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Abstract 

The two sample problem for rank order data is put in a 

decision theoretic context in which the states of nature are 

Lehmann alternatives. Rules ·which are Bayes, with respect tC' 

prior distributions on the indexing parameter of the states 

of nature, are derived for the resulting two decision problem. 

Consideration is given to·the admissibility and applicability 

of such procedures, and methods for subjective and empirical 

assignment of prior probabilities are discussed. 
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1. Introduction and summary. The classical rank tests for the two sample problem 

have been shown to be optimal (locally most powerful) against very restricted 

classes of alternatives (see [1]). In this paper the two sample problem is formulated 

as a two decision problem, as in [5], and Bayes procedures are derived for a larger 

class of alternatives. The class of alternatives considered is that introduced by 

Lehmann [3]. Its members have a meaningful interpretation, and the probability of 

observing a given rank order from a pair of distributions in this class depends only 

on the relationship of the distributions producing this rank order, not on their 

parametric for.m. 

In section 2 the general problem and procedure are outlined. Sections 3 and 4 

specialize these results for two types of prior distributions and examples are given. 

In section 5 a sufficient condition for the admissibility of the general procedure 

is presented. Section 6 discusses possibilities for application including subjective 

and empirical methods for determining prior distributions. In section 7 the Bayes 

procedure for some simple priors is compared with the Wilcoxon statistic, for a 

complete enumeration of rank orders with m = 2, 3, and n = 3· 

2. The problem and procedure. Given independent random samples x1,x2, ... ,xm and 

Y1,Y2, ••• ,Yn from cumulative distribution functions F and G respectively, 

S = (s1, ••• ,sn) be the vector of ordered ranks of the Y's in the combined 

let 

sample 
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of n~ = N observations, and s = (s 1, ••• ,sn) a realization of S. Let 

00 = {CF,G)\F(x) = G(x), wx}, o1 = {CF,G)iG(x) = F8(x), vx, some 8 > 1}, and 

0 = 00 v 01 . The object is then to choose between decisions d0 : (F,G) e o0 

and d1 : (F,G) € 0 1 • 

It was shown by Lehmann [3] that 

where we put Sn+l = N+l. 

Thus for (F,G) e n the probability of observing any rank order is independent 

of F and the set of states of nature n can be indexed by 8 ~ 1. We may then consider 

8 as a realization of a random variable 6 with cumulative distribution function w, 

of the mixed type. More precisely, W(8) =pM(8) + (1-p)H(o), where 0 ~ p ~ 1, 

M(o) = 0(1) for 8 < 1 (8 ~ 1), and H is an absolutely continuous or discrete cdf 

with support (1,~). We let h denote the continuous probability density of H in the 

former case and the discrete density of H in the latter. Thus the density of A, 

say w, can be written as 

(p if 0 = 1 

w(o) = { 
l(l-p)h(o) if o > 1 

If we employ the loss function, 

{ a if i = 1, 5 = 1 : ~. 

I 

L(di,o) = \ b if i = o, o > 1 

I 0 otherwise 
\ 
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where a and b are positive, then the conditional risks of taking decisions d., 
~ 

given S = s are 

-1; 
and R(d1,s) = ap~) ;'P{s = s}. Therefore a Bayes procedure chooses d1 if 

(2. 2) J I{s = s le}dH(e) > ap/b(l .. p )(~) 

and d0 otherwise. 

It will _beL convenient in the successive sections -~o adopt the following 
.- .. 

--
notation as used byc,savage [4]. Let zi = 1 if Sj = i \~r some j = 1,2, ... ,n and 

zi = 0 otherwise,,.i =cl,2/;~.,N. Put Z = izl'."'"'ZN) and let z = (z1, ... ,zN) be 

a realizat,ion~of Z. ··If we also take vi =I: z., and ll:t = i""V'1, then Savage [4] 
j=l J 

shows that 2.1 can be written as 

(2.3) P{z 
N 

= z le} = m.'n:en; n ( u. +ev. ) 
i=l 1 l. 

so that by 2.2 d1 is taken if 

(2.4) JL N N J B(z) = 8 In (u.+ev.) dH(8) > ap/b(l-p)N: 
i=l l. 1 . 

1· H absolute1y continuous. The problem of expressing 2.4 in a convenient 

computational form when n··is a'density of the continuous type is rather complex. 

The form of the denominator suggests that the integral might be expressed as the sum 
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of simpler integrals by the method of partial fractions. If we note that since 

vi = 0 for i < s1, we have ui = i for i < s 1, so that 

( 3· 1) 
8n 1 

)( 
8n 

= N N N 
TI (u. +8v.) (s 1 ... 1).'. n vi n (8+tl;1/vi) 

i=l J. J. J.=s i=s 1 1 

where vi> 0 fori~ s1, and the degree of the polynomial, in 8, of the denominator 

is N-s 1+1 which is an integer in [n,N]. The method employed to decompose the last 

factor of 3.1 depends on the degree of the denominator and whether or not the de-

nominator contains repeated factors, that is if for the given rank order ~/vi' 

i ~ s 1, takes one or a number of values with a frequency greater than one. These 

considerations suggest that it is not worthwhile to give a general form of the 

decomposition, but rather that it should be done for the observed rank order at 

hand. 

Example l.l. When the degree of the denominator in the last factor of 3.1 is 

greater than n, which is the case unless z consists of m zeros followed by n ones, 

and contains no repeated factors 3.1 becomes (see [2]); 

(3-2) 
1 

N 
(s1-l): fi v. 

• J. 
J.=sl 

where we do not allow j = s 1+i in the product. Thus for rank orders satisfying the 

given conditions we have, 



(3-3) 
1 

B(z) = --~~­N 
(s 1-l): IT v. 

i=l ~ 
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Example 3.2. Suppose w puts probability p on 5 = 1 and the rest uniformly on 

(l,R) so that h(o) = 1/(R-1); 1 < 5 < R. Then for z with the above properties, 

1 
B (z) = ------~--w N 

(s 1-l):(R-l) n v. 
i=s ~ 

1 

N-s 
1 

\ A.[log(u +.+Rv +.)-log(s 1+i)] _L ~ s 1 ~ s1 ~ 
~=0 

4. H discrete. When h is a density of the discrete type so is w, and calculations 

similar to those leading to 2.2 yield a Bayes rule that chooses d1 when 

CD 

(4.1) Bw(Z) = \ N 5nw(5) ap 
L > bN.' 

5=2 11 (u.+ov.) 
i=l 1 1 

When the support of w is finite, which will be the case in many situations as 

indicated in section 6, computation of Bw presents no great problems. If the support 

of w is infinite the method of partial fractions as discussed in the previous section 

may be useful. 

2· Admissibility. In this section, we consider the question of admissibility of 

Bayes procedures of the form 2. 2, for the decision problem specified by (o,.i)L, n, N ), 

where c~) == { d0, d1}. It is well known (see [1]) that a Bayes procedure which is 

unique up to equivalence of risk functions is admissible. Also the existence of 
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a Bayes rule with respect to a certain prior distribution guarantees the existence 

of a non-randomized Bayes rule with respect to that prior. The non-randomized 

Bayes procedures considered here are unique unless R(d0,z) = R(d1,z) for some rank 

order z, where R(d.,z) is the conditional risk associated with decision d. given 
. 1 1 

Z = z. Therefore a sufficient condition for the admissibility of the Bayes two 

decision procedure with respect to W is 

ap 
= z\o)dH(o) f b(l-p)~) 

for all (~ rank orders. 

It is possible to get a weaker condition by noting that if the procedure fails 

to be unique then its inadmissibility depends on the existence of a 'better" Bayes 

rule. That is if D is a Bayes procedure mapping rank orders intodt, and D is 

inadmissible, and there is a procedure n* such that the risk 

* * r(D ,o) ~ r(D,o) Vo and r(D ,5) < r(D,o) for some o 

then Er(n*, o) ~ Er(D, o) and n* must be Bayes. This fact and the structure of 

the problem under consideration yield the following result. 

Theorem 5.1. The Bayes two decision procedure (2.2) for the problem (O,J1L,n,N) 

is admissible if there is at most one rank order z such that 

(5.1) 
ap 

= d 5) dH ( o ) = b ( l-p) (N) 
\n 
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Proof. In light of the above remarks it is sufficient to show that the procedure 

is admissible when there is exactly one rank order, say z0, which satisfies (5.1). 

Let ~(z) be the indicator function of {ziD(z) = d~. The risk function for 

the procedure D is given by 

-1 
a(~) L~(z) if o = 1 

z 

r(D, o) = 

z 

Since R(d0,z0 ) = R(d1,z0 ) there are two Bayes rules, D0 and D1, such that 

D0 (z0 ) = d0 and D1(z0 ) = d1 with D0 (z) = D1(z) for z F z0. Then since~ (z0 ) = o, 
0 

and~ (z0 ) = 1 and~ (z) = QD (z) for z F z0 we have 
l 0 1 

-1 . -1 
r(D0,1) - r(D1, 1) = a(~) I [ ~0 (z) - ~1 (z )]=-a(~) < 0 

z 

and for o > 1 

Therefore both D0 and D1 are admissible and the procedure 2.2 which corresponds to 

D0 is admissible. 
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It should be noted that strict monotonicity of th~ integral in 5.1 for some 

ordering of the z 1s implies the condition of theorem 5.1. A partial ordering used 

by Saxena (5] has been shown by Saxena and Savage [6] to produce a monotone rank 

order likelihood ratio in the case of Lehmann Alternatives. Mbre precisely let 

* I t zR z if z. = z. fori= 1,2, ••• ,N except for some j and j+l, where z. = z! 1 = 0 
l l J J+ 

an(dl)zj+l =(zKJ = 1. Then define zRz' if zR*z' or if there exist rank orders 

) h th t R* (l)R* (2 )R* R* (K)R* I s d s h th t z , ••• ,z sue a z z z •.• z z , axena an avage sow a 

when zRz 1 , I{ Z = z lo}/x{ Z = z' Ia} is an increasing function of 8 and furthermore 

I{ Z = z Ia} > P{ Z = z' io} when 5 > 1. Therefore, for rank orders that are R-related, 

if zRz' then 

JP{z = zlo}dH(o) > JI{z = z'lodH(o) 

This fact along with theorem 5.1 provides a useful tool for testing the ad­

missibility of a Bayes procedure, for if Jx{z = z'~~dH(5) > ap/b(l-:p)C!) then so is 

J P{ z = z lo}dH(o) for all z such that zRz 1 • Similarly, if J P{ z = z 'lo}dH(o) 

< ap/b(l-p)(~) then so is JP{z = zlo}dH(o) for all z such that z'Rz. Such a 

Bayes two decision procedure is said to be monotone. 

6. Some Possibilities for Application. The class 01 is admittedly not a natural 

set of alternatives for most :practical problems, and has mainly been of interest 

because of the mathematical niceties it :provides. However, the fact that the pro-

cedures mentioned above are optimal, in the Bayes sense, with respect to this 

rather large class,whereas the optimality of the classical rank tests is for more 

limited classes of alternatives, suggests that it is worthwhile to explore some 

possibilities for application. 
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It should be of interest, in considering problems where the class 01 provides 

5 a reasonable set of alternatives, to note that G = F , 5 a positive integer greater 

than 1, implies that the Y's are distributed as max(x1, ••• ,Xa)· Thus if the Yob­

servations are a result of a process that in some sense chooses the largest of a 

group of X observations, 0 1 provides a reasonable set of alternatives. Because we 

are considering 5 as the realization of a random variable we need not specify a 

single 5, but rather a probability distribution for the variable. The remainder 

of this section deals with methods of determining such a distribution. 

The assessment of subjective probabilities when A is discrete may be aided by 

the following device. If G = F0 then P{x < Ylo} = o/5+1, so that a prior distribu­

tion for 6 might be constructed from the experimenters feelings about P{x < Ylo} for 

various values of 5. 

5 I{x < Y\o} Experimenters prior feelings 

1 1/2 w(l) 

2 2/3 w(2) 

3 3/4 w(3) 

The Bayes procedure would then choose d1 if Bw(z) >a~~?) where a/b is the 

relative importance of classical type I to type II error. 

If data from previous samples from F and G is available, the following method 

might be used for empirical selection of prior probabilities. Suppose r pairs of 

samples of sizes m1 and ni; i = 1,2, ••. ,r from F and G are available. It is desired 

5 to estimate what proportion, w(o), of the samples from G come from F • This suggests 
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that we estimate 5 for each of the r samples and take 

A 

(6.1) w(o) = t(o -= o) 
r 

We next consider two estimators of 5, based on ranks, which might be used for this 

purpose. 

The first 5AH is an Ad-Hoc estimator which is intuitively appealing and is 

based on an estimate of P{x < Y\5} for a given sample. Let U be the Mann-Whitney 

statistic, namely the number of pairs (xi, Yj), from a combined sample of size m + n, 

with X. < Y .• We then take 
~ J 

(6.2) ..!!. = T- 1/2 n(n+l) 
mn mn 

as an estimator of P{x < Y\o}, where T is the sum of the ranks of the Y's in the 

ordered pooled sample. Since under o, P{x < Y\o} = 5/5+1, if we set (6.2) equal 

to o/5+1 and solve for 5 we get 

A _ T - 1/2 n(n+l) 
0AH - mn + l/2 n(n+l) - T 

A 

as an estimator of 5. It should be noted that BAH is an increasing function of 

T, and when all n observations from G exceed all m observations from F, 
A 

T = mn + 1/2 n(n+l) so that BAH is undefined. Such an observation, of course, 

provides the strongest possible evidence for (F,G} € n1 and should be weighted 

accordingly • 

.... _ 
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A second estimator of B "i's :Cased on:.-·the ''principle" of maximum likelihood 

which suggests that we determine the proportion of samples, w(B), from G that 

have the greatest likelihood of having come from F5 • Since the likelihood of 

a rank order is given by (2.3), treating B as continuous and differentiating 

yields the maximum likelihood estimator BML as a solution of 

A 

(6.4) L(B) = n 

Since each non-zero term of the sum in 6.4 is continuous, strictly increasing 
A ~ 

in B and positive for B > Oj L(B) is a strictly increasing continuous function 

of B forB> 0. Also lim L(B) = 0 and lim L(B) =#of non-zero terms in the 
B-oO+ 5--ta~ 

sum, which is greater than n unless all the observations from G exceed all the 

observations from F. In the latter case the number of non-zero terms is 

n(i.e., lim L(B) = n). Therefore BML yields a unique estimate of B except in 
a~ 

this extreme case where BML' as BAH' is undefined. 

The properties of these estimators have not been investigated, but it 

should be noted that since Z is not a vector of IID random variables, the 

regular theory of maximum likelihood does not apply to BML. 

l· Some Numerical Comparisons. 

In the following tables the values of the Bayes statistic B (z) of (4'. 1) are 
w . '·.· 

given for all rank orders (z) in the cases m = 2,3 j n = 3 and for various priors 

(w). The vectors are prior probability vectors (w(l), w(2), •.• ,w(k)). 
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m = 2r n = 3 
z rank sum(S) ~-5z·2~ ~-5z·3z·2~ ~·5z·Oz.5) ~ · 5 z • Oz · Oz · 5l { · 5~: 01 • O.z.g.5) e 

11100 6 • o(n49 .00120 .00076 .00046 . 00031 

11010 7 .00179 .00146 .00097 .00061 .00042 

11001 8 .00208 .00174 .00122 .00079 .00056 

10110 8 .00238 .00201 .00146 .00098 .00070 

10101 9 .00278 .00240 .00183 .00127 .00093 

10011 10 • 00341. .00311 e00226 • 00191 .00146 

01110 9 .00476 .oo461 .00438 .00321 .0034_? __ 

01101 10 .00556 . 00552' .00548 .00508 .00464 

01011 11 .00694 ·.00723 .O(T(67 .00762 .00729 

00111 12 .01041 .01238 .01534 .01905 .02188 

m = 3z n = 3 

111000 6 .00017 .00012 .00006 .00003 .00002 

110100 7 .00020 .00015 .00008 .oooo4 .00002 

110010 8 .00023 .00018 .00010 .00005 .00003 

110001 9 .00026 .00021 .00012 .00007 .00004 

101100 8 .00026 • 00021 .00012 . .00007 . 00004 

101010 9 .00031 .00025 .00015 • 00008 • 00005 

101001 10 .00035 .00029 .00019 .00011 .00007 

100110 10 .00038 .00031 .00021 .00013 .oooo8 

100101 11 .00044 .00037 .00026 .00016 .00011 

100011 12 .00053 .00046 .00035. .00023 . 00016 

011100 9 .00053 .00046 .00037 .00026 .00019 

011010 10 .00062 .00055 .00046 • 00034 .00026 

011001 11 ~ OO.Q7J .... ·-· OQ.Q65 ---· .OOO')h . 00043 . 00034 

010110 11 .00077 .00072 . 00064 . 00051 .00041 
-----

010101 12 .00088 .00084 .00078 L..! Q9Q65 ______ . oqo53 _____ .. __ 

010011 13 .00105 .00105 .00104 .00092 .00079 

001110 12 .00116 • 00121 . 00128 .00127 . 00122 

00ll01 13 • 00132 .00142 • 00156 • 00162 .00159 

001011 14 .00159 .00179 . 00208 .00231 .00238 

000ll1 15 ~00211 .00266 .00347 .00462 . 00556 



; 

-13-

The rank orders corresponding to the values of B (z) below the lines in the w 

table are those that would lead to d1 for the given prior and a = b = 1. It is 

interesting to note that although rank orders most supportive of (F,G) € 01 have 

larger values of B (z) as prior probability shifts to larger 8, the set of rank w 

orders leading to d1 decreases in size. 

At the level of precision given in the table it appears that B (z) is w 

increasing for the given ordering of z's. However, in examining more precision 

some switchovers are apparent. 
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