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Abstract 

We begin with a decision-theoretic investigation into confidence sets that minimize expected 

volume at a given parameter value. Such sets are constructed by inverting a family of uniformly 

most powerful tests, hence also enjoy the optimality property of being uniformly most accurate. In 

addition, these sets possess Bayesian optimal volume properties, and represent the first case (to our 

knowledge) of a frequentist 1-a confidence set that possesses a Bayesian optimality property. 

The hypothesis testing problem that generates these sets is similar to that encountered in 

bioequivalence testing. Our sets are optimal for testing bioequivalence in certain settings, and in the 

case of the normal distribution, the optimal sets are curves known as the lim~on of Pascal. We 

illustrate the use of these curves with an example. 
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1. Introduction 

The construction of good set estimates of a parameter, both frequentist and Bayesian, has long 

been a goal of statisticians. The formalization of "good" set estimates is usually in terms of some 

measure of the size of the set, often taken to be the volume of the set. Alternatively, the size of the 

set can be measured by its probability of false coverage. Thus, if C(x) is a set estimate of a 

parameter 8, P 8(8 E C(X)) is the probability of true coverage, while P 8(8' E C(X) ), 8 =f. 8', is the 

probability of false coverage. 

The false coverage of C(x) can be related to its volume through the Ghosh-Pratt identity 

(Ghosh 1961; Pratt 1961), 

(1.1) 

but this has rarely been used in establishing volume optimality. An exception is the work of Cohen 

and Strawderman (1973). 

Equation (1.1) illustrates that possession of an optimal expected volume is a somewhat stronger 

property than possessing optimal false coverage probabilities, since expected volume can be regarded 

as a sum over all false coverages. Since admissibility with respect to expected volume implies 

admissibility with respect to false coverage probability, a procedure with optimal expected volume 

will have attractive false coverage properties. However, the converse is not true. As domination of 

false coverage probabilities ties directly into testing theory, where much is known about optimality, 

we find many cases where set estimates with optimal false coverage properties do not have optimal 

volume properties. For example, the usual multivariate normal confidence set cannot be uniformly 

dominated in false coverage, but it can be dominated in volume (see Casella and Hwang 1983 or 

Shinozaki (1989). 

There is, however, an instance in which false coverage and volume are equivalent. That is when 

there is interest in producing a procedure that is optimal at some point in the parameter space. 

Thus, if there is interest in minimizing volume at a parameter value 8=8*, then this can be 

accomplished by minimizing all of the false coverages at 8=8*. Doing so brings the construction of 

optimal volume confidence sets back into a Neyman-Pearson testing set-up. 

At first it may seem surprising that one can construct a confidence set that has optimal size at 

8=8* while maintaining a nominal coverage probability for all parameter values. However, this 

problem is a version of what was solved by Sterne (1954) in the binomial case (see also Crow 1956). 

For X"" binomial (n, p), Sterne proposed to construct a confidence set for p by inverting acceptance 

regions composed of the fewest X values necessary to have a rejection region with prespecified size a. 

He noted that such a set minimized the sum of the n+ 1 lengths. It turns out that such a 

construction, which is a Neyman-Pearson-type construction, will yield sets of minimum volume at 

0=0*. 
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Interestingly, there is another aspect to the construction outlined here. We will see that the 

process of minimizing the expected volume at a value 0=0* can also be used to minimize a Bayesian 

expected volume, that is, an expected volume integrated over a prior distribution. Thus, our 

construction gives a frequentist confidence set (one that maintains a nominal coverage probability) 

that optimizes a Bayesian measure of volume. 

In Section 2 we formalize the decision-theoretic problem, and establish an optimality theorem in 

the frequentist setting. We also consider the normal case in detail, where the lim~on of Pascal 

appears. Section 3 connects these results to the Bayesian formulation, and shows how to construct 

optimal frequentist/Bayes intervals. Section 4 addresses the unknown variance case, and we see that 

the known variance optimality results can be generalized to this case. Lastly, Section 5 discusses the 

connections to the problem of bioequivalence testing. We also present an example showing how 

bioequivalence confidence sets based on the lim~on can provide sharper inferences. 



-4-

2. The Frequentist Interpretation 

2.1 A General Formulation 

Let X have continuous density (for convenience) f( ·10) with respect to Lebesque measure. Given 

that we observe X = x, we set up a confidence set for 0. This set, C{x), may be a randomized set, 

and has inclusion probability 

(2.1) 

That is, cp(O lx) is the probability of including the value 0 in the set when x is observed. For 

nonrandomized sets cp(O lx) = 1(0 E C(x)), the indicator function of the set C{x). {Randomized rules 

are only included for completeness of the theory, as they should never be recommended in practical 

applications.) 

The volume of the set C{x), vol ( C{x)), with respect to Lebesque measure, is given by 

with expected volume 

vol( C(x)) = J cp(t lx)dt, 
e . 

E0vol(c(x)) = J vol(C(x))f(xiO)dx. 

$ 

(2.2) 

(2.3) 

In addition to calculating (2.3) as a measure of size, it i.s usual to calculate the frequentist coverage 

probability of the set C(x), that is 

P0(oec(x))= Jcp(Oix)f(xiO)dx. 

$ 

(2.4) 

A standard frequentist requirement is to have this coverage probability greater than some 

nominal level, say 1-a, for all values of 0. Subject to that constraint, we seek to minimize the 

expected volume of C(x) at a selected value of 0. Without loss of generality we take 0=0 and, to 

avoid trivial pathologies, 0 < a < 1. Thus, the problem of interest becomes: 

Over all confidence sets C(x), minimize E0vol( C(X)) subject to 

P0(o E C(X))~ 1-a for all 0. 

(2.5) 

Before stating and proving a formal theorem, note that the specifying of 0=0 in the volume 

requirement, which puts a particular importance on this value, makes one think of a hypothesis 

testing formulation. However, the formulation of a hypothesis test that is equivalent to (2.5) is not 

entirely straightforward, for the specified value 0=0 is not part of the null hypothesis, but of the 

alternative hypothesis. 

Consider testing 

(2.6) 
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where X - f( ·I 0). The most powerful (Neyman-Pearson) size a test is given by a rejection rule 

satisfying 

{ 1 iff(xiO)>k(00)f(xi00) 
1/Jno = 0 u otherwise 

for which E00 (.,p00(X)) =a. As in (2.1), define confidence sets C* with 

~*( 0 I x) = 1 - .,p0(x) . (2.7) 

It is this confidence set that solves the problem in (2.5). Note that in the usual non-randomized case 

the confidence set is 

C*(x) = { 0 : f(x I 0) > f(x I 0) / k(O)}. {2.8) 

Theorem 2.1: Let X -f( ·10), and let ~*(Oix) be given by (2.7). The confidence set C*(x) 

minimizes the expected volume at 0 = 0 among all1-a confidence sets. 

Proof: The proof is based on the Ghosh-Pratt identity (Ghosh 1961; Pratt 1961), and can be found 

in Pratt's paper (along with the one-dimensional normal example). We have for any confidence set 

C(x) 

E0vol(c(x)) = J vol(c*(x))f(xiO)dx = J J so(Oix)dO f(xiO)dx, 

$ $8 

where <p( (J I x) is the probability that () is included in C(x) when x is observed. Interchanging the 

order of integration gives 

E0vol(c(x)) = J J so(Oix)f(xiO)dxdO = J P0(o e C(X))do. (2.9) 

eg; e 

The integrand in (2.9) is the probability of false coverage, which is minimized, subject to (2.5), by the 

uniformly most accurate set C*(x), and in turn produces the minimum expected volume. 0 

It should be noted that any weighted volume measure can be used and Theorem 2.1 would 

remain valid. That is, if we measure the size of a set C(x) by 

E0 size(c(x)) = J [J <p(Oix)v(O)dO]dx, 
g; e 

(2.10) 

where v( ·) > 0 is some weight function, then C*(x) of (2.8) minimizes (2.10) over all 1-a confidence 

sets. 

2.2 The Normal Case 

To better understand the behavior of C*(x), we look at it more closely in the normal case. If X 

has a p-variate normal distribution, X"' N p(O, I), then for the hypothesis test (2.6) we would reject 
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where k*(00) is chosen to give the test size a. Thus, the confidence set is C*(x) = {0 : x'O ~ k*(O)}. 

To evaluate the form of k*(O), we use the fact that W = O'X/1 0 I""' n(l (}I, 1), regardless of the 

dimension of X. Then, for (} =P 0 the coverage probability is 

P0(o E c*(x)) = P 0(x'o ~ k*(o)) 

= P(IOIW~k*(o)) 

= <I>(a) 

for k*(O) = I(} I (lOl-a), where <I>(·) is the standard normal cdf. Choosing a= <I>-1(1-a) yields a 1-

a confidence interval. 

To better understand the shape of C*(x), write x'O = I x 1101 cos /3, where cos f3 = x'O /I x 1101, 

and f3 is the angle between x and 0. Then, in the normal case the optimal confidence set is 

C*(x) = {0: 101 :5a+ lxlcos/3}. (2.10) 

The boundary of this set is the main lobe of a curve known as the lim~on of Pascal, a curve 

that is often used in calculus courses to illustrate polar coordinate techniques. (The lim~on was 

actually studied by Etienne Pascal, the father of the famous Blaise Pascal, see Archibald 1900). The 

lim~n is shown in Figure 1, and the confidence set (2.10) is graphed in Figure 3 for various values 

of x when p = 2. It is interesting to note that when x = 0 the set is a sphere, but as x moves away 

from zero there is a distinct nonconvexity to the set. (The lim~on is actually a generalization of the 

cardiod, a "heart-shaped" polar curve.) As x tends toward infinity the lim~on becomes more like a 

sphere. In higher dimensions, the lim~on shape is retained. If we graph a higher dimensional 

lim~on by identifying the x-axis with the data x, and using f3 as the angle between 0 and x, equation 

(2.10) will resemble the lim~on in Figure 1. The remainder of the set is then generated by rotating 

the lim~on about the x-axis. 

Notice that C*(x) has coverage probability <J>(a) regardless of the dimension of the problem. In 

one dimension some further simplifications can be made. Here we have W 

I X I sgn( OX) "" n( I 0 I, 1 ), and 

C*(x) = { 8 : I xI sgn(Ox) ~lOl-a}= { 0 : min(O, x-a) :5 () :5 max (0, x +a)} . (2.11) 

The 95% confidence interval has a = 1.645, and is equal to x ± 1.645 for small I xI· The usual two­

sided 95% confidence interval is x ± 1.96. Thus, C*(x) is narrower than the usual interval for small 
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values of x, but wider for larger values. C*(x) does have an interesting property, however, in that it 

falls on one side of zero for smaller values of I xI than the usual interval, thus allowing an 

experimenter more power in making formal conclusions about the sign of 0. Figure 2 compares C*(x) 

with the usual one-dimensional interval. 

As mentioned before, the one-dimensional C*(x) was first derived by Pratt (1961), who also 

discussed the connection with the Sterne-Crow intervals for a binomial success probability {Crow 

1956). However, the interval (2.11) has another history, emerging from the work of Hsu {1981, 1984). 

He derived the interval in the context of a multiple decision problem, where one is interested in 

confidence intervals for the distance from the best mean. A discussion of C*(x), and demonstration of 

some properties, can be found in Exercise 9.31 of Casella and Berger, 1990. 

The expected volume, at 0 = 0, can also be evaluated for C*(x). 

{0: 10 I :5 w+a}, where W "'n( 10 I, 1), we have 

F;,vol( C*(X)) ~ ![! 1(0 E C*(x))f(x IO)dx] dO 

= I [ I f(xiO)dx] dO 

e {x: j;01 ~lOl-a} 

= I 4>( a-1 0 I) dO , 

e 

Since C*(x) = 

{2.12) 

where the last equality follows from the fact that for X"' N(O, 1), X'0/101 "'N(O, 1) for any nonzero 

0. If we then apply a polar transformation we have 

( *( )) 'Trp/2 . OOI p--1 
E0vol C X = f(p/2+1) r 4>(a-r)dr 

0 (2.13) 

'Trp/2 ai (a-t)P e-t2/2 
= f(p/2+1) -p- f21r dt . 

-oo 

Note that 'TrP/2 / f(p/2 + 1) is the volume of a p-sphere of radius 1, so the pth root of the integral 

in (2.13) is, effectively, the radius of the set. For p = 1 we can write 

but for other values of p the integral is harder to evaluate. Table 1 gives some values of the pth root 

of Eo vol( C*(x)) and, for comparison, the corresponding values for C0(x), the usual confidence 

sphere. 
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Table 1 

Effective volume (pth root of expected volume) of C*(x) and C0(x), 

1 
1 
1 
3 
3 
3 

10 
10 
10 

1-a 

.90 

.95 

.99 

.90 

.95 

.99 

.90 

.95 

.99 

the usual confidence sphere 

[E0 vol C*(X)]1/P [E0 vol (C0(X))]1/P 

2.66 3.29 
3.33 3.92 
4.66 5.15 
2.03 4.03 
2.36 4.50 
3.01 5.45 
2.35 4.39 
2.58 4.69 
3.04 5.29 

Ratio 

0.809 
0.849 
0.905 
0.504 
0.524 
0.552 
0.535 
0.550 
0.575 

Of course, for 0 ::/= 0, Eo vol(C*(x)) will grow larger than Eo vol(C0(x)) (which is constant in 

0), the discrepancy increasing as I 0 I increases. We illustrate this with Figure 3, which compares 

realized values of the two sets for a variety of x values. Note that the different graphs have different 

scales, and the value of x is the center of the sphere. 
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3. The Bayes/Frequentist Interpretation 

Interestingly, the same mathematical technique that produces the 1-a confidence set of 

minimum expected volume at a particular (} also minimizes the expected Bayesian volume using a 

prior for 0. If X"" f( · I 0) where (} has a prior distribution 1r, then the expected Bayesian volume of a 

set C(x) is 

(3.1) 

We now seek to minimize (3.1), a Bayesian measure, among all sets C(x) that satisfy the frequentist 

coverage probability constraint, P 0(o E C(x)) ~ 1-a. 

In Section 2, the minimizing set was constructed from testing H0 : (} = 00 vs HI : () = 0 or, 

equivalently, H0 : X "" f(x I 00 ) vs. HI: X "" f(x I 0). In the Bayesian formulation, the minimizing set is 

constructed from the test 

H0 : X "" f(x I 00) vs H1 : X "" m11"(x) , 

where m11"(x) = J e f(x I 0) 11"(0) dO. The confidence set is, therefore, given by 

C~(x) = { (} : f(x I 0) ~ m?r(x) I k(O)} , 

where k(O) is chosen so that P0(o E C~(x)) = 1- a. We have the following theorem 

(3.2) 

Theorem 3.1: Let X"" f(x I 0), (}"" r(O), and C~(x) be given by (3.2). The confidence set C~(x) 

minimizes the expected Bayesian volume (3.1) among alll-a confidence sets. 

Proof: For any confidence set C(x) we have 

E,..vol(C(X)) =. J [J vol(C(x))f(xiO)dx] 1r(O)dO = J vol(C(x)) m?r(x)dx. 
e $ $ . 

Now proceed as in the proof of Theorem 2.1, with m,..(x) in place of f(x I 0). 0 

For illustration, consider again the normal case X"" N(O, I) and ()"" N(O,r2I). The marginal 

distribution of X is N(o, (r2+1)I), and the confidence set is 

C~(x) = { 0 'In- r;:1 xi'~ k*(O)} (3.3) 

where (r2+1 I r 2f k*(O) is the upper a critical point of a noncentral chi-squared distribution with 

noncentrality parameter I(} 12 jr2. It can be shown that as r2 -+ 0 this set reduces to C*(x) of the 

previous section and, as r 2 -+ oo, this set approaches the usual sphere c0(x). 



-10-

4. Generalizations to the Case of Unknown Variance 

The set C*(x) of (2.8) is optimal in cases where there are no nuisance parameters, and the 

normal examples of Section 2.2 all reflect this. Of course, the more practical problems usually involve 

nuisance parameters, and we now consider that case. We restrict our discussion to the normal 

distribution with unknown mean and variance. 

With a sample x1, · ··, Xn from n(O, u2) with both parameters unknown, there are two ways of 

generalizing the procedure of Section 2. The first, which is perhaps the more obvious way, is to test 

the hypotheses 

(4.1) 

Using a standard Student's t test, this leads to intervals of the form 

Ct(x, s) = { 0 :min( 0, x- ta, n-1 }n) ~ 0 ~max( 0, x + ta, n-1 }n )} , (4.2) 

where t a n-1 is the upper a cutoff from Student's t distribution with n- 1 degrees of freedom. It is 
' 

straightforward to verify that Ct(x, s) is a 1-a confidence interval, although it doesn't enjoy the 

same optimality properties as the interval (2.8). This interval was also considered by Hsu, Hwang, 

Liu, and Ruberg (1993), although they did not investigate its optimality. We detail its exact 

optimality below. 

For this problem it is natural to consider only confidence 6ets related to the usual (scale­

invariant) t-tests of H0• This means that the inclusion probabilities of the confidence set must be of 

the form 

(4.3) 

Note that the intervals of ( 4.2) have this form. 

A second, perhaps less obvious way of generalizing Section 2.2 is to modify the hypotheses of 

(2;6) by dividing by u to obtain 

u0 : ~ = 'lo vs. u1 : ~ = o , (4.4) 

where '7o is a fixed constant. On defining '1 = Oju, we see that we are reduced to considering a one­

parameter problem. In practical terms, the hypotheses ( 4.4) are also quite interesting, because the 

"signal-to-noise ratio" '1 = Oju is often of interest. We will see that (4.4) leads to a confidence 

interval for TJ that is different from any confidence sets for 0, in particular (4.2). 

For the hypotheses ( 4.4) a reasonable invariant procedure will be of the form 

(4.5) 

with corresponding confidence intervals given by 

ct(x, s) = { TJ:f(x/sl TJ) ~f(x/sl O)jk(77)}, (4.6) 

where f(x/s I TJ) is the noncentral t distribution with noncentrality parameter 1J and n -1 degrees of 

freedom. The function k( 1J) is chosen so that ct is a 1-a confidence set, c;hat is, so that the 
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corresponding tests in ( 4.4) have level a. Figure 4 shows a plot of these intervals, along with the 

normal (u known) intervals. It is interesting to note that the resulting boundaries are curved, in 

contrast to the straight line boundaries in the known u case. 

Construction of the intervals given by ( 4.6) is actually quite straightforward, exploiting 

monotonicity properties of both the density and distribution function of the noncentral t. Note first 

that since f( t I q) has monotone likelihood ratio, the acceptance region of the test ( 4.4), that is H0 : '7 

vs. H1 : '7 = 0, is given by 

Now the distribution function, F(t I q), is decreasing in q, so an a-level test is constructed by solving 

F(tl k}1(t)) =a: and F(tl k21(t)) = 1-a:, 

and setting '7u(t) = k}1(t) and '7L(t) = k21(t) yields 

Cifx/s) = { q:min(o, fJL("x/s))~ '1 ~ max(o, fJu(x/s))}. 

Note that tdis construction holds, in general, as long as the density satisfies suitable 

monotonicity conditions. It aiso follows that the confidence interval ( '7 £< t ), '1u( t)) is a 1-2a: interval. 

For both the set-ups leading to (4.1) and {4.4) we can establish optimality properties of the 

resulting confidence sets. 

Theorem 4.1: Among all 1-a: confidence sets for ()of the form (4.3), the intervals (4.2) minimize 

Eo,u ( vol ( C( X, S))) for every u 2 > 0. 

Proof: As in the proof of Theorem 2.1, use the Ghosh-Pratt identity to write 

00 

Eo,u ( vol(C(X, S))) = J Po,u(9eC(X, S))d9. 
-oo 

Among all 1-a: confidence sets of the form (4.4) the integrand is minimized for each() by the Ct of 

( 4.2), because these intervals correspond to most powerful level a invariant tests of the hypotheses 

(4.1). D 

Theorem 4.2: Among all invariant 1-a: confidence sets for fJ = () / u, the intervals ( 4.6) minimize 

Eo,u ( vol(C(X, s>)). 
Proof: This follows from Theorem 2.1 upon taking into account the monotone likelihood ratio 

property of the noncentral t distribution. D 

Without the restriction (4.3) the confidence intervals (4.2) are not optimal. In fact, they are not 

even admissible, since it is possible to construct 1-a confidence intervals with smaller expected length 

for every () = 0, u > 0. This is possible because the results of Brown and Sackrowitz (1984) enables 

construction of level a: tests, fPBs(9IX, S) of (4.1), whose power strictly dominates that of the one-
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sided t-tests leading to (4.2) Consequently, this family of critical functions leads to intervals which 

dominate those of (4.2), as can be seen by applying the Ghosh-Pratt identity as in the proof of 

Theorem 4.1. 

For each 6, tT the (1-a) confidence intervals constructed above have coverage exceeding 1-a, 

since the tests of Brown and Sackrowitz have size smaller than a. But 

inf {P6,u(thCBs(X, 5))16, u} = 1-a. We do not know whether the intervals CBs are admissible. 

Brown and Sackrowitz show their tests are admissible for testing Ho: 6 = 60 , tT > 0 vs. either HI : 6 > 0 

if 60 < 0 or HI :6 < 0 if 60 > 0; however, they do not prove admissibility for H0, HI of (4.1) as would be 

needed to establish admissibility of CBS· 

By contrast, the intervals in Theorem 4.2 are admissible for pfu. This is because the tests 

involved are UMP invariant and hence are Bayes among invariant tests. The invariance group here is 

the group of scale tramsformations and, applying the results of Brown and Fox (1974), a procedure 

that is Bayes among invariant procedures is admissible. Admissibility of the tests implies 

admissibility of the confidence sets. 

Generalizations to higher dimensions should also be of interest. Presumably, the lim~on does 

not appear here because the relevant distributions are multivariate t rather than multivariate normal 

as in Section 3. 
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5. ConnectioDS with Bioequivalence 

The intervals discussed here, particularly the form ( 4.2), have seen practical use in 

bioequivalence testing. This brings us to the interesting connection between bioequivalence and the 

lim~n of Pascal. 

The problem of declaring bioequivalence is typically that of deciding whether the difference of 

two population means, I'C p2, is close to zero. Typically, l't and p2 represent mean responses of two 

different types of treatments or drugs (treatments vs. control, oral vs. injection, brand name vs. 

generic) and the interest (usually of pharmaceutical companies) is to demonstrate that the effects are 

equivalent, yielding bioequivalent formulations of the treatment. At present, a typical statistical 

approach is to test 

(5.1) 

where 6 is a specified threshold. Rejection of such a test leads to the declaration of bioequivalence. 

Note that what is typically the "null hypothesis" is placed in the alternative, as this is the research 

hypothesis of interest. One of the first researchers to formulate the bioequivalence problem in this 

was Anderson and Hauck (1983). (See also Hauck and Anderson 1984, 1992. The lat~er is a review 

paper.) 

A technique of carrying out a test of (5.1), as required by the FDA {FDA, 1992), is to perform 

two one-sided tests, as described by Schuirmann {1987), for example. This procedure establishes 

bioequivalence of l't and p2, at level a, if both of the following two one-sided test of (J = p1-1'2 reject 

the null hypothesis at level a: 

i) H0 : 9 ~ -6 vs. H1 : 9 > -6 
(5.2) 

ii) H0 : 9 ~ 6 vs. H1 : 9 < 6 

It ·is interesting to note that (5.2) is a case of an intersection-union test, as developed by Berger 

{1982). As the overall hypothesis of interest, that -6 ~ (J ~ 6 is an intersection of the two other 

hypotheses, individual a-level tests lead to an overall a-level test for (5.1). Additionally, referring 

to the discussion following (4.6), it turDS out that Schuirmann's procedure leads to basing the 

conclusion on the non-truncated confidence interval, which seems to have confidence 1-2cr, the wrong 

level. The a-level is actually correct, however, the intervals are wider than necessary. 

Although interest has usually centered around the testing problem in (5.1), there is also 

considerable interest (and benefit) in constructing confidence intervals for p2 -p1• Given a 1-a 

confidence interval C(x) for p2-p1, an a-level test of (5.1) can be conducted by rejecting H0 whenever 

C{x) C (-6, 6), as proposed by Westlake (1972, 1976). (Notice that this use of confidence sets as tests 

is reversed from the usual use. The values of p2 -p1 in the interval ( -6, 6) are those for which 

bioequivalence will be declared, which is the alternative hypothesis.) 
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The confidence set approach to bioequivalence testing has an added benefit in that the constant 

6 does not have to be prespecified. Indeed, for a given 1-a bioequivalence confidence set C(x), and 

any set ~. we could conclude H1 : p.1 - p.2 £a if C(x) C ~. It then follows that C(x) is the smallest set 

of parameter values p.1 - p.2 for which the data will reject H0 (and hence conclude bioequivalence). 

Recent research has continued to take the confidence interval approach to bioequivalence. The 

work of Westlake (1976) was apparently prompted by the mismatch in error probabilities of 

Schuirmann's procedure (a for the test and 2a for the interval). Although Westlake's 1-a interval 

does not correspond to Schuhmann's a-level test, it led to the further research of Bofinger (1985) and 

Hsu et a/. (1993), who proposed the interval (4.2). This 1-a interval, which is shorter than 

Westlake's (1976) interval, corresponds to the level a two-one-sided tests procedure. Generalizations 

of this problem, including a nonparametric approach, are discussed in Hsu et a/. (1993). 

There are other formulations of the bioequivalence hypothesis, formulations that lead to 

alternate tests and confidence intervals. For example, one could specify 6 of (5.1) in terms of the 

variance 0'; that is, two procedures are declared bioequivalent if their mean difference is no more than 

a specified proportion of their variance. Of course, this formulation leads directly to the hypotheses 

specified in ( 4.4), and to the noncentral t-based intervals of ( 4.6). Although this formulation of the 

bioequivalence problem has been used, the optimal procedure of ( 4.6) has not been employed. 

Lastly, the bioequivalence problem can be a multivariate one, where the full advantage of the 

lim~on can be enjoyed. To test the bioequivalence of p formulations, one might specify a set a 
(possibly a hyperrectangle) in which the differences must lie. By constructing a lim~on confidence 

set, overall bioequivalence can be examined. Bioequivalence would be concluded if the lim~on 

confidence set falls entirely within a. 
We illustrate this last situation with data from Ruberg and Stegeman (1991), on equivalence of 

batch degradation slopes. (We make a simplifying (but seemingly reasonable) assumption about the 

batch variation. For an alternative analysis, based on multiple comprison techniques, see Ruberg and 

Hsu (1992).) Each of p = 6 batch slopes, {31, • · ·, {36 , is used to estimate the shelf-life of a product. 

Here we look at the bioequivalence of the differences 

i =2,···,p. 

The data are assumed to be independent normal with known variance; that is, we observe 

(3i ""n(p, 0'2). This results in observed Oi = (3i- (31 that are correlated, 0- N(O, :E) where, in this 

case, :E = 0'2(1 + J), J being a vector of ones. In general, for 0"" N(O, :E), the 1-a lim~on confidence 

set is 

(5.2) 

where za is the upper a cutoff point from a univariate standard normal distribution. This set reduces 
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1 1 
to the form of (2.10) with the transformation '1 = r;2(J, i) = r;29. The set (5.2) is somewhat of an 

elliptical lim~on, and is shown in Figure 5. We show two-dimensional projections of the five­

dimensional set, which gives the smallest a for which bioequivalence will be declared. 

Acknowledgment: We thank Jason Hsu for many interesting discussions about different aspects of 

this problem, and W eizhen Wang for numerical calculations leading the Figure 4. 
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Figure 1. The lim~on of Pascal r=h+acos,B. If h<a the lima~on has an inner 

loop, which does not occur in the confidence set. The confidence set 

{B:IBI~Za+IX!cos,B} is, in effect, a "positive-part" lim~on. 
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Figure 2. Comparison of C*(x) (solid lines) of (2.10) with the usual 90% confidence 

interval (dashed lines). 
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Figure 3. Two-dimensional lim~on (solid lines) and usual confidence sphere (dashed 

lines) for four different data points. The confidence sphere has a constant 

radius, while the lima~on enlarges as the data move away from the origin. 
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Figure 4. Comparison of Ci of ( 4.6) with the normal (known u) interval. The dotted 

lines are the normal interval, and the noncentral t interval is shown for a 2 

df (solid lines), 5 df (short dashed lines), and 20 df (long dashed lines). 
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Figure 5. Two-dimensional projections of the five-dimensional "elliptical lima<;on" 

and usual confidence ellipse for the batch degradation data. Note that both 

01 and 02 were close to zero, but 0 4 was farther from zero, which is reflected 

in the size and placement of the respective lima<;ons. 
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