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ABSTRACT

UAV swarms have gained popularity over the past years, with increased ac-

cessibility contributing to new research areas and applications. The increased

complexity of handling of UAVs swarms and assigning multi-phase applica-

tions results in the need for efficient task assignment for UAV swarms. The

project extends an existing UAV swarm simulator to enable comparison of

scheduling algorithms and techniques. The simulator is easily augmentable and

provides a simple-to-use interface for the specification of complex applications.

The evaluation of five scheduling algorithms shows that existing solvers for

global problem optimization outperform naive scheduling approaches in terms

of performance and assignment quality. Adaptive task batching and the utiliza-

tion of cloud resources can lead to better task assignments with lower overhead

and reduce the computational burden on the swarm.
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CHAPTER 1

INTRODUCTION

Unmanned aerial vehicles (UAVs), and more specifically the use of UAV

swarms to execute tasks, continue to be a well investigated topic as new tech-

nologies and trends emerge. UAV swarms can be employed for a wide range

of tasks and may be utilized in remote and hazardous environments to prevent

human endangerment. Typical tasks involve generating data through sensing

and subsequently processing that data. Example applications are smart farm-

ing [1], surveillance and inspection [2], disaster sensing [3] and mobile crowd

sourcing [4]. While most of these tasks could also be executed by a single UAV,

there are advantages of swarm based systems. The capability of a single UAV

is limited due to computational and power constraints. Multiple UAVs are able

to overcome those limitations by collaborating, leading to higher coverage and

faster execution of a tasks and missions. Additionally a swarm provides redun-

dancy through numbers, increasing scalability and survivability in case one ore

multiple UAVs should fail [5]. Another method of overcoming the constraints

of UAVs is the offloading of computationally expensive tasks to an edge server

or the cloud.

One of the core issues associated with UAV swarms is the coordination of

such a system. Smaller groups of UAVs can be operated by humans controllers,

but this becomes a more difficult feat for bigger swarms. Automated work as-

signment becomes crucial in order to maintain efficient task distribution and

execution for larger swarms and workloads. In general a UAV swarm can be

viewed as a distributed processing system with additional constraints [6], since

the tasks are bound to a physical location, and power and sensor limitations
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need to be taken into account. Some of the approaches of scheduling workloads

under those constraints will be addressed in the next section. A UAV swarm can

be comprised of multiple UAV types with different processing and sensing ca-

pabilities. This poses an additional challenge since under- and over-utilization

of resources may occur [7].

Simulation plays an important role in determining the quality of a UAV

swarm system. It allows for the exploration of different scenarios without the

overhead and cost of setting up and using an actual UAV swarm. Algorithms

and applications can be debugged and verified before deploying them to a phys-

ical system, preventing potentially dangerous situations [8]. However, a simu-

lation may not be able to completely and accurately replicate a physical setup

due to its complexity. Most simulations focus on the aspects that are relevant to

the system and choose abstract some features of the real world. Despite these

drawbacks simulations are useful to examine promising ideas before applying

them to a physical system.

This project focuses on the implementation of a simulation tool which allows

for the evaluation of algorithms for real-time task assignment in UAV swarms.

It takes into consideration heterogeneous UAV swarms and workloads with

the option to offload computation to the cloud. The simulator was first im-

plemented for class project [9] and has since been extended.
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CHAPTER 2

BACKGROUND

2.1 Scheduling

Scheduling algorithms are used to determine when and how tasks or jobs are ex-

ecuted by the UAV swarm (and potentially the edge and cloud servers). There

are several objectives that an algorithm can try to optimize, such as the mini-

mization of power consumption [10] [4], the minimization of execution latency

[7], avoiding UAV failures [11], maximizing the reward associated with a task

[12] [13] [14], or a trade off between the named objectives. In addition to task

assignment, schedulers may also be involved with path planning and routing

of the UAVs [15] [1], as well as planning when to charge the UAVs to prevent

complete depletion of the swarm [14].

2.1.1 Problem Formulations

The scheduling problem can be interpreted in a variety of ways, depending on

the assumptions that are made. Some systems only consider offline scheduling,

meaning that the entire workload is known beforehand. The problem in this

scenario can be viewed as the vehicle routing problem [16], where the fleet of

vehicles is the swarm of UAVs. Another paper models it as a variant of the

Knapsack problem, where the UAVs represent the boxes and the tasks the items

to fit within the boxes [12].

Real-time task scheduling, where tasks may arrive at any time, can be de-
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scribed as the assignment problem, where an assignment between a set of UAVs

and tasks needs to be found. Similarly, the problem can also be seen as an in-

stance of the stable matching problem [4]. In Wei et al.’s framework each UAV

maintains task queues [17]. They describe the problem of inserting a new task

into a UAV’s task queue as the traveling salesman problem. The UAV is a sales-

man and the locations to visit are given by task locations, including the ones in

the queue previously and the new one. This approach assumes that the UAV

has been assigned the task by a controller, if that is not the case the problem of

inserting a task into any UAVs schedule can simply be represented by a multi

traveling salesman problem [18].

2.1.2 Algorithms

A variety of scheduling algorithms have been explored for the UAV swarm task

scheduling problem. The proposed algorithms may also address the routing

problem in addition to task assignment.

Linear Programs and Solvers

A lot of the aforementioned work includes a form of integer or linear problem

optimization representation of the scheduling problem. As such it comes to no

surprise that ready to use optimization software is used to solve the problem

[19] [12] [20]. A popular choice is the CPLEX solver by Intel which implements

the simplex algorithm. While the solver will find an optimal solution, it is not

necessarily computationally efficient. As a result this approach is not necessar-

ily suited for real-time scheduling in which the solver would have to be called
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for every incoming task [20]. The complexity issue can be addressed through

heuristic algorithms and accepting potentially sub-optimal solutions. Some of

these heuristic algorithms are covered in the next sections.

Nature Inspired Algorithms

Numerous heuristic optimization algorithms are inspired by principles of na-

ture, examples being genetic algorithms, particle swarm optimization, and ant

colony algorithms. These types of algorithms can find solutions at a computa-

tionally lower cost, but require tuning of different parameters.

Genetic Algorithms (GAs) are used for route planning [4] [18] and to solve

the task assignment problem [21]. A genetic algorithm simulates the evolution

of a random population of solutions into a good population of solutions. Each

solution is associated with a measure of goodness; the fitness. The evolutionary

process usually involves the combination of fit solutions into a new solutions

until a certain termination point is reached. In the case of route planning [4]

a solution is given by the ordering of way points on the route. The fitness of

a solution is given by the reciprocal of the total sensing cost. The bundling of

tasks that should be executed by one UAV can be achieved through a clustering

algorithm which groups tasks based on their location [18]. In task assignment

[21] a solution represents a feasible assignment between UAVs and tasks. A

solution is considered good if the expected cost associated with it is low.

Particle Swarm Optimization (PSO) is used to solve offline task assignment

for UAVs. In a PSO the solutions are particles within the search space. Each

particle has a velocity associated with it and constantly adjusts its position. Dif-
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ferent formulations of the problem, such as vehicle routing problem with time

windows [16] and a variant of the parallel machine scheduling problem [15],

have been explored with PSOs. Optimization objectives are the minimization

of total makespan [16] and the minimization of total cost of the execution [15].

Khosiawan et al. compare results of their PSO implementation to a GA im-

plementation, and demonstrate that the PSO is simpler while also being more

effective [15].

Ant colony algorithms such as Ant Colony Optimization (ACO) [22] [23] and

Dynamic Ant Colony Labor Dision (DACLD) [24] have been successfully de-

ployed for UAV swarm coordination and cooperation. Ant colony algorithms

model the behaviour of agents in the form of ants, where behaviour within a

search space is influenced by pheromone trails left by other ants. Rosalie et

al. combine an ACO implementation to maximize coverage with chaos dynam-

ics to generate unpredictable flight patterns in a military context [22]. The UAVs

leave repelling pheromones along their flight path to avoid coverage of the same

area within a short period of time. Wu et al. use the principle of ACLD to as-

sign tasks to UAVs in a distributed manner [24]. Each task is associated with a

pheromone, and if a certain threshold is reached an ant, representing a UAV, will

follow the stimulus and execute the task. Hu et al. use a clustering algorithm

to group tasks, then assign the task clusters to UAV teams with the Hungarian

algorithm, and finally use ACO to assign tasks within a team [23]. They con-

clude that this hierarchical approach can greatly reduce the complexity of the

task assignment problem.
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Game Theory

In game theory agents make strategic decisions based on incentives and re-

wards. Utilizing elements of game theory has gained popularity in work cover-

ing UAV swarm scheduling and coordination.

Zhang et al consider the assignment as a non-cooperate dynamic game with

incomplete information [10]. The UAVs bid on arriving tasks based on the ex-

pected payoff, which is determined by execution cost and reward. A similar

auction based approach is found in other works [25] [13] [1]. Generally the first

phase is a distributed bidding phase, in which each UAV calculates the reward

for each task and adds selected ones to its bundle. A consensus phase follows to

resolve any possible conflicts that might have occurred during the first phase.

Mukherjee et al. use a Nash bargaining game to offload data to other UAVs

in a swarm of heterogeneous UAVs in order to prevent under-utilization of re-

sources [7]. The bargaining game is between the probability of the node that

generated the data processing it as well, and offloading the processing to an-

other UAV in the swarm. The goal of the game is to minimize processing lag

and offloading delays.

A Nash bargaining game is also applied in the work of Motlagh et al. in

order to find a trade-off between two scheduling objectives; power consumption

and delay [26]. The implementation of the trade-off based scheduler achieves

fair results in terms of power consumption and delay. However, this comes at

the cost of a drastically increased runtime of the algorithm for larger problems.

7



2.2 Computation Offloading

Computation offloading describes the offloading of computationally intensive

tasks from a UAV to another, more capable server. The resources of UAVs are

limited, so computation is expensive in terms of power consumption, but also

latency. Delegating computation preserves the UAVs resources for other tasks

that specifically require the UAV’s capabilities, such as taking photos or sensing.

It can also lower the execution time needed for the computation. The offload-

ing process is associated with a cost; the transfer of data to the server which

will process it. It requires some sort of network connection and will incur trans-

mission latencies. The transmission process can also consume the UAVs power

and lead to bandwidth saturation [3]. Alternatively the data could be stored on

the UAVs and be processed later, this is only applicable for systems that do not

require real-time processing of data.

Mukherjee et al. [7] propose the idea of computational offloading within a

heterogeneous swarm. The swarm is comprised of different UAVs, most are fit-

ted with scalar sensors, while one is fitted with multimedia sensors. The amount

of data generated by the latter is substantially higher. In order to effectively uti-

lize the available resources the data is distributed among the swarm members

for processing. Song et al. [19] enable splitting of a job into subtasks when a

UAV runs out of power, so the job can be handed off to another UAV. This al-

lows the swarm to tackle long-running jobs that might be infeasible to execute

otherwise.

Luo et al.’s [3] framework utilizes cloud resources to offload data to cloud

servers for real-time processing. Video data is pre-processed by the UAV that
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captured it, and the results are used by a scheduler to determine whether to

send the video data to the cloud for more complex analysis. The pre-processing

of data can avoid unnecessary data transfers and latencies associated with it.

Pre-processing of data on UAVs is also considered in the work of Liu et al. [27]

[28]. In addition to cloud resources, edge servers are also taken advantage of as

an intermediary between UAV and cloud. This allows for a trade off between

latency and compute power. The edge server can provide low latency and en-

ergy efficient resources, while more demanding computations can be sent to the

cloud at a higher migration cost. Systems following the UAV-edge-cloud ap-

proach can benefit from lower cloud resource costs if data is (pre-)processed on

the edge instead [29].
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CHAPTER 3

SYSTEM DESIGN

The proposed simulation framework is comprised of multiple components.

The UAV swarm consists of a set of potentially heterogeneous UAVs and ex-

ecutes a workload of tasks or jobs. A job groups multiple tasks into a single

unit and allows for specification of dependencies between tasks. The workload

and arrival rate of tasks is not previously known, tasks are scheduled in real-

time as they arrive. Task assignment is handled by a controller which runs in a

centralized fashion on a base station on the ground. A decentralized controller

running on each UAV would be feasible as well, but is not considered in this

project. The controller is driven by a specified scheduling algorithm. Cloud

resources for computational offloading are available as well.

3.1 Interface

The system can be easily configured or augmented for simulations. The config-

uration is handled through a set of files; one file is used to set the parameters for

the simulation, and additional files are used to define jobs. A job configuration

is a task graph in JSON format for easy modification and portability. This allows

a user to specify large simulations and jobs with multiple phases on an abstract

level instead of focusing on the low level details. Simulations can be run to eval-

uate behaviour of UAV swarms under certain conditions before transferring the

simulation setup to a real life scenario. Compatibility plays an important role to

enable easy transfer of specifications between simulation and a physical system

[8].
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3.2 Scheduling Algorithms

The system is designed for real time scheduling. The scheduling problem under

these circumstances can be considered an instance of the assignment problem.

Whenever a task arrives or a UAV finishes its assigned task, the objective is to

find a good match between available UAVs and pending tasks. A scheduling

algorithm can optimize a match in multiple ways. The objective considered

in this project is the minimization of power consumption for energy efficiency.

Since the system is considered real time, the runtime of a scheduling algorithm

also has to be taken into account. Long execution times could lead to further

delays and cause issues in a physical system.

All scheduling algorithms need to take into account the constraints that are

set by the UAVs and tasks, depending on their type. In order to execute a task

a UAV needs to have the resources to execute the task. These resources are de-

fined in terms of equipment as well as power. A UAV needs to have the sensors

required to execute the task, e.g. taking a photo requires a camera mounted

to the UAV. Additionally, the UAV should have enough battery capacity left to

travel to the task location, execute the task and return to the base station in case

it needs to be recharged. Power consumption associated with a task includes

travel, task execution and, if needed, data transfer. A job specification may pose

additional constraints since task dependencies need to be considered. A task

can only be executed, if its preceding tasks have been completed.

It is assumed that the controller in charge of scheduling has a global view of

the system. General information about different task types, such as average ex-

ecution times and sensor requirements, is known. Over the course of the simu-
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lation the location newly arriving tasks becomes available as well. A centralized

controller will have information about all of the UAVs in the swarm, while a de-

centralized controller would only hold information about the specific UAV that

it is running on. The information associated with a UAV includes its location, its

velocity, its battery status and the processing power of its CPU. The centralized

controller obtains the information through the exchange of messages whenever

the status of a UAV changes.

3.2.1 FIFO

The FIFO policy is included in the system as a naive baseline to compare the

performance of other, more sophisticated, scheduling policies against. A queue,

sorted by arrival time, is utilized to keep track of pending tasks. To assign a task

to a UAV the first item of the queue will be dequeued and assigned to the first

available UAV that is able to process it.

3.2.2 Local Optimization

A greedy algorithm is used to find a solution with low power consumption

through local optimization. In each step of the assignment process an available

UAV is assigned the task with the lowest expected power cost for that UAV.

This approach may not find the globally optimal solution, but can be a simple

approximation of that solution.
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3.2.3 Global Optimization

In contrast to local optimization, global optimization is more complex and can

achieve better, if not optimal, results.

Given a set of available UAVs U = {u1, u2, ..., um}, a set of pending tasks

T = {t1, t2, ..., tn} and a cost matrix C, where the entry C(i, j) describes the cost

associated with UAV ui executing the task t j, the global optimization problem

can be expressed as follows:

Minimize ∑
i∈U

∑
j∈T

C(i, j) ∗ x(i, j)

Constraint to

I f |U | < |T | : ∑
j∈T

x(i, j) = 1,∀i ∈ U

∑
i∈U

x(i, j) ≤ 1,∀ j ∈ T

Else : ∑
j∈T

x(i, j) ≤ 1,∀i ∈ U

∑
i∈U

x(i, j) = 1,∀ j ∈ T

Since the assignment problem may be rectangular the constraints are split

into two cases. The first case describes the problem when more tasks need to be

scheduled than UAVs are available, the second all other scenarios. The entries

of the cost matrix are calculated according to the scheduling objective, in this

project the cost is the power consumption of the UAV executing the task. If a
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UAV cannot execute the task, e.g. it does not have enough remaining battery of

the sensors required by the task, the cost is set to infinity.

The solution for the global optimization problem can be found with a variety

of read-to-use solvers and (meta)-heuristic algorithms.

Hungarian Algorithm and Minimum Cost Flow Algorithm

Figure 3.1: Cost matrix and graph representation. Tasks are supply nodes, con-
nected to the nodes of UAVs capable of executing the task. The edges are labeled
with (capacity, cost). The grey nodes represent not scheduling a task, penalized
with an infinite cost. Flow is directed towards a demand node with a demand
equal to the number of tasks.

The cost matrix mentioned in the problem formulation can also be used as input

for the Hungarian Algorithm. An efficient variant of this, the Jonker-Volgenant

algorithm, uses a shortest-augmenting path approach based on graph theory

[30]. A Scipy implementation of the Jonker-Volgenant algorithm was used in

this project. After execution of the algorithm the obtained assignments are ver-

14



ified, if the cost of an assignment is infinity, it is not valid. Only valid assign-

ments are passed on to the UAVs.

A minimum cost flow graph representation (see figure 3.1) of the problem

can be used as the input for solving algorithms as well. The tasks are repre-

sented as supply nodes and the UAVs as intermediary nodes to the demand

node. Each task node has edges to the nodes of the UAVs that are able to ex-

ecute it. The capacity of all edges is set to one, the cost of the edge is the cost

of the task execution. The cost of not scheduling a task is considered by adding

an additional node per task that represents leaving the task unassigned. The

cost of not scheduling a task can be modeled as infinity or as the power cost in-

curred by a UAV idling. A Google OR-Tools solver, which utilises a cost-scaling

push-relabel algorithm, is used to solve the minimum cost flow problem in this

project. From here on the algorithm solving the Minimum Cost Flow Problem

will be referred to as MCFP.

Conversion from one representation of the problem into another is simple.

Both solvers are able to find optimal solutions. However, the network flow

problem solver is able to solve any network flow problem, while the Jonker-

Volgenant algorithm is optimized for the 2D assignment problem specifically.

Ant Colony Optimization

Ant Colony Optimization imitates the behaviour of ants finding paths when

searching for food. After discovering a food source ants lay down pheromone

trails as a guide for other ants.
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Figure 3.2: ACO search graph based on

the cost matrix.

Over time the pheromone will

evaporate and lose intensity. Longer

paths will require more time to

traverse, providing more time for

pheromones to evaporate. The prob-

lem can be encoded as a graph which

the ants traverse to get from their

nest to a food source (see figure 3.2).

The graph is an alternative represen-

tation of the cost matrix (see figure

3.1). In addition to the cost matrix a

pheromone matrix is maintained to keep track of the pheromone intensity for

each node. The algorithm simulates a group of ants traversing the graph for

multiple iterations. Each ant traversal leads to local pheromone updates to the

visited nodes. The shortest path for the ants within the iteration is kept track off.

After one iteration is completed a global pheromone update takes place to up-

date the pheromones of the shortest found path. The ACO implementation and

tuning of parameters in this project is based on work of Piao et. al [31]. In theory

ACO is able to find good or even near-optimal solutions while following simple

concepts. In practice the quality of solutions depends on the implementation

and tuning of the algorithm for the specific problem it is applied to.

3.3 Computation Offloading

The system allows for computational offloading to ease the burden on a single

UAV. Computationally intensive tasks may be offloaded to other UAVs in the
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swarm, as well as the cloud. Offloading of work within the swarm is implicitly

possible through the definition of jobs. As an example, instead of considering

taking a photo and running object detection on it as a single task, it can be split

into two tasks as part of a job. The two tasks belonging to the job are then linked

through a dependency. This is advantageous in a heterogeneous UAV swarm

where one type of UAV generates a large amount of data which incurs a high

processing time and another generates a comparatively small amount of data.

The splitting of tasks allows for the distribution of computational load across

the entire swarm.

Cloud resources are a powerful alternative to computation within the UAV

swarm. Offloading computation to the cloud can drastically reduce the process-

ing time of data, although it is slightly penalized by network delay caused by

data transfer. Cloud offloading can be used in addition to any of the proposed

scheduling algorithms. If cloud offloading is enabled, a task that can be run on

the cloud will be processed by the cloud instead of being assigned to a UAV.
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CHAPTER 4

SYSTEM IMPLEMENTATION

The simulator is implemented in Python 3 following an object oriented pro-

gramming paradigm. The simulator, compute resources, jobs, tasks and con-

trollers are represented by a class each. This allows for easy configuration

and extension of the simulator. The project code can be found on GitHub:

https://github.coecis.cornell.edu/cfs232/droneswarm.

4.1 Simulation

Figure 4.1: Simulator framework.

The simulation is driven by an event queue. The elements of the queue are es-

sentially triggers for function calls that handle certain simulation events. Trig-

gers are added to the queue for arriving tasks or jobs, UAVs finishing tasks,
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and to monitor the UAVs battery status. The event queue is sorted in ascending

order by timestamps that correspond to the time that the event should occur.

The simulation loop pulls events from the queue, updates the simulation to the

timestamp of the event and calls the specified function with the provided argu-

ments. The task assignment within the framework is visualized in figure 4.1.

4.2 System Setup

Figure 4.2: System setup.

4.2.1 Environment

The simulation is set in a in a grid of size 10mx10m. For purposes of simplifica-

tion is assumed that there are no obstacles within the grid, obstacle avoidance

is not considered. The base station is located at the center of the grid and is the
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is the starting point for the UAVs in the simulation. It consists of an edge server,

a router, and charging stations for the UAVs. Charging spots are assumed to al-

ways be available. The bandwidth of the router can be specified, but is assumed

to be symmetrical for both up- and downloads. Network delays are considered

to a certain extent, but are modeled in a simplified manner. The calculation of

the network delay takes into account the amount of data that is transferred, the

bandwidth and potential network congestion due to high load.

4.2.2 UAVs

The UAV swarm can consist of different types of multi-rotor UAVs, these can be

specified in a configuration file. A type of UAV is associated with a number of

parameters, such as a velocity, and the sensors it is equipped with. The velocity

is assumed to be constant throughout the simulation. The power consumption

and CPU capability is parameterized as well, since these are important con-

straints that need to be taken into consideration for scheduling.

A UAV consumes power throughout the simulation by traveling, executing

tasks, transferring data and idling. Each UAV type has a certain battery capacity

which defines the maximum charge a battery can hold. The battery will deplete

at a specified rate, and the UAV will return to the base station to recharge once

a battery load of under 15% is reached. At this point the UAV is considered

unfit the execute any further tasks. Ideally no UAV should deplete before it can

return to the base, so the threshold is chosen to ensure that a UAV is able to

reach the base station with the remaining battery.

The latency for a task is scaled by a CPU scaling factor to approximate the
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execution times of a task on different CPUs. This factor is defined relative to

the execution time the task would have on the cloud. The hardware of UAVs is

generally far less powerful than the cloud resources available.

4.2.3 Cloud Resources

The cloud provides additional compute resources that can be taken advantage

of to reduce the computational burden on the UAVs. A task can only be assigned

to be processed on the cloud if it is explicitly executable by the cloud, these are

tasks that do not involve sensing. The cloud is abstracted to a single resource

that is infinite and always ready. Scheduling a task to run on the cloud will

incur a higher network latency. The latency used in the simulator is based on

experiments uploading data to the Microsoft Azure cloud with the Azure Speed

Test Tool [32].

4.2.4 Workload

The workload for the simulations can consist of multiple task and job types.

Execution latencies for tasks are based on experiment latencies of actual appli-

cations.

Tasks

A task is a unit of work that cannot be subdivided into smaller subtasks. A task

in the simulation will arrive according to a specified task arrival distribution.
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The task duration is calculated based on a defined average latency and standard

deviation from the latency according to a Gaussian distribution. A task deadline

is set upon arrival, if a task is not completed by the deadline it is considered a

failed task. The deadlines are soft deadlines, and tasks are still executed if they

do not meet their deadline.

The location of the task within the grid is randomly generated. Non-sensing

tasks do not have a designated location since they can be executed at any loca-

tion, including the cloud. The sensors required for sensing tasks, e.g. a camera

to take a photo, are specified in the task description. The amount of data gener-

ated by a task type can be specified as well. A task may also be part of a job, as

described in the next section.

Jobs

A job consists of multiple tasks that may or may not depend on each other. Task

dependencies can be defined through a JSON representation of a task graph.

The tasks within a job do not have their own arrival time, deadline, or priority.

The arrival time and priority is inherited from the job, so all tasks of a job arrive

at the same time and have the same priority. The job deadline only applies to

the job as a whole, so a task within a job cannot fail by itself, only the entire

job. Scheduling a job is broken down into scheduling all of its tasks, and a

job is considered complete as soon as all tasks belonging to the job have been

completed. Data flow between tasks is taken into account based on the specified

task dependencies.
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4.2.5 Controller

The controller class is the unit driving the task assignment process. Each con-

troller schedules task batches according to the scheduling policy associated with

it. The batching process can be configured to be based on a batch interval, the

batch size, or an adaptive batch size. Batching allows for better optimization

with the more advanced scheduling algorithms.

The controller maintains information about the current status of the system.

UAVs are kept track off based on their status, UAVs can be either available, busy,

charging, or depleted. Similarly tasks are into pending, in-flight, completed,

timed out, and failed tasks. The controller sets a timeout for each task once it is

assigned to a UAV to keep track of straggling tasks. If a task is not completed

before the set timeout, the task will be considered timed out.

The scheduling algorithms discussed in this project optimize based on

power consumption. The estimated power cost of UAV i executing task j is cal-

culated by the controller as follows, where c represents a cost, l a latency, s a scal-

ing factor: ctotal(i, j) = cwakeup(i)+ ctravel(i, j)+ ctask(i, j) where ctravel(i, j) = distxy(i, j)∗

sxy(i) + distz(i, j) ∗ sz(i), and ctask(i, j) = (lexecution( j) ∗ (scompute(i) + sidle(i))) ∗ sbattery(i),

and lexecution = ltask( j) ∗ sslowdown(i) + lnetwork(i, j).

For a controller’s cost estimate average latencies and approximations are

used, these may differ from actual latencies. Wakeup cost is only non-zero if

the UAV is in standby.

23



CHAPTER 5

EVALUATION

5.1 Methodology

5.1.1 Applications

The applications used in the experiments are either a single task or consist of

a job with multiple phases. Jobs that are split into multiple phases of simple

tasks follow the concept of modular design. Smaller application modules have

gained popularity with the rise of serverless functions and microservices, since

they are faster to develop and deploy.

The single tasks in this project are taking a photo and sensing the tempera-

ture at a certain location. A job with two phases involves data generation, such

as the aforementioned tasks, and processing of the data. Processing tasks of

photos take the form of image classification, facial recognition and image seg-

mentation. A three-phase job related to computer vision consists of taking the

photo, pre-processing it by running basic classification and following up with a

more in depth recognition.

5.1.2 Parameters

The parameters defining task latencies and UAV features are based on empirical

values. The UAV parameters are modeled after trial runs with Parrot AR 2.0

drones by the group that originally implemented the simulator. Their report
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mentions that further validation of certain power scaling parameters might be

needed [9], unfortunately access to the UAVs was limited due to Covid-19. The

task latencies are based on measurements obtained by running implementations

of the applications.

5.1.3 Task Arrival

The rate at which tasks arrive in real time to be processed can impact the be-

haviour of different scheduling algorithms and techniques. To observe potential

differences experiments can be run with a selection of five arrival distributions.

The task arrival interval is set to 5s and the frequency of arrivals for the interval

is set to 100 tasks for most distributions. A bursty task arrival entails all tasks

for an arrival interval arriving at the beginning of the interval, creating a burst

of pending tasks. Arrivals according to the exponential and Poisson distribu-

tions are sampled within a time frame based on the interval and frequency for

each task. To model rare events that do not saturate the swarm a lower task

frequency per interval, namely 10, is selected. Rare event arrivals are sampled

from the Poisson distribution as well. Finally, a mixed distribution combines

bursty and Poisson rare task arrivals at a 1:1 ratio. Experiments, unless speci-

fied otherwise, use a mixed task distribution.

5.1.4 Generating Results

The experiments are run on an Intel® Core™ i7-10510U CPU @ 1.80GHz × 8 (4

physical cores). Experiments are run multiple times and results are averaged
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to ensure a fair comparison with regard to the inherent variance of events in

the simulation. The exception to this rule are large scale experiments. They are

only run once since the simulation duration drastically increases and they are

less prone to a large degree of divergence. The experiments are run for a swarm

size of 100 UAVs unless specified otherwise.

5.2 Results and Discussion

5.2.1 Scheduling Algorithm Comparison

The scheduling algorithms are compared for different swarm setups and work-

loads. All scheduling algorithms, except FIFO, optimize for power consump-

tion. Metrics considered are average and tail latencies, the percentage of failed

tasks and the average time it took the scheduler to find an assignment for a task

(average scheduling time).

Homogeneous UAV Swarms

Comparison of the scheduling algorithms shows that the read-to-use solvers

used for the Hungarian and MCF problem are able to achieve the most promis-

ing results (see figure 5.1). As anticipated FIFO performs the worst; FIFO is not

an optimizing policy, but a simple approach with little overhead. The greedy al-

gorithm and ACO, local optimization and solution approximation, lie between

the aforementioned algorithms in terms of performance. The greedy algorithm

does not find globally optimal task assignments due its local optimization ap-
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(a) Average Execution Latency (b) Average Queue Latency

(c) Tail Latency (d) Failed Tasks

Figure 5.1: Comparison of scheduling algorithms for the single-phase task of
taking a photo.

proach. The ACO has a similar performance to the greedy algorithm. This is

somewhat expected since it is a meta-heuristic, but the quality of assignments

(or lack thereof) could also be a result of misconfigured parameters in the im-

plementation.

The decrease in average execution time for the optimizing algorithms can be

explained by their optimizing nature. A larger workload will lead to more tasks

in the task queue, meaning that more tasks are available for the assignment

optimization. Since the simulation grid is limited in size, the probability of a

task being closer to a UAV is higher with a higher number of pending tasks.

As a result the travel latency can be reduced and the average latency and failed

tasks converge to a minimum. Figure 5.1 (d) shows that this is in fact merely a
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(a) Latency Breakdown Taking Photos (2000
Tasks)

(b) Latency Breakdown Temperature Sensing
(1100 Tasks)

Figure 5.2: Latency breakdowns of the total latency from task arrival to task
completion.

dip, as failed tasks increase again under a high workload.

Figure 5.2 shows the latency breakdown of two task types across the schedul-

ing algorithms. Plot (a) shows the latencies for 2000 photos taken, and (b) for

1100 temperature sensing tasks. The workload was chosen to be moderately

intense to reflect average execution times when UAVs have not yet depleted

and are kept busy. The photo-taking task has a short compute time and an in-

creased network latency compared to the temperature sensing task. Taking a

photo does not require a lot of time, but generates a larger amount of data. The

latency that can be influenced by a scheduling algorithm directly is the execu-

tion time. The execution time is composed of the travel and execution time. The

algorithm may be able to reduce the computation latency if the swarm is het-

erogeneous and computation latency varies per UAV type. Travel latency can

be optimized for tasks that need to be executed at a certain location, e.g. sensing

tasks. FIFO, although keeping queue time low in theory, has the highest queue

and travel latency. The FIFO policy results in higher execution latencies, so
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(a) Average Latency (b) Failed Tasks

Figure 5.3: Comparison of scheduling algorithms for the multi-phase job of im-
age segmentation.

UAVs are occupied with a task for a longer time, leading to higher queue times

for the remaining tasks. In contrast, MCMF and the Hungarian algorithm are

able to reduce execution time which in turn reduces the queue time. ACO and

local optimization are a sort of middle ground between the other approaches,

achieving some degree of optimization.

The performance of the algorithms for multi-phase jobs might be slightly

unexpected when compared to the performance for a single-phase task. This is

caused by a different metric generation for jobs. A job is considered in-flight

when its first task has been assignment, and is considered complete once its last

task has been completed. None of the schedulers take the belonging of a task

to a job into consideration. This may lead to a scenario where the first task of

the job has been completed, but the remaining tasks of the job are still pending,

since the assignment of other tasks is more efficient in terms of power consump-

tion. A multi-phase job often consists of data generation and processing, where

the data processing might be more energy consuming than its generation. Un-

der such conditions starting a job would be cheaper than finishing it. Straggling

tasks can lead to a long job execution time, although efficiency is maintained on
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a task scheduling level. This is where FIFO has an advantage. Although FIFO

might not optimize the assignments in terms of power consumption, it ensures

that jobs are executed in order. This is reflected in improved performance in

terms of job latencies (see figure 5.3). However, for a higher workload the opti-

mizing algorithms still outperform FIFO in terms of failed tasks.

Figure 5.4: Scheduling algorithm laten-

cies (average latency of the algorithm to

assign a task to a UAV)

The algorithms do not only dif-

fer in performance, but also in their

runtime. Figure 5.4 shows that all

algorithms are fairly fast, except for

ACO. FIFO and the greedy algorithm

are fast due to their simplicity. The

solvers for the MCFP and Hungarian

problem are highly optimized imple-

mentations, which makes them very

efficient in terms of latency. The ACO

implementation likely suffers from a

sub-optimal implementation, making it significantly slower than all other

scheduling algorithms. This latency could be improved by either tuning or par-

allelizing the algorithm, or using available Python implementations.

Heterogeneous UAV Swarms

A heterogeneous UAV swarm is composed of multiple types of UAVs. UAVs

may differ in their sensing and processing capabilities, as well as their power

and velocity parameters. The previous section showed that multi-phase job ex-

ecution time might suffer from straggling tasks when the data processing task
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(a) Average Latency (b) Failed Tasks

(c) Average Latency (d) Failed Tasks

Figure 5.5: Heterogeneous UAV swarms, (a) and (b) show results for a swarm
where 50% of UAVs are equipped with cameras. (c) and (d) show results for the
same setup, but additionally the UAVs without cameras have more powerful
CPUs.

is more expensive in terms of energy consumption. Related work mentions that

heterogeneous swarms with dedicated processing UAVs can help with efficient

task execution [7]. Figure 5.5 shows experiment results for heterogeneous UAV

swarms. The job workload is the same as in the previous section. The swarms

are comprised of two types of UAVs with a 50/50 split. In plots (a) and (b) the

UAVs are essentially the same, the only difference being that one set of UAVs is

fitted with cameras while the other one has no sensing capabilities. The setup in

plots (c) and (d) is similar, additionally the UAVs without camera are equipped

with more powerful CPUs. The scheduling algorithms, except FIFO, are able to

maintain efficient task assignment and achieve similar performance to a homo-
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geneous UAV swarm. Plots (a) and (b) demonstrate that optimizing algorithms

are able to achieve good performance for multi-stage jobs and swarms with less

sensory equipment. Plots (c) and (d) show that modifying a share of the UAV

swarm to have higher computational capabilities can improve overall perfor-

mance in terms of latency and failed tasks. This is most apparent for the MCFP

and Hungarian algorithms. This principle is demonstrated with CPU capabili-

ties, but other modifications (e.g. longer lasting batteries or faster UAVs) could

also aid UAV swarm performance.

Large UAV Swarms

As smaller UAVs become more affordable, the utilization of large UAV swarms

becomes more feasible as well. Efficient task scheduling is crucial as swarm

size increases. To evaluate the performance of scheduling algorithms for larger

UAV swarms, experiments were run with 10-1000 UAVs, with a workload of ten

temperature sensing tasks per UAV.

The results for the larger swarms resemble the previous experiment results

to a certain extent (see figure 5.6). At a certain swarm size the number of failed

tasks remains almost constant for FIFO and the optimal solvers, while it in-

creases for the other algorithms. The greedy algorithm and ACO algorithm

suffer from long queue times, which dominates the total latency of the tasks,

leading to a higher number of failures. FIFO is a policy that minimizes queue

time, which benefits the overall latency. The optimal solvers are able find assign-

ments with a short execution time, so more tasks can be executed in a certain

time frame. These aspects contribute to better results as the overall problem

size increases. Plot (d) shows that the differences in algorithm latencies become
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(a) Average Queue Latency (b) Execution Latency

(c) Failed Tasks (d) Average Schedule Latency

Figure 5.6: Results for large UAV swarms with 10-1000 UAVs under a workload
of 10 tasks per UAV.

more pronounced for larger swarm sizes. The greedy algorithm benefits from

its simplicity for smaller experiments, but is inefficient as the problem size in-

creases. The ACO algorithm especially suffers from long run-times, which is

why the scale of the larger experiments was limited. This could likely be ame-

liorated by further tuning of the implementation. The high schedule latency

is an additional factor that worsens the queue time, since tasks are considered

queuing until they are assigned to a UAV.
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5.2.2 Task Batching

Task batching refers to the processing of multiple tasks at once. Here the pro-

cessing refers to the task assignment process of the controller. Task batches

might be scheduled after a certain period of time, after a certain batch size has

been reached or a combination of both. These batching techniques are referred

to as interval batching and (fixed) size batching hereinafter.

In the system tasks are maintained in a queue until they are scheduled to

a UAV. In contrast to a regular batching scenario, tasks are not necessarily re-

moved from the queue after a batch is processed. Tasks are only removed if an

assignment to UAV could be found. The number of available UAVs might not

correspond to the pending tasks, and available UAVs might not meet the tasks

sensor and power requirements.

Batch size has an impact on optimizing scheduling algorithms. The follow-

ing experiments demonstrate these effects for the MCFP solver, although they

are, to some degree, applicable to any optimizing algorithm. The figures show

results for a swarm of 100 UAVs executing 1000 temperature sensing tasks. The

interval for interval batching is set to 100ms. The results obtained for multi-

phase jobs do not show these effects as clearly since the metrics for jobs are

generated differently, as discussed previously. The belonging of tasks to jobs is

not necessarily taken into account when scheduling, so the effects of batching

are not visible as clearly for jobs. The effects of batching do still hold true for

the tasks within a job.

A larger batch size has a positive impact on average execution latency, tail

latency and failed tasks, since a larger task pool enables more efficient assign-
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(a) Average Execution Latency (b) Average Queue Latency

(c) Tail Latency (d) Failed Tasks

Figure 5.7: Impact of batch size on average latencies and failed tasks for the
execution of 1000 temperature sensing tasks.

ments (see figure 5.7). This statement only holds true to a certain extent, as rare

events may suffer from a higher total tail latency due to the increased queue

time. Queue time increases for larger batches across all distributions, but it is

most extreme for rare events. Batches will take longer to fill up with rare events,

causing a drastic increase in queue time. To ensure that batches are scheduled

within a reasonable wait time, a batch interval is specified in addition to the

batch size. If a batch was not filled and processed within the interval, a timeout

will trigger the batch to be scheduled regardless of size.

The ideal batch size varies according to the arrival rates of tasks and cur-

rent load of the system. Adaptive batching can be used to change the batch

size throughout the execution to find a trade off between the number of batches
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(a) Average Total Latency (b) Tail Latency

(c) Failed Tasks (d) Number of Batches

Figure 5.8: Comparison of batching techniques for 1000 temperature sensing
tasks; adaptive batching, interval batching and fixed size batching.

scheduled and resulting task latencies and failures. The adaptive batching pol-

icy uses the queue time as a guide for in- or decreasing the batch size. If the

queue time of recently scheduled tasks is above a certain threshold, the batch

size is decreased. It is assumed that task queue time is high due to a decrease

in task arrivals, and batches requiring a longer time to be filled. If the queue

time is below the threshold, the batch size is increased to take advantage of the

benefits of larger batches. The threshold is set to 2s, leading to a slight increase

in average queue time, and thus higher average total latency for some distribu-

tions (see figure 5.8). The tail latency and failed tasks are improved with adap-

tive batching, with the exception of rare events. Batching can also drastically

decrease the number of task batches that are processed during execution (see

figure 5.8). Compared with interval batching, adaptive batching finds a good
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trade off between batch size and scheduling performance. This is true for all

but bursty task arrivals. A bursty distribution benefits most from interval based

batching, since all tasks of an arrival interval can be scheduled in one interval

batch of 100ms. Adaptive batching is reactive, meaning that batch size will only

gradually increase to match the bursty arrivals.

While a larger batch size will reduce the numbers of task batches sched-

uled during execution, it can also increase the time needed by the optimizing

scheduling algorithm to process a batch (see figure 5.9). The increase depends

on the algorithm used, but for efficient implementations it will be in the range

of a few milliseconds.

Figure 5.9: Influence of batch policy on

scheduling algorithm latencies.

It should be noted that the adap-

tive batching based on queue time

only remains efficient as long as the

queue time is an accurate represen-

tation of task arrival and processing.

Once UAVs start to run out of battery,

tasks are executed at a significantly

slower rate than before, leading to in-

creased queue times. Decreasing the

batch size will no longer help perfor-

mance since the queue time no longer reflects arrival rate, but the decrease of

processing units instead. Switching from adaptive batching to regular interval

batching, once UAVs need to recharge, could be an option.
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5.2.3 Computation Offloading

In a previous section it was shown that offloading tasks to dedicated compute

UAVs can be beneficial for the execution of multi-phase jobs. A common ap-

proach to computation offloading is the utilization of cloud resources for com-

putationally intensive tasks. The cloud provides considerably more powerful

compute resources than regular UAVs. Transferring sensor data to the cloud

for processing can speed up computation while preserving power resources of

the UAV swarm. However, the data transfer will incur a higher network delay.

Computation offloading may not be ideal for all applications; processing tasks

with a short duration could be penalized by the higher network latency. The

experiments are run with the two-phase job image segmentation. Image seg-

mentation is computationally expensive, more so than image recognition. This

makes the job an ideal candidate for cloud offloading.

Figure 5.10 shows that the utilization of cloud resourced can be beneficial to

the swarms performance, especially under a larger workload. Heavy compu-

tation will lead to faster depletion of the swarm, resulting in higher execution

latencies and failed tasks. Cloud offloading also results in a different latency

allocation. Execution latency is reduced while the network delay increases.

5.3 Limitations

Since the focus of the simulator is the evaluation of scheduling algorithms, other

aspects of the execution are not addressed or are kept abstract. One example

of this is the network setup; it is only an approximation of latencies and does
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(a) Average Total Latency (b) Failed Tasks

(c) Latency Breakdown (800 Tasks)

Figure 5.10: Cloud offloading in addition to UAV task execution, tasks are of-
floaded to the cloud if they do not require sensing by the UAVs.

not take into account potential interruptions or packet loss. At this point in

time the simulator does not take obstacle avoidance, potential collisions, and

other UAV flight related issues into consideration as well. Obstacle avoidance

could potentially be modeled by considering it a task of a job that needs to be

completed before the execution of all other tasks can commence.

The power related configuration parameters are based on estimations by the

group that initially implemented the simulator. The estimates are derived from

experiments with an actual UAV swarm setup. However, their report mentions

that some parameters might require further configuration and verification [9].

Once access to a UAV swarm is possible the parameters should be reconfigured.
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Additionally it would be interesting to obtain data for UAV types other than the

Parrot AR 2.0 drone.
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CHAPTER 6

CONCLUSION

This project concerns the augmentation of a UAV swarm simulator for the eval-

uation of real-time scheduling policies. The simulator provides a simple in-

terface to configure simulations and specify multi-phase jobs. The system also

allows for easy implementation of new scheduling algorithms. The algorithms

evaluated in this project are FIFO, a greedy local optimization algorithm, and

three global optimization algorithms. To solve the global optimization prob-

lem two solvers, namely MCFP and Hungarian, and a meta heuristic, ACO, are

employed.

Experiments with different applications and swarm configurations showed

that ready-to-use solvers are able to find the best solutions with a low execution

time. The greedy algorithm, despite being quite simple, is able to achieve decent

performance compared to a basic FIFO policy. The ACO, while in theory a good

approach, is not without issues and needs further tuning of parameters and

implementation. It does not outperform the greedy algorithm and has a high

execution time.

Task batching and the utilization of cloud resources are additional policies

that can assist UAV swarm task assignment. An adaptive batching policy based

on queue time is introduced and is able to maintain, and in some cases improve,

task assignments for optimizing schedulers. The number of batches needing to

be processed can be drastically reduced while only minimally increasing the

processing overhead for a batch. Cloud resources can be utilized for computa-

tionally intensive tasks and lighten the load on the UAV swarm. Future work

could investigate a smart cloud scheduling policy that takes into account the
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trade off between increased network delay and sped up execution. Addition-

ally the edge server could be used for lighter processing tasks or pre-processing

of data before sending it to the cloud.
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