µ, for δ = δω = 0. The variances are scaled to the thermal
motion. The amplitude difference is squeezed for all values above
threshold to a value of 1

2
the thermal variance. (Inset) Schematic

showing the mean value of the membrane mode amplitude and
the fluctuations δαi and δβi. δ~β represent amplitude fluctuations
while δ~α are related to fluctuations of the phase.

substrate mode is 4-5 orders of magnitude larger than that of the modes of the

mechanical resonator, the pump fluctuations responds instantaneously to those of

the membrane modes and can be adiabatically eliminated. We use this to sim-

plify the analysis, through ignoring the time derivative of the pump fluctuations
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(δȦS) in Eqn.[5.8]. Apart from this change, we extract the fluctuations of the cross

quadratures of the signal and idler modes, using the methods of Sec.[5.5], using

Eqn.[5.15] and subsequent rotation through Eqn.[5.21].

We consider for simplicity the case where the damping rates and the frequencies

are symmetric. In this limit, we obtain the following spectra for the collective

quadratures, normalized with respect to the thermal motion amplitude.

SY (ω) =
1

2π

 γµ
(γ2(−1+µ)2+ω2)

0

0 γ
(γ2+ω2)

 (5.35)

SX(ω) =
1

2π

 γµ
(γ2µ2+ω2)

0

0 γ
ω2

 (5.36)

We obtain the variances of the fluctuations by integrating the spectra. For the Y

quadrature, which relates to amplitude fluctuations, these evaluate to

σy+,y+ = σR+,R+ =
µ

2 (µ− 1)
(5.37)

σy−,y− = σR−,R− =
1

2
(5.38)

These variances are plotted as a function of the parametric drive strength in

Fig.[5.8] (Sum; dashed blue, Difference; solid red).

We see that above threshold, the amplitude difference of the signal and idler modes

is always 1
2

the thermal variance, which is the mechanical analogue of intensity dif-

ference squeezing seen in optical parametric oscillators. We find that while the in-

dividual amplitudes are sensitive to fluctuations of the pump mode, the amplitude

difference is insensitive to pump mode fluctuations, and the degree of squeezing is

independent of the pump drive. The variance of the amplitude sum on the other

hand diverges as µ → 1+ and decreases with increasing drive, approaching 1
2

the

thermal variance as µ→∞.

Having discussed the fluctuations in the amplitude, we now consider the other dis-
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tinguishing feature of above threshold behavior, the fluctuations in the phase. As

has been discussed earlier, the phase difference between the signal and idler modes,

above threshold, is unspecified and therefore free to fluctuate. This fluctuation in

the phase difference is given by,

Sφ−,φ−(ω) =

(
x2
th

A(µ)2

)
Sx−,x−(ω)

=

(
x2
th

A(µ)2

)( γ

2πω2

)
where A(µ) is the amplitude of the membrane modes (identical for the case of

symmetric loss), x2
th is the thermal variance. We see that the integral of the

fluctuation spectrum diverges as ω−2, indicating that the difference phase diffuses.

The time scale for this diffusion can be estimated by calculating the variance while

imposing a low frequency cut off ( 2π
τm

) to the integral of the power spectrum, i.e.,

〈δφ2
−〉 = 2

∫ ∞
2π
τm

Sφ−,φ−(ω)dω

=

(
x2
th

A(µ)2

)
γτm
2π2

If the thermal motion amplitude were 0.1 pm and the two-mode nonlinearity were

used to excite the membrane mode to ∼ 1 nm, a difference phase fluctuation

of
√
〈δφ2

−〉 ∼ 1 mrad would require ∼ 1000 ringdown periods. Therefore, while

Sφ−,φ−(ω) diverges, it does not necessary lead to large fluctuations of the difference

phase over experimental time scales.

5.7.1 Distinction between squeezing above and below

threshold

Both below and above threshold, the squeezing is manifested in a quadrature

formed from the linear combination of those of the individual mechanical resonators
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(x±, y±). However, below threshold, this manifests as quadrature squeezing, while

above threshold, this manifests as amplitude difference squeezing. Additionally,

there is no analogue of the phase diffusion phenomenon discussed in the previous

section, below threshold.

The fluctuations of the quadratures of the individual resonators are symmetric

below threshold. Above threshold, the non zero amplitude of the signal and idler

mode breaks this symmetry, leading to amplitude and phase fluctuations with dif-

ferent correlations.

This is reminiscent of behavior seen at a phase transition, the complex amplitude

of the signal and idler mode being like an order parameter[81]. The difference in

the fluctuations between the below and above threshold cases is akin to the differ-

ence in the nature of the fluctuations about a disordered phase, and those about

an ordered phase. Much as in the case of a phase transition with a complex order

parameter, where there are fluctuations in the ordered phase which cost no energy,

here, above threshold, the difference phase between the signal and idler mode is

unspecified and free to fluctuate, with its fluctuations costing no energy.

We show the fluctuations in the quadrature δy±, which becomes the amplitude

difference quadrature in the above threshold case, as a function of the parametric

drive for both the below and above threshold cases, in Fig.[5.9]. We see that for the

case of symmetric losses and frequencies, the variance of the squeezed quadrature

approached half at the threshold and remains there (dashed red curve). At µ = 1,

the susceptibility of the amplified quadrature diverges, this divergence in the sus-

ceptibility is associated also with a divergence in the response time, which leads to

a similar divergence of the squeezed quadrature in case of coupling between ampli-

fied and squeezed quadratures (solid red and blue curves); as in the case with non

zero loss and frequency asymmetry. For finite measurement time, the divergence
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Figure 5.9: Variance of the fluctuations of the normalized difference (y−) and
sum (y+) quadratures above and below threshold, as a function
of the normalized parametric drive strength µ. For the case of
no loss and frequency asymmetry these are represented by the
dashed red (y−) and blue curves(y+). For the experimental pa-
rameters of Fig.[5.3] (δ = 0.31, δω = 0.09), these are represented
by the solid red (y−) and blue curves(y+). The black solid lines
are the corrections to the variances arising from a finite measure-
ment time of 300s (∼ 100τ) for this case.

of the amplified quadrature is washed out (Black curve; τm = 100τ).

The above discussion described the fluctuations of a mechanical parametric am-

plifier, and their correlations for the case where the parametric drive is above

threshold. We saw that there is a manifestation of squeezing in this case as well,

with the amplitude difference of the mechanical modes being reduced to half the

thermal variance; the analogue of intensity difference squeezing in optical para-

metric oscillators[76].
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5.8 Conclusions

We have demonstrated strong two-mode parametric nonlinearities in an ultrahigh-

Q membrane resonator, realizing nondegenerate parametric amplification and two-

mode thermomechanical noise squeezing. Our experimental observations are in

agreement with a two-mode model attributing the nonlinear interaction to a sub-

strate mediated coupling between the mechanical modes.

The realization of this strong nonlinear interaction in a mechanical platform that is

compatible with optomechanical cooling, room temperature quantum control and

quantum limited detection is an important step towards the realization of non-

classical mechanical states, the observation of entanglement between macroscopic

mechanical degrees of freedom and quantum enhanced metrology.

The parametric coupling demonstrated here is of relevance for quantum non-

demolition[71] and backaction evading measurement[72] protocols for the measure-

ment of the position of the mechanical resonator and is therefore crucial for the

realization of position measurements beyond the standard quantum limit[73].

Even in the classical regime, this work is of relevance for nonlinear approaches to

metrology. The correlated production of down-converted phonons above the para-

metric instability threshold holds promise for interferometric measurement schemes

capable of beating the limitations set by thermal noise[74, 75].

Furthermore, the regime near the parametric instability threshold is characterized

by a diverging response time and mechanical bistability. Here the system realizes a

mechanical analog of a second-order phase transition. In this regime, compatibil-

ity with optomechanical cooling allows access to studies of the quantum-classical

transition[82] and out-of-equilibrium quantum dynamics.
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5.9 Appendix: Effect of pump detuning

We calculate here the thermomechanical squeezing bound for the case where the

pump drive is detuned from parametric resonance, with the drive frequency given

by ωd = ωS + ∆, where ∆ is the drive detuning. The equations satisfied by the

slowly varying complex amplitudes (Ai,j,S) are again given by Eqns.[5.1-5.3], with

the only difference now being that the pump drive force F̃S(t) is a slowly varying

function of time, F̃S(t) = |F̃S|e−i∆t. The pump amplitude resulting from this drive

force, ĀS(t) is given by,

ĀS = iχSF̃S(t) = iχS|F̃S|e−i∆t = i|ĀS|e−i∆t (5.39)

We have made the approximation that ∆ << γS, given that we are interested

in detunings that are comparable to γi,j and γi,j ≈ 10−4γS as a result of which

the pump amplitude is related to the instantaneous force through the on resonant

susceptibility.

Linearizing about the steady state amplitude, i.e., Ak = Āk + δAk(t) where k ∈

[i, j, S], with Āi,j = 0, and defining the vectors δ ~A = (δAi, δAj)
T and δ~v = (vi, vj)

T ,

the relevant equations of motion for the fluctuations of the resonator modes reduce

to,

2
˙
δ ~A = −

γi 0

0 γj

 δ ~A

−

 0 κi|ĀS|e−i∆t

κj|ĀS|e−i∆t 0

 δ ~A∗ + 2~v (5.40)
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We get rid of this time dependence in the matrix above by going to a frame rotating

at ∆
2

, i.e., we rewrite δ ~A = δ ~Be
i∆t
2 in terms of which Eqn.[5.40] becomes,

2
˙
δ ~B = −

γi 0

0 γj

 δ ~B − i∆δ ~B

−

 0 κi|ĀS|

κj|ĀS| 0

 δ ~B∗ + 2~ve−
∆t
2 (5.41)

where δ ~B are the complex amplitudes, measured using lock-in frequencies that are

detuned from the individual mechanical modes ωi,j by ∆
2

. We rewrite the complex

amplitudes in terms of the real quadratures αi,j, βi,j and decompose the noise term

into real and imaginary parts, i.e., δ ~B = δ~α + iδ~β and ~v = ~vα + i~vβ, in terms of

which the equations of motion become,

δ~̇α = Mαδ~α−
∆

2
δ~β + ~vα (5.42)

δ~̇β = Mβδ~β +
∆

2
δ~α + ~vβ (5.43)

where

Mα,β =
1

2

 −γi ∓κi|ĀS|

∓κj|ĀS| −γj

 (5.44)

and the elements of ~vα,β satisfy 〈vk,η〉 η ∈ [α, β]; k ∈ [i, j] and 〈vk,η(t)vl,η′(t+τ)〉 =

γlkBT
mlω

2
l
δklδη,η′δ(τ). The coupling between the δ~α and δ~β quadratures of the individ-

ual oscillators resulting from the detuned drive is apparent in Eqns.[5.42,5.43].

The steady state correlations between these quadratures can be obtained us-

ing the methods of Sec.[5.5] by forming the following 4 dimensional vectors;

Z = (δαi, δαj, δβi, δβj)
T = (δ~α, δ~β)T and v = (~vα, ~vβ)T , in terms of which the
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equations of motion become,

Ż = MZ + v (5.45)

M =

Mα −∆
2
I2

∆
2
I2 Mβ

 (5.46)

and I2 is the 2× 2 identity matrix.

The noise spectral densities are now obtained by solving Eqn.[5.45] in fourier space,

as before. The spectrum in the steady state is,

S(ω) =
〈
Z(ω)Z(ω)†

〉
=

1

2π
(M + iωI)−1D(MT − iωI)−1 (5.47)

where I is the identity and

D = 〈vvT 〉 = kBT



γi
miω2

i
0 0 0

0
γj

mjω2
j

0 0

0 0 γi
miω2

i
0

0 0 0
γj

mjω2
j


(5.48)

is now a 4× 4 matrix, as is S(ω), which contains the correlations between all the

quadratures of the two modes.

We construct composite quadratures x± = (αi ± αj)/
√

2, y± = (βi ± βj)/
√

2 as

before and represent the fluctuations in these quadratures by the column matrix,

Zc = (δx+, δx−, δy+, δy−)T , which is related to Z by

Zc = RZ; R =
1√
2



1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


(5.49)

The correlations of the composite quadratures are therefore given by,

Sc(ω) =
〈
Zc(ω)Zc(ω)†

〉
= RSRT (5.50)
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We consider the case where the frequencies of the resonator modes are identical

and the losses are symmetric (γi = γ2 = γ, i.e., δ = 0). For this case, the diffusion

matrix D = kBT
γ

mω2 δij.

The correlations between the composite quadratures in this case are given by,

Sc(ω) =



Sx+,x+ 0 Sx+,y+ 0

0 Sx−,x− 0 Sx−,y−

Sy+,x+ 0 Sy+,y+ 0

0 Sy−,x− 0 Sy−,y−


(5.51)

where the non zero correlations are indicated in the matrix above. There are no

correlations between (x+, x−) and (y+, y−), given our choice of detection phases

and the fact that we consider the case δ = δω = 0. The correlations in Eqn.[5.51]

evaluate to,

Sx±,x±(ω) = Sy∓,y∓(ω)

=
2d (∆2 + γ2(1∓ µ)2 + 4ω2)

π (4ω2 + λ2
+) (4ω2 + λ2

−)
(5.52)

Sx+,y+(ω) = Sy+,x+(ω)

=
4d∆ (γµ+ 2iω)

π (4ω2 + λ2
+) (4ω2 + λ2

−)
(5.53)

= Sx−,y−(−ω) = Sy−,x−(−ω)

where λ2
± = γ2 (1 + µ2)−∆2 ± 2γ

√
γ2µ2 −∆2. The variances in the steady state

obtained using the Weiner-Khinchtine theorem are,

σx±,x± =

(
kBTγ

mω2

)[(
∆2 + γ2(1∓ µ)2 − λ2

−
)

λ+λ− (λ+ + λ−)
+

1

λ+

]
= σy∓,y∓ (5.54)

Unlike the case of zero detuning, we obtain non-zero steady state correlations

between the x and y quadratures,

σx±,y± =

(
kBTγ

mω2

)
2∆γµ

λ+λ− (λ+ + λ−)
= σy±,x± (5.55)
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CHAPTER 6

ACOUSTIC PHONONS AS PROBE OF ELECTRONIC

NEMATICITY IN CUPRATE SUPERCONDUCTORS

6.1 Introduction

In the past decade, experimental evidence has been mounting for the existence

of orientational symmetry broken phases in strongly correlated electronic systems

[83]. The most clear cut evidence for such electronic nematic phases comes from

temperature dependent transport anisotropies in high Landau level quantum hall

systems [84], in the metallic regime of Sr3Ru2O7 [85] and in the recently discovered

iron pnictide superconductors [86],[87].

There is now also increasing evidence for nematic ordering in the pseudogap phase

of underdoped cuprate high temperature superconductors. This has been seen

through measurements of anisotropies in transport [88], the Nernst coefficient [89]

and in spin modulations seen in neutron scattering experiments [90]. Addition-

ally signatures of nematic ordering have also been seen in scanning tunneling mi-

croscopy [91],[92]. There is however still, a need for new probes of nematic order

and nematic quantum criticality particularly when coexisting with superconductiv-

ity, which renders typical bulk probes for nematicity such as electrical and thermal

transport unavailable.

This chapter discusses work done along with Prof. Eun-Ah Kim and Prof. Michael

Lawler concerning using the underlying elastic medium as a probe for electronic

nematic order and nematic quantum criticality inside the d-wave superconducting

dome of cuprate superconductors.

This chapter is organized as follows. In section 6.2 we discuss the model for ne-
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matic order inside a d-wave superconductor followed by a description of our model

for coupling between the nematic d-wave superconductor and the underlying lat-

tice in section 6.3. In sections 6.4 and 6.5, we proceed to evaluate the effect of

the nematic d-wave superconductor on the lattice through the calculation of the

effective elastic theory using the random phase approximation. In section 6.6, we

calculate the spectrum of acoustic phonon dispersion and decay and discuss the

signatures for nodal nematicity in the resulting decay pattern in section 6.7.

6.2 Nodal nematic quantum criticality inside a d-wave su-

perconductor

In this section we review the model for nematic order inside a d-wave supercon-

ductor as described in Ref.[93]. The nematic phase is one where the four-fold

rotational symmetry of the crystal (C4v) is broken to a two-fold symmetry (C2v),

while retaining translational symmetry. In a d-wave superconductor the supercon-

ducting order opens a gap in the quasiparticle excitation spectrum except at four

nodal points. In a nematic d-wave superconductor, coupling to an Ising nematic

order parameter (φ) leads to the nodes shifting from their C4v symmetric locations

to one that is C2v symmetric. The shift is by an amount that is proportional to

〈φ〉.

The relevant degrees of freedom describing the low energy physics of the system

are thus nodal fermions and the Ising nematic order parameter φ. The effective

Lagrangian describing the coupled system is L = Lψ +Lφ +Lψ−φ. Lψ is the nodal

quasiparticle Lagrangian in a dx2−y2 superconductor obtained by linearizing the
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Figure 6.1: Schematic of nodal nematic quantum criticality (adapted from
[92]). Quantum critical point at λ = λc, separating the nodal
nematic phase for λ−1 < λ−1

c from the symmetric phase, and its
quantum critical fan. Tc and Tn are the superconducting and ne-
matic critical temperatures and the (purple) wedge corresponds
to the thermal critical regime.

Bogoliubov-de Gennes Hamiltonian about the nodes.

Lψ =
∑
n,α

ψn,α(i∂t − iτ3~v
n
F .~∇− iτ1~v

n
∆.~∇)ψn,α. (6.1)

Here,

ψn,α(~q) =

 c ~Kn+~q,α

εαβc
†
−( ~Kn+~q),β

 (6.2)

are two component Nambu spinors representing the nodal quasiparticles. Con-

version from the nodal quasiparticle representation c~k to the Nambu spinor rep-

resentation results in only two inequivalent nodes located at ~K1 = (K,K) and

~K2 = (K,−K), represented by the node indices, n = 1, 2. εαβ is a totally antisym-
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metric matrix inserted to allow ψ to transform as a spinor under rotation, τ1 and

τ3 are standard 2× 2 Pauli matrices acting on the Nambu spinors. vnF and vn∆ are

the fermi and gap velocities which are in turn given by

~vnF = ~∇~kε~k|~k= ~Kn
;~vn∆ = ~∇~k∆~k|~k= ~Kn

(6.3)

Typically vF and v∆ are very different v∆

vF
≈ 0.05 − 0.1 and the effective Dirac

fermion Lagrangian describing the low energy physics of the nodal fermions is not

Lorentz invariant.

The Lagrangian for the nematic order parameter is

Lφ =
1

2

[
(∂tφ)2 − (∇φ)2]− m2

2
φ2 − u

4N
φ4 (6.4)

The interaction term coupling the nodal fermions and the nematic order parameter

is an additional s-wave term in the superconducting gap and is of the form

Lψ−φ = − λ√
2N

∑
n,α

φψn,ατ1ψn,α (6.5)

In Ref.[93], the behavior of this model is studied in the large N limit, with N = 2

corresponding to the physical case of two spin states. The model is analyzed by

evaluating the effective theory of the nematic order parameter by integrating out

the nodal fermions using the random phase approximation (RPA). This results in

a negative correction to the mass of the nematic field and hence a quantum critical

point at finite coupling λ = λc. Above this critical coupling λc, the nematic order

parameter acquires an expectation value

m2 〈φ〉 = − λ√
2N

∑
n,α

〈
ψn,ατ1ψn,α

〉
(6.6)

∝ (λ− λc)
1
2 (6.7)
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6.3 Model: Elastic theory coupled to nematic d-wave su-

perconductor

We now describe the model for long wavelength acoustic phonons coupled to nodal

quasiparticles in a C4v symmetric d-wave superconductor or a nematic (C2v sym-

metric) d-wave superconductor.

The model Lagrangian we consider is L = L~u + L~u−ψ + Lψ + L~u−φ where L~u ac-

counts for free in-plane displacement fields ~u(~r) within linearized elasticity, Lψ the

nodal quasiparticle Lagrangain introduced in the previous section, L~u−ψ the cou-

pling between the nodal quasiparticles and the displacement field, and L~u−φ the

symmetry-allowed direct coupling between the nematic field and the elastic field

of the lattice.

6.3.1 C4v symmetric linearized elastic theory

We describe the acoustic phonons associated with long wavelength distortions of

the copper-oxide unit cell using a general elastic theory with the C4v point group

symmetry. The Lagrangian for an elastic theory with C4v symmetry is

L~u =
1

2

[
ρ∂tua∂tua −B(εxx + εyy)

2 − µ
(
(εxx−εyy)2 + 4ε2xy

)
− κεxxεyy]

where the linearized strain εab for {a, b} = {x, y} is related to the displacement

fields by1

εab =
1

2
(∂aub + ∂bua). (6.8)

In the above, B and µ are the bulk and shear moduli for the general elastic theory

in continuum and κ is an additional bulk modulus present in a C4v symmetric

1Since we ignore the nonlinear terms in the strain, phonon decay within the model is only due
to coupling to the electronic degrees of freedom
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theory2.

It is convenient to describe the displacements in the basis of the longitudinal and

transverse phonon fields, ~u~q = ul~qp̂
‖
~q + ut~qp̂

⊥
~q , where p̂‖,~q = q̂ and p̂⊥,~q = Rπ

2
(q̂)

are respectively the polarizations parallel and perpendicular to the direction of

propagation. In this basis the Lagrangian for the linearized elastic theory becomes,

L~u(q) =
1

2
(ul−qu

t
−q)K(q)

(
ulq
utq

)
(6.9)

where the kernel in the above expression is,

K(q) =

 ρω2 − (B+µ)|~q|2 − κ q
2
xq

2
y

|~q|2 −κ
2

qxqy
|~q|2 (q2

x − q2
y)

−κ
2

qxqy
|~q|2 (q2

x − q2
y) ρω2 − µ|~q|2 + κ

q2
xq

2
y

|~q|2

 (6.10)

As can be seen in the above equation, the additional elastic modulus κ in a C4v

symmetric theory result in off-diagonal terms that couple the longitudinal and

transverse phonons.

6.3.2 Coupling between acoustic phonons and nodal quasi-

particles

For the phonon-nodal quasiparticle coupling, we take the usual local Coulomb

interaction between electron and ion densities. This when rewritten in the Nambu

basis has the following form.

L~u−ψ = −γ
∑
n

ψn,ατ3ψn,α∇ · ~u. (6.11)

This form of the coupling is naturally C4v symmetric. The ∇·~u term in the above

is expected and is associated with a change in volume of the elastic medium and

hence a change in the ion density. The form of the coupling implies that it is

2An isotropic theory has only two elastic constants, B and µ
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only the longitudinal phonon that couples to the nodal quasiparticles. The decay

of the transverse phonon within this model is a result of a non-zero κ in the C4v

symmetric elastic theory.

6.3.3 Coupling between the nematic and the elastic de-

grees of freedom

In addition to the coupling between the nodal quasiparticles and the phonons,

we also include C4v symmetric terms coupling the nematic and elastic fields.3This

term takes the form of an additional nematic order parameter dependent elastic

modulus

L~u−φ = +θφ(ε2xx − ε2yy) (6.12)

which in the nematic phase results in a tetragonal-to-orthorhombic symmetry re-

duction of the elastic theory for the phonons. While allowed by C4v symmetry,

the strength of this term depends on the microscopic nature of the electronic ne-

matic degree of freedom. In the iron pnictides, the coupling between the emergent

nematic degrees of freedom and the lattice is large [94], and the nematic phase is

associated with an orthorhombic structural distortion. However, the strength of

such a coupling in the cuprates is unknown.

3such a term is distinct from similar terms that arise resulting from an effective interaction
between the nematic field and the elastic theory, mediated by the nodal fermions.

138



6.4 Effective theory: integrating out the nodal fermion

field

We proceed by evaluating the effective theory for the phonons and the nematic or-

der parameter field within the random phase approximation (RPA). This involves

the evaluation of the Feynman diagrams shown in Fig.[6.2]. These diagrams result

in the effective nodal fermion mediated coupling between the nematic order pa-

rameter (a)4, between the nematic field and the acoustic phonons (b) and between

the acoustic phonons (c). We discuss the effect of the latter, which results in an

additional quadratic term in the elastic theory given by

δL~u = Π(~q, ω)(~q · ~uq)2 (6.13)

where ~uq is the Fourier component of the displacement field ~u(~r) and Π(~q, ω) is

the RPA polarization which evaluates to5 :

Π(~k, ω) =
γ2

32vFv∆

[√
−ω2 + E1(~k)2

(
1− v2

Fk
2
x

−ω2 + E1(~k)2

)

+

√
−ω2 + E2(~k)2

(
1−

v2
Fk

2
y

−ω2 + E2(~k)2

)]
(6.14)

where E1(~k) and E2(~k) are two energy scales associated with a given momentum

~k:

E1(~k) ≡
√
v2
Fk

2
x + v2

∆k
2
y, E2(~k) ≡

√
v2
Fk

2
y + v2

∆k
2
x. (6.15)

These are the quasiparticle excitation energies of the anisotropic Dirac fermion

Lagrangian describing the nodal fermions.

4The physical implications of this term are discussed in [93]
5Similar to the polarization in calculated in Ref.[93]. vF replaces v∆ in the analogous expres-

sion since the interaction is in the particle-hole channel (Vint ∝ τ3) instead of the particle-particle
channel (Vint ∝ τ1)
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Figure 6.2: Diagrams evaluated to obtain the effective theory on integrating
out nodal fermions. a) Coupling between the nematic order pa-
rameter field (dashed lines) mediated by nodal fermions b) nodal
fermion mediated coupling between acoustic phonons (squiggly
lines) and the nematic order parameter field. c) nodal fermion
mediated coupling between acoustic phonons

6.5 Effective elastic theory

In order to find the effect of the nodal quasiparticles and the nematic order pa-

rameter on the elastic theory, we rewrite the quadratic effective Lagrangian in the

basis of longitudinal and transverse displacements, which results in a modification

of the bare kernel of the C4v symmetric elastic theory in Eqn.[6.10], into the form

below :

K(q) =

 ρω2 − (B+µ− Π(q))|~q|2 − κ q
2
xq

2
y

|~q|2 + θφ(q2
x−q2

y) −κ
2

qxqy
|~q|2 (q2

x − q2
y)− θφqxqy

−κ
2

qxqy
|~q|2 (q2

x − q2
y)− θφqxqy ρω2 − µ|~q|2 + κ

q2
xq

2
y

|~q|2


(6.16)

140



The nodal fermion mediated coupling results in a modification of the bulk modulus

into one that is frequency and momentum dependent and of the form,

B̃(q, ω) = B − Π(q, ω) (6.17)

The additional term in the modified kernel are C2v symmetric terms that are

present in the nematic phase. To evaluate the modified phonon properties resulting

from the coupling to the nematic d-wave superconductor, we first diagonalize the

matrix K(q) in Eqn.[6.16] to find the new eigenvectors ũl and ũt, which are each

adiabatically connected to longitudinal and transverse modes of isotropic elastic

theory. In this eigenbasis, the effective Lagrangian takes the following simple form:

Leff =
1

2

[
(ω2−ω̃l(~q, ω)2)|ũlq|2 + (ω2−ω̃t(~q, ω)2)|ũtq|2

]
. (6.18)

In the above expression the explicit functional form for the renormalized frequen-

cies are as given below, with the subscript l, t describing longitudinal or transverse

phonons respectively.

ω`(q, ω)2 =
1

2
((B̃ + 2µ)q2 + θφ(q2

y − q2
x)+√

k2q2
xq

2
y + (B̃2 + θ2φ2)q4 + 2B̃(2kq2

xq
2
y + θφ(q4

y − q4
x))) (6.19)

ωt(q, ω)2 =
1

2
((B̃ + 2µ)q2 + θφ(q2

y − q2
x)−√

k2q2
xq

2
y + (B̃2 + θ2φ2)q4 + 2B̃(2kq2

xq
2
y + θφ(q4

y − q4
x))) (6.20)

6.6 Phonon dispersion and lifetime

In the absence of coupling to nodal quasiparticles, the longitudinal and transverse

phonons do not decay within this model and the phonon propagators associated
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with the Lagrangian in Eq.(6.18) have simple poles at ω = ±ω0
l (~q) and ω = ±ω0

t (~q)

respectively, which define their bare dispersions. However, due to the scattering off

of nodal quasiparticles encoded in the polarization Π(q), ω̃`/t(~q, ω) is a non-trivial

function of ~q and takes on complex values.

To find the lifetime and dispersion renormalization, we need to solve for the poles

of the propogator in the presence of the coupling, i.e., solve for ω2 = ω`/t(~q, ω)2.

In order to obtain an analytic solution, we expand in the coupling γ2. When

γ2 = 0, we simply obtain ω = ±ω0(~q). We let ω = ±ω0
l/t(~q) + δε±l/t + iγ±l/t and solve

for the dispersion renormalization δε±l/t(~q) and the decay rate γ±l/t(~q) to first order

in γ2. This results in the following expressions,

δε±`/t = γ2Re
∂ω`,t
∂γ2

∣∣∣∣
ω=±ω0

`/t
,γ2=0

, (6.21)

γ±`/t = γ2Im
∂ω`,t
∂γ2

∣∣∣∣
ω=±ω0

`/t
,γ2=0

(6.22)

As expected the decay rate is proportional to the Im[Π̃(~q)]6 which explicitly eval-

uates to

γ`/t(~q) = −
Im(Π̃(~q, ω0

`/t(~q)))

2ω0
`/t(~q)

1

2

(
q2±

Bq4 + 2κq2
xq

2
y + θφ(q4

y − q4
x)√

κ2q2
xq

2
y + (B2 + θ2φ2)q4 + 4Bκq2

xq
2
y + 2Bθ(q4

y − q4
x)

)
(6.23)

In the limit of the elastic constants κ = θ = 0, there is no coupling between the

transverse phonon and nodal quasiparticles and the transverse phonon does not

decay, as can also be seen in the expression above.

6The nodal fermion momenta are defined about an axis along the nodal directions. The coor-
dinates used for the elastic theory are along the crystal axes. For the phonon decay calculation,
the polarization is given by Π̃(qx, qy, ω) = Π(

qx−qy√
2
,
qx+qy√

2
, ω)
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Figure 6.3: Contour plot of the imaginary part of the nodal fermion polar-
ization bubble for the transverse phonon (ImΠ̃(~q, ωt(~q))). Black
solid and dashed ellipses indicate contours of constant energy for
nodal quasiparticles, while red solid and dashed curves indicate
the contours of corresponding constant transverse phonon energy.
The curves intersect on the dashed yellow lines, which indicate
directions where the phonon energy equals the nodal fermion ex-
citation energy. Phonon decay is maximal (singular) along these
special directions. Toward the nodal directions, in the region
bounded by the dashed yellow lines, the phonon can decay in
into the nodal fermion continuum.

6.7 Acoustic phonon decay rate as a probe of nematic or-

der

The coupling between the phonons and the nodal fermions leads to a non-trivial

momentum dependent decay pattern for the acoustic phonons with a characteristic
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Figure 6.4: Line cuts of the decay rate of the longitudinal phonon along ~q =
(0.5, 0) and ~q = (0, 0.5) inside a) the nematic phase and b) the
isotropic phase. c) Line cuts of the decay rate of the transverse
phonon along ~q = (0.5, 0) and ~q = (0, 0.5) inside the nematic
phase and d) the isotropic phase. Regions of singular decay due
to coupling to nodal fermions are indicated. Elastic constants
are chosen such that vF > vl > vt > v∆, with the nematic order
parameter induced elastic constant θφ = 0.05B
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cross shaped pattern of special directions along which there is a large decay rate.

This pattern can be understood in terms of the dispersions of the phonons and

nodal fermions. The nodal fermions have a highly anisotropic dispersion with

contours of constant energy (E1,2(~k) = E0) being ellipses oriented along the two

nodal directions (See Fig.[6.3]). In comparison the dispersion of the phonons is

more isotropic. As a result, when the phonon velocity is between v∆ and vF ,

which is the case for the cuprates, there are special directions in momentum space

along which the phonon energy is resonant with the nodal quasiparticles and where

the phonon decay is singular. As we move away from these lines and toward the

nodal directions, the nodal quasiparticles have lower energy than a phonon of the

same wave vector resulting in phonon decay into the nodal quasiparticle continuum

being energetically favored. As we go away from these lines and towards the crystal

axis, scattering of phonons with nodal quasi particles is energetically disallowed

and there is no phonon decay.7

Inside the nematic phase, coupling to the nematic order parameter breaks the C4v

symmetry of the phonon dispersion. As a result, the pattern of phonon decay

also becomes C2v symmetric. This can be seen by the difference in the decay

pattern along C4v symmetry equivalent line cuts (Fig.[6.4a],[6.4c]). Inside the

nematic phase, therefore, the pattern of acoustic phonon decay can be used as a

probe for nematic order. This is of interest since acoustic phonon decay rates are

now experimentally accessible through recent advancements in triple-axis spin-echo

neutron scattering [95].

7The topology of this decay pattern remains the same as long as v∆ < vph < vF . If on the
other hand v∆ < vF < vph, phonon decay through coupling to nodal quasiparticles would occur
everywhere in the Brillouin zone.
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